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ABSTRACT

MEILEI JIANG: Statistical Learning Of Integrative Analysis
(Under the direction of J. S. Marron and Jan Hannig)

Integrative analysis is of great interest in modern scientific research. This dissertation mainly

focuses on developing new statistical methods for integrative analysis.

We first discuss a clustering analysis of a microbiome dataset in combination with phylogenetic

information. Discovering disease related pneumotypes of the infected lower lung is difficult because

the lower lung typically has few species of microbes and there is a low level of overlap from patient-

to-patient, which makes it hard to calculate reliable distances between patients. We address this

challenge by incorporating information from phylogenetic relationships, which results in improved

clustering. When applied to an existing dataset, the method produces statistically distinct, easily

described pneumotypes, which are better than those from standard approaches.

In the second part, we discuss an integrative analysis of disparate data blocks measured on a

common set of experimental subjects. We introduce Angle-Based Joint and Individual Variation

Explained (AJIVE) capturing both joint and individual variation within each data block. This

is a major improvement over earlier approaches to this challenge in terms of a new conceptual

understanding, much better adaption to data heterogeneity and a fast linear algebra computation.

Detailed comparison between AJIVE and competitors is discussed using a particular optimization

view point.

In the third part, we introduce a new perturbation framework, which estimates the angle

between an arbitrary given direction and the underlying signal spaces. We also propose an efficient

data-driven bootstrap procedure to compute this angle. While the Wedin bound in the AJIVE

is “subspace oriented” and uniform for both row space and column space, this angle is “direction

oriented” and specially adaptive to give improved inference in the row space.
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CHAPTER 1

Introduction

In the past decade, we are experiencing the era of “big data” and “information explosion”.

Recently many datasets are large-scale not only in the sense of large-sample size and high dimension,

but also in the sense of being multi-source. It is a ubiquitous challenge as well as opportunity for

modern scientific research to integrate the information from disparate data blocks measured on a

common set of experimental subjects. This thesis aims at addressing this challenge by developing

new statistical learning methods for integrative analysis.

Chapter 2 discusses a clustering analysis of a microbiome dataset which incorporates phyloge-

netic information. Modern genomic methods have led to a dramatic increase in the ability to study

a wide variety of microbiomes. In particular, this has enabled precise quantification of various

bacterial species present in a range of different sample types, resulting in many statistical chal-

lenges. For example, discovering disease related pneumotypes of the infected lower lung is difficult

because the lower lung typically has few species of microbes and there is a low level of overlap from

patient-to-patient. This type of sparsity presents a special challenge to standard analysis methods

because it is hard to calculate reliable distances between patients. We address this challenge by

using information from phylogenetic relationships, which results in improved clustering. In our

application to a pneumonia dataset, the method produces statistically distinct, easily described

pneumotypes. It is seen that our pneumotypes are better than those from standard approaches,

using a SWISS score analysis. A simulation study explores the ways in which this new approach

generally performs better than standard methods.

Chapter 3 discusses a novel integrative statistical learning framework, Angle-based Joint and

Individual Variation Explained (AJIVE), which can simultaneously explore the joint and individual

variation within each data block. This work provides major improvements over earlier approaches

to this challenge in several ways. First, there is a new conceptual understanding. Section, much

better adaption to data heterogeneity leads to much sharper statistical inference. Third, there is
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now a fast linear algebra computation. Important mathematical contributions are the use of score

subspaces as the principal descriptors of variation structure and the use of perturbation theory as

the guide for variation segmentation. This leads to an exploratory data analysis method which is

insensitive to the heterogeneity among data blocks and does not require separate normalization.

An application to cancer data reveals different behaviors of each type of signal in characterizing

tumor subtypes. An application to a mortality data set reveals interesting historical lessons.

Chapter 4 discusses the relationship between AJIVE and existing integrative methods from

an optimization point of view. It shows that some popular methods, such as Singular Value De-

composition, Partial Least Square and Canonical Correlation Analysis, are not as well suited for

the AJIVE task. We also find the connections between AJIVE and Flag Mean as well as Common

Orthogonal Basis Extraction, which provide geometric and optimization interpretations for AJIVE.

Chapter 5 discusses a new perturbation analysis framework for a given direction. Perturbation

analysis in AJIVE relies on the estimation of the Wedin’s bound, which is not only very conservative

for non-square matrix, but also “subspace-oriented” rather than “direction-oriented”. Based on

the random matrix theory, a novel perturbation analysis framework for a given direction has been

proposed for addressing this challenge. A singular value shrinkage estimator is used to recover the

signal matrix from the data matrix. An efficient bootstrapping procedure has been proposed to

compute the direction specific perturbation angle. Simulation study shows that this computation

algorithm is quite efficient and robust under different settings. Applying this perturbation analysis

on the AJIVE directions, we can compute the reliability of each AJIVE direction on each data

block.
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CHAPTER 2

Finding Community Subtypes On Microbiome Dataset

2.1 Introduction

Modern genomic methods have led to a dramatic increase in the ability to study a wide variety

of microbiomes. An important question is whether or not knowledge of the lower lung microbiome

in patients may aid in the diagnosis, treatment, or prevention of pneumonia (Koenig and Truwit,

2006; Beck et al., 2012; Yamasaki et al., 2013; Dickson et al., 2014; Segal et al., 2014). This

question is approached through determining whether or not there are community subtypes or

pneumotypes. We address the problem of finding pneumotypes by analyzing data from a previously

published study of intensive care unit patients (Bousbia et al., 2012). Most of the subjects in this

dataset were diagnosed with one of several types of pneumonia. For this microbiome dataset, we

focus on Operational Taxonomic Units (OTUs), a general biological term including species and

genera. The matrix of the proportions of bacterial OTUs found in each subject’s lung is called the

Relative Abundance (RA) matrix. Li (2014) gave an overview of high-dimensional data analysis for

microbiome data. As shown in Figure 2.1, in each row of this microbiome data only a few entries

are non-zero, and the distributions of RA over OTUs among different subjects are very diverse.

These features of this microbiome data make it challenging to apply standard analytic methods

because of the difficulty of computing meaningful distances between subjects.

A phylogenetic tree (shown in Figure 2.3) constructed using PhyloPhlAn (Segata et al., 2013)

represents relationships between OTUs based on evolutionary distance. Using standard Euclidean

distance on the RA row vector shown in Figure 2.1, two subjects who do not share OTUs are far

apart whether or not the OTUs are close in the phylogenetic tree. The method that we propose,

Tree Weighted Abundance (TWA), combines RA with phylogenetic distances so that subjects with

microbiomes that are close in the phylogenetic tree will also be close in distance. If the organization

of the phylogenetic tree is closely related to the true clusters, then we show via a simulation study
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that our approach is better than standard approaches that don’t incorporate information from

the phylogenetic tree. Related microbiome analyses which incorporate relative abundance with

phylogenetic information include Matsen and Evans (2013); Zhao et al. (2015); Chen et al. (2016);

Wu et al. (2016). A standard method that combines phylogenetic distances with RA is Principal

Coordinate Analysis (PCoA) (Gower, 1966), which uses the abundance weighted Unifrac distance

matrix (Lozupone and Knight, 2005).

We carefully study important drivers in a simulation study summarized in Figure 2.2 with the

goal of understanding which method is better over a wide range of potential biological settings. This

shows that TWA is better for a broad range of moderate tree information strength, while PCoA

is the best for a limited set of conditions with very weak tree information (bottom of Figure 2.2).

The black X shows the approximate location of this microbiome data, which shows the benefit of

using TWA in this particular case. In a neighborhood of X, there are many settings where TWA is

much better. The methods perform similarly for very strong tree information, i.e. the upper right

region. A full description is in Section 2.4.
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Figure 2.2: Heat map mutual information comparison of TWA and PCoA. Shades of blue show superior
performance of TWA, with white used for essentially similar cases, and red when PCoA is better. The vertical
axis represents the strength of alignment between the phylogenetic tree and clustering in the data. The
horizontal axis represents how strongly relative abundances are concentrated in the parts of the phylogenetic
tree related to the clusters. This shows a large range of biological settings where TWA is better.

The rest of the paper is organized as follows. Section 2.2 describes the motivation and method-

ology from the viewpoint of Object Oriented Data Analysis (Wang and Marron, 2007; Marron and

5



Alonso, 2014a). Section 2.2.1 describes standard statistical clustering algorithms for microbiome

data. Section 2.2.2 discusses Object Oriented Data Analysis (Wang and Marron, 2007; Marron and

Alonso, 2014a), which is a modern framework for approaching complex data challenges and which

provides a viewpoint to address our novel approaches and other approaches to find community

subtypes. Section 2.3 gives the empirical clustering analysis results on the microbiome dataset.

Three distinct pneumotypes with interesting descriptions are identified by the approach we pro-

pose. Compared to standard statistical approaches, our approach gives more balanced and better

statistically separated clustering results. Section 2.4 provides a simulation study to investigate

whether and how the use of phylogenetic tree information improves the identification of clusters.

Section 2.5 discusses the connection between the simulation data and the LRI microbiome data

and concludes with final remarks.

2.2 Methods

2.2.1 Standard clustering algorithms for microbiome analysis

For microbiome analysis, two of the most commonly used algorithms are k-means clustering

and mixture modeling.

k-means Clustering The k-means clustering method is a standard clustering approach for par-

titioning a dataset into k distinct clusters. Detailed description of its properties can be found in

the book by Kaufman and Rousseeuw (1990). Choosing the best value of k is complex. For our

analysis, the Calinski Harabasz Index (Calinski and Harabasz, 1974) is used to estimate the number

of clusters.

Dirichlet Multinomial Mixture Modeling The Dirichlet Multinomial Mixture Model (DMM,

Holmes et al. (2012)) is a probabilistic model of communities for count data. DMM is based on

the multinomial distribution, having parameter vectors from a mixture of Dirichlet components as

a prior. The model is fitted by Expectation Maximization, and a Laplace approximation is used to

select the best model based on cross-validation. Bayes’ theorem is used to calculate the posterior

probability that a sample was generated from each of the classes. Ding and Schloss (2014) apply

DMM modeling to analyze the Human Microbiome Project (NIH HMP Working Group, 2009) data.
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In their analysis, the data objects are genera-level abundance vectors. Our data from Bousbia et al.

(2012) included only RA values. DMM needs counts as input, so we made an ad hoc conversion to

pseudocounts by multiplying all rows of the RA matrix by an arbitrary value, 100, and rounding

to integers. If the original count data had been available, such an approach could be thought of as

a normalization for sequencing depth.

2.2.2 Object Oriented Data Analysis viewpoint

Object Oriented Data Analysis provides a viewpoint for analyzing complex datasets, such

as curves (Ramsay and Silverman, 2002, 2005), trees (Wang and Marron, 2007; La Rosa et al.,

2012), shapes (Huckemann et al., 2010; Jung et al., 2012) and images (Sen et al., 2008; Lu et al.,

2014). Instead of simply treating data objects as vectors in Euclidean space, an essential idea of

Object Oriented Data Analysis is taking into account their intrinsic information. Object oriented

terminology is useful for understanding these methods for finding community subtypes and how

our new TWA approach relates to them.

RA Vectors As Data Objects The rows of the RA matrix can be directly represented as

Euclidean vectors on a simplex. Straightforward analysis, say k-means clustering, can be applied

to identify subtypes. However, for the microbiome data considered in this paper, both empirical

results in Section 2.3 and simulation results in Section 2.4 show that treating the RA as vectors

does not efficiently represent the subtype structure of subjects because of the high sparsity and

diversity. In particular, only using RA vectors as data objects does not reflect the strong and useful

relationships between the OTUs.

PCoA Scores As Data Objects PCoA scores computed from the weighted Unifrac distance

matrix are data objects that also combine phylogenetic tree information with RA. The Unifrac

distance matrix has been frequently used for microbiome analysis. For instance, Costello et al.

(2009) applied this approach to study the bacterial community variation in human body habitats.

The unique fraction metric, or Unifrac (Lozupone and Knight, 2005), measures the phylogenetic

distance between two subjects (communities of OTUs) based on a phylogenetic tree. The distance is

calculated as the fraction of total branch length that is unshared by the taxa in the two communities.

In microbiome analysis, the branch length is typically weighted by the RA of taxa, which is called
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weighted Unifrac distance. After computing distances for all pairs of subjects, we get a weighted

Unifrac distance matrix. PCoA then uses multidimensional scaling (Borg and Groenen, 2005) to

produce a coordinate matrix. Community subtypes are next identified by applying, for example,

k-means clustering to the coordinate matrix produced by PCoA.

TWA Vectors As Data Objects We propose TWA as a novel data object that combines RA

and phylogenetic tree information. TWA is the abundance weighted by the cophenetic distance

matrix (Sokal and Rohlf, 1962) of OTUs in the phylogenetic tree, where cophenetic distance is

the sum of the branch lengths traversed between two leaves in the phylogenetic tree. Denote the

cophenetic distance matrix and RA matrix as D and X respectively. The matrix X has subjects

as rows and OTUs as columns. Then, the Tree Weighted Abundance is calculated as

TWA = X ·D.

The rows of TWA can serve as the data objects for various clustering approaches, such as k-means

clustering. This new data object, which incorporates phylogenetic tree information with RA, is in

the spirit of weighted UniFrac distances. Weighted UniFrac, however, measures distances between

subjects, whereas TWA can be best thought of as a transformation of RA. Because of the weighting

scheme, subjects with OTUs that are phylogenetically related will be close in TWA space even when

there is no overlap in OTUs, which is essentially important for data of the type shown in Figure 2.1.

2.3 Analysis of the real microbiome data

In this section we describe the application of TWA on the real microbiome data.

2.3.1 Data description and processing

The data analyzed were downloaded from the supplemental materials of Bousbia et al. (2012).

In this study bronchoalveolar lavage (BAL) samples were collected from ICU patients who had

mechanical ventilators. 185 subjects had been diagnosed with pneumonia. An additional 25 sub-

jects without pneumonia served as controls. The data was obtained via amplification of 16S rRNA

genes followed by cloning and sequencing. A specialized set of PCR primers were designed for this
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study that allowed an unusually high level of resolution. Most of the OTUs, consequently, could be

identified at the species-level using BLAST against GenBank. Relative abundance estimates were

provided by the authors.

The initial data included 157 OTUs. We selected for analysis only taxonomic units with

sufficient representation in GenBank to include in the calculation of a phylogenetic tree. In a

few cases, we aggregated OTUs at the genus level in order to have sufficient reference genomes

for accurate calculation of the tree. In total, 121 OTUs, mostly at the species level, had enough

reference genomes available for phylogenetic analysis.

We restricted our analysis to subjects that had bacteria identified in their sample. Final data

included 124 pneumonia subjects and 13 controls. We verified that the filtered data had about the

same level of sparsity as the original. The mean number of OTU’s per subject before filtering was

3.6 (s.e.=0.24) and after filtering was 3.2 (s.e.=0.20). We calculated the Bray-Curtis diversity (Bray

and Curtis, 1957), a measure of the dissimilarity between a pair of subjects, of all pairs of subjects

before and after filtering. For each subject we calculated the median value all pairs. The mean

value across subjects was 1.0 (s.e.=0) for both the original and filtered datasets.

2.3.2 Computing the phylogenetic tree

Phylogenetic trees constructed for 16S rRNA sequencing data are often created using Green-

Genes (DeSantis et al., 2006). This is the case for data downloaded from HMP. We based our

analysis, however, on a phylogenetic tree constructed using PhyloPhlAn (Segata et al., 2013), be-

cause that also uses protein information. PhyloPhlAn assigns phylogeny based on the consideration

of more than 400 proteins selected from nearly 4000 genomes. The desire to use a protein based

phylogeny that relies on many genes instead of just one, led us to the filtering of the data described

above. The PhyloPhlAn tree generated from the filtered data is shown in Figure 2.3. The con-

struction of the tree is particularly important because the distances between tips of the tree are

used in the subsequent analysis.
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Figure 2.3: The unrooted phylogenetic tree computed by PhyloPhlAn. Tips are labeled with the OTU
names. Tips are colored based on the phylum identification from NCBI. In general, this tree is consistent
with the NCBI taxonomy.

2.3.3 k-means clustering on TWA

For our analysis, we used the R-package fpc (Hennig, 2015). This implements a standard k-

means algorithm which initializes the means several times by using seeds that are randomly selected

data points. Applying k-means clustering on TWA for values of k ranging from 2 to 10, as seen

in Figure 2.4, the Calinski Harabasz index (Calinski and Harabasz, 1974) was highest for three

clusters so all subsequent analysis will be based on 3-means clustering.

In the TWA space two subjects are close together when their OTUs are close in phylogenetic

space even if they have no OTUs in common. As a consequence, we expect subjects with OTUs

from similar phyla to be grouped together. This can be seen in the left panel of Figure 2.5, which

uses color bars to show, for each of the three subtypes, the phylum level RA (the number shown)

and the size of each subtype. Phyla with very low RA (< 1.0%) are grouped into the Other

category. The bars with RA value less than 5.0% are not labeled with an RA value. Subtype 1 is

dominated by OTUs belonging to Proteobacteria (yellow). Subtype 2 is dominated by OTUs from

the phylum Firmicutes (pink). Subtype 3, which is the most diverse, has Bacteriodetes (brown)
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Figure 2.4: Calinski Harabasz index values for different numbers of clusters for k-means on TWA. Larger
value of Calinski Harabasz index indicates a better separated clustering results.The optimal clustering should
be given by the first local maximum of the values. For this microbiome data, 3-means clustering gives the
optimal result while 4-means clustering is reasonably good as well.

appearing most prominently. These three subtypes represent different types of infections which

make biological sense and are reasonably balanced. The right panel shows direct comparison of the

clustering by PCoA, and will be discussed in Section 2.3.6.

2.3.4 Description of TWA subgroups based on diagnosis

The distribution of diagnosis groups within subtypes is shown in Figure 2.6. The data were

normalized to account for differences in group sizes. The diagnosis groups are not clearly driven

by the subtypes. All diagnoses except for Aspiration Pneumonia (AP) are equally represented in

Subtype 1. Aspiration Pneumonia is over represented in Subtype 2 but the Control group is under

represented. The Control group is over represented in Subtype 3. The diagnoses of Community

Acquired Pneumonia (CAP), Non-ventilator Associated Hospital Acquired Pneumonia (NVHAP)

and Ventilator-Associated Pneumonia (VAP) are all most likely to be assigned to Subtype 1 then

Subtype 2 then Subtype 3.
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Figure 2.5: Phylum level relative abundances by subtype from TWA and PCoA. The left panel shows the
barplot of the subject subtype identified by TWA, and the right panel shows the corresponding barplot for
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separating subjects with dominant Proteobacteria infections from those with dominant Firmicutes infections.

2.3.5 Principal components visualization

In order to visualize the clustering results in the TWA space, PCA is applied to the TWA. The

first three principal components explain a large amount of the variation, about 97.4%, and the first

PC explains 73%. The corresponding scree plot is provided in Figure 2.7.

igure 2.8 shows a standard PCA scatter plot. On the diagonal of Figure 2.8, 1-d projections,

i.e., scores, are shown on the horizontal axes, and the vertical axes are randomly jittered for the

purposes of easier visualization. The black curves on the diagonal plots are smooth histograms, i.e.,

kernel density estimates. The off diagonals show pairwise scatter plots. The three subtypes from

Figure 2.5 are shown in different colors. They are most visually distinct in the plot of PC1 versus

PC2. From visual inspection we conclude that PC1 separates TWA Subtype 1 (red) from Subtype 2

(green). PC2 separates Subtype 3 (blue) from the others. PC3 is less related to subtype structure.

This is not surprising since the main subtype structure lies in the 2-d subspace determined by

the 3 cluster means. The PC3 scores distribution weakly suggests bimodality, which may indicate

additional structure in the data. Similar plots for RA and PCoA are shown and discussed in Section

2.3.6. These show that TWA gives a generally better visual interpretation.
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Figure 2.6: Distribution of diagnosis groups in each subtype. The diagnosis groups are not of equal sizes
so in order to compare the distributions of the diagnoses across subtypes, we calculated the percent of each
diagnosis that is associated with each subtype. Bars of the same color add up to 100%. All diagnoses except
for Aspiration Pneumonia are equally represented in Subtype 1. Aspiration Pneumonia is over represented
in Subtype 2 where as the Control group is under represented. The Control group is over represented in
Subtype 3.
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Figure 2.7: The PCA scree plot of TWA matrix. The scree plot of first sixteen PCs shows the proportion of
total variance attributed to each principal component (blue line) and the cumulative variance explained (red
line). The first three principal components explain about 96% percent of the variance in the data. The first
seven PCs explain 99.3% of the total variation. The first sixteen PCs explain 99.9% of the total variation.
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Figure 2.8: The PCA scatter plot matrix for TWA. Visualization of the first three principal components.
The points are colored based on their subtype membership from the 3-means clustering on TWA shown
in Figure 2.5. The plots on the diagonal show the univariate distribution for each of the three PCs. Off
diagonal plots are the pairwise scatter plots. The three clusters are clearly differentiated in the plot of PC1
versus PC2.
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2.3.6 Comparison of results from other approaches

Clustering results based on the three approaches are shown in Figure 2.9. Applying the DMM

modeling to the taxa level RA matrix does not identify any subtypes so these results are not shown

in the figure. Applying k-means clustering to the RA matrix identifies two subtypes based on the

Calinski-Harabasz index. Subjects in the smaller of the two clusters have a single dominant OTU

(shown as red in the left column of the colored bar, and as a short vertical line segment in the RA

matrix). Subjects in the other cluster are simply all the rest. As shown in the right two columns

of the colored bar, clustering based on the PCoA score matrix gives results that are fairly similar

to TWA. Subtype 1 in TWA remains in the first subtype of PCoA. In contrast, PCoA distributes

members of TWA Subtype 2 among its other subtypes. An interesting question is which phyla have

left the TWA Subtype 2 to join the others. This is answered by the right panel of Figure 2.5, which

shows the phylum level RA by subtype from the PCoA approach. Note that both Proteobacteria

and Firmicutes have been moved to PCoA Subtype 1. Furthermore, Firmicutes have also been

moved to PCoA Subtype 3 and to the new PCoA Subtype 4. Finally notice the overall subtype

sizes are much less balanced for PCoA.

RA TWAPCoA

Method

S
u

b
je

c
tSubtype

1
2
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4 0.00

0.25
0.50
0.75
1.00

proportion

Figure 2.9: Subject cluster labels generated through different approaches and the corresponding relative
abundance matrix. The left side of the figure shows three columns. Each column corresponds to an approach;
RA, PCoA and TWA. The rows (subjects) are ordered by cluster labels of TWA results. The entries are
color coded by cluster membership. The plot on the right shows the RA matrix, where the rows correspond
to the colored bar. The column order is based on the phylogenetic tree. This shows TWA gives the most
useful clustering.
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Since k-means clustering gives different numbers of clusters on different data objects, in or-

der to make a complete comparison we evaluate 2-means, 3-means and 4-means clustering on all

three data objects. SWISS (Cabanski et al., 2010) scores and Calinski-Harabasz index values, two

nonparametric criteria for clustering evaluation, are provided in Table 2.1 for all three methods.

Large values of the Calinski-Harabasz index and small values of the SWISS score indicate better

separated clusters. As shown in Table 2.1, 3-means clustering based on TWA gives the best results

among all approaches. PCoA is inferior to TWA, and overall is somewhat better than clustering

directly on RA values.

Table 2.1: Calinski-Harabasz index values and SWISS scores from k-means clustering on different data
objects. This shows much better clustering performance for TWA.

Criterion Calinski-Harabasz index SWISS score
Clustering 2-means 3-means 4-means 2-means 3-means 4-means
RA 33.32 25.55 22.56 0.80 0.59 0.48
PCoA 54.50 51.38 55.45 0.71 0.65 0.56
TWA 211.81 256.54 242.79 0.39 0.299 0.301

Principal components visualization of RA and PCoA clustering results Visualization of

RA and PCoA clustering results, analagous to Figure 4 based on TWA, are shown here. For the RA

matrix, the first three Principal Component scatter plots colored by RA and TWA clustering results

are shown in Figure 2.10(a) and Figure 2.10(b) respectively. Note that the only difference between

Figure 2.11(a) and Figure 2.11(b) is the coloring of the points. PC1 shows a bimodal structure,

which separates RA Subtype 1 (red) and RA Subtype 2 (green). This shows how k-means found

those clusters. PC2 and PC3 don’t show a clear subtype view. TWA subtypes do not follow the

data structure in these scatter plots.

For the PCoA score matrix, the first three Principal Coordinates scatter plots are shown in

Figure 2.11. The points in Figure 2.11(a) and Figure 2.11(b) are colored by PCoA and TWA

clustering results, where again only colors differ. As seen in Figure 2.11(a), PCo1 separates PCoA

Subtype 1 (red) from PCoA Subtype 2 (green) as well as distinguishes TWA Subtype 1 (red) with

TWA Subtype 2 (green), Figure 2.11(b). PCo2 separates PCoA Subtype 3 (blue) with other PCoA

subtypes and also separates TWA Subtype 3 (blue)with others. Thus there is substantially overlap
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Figure 2.10: The PCA scatter plots based on the RA matrix. Visualization of the first three principal
components of RA. The plots on the diagonal show the univariate distribution for each of the three PCs.
Off diagonal plots are the pairwise scatter plots. The points in Figure 2.10(a) and Figure 2.10(b) are colored
based on RA clustering and TWA clustering subtypes respectively. The TWA subtypes are not very related
to this view.

between PCoA and TWA clusterings. A new small subtype, PCoA Subtype 4 (purple), appears in

PCo3.
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(a) PCoA subtypes.

●● ●● ●● ●●● ●● ●●● ●●●● ●● ●●●● ●● ●●●●●●● ● ●● ● ● ●●●● ●●●● ●●●● ●● ●● ●● ●●● ●●●● ●● ● ●● ● ●● ● ●●● ● ●● ●● ●● ●●●●●● ●●●●● ●●●●●● ●● ● ●● ●●●● ●● ●●● ●● ● ●●●● ●●●● ●● ●● ● ●●●●●●● ●

0.5

1.0

1.5

−0.2 0.0 0.2 0.4 0.6

PCo1

d
e
n
s
it
y

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●●●

●

●●●

●
●●●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●●

●

●

●●●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

● ●

●

●

●

●●

●

●

●
●

●

●

●●

●

−0.2

0.0

0.2

0.4

0.6

−0.25 0.00 0.25 0.50

PCo2

P
C

o
1

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●●
●
●

●

●

●

●

●

●

●●●

●

●●●

●
●●●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●●

●

●

●●●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●●

●

●

●
●

●

●

●●

●

−0.2

0.0

0.2

0.4

0.6

0.0 0.2 0.4 0.6 0.8

PCo3

P
C

o
1

●● ●●●●● ●●● ●● ●●● ●●● ●● ●●●●● ●● ●●●● ●●●●● ● ●● ●●●●●●● ●●●● ●●● ● ●●● ●● ●●●● ●● ●● ●●● ●●● ●●● ●●● ● ●●●● ● ●●● ● ●●●● ●●●●●● ● ●●● ● ●●●● ●●● ●● ●●● ●●●●● ● ●●● ●●●●● ●● ●●●●●

0

1

2

3

−0.25 0.00 0.25 0.50

PCo2

d
e
n
s
it
y

●

●

●

●
●

●

●

●●

●

●
●

●
●

●

●

●●

●

●

●

●

●●

●

●
●

●●

●●

●
●● ●●

●

●

●

●●● ●●●●

●
●
●
●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●●●

−0.25

0.00

0.25

0.50

0.0 0.2 0.4 0.6 0.8

PCo3

P
C

o
2

●●●●●●●●●●●● ●●● ●●● ●●●●●●● ●●●●●●●●● ●●●●● ●●● ●●●●●●●● ●●● ●● ●●●● ●●●●● ●●● ●●● ●●●●●●● ●● ●● ●●● ●● ●● ●●●●●●●●●●●●●●● ●●●●●●● ●● ●●● ●●● ●●● ●●●● ●●●●● ●●●● ●●●

0

2

4

6

0.0 0.2 0.4 0.6 0.8

PCo3

d
e
n
s
it
y

TWA Subtypes

●●●●●●●●●●●●●●●
●
●●●●
●●

●●●●●
●●
●●●●●●●●
●
●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●
●●●

●●●●●●●●
●●
●●

●●●●
●
●●●●●●●
●●
●●●
●●●●●●●●●
●
●
●●●●●

Subtype

●

●

●

1

2

3

(b) TWA subtypes.

Figure 2.11: The scatter plots based on the PCoA scores matrix. Visualization of the first three principal
coordinates of PCoA scores matrix. Format is similar to Figure 2.10. The points in Figure 2.11(a) and
Figure 2.11(b) are colored based on PCoA clustering and TWA clustering subtypes respectively. PCo1 and
PCo2 separates three PCoA subtypes and TWA subtypes. PCoA Subtype 4 can be seen as the small set of
purple points in the PCo3 dimension in Figure 2.11(a).

We conclude for this example, that incorporating information from the phylogenetic tree leads

to much better results than direct analysis of RA values. TWA incorporates the phylogenetic
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information more effectively than PCoA. The three subtypes of subjects generated by TWA are

statistically separated, well balanced, and are also easy to explain in terms of phyla.

2.4 Simulation study

The analysis in Section 2.3 indicates that TWA is a preferable approach to clustering analysis

on this microbiome data. The empirical results in Section 2.3 also indicate that in each subtype

of subjects the RAs concentrate on some specific OTUs, which are close in the phylogenetic tree.

We use a simulation study to study potential biological contexts beyond this case. We generate

OTU RA matrices that have the similar sparse features of the lung microbiome data and vary the

connections between the subtype structure and the phylogenetic tree structure. The four clustering

approaches in Section 2.2 are compared. Our study makes clear situations in which each analysis

strategy is the best choice.

In our simulation study, the four analysis methods in Section 2.2 are compared. Applying

DMM modeling on RA (DMM) and k-means clustering on PCoA scores of Unifrac

(PCoA) are popular approaches to microbiome analysis in the literature. Applying k-means

clustering on RA (RA) is a straightforward clustering approach. Applying k-means clustering

on TWA (TWA) is the novel approach we propose. These methods are summarized in Table 2.2.

Table 2.2: Four methods of microbiome clustering analysis.

Method Clustering Algorithm Data Object Uses Phylogenetic Tree

PCoA k-means PCoA-UniFrac Yes
RA k-means RA No
TWA k-means TWA Yes
DMM DMM modeling RA No

2.4.1 Simulation settings

The simulation model, which is designed to reflect the type of sparsity observed in the original

dataset, consists of four groups/subtypes of subjects with sizes 50, 40, 30, and 20, for a total of 140

subjects. A successful analysis should find that there are four subtypes and that the membership in

these subtypes agrees closely with the known group memberships. The groups are defined in terms
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of their probability distribution over 100 OTUs, which are divided into five sets of sizes 10, 20, 20,

30, and 20 respectively. In this design, each group of subjects is assumed to be strongly associated

with a specific set of OTUs. For simplicity of notation, a subject in Group 1 is most likely to have

OTUs observed from Set 1, a subject from Group 2 is most likely to have OTUs observed from Set

2, and so on. We call Set 1 the home set of Group 1, etc. Set 5 is not associated with any groups

of subjects and is included to make the cluster problem more challenging.

We define the home set abundance odds ratio, r, as the odds ratio of observing an OTU from

the home set versus observing an OTU from any of the other four sets. For this simulation, r ranges

from 1 to 16. The value r = 1 is the minimum value by definition of home set. The value r = 16

is a case where all methods perform well.

Two of the analysis methods require a phylogenetic tree. We generate simple phylogenetic trees

where the cophenetic distances between any two OTUs from the same set are fixed at 1 and the

distances between any two OTUs from different sets are fixed at d. We call d the tree distance

ratio. The case d < 1 is not considered because then the phylogenetic tree would put the OTUs

in the same set far from each other. The minimum considered value d = 1 is the case where the

phylogenetic tree has no information about home sets. The maximum value d = 1.5 is a case where

all methods perform well.

In summary, the home set abundance odds ratio, r, represents the strength of the connections

between the subtype structure of subjects and the home set taxa RA values. The tree distance ratio,

d, represents the strength of the alignment between subtype structure of subjects and the phylo-

genetic tree. Values of these two parameters, which cover a broad range of association strengths,

are intended to generate conditions that will help us differentiate among the analysis methods. For

each value of r, 200 datasets are generated. For each dataset, a phylogenetic tree is generated for

each value of d.

2.4.2 Data generating model

In this section we introduce the data generating model in the simulation study. We intend to

generate RA datasets that resemble the sparsity in the real microbiome data. In particular

• Sparsity in RAs is imposed by limiting the number of OTUs observed per subject.
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• Diversity among subjects is imposed by randomly selecting observed OTUs from a larger set

of equally likely OTUs in a way that has low probability of observing the same OTUs from

two members of the same group.

More precisely, the simulation model creates datasets by three steps.

Step 1: Determine how many OTUs will be observed for each subject.

• The number of observed OTUs for each subject i in Group m is generated as

Ni = Poisson(λm) + 1,

where λ1 = 2, λ2 = 3, λ3 = 5, and λ4 = 6.

Step 2: Select which OTUs are observed for each subject.

• The vector pm indicates the probabilities of each OTU observed in subjects from the

Group m. For example, for Group 1,

p1 =
(

10×︷ ︸︸ ︷
9r, ..., 9r,

20×︷ ︸︸ ︷
1, ..., 1,

20×︷ ︸︸ ︷
1, ..., 1,

30×︷ ︸︸ ︷
1, ..., 1,

20×︷ ︸︸ ︷
1, ..., 1)

90× r + 90

where r is the parameter representing the home set abundance odds ratio.

• For Subject i in Group m, Ni observed OTUs are selected through a non-replacement

sampling among all OTUs with bias probability pm. In particular, a binary vector ti

will record the selected OTUs. If ti,k = 1, the RA value of kth OTU will be generated

as in the Step 3; otherwise, its RA value will just be 0.

Step 3: Generate RA values for the observed OTUs for each subject.

• xi is the ith row of the RA matrix X, i.e. the RA values of each OTU for subject i.

• For a subject i, supposing it belongs to Group m, RA values are generated as

xi = Multinomial(1000,qi)/1000

where

qi,k =
ti,k × pm,k∑

k′ ti,k′
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2.4.3 Results of the simulation study

We evaluate the performance of the four methods in Table 2.2, using Normalized Mutual

Information (NMI) (Ana and Jain, 2003). NMI is an information theory based measure that

evaluates the correspondence between the cluster results and the group memberships. NMI is

bounded in [0,1]. NMI = 1 when the cluster results and the group memberships are identical, and

NMI = 0 when they are independent.

The left subfigure of Figure 2.12 shows results for representative d values and plots NMI values

for all three methods against all values of r. For each fixed value of d, the performances of all four

methods improve as r increases. Note that the curves for RA (purple) and DMM (black) are the

same for all values of d (i.e. in each panel) since these methods ignore tree information. RA has

better performance than DMM when r is small and DMM dominates RA in other cases. The tree-

based methods, TWA (green) and PCoA (red), generally outperform the nontree-based methods,

RA and DMM. Typically TWA is superior to RA, although they give almost the same results when

d = 1. DMM is advantageous over TWA and PCoA only if d is very small and r is large. These are

seen in the top left and top middle panels of the left subfigure of Figure 2.12. It is not surprising

since d ≈ 1 means that the strength of the phylogenetic relationships is extremely weak, in which

case tree-based methods give very little benefit. When r is large, it is unlikely that taxa will be

observed outside the home set for a subtype, which is the most favorable case for DMM. Note that

in this case PCoA dominates TWA for small values of r, but TWA outperforms PCoA for larger

values of r.

The top right panel and bottom left panel in the left subfigure of Figure 2.12 indicate that for

moderate values of d, TWA outperforms PCoA. TWA and PCoA have similar performances when

the tree information is very strong and the home set abundance odds ratio r is very large, as can be

seen in the bottom middle panel and bottom right panel of left side of Figure 2.12. The blue dashed

line in the bottom left panel shows the relative location of the LRI microbiome data in the context

of simulation study, where TWA is a favorable approach and it is consist with empirical analysis

in Section 2.3. Further discussion of this topic can be found in Section 2.5. The top left panel also

shows that when tree strength is extremely weak. PCoA dominates TWA for small values of r, but

TWA outperforms PCoA for larger values of r.
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Figure 2.12: Comparison between TWA and other methods by home set abundance odds ratio (r) and tree
distance ratio (d). The left subfigure shows mean NMI values for representative d values and for all values
of r. The right subfigure shows mean NMI values for representative r values and for all values of d. Error
bars represent two times the standard error. From the left subfigure, TWA is superior to RA except the case
d = 1 where their performance are almost the same; TWA dominates PCoA in most cases. PCoA has the
best performance when both d and r are small. In the right subfigure, for each value of r, NMI of TWA and
PCoA converges to the same limit as d increases. But TWA converges faster than PCoA. The blue dashed
lines show the approximate location of the microbiome data in the simulation study.

The right subfigure of Figure 2.12 provides an alternative viewpoint from which to compare

these four methods. Namely, a representative set of r values is shown and NMI is plotted against

all values of d. Once again, DMM (black) and RA (purple) do not use the phylogenetic tree, so

their performances are constant in each panel. Particularly, the performance of RA is almost the

lower bound of the performance of TWA (green) and PCoA (red). Moreover, the right subfigure of

Figure 2.12 shows that for any fixed r, the performance of tree-based methods, TWA and PCoA,

improves as d increases and converges to a limit, which is the upper bound on their performance.

In particular, their upper bounds are almost the same and go to 1 as r increases, which indicates a

perfect clustering. This implies that TWA and PCoA are equivalent and efficient when d is large

enough. For any fixed r, however, TWA is more sensitive to tree information and its performance

converges to the limit with respect to d much faster than PCoA.

In summary, TWA has the best performance in most of the cases considered in the simulation

study, and TWA is generally helpful for identifying subtypes when subtype structure is somehow

related to phylogenetic structure. PCoA, however, outperforms the other methods when d and

r are extremely small. DMM dominates the other methods when d is extremely small and r is

relatively large. RA is an inferior approach in all the cases.

22



2.5 Discussion

2.5.1 Comparison between the LRI microbiome data and the simulation study

In Section 2.3, TWA was applied to the microbiome data, and three easily described pneu-

motypes were identified. The simulation study in Section 2.4 also shows that TWA is an efficient

method for utilizing the phylogenetic tree information to identify pneumotypes under a wide range

of different biological contexts. An interesting question is how to relate the real microbiome data

to the simulation model. Based on the subtypes identified by TWA, the home set abundance odds

ratio and the tree distance ratio have the values r = 5.77 and d = 1.20. The details of this post hoc

calculation procedure based on TWA clustering results are provided in the next section. Compared

to the simulation study, the home set abundance odds ratio of r = 5.77 (2.53 on the log2 scale) and

tree distance ratio of d = 1.20 matches most closely to the bottom left panel in the left subfigure

of Figure 2.12 (the position of the blue dashed line). We see that TWA and PCoA outperform the

RA approaches around this region of parameters. For that reason, in Figure 2.2, we focus on TWA

and PCoA and study the difference in performance between the two methods based on NMI. The

home set abundance odds ratio and tree distance ratio for this microbiome are shown by a black

x on the figure. TWA has better performance in most regions (blue) except for the case when

d is extremely small (red). In the region where both d and r are relatively large and the region

where d is relatively small, the performance of TWA is nearly equivalent to PCoA (white). The

real microbiome dataset falls in the area where TWA has better performance. This is consistent

with the results of Section 2.3. Hence, TWA is not likely to perform worse than PCoA and may

perform much better for a wide variety of sparse microbiome contexts.

2.5.2 Calculation of ratio

In this section, we describe the calculation of the home set abundance odds ratio r and tree

distance ratio d based on the 3-means clustering results on TWA for this microbiome data.

First, we discuss the identification of the home set OTUs in each subtype of subjects. In each

subtype, the odds-ratio of each OTU for each subtype is calculated by taking the mean RA values

across all subjects and dividing by the sum of the mean relative abundances in the other two
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subtypes. As in the simulation model, an OTU is assigned to a home set of the subtype if the odds

ratio was 1 or greater in the subtype. This assignment is unique because the odds ratio can only

be larger than 1 for at most one subtype. All OTUs could be unambiguously assigned to one of the

three sets based on this criterion. The sets had 38, 41, and 42 OTUs assigned, respectively. In the

context of the simulation model, each cluster is a group of subjects and the set of OTUs assigned

to it can be considered the home set of OTUs for the group. The pneumotypes, home sets, and

the phylogenetic tree can now be used to calculate the home set odds ratio and tree distance ratio.

Next we describe the calculation of the home set abundance odds ratio. For each home set,

sum up the RA values across all OTUs in the home set per patient. Next, for each home set,

calculate the average relative abundance per pneumotype. Finally, the home set odds ratio is the

relative abundance in the associated pneumotype divided by the sum of RA values in the other two

subtypes. The overall odds ratio is the average of the three home set abundance odds ratios. For

this microbiome dataset, the home set abundance odds ratio is 5.77.

Last we describe the calculation of the tree distance ratio. All pairwise cophenetic distances

were calculated from the phylogenetic tree. The pairwise distances were divided into two sets. The

first set consists of all distances for which the pairs of OTUs are in the same home set. The second

set corresponds to pairs of OTUs from different home sets. The tree distance ratio is the average

cophenetic distance in the second set divided by the average distance in the first set. For this

microbiome dataset, the tree distance ratio is 1.20.

2.5.3 Remarks

In our analysis we only focus on two of the most common clustering algorithms used in micro-

biome analysis: k-means clustering and mixture modeling. Other clustering algorithms, such as

hierarchical clustering, can be also easily applied to TWA. Comparing to the choice of clustering

algorithms, the definition of dissimilarity between two subjects plays a more fundamental role.

In fact, if the subjects fall into very distinct subgroups, every algorithm will work well. In the

opposite case, every algorithm will perform poorly. From the viewpoint of Object Oriented Data

Analysis, correctly defining the data object is central to complex data set analysis. As we can
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see in Table 2.1, applying various clustering algorithms on TWA always lead to statistically better

separated subtypes than other approaches.

Our study shows, for microbiome data with sparsity and diversity, how the strength of tree

information makes an impact on the efficiency of clustering approaches that incorporate information

from the phylogenetic tree. Another interesting problem we have not investigated yet is how the

sparsity and diversity differentiate the performance of TWA and PCoA.
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CHAPTER 3

Angle-Based Joint And Individual Variation Explained

3.1 Introduction

A major challenge in modern data analysis is data integration, combining diverse information

from disparate data sets measured on a common set of experimental subjects. Simultaneous vari-

ation decomposition has been useful in many practical applications. For example, Kühnle (2011),

Lock and Dunson (2013), and Mo et al. (2013) performed integrative clustering on multiple sources

to reveal novel and consistent cancer subtypes based on understanding of joint and individual vari-

ation. The Cancer Genome Atlas (TCGA) (Network et al., 2012) provides a prototypical example

for this problem. TCGA contains disparate data types generated from high-throughput technolo-

gies. Integration of these is fundamental for studying cancer on a molecular level. Other types

of application include analysis of multi-source metabolomic data (Kuligowski et al., 2015), extrac-

tion of commuting patterns in railway networks (Jere et al., 2014), recognition of brain-computer

interface (Zhang et al., 2015), etc.

A unified and insightful understanding of the set of data blocks is expected from simultaneously

exploring the joint variation representing the inter-block associations and the individual variation

specific to each block. Lock et al. (2013) formulated this challenge into a matrix decomposition

problem. Each data block is decomposed into three matrices modeling different types of variation,

including a low-rank approximation of the joint variation across the blocks, low-rank approximations

of the individual variation for each data block, and residual noise. Definitions and constraints were

proposed for the joint and individual variation together with a method named JIVE; see https:

//genome.unc.edu/jive/ and O’Connell and Lock (2016) for Matlab and R implementations of

JIVE, respectively. Details of JIVE method are introduced in Section 3.2.

JIVE was a promising framework for studying multiple data matrices. However, Lock et al.

(2013) algorithm and its implementation was iterative (thus slow) and performed rank selection
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based on a permutation test. It had no guarantee of achieving a solution that satisfied the definitions

of JIVE, especially in the case of some correlation between individual components. The example in

Figure 3.4 in 3.2.2 shows that this can be a serious issue. An important related algorithm named

COBE was developed by Zhou et al. (2016). COBE considers a JIVE-type decomposition as a

quadratic optimization problem with restrictions to ensure identifiability. While COBE removed

many of the shortcomings of the original JIVE, it was still iterative and often required longer

computation time than the Lock et al. (2013) algorithm. Neither Zhou et al. (2016) nor Lock et al.

(2013) provided any theoretical basis for selection of a thresholding parameter used for separation

of the joint and individual components.

A novel solution, Angle-based Joint and Individual Variation Explained (AJIVE), is proposed

here for addressing this matrix decomposition problem. It provides an efficient angle-based algo-

rithm ensuring an identifiable decomposition and also an insightful new interpretation of extracted

variation structure. The key insight is the use of row spaces, i.e., a focus on scores, as the principal

descriptor of the joint and individual variation, assuming columns are the n data objects, e.g., vec-

tors of measurements on patients. This focuses the methodology on variation patterns across data

objects, which gives straightforward definitions of the components and thus provides identifiability.

These variation patterns are captured by the score subspaces of Rn. Segmentation of joint and

individual variation is based on studying the relationship between these score subspaces and using

perturbation theory to quantify noise effects (Stewart and Sun, 1990).

The main idea of AJIVE is illustrated in the flowchart of Figure 3.1. AJIVE works in three

steps. First we find a low-rank approximation of each data block (shown as the far left color blocks

in the flowchart) using SVD. This is depicted (using blocks with colored dashed line boundaries)

on the left side of Figure 3.1 with the black arrows signifying thresholded SVD. Next, in the

middle of the figure, SVD of the concatenated bases of row spaces from the first step (the gray

blocks with colored boundaries) gives a joint row space (the gray box next to the circle), using a

mathematically rigorous threshold derived using perturbation theory in Section 3.3.3. This SVD

is a natural extension of Principal Angle Analysis, which is also closely related to the multi-block

extension of Canonical Correlation Analysis (Nielsen, 2002) as well as to the flag means of the

row spaces (Draper et al., 2014); see Section 4.5 of Chapter 4 for details. Finally, the joint and

individual space approximations are found using projection of the joint row space and its orthogonal
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complements on the data blocks as shown as colored boundary gray squares on the right with the

three joint components at the top and the individual components at the bottom.

Figure 3.1: Flow chart demonstrating the main steps of AJIVE. First low rank approximation of each data
block is obtained on the right. Then in the middle joint structure between the low rank approximations is
extracted using SVD of the stacked row basis matrices. Finally, on the right, the joint components (upper)
are obtained by projection of each data block onto the joint basis (middle) and the individual components
(lower) come from orthonormal basis subtraction.

Using score subspaces to describe variation contained in a matrix not only empowers the in-

terpretation of analysis but also improves understanding of the problem and the efficiency of the

algorithm. An identifiable decomposition can now be obtained with all definitions and constraints

satisfied even in situations when individual spaces are somewhat correlated. Moreover, the need to

select a tuning parameter used to distinguish joint and individual variation is eliminated based on
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theoretical justification using perturbation theory. A consequence is an algorithm which uses a fast

built in singular value decomposition to replace lengthy iterative algorithms. For the example in

Section 3.1.1, implemented in Matlab, the computational time of AJIVE (10.8 seconds) is about 11

times faster than the old JIVE (121 seconds) and 39 times faster than COBE (422 seconds). The

computational advantages of AJIVE get even more pronounced on data sets with higher dimen-

sionality and more complex heterogeneity such as the TCGA data analyzed in Section 3.4.1. For

a very successful application of AJIVE on integrating fMRI imaging and behavioral data see Yu

et al. (2017).

Other methods that aim to study joint variation patterns and/or individual variation patterns

have also been developed. Westerhuis et al. (1998) discusses two types of methods. One main

type extends traditional Principal Component Analysis (PCA), including Consensus PCA and

Hierarchical PCA first introduced by Wold et al. (1987, 1996). An overview of extended PCA

methods is discussed in Smilde et al. (2003). Abdi et al. (2013) discuss a multiple block extension

of PCA called multiple factor analysis. This type of method computes the block scores, block

loadings, global loadings and global scores.

The other main type of method is extensions of Partial Least Squares (PLS) (Wold, 1985) or

Canonical Correlation Analysis (CCA) (Hotelling, 1936) that seek associated patterns between the

two data blocks by maximizing covariance/correlation. For example, Wold et al. (1996) introduced

multi-block PLS and hierarchical PLS (HPLS) and Trygg and Wold (2003) proposed O2-PLS

to better reconstruct joint signals by removing structured individual variation. A multi-block

extension can be found in Löfstedt et al. (2013).

Yang and Michailidis (2015) provide a very nice integrative joint and individual component

analysis based on non-negative matrix factorization. Ray et al. (2014) do integrative analysis using

factorial models in the Bayesian setting. Schouteden et al. (2013, 2014) propose a method called

DISCO-SCA that is a low-rank approximation with rotation to sparsity of the concatenated data

matrices.

A connection between extended PCA and extended PLS methods is discussed in Hanafi et al.

(2011). Both types of methods provide an integrative analysis by taking the inter-block associations

into account. These papers recommend use of normalization to address potential scale heterogene-

ity, including normalizing by the Frobenius norm, or the largest singular value of each data block
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etc. However, there are no consistent criteria for normalization and some of these methods have

convergence problems. An important point is that none of these approaches provide simultaneous

decomposition highlighting joint and individual modes of variation with the goal of contrasting

these to reveal new insights.

3.1.1 Toy Example

We give a toy example to provide a clear view of multiple challenges brought by potentially very

disparate data blocks. This toy example has two data blocks, X (100× 100) and Y (10000× 100),

with patterns corresponding to joint and individual structures. Such data set sizes are reasonable

in modern genetic studies, as seen in Section 3.4.1. Figure 3.2 shows colormap views of these

matrices, with the value of each matrix entry colored according to the color bar at the bottom

of each subplot. The data have been simulated so expected row means are 0. Therefore mean

centering is not necessary in this case. A careful look at the color bar scalings shows the values

are almost four orders of magnitude larger for the top matrices. Each column of these matrices

is regarded as a common data object and each row is considered as one feature. The number of

features is also very different as labeled in the y-axis. Each of the two raw data matrices, X and Y

in the left panel of Figure 3.2, is the sum of joint, individual and noise components shown in the

other panels.

The joint variation for both blocks, second column of panels, presents a contrast between the

left and right halves of the data matrix, thus having the same rank-1 score subspace. If for example

the left half columns were male and right half were female, this joint variation component could

be interpreted as a contrast of gender groups which exists in both data blocks for those features

where color appears.

The X individual variation, third column of panels, partitions the columns into two other groups

of size 50 that are arranged so the row space is orthogonal to that of the joint score subspace. The

individual signal for Y contains two variation components, each driven by half of the features.

The first component, displayed in the first 5000 rows, partitions the columns into three groups.

The other component is driven by the bottom half of the features and partitions the columns into

two groups, both with row spaces orthogonal to the joint. Note that these two individual score
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subspaces for X and Y are different but not orthogonal. The smallest angle between the individual

subspaces is 45°.

This example presents several challenging aspects, which also appear in real data sets such as

TCGA, as studied in Section 3.4.1. One is that both the values and the number of the features are

orders of magnitude different between X and Y. Another important challenge is that because the

individual spaces are not orthogonal, the individual signals are correlated. Correctly handling these

in an integrated manner is a major improvement of AJIVE over earlier methods. In particular,

normalization is no longer an issue because AJIVE only uses the low rank initial scores (represented

as the gray boxes in the SVD shown on the left of Figure 3.1), while signal power appears in the

central subblocks and the features only in the left subblocks. Appropriate handling of potential

correlation among individual components is done using perturbation theory in Section 3.3.

The noise matrices, the right panels of Figure 3.2, are standard Gaussian random matrices

(scaled by 5000 for X) which generates a noisy context for both data blocks and thus a challenge

for analysis, as shown in the left panels of Figure 3.2.

Simply concatenating X and Y on columns and performing a singular value decomposition on

this concatenated matrix completely fails to give a meaningful joint analysis. PLS and CCA might

be used to address the magnitude difference in this example and capture the signal components.

However, they target common relationships between two data matrices and therefore are unable

to simultaneously extract and distinguish the two types of variation. Moreover, because of its

sensitivity to the strength of the signal PLS misclassifies correlated individual components as joint

components. As seen in the Section 3.2.2, the original JIVE of Lock et al. (2013) also fails on this

toy example.

In this toy example, the selection of the initial low rank parameters rX = 2 and rY = 3 is

unambiguous. The left panel of Figure 3.3 shows this AJIVE-approximation well captures the

signal variations within both X and Y . What’s more, our method correctly distinguishes the types

of variation showing its robustness against heterogeneity across data blocks and correlation between

individual data blocks. The approximations of both joint and individual signal are depicted in the

remaining panels. A careful study of the impact of initial rank misspecification on the AJIVE

results for this toy example is in Section 3.3.2 and 3.3.3.
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Figure 3.2: Data blocks X (top) and Y (bottom) in the toy example. The left panels present the observed
data matrices which are a sum of the signal and noise matrices depicted in the remaining panels. Scale is
indicated by color bars at the bottom of each sub-plot. These structures are challenging to capture using
conventional methods due to very different orders of magnitude and numbers of features.
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X: AJIVE Approx
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Figure 3.3: AJIVE approximation of the data blocks X and Y in the toy example are shown in the first
column, with the joint and individual signal matrices depicted in the remaining columns. Both quite diverse
types of variations are well captured for each data block by AJIVE, in contrast to other usual methods as
seen in 3.2 and 4.
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The AJIVE Matlab software, the related Matlab scripts and associated datasets, which can

be used to reproduce all the results in this paper, are available at the GitHub repository https:

//github.com/MeileiJiang/AJIVE_Project.

3.2 JIVE

The details of JIVE approach (Lock et al., 2013) is reviewed in this section.

3.2.1 Model

Let matrices {Xk(dk × n), k = 1, . . . ,K} be a set of data blocks for study. The columns are

regarded as data objects, one vector of measurements for each experimental subject, while rows

are considered as features. All Xk therefore have the same number of columns, n, and perhaps a

different number of rows, dk. Let Ik be the matrix representing the individual structure of Xk, and

let Jk be the submatrix of the joint structure matrix that is associated with Xk. Then, the unified

JIVE model is 
X1

...

XK

 =


J1

...

JK

+


I1

...

IK

+


E1

...

EK

 . (3.1)

where Ek are dk × n are error matrices of independent entries with zero expectation. Let

J =


J1

...

JK


denote the joint structure matrix. The JIVE model imposes the rank constraints, i.e.,

rank(J) = r, rank(Ik) = rk, for k = 1, . . . ,K,

as well as the orthogonality between the joint matrix and individual matrices, i.e. for k = 1, . . . ,K,

IkJ
ᵀ = 0dk×d, d =

K∑
k=1

dk.
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This means that sample patterns responsible for joint structure between data types are unrelated

to sample patterns responsible for individual structure. Under additional constraints

rank(Jk + Ik) = rank(Jk) + rank(Ik), k = 1, . . . ,K

K⋂
k=1

row(Ik) = {~0}

Model 3.1 is identifiable. Lock et al. (2013) also point out that Model 3.1 can be formatted as a

factorized model:

Xk = UkS + WkSk + Ek, k = 1, . . . ,K. (3.2)

The common score matrix S represents joint structure and summarizes patterns in the samples

that explain variability across multiple data types. The loading matrices Uk indicate how these

joint scores are expressed in the variables of data block k. The score matrices Sk summarize sample

patterns individual to data block k, with variable loading Wk.

3.2.2 Estimation

Joint and individual structures are estimated by minimizing the sum of squared error. Let R

be the d× n residual matrix:

R =


R1

...

RK

 =


X1 − J1 − I1

...

XK − JK − IK

 .

Lock et al. (2013) estimates the matrices J and I1, . . . , IK by minimizing ‖R‖2 under given ranks

r, r1, . . . , rK . This is accomplished by the following iterative algorithm:

• Initialize XJoint =


J1

...

JK


• Loop:
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– Estimate J =


J1

...

JK

 = UΛV′ by a rank r SVD of XJoint

– For k = 1, . . . ,K:

∗ Set Xindividual
k = Xk − Jk

∗ Estimate Ik by a rank rk SVD of Xindividual
k (I−VV′)

∗ Set XJoint
k = Xk − Ik

– Set XJoint =


XJoint

1

...

XJoint
K


While this algorithm ensures that the orthogonality constraint is satisfied, it has no guarantee

for the rank constraint, which is a necessary condition for the identifiability of Model 3.1. Thus

this algorithm can not guarantee achievement of a solution that satisfies the definitions of JIVE.

Typically, this algorithm fails on the toy data set in Section 3.1.1. We implemented the JIVE

algorithm using the R package r.jive (O’Connell and Lock, 2016) without the orthogonality con-

straint. The jive function provides two options for rank selection: using a permutation test and

the Bayesian Information Criterion, respectively. However, neither of them segmented joint signal

properly. When using the Bayesian Information Criterion approach, no joint signal was identified

and the true joint signals were labeled as noise. The permutation test approach gave a reasonable

approximation of the total signal variation within each data block as in the left panel of Figure 3.4.

However, the Lock et al. (2013) method gave rank-2 approximations to the joint matrices shown

in the middle panel. The approximation consists of the real joint component together with the

individual component of X. Consequently, the approximation of the X individual matrix is a zero

matrix and a wrong approximation of the Y individual matrix is shown in the top half of the right

panel. We speculate that failure to correctly apportion the joint and individual variation is caused

by the fact that the individual spaces are correlated, because the permutation test does not handle

correlated individual signals very well. We also manually specified the correct joint and individual

ranks for X and Y, which results in the correct results.
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Figure 3.4: The Lock et al. (2013) JIVE method approximation of the data blocks X and Y in the toy
example are shown in the first panel of figures. The joint matrix approximations (middle panel) incorrectly
contain the individual component of X because of the failure of the permutation test to correctly select ranks
in the presence of correlated individual components.
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3.3 AJIVE

AJIVE approach (Lock et al., 2013), which is a major improvement over JIVE approach, is

reviewed in this section.

3.3.1 Population model

Matrices {Xk, k = 1, . . . ,K} each of size (dk × n) are a set of data blocks for study, e.g., the

colored blocks on the left of Figure 3.1. The columns are regarded as data objects, one vector

of measurements for each experimental subject, while rows are considered as features. All Xks

therefore have the same number of columns and perhaps a different number of rows.

Each Xk is modeled as low rank true underlying signals Ak perturbed by additive noise matrices

Ek. Each low rank signal Ak is the sum of two matrices containing joint and individual variation,

denoted as Jk and Ik respectively for each block, viz.


X1

...

XK

 =


A1

...

AK

+


E1

...

EK

 =


J1

...

JK

+


I1

...

IK

+


E1

...

EK

 .

Our approach focuses on the vectors in the row space of our matrices. In this context these vectors

are often called score vectors and the row space of the matrix is often called score subspace(⊂ Rn).

Therefore, the row spaces of the matrices capturing joint variation, i.e., joint matrices, are defined

as sharing a common score subspace denoted as row(J)

row(Jk) = row(J), k = 1, . . . ,K.

The individual matrices are individual in the sense that they are orthogonal to the joint space,

i.e., row(Ik) ⊥ row(J),for all k = 1, . . . ,K, and the intersection of their score subspaces is the zero

vector space, i.e.,
K⋂
k=1

row(Ik) = {~0}, k = 1, . . . ,K.
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This means that there is no non-trivial common row pattern in every individual score subspaces

across blocks.

To ensure an identifiable variation decomposition we assume row(J) ⊂ row(Ak), which also

implies row(Ik) ⊂ row(Ak), for all k = 1, . . . ,K. Note that orthogonality between individual

matrices {Ik, k = 1, . . . ,K} is not assumed as it is not required for the model to be uniquely

determined.

Under these assumptions, the model is identifiable in the sense:

Lemma 1. Given a set of matrices {Ak, k = 1, . . . ,K}, there are unique sets of matrices {Jk, k =

1, . . . ,K}, and {Ik, k = 1, . . . ,K} so that:

1. Ak = Jk + Ik, for all k = 1, . . . ,K

2. row(Jk) = row(J) ⊂ row(Ak), for all k = 1, . . . ,K

3. row(J) ⊥ row(Ik), for all k = 1, . . . ,K

4.
K⋂
k=1

row(Ik) = {~0}.

Proof of Lemma 1. Define the row subspaces respectively for each matrix Ak as row(Ak) ⊆ Rn.

For non-trivial cases, define a subspace row(J) 6= {~0} as the intersection of the row spaces

{row(A1), . . . , row(AK)}, i.e.,

row(J) ,
K⋂
k=1

row(Ak).

For each matrix Ak, two matrices Jk, Ik can be obtained by projection of Ak on row(J) and

its orthogonal complement in the row space row(Ak). Thus the two matrices satisfy Jk + Ik =

Ak and their row subspaces are orthogonal with each other, i.e., row(J) ⊥ row(Ik), for all k ∈

{1, . . . ,K}. Then the intersection of the row subspaces {row(I1), . . . , row(IK)},
K⋂
k=1

row(Ik), has a

zero projection matrix. Therefore, we have
K⋂
k=1

row(Ik) = {~0} and have obtained a set of matrices

simultaneously satisfying the stated constraints.

On the other hand, it follows from the assumptions that the row space row(Ak) is spanned by

the union of basis vectors of row(Jk) and row(Ik), which indicates

row(J) =

K⋂
k=1

row(Ak).
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Accordingly, the matrices J1, . . . ,JK and I1, . . . , IK are also uniquely defined.

Lemma 1 is very similar to Theorem 1.1 in Lock et al. (2013). The main difference is that

the rank conditions are replaced by conditions on row spaces. In our view, this provides a clearer

mathematical framework and more precise understanding of the different types of variation.

The additive noise matrices, Ek, are assumed to follow an isotropic error model where the

energy of projection is invariant to direction in both row and column spaces. Important exam-

ples include the multivariate standard normal distribution and the matrix multivariate Student

t–distribution (Kotz and Nadarajah, 2004). All singular values of each noise matrix are assumed to

be smaller than the smallest singular values of each signal to give identifiability. This assumption

on the noise distribution here is weaker than the classical i.i.d. Gaussian random matrix, and only

comes into play when determining the number of joint components.

The estimation algorithm, which segments the data into joint and individual components in

the presence of noise, has three main steps, as follows:

Step 1: Signal Space Initial Extraction. Low rank approximation of each data block, as

shown on the left in Figure 3.1. A novel approach together with careful assessment of accuracy

using matrix perturbation theory from linear algebra (Stewart and Sun, 1990), is provided in

Sections 3.3.2 and 3.3.3.

Step 2: Score Space Segmentation. Initial determination of joint and individual com-

ponents, as shown in the center of Figure 3.1. Our approach to this is based on an extension of

Principal Angle Analysis, and an inferential based graphical diagnostic tool. The two block case is

discussed in Section 3.3.3.1, with the multi-block case appearing in Section 3.3.3.2.

Step 3: Final Decomposition and Outputs. Check segmented components still meet initial

thresholds in Step 1, and reproject for appropriate outputs, as shown in the right of Figure 3.1.

Details of this are in Section 3.3.4.

3.3.2 Step 1: Signal Space Initial Extraction

Even though the signal components A1, . . . ,AK are low rank, the data matrices X1, . . . ,XK

are usually of full rank due to the presence of noise. SVD works as a signal extraction device in
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this step, keeping components with singular values greater than selected thresholds individually for

each data block, as discussed in Section 3.3.2.1. The accuracy of this SVD approximation will be

carefully estimated in Section 3.3.2.2, and will play an essential role in segmenting the joint space

in Step 2.

3.3.2.1 Initial Low Rank Approximation

Each signal block Ak is estimated using SVD of Xk. Given a threshold tk, the estimator Ãk

(represented in Figure 3.1 as the boxes with dashed colored boundaries on the left) is defined by

setting all singular values below tk to 0. The resulting rank r̃k of Ãk is an initial estimator of the

signal rank rk. The reduced rank decompositions of the Ãks are

Ãk = ŨkΣ̃kṼ
>
k , (3.3)

where Ũk contains the left singular vectors that correspond to the largest r̃k singular values respec-

tively for each data block. The initial estimate of the signal score space, denoted as row(Ãk), is

spanned by the right singular vectors in Ṽk (shown as gray boxes with colored boundaries on the

left of Figure 3.1).

When selecting these thresholds, one needs to be aware of a bias/variance like trade-off. Setting

the threshold too high will provide an accurate estimation of the parts of the joint space that are

included in the low-rank approximation. The downside is that significant portions of the joint

signal might be thresholded out. This could be viewed as a low-variance high-bias situation. If the

threshold is set low, then it is likely that the joint signal is included in all of the blocks. However,

the precision of the segmentation in the next step can deteriorate to the point that individual

components, or even worse, noise components, can be selected in the joint space. This can be

viewed as the low-bias high-variance situation.

Most off-the-shelf automatic procedures for low-rank matrix approximation have as their stated

goal signal reconstruction and prediction, which based on our experience tends toward thresholds

that are too small, i.e. input ranks that are too large. This is sensible as adding a little bit

more noise usually helps prediction but it has bad effects on signal segmentation. We therefore

recommend taking a multi-scale perspective and trying several threshold choices, for example, by
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considering several relatively big jumps in a scree plot. A useful inferential graphical device to

assist with this choice is developed in Section 3.3.3.

Figure 3.5 shows the scree plots of each data block for the toy example in Section 3.1. The left

scree plot for X clearly indicates a selection of rank r̃1 = 2 and the right scree plot for Y points to

rank r̃2 = 3; in both cases those components stand out while the rest of the singular values decay

slowly showing no clear jump.
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Figure 3.5: Scree plots for the toy data sets X (left) and Y (right). Both plots display the singular values
associated with a component in descending order versus the index of the component. The components with
singular values above the dashed red threshold line are regarded as the initial signal components in the first
step of AJIVE.

3.3.2.2 Approximation Accuracy Estimation

A major challenge is segmentation of the joint and individual variation in the presence of noise

which individually perturbs each signal. A first step towards addressing this is a careful study of

how well Ak is approximated by Ãk using the Generalized sin Θ Theorem (Wedin, 1972).
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Pseudometric Between Subspaces To apply the Generalized sin θ Theorem, we use the follow-

ing pseudometric as a notion of distance between theoretical and perturbed subspaces. Recall that

row(Ak), row(Ãk) are respectively the rk, r̃k dimensional score subspaces of Rn respectively for the

matrix Ak and its approximation Ãk. The corresponding projection matrices are PAk
and PÃk

,

respectively. A pseudometric between the two subspaces can be defined as the difference of the pro-

jection matrices under the operator L2 norm, i.e., ρ(row(Ak), row(Ãk)) = ‖PAk
−PÃk

‖ (Stewart

and Sun, 1990). When rk = r̃k, this pseudometric is also a distance between the two subspaces.

An insightful understanding of this pseudometric ρ(row(Ak), row(Ãk)) comes from a principal

angle analysis (Jordan, 1875; Hotelling, 1936) of the subspaces row(Ak) and row(Ãk). Denote the

principal angles between row(Ak) and row(Ãk) as

Θ(row(Ak), row(Ãk)) = {θk,1, . . . , θk,rk∧r̃k} (3.4)

with θk,1 ≤ θk,2 . . . ≤ θk,rk∧r̃k . The pseudometric ρ(row(Ak), row(Ãk)) is equal to the sine of the

maximal principal angle, i.e., sin θk,rk∧r̃k . Thus the largest principal angle between two subspaces

measures their closeness, i.e., distance.

The pseudometric ρ(row(Ak), row(Ãk)) can be also written as

ρ(row(Ak), row(Ãk)) = ‖(I−PAk
)PÃk

‖ = ‖(I−PÃk
)PAk

‖

which gives another useful understanding of this definition. It measures the relative deviation

of the signal variation from the theoretical subspace. Accordingly, the similarity/closeness between

the subspaces and its perturbation can be written as ‖PAk
PÃk
‖ and is equal to the cosine of

the maximal principal angle defined above, i.e., cos θk,rk∧r̃k . Hence, sin2 θk,rk∧r̃k indicates the

proportion of signal deviation and cos2 θk,rk∧r̃k tells the proportion of remaining signal in the

theoretical subspace.

Wedin Bound For a signal matrix Ak and its perturbation Xk = Ak + Ek, the generalized sin θ

theorem provides a bound for the distance between the rank r̃k(≤ rk) singular subspaces of Ak and

Xk. This bound quantifies how the theoretical singular subspaces are affected by noise.
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Theorem 1 (Wedin, 1972). Let Ak be a signal matrix with rank rk. Letting Ak,1 = Uk,1Σk,1V
>
k,1

denote the rank r̃k SVD of Ak, where r̃k ≤ rk, write Ak = Ak,1 + Ak,0. For the perturbation

Xk = Ak + Ek, a corresponding decomposition can be made as Xk = Ãk,1 + Ẽk, where Ãk,1 =

Ũk,1Σ̃k,1Ṽ
>
k,1 is the rank r̃k SVD of Xk. Assume that there exists an α ≥ 0 and a δ > 0 such that

for σmin(Ãk,1) and σmax(Ak,0) denoting appropriate minimum and maximum singular values

σmin(Ãk,1) ≥ α+ δ, and σmax(Ak,0) ≤ α.

Then the distance between the row spaces of Ãk,1 and Ak,1 is bounded by

ρ(row(Ãk,1), row(Ak,1)) ≤
max

(
‖EkṼk,1‖, ‖E>k Ũk,1‖

)
δ

∧ 1.

In practice we do not observe Ak,0 thus δ cannot be estimated in general. A special case of

interest for AJIVE is r̃k = rk, in which case Ak,0 = 0,Ak = Ak,1. The following is an adaptation

of the generalized sin θ theorem to this case:

Corollary 1 (bound for correctly specified rank). For each k = 1, . . . ,K, the signal matrix Ak is

perturbed by additive noise Ek. Let θk,r̃k be the largest principal angle for the subspace of signal

Ak and its approximation Ãk, where r̃k = rk. Denote the SVD of Ãk as ŨkΣ̃kṼ
>
k . The distance

between the subspaces of Ak and Ãk, ρ(row(Ak), row(Ãk)), i.e., sine of θk,r̃k , is bounded above by

ρ(row(Ak), row(Ãk)) = sin θk,r̃k ≤
max(‖EkṼk‖, ‖E>k Ũk‖)

σmin(Ãk)
∧ 1. (3.5)

In this case the bound is driven by the maximal value of noise energy in the column and row

spaces and by the estimated smallest signal singular value. This is consistent with the intuition

that a deviation distance, i.e., a largest principal angle, is small when the signal is strong and

perturbations are weak.

In general, it can be very challenging to correctly estimate the true rank of Ak. If the true

rank rk is not correctly specified, then different applications of the Wedin bound are useful. In

particular, when Ak,0 is not 0, i.e., r̃k < rk, insights come from replacing Ek by Ek + Ak,0 in the

Wedin Bound.
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Corollary 2 (bound for under-specified rank). For each k = 1, . . . ,K, the signal matrix Ak with

rank rk is perturbed by additive noise Ek. Let Ãk = ŨkΣ̃kṼ
>
k be the rank r̃k SVD approximation

of Ak from the perturbed matrix, where r̃k < rk. Denote Ak = Ak,1 + Ak,0, where Ak,1 is the rank

r̃k SVD of A. Then the distance between row(Ak,1) and row(Ãk) is bounded above by

ρ(row(Ak,1), row(Ãk)) ≤
max

(
‖(Ek + Ak,0)Ṽk‖, ‖(Ek + Ak,0)>Ũk‖

)
σmin(Ãk)

∧ 1.

For the other type of initial rank misspecification, r̃k > rk, we augment Ak with appropriate

noise components to be able to use the Wedin bound.

Corollary 3 (bound for over-specified rank). For each k = 1, . . . ,K, the signal matrix Ak =

UkΣkV
>
k with rank rk is perturbed by additive noise Ek. Let Ãk = ŨkΣ̃kṼ

>
k be the rank r̃k SVD

of Xk, where r̃k > rk. Let E0 be the rank r̃k − rk SVD of (I −UkU
>
k )Ek(I −VkV

>
k ). Then the

pseudometric between row(Ak) and row(Ãk) is bounded above by

ρ(row(Ak), row(Ãk)) ≤
max (‖(Ek −E0)Ṽk‖, ‖(Ek −E0)>Ũk‖)

σmin(Ãk)
∧ 1.

The bounds in Corollaries 1, 2, 3 provide many useful insights. However, these bounds still

cannot be used directly since we do not observe the error matrices E1, . . . ,EK . A re-sampling

based estimator of the Wedin bounds is provided in the next paragraph. As seen in Figure 3.6, this

estimator appropriately adapts to each of the above three cases. Moreover, Figure 3.6 also indicate

that the Wedin bound for over-specified rank is usually very conservative.

Estimation And Evaluation Of The Wedin Bound As mentioned above, the perturbation

bounds of each θk,rk∧r̃k require the estimation of terms ‖EkṼk‖, ‖E>k Ũk‖ for k = 1, 2. These

terms are measurements of energies of the noise matrices projected onto the signal column and row

spaces. Since an isotropic error model is assumed, the distributions of energy of the noise matrices

in arbitrary fixed directions are equal.Thus, if we sample random subspaces of dimension r̃k, that

are orthogonal to the estimated signal Ãk, and use the observed residual Ẽk = XkAk, this should

provide a good estimator of the distribution of the unobserved terms EkṼk, E>k Ũk.

In particular, consider the estimation of the term ‖EkṼk‖. We draw a random subspace of

dimension r̃k that is orthogonal to Ṽk, denoted as V?
k. The observed data block Xk is projected onto
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Figure 3.6: Principal angle plots between each singular subspace of the signal matrix Ak,1 and its estimator

Ãk for the toy dataset. Graphics for X are on the upper row, with Y on the lower row. The left, middle
and right columns are the under-specified, correctly specified and over-specified signal matrix rank cases
respectively. Each x-axis represents the angle. The y-axis shows the values of the survival function of the
resampled distribution, which are shown as blue plus signs in the figure. The vertical blue solid line is
the theoretical Wedin bound, showing this bound is well estimated. The vertical black solid line segments
represent the principal angles θk,1, . . . , θk,rk∧r̃k between row(Ak,1) and row(Ãk). The distance between the
black and blue lines reveals when the Wedin bound is tight.

46



the subspace spanned by V?
k, written as XkV

?
k. The distribution (with respect to the V?

k variation)

of the operator L2 norm ‖XkV
?
k‖ = ‖ẼkV

?
k‖ approximates the distribution of the unknown ‖EkṼk‖

because both measure noise energy in essentially random directions. Similarly the estimation of

‖E>k Ũk‖ is approximated by ‖X>k U?
k‖, where U?

k is a random r̃k dimensional subspace orthogonal

to Ũk. These distributions are used to estimate the Wedin bound by generating 1000 replications of

‖XkV
?
k‖ and ‖X>k U?

k‖, and plugging these into (3.5). The quantiles of the resulting distributions

are used as prediction intervals for the unknown theoretical Wedin bound. Note this random

subspace sampling scheme provides a distribution with smaller variance than simply sampling from

the remaining singular values of Xk, i.e. using 1000 subspaces each generated by a random sample

of r̃k remaining singular vectors.

There are two criteria for evaluating the effectiveness of the estimator. First is how well the

resampled distributions approximate the underlying theoretical Wedin bounds. This is addressed

in Figure 3.6, which is based on the toy example in Section 3.1.1. For each of the matrices X and

Y (top and bottom rows), the under, correctly, and over specified signal rank cases (Corollaries

2, 1 and 3 respectively) are carefully investigated. In each case the theoretical Wedin bound

(calculated using the true underlying quantities, that are only known in a simulation study) are

shown as vertical blue lines. Our resampling approach provides an estimated distribution, the

survival function (1 - the c.d.f.) of which is shown using blue plus signs. This indicates remarkably

effective estimation of the Wedin bound in all three cases.

The second more important criterion is how well the prediction interval covers the actual

principal angles between row(Ak) and row(Ãk). These angles are shown as vertical black line

segments in Figure 3.6. For the square matrix X, in the under and correctly specified case (top,

left, and center), the Wedin bound seems relatively tight. In all other cases, the Wedin bound is

conservative.

Figure 3.6 shows one realization of the noise in the toy example. A corresponding simulation

study is summarized in Table 3.1. For this we generated 10,000 independent copies of the data sets

X (100×100, true signal rank r1 = 2) and Y (10000×100, true signal rank r2 = 3). Then for several

low rank approximations (columns of Table 3.1) we calculated the estimate of the angle between

the true signal and the low rank approximation. Table 3.1 reports the percentage of the times the

corresponding quantile of the resampled estimate is bigger than the true angle for the matrix X.
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Table 3.1: Coverages of the prediction intervals of the true angle between the signal row(Ak,1) and its

estimator row(Ãk) for the matrix X in the toy example. Rows are nominal levels. Columns are ranks of
approximation (where 2 is the correct rank). The simulation based on 10000 realizations of X shows good
performance for this square matrix.

1 2 3

50% 91.9% 63.6% 100.0%
90% 100.0% 89.6% 100.0%
95% 100.0% 93.7% 100.0%
99% 100.0% 98.0% 100.0%

When the rank is correctly specified, i.e., r̃1 = r1 = 2, we see that the performance for the square

matrix X is satisfactory as the empirical percentages are close to the nominal values. When the rank

is misspecified, the empirical upper bound is conservative. Corresponding empirical percentages

for the high dimension low sample size data set Y are all 100 %, and thus are not shown. This is

caused by the fact that Wedin bound can be very conservative if the matrix is far from square. As

seen in Figure 3.7 this can cause identification of spurious joint components. This motivates our

development of a diagnostic plot in Section 3.3.3. Recent works of Cai et al. (2018) and O’Rourke

et al. (2013) may provide potential approaches for improvement of the Wedin bound.

3.3.3 Step 2: Score Space Segmentation

3.3.3.1 Two Block Case

For a clear introduction to the basic idea of score space segmentation into joint and individual

components, the two-block special case (K = 2) is first studied. The goal is to use the low rank

approximations Ãk from equation (3.3) to obtain estimates of the common joint and individual

score subspaces. Due to the presence of noise, the components of row(Ãk), k = 1, 2, corresponding

to the underlying joint space, no longer are the same, but should have a relatively small angle.

Similarly, the components corresponding to the underlying individual spaces are expected to have

a relatively large angle. This motivates the use of principal angle analysis to separate the joint

from the individual components.

Principal Angle Analysis One of the ways of computing the principal angles between row(Ã1)

and row(Ã2) is to perform SVD on a concatenation of their right singular vector matrices (Miao
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and Ben-Israel, 1992), i.e.,

M ,

Ṽ>1

Ṽ>2

 = UMΣMV>M, (3.6)

where the singular values, σM,i, on the diagonal of ΣM, determine the principal angles,

Φ(row(Ã1), row(Ã2)) = {φ1, . . . , φr̃1∧r̃2}, where, for each i ∈ {r̃1 ∧ r̃2},

φi = arccos((σM,i)
2 − 1), i = 1, . . . , r̃1 ∧ r̃2. (3.7)

This SVD decomposition can be understood as a tool that finds pairs of directions in the two

subspaces row(Ã1) and row(Ã2) of minimum angle, sorted in increasing order. These angles are

shown as vertical black line segments in our main diagnostic graphic introduced in Figure 3.7.

The first r̃J column vectors in VM will form the orthonormal basis of the estimated joint space,

row(J) ⊆ Rn. A deeper investigation of the relationship between VM and the canonical correlation

vectors in UM appears in Section 4.4. Next we determine which angles are small enough to be

labeled as joint components, i.e., the selection of r̃J.

Random Direction Bound In order to investigate which principal angles correspond to random

directions, we need to estimate the distribution of principal angles generated by random subspaces.

This distribution only depends on the initial input ranks of each data block, r̃k, and the dimension

of the row spaces, n. We obtain this distribution by simulation. In particular, Ṽ1 and Ṽ2 are

replaced in (3.7) by random subspaces, i.e., each is right multiplied by an independent random

orthonormal matrix. The distribution of the smallest principal angle, corresponding to the largest

singular value, indicates angles potentially driven by pure noise. We recommend the 5th percentile

of the angle distribution as cutoff in practice. Principal angles larger than this are not included

in the joint component, which provide 95% confidence that the selected joint space does not have

pure noise components. This cutoff is prominently shown in Figure 3.7 as the vertical dot-dashed

red line. The c.d.f. of the underlying simulated distribution is shown as red circles.

When the individual spaces are not orthogonal, a sharper threshold based on the Wedin bounds

is available.
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Threshold Based On The Wedin Bound The following Lemma 2 provides a bound on the

largest allowable principal angle of the joint part of the initial estimated spaces.

Lemma 2. Let φ be the largest principal angle between two subspaces that are each a perturbation

of the common row space within row(Ã1) and row(Ã2). That angle is bounded by

sinφ ≤ sin(θ1,r̃1∧r1 + θ2,r̃2∧r2)

in which θ1,r̃1∧r1 and θ2,r̃2∧r2 are the angles given in equation (3.4).

Proof of Lemma 2. Let P1 and P2 be the projection matrices onto the individually perturbed joint

row spaces. And let P be the projection matrix onto the common joint row space J . Thus, we

have

sin θ = ‖(I−P1)P2‖ ≤ ‖(I−P1)(I−P)P2‖+ ‖(I−P1)PP2‖

≤ ‖(I−P1)(I−P)‖ ‖(I−P)P2‖+ ‖(I−P1)P‖ ‖PP2‖,

in which ‖(I−P1)P‖ = sin θ1,1, ‖(I−P1)(I−P)‖ = cos θ1, ‖(I−P2)P‖ = sin θ2,1 and ‖(I−P2)(I−

P)‖ = cos θ2,1. Therefore,

sinφ ≤ cos θ1,1 sin θ2,1 + sin θ1,1 cos θ2,1 = sin(θ1,1 + θ2,1).

As with the theoretical Wedin bound, the unknown θ1,r̃1∧r1 and θ2,r̃2∧r2 are replaced by distri-

bution estimators of the Wedin bounds. The survival function of the distribution estimator of this

upper bound on φ is shown in Figure 3.7 using blue plus signs. The vertical dashed blue line is the

95th percentile of this distribution, giving 95% confidence that angles larger do not correspond to

joint components of the lower rank approximations in Step 1. The joint rank r̃J is selected to be the

number of principal angles, φi in Equation (3.7), that are smaller than both the 5th percentile of the

random direction distribution and the 95th percentile of the resampled Wedin bound distribution.

Figure 3.7 illustrates how this diagnostic graphic provides many insights that are useful for

initial rank selection. This considers several candidates of initial ranks. Recall for Section 3.1.1,

this toy example has one joint component, one individual X component, and two individual Y
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components. The row subspaces of their individual components are not orthogonal and the true

principal angle (only known in simulation study) is 45°. Furthermore, PCA of Y reveals that 79.6%

of the joint component appears in the third principal component.

The upper left panel of Figure 3.7 shows the under specified rank case of r̃1 = r̃2 = 2. The

principal angles (black lines) are larger than the Wedin bound (blue dashed line), so we conclude

neither is joint variation. This is sensible since the true joint signal is mostly contained in the 3rd

Y component. However, both are smaller than the random direction bound (red dashed line), so

we conclude each indicates presence of correlated individual spaces.

The correctly specified rank case of r̃1 = 2, r̃2 = 3 is studied in the upper right panel of

Figure 3.7. Now the smallest angle is smaller than the blue Wedin bound, suggesting a joint

component. The second principal angle is about 45°, which is the angle between the individual

spaces. This is above the blue Wedin bound, so it is not joint structure.

The lower left panel considers the over specified initial rank of r̃1 = r̃2 = 3. The over spec-

ification results in a loosening of the blue Wedin bound, so that now we can no longer conclude

45°is not joint, i.e., r̃J = 2 cannot be ruled out for this choice of ranks. Note that there is a third

principal angle, larger than the red random direction bound, which thus cannot be distinguished

from pure noise, which make sense because A1 has only rank r1 = 2.

A case where the Wedin bound is useless is shown in the lower right. Here the initial ranks

are r̃1 = 2 and r̃2 = 4, which results in the blue Wedin bound being actually larger than the red

random direction bound. In such cases, the Wedin bound inference is too conservative to be useful.

While not always true, the fact that this can be caused by over specification gives a suggestion that

the initial ranks may be too large. Further analysis of this is an interesting open problem.

3.3.3.2 Multi-block Case

To generalize the above idea to more than two blocks, we focus on singular values rather than on

principal angles in Equation (3.7). In other words, instead of finding an upper bound on an angle,

we will focus on a corresponding lower bound on the remaining energy as expressed by the sum of

the squared singular values. Hence, an analogous SVD will be used for studying the closeness of

multiple initial signal score subspace estimates.
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Figure 3.7: Principal angles and angle bounds used for segmentation in Step 2 of AJIVE for various input
ranks. In each subfigure, the x-axis shows the angle and the y-axis shows the probabilities of the simulated
distributions. The vertical black line segments are the values of the principal angles between row(Ã1) and
row(Ã2), φ1, . . . , φr̃1∧r̃2 . The red circles show the values of the cumulative distribution function of the
random direction distribution; the red dot-dashed line shows the 5th percentile of these angles. The blue
plus signs show the values of the survival functions of the resampled Wedin bounds; the blue dashed line is
the 95th percentile of the distribution. This figure contains several diagnostic plots, which provide guidance
for rank selection. See Section 3.3.3.1 for details.

For the vertical concatenation of right singular vector matrices

M ,


Ṽ>1

...

Ṽ>K

 = UMΣMV>M, (3.8)

SVD sorts the directions within these K subspaces in increasing order of amount of deviation

from the theoretical joint direction. The squared singular value σ2
M,i indicates the total amount

52



of variation explained in the common direction V>M,i in the score subspace of Rn. A large value

of σ2
M,i (close to K) suggests that there is a set of K basis vectors within each subspace that are

close to each other and thus are potential noisy versions of a common joint score vector. As in

Section 3.3.3.1, the random direction bound and the Wedin bound for these singular values are

used for segmentation of this joint and individual components in the multi-block case.

Random Direction Bound The extension of the random direction bound in Section 3.3.3.1 is

straightforward. The distribution of the largest squared singular value in (3.8) generated by random

subspaces is also obtained by simulation. As in the two block case, each Ṽk in M is replaced by

an independent random subspace, i.e., right multiplied by an independent orthonormal matrix.

The simulated distribution of the largest singular value of M indicates singular values potentially

driven by pure noise. For the toy example, the values of the survival function of this distribution are

shown as red circles in Figure 3.8, a singular value analog of Figure 3.7. The 5th percentile of this

distribution, shown as the vertical red dot-dashed line in Figure 3.8, is used as the random direction

bound for squared singular value, which provides 95% confidence that the squared singular values

larger than this cutoff are not generated by random subspaces.

Threshold Based On The Wedin Bound Next is the lower bound for segmentation of the joint

space based on the Wedin bound.

Lemma 3. Let θk,r̃k∧rk be the largest principal angle between the theoretical subspace row(Ak) and

its estimation row(Ãk) for K data blocks from equation (3.4). The squared singular values (σ2
M,i)

corresponding to the estimates of the joint components satisfy

σ2
M,i ≥ K −

K∑
k=1

sin2 θk,r̃k∧rk ≥ K −
K∑
k=1

(max(‖EkṼk‖, ‖E>k Ũk‖)
σmin(Ãk)

∧ 1
)2
. (3.9)

Proof of Lemma 3. Notation from (3.6) and (3.8) is used here. For each singular value σM,i, it can

be formulated as a sequential optimization problem i.e

σ2
M,i = maxQ‖MQ‖2F = maxQ

K∑
k=1

‖Ṽ>1 Q‖2F ,
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where Q is a rank-1 projection matrix that is orthogonal to the previous i − 1 optima, i.e.,

Q1, . . . ,Qi−1. The Q that maximizes the Frobenius norm of MQ is denoted as Qi.

For an arbitrary component in the theoretical joint score subspace row(J), write its projection

matrix as P
(1)
J . The Frobenius norm of M projected onto P

(1)
J is

‖MP
(1)
J ‖

2
F =


Ṽ>1 P

(1)
J

...

Ṽ>KP
(1)
J


2

F

≥


cos θ1

...

cos θK


2

F

=
K∑
k=1

cos2 θk

Considering the mechanism of SVD, σ2
M,1 is the maximal norm obtained from the optimal

projection matrix Q1 ⊆
⋃K
k=1 row(Ãk) ⊆ Rn. If all Ãk contain all components obtained by noise

perturbation of the common row space row(J), then we have

σ2
M,1 ≥ ‖MP

(1)
J ‖

2
F ≥

K∑
k=1

cos2 θk.

to be considered as a component of the joint score subspace.

This argument can be applied sequentially. For the Q2 ∈ Q⊥1 ∩ {
⋃K
k=1 row(Ãk)}, there exist a

non-empty joint subspace (⊆ row(J)) such that all Q⊥1 ∩ row(Ãk) contain perturbed directions of a

joint component other than the one above. Therefore this joint component with projection matrix

P
(2)
J should have

σ2
M,2 ≥ ‖MP

(2)
J ‖

2
F ≥

K∑
k=1

cos2 θk.

Thus the singular values corresponding to the joint components satisfies (3.9) and this procedure

can continue through at least rJ steps.

This lower bound is independent of the variation magnitudes. This property makes AJIVE

insensitive to scale heterogeneity across each block when extracting joint variation information.

As in Section 3.3.2.2, all the terms ‖EkṼk‖, ‖E>k Ũk‖ are resampled to derive a distribution

estimator for the lower bound in (3.9), which can provide a prediction interval as well. Figure 3.8

shows the values of the c.d.f. of this upper bound as blue dots for the toy example. As in the
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two-block case, if there are r̃J singular values larger than both this lower bound and the random

direction bound, the first r̃J right singular vectors are used as the basis of the estimator of row(J).

In the two-block case, Figure 3.8 contains essentially the same information as Figure 3.7, thus

the same insights are available. Since principal angles between multiple subspaces are not defined,

Figure 3.8 provides appropriate generalization to the multi-block case, see Figure 3.9.
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Figure 3.8: Squared singular values in (3.8) and bounds for Step 2 of AJIVE for various rank choices. The
black vertical line segments shows the first r̃1∧ r̃2 squared singular values of M in equation (3.8). The values
of the survival function of the random direction bounds are shown as the red circles and the red dot-dashed
line is the 95th percentile of this distribution, which is the random direction bound. The values of the c.d.f
of the Wedin bound are shown as the blue plus signs and the 5th percentile (blue dashed line) is used for a
prediction interval for the Wedin bound. In the two-block case presented here this contains the essentially
same information as in Figure 3.7. For the multi-block case it is the major diagnostic graphic.

55



3.3.4 Step 3: Final Decomposition And Outputs

Based on the estimate of the joint row space, matrices containing joint variation in each data

block can be reconstructed by projecting Xk onto this estimated space. Define the matrix ṼJ as

[~vM,1, . . . , ~vM,r̃J ], where ~vM,i is the ith column in the matrix VM. To ensure that all components

continue to satisfy the identifiability constraints from Section 3.3.2.1, we check that, for all the

blocks, each ‖Xk~vM,i‖ is also above the corresponding threshold used in Step 1. If the constraint

is not satisfied for any block, that component is removed from ṼJ. A real example of this happens

in Section 3.4.1. An important point is that this removal can happen even when there is a common

joint structure in all but a few blocks.

Denote V̂J as the matrix ṼJ after this removal and r̂J as the final joint rank. The projection

matrix onto the final estimated joint space row(Ĵ) is PJ = V̂JV̂>J , represented as the red rectangle

in Figure 3.1. The estimates of the joint variation matrices in block k = 1, . . . ,K is Ĵk = XkPJ.

The row space of joint structure is orthogonal to the row spaces of each individual structure.

Therefore, the original data blocks are projected to the orthogonal space of row(Ĵ). The projection

matrix onto the orthogonal space of row(Ĵ) is P⊥J = I−PJ and the projections of each data block

are denoted as X⊥k respectively for each block, i.e.,

X⊥k = XkP
⊥
J .

These projections are represented as the circled minus signs in Figure 3.1.

Finally we rethreshold this projection by performing SVD on X⊥1 , . . . ,X
⊥
K . The components

with singular values larger than the first thresholds from Section 3.3.2.1 are kept as the individual

components, denoted as Î1, . . . , ÎK . The remaining components of each SVD are regarded as an

estimate of the noise matrices.

By taking a direct sum of the estimated row spaces of each type of variation, denoted by ⊕,

the estimated signal row spaces are

row(Âk) = row(Ĵ)⊕ row(Îk)

with rank r̂k = r̂J + r̂Ik respectively for each k = 1, . . . ,K.
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Due to this adjustment of directions of the joint components, these final estimates of signal row

spaces may be different from those obtained in the initial signal extraction step. Note that even

the estimates of rank r̂k might also differ from the initial estimates r̃k.

Given the variation decompositions of each AJIVE component, as shown on the right side of

Figure 3.1, several types of post AJIVE representations are available for representing the joint and

individual variation patterns. There are three important matrix representations of the information

in the AJIVE joint output, i.e., the boxes on the right in Figure 3.1, with differing uses in post

AJIVE analyses.

1. Full Matrix Representation. For applications where the original features are the main focus

(such as finding driving genes) the full dk×n matrix representations Ĵk and Îk, k = 1, . . . ,K

are most useful. Thus this AJIVE output is the product of all three blocks in each dashed

box on the right side of Figure 3.1. Examples of these outputs are shown in the two right

columns of Figure 3.3.

2. Block Specific Representation. For applications where the relationships between subjects

are the main focus (such as discrimination between subtypes) large computational gains are

available by using lower dimensional representations. These are based on SVDs as indicated

in the right side of Figure 3.1, i.e., for each k = 1, . . . ,K

Ĵk = Ûk
JΣ̂

k
JV̂k>

J , Îk = Ûk
I Σ̂

k
I V̂

k>
I . (3.10)

The resulting AJIVE outputs include the joint and individual Block Specific Score (BSS)

matrices Σ̂
k
JV̂k>

J (r̂J×n), Σ̂
k
I V̂

k>
I (r̂Ik ×n) respectively. This results in no loss of information

when rotation invariant methods are used. The corresponding Block Specific Loading matrices

are Ûk
J(dk × r̂J) and Ûk

I (dk × r̂Ik).

3. Common Normalized Representation. Although row(V̂k>
J ) in (3.10) are the same, the matrices

are different. In particular, the rows in (3.10) can be completely different across k, because

they are driven by the pattern of the singular values in each Σ̂
k
J. In some applications,

correspondence of components across data blocks is important. In this case the analysis

should use a common basis of row(Ĵ), namely V̂>J (r̂J × n), called the Common Normalized
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Scores (CNS). This is shown as the gray rectangular near the center of Figure 3.1. To get the

corresponding loadings, we regress Ĵk on each score vector in V̂>J (which is computed as ĴkV̂J)

following by normalization. By doing this, there is no guarantee of orthogonality between

CNS loading vectors. However, the loadings are linked across blocks by their common scores.

For studying scale free individual spaces, use the Individual Normalized Scores (INS) V̂k>
I

(r̂Ik × n). The individual loading matrices Ûk
I are the same as the block specific individual

loadings.

The relationship between Block Specific Representation and Common Normalized Representa-

tion is analogous to that of the traditional covariance, i.e., PLS, and correlation, i.e., CCA, modes

of analysis. The default output in the AJIVE software is the Common Normalized Representation.

3.4 Data Analysis

In this section, we apply AJIVE to two real data sets, TCGA breast cancer in Section 3.4.1

and Spanish mortality in Section 3.4.2.

3.4.1 TCGA Data

A prominent goal of modern cancer research, of which The Cancer Genome Atlas (Network

et al., 2012) is a major resource, is the combination of biological insights from multiple types of

measurements made on common subjects.

TCGA provides prototypical data sets for the application of AJIVE. Here we study the 616

breast cancer tumor samples from Ciriello et al. (2015), which had a common measurement set.

For each tumor sample, there are measurements of 16615 gene expression features (GE), 24174

copy number variations features (CN), 187 reverse phase protein array features (RPPA) and 18256

mutation features (Mutation). These data sources have very different dimensions and scalings.

The tumor samples are classified into four molecular subtypes: Basal-like, HER2, Luminal A

and Luminal B. An integrative analysis targets the association among the features of these four

disparate data sources that jointly quantify the differences between tumor subtypes. In addition,

identification of driving features for each source and subtype is obtained from studying loadings.
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Scree plots were used to find a set of interesting candidates for the initial ranks selected in Step

1. Various combinations of them were investigated using the diagnostic graphic. Four interesting

cases are shown in Figure 3.9. The upper left panel of Figure 3.9 is a case where the input ranks are

too small resulting in no joint components being identified, i.e., all the black lines are smaller than

the dashed blue estimated Wedin bound. The upper right panel shows a case where only one joint

component is identified. In addition to the joint component identified in the upper right panel,

the lower left panel contains a second potential joint component close to the Wedin bound. The

lower right panel shows a case where the Wedin bound becomes too small since the input ranks

are too large. Many components are suggested as joint here, but these are dubious because the

Wedin bound is smaller than the random direction bound. Between the two viable choices, in the

upper right and the lower left, we investigate the latter in detail, as it best highlights important fine

points of the AJIVE algorithm. In particular, we choose low rank approximations of dimensions

20 (GE), 16 (CN), 15 (RPPA) and 27 (Mutation). However, detailed analysis of the upper right

panel results in essentially the same final joint component. After selection of the threshold in step

1, it took AJIVE 298 seconds (5.0 minutes, on Macbook Pro Mid 2012, 2.9 GHz) to finish steps 2

and 3.

In the second AJIVE step, the one sided 95% prediction interval suggested selection of two

joint components. However, the third step indicated dropping one joint component, because the

norm of the projection of the mutation data on that direction, i.e., the second CNS, is below the

threshold from Step 1. This result of one joint component was consistent with the expectation of

cancer researchers, who believe the mutation component has only one interesting mode of variation.

A careful study of all such projections shows that the other data types, i.e., GE, CN and RPPA,

do have a common second joint component as discussed at the end of this section. The association

between the CNS and genetic subtype differences is visualized in the left panel of Figure 3.10. The

dots are a jitter plot of the patients, using colors and symbols to distinguish the subtypes (Blue

for Basal-like, cyan for HER2, red for Luminal A and magenta for Luminal B). Each symbol is a

data point whose horizontal coordinate is the value and vertical coordinate is the height based on

data ordering. The curves are Gaussian kernel density estimates, i.e., smoothed histograms, which

show the distribution of the subtypes.
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Figure 3.9: Squared singular value diagnostic graphics for TCGA dataset over various rank choices. In-
dicates that there are one joint component among four data blocks and one joint component among three
data blocks.

The clear separation among density estimates suggest that this joint variation component is

strongly connected with the subtype difference between Luminal A versus the other subtypes. To

quantify this subtype difference, a test is performed using the CNS of this joint component evaluated

by the DiProPerm hypothesis test (Wei et al., 2016) based on 100 permutations. Strength of the

evidence is usually measured by permutation p-values. However, in this context empirical p-values

are frequently zero. Thus a more interpretable measure of strength of the evidence is the DiProPerm

z-score. This is 26.54 for this CNS. An area under the receiver operating characteristic (ROC) curve

(AUC) (Hanley and McNeil, 1982) of 0.878, is also obtained to reflect the classification accuracy.

These numbers confirm the strong Luminal A property shared by these four data types.
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Figure 3.10: Left: Kernel density estimates of the CNS among GE, CN, RPPA and mutation. The clear
separation among Luminal A versus Her2 and Basal indicates that these four data blocks share a very strong
Luminal A property captured in this joint variation component; Right: The CNS from applying AJIVE to
the individual matrices of GE, CN, and RPPA. The clear separation indicates that these contain a joint
variation component that is consistent with the subtype difference between Basal versus the others.

A further understanding can be obtained by identifying the feature set of each data type which

jointly works with the others in characterizing the Luminal A property. By studying the loading

coefficients, important mutation features TP53,TTN and PIK3CA are identified which are well

known features from previous studies. Similarly the strong role played by GATA3 in RPPA is well

known, and is connected with the large GATA3 mutation loading. A less well known result of this

analysis is the genes appearing with large GE loadings. Many of these were not flagged in earlier

studies, which had focused on subgroup separation, instead of joint behavior.

As noted in the discussion of Step 2 above, all four data types have only one significant joint

component. However, the individual components for all of GE, CN and RPPA seem to have 3-way

joint components. This is investigated by performing a second AJIVE analysis. In particular, we

apply the second and third step to the 3 individual variation matrices from the initial analysis.

Notice that all individual matrices are low rank and thus the first step is not necessary. The

AJIVE analysis results in one joint variation component which is displayed in the right panel of

Figure 3.10. This joint variation component clearly shows the differences among Basal, HER2

and Luminal subtypes. In particular, a subtype difference between Basal-like versus the others is

quantified using the DiProPerm z-score (31.60) and the AUC (0.996). Considering the fact that

the AUC of the classification between Basal-like versus the others using all the original separate
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GE features is 0.999, this single joint component contains almost all the variation information for

separating Basal-like from the others. This hierarchical application of AJIVE reveals an important

joint component that is specific to GE, CN and RPPA but not to Mutation.

3.4.2 Spanish Mortality Data

A quite different data set from the Human Mortality Database is studied here, which consists of

both Spanish males and females. For each gender data block, there is a matrix of mortality, defined

as the number of people who died divided by the total, for a given age group and year. Because

mortality varies by several orders of magnitude, the log10 mortality is studied here. Each row

represents an age group from 0 to 95, and each column represents a year between 1908 and 2002.

In order to associate the historical events with the variations of mortality, columns, i.e., mortality

as a function of age, are considered as the common set of data objects of each gender block. Marron

and Alonso (2014b) performed analysis on the male block and showed interesting interpretations

related to Spanish history. Here we are looking for a deeper analysis which integrates both males

and females by exploring joint and individual variation patterns.

AJIVE is applied to the two gender blocks centered by subtracting the mean of each age group.

The principal angle diagnostic graphics introduced in Section 3.3.3 are provided for this mortality

dataset over various rank choices in Figure 3.11 to guide the selection of initial ranks in Step 1.

The upper left panel shows the case r̃1 = r̃2 = 1. The only principal angle is larger than the 95th

percentile of the resampled Wedin bound and thus we conclude that no joint space is identified.

The upper right panel shows the effect of increasing the initial rank choices to r̃1 = r̃2 = 2. In this

case, the first principal angle becomes smaller. Because it is smaller than the Wedin bound it is

identified as a joint component. The second principal angle is still larger than the Wedin bound.

Thus we concluded that only one joint component is identified in this case. In the lower left panel

we increase the input rank of male mortality to 3. The second principal angle becomes much

smaller, in particular smaller than the Wedin bound, and thus is also labeled as joint component.

This indicates that the 3rd principal component of male mortality contains joint information. The

lower right panel shows the case where r̃1 = 4, r̃2 = 5. In this case the two smallest principal angle

are unchanged (and still joint). Two more principal angle appear. One is larger than the random
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direction bound, and thus cannot be distinguished from pure noise. The other is just inside the

boundary of the much increased Wedin bound suggesting correlation among individual components.

Based on these, the choice r̃1 = 3, r̃2 = 2 is used in the subsequent analysis.

0 10 20 30 40 50 60 70 80 90

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Principal Angles

Male:1  Female:1  

0 10 20 30 40 50 60 70 80 90

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Principal Angles

Male:2  Female:2  

0 10 20 30 40 50 60 70 80 90

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Principal Angles

Male:3  Female:2  

0 10 20 30 40 50 60 70 80 90

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Principal Angles

Male:4  Female:5  

Figure 3.11: Principal angle diagnostic graphics for Spanish mortality data set over various rank choices.
Provides the rationale of the rank choice, r̃1 = 3, r̃2 = 2.

The resulting AJIVE gives 2 joint components and 1 individual component for the male. Since

the loading matrices provide important information on the effect of different age groups, block

specific analysis together with loading matrices is most informative here.

Figure 3.12 shows a view of the first joint components for the males (left) and females (right)

that is very different from the heat map views used in Section 3.1.1. While these components are

matrices, additional insights come from plotting the rows of the matrices as curves over year (top)

and the columns as curves over age (bottom). The curves over year (top) are colored using a heat

color scheme, indexing age (black = 0 through red = 40 to yellow = 95 as shown in the vertical
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color bar on the bottom left). The curves over age (bottom) are colored using a rainbow color

scheme (magenta = 1908 through green = 1960 to red = 2002, shown in the horizontal color bar

in the top) and use the vertical axis as domain with horizontal axis as range to highlight the fact

that these are column vectors. Additional visual cues to the matrix structure are the horizontal

rainbow color bar in the top panel, showing that year indexes columns of the data matrix and the

vertical heat color bar (bottom) showing that age indexes rows of the component matrix. Because

this is a single component, i.e., a rank one approximation of the data, each curve is a multiple

of a single eigenvector. The corresponding coefficients are shown on the right. In conventional

PCA/SVD terminology, the upper block specific coefficients are called loadings, and are in fact the

entries of the left eigenvectors (colored using the heat color scale on the bottom). Similarly, the

lower coefficients are called scores and are the entries of the right eigenvectors, colored using the

rainbow bar shown in the top.

The scores plots together with the rows as curves plots in Figure 3.12 indicate a dramatic

improvement in mortality over time for both males and females. The scores plots are bimodal

indicating rapid overall improvement in mortality around the 1950s. This is also visible as the

steepest part in the rows as curves plot. Thus the first mode of joint variation is driven by overall

improvement in mortality. In addition to the overall improvement, the rows as curves and scores

plots also show two major mortality events, the global flu pandemic of 1918 and the Spanish Civil

war in the late 1930s. The loading plots together with the columns as curves plots present the

different impacts of this common variation on different age groups for males and females. The

loadings plot for males suggests the improvement in mortality is gradually increasing from older

towards younger age groups. In contrast, the female block has a bimodal kernel density estimate

of the loadings. This shows that females of child bearing age have received large benefits from

improving health care. This effect is similarly visible from comparing the female versus male

columns as curves.

The second block specific components of joint variation within each gender are similarly visu-

alized in Figure 3.13. This common variation reflects the contrast between the years around 1950

and the years around 1980 which can be told from the curves in the left top and the colors in the

right bottom subplots in both male and female panels. In the scores plots, the green circles, seen

on the left end, represent the years around 1950 when automobile penetration started. And the
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Figure 3.12: The first block specific joint components of male (left panel) and female (right panel) contain
the common modes of variation caused by the overall improvement across different age groups, as can be
seen from the scores plots in the right bottom of each panel. The dramatic decrease happened around the
1950s shown in the columns plots. The degree of decrease varies over age groups.

orange to red circles on the right end correspond to recent years, and much improved car and road

safety. The loadings plot for males shows that these automobile events had a stronger influence on

the 20-45 years old males in terms of both larger values and a second peak in the kernel density

estimate. Although this contrast can also be seen in the loadings plot of females, it is not as strong

as for the male block. Both loadings plots show an interesting outlier, the babies of age zero. We

speculate this shows an improvement in post-natal care that coincidently happened around the

same time.
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Figure 3.13: The second joint components of male (left) and female (right) contain the common modes of
variation driven by the increase in fatalities caused by automobile penetration and later improvement due to
safety improvements. This can be seen from the scores plots in the right bottom. The loadings plots show
that this automobile event exerted a significantly stronger impact on the 20-45 males.

Another interesting result comes from the studying of the first individual components for males,

shown in Figure 3.14. In the scores plot of males, the blue circles stand out from the rest, corre-

sponding to the years of the Spanish civil war when a significant spike can be seen in the rows as

curves plot. Young to middle age groups (typical military age) are affected more than the others

as seen in the loadings plot and columns as curves plot.
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Figure 3.14: The individual component of male contains the variation driven by the Spanish civil war
which can be seen from the blue circles on the right end of the right bottom plot. The Spanish civil war
mainly affected the young to middle age males.
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CHAPTER 4

Relationship Between AJIVE And Existing Integrative Methods

In this chapter, related existing integrative methods are explicitly discussed and compared

to AJIVE. Suppose that Xk, k = 1, · · · ,K are (dk × n) row centered data matrices, with SVD

decompositions

Xk = UXk
ΣXk

VXk
, (4.1)

where the ΣXk
contain no zeros on their diagonal. To be compatible with AJIVE, we will consider

these algorithms from a non-standard viewpoint using row spaces. Let Qk ⊂ Rn be the row spaces

of the low rank signal matrix Ak, k = 1, · · · ,K. Assume that Qk is a non-trivial subspace with

rk = dim(Qk) ∈ (0, n). We will also use the following notation: for column vectors ~a1 ∈ Rd1 ,~a2 ∈

Rd2

〈~aᵀ1X1,~a
ᵀ
2X2〉 = ~aᵀ1X1X

ᵀ
2~a2 = Cov(~aᵀ1X1,~a

ᵀ
2X2) =

√
Var(~aᵀ1X1) Var(~aᵀ2X2) Corr(~aᵀ1X1,~a

ᵀ
2X2).

4.1 SVD of the concatenated data blocks

A naive integrative analysis approach is concatenating all data blocks and performing thresh-

olded SVD/PCA. However, this approach generally won’t be able to segment the joint and indi-

vidual signals, because the first several singular vectors (principal components) of this SVD are

influenced by both variance within data blocks and correlation between the data blocks. More

precisely, let

X =


X1

...

XK


be the concatenation of all data blocks. Then often suitable thresholding, the singular vector pairs

{(~u(i), ~v(i)) : i = 1, · · · , rJ} from SVD/PCA of X are the sequence of solutions of the following
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maximization problems

(~u(i), ~v(i)) = arg max
~u=(~uᵀ1 ,··· ,~u

ᵀ
K)ᵀ,~v

~uᵀX~v =
∑

1≤k≤K
~uᵀkXk~v

subject to the constraints: ~u ⊥ ~u(j), ~v ⊥ ~v(j), j = 1, · · · , i− 1

‖~u‖2 =
∑

1≤k≤K
‖~uk‖2 = 1, ‖~v‖2 = 1

(4.2)

To understand how within block and between block variation appear in this, we use the bound on

the objective function in optimization problem (4.2),

(~uᵀX~v)2 ≤ ‖~uᵀX‖2‖~v‖2 = ‖~uᵀX‖2‖
∑

1≤k≤K
~uᵀkXk‖2

=
∑

1≤k,l≤K
~uᵀkXkX

ᵀ
l ~ul

=
∑

1≤k≤K
‖~uᵀkXk‖2 + 2

∑
1≤k<l≤K

~uᵀkXkX
ᵀ
l ~ul

=
∑

1≤k≤K
Var(~uᵀkXk) + 2

∑
1≤k<l≤K

〈~uᵀkXk, ~u
ᵀ
l Xl〉

(4.3)

Note that the first term of this bound captures within block variance and the second term captures

covariance between block. For each ~u, equality in (4.3) can be achieved for some ~v. Thus for the

left singular vector ~u(i), we have

~u(i) =


~u

(i)
1

...

~u
(i)
K

 = arg max
~u=(~uᵀ1 ,··· ,~u

ᵀ
K)ᵀ

∑
1≤k≤K

Var(~uᵀkXk) + 2
∑

1≤k<l≤K
〈~uᵀkXk, ~u

ᵀ
l Xl〉

subject to the constraints: ~u ⊥ ~u(j), j = 1, · · · , i− 1,

‖~u‖2 =
∑

1≤k≤K
‖~uk‖2 = 1.

(4.4)

As we can see in optimization problem (4.4), the objective function is affected by both variance

within data blocks (first term) and covariance between data blocks (second term). Thus this

approach can be driven by either strong within block variation in the first term (the individual
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components of AJIVE), or by covariance across block in the second term (the joint components of

AJIVE).

Figure 4.1 shows the results for three choices of rank. The rank-2 approximation essentially

captures the joint variation component and the individual variation component of X, but the Y

components are hard to interpret. The bottom 2000 rows show the joint variation but the top half

of Y reveals signal from the individual component of X. One might hope that the Y individual

components would show up in the rank-3 and rank-4 approximations. However, because the noise

in the X matrix is so large, a random noise component from X dominates the Y signal, so the

important latter component disappears from this low-rank representation unlike the AJIVE result

in Figure 3.3. In this example, this naive approach completely fails to give a meaningful joint

analysis.

4.2 Partial least squares (PLS)

The two-blocks PLS, invented by Wold (1975), finds linear combinations of rows of two ma-

trices, for example X1 and X2, which maximize their sample covariance. More precisely, the PLS

identifies a set of pairs of principal vectors, indexed by i, obtained sequentially from the following

maximization problems:

{~a(i)
1 ,~a

(i)
2 } = arg max

~a1∈Rd1 ,~a2∈Rd2

〈~aᵀ1X1,~a
ᵀ
2X2〉

subject to the constraints: ‖~a1‖ = 1, ‖~a2‖ = 1,

〈~aᵀ1X1, (~a
(j)
1 )ᵀX1〉 = 0, 〈~aᵀ2X2, (~a

(j)
2 )ᵀX2〉 = 0, j = 1, · · · , i− 1.

(4.5)

Unlike AJIVE, the directions from PLS are influenced by both variance within data blocks and

correlation between data blocks. In particular, if the signal strength of the individual structure is

sufficiently large it will be classified as a joint structure by being found ahead of the joint structure

in the AJIVE sense.

Figure 4.2 presents the PLS approximations with different numbers of components selected.

PLS completely fails to separate joint and individual components. Instead it provides mixtures of
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Figure 4.1: Shows the concatenation SVD approximation of each block for rank 2 (left), 3 (center) and
4 (right). Although block X has a relatively accurate approximation when the rank is chosen as 2, the
individual pattern in block Y has never been captured due to the heterogeneity between X and Y .
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the joint, and some of the individual components. Increasing the rank of the PLS approximation

only includes more noise.
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Figure 4.2: PLS approximations of each block for numbers of components as 1 (left), 2 (center) and 3
(right). PLS fails to distinguish the joint and individual variation structure.
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multi-block PLS For the general case of multi-block, several approaches to multi-block PLS

(mPLS) have been developed. A comprehensive summary of these generalizations can be found

in Hanafi and Kiers (2006). A typical form of mPLS is the MAXDIFF criterion with equal sums

of squares for weight vectors. For the ith set of weight vectors {~a(i)
1 , · · · ,~a(i)

K }, where ~ai ∈ Rdk ,

{~a(i)
1 , · · · ,~a(i)

K } = arg max
~a1,··· ,~aK

∑
1≤k<l≤K

〈~aᵀkXk,~a
ᵀ
l Xl〉

subject to the constraints: ‖~ak‖2 = 1,~aᵀkXk ⊥ (~a
(j)
k )ᵀXk

j = 1, · · · , i− 1, k = 1, · · · ,K.

(4.6)

This version of mPLS is related to the SVD of the concatenated data block in Section 4.1. In

fact, the objective function in the optimization problem (4.6) is the second term of the objective

function in the optimization problem (4.4). And the optimization problem (4.4) is referred as

the MAXBET criterion, in Hanafi and Kiers (2006), with total sum of squares of the weight

vectors equal to 1. Both MAXDIFF and MAXBET are affected by within-block variation and

correlation among data blocks, while MAXBET puts more emphasis on describing within-block

variation. Taking into account within-block variance, most of the variation found by the solutions

of MAXDIFF and MAXBET comes from the true signal subspace row(Ak). However, they feel

both the joint and individual components, and thus tend not to effectively segment the joint space

from each data block.

4.3 Principal angle analysis (PAA)

Principal angle analysis for two blocks (Hotelling, 1936) plays an essential role in AJIVE to

segment the joint and individual variations from each data block. Let X and Y be two subspaces

in Rn. Assume dim(X ) = l ≤ dim(Y) = m ≤ n. And let QX and QY be the corresponding

orthonormal basis matrices of X and Y. Then the principal angles between X and Y, {θ1, · · · , θl},
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are defined by θi = arccos(~uᵀi~vi), where {~ui, ~vi} are solved sequentially for i = 1, · · · , l

{~ui, ~vi} = arg max
~u∈X ,~v∈Y

Cov(~u,~v)

subject to the constraints: ‖~u‖ = ‖~v‖ = 1

~uᵀ~uj = 0, ~vᵀ~vj = 0, j = 1, · · · , i− 1

(4.7)

The corresponding paired vectors {~ui, ~vi} are called the ith pair of principal vectors. By definition,

it is easy to see

0 ≤ θ1 ≤ · · · ≤ θl ≤ π/2

When l = m = 1, the principal angle is the angle between the two lines X and Y. Moreover,

suppose dim(X ∩ Y) = d, it can be shown that the first d principal angles are 0,

0 = θ1 = · · · = θd < θd+1 ≤ · · · ≤ θl ≤ π/2

When l = m, the largest principal angle is related to the distance between subspaces X and Y

defined by

ρ(X ,Y) = sin(θl) = ‖PX −PY‖ = ‖(I−PX )PY‖ = ‖(I−PY)PX ‖

where PX = QXQᵀ
X and PY = QYQᵀ

Y are the corresponding projection matrices of X and Y. In

the general case that l 6= m, the function ρ(X ,Y) is a pseudometric on subspaces.

Accordingly, the similarity/closeness between X and Y can be written as

‖PXPY‖ = cos(θl)

As seen in Section 4.4, this quantity is the largest canonical correlation between X and Y.

The following theorem in Björck and Golub (1973) gives a useful computation algorithm of

principal angle analysis(PAA).

Theorem 2. Let the columns of QX ∈ Rn×l and QY ∈ Rn×m be orthonormal bases for X and Y

respectively, l ≤ m and let

σ1 ≥ · · · ≥ σl ≥ 0
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be the singular values of M = Qᵀ
XQY = UMΣMVᵀ

M ∈ Rl×m.

Then for i = 1, · · · , l, the principal angle θi, and the corresponding principal vectors {~ui, ~vi}

are given by

~ui = ith column of QXUM = QXUM,i,

~vi = ith column of QYVM = QYVM,i.

cos θi = σi = ~uᵀi~vi.

(4.8)

and

σ1 = · · · = σd = 1 > σd+1 ≥ σk ⇐⇒ dimX ∩ Y = d (4.9)

AJIVE utilizes an alternative approach to PAA for computation of principal angles, principal

vectors and a basis of the joint space, which is based on the following theory combining the results

from Miao and Ben-Israel (1992) and Horn and Johnson (2012).

Theorem 3. Let the columns of QX ∈ Rn×l and QY ∈ Rn×m be orthonormal bases for X and Y

respectively. Assume l ≤ m and (l +m) < n. Denote

Q :=

Qᵀ
X

Qᵀ
Y

 ∈ R(l+m)×n.

Let the non-zero singular values of

M = Qᵀ
XQY =

l×l︷︸︸︷
UM

l×m︷︸︸︷
ΣM

m×m︷︸︸︷
Vᵀ

M ∈ Rl×m

be

σ1 ≥ · · · ≥ σl > 0.

And denote VM = (

l︷︸︸︷
V1 ,

m−l︷︸︸︷
V2 ). Then the singular values of Q are

√
1 + σ1, · · · ,

√
1 + σl, 1, · · · , 1︸ ︷︷ ︸

m−l

,
√

1− σl, · · · ,
√

1− σ1
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and Q = UQΣQVᵀ
Q with the diagonal matrix ΣQ given by

ΣQ = diag{
√

1 + σ1, · · · ,
√

1 + σl, 1, · · · , 1︸ ︷︷ ︸
m−l

,
√

1− σl, · · · ,
√

1− σ1} ∈ R(l+m)×(l+m)

and the orthogonal matrices UQ and VQ given by

UQ =

ÛM 0l,m−l ÛM

V̂M V2 −V̂M

 ∈ R(m+l)×(m+l)

VQ = Σ−1
Q

(
QX ÛM + QYV̂M QYV2

)
∈ R(l+m)×n

where

ÛM = UM/
√

2, V̂M = V1/
√

2

Notice that in Theorem 3, the first l columns of UQ is the concatenation of the first l columns of

UM and VM (scaled by
√

2). Thus we can obtain both principal angles and principal vectors from

this approach. However, AJIVE constructs the basis of the joint space from the first l columns

of the right singular matrix VQ, which is essentially the average of the corresponding principal

vectors.

In the context of AJIVE, identifying the joint basis matrix of A1 and A2, i.e., the intersection

of Q1 and Q2, is equivalent to finding the principal vectors corresponding to 0 angles. In practice,

due to the existence of noise, PAA is applied on low rank approximations of X1 and X2, i.e. Ã1

and Ã2, and the principal vectors corresponding to small angles are found by thresholding based

on the generalized sin θ theorem, see Section 3.3.2.2 of Chapter 3 for details.

4.4 Canonical correlation analysis (CCA)

Similar to PLS, the two-block CCA finds linear combinations of rows of X1 and X2 maximizing

their sample correlation. In particular, CCA identifies a set of pairs of canonical vectors obtained
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sequentially from the optimization problem:

{~a(i)
1 ,~a

(i)
2 } = arg max

~a1∈Rd1 ,~a2∈Rd2

〈~aᵀ1X1,~a
ᵀ
2X2〉

subject to the constraints: ‖~aᵀ1X1‖ = 1, ‖~aᵀ2X2‖ = 1

〈~aᵀ1X1, (~a
(j)
1 )ᵀX1〉 = 0, 〈~aᵀ2X2, (~a

(j)
2 )ᵀX2〉 = 0, j = 1, · · · , i− 1.

(4.10)

This form makes the relationship between (4.5) and (4.10) clear (differing only constraining the

loading loadings ‖~ak‖ = 1 versus the scores ‖~aᵀkXk‖ = 1) and is equivalent to the usual formulation

of optimizing the correlation.

There is an important relationship between CCA and PAA (Hotelling, 1936; Björck and Golub,

1973), i.e., if ρi = 〈(~a(i)
1 )ᵀX1, (~a

(i)
2 )ᵀX2〉 is the ith canonical correlation, ρi = cos(θi), where θi is

the ith principal angle between row spaces of X1 and X2. The principal vector pairs {~x1,i, ~x2,i} =

{Xᵀ
1~a

(i)
1 ,Xᵀ

2~a
(i)
2 } are often obtained through SVD of Vᵀ

X1
VX2 . In particular, let ~uX1,i, ~uX2,i be the

ith left and right singular vectors of Vᵀ
X1

VX2 . Then, the ith pair of principal vectors are

~x1,i = VX1~uX1,i, ~x2,i = VX2~uX2,i.

An issue with CCA of high-dimensional data is related to the fact that CCA is interested in

the canonical vectors ~ai rather than the principal vectors ~xi. In particular, when d1 > n, d2 > n,

the values of ~ai in (4.10) are not identifiable due to the singularity of X1X
ᵀ
1 and X2X

ᵀ
2. Several

approaches have been taken to solve this problem. One approach is to use the Moore-Penrose pseudo

inverse in place of the inverse of X1X
ᵀ
1 and X2X

ᵀ
2. A second approach is to add a ridge penalty

on X1X
ᵀ
1 and X2X

ᵀ
2 (Vinod, 1976). A third approach called penalized CCA is to add penalty

functions on {~a(i)
1 ,~a

(i)
2 }, such as an `1 penalty (Parkhomenko et al., 2007; Lê Cao et al., 2009),

an elastic net (Waaijenborg et al., 2008) or a fused lasso (Witten et al., 2009). Another approach

called diagonal penalized CCA is to replace X1X
ᵀ
1 and X2X

ᵀ
2 by diag(X1X

ᵀ
1) and diag(X2X

ᵀ
2)

(Parkhomenko et al., 2009; Witten et al., 2009).

Another important issue with CCA, which is directly related to AJIVE, is that when d1 >

n, d2 > n, CCA is generally driven by noise. Lee (2007); Samarov (2009); Lee (2016) study the

asymptotic behavior of CCA in the high-dimension low sample size context and point out the
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inconsistency phenomenon in this case. One solution to this issue, used by AJIVE and COBE, is to

replace Xk by its low rank approximation Ãk, k = 1, 2. The ith principal vectors are ~pi = Ṽ1~u1,i,

~qi = Ṽ2~u2,i, where ~uj,i is the ith singular vector of Ũi of the SVD of Ṽᵀ
1Ṽ2 respectively.

As described in Section 4.3, AJIVE uses an equivalent principal angle calculation based on

SVD of M = [Ṽ1, Ṽ2]ᵀ = UMΣMVᵀ
M (Miao and Ben-Israel, 1992). AJIVE uses the transpose of

the ith right singular vector, ~vM,i, as the estimated ith basis vector of the joint space, provided

that the ith principal angle is smaller than the threshold derived in Section 3.3.3.1. Moreover, if

the ith principal angle has a value distinct from other principal angles, then the ith left singular

vector of M can be written as ~uM,i = [~uᵀ1,i, ~u
ᵀ
2,i]

ᵀ/
√

2. Consequently

~vM,i =
1

σM,i
Mᵀ~uM,i =

1√
2σM,i

(Ṽ1~u1,i + Ṽ2~u2,i) =
1√

2σM,i

(~pi + ~qi).

This shows that the AJIVE direction ~vM,i is the scaled sum (essentially the average) of the ith pair

of principal vectors.

CCA applied to the low rank approximations Ãk and AJIVE are therefore closely related.

However, AJIVE provides one joint vector per two distinct principal vectors that by the virtue of

being an average should be a better estimate of the joint space than either of the principal vectors.

More importantly, AJIVE uses a theoretically sound threshold of the principal angles that allows

us to segment individual and joint variation.

multiset CCA The AJIVE formulation allows for a natural extension to multi-block situations.

Several approaches of Multiset Canonical Correlation Analysis (mCCA) have been developed as

extensions of CCA (Horst, 1961; Kettenring, 1971; Nielsen, 2002). There is no general consensus

on which of these extensions is preferable. We point out that AJIVE is closely related to one of

the mCCA approaches discussed in (Nielsen, 2002).

This version of mCCA is defined using the optimization problem for the ith set of canon-

ical vectors {~a(i)
1 , · · · ,~a(i)

K } and corresponding principal vectors (also called canonical variables)
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{Xᵀ
1~a

(i)
1 , · · · ,Xᵀ

K~a
(i)
K }:

{~a(i)
1 , · · · ,~a(i)

K } = arg max
~a1,··· ,~aK

∑
1≤k,l≤K

〈~aᵀkXk,~a
ᵀ
l Xl〉

subject to the constraints:

K∑
k=1

‖~aᵀkXk‖22 = 1,

〈~aᵀkXk, (~a
(j)
k )ᵀXk〉 = 0, k = 1, · · · ,K, j = 1, · · · , i− 1.

(4.11)

Notice that the constraint in (4.11) is different than the perhaps more natural ‖~aᵀkXk‖22 = 1 for all

k.

If the ith singular value corresponding to the AJIVE direction ~vM,i has a value distinct from

other singular values in the AJIVE SVD, then calculations similar to the two block case show that

the ith basis vector of the joint space from AJIVE

~vM,i =
1

σM,i

K∑
k=1

Xᵀ
k~a

(i)
k

is again a scaled sum (essentially average) of the corresponding canonical variables.

4.5 Flag mean

The Grassmann manifold Gr(V, p) is a manifold whose points parametrize the subspaces of

dimension p inside the vector space V. Typically, we denote by Gr(n, p) the Grassmann manifold

of p dimensional subspaces of Rn. Let (Rd×n)◦ be the open submanifold of full row rank d × n

matrices. For each Y ∈ (Rd×n)◦, let [Y] denote the transpose of the row space of Y. Suppose that

[X] ∈ Gr(n, p1), [Y] ∈ Gr(n, p2) for p1 < p2. Let dpF ([X], [Y]) : Gr(n, p1) × Gr(n, p2) → R be a

pseudometric, which is defined as the `2-norm of the vector of the sines of the p1 principal angles

between [X] and [Y], i.e.

dpF ([X], [Y]) =

√√√√ p1∑
i=1

(sin θi)2

where 0 ≤ θ1 ≤ · · · ≤ θp1 ≤ π/2 are principal angles between [X] and [Y].

A set of matrices of the same dimension and rank can be treated as a collection of points on

a single Grassman manifold. Draper et al. (2014) proposes a flag mean representation for data
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consisting of subspaces of Rn of differing dimensions, i.e. a data cloud living on a disjoint union of

Grassmann manifolds. Let D = {[Xi]}Ki=1 be a finite collection of subspaces of Rn. The flag mean

is a nested sequence of vector spaces that best fits the data according to an optimization criterion

based on the projection Frobenius norm. In particular,

[~u(i)] := arg min
[~u]∈Gr(n,1)

∑
[Xk]∈D

dpF ([~u], [Xk])
2

subject to the constraints: [~u] ⊥ [~u(j)], j < i

(4.12)

This leads to the set {[~u(1)], · · · , [~u(r)]} where r denotes the dimension of the span of the elements

in D. If the non-zero singular values of X = [X1, · · · ,XK ] are all distinct, then the flag is:

‖µpF ‖(D) := [~u(1)] ⊂ [~u(1)|~u(2)] ⊂ · · · ⊂ [~u(1)| . . . |~u(r)]

where | denote horizontal concatenation. The flag mean is a sequence of subspaces, where the ith

subspace is generated by [~u(1)| . . . |~u(i)]. Note in the case K = 1, the flag mean is the sequence of

subspaces generated by the PCA eigenvectors.

Draper et al. (2014) show that ~u(i), the solution in optimization problem (4.12), is also the

average of the ith set of canonical variables in mCCA derived from the optimization problem (4.11).

This is closely related to AJIVE since the joint space determined there is the flag mean of rank rJ.

An important contribution of AJIVE is determination of rJ using perturbation theory.

4.6 Common Orthogonal Basis Extraction (COBE)

Zhou et al. (2016) proposed a compelling optimization problem for finding the common orthog-

onal basis (COBE). It is based on iteratively solving

āi = arg min
ā, ~zi,k,k=1,··· ,K

K∑
k=1

‖Ṽk~zi,k − ā‖2

subject to the constraints: ‖ā‖2 = 1, 〈ā, āj〉 = 0, j = 1, . . . , i− 1.

(4.13)
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To compare COBE to AJIVE we first simplify the objective function of (4.13) to

K∑
k=1

‖Ṽk~zi,k − āi‖22 =
K∑
k=1

‖Ṽk~zi,k‖22 +K‖āi‖22 − 2
K∑
k=1

〈Ṽkzi,k, āi〉

= ‖~zi‖22 +K‖āi‖22 − 2~zᵀiMāi.

where ~zi = [~zᵀi,1, · · · , ~z
ᵀ
i,K ]ᵀ. If we fix the value of ‖~zi‖ we see that the solution to the optimization

problem (4.13) is the same as SVD of M with āi = ~vM,i. Moreover this solution is invariant in

‖~zi‖.

Thus the optimization problem (4.13) gives the same result as AJIVE. However, because AJIVE

uses well optimized SVD rather than a heuristic iteration algorithm, AJIVE is much faster than

the COBE algorithm. Moreover, COBE lacks any principle based standard on how to choose the

threshold for selecting the joint space.

We finally remark that the Zhou et al. (2016) method COBE correctly segments the toy exam-

ple. However it takes significantly (39 times) longer time than AJIVE to do so.
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CHAPTER 5

Perturbation Analysis For A Given Direction

5.1 Introduction

The AJIVE method (Feng et al., 2017) introduced in Chapter 3 is a major improvement over

the original JIVE method (Lock et al., 2013). Relative to existing integrative methods, AJIVE

combines (generalized) principal angle analysis with perturbation theory, which makes it much

more effective in capturing the joint and individual variation within each data block. However,

there are still some limitations of the current AJIVE implementation.

First, the framework of perturbation analysis in AJIVE is too conservative. The perturbation

analysis of approximation accuracy of signal space extraction and principal angle analysis is based

on the Wedin bound (Wedin, 1972). As seen in Figure 3.6, the Wedin bound is very conservative for

long matrices (the number of rows is much larger than the number of columns) in the estimation of

the discrepancy between the row spaces of signal and estimated signal. This is due to the fact that

Wedin’s bound is uniform for both the left and right singular spaces. Cai et al. (2018) construct

separate rate-optimal perturbation bounds for the left and right singular subspaces, which provides

improvement of the Wedin bound in some cases. However, their perturbation bounds cannot be

directly estimated from the data matrix.

Second, the framework of perturbation analysis in AJIVE is “subspace oriented” rather than

“vector oriented”. In Step 2 of AJIVE in Section 3.3.3, for each pair (group) of principal vectors,

their principal angle (corresponding singular value in M) is compared to the angle bound from

Lemma 2 (Lemma 3) to determine whether they correspond to a joint space basis vector. This

bound is based on Wedin bound, which is uniformed for all principal vectors in each signal space.

Our analysis shows that the vector in the signal spaces would have less perturbation when the

signal matrix has larger variance in that direction. Thus improved statistical inference is available

for doing a separate perturbation analysis for each AJIVE direction.
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Third, AJIVE lacks principled and efficient guideline for rank selection at Step 1 as in Sec-

tion 3.3.2 of Chapter 3. Diagnostic plot in Section 3.3.3 provides useful information for rank

selection of signal spaces. However, it can be very inefficient to check all rank combinations of each

data block in this way. Recent results from Shabalin and Nobel (2013) and Gavish and Donoho

(2017) provide insights of signal extraction in Step 1.

Last but not the least, the AJIVE algorithm can only identify the variation shared by all data

blocks. The long term goal to develop an efficient algorithm which can capture partially shared

structure across some but not all data blocks.

All these considerations motivate us to develop a new framework of perturbation analysis for a

given direction. There is some literature discussing the perturbation angle for singular vectors, see

Benaych-Georges and Nadakuditi (2012), Gavish and Donoho (2014), and Fan et al. (2016). But

for our long term goal of identifying partially shared structure, we need to develop perturbation

analysis for any given direction; we hope to answer whether a given direction could lie in the signal

space. To the best of our knowledge, there is no existing literature on this.

The rest of this chapter is organized as follows. Section 5.2 discusses our framework of pertur-

bation analysis for a given direction. Section 5.2.1 introduces the settings of the population model.

Section 5.2.2 discusses the signal space extraction based on the general singular value shrinkage

estimator. Section 5.2.3 reviews some useful asymptotic results from the random matrix theory.

Section 5.2.4 introduces the methodology to infer whether a direction belongs to the row space

of the underlying signal matrix. Section 5.3 describes the computation algorithm to estimate the

angle range. Section 5.4 shows the simulation results under different settings. Several attempts to

adjust the AJIVE directions are also discussed in Section 5.4.3. Section 5.5 studies the application

of this perturbation analysis framework on the TCGA dataset in Section 3.4.1.

5.2 Perturbation analysis framework for a given direction

5.2.1 Population model

A matrix X of size d × n is a data block for study. Using terminology from Marron and

Alonso (2014b), the columns are regarded as data objects, one vector of d measurements for each

experimental subject, while rows are considered as features. The data matrix X is modeled as a
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low-rank true underlying signal matrix A perturbed by an additive noise matrix E, viz.

X = A + E = A + σZ. (5.1)

The entries of Z are assumed to be i.i.d. samples following a distribution with zero mean, unit vari-

ance and finite fourth moment. Moreover, we assume the distribution of Z is orthogonal invariant,

i.e. for any orthogonal matrices O1 ∈ Rd×d,O2 ∈ Rn×n, the distributions of Z and O1ZO2 are the

same. This assumption can be replaced by the relationship between A and E is “isotropic”.

For a given direction a? ∈ Rn, we hope to make inference whether a? could be in the row space

of the signal matrix A. This is based on an estimator of the angle between a? and row(A). Denote

this angle and the projection on row(A) as θ and a respectively. Let V be the right singular matrix

of A. Then,

a = VV>a?, θ = arccos(
a>a?

‖a‖‖a?‖
).

This estimation is challenging since A (and V) is usually unobservable in practice.

Suppose Â is an estimator of the signal matrix A from the data matrix X. Then useful

information comes from calculating the angle between a? and row(Â). Denote this angle and the

projection of a? on row(Â) as θ̂ and â respectively, and let V̂ be the right singular matrix of Â.

Then,

â = V̂V̂>a?, θ̂ = arccos(
â>a?

‖â‖‖a?‖
)

Due to the presence of the noise matrix E, there exists some discrepancy between θ and θ̂. In

order to quantify this discrepancy, the perturbation effects of a and â are estimated separately. We

define the direction specific perturbation angle for a, θ?1, which is the angle between a and row(Â).

Similarly, the direction specific perturbation angle for â, θ?2, is defined as the angle between â and

row(A).

Then we can bound the range of θ, the angle between a? and row(A), with θ̂, θ?1, θ?2 by the

following theorem.

Theorem 4. Let X = A + Z be a data matrix of size d× n, which is the sum of the signal matrix

A and the noise matrix Z. Suppose Â is an estimator of A. For a given vector a? ∈ Rn, let θ, θ̂, θ?1
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and θ?2 be defined as above. Then we have

(θ̂ − θ?1)+ ≤ θ ≤ θ̂ + θ?2. (5.2)

Proof. Firstly, we want to prove θ̂ ≤ θ?1 + θ.

Let â1 be the projection of a on row(Â). Then θ?1 is the angle between a and â1. Applying

Lemma 4, we get

θ?1 + θ = ](a, â1) + ](a,a?) ≥ ](â1,a
?) ≥ ](â,a?) = θ̂

since θ̂ is the smallest angle between vectors in row(Â) and a?.

Similarly, we can show

θ ≤ θ̂ + θ?2.

Combining these two equalities, we have proven the main result (5.2).

Lemma 4. Let v1,v2,v3 be three vectors in Rn. Let θi,j be the angle between vi and vj. Then, we

have the following inequality:

θ1,2 ≤ θ1,3 + θ2,3.

Proof. First, we consider the special case that v3 lies in the subspace spanned by v1 and v2. If v3

lies between v1 and v2, then

θ1,2 = θ1,3 + θ2,3.

If v3 lies outside of v1 and v2, then

θ1,2 = |θ1,3 − θ2,3| ≤ θ1,3 + θ2,3.

Next, we consider the general case that v3 lies outside of the subspace spanned by v1 and v2.

Denote the projection of v3 on the subspace spanned by v1 and v2 as v̂3. Analogously, we define

the angle θ̂i,3 = ](vi, v̂3), i = 1, 2. Then, following the argument above, we have

θ1,2 ≤ θ̂1,3 + θ̂2,3.
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Moreover, the subspace spanned by v3 and v̂3 is orthogonal to the subspace spanned by v1 and v2,

and v̂3 is on the intersection of two subspaces. Then v̂3 is also the projection of v1 on the subspace

spanned by v3 and v̂3. Then θ̂1,3 = ](v1, v̂3) ≤ ](v1,v3) = θ1,3 since the projection angle is the

smallest angle between v1 and the subspace spanned by v3 and v̂3. Similarly, we have θ̂2,3 ≤ θ2,3.

Thus,

θ1,2 ≤ θ̂1,3 + θ̂2,3 ≤ θ1,3 + θ2,3.

Therefore, in order to bound the range of θ, it is essential to propose good estimators Â, θ?1

and θ?2. In Section 5.2.2, we will discuss the methodology of estimation of A based on results

from Shabalin and Nobel (2013) and Gavish and Donoho (2017). Section 5.2.4 and 5.3 discuss the

estimation of the direction specific perturbation angle for any given direction.

5.2.2 Signal space extraction

It is a ubiquitous challenge in modern scientific research to recover a low rank signal from a

data matrix. For the additive noise model as in (5.1), the standard practice is to apply truncated

Singular Value Decomposition (SVD) to X. This is accomplished by writing the SVD of X in the

form

X =

[
Û Û0

]Σ̂ 0

0 Σ̂0


V̂>

V̂>0

 =
d∧n∑
j=1

λ̂jûjv̂
>
j ,

where r̂ is the estimator of r = rank A, Û =

[
u1 · · · ur̂

]
and V̂ =

[
v̂1 · · · v̂r̂

]
are rank

r̂ left and right singular matrices respectively, and Σ̂ = diag{λ̂1, . . . , λ̂r̂}. Then the conventional

estimator of A is

Âr̂ = ÛΣ̂V̂> =

r̂∑
j=1

λ̂jûjv̂
>
j . (5.3)

Denote the corresponding SVD of A as

A = UΣV> =

r∑
j=1

λjujv
>
j .
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Due to the additional energy contributed by the noise matrix E, the singular values of Âr̂ are

usually inflated relative to A, i.e.

λ̂j ≥ λj , for j = 1, . . . , r̂.

Moreover, if Âr̂ is used as the estimator of A, the corresponding estimated noise matrix,

Ê = X− Âr̂ = Û0Σ̂0V̂
>
0 ,

will have no energy in directions in the subspace row(Âr̂). This would cause bias in the forthcoming

estimation in Section 5.3.

Singular value shrinkage In order to overcome this issue, we consider the general singular value

shrinkage estimator (Cai et al., 2010; Shabalin and Nobel, 2013; Gavish and Donoho, 2014, 2017),

Âη = Â(d∨n,σ)
η (X) =

d∧n∑
j=1

η(d∨n,σ)(λ̂j)ûjv̂
>
j , (5.4)

where η(d∨n,σ) is a mapping from [0,+∞) to [0,+∞). For convenience of specifying shrinkage

functions without depending on σ and d ∨ n, the general model (5.1) is calibrated to the standard

model:

X = A +
1√
d ∨ n

Z. (5.5)

Then the singular value shrinkage estimator from the general model (5.1), Â
(d∨n,σ)
η (X), is connected

with the estimator from the standard model (5.5),

Âη(X) =

d∧n∑
j=1

η(λ̂j)ûjv̂
>
j ,

by the following equation,

Â(d∨n,σ)
η (X) = σ

√
d ∨ n · Âη(

X

σ
√
d ∨ n

),
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and their shrinkage functions are linked by

η(d∨n,σ)(λ) = σ
√
d ∨ n · η(

λ

σ
√
d ∨ n

). (5.6)

Popular choices of η include hard and soft thresholding with the following shrinkage rules

ηsoft
s (λ) = max(0, λ− s),

ηhard
τ (λ) = λ · 1{λ≥τ}.

It is easy to see that hard thresholding leads to the truncated SVD (5.3). Shabalin and Nobel (2013)

propose an optimal form of η in the sense of minimizing the operator L2 norm loss L(Âη,A) =

‖Âη − A‖2 under the assumption that Z is a standard random Gaussian matrix. Gavish and

Donoho (2017) extend the results of Shabalin and Nobel (2013) to more general loss functions and

non-Gaussian noise matrices, e.g. as in Model (5.1). In the context of our application, we use the

optimal shrinkage function with respect to the operator L2 norm loss function from Shabalin and

Nobel (2013), i.e.

η?(λ) = ηsn(λ;β) =


1√
2

√
λ2 − β − 1 +

√
(λ2 − β − 1)2 − 4β, if λ ≥ 1 +

√
β,

0, otherwise,

(5.7)

where β = d∧n
d∨n .

Figure 5.1 shows the graphs of several shrinkage rules for different values of β under the standard

model (5.5). The graphs of the optimal shrinkage function ηsn are shown as blue solid lines. The

graphs of the optimally tuned soft and hard threshold functions discussed in Gavish and Donoho

(2014) are shown as the black dashed lines and purple dot-dashed lines respectively. The left and

right panels show the cases of square matrix and non-square matrix with the dimension ratio of the

toy dataset in Section 3.1.1 respectively. The figure shows that the optimal shrinkage function lies

essentially between the optimally tuned soft and hard threshold functions. Note that the threshold

for zeroing eigenvalues by ηsn is the same as for the optimally tuned soft thresholding, and is largest

in the square matrix (β = 1) case.
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(b) Optimal shrinkage function for non-square
matrix.

Figure 5.1: The graphs of different shrinkage functions under the standard model (5.5). The horizontal axis
represents empirical singular value. The vertical axis shows shrunken singular values. The blue solid lines
show the graphs of the optimal shrinkage function ηsn. The black dashed lines and the purple dot-dashed
lines show the graphs of the optimally tuned soft and hard threshold functions. The left and right panel
shows the case of square and non-square matrices respectively. This figure is produced by modifying code
from the supplement of Gavish and Donoho (2017).

Estimation of noise level In practice, σ in the general model (5.1) is usually not known and

needs to be estimated. Assuming r̂ < (d∧n)/2, we use the estimator in Gavish and Donoho (2014),

which is simple and robust,

σ̂ =
λmed(X)√
µβ · (d ∨ n)

, (5.8)

where λmed(X) is the median of the first d ∧ n singular values of X, and µβ is the median of the

famous Marčenko–Pastur distribution (Marčenko and Pastur, 1967) with density function

p(s) =

√
((1 +

√
β)2 − s)(s− (1−

√
β)2)

2πβs
1[(1−

√
β)2, (1+

√
β)2](s).

With the formulas in (5.4), (5.6), (5.7) and (5.8), we can estimate the rank of the signal A as

well as the energy of the noise matrix in each principal component direction. More specifically, our

estimators of A and E are

Â =

r̂∑
j=1

λ̃jûjv̂
>
j = ÛΣ̃V̂>,

Ê = X− Â,

(5.9)
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Figure 5.2: Scree plots along with corresponding singular value thresholds for the toy data sets X (left)
and Y (right). The red dashed lines show the values of singular value threshold. The components with
singular values above the red dashed threshold lines are regarded as the signal components.

where

r̂ =

d∧n∑
j=1

1{λ̂j≥σ̂
√
d∨n(1+

√
β)} =

d∧n∑
j=1

1{λ̂j≥σ̂(
√
d+
√
n)},

λ̃j = σ̂
√
d ∨ n · ηsn(

λ̂j

σ̂
√
d ∨ n

),

Σ̃ = diag(λ̃1, . . . , λ̃r̂).

(5.10)

As we can see in (5.10), the threshold for non-zero signal singular values is σ̂(
√
d +
√
n).

Thus the estimated noise level σ̂ is directly related to the estimation of the signal rank r̂. If σ̂ is

overestimated, r̂ could be underestimated; and vice versa. Applying the estimator σ̂ to the toy

dataset in Section 3.1.1 of Chapter 3, the singular value thresholds of each data block are shown

as red dashed lines in Figure 5.2, which lead to correct estimation of the signal ranks of X and Y,

i.e. r̂X = 2, r̂Y = 3.

5.2.3 Review of useful asymptotic results

To provide insights into the formulas (5.7), a related asymptotic framework and relevant results

from random matrix theory are reviewed in this subsection.
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Asymptotic framework Without loss of generality, we assume d ≥ n for X ∈ Rd×n; otherwise

we can transpose the matrix. For convenient of asymptotic analysis, the standard model,

X = A +
1√
d
Z,

is used in this subsection. This enables us to follow the asymptotic framework in Shabalin and

Nobel (2013) and Gavish and Donoho (2017). We stress that we are thinking of a sequence model

by adding subscripts,

Xn = An +
1√
dn

Zn ∈ Rdn×n, (5.11)

where An, Zn satisfy the following assumptions:

1. Invariant white noise. Each noise matrix Zn follows the assumptions in Model (5.1).

2. Fixed signal singular values (λ1, · · · , λr). The rank of An is fixed to be r. The non-zero

singular values of An are also fixed such that λ1 > · · · > λr > 0.

3. Asymptotic aspect ratio β. The sequence dn satisfies n
dn
→ β ∈ (0, 1], as n→ +∞.

Asymptotic behavior Under the above asymptotic framework, according to the Marčenko–

Pastur law (Marčenko and Pastur, 1967), the distribution of the singular values of the noise matrix

Zn will weakly converge to the generalized quarter-circle distribution

g(s) =

√
(s2 − (1−

√
β)2)((1 +

√
β)2 − s2)

πβs
1[1−

√
β,1+

√
β](s) (5.12)

When the Zns are square matrices, i.e. β = 1, we get the special case, the quarter circle law,

g(s) =
1

π

√
4− s21[0,2](s) (5.13)

Moreover, Geman (1980) shows that

lim
n→+∞

λ1(Zn)
a.s.
= 1 +

√
β

The value 1 +
√
β is called the bulk edge, which is also the threshold of signal singular values in

(5.4).
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Summarizing the seminal results from Baik and Silverstein (2006), Nadler et al. (2008), Dozier

and Silverstein (2007), Paul (2007), and Benaych-Georges and Nadakuditi (2012), we state the

following two theorems, which describe the relationship of singular values and singular vectors

between the data matrix Xn and the signal matrix An.

Theorem 5 (Asymptotic location of the empirical singular values). Let λ̂
(n)
j be the jth singular

value of Xn. For each 1 ≤ j ≤ r,

lim
n→+∞

λ̂
(n)
j

a.s.
=


l(λj ;β), if λj ≥ β1/4,

1 +
√
β, if λj < β1/4,

(5.14)

where

l(λ;β) =

√
1 + λ2 + β +

β

λ2
. (5.15)

For each r < j ≤ n, lim
n→+∞

λ̂
(n)
j

a.s.
= 1 +

√
β.

Note that ηsn(λ;β) = l−1(λ;β) for λ ≥ 1+
√
β, where ηsn(λ;β) is the optimal shrinkage function

in (5.7). Theorem 5 describes the singular value inflation of the data matrix relative to the signal

matrix. The second branch of (5.14) together with the last part of Theorem 5 imply that the signal

singular values less than β1/4 are not distinguishable from the noise. The phenomenon is observed

in the simulation study of Section 5.4.2.

Theorem 6 (Asymptotic angle between signal and empirical singular vectors). For 1 ≤ i 6= j ≤ r,

if λi ≥ β1/4, we have

lim
n→+∞

|〈u(n)
i , û

(n)
j 〉|

a.s.
=


c1(λi;β), if i = j,

0, if i 6= j,

(5.16)

and

lim
n→+∞

|〈v(n)
i , v̂

(n)
j 〉|

a.s.
=


c2(λi;β), if i = j,

0, if i 6= j,

(5.17)

where

c1(λ;β) =

√
λ4 − β
λ4 + λ2

,

c2(λ;β) =

√
λ4 − β
λ4 + βλ2

.

(5.18)
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If λi < β1/4, we have

lim
n→+∞

|〈u(n)
i , û

(n)
j 〉| = lim

n→+∞
|〈v(n)

i , v̂
(n)
j 〉|

a.s.
= 0.

Results (5.16) and (5.17) are examples of conical limiting structure as studied in the Figure

2 of Shen et al. (2016). The final part of Theorem 6 implies that the estimated singular vectors

associated with signal singular value λi < β1/4 contain no useful information. Theorem 5 and

Theorem 6 establish the validity of the data singular value threshold σ̂
√
d ∨ n(1 +

√
β).

5.2.4 Direction specific perturbation angle estimation

For any given direction a? ∈ Rn, its projections on row(A) and row(Â) are

a = VV>a? = Vωa =

r∑
j=1

ωjvj ,

â = V̂V̂>a? = V̂ω̂a =

r̂∑
j=1

ω̂jv̂j ,

where ωa = V>a?, ω̂a = V̂>a?.

Recall the direction specific perturbation angles in Section 5.2.1, θ?1 and θ?2, which are the

perturbation angles of a and â respectively. Denote the projection of a on row(Â) and the projection

of â on row(A) as

â1 = V̂V̂>a = V̂V̂>Vωa,

a1 = VV>â = VV>V̂ω̂a.

Then we have

θ?1 = arccos(
a>â1

‖a‖‖â1‖
) = arccos(

ω>a V>V̂V̂>Vωa

‖ωa‖‖V̂>Vωa‖
) = arccos(

‖V̂>Vωa‖
‖ωa‖

),

θ?2 = arccos(
â>a1

‖â‖‖a1‖
) = arccos(

ω̂>a V̂>VV>V̂ω̂a

‖ω̂a‖‖V>V̂ω̂a‖
) = arccos(

‖V>V̂ω̂a‖
‖ω̂a‖

).

(5.19)

Notice that the singular values of V>V̂ (and V̂>V) are connected to the principal angles between

row(Â) and row(A). Denote the singular values of V>V̂ (and V̂>V) as σ1, . . . , σr∧r̂. Then σi =

cos(φi), where φi is the ith principal angle between row(Â) and row(A) defined in Section 3.3.2.2.
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This indicates that

φ1 ≤ θ?1, θ?2 ≤ φr∧r̂.

Under the asymptotic framework of Section 5.2.3, applying the results of Theorem 6, V>V̂ is

approximated as

V>V̂ ≈ diag(c2(λ1;β), . . . , c2(λr∧r̂;β)).

This implies that, roughly speaking,

σi = cos(φi) ≈ c2(λi;β) =

√
λ4
i − β

λ4
i + βλ2

i

,

and the corresponding principal vectors are approximately the ith principal components in V and

V̂, i.e. vi and v̂i. Following the results in (5.19), the perturbation angle for the ith principal

component vi of V is roughly φi. In other words, the principal component with smaller variance

usually has larger perturbation angle. In general, θ?1 and θ?2 are connected to principal angles,

φ1, . . . , φr∧r̂, by

cos(θ?1)2 ≈
r∧r̂∑
j=1

ω?2a,j cos(φj)
2

cos(θ?2)2 ≈
r∧r̂∑
j=1

ω̂?2a,j cos(φj)
2

where ω?a = ωa/‖ωa‖, ω̂?a = ω̂a/‖ω̂a‖. Both the perturbation bounds in Wedin (1972) and Cai

et al. (2018) only capture the largest principal angle, φr∧r̂; thus they are usually conservative for

the direction perturbation angle in Equation (5.19).

Theorem 7 shows that the distributions of V>V̂ and V̂>V are orthogonal invariant under our

model assumptions. This motivates us to use a bootstrapping procedure to estimate the distribution

of V>V̂ and V̂>V.

Theorem 7. Let X = A + E be a data matrix, which follows the model assumptions in (5.1). Let

V be the right singular matrix of A, and denote V̂ as the rank r̂ right singular matrix of Â, where

r̂ is the estimator of r = rank(A). For any given orthogonal matrices O1 ∈ Rd×d,O2 ∈ Rn×n,

let A? = O1AO2 and X? = A? + E. Analogous to V and V̂, let V? and V̂? be the rank r right
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singular matrix of A? and the rank r̂ right singular matrix of X? respectively. Then the distribution

of V>V̂ and V̂>V are the same as the distributions of V?>V̂? and V̂?>V? respectively.

Proof. Since E is assumed to be orthogonal invariant, E◦ = O1EO2 has the same distribution as

E. Therefore X◦ = A? + E◦ has the same distribution as X?. Let V◦ and V̂◦ be the rank r right

singular matrix of A◦ and the rank r̂ right singular matrix of X? respectively. On the one hand,

V◦>V̂◦ has the same distribution as V?>V̂?.

On the other hand,

X◦ = A? + E◦ = O1AO2 + O1EO2

= O1XO2.

The SVD of X◦ is related to that of X by V◦ = O2V, V̂
◦ = O2V̂. Thus V◦>V̂◦ = V>O>2 O2V̂ =

V>V̂. Therefore, the distribution of V>V̂ is the same as the distribution of V?>V̂?.

The proof of V̂>V follows by transposition.

This establishes the validity of our computation procedure in Section 5.3. Note that Theorem 7

is still valid if we assume the relationship between A and E is essentially isotropic instead of

assuming the distribution of Z is orthogonal invariant, because it directly implies X? = O1AO2 +E

has the same distribution as X. Moreover, Benaych-Georges and Nadakuditi (2012) also show that

all the asymptotic results in Section 5.2.3 are valid when either A is non-random and E is orthogonal

invariant, or the relationship between A and E is essentially isotropic.

With the estimators of V>V̂ and V̂>V, the estimation of θ?2 is straightforward, since ω̂a is

observable and thus can be directly plugged into (5.19). It is more challenging to estimate θ?1 since

ωa in (5.19) is not observable. In order to still use (5.2) to bound the range of θ, we can bound θ?1

by φr̂ and thus

(θ̂ − φr̂)+ ≤ θ ≤ θ̂ + θ?2. (5.20)
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One might think we can estimate ωa from ω̂a. However, even in the asymptotic limit situation,

the uncertainty of ωa is still not eliminated. For example, we consider

V =

 1√
2

sin(φ1) 1√
2

cos(φ1) 0 1√
2

sin(φ1) 1√
2

cos(φ1) 0

0 0 1√
2

0 0 1√
2


>

,

V̂ =

 0 1√
2

0 0 1√
2

0

1√
2

sin(φ2) 0 1√
2

cos(φ2) − 1√
2

sin(φ2) 0 1√
2

cos(φ2)


>

,

where φi = arccos(c2(λi);β), i = 1, 2, and λ1 > λ2. Then we have

V>V̂ =

cos(φ1) 0

0 cos(φ2)


Note that V and V̂ satisfy all the asymptotic structures in Theorem 5 and Theorem 6. However,

consider a? =

[
1 0 0 0 0 0

]>
∈ R6. This gives

ωa = V>a? =

[
1√
2

sin(φ1) 0

]>
,

ω̂a = V̂>a? =

[
0 1√

2
sin(φ2)

]>
.

Thus even though the projection of a? on row(A) is merely in the direction of v1, its projection on

row(Â) is in the direction of v̂2. Therefore, the range in (5.20) is the best which we can infer from

only observing a? and X.

Random direction angle Analogous to the random direction bound in Section 3.3.3.1 of Chap-

ter 3, we estimate the distribution of the angles between a random direction and a rank r̂ subspace

in Rn. This distribution only depends on the estimated signal rank r̂, and the dimension of the

row space, n. We obtain this distribution by simulation. In particular, a direction is randomly

selected from the unit sphere in Rn, which can be generated by normalizing an n-dimensional stan-

dard Gaussian vector. Then we calculate the angle between the generated direction and V̂. We

recommend the 5th percentile of the angle distribution as a point estimator in practice, which is

denoted as θ0 and referred as random angle bound.
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The angle range for θ = ](a?, row(A)) in (5.20), combining with the random angle bound is

used to infer whether a? lies in the signal row space row(A). For a given direction a? ∈ Rn, if the

lower bound on θ, i.e. (θ̂ − φr̂)+, is 0, we can not reject the hypothesis that a? ∈ row(A). If the

upper bound on θ, i.e. θ̂ + θ?2, is larger than θ0, we can not reject the hypothesis that a? is not

associated with row(A).

However, when the angle range in (5.20) is too large such that the lower bound is 0 and the

upper bound is larger than θ0, we cannot gain any useful information from it. A typical case

is that the projection â lies on the principal components of V̂ with small variance such that

θ?2 >
θ0
2 . In this case, by definition, φr̂ ≥ θ?2 >

θ0
2 . Then for the intermediate values of θ̂ such that

(θ0−θ?2)+ ≤ θ̂ ≤ φr̂, the angle range covers both 0 and θ0. In other words, although these principal

components are related to signals, they are not very useful in this case. In our application, the

judgment for these intermediate values of θ̂ is the most crucial.

In order to make the angle range of θ in (5.20) still informative under this situation, we adjust

V̂ to V̄ by filtering out the principal components with corresponding θ?2 larger than θ0
2 . Then Û

and Σ̃ are adjusted to Ū and Σ̄ accordingly. Thus our adjusted signal matrix estimator is

Ā = ŪΣ̄V̄>. (5.21)

Let r̄ be the rank of Ā. Note that for the adjusted signal matrix estimator, the largest principal

angle between row(Ā) and row(A), φr̄, is less than θ0
2 . Then the max length of the angle range in

(5.20) is surely less than θ0, and thus it can not cover 0 and θ0 at the same time. The estimated

noise matrix Ê = X − Â in (5.9) stays unchanged. Next Ê and Ā are used to estimated the bound

for θ of a? as in Section 5.3.

5.3 Algorithm

This section describes the algorithm for estimating the range of the angle, θ = ](a?, row(A)),

for an arbitrary given direction a? ∈ Rn based on (5.20). Since θ̂ can be calculated directly, the

essential part of the algorithm is to estimate φr̂ and θ?2. Because each a? has its specific score

ω̂a on the row(Â), its corresponding θ?2 is direction driven. As shown in the formula in (5.19),

they have the matrix V>V̂ in common, which has an orthogonal invariant distribution as stated
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in Theorem 7. In order to avoid repeated computation, the first part of the algorithm generates a

batch of bootstrap samples of V>V̂, which are cached. The second part of the algorithm utilizes

the cached samples of V>V̂ to bound the angle range for different directions.

Algorithm part 1

Step 1: Signal Matrix Recovery. Apply the opitmal singular value shrinkage estimator (5.9)

on the data matrix X to get estimators Â = ÛΣ̃V̂> and Ê = X− Â. Adjust Â to Ā as in (5.21).

Step 2: Bootstrap Estimation. Generate a random left singular matrix U? and a random

right singular matrix V?. Obtain the new signal matrix A? = U?Σ̃V?> and the new data matrix

X? = A? + Ê. Let V̂? be the rank r̂ (r̄ if using Ā) right singular matrix of X?. Then V?>V̂? is

one realization from the bootstrap distribution modeling the distribution of V>V̂.

Step 3: Cache Results. Repeat Step 2 M times and cache each bootstrap sample V?>V̂?.

Algorithm part 2

For an arbitrary direction a? ∈ Rn, the upper bound and lower bound on θ can be quickly

calculated now.

Estimation of the upper bound on θ. Compute its score on row(Â), ω̂a = V̂>a?. For each

bootstrap sample of V>V̂ from Algorithm 1, V?>V̂?, calculate the corresponding θ?2 based on the

formula (5.19). This is a bootstrap replication of θ?2. Using the 95th percentile of the resampling

bootstrap distribution, θ̃?2, as a point estimator, gives the upper bound θ̂ + θ̃?2.

Estimation of the lower bound on θ. For each bootstrap sample of V>V̂, a bootstrap replication

for φr̂ can be obtained by calculating its smallest singular value. Using the 95th percentile of the

resampled bootstrap distribution, φ̃r̂, we can get the lower bound (θ̂ − φ̃r̂)+.

5.4 Simulation study

In this section we carry out numerical experiments to demonstrate the effectiveness of the

computation algorithm in Section 5.3. The toy dataset in Section 3.1.1 of Chapter 3, which contains

both a square matrix and a non-square matrix, will be studied in the first part and the third part.

The first part of the simulation study in Section 5.4.1 illustrates the estimation of the direction

specific perturbation angle, θ?2, under rank correct specification as well as rank misspecification

cases. The second part of the simulation study in Section 5.4.2 analyzes new toy examples similar
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to the toy example in Shabalin and Nobel (2013) with both Gaussian and non-Gaussian noise.

The third part of the simulation study in Section 5.4.3 shows the application of this perturbation

framework to the AJIVE directions of the toy dataset.

5.4.1 Direction specific perturbation angle estimation

As discussed in Section 5.2.2, the estimated signal rank is affected by the estimation of the noise

level σ. In this section, we will analyze the behavior of the algorithm for estimating θ?2 under both

correct and incorrect rank specification, which is driven by the estimation of σ. In this subsection,

only the theoretical values of the perturbation bounds from Wedin (1972) and Cai et al. (2018) are

compared to the direction specific perturbation angles. In practice, the values of these perturbation

bounds depend on the underlying true signal matrix and neither can not be directly applied. Feng

et al. (2017) propose a practical and effective algorithm to estimate the Wedin bound.

Results under correct rank specification

Applying the estimator σ̂ in (5.8), we get σ̂x = 4.9877× 103, σ̂y = 1.0005, while the true values

are σx = 5×103, σy = 1. So it is not surprising that the signal rank of each data block are correctly

specified.

Figure 5.3 illustrates how well the bootstrap distributions estimate the direction specific per-

turbation angles. The blue solid lines on the upper part of each panel show the values of the true

direction specific perturbation angle for different vectors in row(Â1), the signal row space of X.

The blue plus signs show the c.d.f. values of the bootstrapping distribution of each θ?2. Figure 5.3

shows that the true values of θ?2 are always in the range of the resampled bootstrap distribution.

The vertical black lines on the lower part of each panel show the values of principal angles between

the estimated signal space and the true signal spaces. Panel 5.3(a) and 5.3(b) show that the pertur-

bation angles for PC1 and PC2 of X are overlapped with the principal angles φ1, φ2 respectively.

Panel 5.3(c) shows the perturbation angles for the vector â = (PC1 + PC2)/
√

2 lies between φ1

and φ2. All these are consistent with the conclusions in Section 5.2.4.

The vertical cyan dot-dashed line shows the value of the Wedin bound of the perturbation angle

defined in Section 3.3.2.2. The purple dashed lines and solid lines show the perturbation bounds

from Theorem 1 and Proposition 1 in Cai et al. (2018) respectively. Since all these perturbation
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angle bounds are subspace oriented, they are the same in each cases. As seen in Figure 5.3, all

these perturbation bounds are conservative relative to the resampled direction specific perturbation

angles. Figure 5.3 also implies the Wedin bound is less conservative than the perturbation bounds

from Cai et al. (2018) in the square matrix case.
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(a) Direction specific perturbation angle for â =
PC1 of X, where r̂x = 2.
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(b) Direction specific perturbation angle for â =
PC2 of X, where r̂x = 2.
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(c) Direction specific perturbation angle for â =
(PC1 + PC2)/

√
2, where r̂x = 2.
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(d) Direction specific perturbation angle for â =
PC1 of X, where r̂x = 1.

Figure 5.3: Shows the direction specific perturbation angles for different vectors in the estimated signal
row space of X, a square matrix introduced in Section 3.1.1 of Chapter 3. The x-axis represents angles
and the y-axis represents the values of empirical distribution of resampled direction specific perturbation
angles. The vertical blue lines segment on the upper side of each panel show the value of true direction
specific perturbation angle. The blue plus signs show the empirical distribution of the bootstrap samples
of perturbation angles. The black vertical lines on the lower part of each panel show the principal angles
between the signal space and the estimated signal space. The vertical cyan dot-dashed lines show the values
of the Wedin bound of the perturbation angle between the signal space and the estimated signal space. The
purple dashed line and solid line show the perturbation bounds from Theorem 1 and Proposition 1 in Cai
et al. (2018) respectively. Panel 5.3(d) shows the case of rank underestimation, r̂x = 1. In all other panelsthe
signal rank of X is correctly specified, i.e. r̂x = 2. The half value of random angle bound is not shown on
this figure since it is larger than all of these angles.

Figure 5.4 is an analogous plot to Figure 5.3 with respect to the non-square matrix Y. In

this case, the sampled direction specific perturbation angles still match very well with the true
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direction specific perturbation angles. However, the Wedin bound becomes very conservative in

the non-square matrix case. The perturbation bound from Theorem 1 of Cai et al. (2018) is better

than the Wedin bound but still very conservative. The perturbation bound from Proposition 1 of

Cai et al. (2018) is sharp in the sense of estimating the largest principal angle, but it is usually still

conservative for direction specific perturbation angles.

Results under rank misspecification

The estimator σ̂ in (5.8) works pretty well on the toy datasets. In practice, it is common to

overestimate or underestimate σ. As mentioned in Section 5.2.2, overestimating σ could cause

underestimating the signal rank; and vice versa. In this paragraph, we will analyze the behavior of

the algorithm under rank misspecification.

First, we analyze the case of rank underestimation, i.e. overestimation of σ̂. The values of

σ̂x and σ̂y have been manually set to be 11500 and 3.02 respectively, which results in r̂x = 1 <

rx = 2, r̂y = 2 < ry = 3. Panel 5.3(d) of Figure 5.3 shows the direction specific perturbation

angle for PC1 of X with under estimated signal rank r̂x = 1 does not change, and is still in

the range of the resampled perturbation angles. However, the variance of the distribution of the

resampled perturbation angles becomes larger, and thus the 95th percentile estimator becomes more

conservative. In this case, the perturbation bounds from Wedin (1972) and Cai et al. (2018) are still

effective, while the Wedin bound is more accurate. Panel 5.4(e) and 5.4(f) of Figure 5.4 illustrate

the perturbation angles for Y with underestimated rank r̂y = 2. We have similar conclusions in the

case of Y, but the perturbation bounds from Cai et al. (2018) are more accurate than the Wedin

bound.

Next the behavior of the algorithm in Section 5.3 under rank overestimation, i.e. σ̂ under

estimation, is analyzed. The values of σ̂x and σ̂y are manually set to be 4800 and 0.996, which lead

to r̂x = 3 and r̂y = 4. As seen in Figure 5.5 and Figure 5.6, the perturbation bounds from Wedin

(1972) become conservative. Also, the perturbation bounds from Cai et al. (2018) are 90°, and thus

they are useless in this case.

Figure 5.5 shows the estimation of the direction specific perturbation angles for directions in the

rank 3 right singular matrices of X. Panel 5.5(a), 5.5(b) and 5.5(c) of Figure 5.5 show the results

for the directions of PC1, PC2, and (PC1 + PC2)/
√

2, where the true perturbation angles and the
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(a) Direction specific perturbation angle for â =
PC1 of Y, where r̂y = 3.
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(b) Direction specific perturbation angle for â =
PC2 of Y, where r̂y = 3.
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(c) Direction specific perturbation angle for â =
PC3 of Y, where r̂y = 3.
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(d) Direction specific perturbation angle for â =
(PC1 + PC3)/

√
2, where r̂y = 3.
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(e) Direction specific perturbation angle for â =
PC1 of Y, where r̂y = 2.
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(f) Direction specific perturbation angle for â =
PC2 of Y, where r̂y = 2.

Figure 5.4: Shows the direction specific perturbation angles for different vectors in the estimated signal
row space of Y, a non-square matrix introduced in Section 3.1.1 of Chapter 3.In Panel 5.4(a), 5.4(b), 5.4(c)
and 5.4(d), the signal rank of Y is correctly specified, i.e., r̂y = 3. In Panel 5.4(e) and 5.4(f), the signal rank
is underestimated, r̂y = 2.
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resampled perturbation angles are almost the same as in the corresponding panels of Figure 5.3

under correct rank specification of X. In this case, the true direction specific perturbation angle

for PC3 of X is not defined since the true signal rank of X is 2. The vertical red dashed lines show

the half values of the random angle bounds. As seen in Panel 5.5(d) of Figure 5.5, the resampled

perturbation angles are in the range of the random angle bound. This makes sense since they

correspond to noise. In particular, they are larger than the half of the value of the random angle

bound defined in Section 5.2.4. This also indicates the r̂ has been over-estimated. This is the

motivation for the reduction of V̂ to Û in Section 5.2.4.
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(a) Direction specific perturbation angle for â =
PC1 of X, where r̂x = 3.
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(b) Direction specific perturbation angle for â =
PC2 of X, where r̂x = 3.
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(c) Direction specific perturbation angle for â =
(PC1 + PC2)/

√
2, where r̂x = 3.
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(d) Direction specific perturbation angle for â =
PC3 of X, where r̂x = 3. In this case, the true
perturbation angle is not defined.

Figure 5.5: Shows the direction specific perturbation angles for different vectors in the estimated signal
row space of X when the signal rank, r̂x = 3, is over estimated. The vertical red dashed lines show the half
of the values of random angle bound. The perturbation bounds from Cai et al. (2018) are 90°, which are not
useful in this case.

Figure 5.6, which is analogous to Figure 5.5, shows the results for Y in the case of rank

overestimation. Panel 5.6(a), 5.6(b), and 5.6(c) show that the results of directions in the rank 3
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right singular matrices of Y are similar to the corresponding results in Figure 5.4. Panel 5.6(d)

shows that the resampled perturbation angles for PC4 are larger than the half value of the random

angle bound.

0 10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

(a) Direction specific perturbation angle for â =
PC1 of Y, where r̂y = 4.
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(b) Direction specific perturbation angle for â =
PC2 of Y, where r̂y = 4.
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(c) Direction specific perturbation angle for â =
PC3 of Y, where r̂y = 4.
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(d) Direction specific perturbation angle for â =
PC4 of Y, where r̂y = 4. In this case, the true
perturbation angle is not defined.

Figure 5.6: Shows the direction specific perturbation angles for different vectors in the estimated signal
row space of Y when the signal rank, r̂y = 4, is over estimated. The bounds in Cai et al. (2018) is not useful
in this case.

5.4.2 Gaussian vs non-Gaussian

In this section, we study new toy examples inspired by the toy example in Shabalin and Nobel

(2013) under both Gaussian and non-Gaussian noise with the settings of the standard model (5.5).

For the first data matrix X1,

X1 = A1 +
1√
500

Z1 ∈ R500×500
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where A1 ∈ R500×500 is a rank 50 signal matrix with non-zero singular values,

5.0, 4.9, 4.8, . . . , 0.2, 0.1, and Z1 is a standard Gaussian random matrix.

For the second data matrix Y1,

Y1 = A2 +
1√

5000
Z2 ∈ R5000×500

where A2 ∈ R5000×500 is another rank 50 signal matrix with non-zero singular values,

5.0, 4.9, 4.8, . . . , 0.2, 0.1, and Z2 is also a standard Gaussian random matrix.

The third and fourth data matrices X2 = A1 + 1√
500
Z3 ∈ R500×500 and Y2 = A2 + 1√

5000
Z4 ∈

R5000×500 have the same signal matrices as X1 and Y1 respectively, where the entries of Z3 and Z4

are i.i.d. scaled Student t distribution,
√

3/5 t5, with degree of freedom 5 and variance 1. Notice

that the distributions of Z3 and Z4 are not orthogonally invariant.

Figure 5.7 shows the scree plots of X1 and Y1 for the first 200 Principal components on the

upper and lower panels respectively. The blue circles show the empirical singular values from data

matrices. The black stars show the corresponding singular values of signal matrices. The discrep-

ancies between the blue circles and the black stars clearly illustrate the inflation of the empirical

singular values relative to the underlying signal singular values. The red pluses show the shrunken

singular values. The horizontal red dashed lines show the empirical singular value thresholds,

σ̂(
√
d +
√
n), in (5.10), which lead to the rank estimations r̂x1 = 35, r̂y1 = 42. The horizontal

green dot-dashed lines show the cutoff, β1/4, for the signal singular values to be distinguishable

from the noise. All signal matrix principal components with singular value below the green dashed

line are not recoverable. In theory, only first 40 and 45 principal components in A1 and A2 are

distinguishable from the noise. In practice, the signal matrix principal components near the green

dashed line are also shrunken to 0 values since their empirical singular values are below the red

dashed lines. For both square and non-square Gaussian matrix X1 and Y1, the shrunken singular

values of the empirical principal components with singular value above the red dashed line match

very well with the true signal singular values.

Figure 5.8 shows the analogous scree plots for X2 and Y2, which are data matrices with Student

t noise. It indicates that the theoretical recoverable rank for X2 and Y2 are also 40 and 45, and the

estimated rank from the optimal shrinkage estimators 5.9 are r̂x2 = 36, and r̂y2 = 43 respectively.
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(a) Square Gaussian noise matrix X1.
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(b) Non-square Gaussian noise matrix Y1.

Figure 5.7: Scree plots of singular values for data matrices with Gaussian noise. The x-axis represents the
principal component index, and the y-axis shows the singular values. The black stars show the values of the
true signal singular values. The blue circles and red pluses show the values of the empirical and shrunken
singular values respectively. The horizontal red dashed lines show the empirical singular value thresholds.
The horizontal green dashed lines show the value β1/4 in each matrix, which is the cutoff for distinguishable
signal singular values. This shows the singular value shrinkage function in (5.7) works well in the Gaussian
noise case.

105



As seen in both Panel 5.8(a) and 5.8(b) of Figure 5.8, the shrunken singular values match very

well with the underlying signal singular values. This illustrates that the optimal shrinkage function

in (5.7) gives good estimates of signal singular value under non-Gaussian noise case.
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(a) Square Student t noise matrix X2.
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(b) Non-square Student t noise matrix Y2.

Figure 5.8: Scree plot of singular values for data matrices with Student t noise. This shows the singular
value shrinkage function in (5.7) works well in the non-Gaussian noise case.
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Figure 5.9 shows the histograms of the empirical singular values of all four data matrices. The

x-axis represents the empirical singular values and the y-axis shows the counts of each bin. The

vertical green dot-dashed lines show the theoretical values of the bulk edge, 1 +
√
β. On the left of

the vertical green dot-dashed line, we can see the histograms of the singular values are in the shape

of a (deformed) quarter circle. For the non-square matrices Y1 and Y2, the deformed quarter circle

is more compact. The vertical red dashed lines show the values of the estimated singular value

thresholds, which are slightly larger than the actual values of the bulk edge. Figure 5.9 indicates

that the singular values of both Gaussian and non-Gaussian noise matrices follow the asymptotic

results in Section 5.2.3.

Figure 5.10 shows the direction specific perturbation angles for the principal components in

the estimated signal row spaces of X1 and Y1 in the upper and lower panels respectively. The

x-axis represents the component index. The y-axis is the perturbation angles. The black dots

show the values of the true perturbation angles. The blue and green dots show the values of

95th and 5th percentiles of the resampled direction specific perturbation angles for each principal

component. Figure 5.7 shows that the true perturbation angles for each principal component are

almost between the 5th and 95th percentiles of the resampled perturbation angle. This implies our

estimation algorithm in Section 5.3 works well for Gaussian datasets. Moreover, the perturbation

angle tends to increase as the component index increases. This is consistent with our analysis of

perturbation angle in Section 5.2.4. The perturbation bound from Cai et al. (2018) is 90°in this

toy example, which is not informative. This is due the fact that there is no gap between signal

and noise singular values. The original Wedin bound from Wedin (1972) is also not informative

for the same reason. The modified Wedin bound in Feng et al. (2017) is applicable and shown

as the horizontal dashed cyan lines in Figure 5.10. The Wedin bound is uniform for all principal

components and conservative as expected. The horizontal red dashed lines show the half values of

the random direction bound. It indicates only the rank 31 and 42 right singular matrices of X1

and Y1 are useful for the direction specific perturbation angle estimation.

Figure 5.11, which is analogous to Figure 5.10, shows the direction specific perturbation angles

for the principal components in the estimated signal row spaces of X2 and Y2. Similar to the

Gaussian noise case, the true direction specific angles of first 25 PCs in X2 and first 30 PCs in

Y2 are mostly in the range of 5th and 95th percentiles of the resampled angles in both square and
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(a) Square Gaussian noise matrix X1. (b) Non-square Gaussian noise matrix Y1.

(c) Square Student t noise matrix X2. (d) Non-square Student t noise matrix Y2.

Figure 5.9: Histogram of empirical singular values. The x-axis shows the empirical singular value and
the y-axis shows the count of each bin. The vertical red dashed lines show the empirical singular value
thresholds. The vertical green dashed lines show the theoretical bulk edge, 1 +

√
β, in each matrix. This

figure shows that the distributions of the empirical singular values from both Gaussian and non-Gaussian
noise matrices follow the generalized quarter circle law.
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(a) Square Gaussian matrix X1.
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(b) Non-square Gaussian matrix Y1.

Figure 5.10: Direction specific perturbation angles for empirical principal components for data matrices
with Gaussian noise. The black dots show the values of true perturbation angle. The blue and green dots
show the values of the 95th and 5th percentiles of the resampled perturbation angles. The horizontal dashed
cyan lines show the values of the Wedin bound. The horizontal red dashed lines show the half values of
the random direction bound. This figure indicates the direction specific estimation algorithm in Section 5.3
works well for the Gaussian noise case.
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non-square matrices. For the PCs with small variance, the true perturbation angles are below 5th

percentile of resampled angles. After adjusting by the random angle bound, the adjusted ranks of

X2 and Y2 are 31 and 41 respectively.
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(a) Square Student t matrix X2.
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(b) Non-square Student t matrix Y2.

Figure 5.11: Direction specific perturbation angles for empirical principal components for data matrices
with Student t noise.

110



5.4.3 AJIVE directions perturbation analysis

In this subsection, the perturbation analysis framework is applied to each joint basis vector

from AJIVE algorithm on toy dataset in Section 3.1.1, with correct input ranks r̂x = 2, r̂y = 3. For

each basis vector, the angle between itself and each data block is bounded as in (5.20) by applying

the algorithm in Section 5.3.

The results of direction specific perturbation analysis are shown in Table 5.1. The first column

lists each data block. The second and third columns summarize the angle ranges for the first and

second joint basis vectors. As seen in Table 5.1, the true values of θ are always in the range of

the estimated lower and upper bounds. For each basis vector, the projection angles θ̂ are the same

for each data block. This is due to the fact that the AJIVE basis vector are the average of the

principal vectors in each data block. Thus the basis vector lies in the middle of the two estimated

signal spaces. However, the lengths of each angle range on the two data blocks are different since

each vector has different perturbation angle nn each data block. For the first joint basis vector,

vM,1, the lower bounds of its angle between row(Â)1 and row(Â2), the estimated row spaces of X

and Y, are 0°and 3.22°respectively, which indicates v1 could be in row(A1) but outside of row(A2).

The corresponding upper bounds on row(Â)1 and row(Â2) are 17.02°and 7.58°, which implies its

perturbation on Â1 is larger than that on Â2. Combining these two results, we can see that the

estimation of the first joint basis vector is not accurate. This is because the AJIVE optimization

problem searches the direction merely minimizing the angles among each estimated signal space

without taking into account the perturbation effects. Moreover, the perturbation analysis in the

AJIVE algorithm is also too conservative to judge which of the right singular vectors in (3.6) are

belonging to the joint space.

Table 5.1: Perturbation analysis for AJIVE directions on the toy dataset.

vM,1 vM,2

lower θ̂ upper θ lower θ̂ upper θ

X 0° 5.5° 17.0° 6.0° 10.7° 23.6° 31.4° 25.1°
Y 3.2° 5.5° 7.6° 5.5° 21.3° 23.6° 24.6° 23.4°

Adjusted AJIVE directions
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A simple approach to adjust AJIVE directions by considering the perturbation effects is to

construct M̄ by multiplying each V with cos2 φr̄k , i.e.,

M̄ ,


Ṽ>1 ∗ cos2 φ̂r̄1

...

Ṽ>K ∗ cos2 φ̂r̄K

 = UM̄ΣM̄V>M̄. (5.22)

Then the column vectors in VM̃ will be more close to the row(Ak)s with smaller max perturbation

angle, φ̂r̄k . Applying the direction specific perturbation analysis on the adjusted AJIVE directions,

i.e., column vectors of VM̄, the ranges of the angle between each direction and each data block are

shown in Table 5.2. As expected, vM̄,1 is adjusted to be more close to row(Â2) and far away from

row(Â1). Notice that vM̄,1 is more close to both row(A1) and row(A2) than vM,1. This shows

taking into account the perturbation effects can improve AJIVE estimation.

Table 5.2: Perturbation analysis for the adjusted AJIVE directions of the toy dataset.

vM̄,1 vM̄,2

lower θ̂ upper θ lower θ̂ upper θ

X 0° 5.9° 19.1° 5.7° 10.7° 25.6° 34.6° 27.1°
Y 2.7° 5.1° 7.2° 5.1° 19.1° 21.5° 22.5° 21.4°

However, the lower bound of the angle between vM,1 and row(A2) is still greater than 0, which

indicates that vM̄,1 is not a joint direction by our definition. This motivates us to construct a

new optimization problem to take into account the direction specific perturbation angles in a more

sophisticated way. Under the direction specific perturbation analysis framework, the joint space

basis vector lies in the region,

R1 = {v ∈ Rn|v>V̂1V̂
>
1 v ≥ cos2 φ̂r̄1‖v‖2,v>V̂2V̂

>
2 v ≥ cos2 φ̂r̄2‖v‖2}. (5.23)

For this particular toy example, we can obtain a feasible solution of the 1-d joint space in (5.23)

from the first pair of the principal vectors, which can be obtained from the left singular vectors

of M (see Section 4.4). Denote the first pair of the principal vectors as p1 ∈ V̂1 and q1 ∈ V̂2
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respectively. It is easy to verify that the region R2,

R2 = {v ∈ Rn|Corr(v,p1) ≥ cos φ̂r̄1 ,Corr(v,q1) ≥ cos φ̂r̄2}, (5.24)

is inside of region R1. In particular, the line segment,

L1 = {v = αp1 + (1− α)q1 ∈ Rn|Corr(v,p1) ≥ cos φ̂r̄1 ,Corr(v,q1) ≥ cos φ̂r̄2 , α ∈ [0, 1]} (5.25)

is also part of region R2. Moreover, L1 is empty if and only if R2 is empty. The middle point of

L1 is used as the estimate of the joint basis vector. Denote this direction as vL1. Remark that

the joint basis vector from AJIVE algorithm, vM,1, is in the direction of 1
2p1 + 1

2q1. However,

1
2p1 + 1

2q1 is not necessarily inside of R1 as well as L1.

Table 5.3: Perturbation analysis for the middle point of L1.

vL1

lower θ̂ upper θ

X 0° 9.8° 23.0° 3.0°
Y 0° 1.2° 3.3° 1.9°

As shown in Table 5.3, vL1 is a joint direction under the direction specific perturbation frame-

work. Indeed, vL1 is much closer to both row(A1) and row(A2) than vM,1 and vM̄,1. Notice that

vL1 is much closer to row(Â2) than row(Â1). This is due to the fact that the principal vectors

on row(Â2) are more reliable than those on row(Â1). The more general cases of finding multi-

block joint directions and partially shared joint directions are interesting open questions for future

research.

5.5 AJIVE directions perturbation analysis on TCGA dataset

This section discusses the application of the direction specific perturbation analysis on the

TCGA dataset in Section 3.4.1. Applying the optimal singular value shrinkage estimators in (5.9)

on the four data blocks, the estimated ranks of GE, CN, RPPA and Mutation are 210, 271, 58

and 209 respectively. Adjusted by the random angle bound, the updated estimated ranks of each

data block are 144, 226, 46 and 142 respectively. The maximum perturbation angles on the low
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rank approximations of each data block are 20.2°, 15.0°, 30.8°and 20.8°. Table 5.4 summarizes

the estimated angle ranges of each AJIVE direction based on low rank approximations of each

data block. It indicates that vM,1 is the only four-block joint direction and vM,2 is a three-block

joint direction, which excludes the Mutation data block. This is consistent with the analysis in

Section 3.4.1. Moreover, we also identified other partially shared joint structure for the rest AJIVE

directions: vM,2 is another three-block joint direction excluding Mutation; vM,4,vM,5 and vM,6 are

two-block joint direction between CN and RPPA. However, carefully looking at the angle ranges of

vM,4,vM,5 and vM,6 on each data block, the projection angles and the angle upper bounds on CN

are much smaller than those on RPPA. This is due to the fact that the max perturbation angle on

RPPA are much larger than CN. Thus it is not very reliable to conclude these directions are in the

row space of RPPA. In fact, it indicates these directions are more likely to be adjusted to the joint

directions between GE and CN.

Table 5.4: Perturbation analysis on the AJIVE directions of the TCGA data set in Section 3.4.1

vM,1 vM,2 vM,3

lower θ̂ upper lower θ̂ upper lower θ̂ upper

GE 0° 8.3° 13.0° 0° 12.2° 18.1° 0° 16.7° 25.5°
CN 0° 11.0° 14.2° 0° 14.7° 19.1° 0° 14.3° 20.6°
RPPA 0° 12.5° 18.6° 0° 18.9° 28.5° 0° 22.5° 34.5°
Mutation 0° 14.9° 21.7° 2.1° 22.9° 34.8° 9.0° 29.8° 46.7°

vM,4 vM,5 vM,6

lower θ̂ upper lower θ̂ upper lower θ̂ upper

GE 0° 17.5° 26.9° 0° 20.2° 31.3° 0° 19.6° 29.6°
CN 2.5° 17.6° 23.9° 3.7° 18.7° 26.4° 6.7° 21.7° 29.5°
RPPA 0° 27.8° 43.7° 0° 28.0° 41.2° 0° 29.3° 47.2°
Mutation 11.1° 32.0° 48.8° 10.9° 31.8° 48.0° 12.2° 33.0° 49.9°

Applying the adjusted AJIVE directions in Section 5.4.3, the updated angle ranges are pre-

sented in Table 5.5. As expected, the adjusted AJIVE directions are closer to CN, which has the

smallest perturbation angle, and further away from RPPA, which has the largest perturbation an-

gle. Now vM̄,4,vM̄,5 and vM̄,6 become two-block joint directions between GE and CN, which is

more reasonable since the corresponding projection angles and angle upper bounds are also smaller.
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Table 5.5: Perturbation analysis on the adjusted AJIVE directions of the TCGA dataset.

vM̄,1 vM̄,2 vM̄,3

lower θ̂ upper lower θ̂ upper lower θ̂ upper

GE 0° 8.3° 13.0° 0° 12.2° 18.2° 0° 16.3° 25.3°
CN 0° 9.9° 12.9° 0° 13.2° 17.4° 0° 12.9° 18.9°
RPPA 0° 14.5° 20.9° 0° 21.7° 31.7° 0° 26.8° 39.4°
Mutation 0° 14.2° 20.9° 1.0° 21.8° 33.5° 6.7° 27.6° 44.2°

vM̄,4 vM̄,5 vM̄,6

lower θ̂ upper lower θ̂ upper lower θ̂ upper

GE 0° 16.7° 26.9° 0° 18.5° 29.2° 0° 17.4° 28.7°
CN 0° 14.9° 21.0° 0° 15.0° 21.4° 0.4° 15.4° 22.1°
RPPA 4.4° 35.2° 52.4° 5.5° 36.3° 50.6° 14.9° 45.7° 68.6°
Mutation 7.0° 27.8° 44.0° 7.5° 28.3° 43.9° 3.4° 24.3° 38.9°
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Kühnle, O. (2011). Integration of multiple high-throughput data-types in cancer research. PhD
thesis, Ludwig Maximilian University of Munich.
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