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ABSTRACT

The Cox proportional-hazards regression model has achieved widespread use in
the analysis of time-to-event data with censoring and covariates. The covariates
may change their values over time. This article discusses the use of such time-
dependent covariates, which offer additional opportunities but must be used with
caution. The interrelationships between the outcome and variable over time can
lead to bias unless the relationships are well understood. The form of a time-
dependent covariate is much more complex than in Cox models with fixed (non–
time-dependent) covariates. It involves constructing a function of time. Further,
the model does not have some of the properties of the fixed-covariate model; it
cannot usually be used to predict the survival (time-to-event) curve over time. The
estimated probability of an event over time is not related to the hazard function in
the usual fashion. An appendix summarizes the mathematics of time-dependent
covariates.

INTRODUCTION

One of the areas of great methodologic advance in biostatistics has been the
ability to handle censored time-to-event data. “Censored” means that some units
of observation are observed for variable lengths of time but do not experience
the event (or endpoint) under study. Such data were first studied and analyzed
by actuaries. Kaplan & Meier presented the product limit or Kaplan-Meier
curve to efficiently use all of the data to estimate the time-to-event curve (6).
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Comparison of groups based on this nonparametric estimate is given by the log-
rank test. Sir David Cox considered the introduction of predictor/explanatory
variables or covariates into such models. The hazard may be thought of as
proportional to the instantaneous probability of an event at a particular time.
Cox (2) proposed a model in which the effect of the covariates is to multiply
the hazard function by a function of the explanatory covariates. This means
that two units of observation have a ratio of their hazards that is constant and
depends on their covariate values. This model is usually called either the Cox
regression model or the proportional-hazards regression model. It is important
that covariates in this model may also be used in models in which the underlying
survival curve has a fully parametric form, such as the Weibull distribution. At
this time the Cox model is probably the most widely used model and is discussed
in this paper, but the same issues, problems, and opportunities hold for the other
parametric time-to-event models.

Because one of the most common uses of the model is for death as an end-
point and also given the historical development in actuarial science, the field is
sometimes referred to as survival analysis. In an industrial setting the events
are often failure of devices, machines, etc, and the field is also referred to as
failure time analysis.

The model is often used to examine the predictive value of, for example,
survival, in terms of subject (often patients in some medical setting) covariates
such as treatment, age, gender, height, weight, relative weight, smoking sta-
tus, ethnicity categories, diastolic and systolic blood pressures, education, and
income, to predict survival. The exponential of the coefficients from the Cox
model gives the instantaneous relative risk for an increase of one unit for the
covariate in question.

In many instances covariate data are collected longitudinally. For example,
blood pressure, CD4 count, relative weight, disease history, and hospitalization
data may be collected at selected periodic time points. As another example,
treatment or other exposure may change over time. It seems natural and appro-
priate to use the covariate information that varies over time in an appropriate
statistical model. One method of doing this is the time-dependent Cox or
proportional-hazards model. This article discusses the use of such models.
The article is written primarily for those who have a working familiarity with
the usual fixed-covariate proportional-hazards model. The emphasis is on dif-
ferences that arise when time-dependent covariates are used instead of fixed
covariates. This review avoids mathematical details, which are relegated to an
appendix for readers with more mathematical background.

We see below that the use of time-dependent covariates offers exciting op-
portunities for exploring associations and potentially causal mechanisms. Un-
fortunately we also see that the use of time-dependent covariates is technically
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difficult in the choice of covariate form, has great potential for bias, and does
not lead to prediction for the individual survival experience as does the usual
Cox model with fixed covariate values.

Selecting the Form of a Time-Dependent Covariate
When a predictor or independent covariate is allowed to vary over time, one
needs to determine its form over time. This introduces a number of subtleties
and difficulties. Although this is easy to state, the application is more difficult.
Several illustrations introduce some of the issues involved.

ILLUSTRATION 1: SMOKING AND SURVIVAL As an example of a time-dependent
covariate, consider the effect of smoking on survival. Suppose that we have
a cohort of individuals who are contacted at yearly intervals. As part of the
interview process, data are collected on both current smoking status (defined as
smoking any cigarettes during the prior month) and the estimated total number
of cigarettes smoked over the past year. The hypothesis to be investigated is
that current cigarette smoking increases the risk of death.

Perhaps the most immediate approach is to use a step-function that equals
one if the individual was smoking at the last follow-up and zero if the person
was not smoking at the last follow-up.

For example an individual who was alive after 4 years of follow-up and who
was smoking at baseline, at years 1 and 2, but not at years 3 and 4, would have
a time-dependent covariate that equals 1 up to the beginning of year 3 and then
drops down to zero. Note the step when the smoking status changed. A step
function is a function that takes on constant values on intervals.

Cavender et al (1) present an analysis by using time-dependent covariates.
The data are from the Coronary Artery Surgery Study (CASS), in which indi-
viduals with mild angina (i.e. chest pain caused by coronary artery disease)
were randomized to early coronary artery bypass graft surgery or early medical
therapy. Data on smoking status were collected every 6 months, and, for the
first analysis, a step function of the type described above (but with 6-months
intervals) was used. Very surprisingly, the estimated effect of current cigarette
smoking on survival was positive although not statistically significant. This led
to an examination of the individual patient smoking histories. It turned out that
most of those who had died were smokers, but many stopped smoking at the
last follow-up before their death. In a number of instances this was apparently
explainable by hospitalization for a myocardial infarction or congestive heart
failure. One conjectures that other patients may have had prodromal symptoms
prompting smoking cessation.

The investigators addressed the problem in two ways. One approach was
to use a time-lagged covariate. At the first and second 6-month intervals,
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the baseline smoking status was used. For subsequent intervals, the next to
last follow-up value was used rather than the last assessment. This resulted
in a statistically significant increased risk from cigarette smoking. A second
approach (and that presented in this paper) used the percentage of the follow-up
period that the subject smoked. This also resulted in a statistically significant
detrimental association with smoking.

The point here is that the choice of a time-dependent covariate involves the
choice of a functional form for the time-dependence of the covariate. This
choice is usually not self-evident but may be suggested by biological under-
standing or biological hypothesis. Other examples illustrate this point.

ILLUSTRATION 2: CHOLESTEROL-LOWERING DRUGS Suppose that we have an
observational database on many individuals with high lipid values who have
been placed on cholesterol-lowering drugs. Suppose also that a number of risk
factors are in the database and that we want to examine the effect of treatment
with a cholesterol-lowering drug. First note that the usual fixed covariates can
be used in a model along with time-dependent covariates. Thus baseline lipid
values could be used (as well as a time-dependent cholesterol covariate) to allow
adjustment for this and other baseline patient characteristics. (Formally one can
think of a fixed covariate as a time-dependent covariate that happens to have
a constant value for all time points. Although this is mathematically correct,
computer software will run much faster if the covariates that do not change over
time are entered as fixed covariates.) How might one model the introduction
of a cholesterol-lowering drug at some time during follow-up? If the drug
effect is only through the plasma lipids and if the lipid values are periodically
collected during follow-up, then one might enter the lipid value from the last
follow-up as the value at each time point. Suppose the primary manner in which
the lipid values contribute to mortality is through the atherosclerotic process.
Also assume that abnormally high levels lead to a lipid build-up in the vascular
lesions and, by contrast, that very low levels lead to some leaching out of the
lipids. What if we assume that both the build-up and leaching out take place
over extended time periods? Then we might want to use some complex function
over time to model the effect. For example risk might be modeled as a moving
weighted average of the values over some long time interval. The weights might
be highest for the current levels and then drop off as the values become more
remote.

If the lipid values are not measured routinely but we know when lipid-
lowering drug therapy is implemented and we assume that the effect will become
more pronounced over time because of the mechanisms involved, then we might
want a function that is zero until the therapy is introduced and then increases
(e.g. linearly) over a fixed time interval (a few years?) to a value of one. Thus
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rather than a step function that jumps up, the benefit is assumed to increase
continually over a time interval before reaching the maximum effect.

ILLUSTRATION 3: CIRCADIAN VARIABILITY IN PLASMA LEVELS OF A PROTECTIVE

DRUG Consider an antiplatelet drug to reduce complications of vascular dis-
ease, e.g. vascular death, myocardial infarction, and ischemic stroke, as a com-
bination endpoint. The endpoint is reached at the first occurrence of any of the
three components. The endpoints are assumed to be caused by the thrombotic
process with platelets involved in producing the thrombosis. The protection
is assumed to be directly related to the plasma level of the drug or biologic
material being studied. Let us also assume that prior work with the com-
pound given twice daily at a fixed dose has been reasonably used to model
the plasma levels over time as a function of the time of dosing and selected
patient covariate values, including weight, height, age, gender, and ethnicity,
as well as measures from kidney and liver function tests. For each individ-
ual in the current study we can estimate the 24-hour circadian pattern of the
plasma concentration (assuming the drug is taken at the times recommended).
The model would be greatly enhanced if, at baseline, selected plasma values
were taken for each patient to help in this modeling effort. The time of most of
the events (except for death during sleep) is assumed to be recorded. How might
we model the relationship with the drug (as mediated through the modeled
plasma levels of the drug)? In addition to fixed patient covariates that increase
the risk of an event (e.g. prior myocardial infarction, ischemic stroke, tran-
sient ischemic attack or peripheral arterial disease, or age), a time-dependent
covariate that is the estimated plasma level at each time point for the individual
patient could be used. Note that the production of this time-dependent covariate
is quite complex. In the model there is a fixed parameter to be estimated that is
the multiplier of the time-dependent covariate. If this is statistically significant,
one might argue that there is a drug effect. However, it is well known that there
is a circadian pattern to the time of occurrence of myocardial infarctions. The
very early morning is a period of increased risk. To adjust for this, one could
argue for circadian terms (for example the first five terms of the Fourier series)
to adjust for the circadian pattern of events without appealing to a drug effect.
In this case, for the drug to be effective it would need to add predictive power
to the circadian terms standing alone.

On further reflection, the situation is even more complex. Why should the
effect on the relative risk of an event be directly related to the plasma level of a
drug based on the form of the Cox proportional-hazards model? Perhaps there
is almost no drug effect until the plasma level reaches some value, and then the
effect increases rapidly to a plateau at some other level. It may be that there is
an intermediary measurement (e.g. in this case the percent reduction in platelet
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aggregation as a function of plasma level) that would be more closely related
and that could be modeled. Even when receptors are saturated, the drug effect
is usually not perfect. Thus perhaps the model should begin at a plasma level
of zero and increase to an asymptote at some finite multiple of the relative risk.
All of these ideas can lead to different models. Further one could try a number
of models; in this case the multiple-comparison issue could become severe (if
there is no independent cohort to examine the performance of a final model).
Although the chance to model is a strength of the time-dependent covariate
approach, for exploratory data analyses it also is a weakness because trying too
many models can lead to great overfitting of the data.

ILLUSTRATION 4: BONE MARROW TRANSPLANT GRAFTING Selected leukemias
and other blood diseases are treated with bone marrow transplantation. In a
bone marrow transplant (BMT), there is a conditioning regime to destroy the
cancerous cells; after this conditioning, a transplant of bone marrow from the
patient (autologous bone marrow), another person who has the same human
leukocyte antigen haplotypes, or a matched unrelated donor is infused to the
patient. Suppose that our endpoint of interest is survival. There is a substantial
early mortality from the conditioning regimen, because there is a trade-off, with
a stronger conditioning regimen increasing the risk of early death but reducing
the risk of a relapse of the cancer. During approximately the first year, there
is an increased risk of death from relapse of the original cancer. Further, both
acutely and chronically there is a risk of the transplanted bone marrow attacking
the recipient as foreign matter (graft versus host disease) and causing death. In
the long term there are also the usual risks of death as well as an increased risk
of other cancers from the treatment for the cancer at hand. How might we try
to model this situation with time-dependent covariates?

If there are only bone transplant patients (who by definition live until the
transplant is attempted), then the study cannot evaluate the effect of the BMT.
Thus suppose we have a cohort of individuals diagnosed with a particular cancer
that may or may not be treated with BMT at some stage. There may well be time-
dependent covariates for other chemotherapeutic and radiologic treatments, as
well as for the BMT. Here we discuss possible time-dependent covariates for
the BMT.

The early risk of a death from the conditioning regime and the stress of the
bone marrow transplant might be modeled by a step function that is one during
the period of hospitalization and zero at other times. The risk of relapse over
the first year after transplant could be modeled by a step function that is one
over the first year after transplant and zero at other times. The transplant-related
risk after year one could be modeled by a step function that equaled one from
the end of the first year onward.
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Prediction and Time-Dependent Covariates
One of the benefits of the proportional-hazards model with all fixed covariates
is the ability to give individualized predictions of the estimated time to the
event of interest. Estimated curves under different treatment modalities may
be used for counseling patients. Estimated survival curves under smoking and
nonsmoking scenarios can illustrate the added risk caused by smoking. Curves
with different covariate values can illustrate the interaction between multiple
risk factors. With time-dependent covariates the ability to predict is usually
lost. One reason is that, because the model depends on the value of a changing
quantity (the time-dependent covariate), at a future time the future values are
usually unknown until they are actually observed. Second, if we know the
future value of some covariates (e.g. blood pressure), the existence of the values
implies that the subject has not reached a death endpoint. This fact implies that
one cannot estimate the survival curve from the observed and future values of a
quantity such as blood pressure. The existence of a positive value would imply
that the subject was still alive. Knowing the covariate would imply knowledge
at each stage of the vital status. (The appendix discusses these issues more,
while discussing internal and external covariates.)

Interpretation and Time-Dependent Covariates
The time sequence of causal relationships is often difficult and tricky to un-
tangle. For example, if a disease can cause wasting, then using weight as
a time-dependent covariate to predict diagnosis may be somewhat of a self-
fulfilling prophecy and, rather than predicting the disease, a lower weight may
be an early sign of as yet undiagnosed disease.

Care must also be exercised when one assesses treatment efficacy with a re-
gression model (1), which includes not only the treatment assignment but also
a covariate (e.g. CD4 count and blood pressure) measured subsequent to the
treatment assignment. If the effect of treatment on survival is predominantly
mediated through the covariate, such an analysis will show little or no treat-
ment effect on survival. This, however, can give useful information about the
mechanism by which the treatment operates. In fact, this type of analysis has
recently been used to assess the role of biological markers (such as CD4 count
and viral load) as surrogate endpoints for clinical events (such as opportunistic
infection and death) in HIV/AIDS trials (8). Certain covariates can be use-
ful in reducing the bias of involving time-dependent exposure, as is discussed
below.

In general if time-dependent covariates can change in relation to health or
some other general concept related to the endpoint in the model, then interpre-
tation is difficult and prone to be misleading. Great caution is advisable.
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Discussion
The Cox proportional-hazards regression model for time-to-event data may be
used with covariates, independent variables, or predictor variables that vary
over time. These are called time-dependent covariates. Their use is much more
complicated in practice than the fixed (time-independent) covariates. Further,
the potential for erroneous inference and modeling is greatly increased. Still
time-dependent covariates may be a powerful tool for exploring predictive rela-
tionships by using quantities that vary over time. The major points to remember
include the following: (a) the modeling of a time-dependent covariate involves
the choice of a function over time; this functional form may be far from obvious
and may require deep biologic insight; (b) the choice of a complex functional
form raises the possibility of too much modeling and great overfitting of a data
set; (c) many time-dependent covariates are closely associated with the unit
under study, are usually generated by that unit (e.g. blood pressure, weight,
HIV status), and remove the usual relationship between the hazard function
and the survival function; (d) time-dependent covariate models, except under
certain circumstances, do not allow individual predictive time-to-event curves,
which is different from the Cox model, with only fixed covariate values; (e)
extreme caution must be exercised when modeling time-dependent exposure or
treatment, especially if the change in exposure or treatment is related to the sub-
ject’s health status; (f ) most comprehensive statistical-software packages now
provide proportional-hazards regression modeling with both fixed and time-
dependent covariates allowed; (g) computer software exists for the estimation
of coefficients and for examining the goodness-of-fit of the model.

The opportunities inherent in time-dependent modeling (including the ex-
plicit relationship of longitudinal values and the occurrence of an event) must
be understood in light of the potential biases, strong assumptions needed in
terms of the lack of other possible explanations, and the need to choose more
complex functional forms for the modeling effort.

APPENDIX: MATHEMATICAL DISCUSSION

Time-Dependent Covariates and Proportional
Hazards Regression
Let T be the failure time of interest, and letZ be a set of possibly time-
dependent covariates. We useZ(t) to denote the value ofZ at time t , and
Z̄(t) = {Z(s) : 0 ≤ s ≤ t} to denote the history of the covariates up to timet .
It is convenient to formulate the effects of covariates on the failure time through
the hazard function. The conditional-hazard function ofT givenZ̄ is

λ(t | Z̄) = Pr(T ∈ [t, t + dt) | T ≥ t,Z̄(t),
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where(t, t + dt) is a small interval fromt to t + dt. The Cox (2) proportional-
hazards model specifies that

λ(t | Z̄) = λ0(t)e
β ′ Z(t), 1.

whereβ is a set of unknown regression parameters andλ0(t) is an unspecified
baseline hazard function.

Kalbfleisch & Prentice (5) distinguished betweenexternalandinternal time-
dependent covariates. This classification is helpful in interpreting the regression
models and results for time-dependent covariates. An external covariate is one
that is not directly related to the failure mechanism. One example would be the
age of an individual in a long-term follow-up study. Another example would
be the level of air pollution as a risk factor for asthma attacks. A third example
would be times, for example, time of day or day of the year. On the other
hand, an internal covariate is a value over time generated by the individual
under study. Examples would include the Karnofsky score, blood pressures,
procedural history, and CD4 counts measured over the course of the study.

A major difference between external and internal covariates lies in the rela-
tionship between the conditional hazard functionλ(t | Z̄) and the conditional
survival function. The conditional survival function for a given covariate history
is defined in general by

S(t | Z̄) = Pr(T > t | Z̄(t).

For external covariates, this is also given by

S(t | Z̄) = exp

(
−
∫ t

0
λ(s | Z̄) ds

)
,

which becomes

S(t | Z̄) = exp

(
−
∫ t

0
λ0(s)e

β ′ Z(s) ds

)
under Equation 1. By contrast, the conditional-hazard function bears no rela-
tionship to the conditional-survival function for internal covariates. In fact, the
internal covariate requires the survival of the individual for its existence. For
an internal covariateZ such as a Karnofsky score,S(t | Z̄) = 1 provided that
Z(t) does not indicate that the individual has died. For the internal covariate
of blood pressure, a measurable value indicates that the individual is still alive.

We now describe how to estimate the regression parameters of Equation 1.
Suppose that we haven individuals in the study, such that the data consist of
{Xi , δi ,Z̄i (Xi )}i = 1, . . . , n, whereXi is the observation time (i.e. the last
contact date) for theith individual, andδi indicates, by the values 1 versus 0,
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whether theith subject fails or is censored atXi, and Z̄i (Xi ) is the covariate
history of theith individual up to the observation timeXi. The estimation ofβ
is based on the partial likelihood score function

U (β) =
n∑

i =1

δi

(
Zi (Xi ) −

∑
j ∈Ri

eβ ′ Z j (Xi )Z j (Xi )∑
j ∈Ri

eβ ′ Z j (Xi )

)
, 2.

whereRi is the set of individuals who are at risk atXi, that is, whose observation
times are≥Xi. The maximum partial likelihood estimatorβ̂ is the solution to
U (β) = 0. It is well-known thatβ̂ is consistent and asymptotically normal
with covariance matrixI −1(β̂), where

I (β) =
n∑

i =1

δi

(∑
j ∈Ri

eβ ′ Z j (Xi )Z j (Xi )Z j (Xi )
′∑

j ∈Ri
eβ ′ Z j (Xi )

−
{∑

j ∈Ri
eβ ′ Z j (Xi )Z j (Xi )

}{∑
j ∈Ri

eβ ′ Z j (Xi )Z j (Xi )
}′∑

j ∈Ri
eβ ′ Z j (Xi )

)
. 3.

It is apparent from Equations 2 and 3 that the statistical inference aboutβ re-
quires, at each uncensoredXi, the values of the covariates for all the subjects
who are at risk atXi. If Z varies its values continuously over time and is mea-
sured only at certain time intervals, thenZ j (X j ) may not be available. In such
situations, some interpolation between repeated measurements is necessary;
see Lin et al (9) for a description of various interpolation schemes.

Epidemiologic cohort studies and disease prevention trials often involve
follow-up on several thousand subjects for a number of years. The assembly
of covariate histories, which requires biochemical analysis of blood samples
or other specimens or the hand coding of individual diet records, can be pro-
hibitively expensive if it is done on all cohort members. Under the case-cohort
design (11), the covariate histories need only be assembled for all the cases (i.e.
deaths) plus a random subset of the entire cohort. The aforementioned partial-
likelihood method can be modified to analyze data from case-cohort studies
(11, 12). Lin & Ying (10) proposed a general method for handling incomplete
measurements of time-dependent covariates, including the case-cohort design
as a special case.

Reducing Bias
One needs to be extremely cautious when interpreting results involving time-
dependent exposure or treatment. A fundamental assumption in using models
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like Equation 1 to formulate the effect of a time-dependent exposure or treat-
ment on survival is that the change in exposure or treatment occurs in a random
fashion. In many applications, however, individuals change exposure level or
treatment for health-related reasons. Then the results based on a simple time-
dependent exposure (treatment) indicator can be very misleading. Consider
for example the simple scenario in which individuals will receive the treatment
only when a certain intermediate event occurs. Suppose that the treatment is
completely ineffective, but the occurrence of the intermediate event doubles
the hazard of death. If the value ofZ(t) is 1 when the individual is on the
treatment at timet and is 0 otherwise, then the hazard ratio parametereβ in
Equation 1 is equal to 2. This is the effect of the intermediate event, not the real
effect of the treatment. Needless to say, such an analysis would be completely
misleading.

It is possible to reduce the bias by properly adjusting for the factors that
trigger the change in exposure level or treatment. Consider again the above
scenario in which the treatment assignment is caused by the intermediate event,
but now assume that not everyone who experiences the intermediate event will
receive the treatment or that there are individuals who do not experience the
intermediate event but will take the treatment. Then it is possible to fit models
like

λ(t | Z) = λ0(t)e
β1Z1(t)+β2Z2(t),

whereZ1(t) indicates whether the individual is on the treatment at timet , and
Z2(t) indicates whether the individual has experienced the intermediate event
by timet . In this model,β1 indeed pertains to the actual effect of the treatment
(assuming that no other similar biases are in the model).

In practice, the reasons for changing exposure level or treatment may not be
recorded or may be hard to quantify adequately. Then it is difficult to adjust
for the factors that trigger the change through modeling. In such situations,
modeling-time–dependent exposure or treatment should proceed with extreme
caution and awareness of the potential biases involved.

Model Checking
Equation 1 assumes that covariates have proportionate effects on the hazard
function over time. For instance, ifZ(t) is a single time-dependent indicator
covariate, then Equation 1 implies that the hazard function isλ0(t) whenZ(t) =
0 and isλ0(t)eβ when Z(t) = 1. It is important to assess this proportional-
hazards assumption. There are a number of methods available in the literature.
Here we discuss two methods that are most useful for time-dependent covariates.
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Both methods are related to the score functionU (β) given in Equation 2.
Lin et al (9) proposed the following class of weighted score functions:

Uw(β) =
n∑

i =1

W(Xi )δi

(
Zi (Xi ) −

∑
j ∈Ri

eβ ′ Z j (Xi )Z j (Xi )∑
j ∈Ri

eβ ′ Z j (Xi )

)
,

whereW(t) is a weight function dependent ont. Let β̂w be the solution to
Uw(β) = 0. Suppose thatW(t) is a decreasing function oft and that the ef-
fects ofZ are not proportional on the hazard function, but rather diminishing
over time. In this case,̂β estimates an average of covariate effects over time,
whereasβ̂w estimates a weighted average of covariate effects over time with
more weights placed on the earlier part of the survival distribution, where the co-
variate effects are stronger. Therefore,|β̂w| will tend to be larger than|β̂|. This
fact motivates us to test the proportional hazards assumption by comparingβ̂

andβ̂w. Lin (7) derived a formal goodness-of-fit test based on this comparison.
The above test is sensitive to the choice of the weight function. More omnibus

tests can be obtained by considering the following process:

U (β̂; t) =
∑

i :Xi ≤t

δi

(
Zi (Xi ) −

∑
j ∈Ri

eβ ′ Z j (Xi )Z j (Xi )∑
j ∈Ri

eβ̂
′
Z j (Xi )

)
. 4.

Note thatU (β̂; t) is the partial likelihood score function based on the events
that occur before timet . If the effects of covariates are indeed proportionate,
then the solution to the equationU (β; t) = 0 should be similar tôβ, regardless
of the choice oft . In other words,U (β̂; t) should be close to 0 for allt . On
the other hand, if the effects of covariates are not proportionate, thenU (β̂; t)
will tend to deviate from 0. Thus, it is reasonable to construct goodness-of-fit
tests based onU (β̂; t). If Z is a single covariate, then the critical values for
the supremum statisticQ = maxi I −1/2(β̂)|U (β̂; Xi )| are 1.628, 1.358, and
1.224 for the significance levels of 0.01, 0.05, and 0.10, respectively (13). If
Z consists of multiple covariates, then the proportional-hazards assumption
for the jth component ofZ can be tested by the supremum statisticQj =
maxi {I −1(β̂) j j }1/2|U (β̂; Xi )|, whereU j is thejth component ofU andI −1(β̂) j j

is the jth diagonal element ofI −1(β̂). If the covariates are uncorrelated, then
the critical values forQj are the same as those ofQ described above (4). If the
covariates are correlated, then the simulation technique of Lin et al (9) can be
used to calculate thep values.

Visit the Annual Reviews home pageat
http://www.AnnualReviews.org
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