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Figure 4.4  Overview of a positive binary readout for screening putative Rac 
pathway inhibitors. We generated a conditional system to allow expression of the 
otherwise embryonically lethal activated Rac/CED-10.  This conditional system 
allows rescue of lethality by inhibitors of activated Rac or of the Rac pathway. 
Survival versus lethality thus acts as a positive and binary readout to identify 
candidate Rac pathway inhibitors. 
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A transgenic animal containing this construct was generated in a 

temperature-sensitive mutant background that conditionally disrupts the NMD 

system. As a consequence, in animals grown at 15°C, NMD is active, and the CED-

10 transcript is degraded.  On the other hand, in animals grown at 23°C, NMD is 

inactive, and the CED-10 transcripts are stably expressed. This conditional 

expression system has allowed the isolation and maintenance at 15°C of what would 

otherwise be a toxic transgene. Also it allowed the generation of a binary readout, 

indicative of Rac-specific expression, where at 15°C worms are alive and at 23°C 

worms are dead. If, in a screen, a given compound rescues the ced-10-driven 

lethality, then it would be a potential candidate for a Rac pathway inhibitor. 

  A successful screen will also require 100% lethality in the absence of a Rac 

inhibitor.  Maintenance at 15°C ensures the conservation of this transgenic strain, 

but for experimental purposes I needed to determine the minimal temperature at 

which 100% lethality is reached. The relevance of finding this key temperature was 

to ensure that the lethal phenotype can be altered by minimal pharmacologic 

intervention.  To determine this basal temperature I grew ced-10(Q61L) animals at a 

range of temperatures and scored their viability and lethality proportions at each 

temperature (Figure 4.5).  This titration experiment allowed me to identify 23°C as 

the minimal temperature for 100% lethality, and was therefore selected as the 

screening temperature. 
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Figure 4.5  Temperature titration of Rac/CED-10-dependent lethal phenotype. 
The minimal temperature for 100% lethality of ced-10 gf transgenic animals was 
determined to be 23°C. 
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EVALUATE THE ABILITY OF A VALIDATED RAC INHIBITOR (EHT 1864) TO 

RESCUE THE LETHAL PHENOTYPE OF WORMS EXPRESSING ACTIVATED 

RAC/CED-10 

 
EHT 1864 has been evaluated and characterized as a putative Rac inhibitor. 

The published evidence has shown that this inhibitor has in vitro and in vivo activity 

(in cells) towards both wild type and activated Rac. In these studies, the authors 

successfully showed that this compound can reduce both the lamellipodia formation 

caused by PDGF-mediated stimulation of wild type Rac (Shutes et al., 2007) and the 

transformed phenotype caused by Tiam1 or by activating mutations in Rac(G12V) 

(Desire et al., 2005).  The mechanism of action of EHT 1864 is not well understood, 

but it is thought to act unconventionally, by displacing nucleotide from either active 

or wild type Rac.  If this inhibitor does work at the level of Rac or perhaps even 

downstream, then it should rescue the lethal phenotype caused by the expression of 

activated CED-10. However if it works by inhibiting upstream regulators (e.g., 

GEFs), then these inhibitors should not be expected to rescue the lethal phenotype 

of these animals, unless activated CED-10 lethality also requires wild type Rac. At 

the same time that we use this inhibitor to validate our system, we could also unveil 

new information that could help understand better the mechanism of action of 

EHT1864.  Given the nature of the proposed action of this Rac inhibitor, we 

expected to be able to validate our system by rescuing the CED-10-dependent lethal 

phenotype at 23°C in a dose-dependent manner.  
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A. 

 
B.

 
Figure 4.6 EHT 1864 rescues the lethal phenotype of CED-10 transgenic 
worms. A) Visual representation of lethality rescue by EHT 1864 of ced-10(gf) 
animals grown at 23°C. B) EHT 1864 rescued the lethal phenotype of  CED-10 
transgenic worms in a dose dependent manner.  
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Treatment of CED-10 transgenic worms showed that EHT 1864 rescued the 

CED-10-dependent lethality in a dose-dependent manner.  The establishment of the 

system as a binary readout allowed the visual scoring of the positive effects of EHT 

1864 as shown in Figure 4.6A.  In addition to the visual scoring process, the number 

of worms surviving upon addition of EHT 1864, was quantified.  I detected nearly 

100% rescue at 30 µM EHT 1864 (Figure 4.6B). Additionally, worms were not only 

rescued from lethality, but many also progressed farther in development. For 

example, more worms advanced to the L1 stage when treated with EHT 1864 (data 

not shown). Additional experiments have shown that the rescue of CED-10-

dependent lethality is reproducible and dose-dependent. Control experiments to 

confirm the selectivity of EHT 1864 for inhibition of Rac compared to other highly 

related small GTPases showed that treatment of NIH 3T3 mouse fibroblast cells with 

this Rac inhibitor reversed induction of lamellipodia formed upon stimulation of wild-

type Rac by PDGF, but failed to reverse formation of stress fibers or filopodia, which 

are phenotypes caused by activation of Rho or Cdc42, respectively (data not 

shown).  These results are consistent with rescue of C. elegans lethality as a 

specific consequence of inhibiting Rac activity. 

 
The results obtained here validate the use of the CED-10-dependent lethal 

phenotype as the readout for the development of a screen for putative Rac pathway 

inhibitors. Rescue of the lethal phenotype was consistently reproducible and also 

strong. The ease with which the rescue of these animals can be detected supports 

the idea that this will be a viable and powerful way to screen for putative inhibitors of 
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Rac or the Rac pathway. By using this binary readout, the assay can be easily 

optimized to meet the requirements of a high throughput screen by using first 96-well 

plates and then 384-well plates in which thousands of compounds can be screened 

at once, under the dissecting microscope. In addition to validating this system for the 

development of a screen for Rac pathway inhibitors, our preliminary data opens the 

possibility of using this system to screen for inhibitors of other clinically relevant 

targets. In addition to detecting positive candidates, the use of an in vivo system 

would offer the advantage of detecting compounds with relevant biological activity 

and the ability to discard compounds with toxic properties earlier in the drug 

discovery process. 

 
 

Designing a HTS to pursue screening 
 
Given the positive validation of the CED-10-dependent lethal phenotype 

rescue by a Rac specific inhibitor (EHT 1864), we now have a system with which to 

design a screen for putative Rac pathway inhibitors. In such a screen, any 

compound that can rescue the lethal phenotype of worms with activated CED-10 

would be considered a potential candidate for a Rac specific or Rac pathway 

inhibitor. Moreover, the binary readout offered by this system will allow the visual 

screening of thousands of compounds simultaneously, that can be executed even by 

inexperienced researchers. 

 

Developing the HTS screen 

In order to develop the worm culture conditions to meet the requirements of a 

high-throughput screen, I will need to switch my current protocol from solid agar to 
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liquid culturing media. This can be achieved by adopting similar culture conditions 

often used for the construction of deletion mutant libraries to generate C. elegans 

gene knockouts (§).  Briefly, adult hermaphrodite worms are grown and 

synchronized using the bleaching protocol, described above in Chapter II. Newly 

hatched larvae are synchronously grown and titrated to control the amount of 

animals to be dispensed in each well of a 96-well plate. Performing these 

experiments in a 96-well plate would accelerate the screening process, making it a 

more powerful design by increasing the probabilities of screening more compounds 

per experiment and also finding positive candidate compounds. In my collaboration 

with the BRITE Institute (Biomanufacturing Research Institute and Technology 

Enterprise) at North Carolina Central University (NCCU, see below), we have 

discussed that 96-well plates are for piloting the screen, which when successful on a 

smaller scale will be transitioned to 384-well plates suitable for robotic handling.  The 

conditions necessary to treat and grow animals in the screen will need to be 

carefully designed to ensure the assay will be proficient for its length.  Each 

screening plate will include control (vehicle wells) and also 2-3 different 

concentrations of each compound in the library to be screened. As drug potency and 

solubility varies from compound to compound it will be necessary to test various 

concentrations simultaneously. This strategy will increase the probability of detecting 

activity.  Additional logistics of the experimental design will need to be further 

developed as the process proceeds.   

   
I expect that by screening a small molecule chemical library, I will be able to 

find compounds that could rescue the CED-10-dependent lethal phenotype. Also, I 
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expect some compounds to produce a strong rescue while others may show weak 

activity at rescuing the lethal phenotype of these worms. But regardless of the 

strength of the rescue, potential hit compounds can be selected for further testing. 

Given that this screen is based on worms expressing activated CED-10, I expect to 

detect inhibitors of either Rac itself or perhaps inhibitors of downstream elements. 

Some of these inhibitors can be kinase inhibitors, but this predisposition will depend 

on the nature of the chemical library being screened. 

 
 Another possibility is that the library tested does not contain any compounds 

capable of interfering in the pathway, or where that interference is linked either 

mechanistically or nonspecifically with toxicity that will prevent the rescue of the 

lethal phenotype.  Some toxicity issues can be addressed by running parallel 

experiments at the permissive temperature of 15°C.  If CED-10 transgenics show 

lower viability at this temperature, it could be an indication of the toxic effects of a 

particular compound.  If I do not get any hits at all, it may mean that the library being 

tested does not cover the appropriate type of chemical entities.   

In consultations with personnel from the drug discovery facilities at BRITE, 

there were suggestions about the optimization of our current experimental platform. 

As mentioned above, among these were to not only try to optimize the assay to a 

96-well format, but if possible to 384-well format, since the current robotics utilized to 

dispense the compounds from their libraries are capable of this throughput, thus 

making any platform adjustment to work easier.  Our current plan for the analysis of 

hits is to visually screen each well for the rescue of ced-10-driven lethality, and 

although this would realistically yield a throughput of approximately a 5,000 
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compounds per day, this readout would not yet fit the standards of a real high-

throughput setting. Therefore, we need to work on generating a fluorescent readout 

that automated machines would be able to read to automatically collect the data 

from the screen. This fluorescent readout would have to be thoughtfully engineered 

so that it quantifies the worms whose lethality has been rescued by a screened 

compound.  Based on the latter, a stage-specific developmental marker would be an 

option, in which only those worms reaching certain developmental stages due to 

rescue can express the fluorescent probe. 

 Our consultation sessions with the personnel at BRITE facilities are the 

beginning of a potential collaboration for the development of the Rac-inhibitor pilot 

screen transition into a HTS at BRITE. Their facilities possess all the equipment 

necessary to accommodate the needs of the screen, and moreover they have 

several small molecule compound libraries that could be used as the starting point to 

initiate the screen, initially for proof-of-principle and later for true searching.   We 

foresee that the development of this screen into a HTS for Rac specific or Rac 

pathway inhibitors, we may uncover potential hits. Also, by using the worm as an in 

vivo tool this early in the drug discovery process we should be able to rapidly deliver 

answers to discovery problems like toxicity or off-target effects, thus improving the 

likelihood of selecting candidates more likely to be successful in further preclinical 

and later clinical evaluation stages. 

 
 

EXAMINATION OF POTENTIAL LEAD COMPOUNDS 
 

It is important to note that the goal of the proposed work is not to study Rac 

function in C. elegans, but to use it as an in vivo platform for drug discovery.  In 
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order to further characterize the activity and selectivity of candidate compounds 

selected from the Rac or Rac pathway inhibitor screen, I would test selected hit 

compounds in a secondary screen, using cell-based assays. Evaluation of our 

candidate compounds in cell-based assays will allow us to determine the potency, 

selectivity and perhaps potential cytotoxic effects caused by these drugs. Moreover, 

testing in cell-based assays will allow the assessment of additional qualities of 

candidate compounds like their ability to alter specific biological effects caused by 

activated Rac, and to determine whether they block at the level of Rac or elsewhere.  

This secondary screen will complement the effects seen in the in vivo studies using 

C. elegans and will support or eliminate some hits based on their properties.  

In order to test the selectivity of hit compounds we need to select endpoints 

that will be accurate for inhibition solely of the Rac pathway. Negative controls 

should include endpoints of neighboring pathway effectors as a way to measure the 

selectivity of each compound for the Rac pathway. One general endpoint is to 

measure the activation of Rac downstream effectors. In the past, our lab has 

evaluated the action of GGTIs towards cells expressing activated Rac1, by using a 

c-Jun luciferase reporter assay (Joyce and Cox, 2003).  c-Jun is a downstream 

target of JNK, which in turn can be activated by Rac1 and Rac-3. To execute this, I 

would transiently transfect NIH3T3 cells with either vector encoding activated 

Rac1(61L) along with a c-jun luciferase reporter, then after 24 h analyze the cell 

lysates for luciferase activity. This cell-based assay would allow me to evaluate 

hundreds of compounds simultaneously, which will be ideal for the first round of 

secondary screen.  However, it will not determine specificity for Rac. 
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If the number of candidate compounds from the primary screen is small (<50), 

an alternate and more selective way to measure the activity of these compounds is 

to visually screen for morphological changes in the cell. Expression of activated 

Rac1 causes the formation of lamellipodia, and our laboratory has shown that 

inhibition of activated Rac1 by GGTI can decrease lamellipodia formation (Joyce and 

Cox, 2003). Based on the ability of other Rac inhibitors to reverse this phenotype, I 

believe I can also use this type of assay to monitor the activity of hit compounds. 

However this procedure will be useful only if there are few hit compounds or at a 

later stage in the evaluation of candidate compounds, since the complex procedures 

to visually prepare the cells for imaging are time consuming, and so it may not be 

useful for the evaluation of hundreds of compounds. 

Overall, I also expect that we can obtain candidate compounds from this 

secondary screen. The detection of positive candidates will be an indication of the 

success of this novel platform for drug discovery. And it is possible that given the 

nature of our primary screen we can obtain candidate compounds that can be further 

evaluated for their advancement to additional pre-clinical studies.  

It is possible that the chemical properties of some of these compounds will 

limit their solubility or bioavailability of each compound to exert its activity. Since the 

primary screen is to be performed in C. elegans, it is possible that candidate 

compounds may have toxic effects in mammalian cells that contain additional 

targets, but this will not be appreciated until we perform these experiments.   The 

assays proposed in this aim will help elucidate the activity of candidate compounds 

towards the Rac pathway, but will not reveal the specific target of selected 
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compounds. To approach this problem, additional biochemical and biological assays 

can be performed.  For example, to address if candidate compounds are targeting 

the kinase activity of PAK, the in vitro kinase activity of PAK can be evaluated. 

Overall we have the tools to develop a reliable and high throughput 

secondary screen. With these ideas I should be able to test the activity of candidate 

compounds to inhibit Rac or the Rac pathway. Moreover, the success of this 

secondary screen will support the generation of additional tools for the screening of 

other clinically relevant targets using the worm as an efficient and valuable in vivo 

model for drug discovery of Ras and Rac pathway inhibitors. 

 

CONCLUSIONS 

 Altogether, my proposed future directions would lead to the development 

of better tools for the analysis of existing inhibitors of the Ras>Raf>MEK>ERK 

pathway and to the rise of a novel platform for the screening of novel Rac or Rac 

pathway inhibitors.  By developing additional transgenic lines harboring new 

Raf/LIN-45 mutants, we would not only be able to further understand the mechanism 

of action of MCP compounds, but also increase the tools available for the evaluation 

of other inhibitors of the Ras>Raf>MEK>ERK pathway.  Despite the wealth of 

genetic reagents freely available in the C. elegans community, there is surprisingly 

no lin-45 mutant suitable for my studies of Ras/Raf interaction inhibitors; nor have I 

been successful to construct one.  If I can develop a successful strategy to do so, 

this would be very useful to the field. 
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  On the other hand, the further development of a high-throughput screen 

for novel Rac pathway inhibitors would showcase a novel approach for drug 

screening in in vivo systems as well as remove one of the problems of screening for 

molecularly targeted therapeutics, which is not knowing the best specific target in a 

given pathway to go after.  The screen I propose is unbiased and should in principle 

identify any functionally useful inhibitor of the pathway. If successful, such a screen 

could potentially be modified for the development of additional screens for other 

cancer-related and validated targets. 
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