
Semi-implicit Krylov Deferred Correction
Algorithms, Applications, and Parallelization

by
Sunyoung Bu

A dissertation submitted to the faculty of the University of North Carolina at Chapel
Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in
the Department of Mathematics.

Chapel Hill
2010

Approved by:

Jingfang Huang, Advisor

M. Gregory Forest, Committee Member

Cass T. Miller, Committee Member

Laura A. Miller, Committee Member

Michael L. Minion, Committee Member

c© 2010

Sunyoung Bu

ALL RIGHTS RESERVED

ii

Abstract

SUNYOUNG BU: Semi-implicit Krylov Deferred Correction Algorithms,
Applications, and Parallelization.

(Under the direction of Jingfang Huang.)

In this dissertation, we introduce several strategies to improve the efficiency of the

Krylov deferred correction (KDC) methods for special structured ordinary and partial

differential equations with algebraic constraints. We first study the semi-implicit KDC

(SI-KDC) technique which splits stiff differential equation systems into different com-

ponents and applies different low-order time marching schemes to these components.

Compared with the fully implicit KDC (FI-KDC) method, our analysis and preliminary

numerical results for differential algebraic equations show that the SI-KDC schemes are

more efficient due to the reduced number of operations in each spectral deferred cor-

rection (SDC) iteration. Next, we apply the SI-KDC scheme to simulate a two-scale

model describing the mass transfer processes in drinking water treatment applications,

in which some set of chemical species move from one distinct phase to a second distinct

phase. We also present an improved effective model to further advance the efficiency of

the multiscale modeling. Finally, we investigate the parareal method to parallelize the

KDC techniques, and present some preliminary numerical results to show its potential

in large scale simulations.

iii

Acknowledgments

I would like to thank many people who have supported me and challenged me along

the way with my thesis.

First and foremost, words alone cannot express the thanks I owe to my advisor,

Jingfang Huang, for a very supportive guidance through the process of completing

my Ph.D requirements. Jingfang Huang has been a great source of encouragement

over the years, and I am forever grateful to him for his patience and tireless efforts to

continuously go above and beyond the call of duty to help me be successful.

I would also like to thank my committee members, Gregory Forest, Cass T. Miller,

Laura Miller, and Michael L. Minion, for taking the time to give me priceless feedback

and advice. I also would like to express my deepest thanks to each one in the applied

math program at UNC.

In addition, I would like to express my greatest appreciation to my family for con-

stant encouragement, assistance and love while I pursued my studies.

Lastly, I am grateful to everyone who has helped me in several ways during all these

years. The guidance, support, and prayer lead me where I am today. Thank you.

iv

TABLE OF CONTENTS

Abstract iii

1 Introduction 1

2 Krylov Deferred Correction Methods 5

2.1 Picard Integral Equation and Spectral Integration 5

2.2 Error Equation and Spectral Deferred Corrections 8

2.3 Newton-Krylov Method and Preconditioners 10

2.4 Krylov Deferred Correction Methods 13

2.5 KDC accelerated MoLT . 14

3 Semi-Implicit Krylov Deferred Correction Methods 16

3.1 Semi-implicit KDC Technique . 16

3.2 Index One DAE System . 18

3.3 Index Two DAE System . 22

3.4 Numerical Results . 25

3.4.1 Nonlinear ODE Example . 25

3.4.2 Van der Pol Problem . 26

3.4.3 Linear Index One DAE System 28

3.4.4 Nonlinear Index One DAE System 30

3.4.5 Electrical Power System . 32

3.4.6 Linear Index Two DAE Systems 35

4 An Evaluation of Solution for Modeling an Ion Exchange Process 40

4.1 Modeling Dissolve Organic Carbon Removal Process 40

v

4.1.1 Microscale Model . 42

4.1.2 Macroscale Model . 43

4.1.3 Two-Scale Model . 44

4.1.4 Age-Averaged Model . 45

4.2 KDC techniques coupled with Fast Elliptic Solvers 47

4.2.1 Semi-Implicit KDC Method . 47

4.2.2 Fast Elliptic Solver . 51

4.3 Numerical Results . 52

4.3.1 Accuracy and Efficiency Comparisons 53

4.3.2 Multiple Particle Size and Age System 57

4.3.3 Age-Averaged Model . 58

5 Parallelization for Krylov Deferred Correction Methods 62

5.1 The Parareal Method . 62

5.1.1 Algorithm . 63

5.1.2 The Stability of Parareal Methods 64

5.2 Modified Parareal Krylov Deferred Correction Methods 66

5.2.1 Algorithm . 66

5.2.2 Efficiency . 68

5.3 Numerical Results . 70

5.3.1 A simple nonlinear DAE system 70

5.3.2 Stiff ODE Problem . 74

5.3.3 Transistor Amplifier Problem 75

5.3.4 Index 2 nonlinear DAE system 78

6 Concluding Remarks 80

Bibliography 82

vi

LIST OF FIGURES

3.1 Comparing the convergence of SI-KDC and FI-KDC. 26

3.2 Comparing the convergence of GMRES(k0) for different k0 for SI-KDC
and FI-KDC . 27

3.3 Comparing the eigenvalue distributions of SI-KDC with FI-KDC. . . . 29

3.4 Comparing different Krylov subspace methods. 30

3.5 Comparing the convergence rate of the SI-KDC and FI-KDC methods. 31

3.6 The number of accurate digits as functions of CPU time (left) and num-
ber of function evaluations (right). 31

3.7 Accuracy of SI-KDC method vs. number of nonlinear solves for different
node numbers. 33

3.8 (left) Residual after each SDC iterations, and (right) accuracy vs. # of
nonlinear solves. 34

3.9 Comparing the accuracy and efficiency of SI-KDC with PSAT. 35

3.10 Comparing the eigenvalue distributions for (left) SIKDC-IE and SIKDC-
EI, and (right) SIKDC-IE and FI-KDC. 37

3.11 Comparing the SI-KDC and the FI-KDC for index 2 linear DAE. . . . 38

3.12 Comparing the SI-KDC and the FI-KDC for index 2 linear DAE. . . . 39

4.1 Continuous flow process schematic . 41

4.2 Comparison of the FEM, KDC, and analytic solutions for diffusion into
sphere with a fixed boundary condition. 54

4.3 Comparison of solutions for different initial times. 55

4.4 Comparison of solution efficiency for fixed boundary condition case. . . 56

4.5 Accuracy of KDC methods vs. number of function evaluations for vary-
ing numbers of Radau nodes. 57

vii

4.6 Accuracy of KDC methods vs. step-size for varying numbers of Radau
IIa nodes. 58

4.7 Comparison of the SI-KDC and FEM solution methods for dynamic
boundary conditions. 59

4.8 CPU time comparison for the SI-KDC and FEM solution methods with
dynamic boundary conditions. 60

4.9 Comparing traditional two-scale and AAM results(a) and errors (b) using
FEM. 60

4.10 Comparison of SI-KDC method with FEM based method for the average-
aged model with dynamic boundary condition (left) and solution er-
ror(right). 61

5.1 Diagram at k-th iteration . 63

5.2 Total cost of KDC method in serial mode 68

5.3 Total cost of KDC method in parallel mode 69

5.4 Convergence using 20 processors . 71

5.5 Comparing CPU time for serial and parallel using 4 processors 71

5.6 Comparing CPU time for serial and parallel using 8 processors 72

5.7 Comparing CPU time for serial and parallel using 8 processors 73

5.8 Convergence behavior of different stopping criterion for Krylov Subspace
scheme . 73

5.9 Comparing CPU time for serial and parallel using 10 processors 74

5.10 Comparing CPU time for serial and parallel using 10 processors 75

5.11 Comparing CPU time for serial and parallel using 10 processors 77

5.12 Comparing CPU time for serial with parallel using 10 processors 78

5.13 Convergence behavior using Trapezoidal Rule as G propagator 79

viii

LIST OF TABLES

3.1 The condition number of Eq. (3.15) for different number of nodes and
low order discretizations. 37

ix

Chapter 1

Introduction

In the last century, many numerical techniques have been developed for the accurate

and efficient solutions of differential equation initial value problems with algebraic con-

straints. Examples include the linear multi-step methods, Runge-Kutta methods, and

operator splitting techniques. Instead of detailed reviews of these existing techniques,

in this thesis, we focus on the recently developed Krylov Deferred Correction (KDC)

method first studied in [43, 44] and discuss how to further improve its efficiency and

its applications. In the KDC scheme, the spectral deferred correction (SDC) methods

are used to precondition the spectrally accurate Gauss collocation formulations for ini-

tial value problems, and a Newton-Krylov method is applied to the resulting better

conditioned system.

The deferred and defect correction methods were first proposed by Pereyra and

Zadunaisky [67, 80, 81], in which higher-order accurate solutions of initial value ordi-

nary differential equations (ODEs) are iteratively built by approximating an equation

for the error (or defect) to increase the accuracy of a provisional solution. In the early

implementations of these methods, however, numerical differentiation and polynomial

interpolation on uniform interpolating points are used, and the resulting algorithms are

often unstable for n > 10 due to the instability of the differentiation operator and the

Runge phenomenon for uniform nodes. To overcome these difficulties, Dutt et al. [29]

introduced a spectral deferred correction (SDC) strategy for ODEs in 2000, by intro-

ducing Gaussian quadrature nodes and using the Picard integral equation form of the

correction equation. Analysis and numerical experiments show that the SDC strategy

has good stability and accuracy properties for both stiff and non-stiff problems, and

unlike linear-multistep methods, the linear stability properties of higher-order versions

of the methods are similar to those of lower-order versions. Unfortunately, numerical

experiments also reveal that for very stiff ODEs, the effective order of accuracy of the

SDC methods is reduced for values of the time step size above a certain threshold. Also,

the SDC methods may be divergent for some differential algebraic equation (DAE) sys-

tems independent of the time step-size selection. More recently in [43, 44], detailed

analysis of the SDC algorithm for linear ODEs show that the SDC technique is equiv-

alent to a Neumann series expansion solution where a low order time stepping scheme

is applied to precondition the original Gauss collocation formulation (also called the

Gauss Runge-Kutta or GRK scheme). For stiff ODEs and DAEs, as there may exist

a few “bad” eigenvalues in the preconditioned system, SDC may converge slowly for

stiff ODEs or even diverge for many DAE systems. The authors of [43, 44] further

proposed a new Krylov deferred correction (KDC) technique in which the lower order

time stepping scheme is used to precondition the original GRK formulation, and the

Newton-Krylov (NK) methods [49] are then applied to solve the preconditioned system

directly, instead of using the Neumann series expansions. Numerical experiments show

that the KDC method can fully take advantage of the excellent accuracy properties

of the GRK formulation and the resulting algorithm is super convergent, A-stable, B-

stable, symplectic and symmetric [40]. In particular, for fixed time step-size, when the

number of nodes increases, the error decreases exponentially due to the “spectral” na-

ture of the GRK formulation. Compared with direct Newton type methods and Gauss

elimination, the KDC method is now considered a more efficient way for solving the

GRK formulation, in which the unknowns at different times are coupled.

In this dissertation, we investigate several strategies to further improve the efficiency

of the KDC methods for a class of special structured differential equations. We first

study the semi-implicit techniques for the KDC method. Notice that for stiff differ-

ential equation systems, implicit methods are typically applied to avoid the numerical

stability region constraints in step-size. However, when the system contains both stiff

and non-stiff components, especially when the non-stiff component is nonlinear and the

stiff part is linear, fully-implicit discretization schemes may lead to a numerically inef-

ficient approach, and a more appropriate approach is to use an explicit time stepping

method for the non-stiff part and an implicit scheme to the stiff terms. This semi-

implicit discretization can be applied to the error equations in each SDC iteration to

accelerate the efficiency of each “function evaluation” in the KDC scheme. Our numer-

2

ical experiments show that the new semi-implicit KDC approach is more efficient than

the fully-implicit KDC method. However, our analysis and numerical experiments also

show that proper splitting of the equations is in general problem dependent, especially

when there exist algebraic constraints in the system, and different choices usually result

in very different performance in efficiency and accuracy in the SI-KDC methods.

Next, we discuss the SI-KDC technique for a two-scale partial differential equation

(PDE) model for ion exchange processes in drinking water treatment applications.

The model composes of a microscale diffusion equation representing ion exchange resin

particles and a macroscale model for the reactor, and the two scales are coupled by the

boundary conditions. We notice that the microscale diffusion equation is stiff but linear,

while the macroscopic ODE is non-stiff and nonlinear, so a semi-implicit discretization

becomes nature, and the resulting elliptic PDEs at each low order time marching step

can be solved efficiently using existing fast elliptic equation solvers [26, 27, 31, 37, 38,

39]. The performance of the new SI-KDC method is compared with existing finite

element implementations.

To further improve the efficiency of the multiscale simulation, we notice that the

Monte-Carlo algorithm in the two-scale model requires the expensive sampling of differ-

ent particle age distributions, instead, we present a new effective Age-Averaged Model

(AAM), by calculating the average of all ages for the same size particles. Our numer-

ical method is implemented for both the traditional model and the new AAM, and

numerical results validate the correctness of the AAM.

Lastly, we study a new class of iterative time parallel methods to further improve

the efficiency of the KDC methods on modern multi-processor multi-core computer

architectures for large-scale long-time simulations. Over the last twenty years or so,

parallel methods in the temporal direction have received extensive attention. Exist-

ing results include the parareal algorithm first presented in [55] for solving evolution

problems in parallel. In the parareal algorithm, two propagation operators - fine and

coarse - are introduced. The fine operator (accurate method), denoted by F, computes

an accurate approximation of the solution using approximate initial conditions in each

interval simultaneously, whereas the coarse operator (less accurate method), denoted

by G, provides a rough approximation to propagate a correction to the initial condi-

tions through the time domain in a serial way. The method approximates successfully

the solution in time before having fully accurate approximations from earlier times,

while the global accuracy of the iterative process after a few iterations is comparable

3

to that of the sequential method using a fine discretization in time. Also in [61, 62], a

hybrid parareal spectral deferred correction method (SDC) for the numerical solution

of ODEs and discretized PDEs is introduced, which applies the deferred correction

strategy within the parareal iteration. The advantage of this scheme is, as shown in

[62], that the F propagator becomes much cheaper than a full accurate solution by

combining the parareal iterations and spectral deferred correction iterations. However,

as studied in [43, 44], when the SDC methods are applied to very stiff ODEs, order

reduction is observed, and the SDC methods become divergent for many DAE systems

independent of the time step-size selection. Therefore in this thesis, we investigate

how the KDC techniques can be coupled with the parareal methods to improve the

efficiency of the KDC, and accelerate the convergence of the SDC based parareal al-

gorithms. Preliminary numerical experiments for ODEs and PDEs are presented to

illustrate the potential of the parareal KDC methods.

This thesis is organized as following. In Chapter 2, we discuss the recently devel-

oped KDC algorithm. In Chapter 3, we show how the semi-implicit scheme can be

coupled with the KDC technique to further accelerate the efficiency of existing KDC

implementations. Analyses and numerical experiments are presented for both ODEs

and DAE systems of different index. In Chapter 4, we generalize the semi-implicit KDC

scheme to a two-scale partial differential equation model arising from advanced water

treatment studies, and evaluate the accuracy and efficiency of the solution methods

resulting from changes in both the algorithm and approximation methods compared

to extant approaches. In Chapter 5, we discuss how to combine the KDC methods

with existing parareal ideas for the efficient time parallelization of differential equation

solvers, and present preliminary results to demonstrate its efficiency. Finally, a brief

summary of these studies and further applications of each strategy are discussed in

Chapter 6.

4

Chapter 2

Krylov Deferred Correction

Methods

In this chapter, we discuss the Krylov deferred correction (KDC) technique for

general differential algebraic equation (DAE) system

F (y(t), y′(t), t) = 0, y(0) = y0. (2.1)

2.1 Picard Integral Equation and Spectral Integra-

tion

In the KDC methods, unlike traditional numerical methods based on the differential

form of the equations, we first set Y (t) = y′(t) as the new unknown, and consider the

Picard type integral equation

F

(
y0 +

∫ t

0

Y (τ)dτ, Y (τ), t

)
= 0. (2.2)

We refer to Eq. (2.2) as the “yp-formulation”.

To discretize the integral equation (2.2) in one time step [0,∆t], we linearly map

the Gaussian nodes originally defined on [−1, 1] to [0,∆t], and denote the p nodes,

solution y, and corresponding values of Y (t) at these nodes by t = [t1, t2, · · · , tp]T ,

y = [y1,y2, · · · ,yp]T, and Y = [Y1,Y2, · · · ,Yp]T, respectively. Given the discretized

Y, a degree p − 1 interpolating polynomial P (t) =
∑p−1

k=0 bkLk(t) can be constructed

to approximate the solution Y (t), where Lk(t) is the Legendre polynomial of degree k

defined on [0,∆t], and the coefficients are determined by the integral

bk = (k +
1

2
)

∫ 1

−1
L̃k(t)f̃(t)dt

which can be accurately computed using Gaussian quadrature, i.e.

bk ≈
p∑
i=1

(k +
1

2
)wiL̃k(t̃i)Yi

where L̃k and f̃ are the rescaled functions defined on [−1, 1], {t̃k} are the rescaled nodes

on [−1, 1], and {wi} are the weights of the Gaussian quadrature. We then approximate∫ tm
0
Y (τ)dτ using

∫ tm
0
P (τ)dτ , and evaluate this degree p polynomial to obtain at t the

approximate function values of y. We refer to this procedure as the spectral integration

procedure, and represent the linear mapping from Y to y by a matrix ∆tS where the

spectral integration matrix S is independent of the step-size ∆t. Using the spectral

integration matrix, we derive the collocation formulation

~F (y0 + ∆tS ⊗Y,Y, t) = 0, (2.3)

which will be symbolically denoted as H(Y) = 0. In the formula, y0 = [y0, y0, · · · , y0]T

is the vector of initial values, and ⊗ is the tensor product (i.e. ∆tS is applied to each

component of Y).

Instead of the “yp-formulation”, the original SDC method for ODEs in [29] is based

on the traditional Picard integral equation or “y-formulation”. Methods based on the

Picard formulation have also been developed for two point boundary value problems in

6

[37]. The “y-formulation” for ODEs can be generalized for DAE systems of the form

{
y′(t) = f(y(t), z(t), t),

0 = g(y(t), z(t), t),
(2.4)

by {
y(t) = y0 +

∫ t
0
f(y(τ), z(τ), τ)dτ,

0 = g(y(t), z(t), t).
(2.5)

However, for an arbitrary DAE system of the form Eq. (2.1), the discretization of the

“y-formulation” in the current setting would require a differentiation matrix rather than

an integration matrix. Since spectral integration is numerically better conditioned than

spectral differentiation [37, 76], we focus here on the “yp-formulation”.

It is shown in [45] that the KDC method for ODEs converges to the same solution

as those generated by the Gaussian Runge-Kutta method, and both solve the Gaussian

collocation formulation H(Y) = 0. For ODEs, Gaussian nodes based discretization has

excellent properties, in particular, we cite the following theorem (mostly from [40]):

Theorem 1 For ODE problems, the Gauss Runge-Kutta formulation using p Gaussian

nodes is order 2p(super convergence), A-stable, B-stable, symplectic (structure preserv-

ing), and symmetric (time-reversible). In particular, for fixed time step-size ∆t, the

discretization error decreases exponentially when the number of nodes p increases.

It is also possible to formulate the integration matrix S using Radau or Lobatto

type quadrature nodes instead of Gaussian nodes and calculate the Legendre polyno-

mial coefficients accordingly. The Radau Ia quadrature nodes use the left end point

(i.e. t1 = 0), the Radau IIa nodes use the right end point (i.e. tp = ∆t), and the

Lobatto quadrature nodes include both end points. Also, Chebyshev polynomials and

the corresponding quadrature nodes may be used instead of Legendre polynomial based

nodes, which allow the fast Fourier transform (FFT) to be used for acceleration (FFT

is more efficient than existing fast Legendre transforms). Detailed analytical and nu-

merical comparisons of different polynomials and nodes are being investigated. For a

discussion of the choice of nodes for the spectral deferred correction methods for ODEs,

7

the readers are referred to [53].

For DAEs, it is pointed out in [41] that the Gaussian collocation formulation en-

counters “order reduction”. When p Gaussian nodes are applied to an index one DAE

system, numerical order for the algebraic component is only p, while for Radau IIa

nodes, the order is 2p− 1. We therefore focus on the Radau IIa nodes in our numerical

implementations for higher-index DAEs in this thesis. Interested readers are referred to

[41] (Table 2.3, p18) for further details on the convergence of collocation formulations

for different index DAE problems.

2.2 Error Equation and Spectral Deferred Correc-

tions

Notice that for scalar equations, Eq. (2.3) is typically nonlinear with p unknowns

as compared to the 1-unknown equation encountered when using backward Euler (or

BDF) methods. For N dimensional vector DAEs, the number of unknowns becomes pN

as compared to N in BDF methods. Therefore direct application of Newton’s method

utilizing Gauss elimination for the required linear solves would require O((pN)3) oper-

ations for the collocation formulation with p points, while O(N3) operations for BDF

methods. For this reason, although superior in accuracy and optimal in step-size, high

order collocation methods for Eq. (2.3) are rarely used in numerical simulations.

There have been several research efforts in designing numerical time integration

schemes that are both high order and efficient for ODEs and DAEs. In particular, in

the deferred and defect correction methods first proposed by Pereyra and Zadunaisky

[67, 80, 81], higher-order accurate solutions of initial value ODEs are built by itera-

tively approximating an equation for the error or defect to increase the accuracy of

a provisional solution. More recently, Dutt et al. [29] presented a new variation on

the deferred/defect correction strategy for ODEs which is based on a Picard integral

equation form of the correction equation and utilizes spectral integration on Gaussian

quadrature nodes. In the following, we discuss how the error equation and spectral

deferred correction techniques can be generalized to DAEs.

Assume a provisional solution Ỹ = [Ỹ1, Ỹ2, · · · , Ỹp]
T is obtained at the Gaussian

type nodes t using a low-order method or other approximation schemes and denote the

8

corresponding interpolating polynomial approximation to the solution as Ỹ (t), one can

define an equation for the error δ(t) = Y (t)− Ỹ (t) by

F

(
y0 +

∫ t

0

(
Ỹ (τ) + δ(τ)

)
dτ, Ỹ (t) + δ(t), t

)
= 0. (2.6)

Note that Eq. (2.6) gives the identity

F

(
y0 +

∫ tm+1

0

Ỹ (τ)dτ +

(∫ tm

0

+

∫ tm+1

tm

)
δ(τ)dτ, Ỹ (tm+1) + δ(tm+1), tm+1

)
= 0.

(2.7)

A simple time-marching discretization of this equation similar to the explicit (forward)

Euler method for ODEs gives a low-order solution δ̃ = [δ̃1, δ̃2, · · · , δ̃p]T by solving

F

(
y0 + [∆tS ⊗ Ỹ]m+1 +

m+1∑
l=1

∆tlδ̃l−1, Ỹm+1 + δ̃m+1, tm+1

)
= 0 (2.8)

where ∆tl+1 = tl+1 − tl and t0 and δ0 are set to 0. Note that this update formula is in

general implicit even though an “explicit” time-marching scheme is used. Similarly, a

time-marching scheme based on backward Euler method is given by

F

(
y0 + [∆tS ⊗ Ỹ]m+1 +

m+1∑
l=1

∆tlδ̃l, Ỹm+1 + δ̃m+1, tm+1

)
= 0. (2.9)

These two methods differ only in the way the time integral of δ(t) is approximated.

Eq. (2.8) is equivalent to the rectangle rule using the left endpoint while Eq. (2.9) is

the rectangle rule using the right endpoint.

In the SDC methods, the low-order solution δ̃ is added to the provisional solution

Ỹ in order to form a better approximation, and this iteration continues for a prescribed

number of times or until a prescribed error tolerance is achieved. It has been shown

that for ODE problems, the accuracy of Ỹ will increase after each iteration and Ỹ

converges to the solution of the collocation equation for sufficiently small time step ∆t.

Unfortunately, for general DAE problems of higher-index, it is demonstrated numeri-

cally that this SDC iteration procedure is divergent for many DAE systems [44]. It is

9

shown in [43] that for linear systems of ODEs, the spectral deferred correction technique

is equivalent to a preconditioned Neumann series expansion, where the preconditioner

is the low-order deferred correction procedure. Writing the preconditioned system as

(I − C)x = b,

one can prove that for ODE problems with sufficient small ∆t, all the eigenvalues of C

are located inside the unit disc on the complex plane and the Neumann series

x = b+ Cb+ C2b+ · · ·

is convergent. However for DAE problems, there may be eigenvalues whose magni-

tude is greater than 1 independent of the step-size, and hence the SDC procedure

becomes divergent. This drawback can be removed by accelerating the convergence

using Newton-Krylov methods.

2.3 Newton-Krylov Method and Preconditioners

The Newton-Krylov methods are designed for solving nonlinear algebraic equations

of the form M(x) = 0 with N equations and unknowns. Assume an initial approximate

solution x0 is known, Newton’s method is used to iteratively compute a sequence of

quadratically convergent approximations (assuming the Jacobian matrix JM is nonsin-

gular at the solution)

xn+1 = xn − δx,

where δx is the solution of the linear equation

JM(xn)δx = b

derived using the Krylov subspace methods such as the GMRES, BiCGStab, and

TFQMR methods [12, 49, 71] (as JM is in general non-symmetric). In the formula,

b = M(xn), and JM(xn) is the Jacobian matrix of M(x) at xn. The iterations in New-

10

ton’s method and the Krylov subspace methods can then be intertwined by reducing

the residual of the linear equation by a prescribed factor, and then restart the Newton

iterations. The resulting methods are usually called the Newton-Krylov methods.

Notice that when

JM(xn) = ±I − C,

where most eigenvalues of C are clustered close to 0, because of the rapid decay of most

eigenmodes in Cqb, the numerical rank of the Krylov subspace

Kq(JM , b) = {b, Cb, C2b, · · · , Cqb}

is low and the Newton-Krylov iterations converge rapidly. This is true even for cases

when there are a few eigenvalues located outside the unit circle (which causes the

divergence of the SDC methods for DAEs) or inside but close to the unit circle (the

order reduction of the SDC methods for stiff ODE problems). In general, an efficient

numerical implementation of a Newton-Krylov method depends on: (a) a formulation

of the problem M(x) = 0 such that JM is close to the identity matrix ±I, and (b) an

efficient procedure for computing the matrix vector product Cb (or equivalently JMb).

For (a), one common technique to improve the convergence of the method is to

apply a “preconditioner” to the original system. Traditionally, such preconditioners

are chosen as sparse matrices close to J−1M [25]. Dense integral operators have also been

used as preconditioners (see e.g. [50]), which are efficiently applied to an arbitrary

vector using fast convolution algorithms such as the fast multipole method [38]. For

general DAE system, notice that the low-order time stepping methods in Eqs. (2.8-2.9)

can be written in matrix form as

~F (y0 + ∆tS ⊗ Ỹ + ∆tS̃ ⊗ δ̃, Ỹ + δ̃, t) = 0, (2.10)

where ∆tS̃ is the lower triangular representation of the rectangle rule approximation

11

of the spectral integration operator ∆tS. Specifically, for Eq. (2.8)

∆tS̃E =

0 0 · · · 0 0

∆t1 0 · · · 0 0

∆t1 ∆t2 · · · 0 0

· · · · · 0 0

∆t1 ∆t2 · · · ∆tp−1 0

(2.11)

and for Eq. (2.9)

∆tS̃I =

0 0 · · · 0 0

0 ∆t1 · · · 0 0

· · · · · 0 0

0 ∆t1 · · · ∆tp−2 0

0 ∆t1 · · · ∆tp−2 ∆tp−1

. (2.12)

Eq. (2.10) can be considered as an “implicit” function δ̃ = H̃(Ỹ) where the provisional

solution Ỹ is the input variable and the output is δ̃. It can be seen that the solution

of the collocation formulation H(Y) = 0 also satisfies H̃ = 0. However in [44], it was

shown that because the lower order method solves a “nearby” problem, the Jacobian

of H̃ is closer to identity than that of H, and H̃ = 0 is better conditioned. Specifically,

applying the implicit function theorem, the Jacobian matrix JH̃ of H̃ is given by

JH̃ =
∂δ̃

∂Y
= −

(
∂ ~F

∂Y
+
∂ ~F

∂y
∆tS̃

)−1(
∂ ~F

∂Y
+
∂ ~F

∂y
∆tS

)

= −I +

(
∂ ~F

∂Y
+
∂ ~F

∂y
∆tS̃

)−1(
∂ ~F

∂y
∆t(S̃ − S)

)
.

When ∂ ~F
∂Y

is non-singular, since S̃ is an approximation of S, when ∆t is small, JH̃ is

close to −I. For comparison, the Jacobian matrix of H = 0 is given by

JH =
∂H

∂Y
=

(
∂ ~F

∂Y
+
∂ ~F

∂y
∆tS

)
.

In regards to point (b), when a forward difference approximation technique is

12

adapted as in most Jacobian-free Newton-Krylov solvers, for any vector v, we can

approximate JH̃(x)v by

DhH̃(x : v) =
(
H̃(x+ hv)− H̃(x)

)
/h

for some properly chosen parameter h (h may be complex). Clearly, computing the

function H̃ in this formulation is simply a deferred correction iteration described suc-

cinctly in Eq. (2.10). This difference approximation technique as well as the choice of

h have been carefully studied previously and the readers are referred to [?] for details.

2.4 Krylov Deferred Correction Methods

The results in [43] show that the KDC method for DAEs converges more efficiently

(to the Gauss Runge-Kutta solution) using a low-order preconditioning iteration com-

pared with a direct solution of the coupled collocation formulation. In addition, the

introduction of the Newton-Krylov methods eliminates the divergence of the standard

SDC for higher-index DAEs and order reduction for ODE problems. In its numeri-

cal implementation, the KDC method consists of two components: a Newton-Krylov

method that can be applied directly to solve the preconditioned collocation formula-

tion H̃(Ỹ) = 0; and the “function evaluation” required for the Newton-Krylov method,

which is simply one deferred correction iteration for the given provisional solution.

Notice that the KDC methods require two Newton procedures: (a) when solving the

preconditioned nonlinear system δ̃ = H̃(Ỹ), a Jacobian-free Newton-Krylov method

is applied; and (b) in each ”function evaluation” (one SDC iteration to derive H̃(Ỹ)),

Newton type methods are applied to solve the nonlinear system when marching from

tj to tj+1 using a lower order time stepping method. We refer to the Newton iterations

in (a) as the outer iterations and those in (b) as the inner ones. Clearly, each ”function

evaluation” in general requires the efficient solution of p decoupled nonlinear systems.

The purpose of introducing the semi-implicit KDC methods in Chapter 3 is to optimize

the low-order time-marching schemes to further improve the efficiency of the inner

Newton iterations in each ”function evaluation” (SDC iteration) for problems with

special structures.

13

2.5 KDC accelerated MoLT

In this section, we briefly explain how the KDC method works for a general parabolic

type partial differential equation (PDE) system of the form

L(ut, u, ux, uxx) = 0 (2.13)

where u = u(x, t) and proper initial and boundary conditions are given. Interested read-

ers are referred to [45] for a detailed description of the KDC method for approximating

the solution of PDE’s.

To march from t0 to t0 + ∆t in the KDC scheme, instead of using a traditional

discretization scheme based on the differential form of the equation, we first introduce

U = ut as the new unknown, and discretize the PDE in the temporal direction using

p Gaussian quadrature nodes ~t = [t1, t2, · · · , tp]T . The resulting discretized system

becomes a coupled elliptic equation system

L

(
U, u0 + ∆tS ⊗ U, d

dx
(u0 + ∆tS ⊗ U) ,

d2

dx2
(u0 + ∆tS ⊗ U)

)
= 0 (2.14)

where ∆tS is a matrix mapping the function values {U(x, tm),m = 1, · · · , p} at the

Gaussian nodes ~t to their temporal integral
∫
U(x, t)dt using spectral integration as

discussed in [29], ⊗ denotes the component-wise tensor product of the spectral in-

tegration matrix (∆tS is applied to the vector {U(x, tm)}pm=1 for each fixed x), and

u0 + ∆tS ⊗ U represents the matrix form of the spectrally accurate approximation

of the solution u(x) in one big time step. Similar to the DAE case, we symbolically

denote this collocation formulation in Eq. (2.14) as H(U) = 0. Notice that although

this formulation has excellent numerical properties in accuracy and stability, its direct

solution is in general computationally expensive as the unknowns are coupled at all

times (the solution U(x, tm) depends on the unknowns U(x, ti) for i = 1, · · · , p), while

in the traditional backward differentiation formula (BDF) or many Runge-Kutta based

methods, the solution U(x, tm) only depends on the values U(x, ti) at previous times

i = 1, · · · ,m.

Instead of solving the collocation formulation in Eq. (2.14) directly in the KDC

method, we assume a provisional solution Ũ derived by the low-order BDF or Runge-

14

Kutta method, and define the equation for the error δ = U − Ũ by

L

[
Ũ + δ, u0 + ∆tS ⊗ (Ũ + δ),

d

dx

(
u0 + ∆tS ⊗ (Ũ + δ)

)
,

d2

dx2

(
u0 + ∆tS ⊗ (Ũ + δ)

)]
= 0 (2.15)

To find an approximate solution of the error δ which will be denoted by δ̃, we can

apply the BDF or Runge-Kutta method to Eq. (2.15), which is equivalent to solving

L

[
Ũ + δ̃, u0 + ∆tSŨ + ∆tS̃δ̃,

d

dx

(
u0 + ∆tSŨ + ∆tS̃δ̃

)
,

d2

dx2

(
u0 + ∆tSŨ + ∆tS̃δ̃

)]
= 0 (2.16)

where S̃ is the corresponding lower triangular approximation of the spectral integration

matrix S. In particular, the forward Euler method is equivalent to the rectangle rule

using the left end point (derivative information at left end point) and the backward

Euler method is the rectangle rule using the right end point (derivative information at

right end point). Notice that in Eq. (2.16), the unknowns δ̃(x, tm) at different times are

“decoupled” such that δ̃(x, tm) only depends on δ̃(x, ti) at previous times i = 1, · · · ,m
as in traditional time marching schemes, and each decoupled elliptic equation can be

solved efficiently using a fast elliptic equation solver.

Similar to the DAE case, Eq. (2.16) can be considered as an implicit function δ̃ =

H̃(Ũ). Applying the implicit function theorem, it is easy to show that the Jacobian

matrix of H̃ is closer to −I, and the Newton-Krylov methods can be adapted and

applied directly to find the zero of this implicit function, which also solves the original

collocation formulation in Eq. (2.14). In the Newton-Krylov method, each function

evaluation is one low-order time stepping approximation in which the elliptic type

partial differential equations are decoupled and can be solved efficiently using available

elliptic solvers.

15

Chapter 3

Semi-Implicit Krylov Deferred

Correction Methods

One particular way to define the stiffness of a DAE system F (y(t), y′(t), t) = 0 with

initial conditions y(t0) = y0 and y′(t0) = y′0 is to study the corresponding linearized

equation

F (y0, y
′
0, t0) +

∂F

∂y
(y − y0) +

∂F

∂y′
(y′ − y′0) = By′ − Ay + C = 0 (3.1)

where B = ∂F
∂y′

, A = −∂F
∂y

, and all other quantities are collected in C. Applying the

single value decomposition to get B = UDV T where U and V are unitary matrices

and D is a singular diagonal matrix with diagonal entries {di}, one can split Eq. (3.1)

into differential part (di 6= 0) and algebraic component (di = 0). We call the DAE

system F (y(t), y′(t), t) = 0 stiff if the differential part is stiff, which can be measured

by studying the eigenvalues of D−1nonzeroU
TA where Dnonzero represents the non-zero

submatrix of D.

3.1 Semi-implicit KDC Technique

Consider a DAE system which can be split into two parts

F (y(t), y′(t), t) = FE(y(t), y′(t), t) + FI(y(t), y′(t), t) = 0 (3.2)

where FE represents the non-stiff component and FI the stiff component. To derive

a semi-implicit discretization of this equation, we introduce Y (t) = y′(t) as the new

unknown to get

FE

(
y0 +

∫
Y (τ)dτ, Y (t), t

)
+ FI

(
y0 +

∫
Y (τ)dτ, Y (t), t

)
= 0. (3.3)

This Picard type integral equation can be directly discretized using the spectral inte-

gration matrix S to yield the collocation formulation

FE(y0 +4tS⊗Y,Y, t) + FI(y0 +4tS⊗Y,Y, t) = 0 (3.4)

where Y = [Y1,Y2, ...,Yp]T is the desired solution which approximates Y (t) = y′(t)

at the quadrature nodes. We further define the error as δ(t) = Y (t)− Ỹ (t) where Ỹ is

a provisional solution to the DAE system. Eq. (3.4) can then be rewritten in the error

equation form as

FE

(
y0 +

∫
(Ỹ (τ) + δ(τ))dτ, Ỹ + δ, t

)
+ FI

(
y0 +

∫
(Ỹ (τ) + δ(τ))dτ, Ỹ + δ, t

)
= 0.

(3.5)

To improve the provisional solution Ỹ (t), low-order methods can be applied to derive

an approximation of the error denoted by δ̃. When the explicit Euler method (S̃E

in Eq. (2.11)) is applied to the non-stiff part and the backward Euler method (S̃I in

Eq. (2.12)) to the stiff one, the low-order method can be rewritten in the matrix form

as

FE(y0 +4tS⊗ Ỹ +4tS̃E⊗ δ̃, Ỹ + δ̃, t) + FI(y0 +4tS⊗ Ỹ +4tS̃I⊗ δ̃, Ỹ + δ̃, t) = 0.

This equation gives the preconditioned “implicit” function δ̃ = H̃SI(Ỹ), and the ap-

plication of the Newton-Krylov methods is then straightforward. This technique is

referred to as the semi-implicit KDC (SI-KDC) technique. As discussed in sec. 2.3, the

17

Jacobian matrix of H̃SI is obtained by

JH̃SI
= −

(
∂ ~F

∂Y
+
∂ ~FE
∂y

∆tS̃E +
∂ ~FI
∂y

∆tS̃I

)−1(
∂ ~F

∂Y
+
∂ ~F

∂y
∆tS

)

= −I +

(
∂ ~F

∂Y
+
∂ ~FE
∂y

∆tS̃E +
∂ ~FI
∂y

∆tS̃I

)−1(
∂ ~FE
∂y

∆t(S̃E − S) +
∂ ~FI
∂y

∆t(S̃I − S)

)
.

which is closer to −I compared with the original collocation formulation, since S̃E and

S̃I are approximations of S, and ∆t is small.

As the semi-implicit KDC discretization scheme converges to the solution of the col-

location formulation in Eq. (3.4), its accuracy is not significantly different from results

derived using other preconditioning techniques. It will, however, change the condi-

tion number of the original system and different preconditioning techniques (choices

of FE and FI) usually result in very different convergence properties in the (outer)

Newton-Krylov methods. Also, the preconditioning strategies can significantly change

the efficiency of the inner Newton iterations (or even make such iterations unnecessary)

for special stiff DAE systems. In the following, using an index one DAE system and

an index two system as examples, we show different formulations and semi-implicit

preconditioning strategies. In particular, we focus on the impacts on the convergence

of the outer Newton-Krylov iterations and efficiency of the inner process in one SDC

iteration.

3.2 Index One DAE System

As an illustrative example, we first focus on a specific linearized index one stiff DAE

system

xt = a11x+ a12y + a13z + F (t),

yt = a21x+ a22y + a23z +G(t),

0 = a31x+ a32y + a33z +H(t),

(3.6)

18

with a33 6= 0. We assume all constants aij are O(1) except for a22 which is a large

negative number, i.e., the term with coefficient a22 represents the stiff component and

all others terms are non-stiff. In this system, we refer to the unknowns x and y as the

differential variables and z the algebraic variable as z′ never appears in the system. For

the convenience of notations, we assume F (t) = G(t) = H(t) = 0.

As discussed in Sec. 2, we apply the “yp-formulation” to the differential variables

instead of the traditional “y-formulation”. For the algebraic variable z, there are several

ways that this can be done, and we examine three possibilities here.

We first focus on a scheme based on applying the “yp-formulation” to z, and the

corresponding error equation system of Eq. (3.6) becomes

X̃ + δ̃1

Ỹ + δ̃2

0

 = A

x0 + ∆tSX̃ + ∆tSδ̃1

y0 + ∆tSỸ + ∆tSδ̃2

z0 + ∆tSZ̃ + ∆tSδ̃3

 (3.7)

where

A =

a11 a12 a13

a21 a22 a23

a31 a32 a33

 . (3.8)

The implicit function δ̃ can then be explicitly written as

I −∆tS̃a11 −∆tS̃a12 −∆tS̃a13

−∆tS̃a21 I −∆tS̃a22 −∆tS̃a23

−∆tS̃a31 −∆tS̃a32 −∆tS̃a33

δ̃1

δ̃2

δ̃3

 = A

x0 + ∆tSX̃

y0 + ∆tSỸ

z0 + ∆tSZ̃

−

X̃

Ỹ

0

(3.9)

where I is an identity matrix, S̃ is either S̃I or S̃E, representing different precondition-

ing schemes for different terms. Clearly, S̃I should be applied to the stiff term with

coefficient a22. We further assume that we want the provisional solution to remain on

the manifold due to the algebraic equation constraint, by applying S̃I to {a31, a32, a33}
terms. The explicit low-order scheme S̃E can then be applied to all remaining terms.

Notice that to march from tj to tj+1 in this specific semi-implicit low-order time step-

ping procedure, the unknowns are decoupled, therefore the evaluation of the implicit

function H̃SI is less expensive than evaluating H̃FI in the FI-KDC scheme where S̃I is

19

applied to all terms in the system.

Comparing the Jacobian matrix of the resulting semi-implicit KDC scheme

E −∆tS̃E ⊗

a11 a12 a13

a21 0 a23

0 0 0

−∆tS̃I ⊗

0 0 0

0 a22 0

a31 a32 a33

−1

(∆tS ⊗ A− E)

with that from the fully-implicit KDC approach

E −∆tS̃I ⊗

a11 a12 a13

a21 a22 a23

a31 a32 a33

−1

(∆tS ⊗ A− E), where E =

I 0 0

0 I 0

0 0 0

 ,

it can be seen that the eigenvalues of the SI-KDC Jacobian matrix are similarly dis-

tributed to those from FI-KDC for sufficiently small ∆t, as ∆tS̃Ia22 is the dominant part

in both matrices. Therefore the convergence properties of the Jacobian-Free Newton-

Krylov methods are similar for both SI-KDC and FI-KDC methods.

Note that applying S̃I to more terms in Eq. (3.9) will generate schemes with similar

convergence properties. However the evaluation of the implicit functions may become

more expensive as the unknowns may no longer decouple and a larger system has to

be solved. Also, it is possible to modify the requirement that the provisional solution

always satisfy the algebraic equation, e.g., we can apply S̃E to {a31, a32} terms, however

this will significantly change the eigenvalue distribution compared with the FI-KDC

scheme. In Sec. 3.4, eigenvalue distributions are numerically computed for different

preconditioning techniques.

In our second formulation, instead of applying the “yp-formulation” to the algebraic

variable z, we use z directly to avoid the spectral integration for efficiency considerations

as in
X̃ + δ̃1

Ỹ + δ̃2

0

 = A

x0 + ∆tSX̃ + ∆tSδ1

y0 + ∆tSỸ + ∆tSδ2

z̃ + δ3

 . (3.10)

It can be shown that this formulation is in fact very similar to the first formulation if we

replace the explicit z0+∆tSZ̃+∆tS̃Eδ̃3 by z̃j+δ̃j3 and the implicit z0+∆tSZ̃+∆tS̃Iδ̃3

20

by z̃j+1+ δ̃j+1
3 when marching from tj to tj+1. We therefore skip the detailed discussions

for this formulation.

In our third formulation, notice that it is unnecessary to apply the error equation

to the algebraic variable z in the second formulation, we can therefore work on the

“simplified” error equation system

X̃ + δ1

Ỹ + δ2

0

 = A

x0 + ∆tSX̃ + ∆tSδ1

y0 + ∆tSỸ + ∆tSδ2

z

 . (3.11)

An immediate advantage of this formulation is that given the provisional solutions X̃

and Ỹ, we can use a semi-implicit scheme to derive low-order solutions of δ̃1, δ̃2 and z at

each node point, and define a reduced size implicit function [δ̃1, δ̃2] = H̃RS(X̃, Ỹ). Due

to the reduce system size, the (outer) Newton-Krylov method becomes more efficient

while requiring less memory. For our specific index one system, detailed algebraic

manipulation of the implicit function H̃RS returns the explicit form of the Jacobian

matrix

[
I −∆tS̃a11 + ∆tS̃ a13a31

a33
−∆tS̃a12 + ∆tS̃ a13a32

a33

−∆tS̃a21 + ∆tS̃ a23a31
a33

I −∆tS̃a22 + ∆tS̃ a23a32
a33

]−1
(

∆tS ⊗

[
a11 − a13a31

a33
a12 − a13a32

a33

a21 − a23a31
a33

a22 − a23a32
a33

]
−

[
I 0

0 I

])
.

In this formulation, S̃I is associated with a22 term. The requirement that the provisional

solution satisfies the algebraic equation constraint at all nodes is equivalent to applying

S̃I to terms associated with coefficient factors a13 and a23, and S̃E can be applied to

all remaining terms. For large stiff systems, when proper time step-size ∆t is used,

it can be shown that the Jacobian matrix of H̃RS is very close to the identity matrix

except for a few bad eigenvalues due to the stiff components. Finally, similar to the

first formulation, it is not necessary to enforce the requirement that the provisional

solution always stays on the manifold described by the algebraic equation, and under

appropriate conditions, S̃E can be applied to terms with coefficient factors a13 and a23,

e.g., when the coefficients a13a31
a33

, a13a32
a33

, a23a31
a33

, and a23a32
a33

are O(1).

21

In summary, it can be seen that the choice of splitting of the DAE into explicit and

implicit pieces can profoundly affect the efficiency in the “function evaluations” and

expected convergence of the (outer) Newton-Krylov iterates in SI-KDC methods even

for index 1 problems. Therefore the choice of splitting must be carefully considered

and will depend on the problem at hand.

3.3 Index Two DAE System

Now consider the case of index 2 problems. We demonstrate here that the task-

ing of finding proper semi-implicit preconditioners becomes even more involved for

higher-index DAE systems. In this section, focusing on the formulation where the “yp-

formulation” is applied to both differential and algebraic variables, we again consider

a simple linear index two DAE system

xt = a11x+ a12y + a13z,

yt = a21x+ a22y + a23z,

0 = a31x+ a32y

(3.12)

with stiff component a22, and study the convergence and stability properties of different

preconditioning techniques.

Assume a provisional solution is available, the error equation form of this index two

system is given by

X̃ + δ1

Ỹ + δ2

0

 = A

x0 + ∆tSX̃ + ∆tSδ1

y0 + ∆tSỸ + ∆tSδ2

z0 + ∆tSZ̃ + ∆tSδ3

 (3.13)

where

A =

a11 a12 a13

a21 a22 a23

a31 a32 0

 . (3.14)

22

The implicit function δ̃ = H̃(X̃, Ỹ , Z̃) can then be derived by solving the system

I −∆tS̃a11 −∆tS̃a12 −∆tS̃a13

−∆tS̃a21 I −∆tS̃a22 −∆tS̃a23

−∆tS̃a31 −∆tS̃a32 0

δ̃1

δ̃2

δ̃3

 = A

x0 + ∆tSX̃

y0 + ∆tSỸ

z0 + ∆tSZ̃

−

X̃

Ỹ

0

 .

where S̃ is either S̃I or S̃E representing the low-order approximation of the integration

operator. Clearly, we have to apply S̃I to the stiff component with coefficient a22. If we

want to enforce the condition that the provisional solution stays on the manifold defined

by the algebraic equation, S̃I should be applied to both a31 and a32 terms. Also, we

can apply S̃E to a11, a12, and a21 terms. In the following, we discuss different strategies

for a13 and a23 terms, corresponding to terms related with the algebraic variable z in

the system.

Our first observation is that unlike in the first formulation for index one DAE

systems, S̃E can no longer be applied to both a13 and a23 terms, as doing so generates

an over-determined linear system when marching from tj to tj+1. Three remaining

possibilities are to apply S̃I to both terms (SIKDC-II); or S̃E to a13 and S̃I to a23

(SIKDC-EI); or S̃I to a13 and S̃E to a23 (SIKDC-IE).

Applying the implicit function theorem, we can derive the Jacobian matrix for each

implicit function H̃ in the KDC framework. The Jacobian matrix JII for SIKDC-II is

given by

E −∆tS̃E ⊗

a11 a12 0

a21 0 0

0 0 0

−∆tS̃I ⊗

0 0 a13

0 a22 a23

a31 a32 0

−1

(∆tS ⊗ A− E),

JEI is

E −∆tS̃E ⊗

a11 a12 a13

a21 0 0

0 0 0

−∆tS̃I ⊗

0 0 0

0 a22 a23

a31 a32 0

−1

(∆tS ⊗ A− E),

23

and JIE is

E −∆tS̃E ⊗

a11 a12 0

a21 0 a23

0 0 0

−∆tS̃I ⊗

0 0 a13

0 a22 0

a31 a32 0

−1

(∆tS ⊗ A− E).

Similarly, repeating this procedure for the FI-KDC scheme, we get the Jacobian matrix

JFI E −∆tS̃I ⊗

a11 a12 a13

a21 a22 a23

a31 a32 0

−1

(∆tS ⊗ A− E).

It is possible to understand the properties of the four different preconditioning

techniques by studying the condition numbers of simple 3 × 3 matrices representing

the linear system to be solved during each step when marching from tj to tj+1. In the

following, assume the stiff component I −∆tS̃Ia22 in the matrix

I −∆tS̃a11 −∆tS̃a12 −∆tS̃a13

−∆tS̃a21 I −∆tS̃a22 −∆tS̃a23

−∆tS̃a31 −∆tS̃a32 0

 (3.15)

is about order λ, and the magnitude of other terms is either order ε when ∆tS̃I is

applied, or 0 when an explicit time stepping scheme is used. The matrices for SIKDC-

II, SIKDC-EI, SIKDC-IE, and FIKDC are

1 0 ε

0 λ ε

ε ε 0

 ,

1 0 0

0 λ ε

ε ε 0

 ,

1 0 ε

0 λ 0

ε ε 0

 , and

1± ε ε ε

ε λ ε

ε ε 0

 ,

respectively. For λ = 103 and ε = 10−3, the condition number of the Jacobian matrix

corresponding to these matrices are 9.99 · 108, 1.00 · 1012, 1.00 · 109 and 9.99 · 108, and

the corresponding eigenvalues of SIKDC-II, SIKDC-IE, and FIKDC are almost identi-

cal. We therefore conclude that the convergence and stability properties of SIKDC-II,

SIKDC-IE, and FIKDC are similar, while SIKDC-EI is not a proper preconditioner as

24

it is more ill-conditioned. Our numerical experiments also reveal that the numbers of

iterations in the outer Newton-Krylov methods for both SIKDC-II and SIKDC-IE are

approximately the same as that of FI-KDC. However as the unknowns can be decoupled

in the SIKDC-IE formulation (when marching from tj to tj+1, we first solve the second

equation for δ̃2 at tj+1, then the third equation for δ̃1, and finally the first equation for

δ̃3), SIKDC-IE is therefore the most efficient preconditioning approach.

Finally in this section, note that a good semi-implicit preconditioning technique

should reduce the amount of work required for evaluating the corresponding implicit

function H̃ without significantly changing the convergence properties of the outer

Newton-Krylov methods. This is possible for many stiff DAE systems, especially for

those with nonlinear non-stiff components and linear stiff parts. However, finding the

optimal semi-implicit preconditioner is usually problem dependent and requires better

understanding of the underlying properties of the system. Also, in order to fully exploit

the efficiency of the new KDC methods, optimized strategies have to be developed for

the selection of adaptive step-size, order of the method, proper Newton-Krylov meth-

ods, as well as several different parameters. As the discussion here indicates, optimizing

the performance of KDC methods for a particular class of problems is an open research

problem.

3.4 Numerical Results

In this section, we present several numerical examples to illustrate the performance

of the SI-KDC methods, and validate the analyses presented in previous section.

3.4.1 Nonlinear ODE Example

First, we study a stiff nonlinear multi-mode ODE problem from [44] consisting of

N coupled equations

y′i(t) = p′i(t)− λiyi+1(t)(yi(t)− pi(t)), i ≤ N − 1

y′N(t) = p′N(t)− λi(yi(t)− pi(t)), i = N.
(3.16)

25

1 2 3 4 5 6 7 8

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

8 Gaussian points

Number of Iterations

E
rr

or

FI−KDC
SI−KDC

Figure 3.1: Comparing the convergence of SI-KDC and FI-KDC.

The analytical solution is yi(t) = pi(t) where pi(t) = 2 + cos(t + αi) and the phase

parameter αi = 2πi/N . We set N = 7 and choose λi as [1, 1, 1, 1, 1, 1, 107]. These

equations can be split into two groups: the first six equations are nonlinear and non-

stiff, and the last equation is linear and stiff.

In the calculation, we march from t0 = 0 to tfinal = 3, and use 8 Gaussian nodes in

each time step with ∆t = 0.5. We apply the SI-KDC method with forward Euler for the

non-stiff component and backward Euler for stiff part, and compare results with those

from FI-KDC. In Fig. 3.1, we compare the accuracy and convergence. It can be seen

that the number of outer Newton-Krylov iterations for the SI-KDC is comparable to

that in FI-KDC for the same accuracy requirement. However, in the SI-KDC scheme,

no inner Newton iterations are required, as compared with ≈ 10 inner Newton iterations

required in the FI-KDC approach. The SI-KDC is therefore more efficient for the same

accuracy requirement.

3.4.2 Van der Pol Problem

In our second example we consider the Van der Pol oscillator which after rescaling

gives

y′1 = y2, (3.17)

y′2 = (−y1 + (1− y21)y2)/ε. (3.18)

26

5 10 15 20 25 30 35
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

8 Gaussian points

Number of Iterations

R
es

id
ua

l

k=2 SI−KDC
k=2 FI−KDC
k=5 SI−KDC
k=5 FI−KDC
k=8 SI−KDC
k=8 FI−KDC

Figure 3.2: Comparing the convergence of GMRES(k0) for different k0 for SI-KDC and
FI-KDC

This is a popular test problem for nonlinear stiff ODE solvers. In this problem, as ε

approaches zero, the second equation becomes increasingly stiff. Notice that when the

first equation is treated explicitly to update y1, the second equation becomes linear with

respect to y2. Therefore, only linear equations appear in the low-order time marching

scheme when an semi-implicit approach is applied.

In the experiment, we set ε = 10−6 and use 8 Gaussian points for each time step. We

march from t = 0 to t = 0.05 using ∆t = 0.0125. Our numerical experiments show that

the number of outer Newton-Krylov iterations in the SI-KDC is comparable to that in

FI-KDC for the same accuracy requirement and parameter settings. In the following,

focusing on the restarted GMRES based Newton-Krylov method, we compare the con-

vergence of the SI-KDC and FI-KDC methods. When a full GMRES orthogonalization

scheme is used, as both the memory and number of operations grow rapidly when the

number of iterations increases, a common practice is to use the restarted GMRES so

the size of the Krylov subspace is bounded by a restarting value k0. In general, large

k0 means better convergence properties of the Newton-Krylov method, at the cost of

additional memory allocation and extra arithmetic operations.

In Fig. 3.2, we show how different choices of k0 change the properties of the Newton-

Krylov iterations, and compare the convergence of the SI-KDC to that of the FI-KDC

method. In this example, the residual represents the 2-norm of the residual for the

linearized equation. It can be seen that FI-KDC is optimal in stability and has better

convergence properties in the outer Newton-Krylov iterations under the same parameter

27

settings. However, the residual after each Newton-Krylov iteration in SI-KDC decays

in a very comparable way as in FI-KDC. In each SDC iteration, approximately 10 inner

Newton iterations are required in FI-KDC to march from tm to tm+1, while only one

linear solve is needed in SI-KDC, we therefore conclude that the SI-KDC approach is

more efficient than FI-KDC for this example.

Note that for fixed size k0 in GMRES, when k0 is large, unnecessary GMRES it-

erations will be performed, while much slower convergence is observed when k0 is too

small. Indeed, finding optimal parameters in the Newton-Krylov methods is an ac-

tive research area. Our experiments indicate that dynamically chosing k0 may result in

optimal Newton-Krylov algorithms which converge super-linearly or even quadratically.

3.4.3 Linear Index One DAE System

In the third example, we consider an index one DAE system

1 0 1 0

0 1 0 0

0 0 1 0

0 0 0 0

y1

y2

y3

y4

′

=

2 0 −1 1

0 −104 0 0

1 0 0 0

1 1 0 1

y1

y2 − exp(t)
y3

y4

+

0

exp(t)

0

0

 (3.19)

Notice that the equations can be decomposed into three parts: the first and third

differential equations are non-stiff, so an explicit time stepping scheme can be applied;

the second equation contains a stiff part due to the coefficient −104, so an implicit

scheme is used for this stiff component; as the fourth equation is an algebraic equation,

we apply implicit schemes to keep the provisional solution on the manifold defined by

this algebraic equation. This semi-implicit scheme can be represented in the matrix

form as
2ex 0 −1ex 1ex

0 (−104)im 0 0

1ex 0 0 0

1im 1im 0 1im

where the superscript for each non-zero coefficient describes whether an implicit or

explicit approach is applied to the corresponding term. The eigenvalue distribution

28

of the matrix JSI + I is compared with that of JFI + I from the FI-KDC method

in Fig. 3.4.3. It can be seen that the results from the SI-KDC approach are almost

identical to those from FI-KDC. As the convergence of the Newton-Krylov schemes

are determined by the eigenvalue distributions, our numerical experiments also show

that the convergence rate of the SI-KDC are almost identical to those from FI-KDC.

However, to march from tj to tj+1, as the unknowns are decoupled in the semi-implicit

preconditioning approach, the SI-KDC method becomes more efficient.

−2 −1.5 −1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5

Real part of eigenvalues

Im
ag

in
ar

y
pa

rt
 o

f e
ig

en
va

lu
es

FI−KDC
SI−KDC

Figure 3.3: Comparing the eigenvalue distributions of SI-KDC with FI-KDC.

Instead of using the full GMRES and the restarted GMRES(k0), alternative tech-

niques can be used to further reduce the required storage and number of operations in

the Krylov subspace methods, such as the Bi-conjugate gradients stabilized (BiCGStab)

and transpose free quasi minimal residual(TFQMR) methods. In Fig. 3.4, we compare

the convergence of the GMRES method with BiCGStab and TFQMR. In the experi-

ments, we use 5 Radau points for t ∈ [1, 2] and march with step-size ∆t = 0.1. Our

numerical results show very similar convergence rates for these methods, however for

large number of Newton-Krylov iterations, the required memory is bounded and the

number of multiplications only grows linearly for BiCGStab and TFQMR based meth-

ods.

29

1 2 3 4 5
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Number of Krylov Iterations

R
es

id
ua

l

GMRES
BiCGStab
TFQMR

Figure 3.4: Comparing different Krylov subspace methods.

3.4.4 Nonlinear Index One DAE System

In our fourth example, we consider a nonlinear DAE problem

y1 − cost
y2 − sint

0

′

=

0 0 0

0 −106 0

0 0 0

+ U

−1 0 0

0 0 0

1 1 1

U ′

(y1 − cost)y2
y2 − sint
y3 − t

(3.20)

where U is an orthogonal matrix. For this system, the non-stiff component is nonlinear

and the stiff part linear, we therefore apply the explicit S̃E to the non-stiff component

and the implicit S̃I to the stiff part. Notice that only one linear solve is required in the

SI-KDC scheme, in the following, we compare the convergence rate and CPU time of

the SI-KDC scheme with those from FI-KDC where implicit time stepping schemes are

applied to all terms in the system. In Fig. 3.5, we compute the solution from t0 = 0.2

to tfinal = 0.25 with step-size ∆t = 0.05, using 5 Radau IIa points, and examine the

residual after each Newton-GMRES iteration for both SI-KDC and FI-KDC methods.

It can be seen that the convergence rate in SI-KDC scheme is very similar to that in

FI-KDC.

To compare the CPU times, we use different number of nodes(3, 5, 8, 12 and 20)

and march from t = 0 to tfinal = 10.0 with step-size ∆t = 1.0. In Fig. 3.6, we plot the

number of accurate digits as functions of (left) the CPU time and (right) the number of

30

1 2 3 4
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

Number of Krylov Iterations

R
es

id
ua

l

SI−KDC
FI−KDC

Figure 3.5: Comparing the convergence rate of the SI-KDC and FI-KDC methods.

function evaluations (each access to Eq. (3.20) is defined as one function call) for each

method. Each data point represents the result for a specific number of nodes. Clearly,

for the same accuracy requirement, the SI-KDC scheme is much faster than FI-KDC,

since only one linear solve is required when marching from tj to tj+1 for the SI-KDC

method, while a nonlinear equation system has to be solved in the FI-KDC approach.

(a) (b)

0 0.5 1 1.5 2 2.5

6.8

7

7.2

7.4

7.6

7.8

8

8.2

8.4

CPU Time

N
u

m
b

e
r

o
f
a

c
c
u

ra
te

 d
ig

it
s

FI−KDC
SI−KDC

0 1 2 3 4 5

x 10
5

6.5

7

7.5

8

8.5

9

Number of function evaluations

N
u

m
b

e
r

o
f
a

c
c
u

ra
te

 d
ig

it
s

FI−KDC
SI−KDC

Figure 3.6: The number of accurate digits as functions of CPU time (left) and number
of function evaluations (right).

31

3.4.5 Electrical Power System

The differential algebraic equations have been widely used in the study and en-

gineering of the bulk transfer of electrical powers. Typical electrical power system

networks include a large number of dynamic and static components such as generators,

exciters, governors, loads, transformers, and other power electronic devices, where the

dynamics and constraints for each individual component are often modeled by several

DAEs. As the power systems exhibit a wide-range of time varying dynamics that may

span several orders of magnitude, their efficient numerical simulations are often consid-

ered challenging. In this section, to evaluate the performance of the SI-KDC approach,

we consider a simple power stabilizer system which has 9 buses and 3 generators with

constant power loads. Each generator has 2 states, so the number of differential states

and algebraic equations are 6 and 18, respectively. This system can be described by

the following DAE system:

δ′ = Ωb(ω − 1)

ω′ = (Pm − Pe −D(ω − 1))/M

Vi
∑

(Vj(Gijcos(θi − θj) +Bijsin(θi − θj))) + Pgi − Pdi = 0

Vi
∑

(Vj(Gijsin(θi − θj)−Bijcos(θi − θj))) +Qgi −Qdi = 0

where Pe = f(Vi, θi), δ and ω are the internal state vector (generators and loads) as

written by differential variables, and Vi and θi are the algebraic variables for voltage

magnitude and phase. In the system, D is a coefficient representing a damping factor,

and when D has a big magnitude, the system becomes stiff; M is an inertia constant;

Pm denotes the mechanical power; Pe is the electrical power; Pg and Qg represent

respectively the active and reactive power injected in the network by generators; Pd

and Qd are respectively the active and reactive power absorbed from the network by

loads; and Gij and Bij are respectively a real and an imaginary part of an admittance

matrix to represent the current status between load i and load j. Also, the first two

sets of differential equations model the dynamics of the generators and loads, and the

remaining algebraic equations represent the fast power balance dynamics on the sparsely

connected distribution network of power lines and buses. To study the dynamics of the

system, we assume a one-phase fault on a line between bus 2 and bus 7 occurs at t = 1,

and clears out at t = 2. When the fault occurs, the shunt admittances of the network

32

are modified and the admittance matrix is recomputed. We neglect further details of

this model and refer interested readers to [5, 63].

In our SI-KDC approach, we use 6 Radau IIa nodes for each time step from t = 0

to t = 1.8. In the simulation, we require that the provisional solution stays on the

manifold defined by the algebraic constraints. However we apply explicit schemes to

both non-stiff components and the algebraic variables in the differential equations. In

fig. 3.7, we first show how the accuracy of the SI-KDC method depends on the number

of Radau IIa nodes and different time step sizes, by plotting the accuracy as a function

of the number of total nonlinear solves (one nonlinear solve is required to marching

from tj to tj+1). It can be seen that (a) for a fixed number of nodes, smaller time step

60 80 100 120 140 160 180 200
3

4

5

6

7

8

9

10

11

12

Number of nonlinear solves

N
um

be
r

of
 a

cc
ur

at
e

di
gi

ts

n=3
n=4
n=5
n=6
n=7
n=8

Figure 3.7: Accuracy of SI-KDC method vs. number of nonlinear solves for different
node numbers.

sizes (more nonlinear solves) are required for higher accuracy requirements, and (b)

higher order methods (more nodes) are in general more efficient than lower order ones

for higher accuracy requirements.

In Fig 3.8, to study the convergence properties of the Newton-Krylov methods in the

SI-KDC approach, we show the residual after each low order SDC iteration (one H̃SI

evaluation) (left plot), and how the accuracy depends on the number of total nonlinear

solves required to march from tj to tj+1 (right plot). These results are compared

with those from the FI-KDC approach. Clearly, the FI-KDC approach is optimal in

stability and has (slightly) better convergence rates in the Newton-Krylov iterations,

however the residual after each H̃ evaluation (SDC iteration) in the SI-KDC method

33

decays in a very similar way as in FI-KDC. As explicit schemes are applied to the

non-stiff components and algebraic variables in the differential equations, e.g., the size

of nonlinear system from SI-KDC scheme is smaller than that from FI-KDC method,

therefore the SI-KDC preconditioning technique is more efficient than FI-KDC for this

specific application.

(a) (b)

0 5 10 15 20
10

−12

10
−10

10
−8

10
−6

10
−4

Number of SDC iterations

R
e

s
id

u
a

l

SI−KDC
FI−KDC

0 50 100 150 200

10
−12

10
−10

10
−8

10
−6

10
−4

Number of nonlinear solves

E
rr

o
r

SI−KDC
FI−KDC

Figure 3.8: (left) Residual after each SDC iterations, and (right) accuracy vs. # of
nonlinear solves.

There exist many numerical simulation tools and methods for power systems [2,

51, 79], including the techniques based on splitting the DAE systems to differential

and algebraic parts and solve them separately using ODE solvers for the differential

parts and a Newton-type method (e.g. Newton-Raphson) for algebraic components.

In the following, we compare the performance of our SI-KDC approach with a Matlab

based package called “PSAT”, a power system solver based on the Newton-Raphson

methods and trapezoidal rules [57]. In Fig. 3.9, we examine the accuracy of the SI-KDC

approach for different time step sizes and number of nodes, and compare the results

with those from PSAT. In the figure, each curve represents the results for a fixed time

step size, and each point on the curve represents the different number of nodes used in

the simulation, ranging from 3 to 10. Clearly, for a fixed step-size, more nodes generate

higher accuracy results, and higher order methods are more efficient for a prescribed

accuracy requirement. Also, compared with PSAT, the SI-KDC requires much less

nonlinear solves for the same accuracy requirement. In our simulation, fixed step sizes

are used for both SI-KDC and PSAT.

34

60 80 100 120 140 160 180 200 220
2

3

4

5

6

7

8

9

10

11

12

13

Number of nonlinear solves

N
um

be
r

of
 a

cc
ur

at
e

di
gi

ts

dt=1
dt=0.5
dt=1/3
dt=0.2
psat(dt=0.01)

Figure 3.9: Comparing the accuracy and efficiency of SI-KDC with PSAT.

3.4.6 Linear Index Two DAE Systems

Finally in this section, to numerically validate the analyses in Sec. 3.3, we study

the SI-KDC techniques for two different index two DAE systems. We first consider the

system (see [6])

x′1 = (α− 1

2−t)x1 + (2− t)αz + 3−t
2−t expt = f1(x1, z),

x′2 = 1−α
t−2 x1 − 104x2 + (α− 1)z + (104 + 1) expt = f2(x1, x2, z),

0 = (t+ 2)x1 + (t2 − 4)x2 − (t2 + t− 2) expt = g(x1, x2)

with α ∼ O(1). Several semi-implicit approaches can be applied as discussed in Sec. 3.3.

The SIKDC-II approach applies implicit schemes to the algebraic variable z in both

differential equations, and the resulting low order stepping scheme can be succinctly

represented as
Xj+1

1 = f1(x
j
1, z

j+1),

Xj+1
2 = f2(x

j
1, x

j+1
2 , zj+1),

0 = g(xj+1
1 , xj+1

2),

(3.21)

where the superscript j represents the node point tj, and the original equation is used

instead of the error equation form to simplify the notations. The SIKDC-IE formulation

applies an implicit scheme to z in the first equation, and an explicit method to z in the

35

second equation as in
Xj+1

1 = f1(x
j
1, z

j+1),

Xj+1
2 = f2(x

j
1, x

j+1
2 , zj),

0 = g(xj+1
1 , xj+1

2).

(3.22)

Similarly, the SIKDC-EI formulation is given by

Xj+1

1 = f1(x
j
1, z

j),

Xj+1
2 = f2(x

j
1, x

j+1
2 , zj+1),

0 = g(xj+1
1 , xj+1

2),

(3.23)

and the FI-KDC scheme uses the discretization

Xj+1

1 = f1(x
j+1
1 , zj+1),

Xj+1
2 = f2(x

j+1
1 , xj+1

2 , zj+1),

0 = g(xj+1
1 , xj+1

2).

(3.24)

As we discussed in Sec. 3.3, the SIKDC-EI preconditioning technique is ill-conditioned,

which is validated by the eigenvalue distribution of the matrix JEI + I plotted in the

left of Fig. 3.10, in comparison with those from JIE + I. In the right plot of Fig. 3.10,

we compare the eigenvalue distributions of the SIKDC-IE approach with the fully im-

plicit approach in Eq. (3.24), it can be seen that the eigenvalues are very similarly

distributed, therefore the convergence properties of the SIKDC-IE approach is similar

to those of the FI-KDC method. In Table. 3.1, we show the condition number of the

Jacobian matrix for different low order stepping schemes and different number of nodes.

Not surprisingly, the condition number of the SIKDC-EI matrix is huge and increases

very rapidly as the number of nodes increases.

We want to mention that for special systems, SIKDC-EI can be stable. Consider

the index two system

x′1 = x1 = f1(x1),

x′2 = 2x1 − 105x2 + z + (105 + 1) exp(t) = f2(x1, x2, z)

0 = x1 + x2 = g(x1, x2)

36

(a) (b)

−5 0 5 10 15

x 10
11

−20

−10

0

10

20

Real part of eigenvalues

Im
a

g
in

a
ry

 p
a

rt
 o

f
e

ig
e

n
v
a

lu
e

s

SIKDC−IE
SIKDC−EI

−80 −60 −40 −20 0 20
−8

−6

−4

−2

0

2

4

6

8

Real part of eigenvalues

Im
a

g
in

a
ry

 p
a

rt
 o

f
e

ig
e

n
v
a

lu
e

s

FI−KDC
SIKDC−IE

Figure 3.10: Comparing the eigenvalue distributions for (left) SIKDC-IE and SIKDC-
EI, and (right) SIKDC-IE and FI-KDC.

SIKDC-II SIKDC-IE SIKDC-EI FIKDC
n=3 1.0961e+10 1.0895e+10 3.7478e+17 9.2462e+09
n=4 1.0488e+10 1.0372e+10 3.6052e+19 9.4638e+09
n=5 1.0406e+10 1.0229e+10 2.7762e+21 9.7303e+09
n=8 1.0691e+10 1.0248e+10 1.1832e+27 1.0405e+10
n=10 1.1015e+10 1.0323e+10 8.7312e+30 1.0821e+10
n=15 1.2053e+10 1.0491e+10 2.2292e+38 1.1951e+10
n=20 1.3376e+10 1.0603e+10 4.8088e+43 1.3307e+10

Table 3.1: The condition number of Eq. (3.15) for different number of nodes and low
order discretizations.

37

where the algebraic variable z does not appear in the first equation. For this problem,

the eigenvalue distribution of the matrix JEI + I is almost identical to that of the

FI-KDC as shown in Fig. 3.11, and the SIKDC-EI approach becomes stable. In our

−150 −100 −50 0 50
−15

−10

−5

0

5

10

15

Real part of eigenvalues

Im
ag

in
ar

y
pa

rt
 o

f e
ig

en
va

lu
es

FI−KDC
SI−KDC

Figure 3.11: Comparing the SI-KDC and the FI-KDC for index 2 linear DAE.

numerical simulation, we use 7 Radau nodes for each time step, and march from t = 0.2

to t = 1.2 using step-size ∆t = 0.1. As the system is linear, no Newton iteration

is required and we use the GMRES method to solve the preconditioned system. In

Fig. 3.12, we compare the residual after each GMRES step for both the SIKDC-EI and

FI-KDC methods for one time step. Again, the convergence of the SIKDC-EI approach

is very similar to that of the FI-KDC.

We want to mention that other higher index DAE systems are also being studied.

Our analysis and numerical experiments show that designing optimal semi-implicit

schemes for stiff DAE systems are highly problem dependent, and requires detailed

study of the linearized system.

38

1 2 3 4 5
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Number of Deferred Correction Iterations

R
es

id
ua

l

FI−KDC
SI−KDC

Figure 3.12: Comparing the SI-KDC and the FI-KDC for index 2 linear DAE.

39

Chapter 4

An Evaluation of Solution for

Modeling an Ion Exchange Process

In this chapter, we show how the semi-implicit KDC techniques can be applied to

simulate an ion exchange process in drinking water treatment devices. The process is

modeled by a two-scale differential equation system in which a set of microscopic diffu-

sion equations are coupled to a macroscale ordinary differential equation. Also, to avoid

the computational expense of the Monte-Carlo simulations used in previous research,

we introduce a new age-averaged effective model to further advance the efficiency of

the multiscale modeling.

4.1 Modeling Dissolve Organic Carbon Removal Pro-

cess

An important research topic and application in drinking water treatment is the

effective removal of dissolved organic carbon (DOC). It is well known that DOC con-

tributes taste, odor, and color to raw drinking water; reacts with chlorine to form

disinfection byproducts; and fouls membrane filtration systems. There are a variety

of processes that can be used to remove DOC. An advanced DOC removal process is

the ion exchange resin treatment in a completely mixed flow reactor (CMFR), which

has been shown to be more effective than traditional coagulation processes[16, 56, 75].

Figure 4.1: Continuous flow process schematic

The ion exchange process operates as shown schematically in Fig. (4.1): raw water

and ion exchange resin are mixed in a CMFR; the treated water exits the reactor; a

majority of the ion exchange resin is continuously recycled within the reactor; and a

small fraction of ion exchange resin is removed from the reactor, regenerated to restore

exchange capacity, and added back to the reactor [17]. During the residence time in

the reactor charged natural organic matter species in the water phase undergoes ion

exchange within the resin phase, thereby reducing the water phase concentration of this

species. The ion exchange particles are micro-porous, consisting of rigid solid particles

with an internal, water-filled pore structure. Species within the bulk aqueous phase

can diffuse within the pore structure and interact with the solid surfaces within the

resin via an ion exchange mechanism. This process thus involves two length scales,

the macroscale of the reactor, which in this case is well mixed, and the microscale,

which is the length scale of the individual resin particles. Diffusion is the dominant

transport mechanism within the ion exchange particles, which are nearly spherical in

shape. Like all mass transfer processes, mechanistic description of this ion exchange

process requires consideration of the thermodynamic equilibrium state and the rate of

approach to that state.

Previous work has modeled this ion exchange problem using a two-scale approach

[18] consisting of a linear equilibrium relationship between the aqueous phase concen-

tration and the solid phase concentration, a set of spherically symmetric microscale

diffusion equations to describe the rate of ion exchange, and a macroscale ordinary

differential equation to represent the overall effect of ion exchange from all particles on

the aqueous phase concentration exciting the treatment process. Unlike most existing

41

mass transfer models in which a uniform particle size for the solid phase is assumed, we

follow research results from [65, 78] and consider multiple particle size-classes, which

more accurately represent the actual conditions present in the system. We denote the

total number of such classes by Nsize and assume the size distribution of the resin par-

ticles is time-independent [18]. Also, due to the flow in the CMFR system, each ion

exchange resin particle is resident in the CMFR for a varying length of time, i.e., new

resin particles come into the system continuously, simultaneously replacing an equal

portion of the resident resin particles. Therefore, a residence time distribution (RTD)

can be introduced to describe the “age” of each particle size class in the CMFR. We

refer to the discretized total number of particle age-classes as Nage, which approximates

the RTD. Detailed study of the two-scale model follows.

4.1.1 Microscale Model

At the scale of an individual resin particle, which we will refer to as the microscale,

we model transport as spherical diffusion through a homogeneous, symmetric particle

through the following closed conservation of mass equation written in terms of the

water-phase solute concentration c in the pore fluid as

(1 + (1−εp)ρs

εp

∂q
∂c

)∂c
∂t

= Dp,e

r2
∂
∂r

(r2 ∂c
∂r

)

c(t = 0, r) = 0
∂c
∂r
|r=0 = 0, t > 0

c(t > 0, r = R) = C

where q is the solute mass fraction of the solid phase, which is a linear function of c,

εp is the resin porosity, t is time, ρs is the solid phase density, Dp,e is the effective pore

diffusion coefficient, r is the radial distance from the center of the resin particle, R is

the resin particle radius, and C is the solute concentration in the bulk fluid within the

CMFR. We further assume that εp and ρs are constants and Dp,e is independent of the

solute concentration.

As in [18], we assume a linear relation between the solute concentration c in the

pore fluid and the solute concentration q on the solid phase, which has been validated

by experiments, and denote the linear factor by KD, where q = KDc. The microscale

42

model is then given by

(1 + (1−εp)ρsKD

εp
)∂c
∂t

= Dp,e

r2
∂
∂r

(r2 ∂c
∂r

)

c(t = 0, r) = 0
∂c
∂r
|r=0 = 0, t > 0

c(t > 0, r = R) = C.

(4.1)

Note that the solute concentration C in the CMFR is unknown in this microscale

system. In order to complete the model, an equation for C at the macroscale will be

developed in next section.

The equation system in (4.1) is for each specific particle size and age, therefore in

the numerical simulation, Nsize×Nage diffusion systems need to be solved at each time

step, which is the most time consuming part of the numerical simulation.

4.1.2 Macroscale Model

The macroscale portion of the model is a conservation of mass equation for a CMFR,

which consists of mass entering the system in the water phase, mass exciting the system

in the water phase, and mass transfer from the water phase to the ion exchange resin.

Under the conditions of a constant volume of fluid V in the CMFR, the macroscale

model is {
V dC

dt
= Q(C0 − C)−Ma−s,

C(t = 0) = C0,
(4.2)

where V is the volume of the water phase in the reactor, Q is the volumetric flow rate,

C0 is the influent solute concentration, C is the effluent solute concentration from the

reactor equal to the solute concentration in the bulk fluid phase, and Ma−s is the total

interphase mass exchange of solute from the aqueous phase to the resin phase, which

can be determined by the microscale model using

Ma−s =
ms

(1− εp)ρsR
3F,

43

where F is the microscale mass flux and ms is the total mass of solids in the system

defined as

ms = CRρaV.

Here CR is the volume of resin normalized by the volume of the water in the reactor,

the resin is assumed to be incompressible, and ρa = (1 − εp)ρs is the bulk density of

the resin. For a system with the same size and age particles, the flux into the particle

is defined by

F = εpDp,e
∂c

∂r

∣∣∣∣
r=R

.

This equation shows how the macroscale model couples with the microscale system.

For a system with multiple sizes and ages of resin particles, Ma−s can be defined as the

integral of flux with respect to particle sizes and ages as in

Ma−s =
3εpDp,ems

ρa

∫ Rmax

Rmin

∫ tmax

tmin

1

R

∂c

∂r

∣∣∣∣
r=R

g(ta)h(R)dtadR

where g(ta) is the particle age probability density function, and h(R) is the particle

size probability density function.

4.1.3 Two-Scale Model

Combining the micro- and macro-scale systems, the two-scale model for the ion

exchange process is summarized by Eqs. (4.3-4.4) as follows. At microscale, for each

resin particle size the retarded diffusion equation model is

Rf

∂c
∂t

= Dp,e

r2
∂
∂r

(r2 ∂c
∂r

),

c(t = 0, r) = 0,
∂c
∂r
|r=0 = 0, t > 0,

c(t > 0, r = R) = C

(4.3)

where the retardation factor is

Rf = 1 +
ρaKD

εp
.

44

At macroscale, Eq. (4.2) can be rewritten as follows:

{
dC
dt

= Q
V

(C0 − C)−Ma−s/V,

C(t = 0) = C0.
(4.4)

For a batch system with no inflow or outflow, and a constant age of resin particles,

Eq. (4.4) can be written as follows:

{
dC
dt

= −Ma−s/V,

C(t = 0) = C0.
(4.5)

4.1.4 Age-Averaged Model

In order to simulate the two-scale model with the traditional algorithm, a diffusion

equation (4.3) must be solved at every time step for each particle size and age sampled

by the Monte-Carlo method. The solution of the Nsize × Nage diffusion equations is

the most time consuming part of the numerical simulation. In this section, instead

of using the Monte-Carlo approach to approximate the RTD (age), we derive a new

age-averaged model, by introducing a new unknown variable

cs(t, r) =
∑

all size s particles

cs,a(t, r) (4.6)

where cs,a is the solute concentration in the original two-scale model for a specific

particle of size s and age a, and the summation is for all particles of the same size s

(two particles may have the same size and age).

To derive the corresponding microscale equation for cs(t, r), we consider cs(t +

∆t, r)− cs(t, r), which can be computed as

cs(t+ ∆t, r)− cs(t, r) =
∑

staying

(cs,a(t+ ∆t, r)− cs,a(t, r))

−
∑

outgoing

cs,a(ti, r) +
∑

incoming

cs,a(ti, r), ti ∈ [t, t+ ∆t]

45

where “staying” particles represent the particles that are in the system from time t to

t + ∆t, “outgoing” and “incoming” particles are those particles leaving and entering

the CMFR in the time interval [t, t + ∆t], respectively. Further notice that for the

“incoming” particles, cs,a(ti, r) = 0 initially and
∑

outgoing cs,a(ti, r) can be determined

by the outgoing flow rate and the current cs(t, r) as in

∑
outgoing

cs,a(ti, r) = kcs(t, r)∆t

where k is determined by the outgoing flow rate in the CFMR system. Therefore,

cs(t+ ∆t, r)− cs(t, r)
∆t

=
∑

staying

(
cs,a(t+ ∆t, r)− cs,a(t, r)

∆t

)
− kcs(t).

As cs,a(t, r) satisfies the diffusion equation, letting ∆t → 0, we can derive the

differential equation for cs(t, r) and the resulting microscale system in the averaged

model becomes
Rf

∂cs(t,r)
∂t

= Dp,e

r2
∂
∂r

(r2 ∂cs(t,r)
∂r

)− kRfcs(t, r),

cs(t = 0, r) = 0,
∂cs(t,r)
∂r
|r=0 = 0, t > 0,

cs(t > 0, r = R) = n · C

where n is the total number of particles of size s and the initial and boundary conditions

are determined by studying the summation in Eq. (4.6). Normalize the variable cs by

c̃s(t, r) = cs(t, r)/n, we derive the age-averaged equation in

Rf

∂c̃s(t,r)
∂t

= Dp,e

r2
∂
∂r

(r2 ∂c̃s(t,r)
∂r

)− kRf c̃s(t, r),

c̃s(t = 0, r) = 0,
∂c̃s(t,r)
∂r
|r=0 = 0, t > 0,

c̃s(t > 0, r = R) = C.

To simplify the notation, we slightly abuse our notation and use cs to represent the

46

normalized c̃s, and summarize the age-averaged model as follows at the microscale

Rf

∂cs(t,r)
∂t

= Dp,e

r2
∂
∂r

(r2 ∂cs(t,r)
∂r

)− kRfcs(t, r),

cs(t = 0, r) = 0,
∂cs(t,r)
∂r
|r=0 = 0, t > 0,

cs(t > 0, r = R) = C,

(4.7)

and at the macroscale {
dC
dt

= Q
V

(C0 − C)− Ma−s

V
,

C(t = 0) = C0.
(4.8)

Compared with the original two-scale model, the microscale system in the age-

averaged model becomes a system of microscale diffusion-reaction equations, and the

coefficient for each reaction term can be measured or controlled by the regeneration

rate of the ion exchange resin in the CMFR system. Because, we have a well-mixed

system in which the size distribution is constant with time, k will be constant for all

particle sizes. An immediate advantage of the AAM is that sampling of different ages

is no longer necessary, hence the numerical simulations are greatly simplified.

4.2 KDC techniques coupled with Fast Elliptic Solvers

4.2.1 Semi-Implicit KDC Method

The application of the KDC method to the two-scale model using both the extant

Monte Carlo algorithm and the new AAM is straightforward. For the macroscale ODE

system, introducing U = dC/dt as the new unknown, a Picard type integral equation

formulation results of the form given by

U =
Q

V

[
C0 −

(
C0,m +

∫ t

0

U(τ)dτ

)]
− Ma−s

V
,

where Ma−s is determined by solving the system of microscale diffusion equations using

either the Monte Carlo or the AAM algorithm. Assuming a provisional solution Ũ is

available, we can define the error δ using U = Ũ + δ, and the Picard equation for the

47

error is given by

Ũ + δ =
Q

V

[
C0 −

(
C0,m +

∫ t

0

(
Ũ(τ) + δ(τ)

)
dτ

)]
− Ma−s

V
. (4.9)

Similarly, for the diffusion equation (Monte Carlo algorithm) or the diffusion-reaction

equation (AAM), we can introduce Y (t, r) = ∂c(t, r)/∂t as the new unknown, where c

is either cs,a for each sampled size and age particle in the Monte Carlo method, or cs in

AAM, and derive a Picard integral equation and corresponding error equation for Y .

Specifically, for the Monte Carlo method, the Picard type equation for each diffusion

equation of the form

rRf
∂c

∂t
= 2Dp,e

∂c

∂r
+ rDp,e

∂2c

∂r2

is given by

r
Rf

Dp,e

Y − 2
d

dr

∫ t

0

Y (τ, r)dτ − r d
2

dr2

∫ t

0

Y (τ, r)dτ = 2
d

dr
c0 + r

d2

dr2
c0.

Assuming a provisional solution Ỹ is available, the error equation for the error γ(t, r) =

Y (t, r)− Ỹ (t, r) becomes

r
Rf

Dp,e
(Ỹ + γ)− 2 d

dr

∫ t
0

(
Ỹ (τ, r) + γ(τ, r)

)
dτ − r d2

dr2

∫ t
0

(
Ỹ (τ, r) + γ(τ, r)

)
dτ

= 2 d
dr
c0 + r d2

dr2
c0.

(4.10)

The approach for the AAM is nearly identical, except for the reaction term, so we will

neglect these details without loss of clarity or completeness.

In the original KDC methods [43, 44, 45], for a given error equation, an explicit

low-order scheme (e.g., forward Euler method) was applied if the system was non-stiff

or mildly stiff, and an implicit low-order scheme (e.g., backward Euler method) was

used to approximate the error for stiff systems. In this section, to further improve the

efficiency of the KDC methods, we notice that the diffusion equation for γ is stiff but

linear, and the macroscale error equation for δ is non-stiff. Therefore, a semi-implicit

KDC scheme can be used in which an implicit scheme is applied to the microscale

diffusion system and an explicit technique is applied to the nonstiff macroscale ODE

48

system.

In order to solve the error equations (4.9 and 4.10) when marching from tm to tm+1

in the semi-implicit KDC (SI-KDC) scheme, we first apply an explicit low-order time

stepping scheme to the discretized macroscale equation. Application of the forward

Euler method yields the discretized system given by

Ũm+1 + δ̃m+1 =
Q

V

[
C0 −

(
C0,m + ∆tS ⊗ Ũ +

m+1∑
l=1

∆tlδ̃l−1

)]
−
(
Ma−s

V

)
m

(4.11)

where ∆tl+1 = tl+1− tl and δ0 = 0. Notice that no data at time tm+1 is required on the

right hand side of the equation. We further denote Eq. (4.11) as an implicit function

for δ̃ whose explicit form is given by

δ̃ = H̃macro(Ũ , Ỹ)

=

(
1 +

Q

V
∆tS̃E

)−1 [
Q

V

(
C0 − C0,m −∆tSŨ

)
− Ũ −

(
Ma−s

V

)
m

]
(4.12)

where S̃E is the matrix form of the lower-triangular approximation of the spectral

integration matrix S, which is equivalent to an explicit low-order time stepping scheme,

and the dependence on Ỹ is implicitly expressed in Ma−s/V .

Once δ̃m+1 is available, we can explicitly derive the boundary condition for the

microscale model at time tm+1. To march the diffusion type error equation (4.10) from

tm to tm+1 using a low-order method, as the equation is stiff, an implicit scheme has

to be applied in general for efficiency considerations (as much larger time stepsize can

be used). In our current implementation, the backward Euler method is used, and the

discretized system for γ̃m+1 becomes

r
Rf

Dp,e

Y −2
d

dr

(
∆tS +

m+1∑
l=1

∆tγ̃l

)
−r d

2

dr2

(
∆tS +

m+1∑
l=1

∆tγ̃l

)
= 2

d

dr
c0+r

d2

dr2
c0, (4.13)

49

which can written as an implicit method for γ̃ whose explicit form is given by

γ̃ = H̃micro(Ũ , Ỹ) =

(
r
Rf

Dp,e

− 2
d

dr
∆tS̃I − r

d2

dr2
∆tS̃I

)−1
(
d2

dr2
r(c0 + ∆tSỸ) + 2

d

dr
(c0 + ∆tSỸ)− r Rf

Dp,e

Ỹ

)
(4.14)

where S̃I is the corresponding lower triangular approximation of the spectral integration

matrix S, and the dependency on Ũ is implicitly expressed in the boundary conditions.

Notice that to find γ̃m+1(r), a linear elliptic equation of the form

a2γ̃m+1(r)−∇2γ̃m+1(r) = f(r)

must be solved, where all the known quantities are collected in f(r). This will be

discussed in the next section.

Since the zero of the preconditioned implicit microscale and macroscale system given

by {
0 = H̃macro(Ũ , Ỹ) = δ̃,

0 = H̃micro(Ũ , Ỹ) = γ̃
(4.15)

also satisfies the original collocation formulation symbolically denoted as

{
0 = Hmacro(U, Y),

0 = Hmicro(U, Y)
(4.16)

for both the Monte Carlo method and AAM, the Jacobian matrix of the preconditioned

system (4.15) is closer to the identity matrix than the original formulation (4.16), the

JFNK method can be applied directly to solve the preconditioned system (4.15), and

each function evaluation is simply one low-order time stepping approximation of the

errors δ̃ and γ̃.

It is also possible to further improve the efficiency of the algorithm by only applying

the Newton-Krylov methods to δ̃ = H̃macro(Ũ), and consider the microscale equations

as implicit functions of δ̃. The advantage of doing so is that the number of operations

and required storage can be greatly reduced in the Krylov iterations.

50

Finally, we note that there is a discontinuity in the solution of the diffusion equation

or the diffusion reaction equation: when t = 0, the boundary condition at r = R is

given by C 6= 0, while the solution inside the resin particle c(t = 0, r) = 0. Therefore

in our numerical simulation, we apply the second-order Crank-Nicolson method for the

initial several time steps with very small step-sizes, and start the higher order SI-KDC

solver once the solution becomes reasonably smooth. This will be further discussed in

Sec. 5.3.

4.2.2 Fast Elliptic Solver

When the microscale diffusion or diffusion-reaction equation is discretized using a

low-order implicit time stepping scheme (e.g., the backward Euler method), the result-

ing system becomes a Poisson type equation in the form

a2u−∇2u = k2u− 1

r2
∂

∂r

(
r2
∂u

∂r

)
= f(r) (4.17)

where f(r) is a given function. This equation is often referred to as the modified

Helmholtz equation in computational fluid dynamics, or the linearized Poisson-Boltzmann

equation when simulating the electrostatics in biomolecular systems. Existing nu-

merical schemes for this equation include finite difference, finite element, and in-

tegral equation methods. In particular, accurate and efficient numerical methods

based on integral equation formulations accelerated by fast algorithms are discussed

in [26, 27, 31, 37, 38, 39]. In this paper, we present the Chebyshev spectral integra-

tion method for the special spherical geometry, and discuss a numerical scheme for the

efficient solution of the scaled equation

cru− 2u′ − ru′′ = f(r). (4.18)

When the resin particles are of complex geometry, we refer interested readers to [26,

31, 39] for several integral equation methods accelerated by the new version of Fast

Multipole Methods (FMM).

In the Chebyshev spectral integration method, unlike traditional spectral methods,

51

we set the unknowns as the coefficients of the Chebyshev expansion of u′′ as in

u′′(r) =
∑
m=0

amTm(r)

where Tm is the Chebyshev polynomial of degree m defined as

Tm(r) = cos(m cos−1 r),

and we assume the Chebyshev expansion of the function f(r) is given by

f(r) =
∑
m=0

bmTm(r).

The advantage of studying the Chebyshev expansion of u′′ instead of the expansion for

u is that the spectral integration matrix, which maps the coefficients of u′′ to those

of u′, has a tridiagonal form as discussed in [37], and the resulting linear system for

{am} forms a hepta-diagonal system, which can be solved using approximately O(P)

operations where P terms are used in the expansion. Also, the spectral integration

schemes are more accurate and stable than the corresponding spectral differentiation

based schemes, as discussed in [24, 29, 37].

4.3 Numerical Results

In this section, we present numerical simulation results using the FEM and SI-KDC

schemes for both the original Monte Carlo method and the new AAM for the two-scale

ion exchange application. Our simulations were performed on a laptop with an Intel

2GHz CPU and 1GB of RAM.

52

4.3.1 Accuracy and Efficiency Comparisons

To study the accuracy and efficiency of the FEM and KDC methods, we applied

the methods to a diffusion equation system

∂c

∂t
=

D

Rf

(
∂2c

∂r2
+

2

r

∂c

∂r

)

with fixed boundary conditions. Introducing the new unknown u(t, r) = c(t, r) · r, the

equation for u becomes
∂u

∂t
=

D

Rf

∂2u

∂r2

with initial and boundary conditions

u(t, r = 0) = 0,

u(t, r = R) = RC0,

u(t = 0, r) = rf(r), 0 < r < R

where C0 is the constant concentration at the surface of the sphere. Notice that at t = 0,

C0 is not necessarily the same as f(R). This discontinuity in the initial/boundary values

makes the numerical simulation difficult when using approximation schemes requiring

smoothness properties of the solution. In this example, as the pseudo-spectral formula-

tion based KDC schemes are not advantageous for solutions with such a discontinuity,

so we first use a low-order method to march the equation from t = 0 to t = 0.01.

Once the solution becomes “smooth,” the KDC approach is applied. There exist many

numerical schemes for dealing with the sharp initial solution, and our approach was

intended to provide an approach that contributed negligibly to the error in the solu-

tion, but it is not an optimal approach. For example, the analytical form of this sharp

solution can be extracted using a Laplace transform and method of images, and the

KDC technique could then be applied to the remaining smooth part of the solution.

In Fig. 4.2, we first compare the accuracy of the FEM and KDC schemes. In the

FEM based scheme, cubic Lagrange polynomials are used as basis functions for the

Galerkin formulation and discretization is accomplished using 32 spatial nodes, which

were regularly spaced within 10 equivalent volume elements. In the KDC method, the

spatial elliptic equation was solved using the Chebyshev spectral integration method

53

with 32 Chebyshev nodes and the solution was further accelerated by using the fast

Fourier transform (FFT). For the temporal direction, seven Radau IIa nodes were used

so the temporal order was approximately 13. In both simulations, we marched from

t = 0.01 (so the analytical solution is reasonably smooth) to tfinal = 1 with ∆t = 0.1

(except for the last step), and use the exact solution to derive the initial and boundary

values.

0 0.2 0.4 0.6 0.8 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Radius

C
on

ce
nt

ra
tio

n(
c)

KDC(t=0.5)
Analytic(t=0.5)
FEM(t=0.5)
KDC(t=0.25)
Analytic(t=0.25)
FEM(t=0.5)
KDC(t=0.1)
Analytic(t=0.1)
FEM(t=0.1)

Figure 4.2: Comparison of the FEM, KDC, and analytic solutions for diffusion into
sphere with a fixed boundary condition.

From the numerical simulations, it can be seen that results from both the KDC and

FEM are close to the analytic solution. However, the results from the KDC method are

more accurate than those from FEM, which is not surprising due to the very high-order

of the KDC scheme. As for the efficiency of the numerical schemes, in order to acquire

5 to 9 digits accuracy in the KDC scheme, the number of required function evaluations

(each elliptic equation solve = one “function evaluation”) is in the range of 10 and 30.

While for the FEM, over 300 function evaluations are required to obtain 6 to 7 digits

of accuracy.

Higher order (in time) KDC methods may not be advantageous for “non-smooth”

solutions. For this test problem, as the given initial condition is discontinuous in spatial

and temporal directions at (r = 1, t = 0), a Crank-Nicolson method in time was applied

for the first few steps, and the higher order KDC method was used once the solution

became reasonably smooth. In Fig. 4.3, we compare the smoothness of the solution

at t = 0.0001, t = 0.001, and t = 0.01. Our numerical experiments show that using

54

32 spatial nodes for the interval [0, 1] and 7 temporal nodes for each marching step

with step-size 0.069, the KDC method can sufficiently resolve the solution in the time

interval [0.01, 0.7]. However such settings can not accurately resolve the solution for

t < 0.01.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Radius

C
on

ce
nt

ra
tio

n
of

 m
ic

ro
sc

al
e

At t= 0.01
 At t=0.001
At t=0.0001

Figure 4.3: Comparison of solutions for different initial times.

Due to the “non-smoothness” of the solution and current non-adaptive implemen-

tation of the KDC scheme, our numerical experiments show that compared with FEM,

KDC methods are less efficient when marching from t = 0.0001 to t = 0.01 for the same

accuracy requirement, while they become more efficient when marching from t = 0.01

to t = 0.7.

In Fig. 4.4, we compare the efficiency and accuracy of the FEM and KDC methods

by plotting the CPU time versus error. To minimize random computer execution factors

in the operating system, both methods were executed 100 times. For both methods, we

used a low-order scheme to march from t = 0 to t = 0.01. Once the solution becomes

reasonably smooth, the KDC scheme was used to march from t = 0.01 to t = 0.7

with fixed time step-size ∆t = 0.069, while an adaptive strategy was applied in the

FEM using matlab built-in ODE solvers. Our numerical results show that for the same

accuracy requirement, the KDC scheme is more efficient than the FEM based method

for this example. It is important to note the FEM method used an optimized variable

order, variable time step size method, whereas the KDC method was a relatively crude

fixed order, fixed step size algorithm. One could further improve the efficiency of the

55

60 70 80 90 100 110 120 130
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

CPU time

E
rr

or

KDC method
FEM based method

Figure 4.4: Comparison of solution efficiency for fixed boundary condition case.

KDC scheme using optimal control parameters, including the number of nodal points

in the spatial and temporal directions, error tolerance, and an adaptive strategy in

step-size and order selection. Results along these directions will be reported in the

future.

Our numerical experiments also reveal that higher order methods become more

efficient for smooth solutions. In Fig. 4.5, we show how the accuracy of the KDC

methods depends on the number of Radau IIa collocation nodes for different time

step-sizes, by comparing the accuracy as a function of the number of elliptic equation

solves. Note that instead of CPU time, we compare the number of function evaluations

for varying numbers of Radau nodes since the CPU time for KDC methods is linearly

related to the number of function evaluations. Our numerical results show that for a

fixed number of Radau IIa nodes, smaller time step-size means better accuracy; and for

the same accuracy requirement, higher order schemes are more efficient than low-order

schemes, especially when very high precision is required.

In Fig. 4.6, we show the convergence of the KDC methods for different number

of Radau IIa nodes and step-sizes. It can be seen that for the same step-size, using

more node points will generate more accurate results, and for the same number of node

points, the error decreases rapidly when using smaller step-sizes. Also, due to the large

step-size used by the KDC schemes for higher accuracy requirements (∆t ≈ 0.5 for 13

digits accuracy when using 5 Radau node points), we couldn’t obeserve the traditional

56

500 1000 1500

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

Number of function evaluations

E
rr

or

Radau =10
Radau =20
Radau =30
Radau =40

Figure 4.5: Accuracy of KDC methods vs. number of function evaluations for varying
numbers of Radau nodes.

convergence orders (when ∆t is close to 0) in our numerical simulation.

4.3.2 Multiple Particle Size and Age System

In our second example, we consider a resin particle system with 5 different sizes

R = 0.07, 0.09, 0.10, 0.11, and 0.13, and assume they are of the same age and there is

no flow(Q = 0) in the batch system. The corresponding microscale system for each

particle is given by
∂c
∂t

= 2
r
D
Rf

∂c
∂r

+ D
Rf

∂2c
∂r2
,

c(r, t = 0) = 0,
∂c
∂r
|r=0 = 0,

c(r = R) = C(t)

with dynamical boundary condition described by the macroscale model

{
dC
dt

= −Ma−s/V,

C(0) = C0 = 1.
(4.19)

In the KDC method, we use 20 Radau IIa points in the temporal direction from t0 =

0.015 to tfinal = 1.0 with step-size ∆t = 0.0985 and 32 Chebyshev nodes in the spatial

57

0.2 0.4 0.6 0.8 1

10
−15

10
−10

10
−5

Step−size in Time

E
rr

or

n=3
n=4
n=5

Figure 4.6: Accuracy of KDC methods vs. step-size for varying numbers of Radau IIa
nodes.

direction in [0, R] for each particle. In Fig. 4.7, we compare the results from the KDC

scheme to those from the FEM based method, which has been validated by experimental

results in [18]. The KDC results match those from FEM and experiments.

To compare the efficiency of the SI-KDC and FEM methods for this example, we

plot the CPU time of both methods as a function of the error defined as the difference

between the numerical solution and a fine-mesh reference solution in Fig. 4.8. Our

numerical results show that for the same accuracy, the SI-KDC method is more efficient,

especially for higher accuracy requirements.

4.3.3 Age-Averaged Model

Finally in this section, we compare the numerical results from the original Monte

Carlo algorithm and the AAM. To validate the AAM, we compare results using the

FEM for the traditional Monte Carlo algorithm with the AAM. For the Monte Carlo

algorithm, we used 20 different particle sizes and 80 different particle ages for each size

particle. We further assume that the radii for particles follow a log-normal distribution

with mean log(100.6) − 0.5 and standard deviation 1. Settings for other parameters

can be found from previous work in [18].

In Fig. 4.9(a), we show simulation results for both traditional Monte Carlo method

and the AAM. In Fig. 4.9(b), we plot the error for both methods using a very fine mesh

58

0 0.2 0.4 0.6 0.8 1
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Time

C
on

ce
nt

ra
tio

n
of

 m
ac

ro
sc

al
e

KDC method
FEM based method

Figure 4.7: Comparison of the SI-KDC and FEM solution methods for dynamic bound-
ary conditions.

reference solution. We notice that due to the Monte-Carlo nature of traditional two-

scale model simulations, which requires sampling of particle ages at each time marching

step, randomness can be observed in the error of the Monte Carlo solution, while the

error from AAM is much smoother and smaller. The Monte Carlo method requires more

CPU time due to the solution of different age elliptic equation systems, while only one

elliptic equation solve is required for each particle size in AAM as age sampling is no

longer necessary. Our numerical experiments show that for this example, the Monte

Carlo method needed 1525.6 sec, while AAM required 74.3 sec in CPU time to obtain

a much more accurate solution.

To compare the FEM with SI-KDC scheme for the age-averaged model, in Fig. 4.10

we show the computed concentration as a function of time in (a) and the CPU times

for different accuracy requirements in (b). In the SI-KDC scheme, 32 Chebyshev nodes

were used in the spatial direction and 30 Radau IIa nodes were used from t = 0.01

to tfinal = 10.0 with ∆t = 0.999. As mentioned in previous sections, the second-order

Crank-Nicolson method was used from t = 0 to t = 0.01, and when the solution becomes

reasonably smooth, the SI-KDC method was applied thereafter. The simulation results

are similar for both methods, while for the same accuracy requirements, the SI-KDC

is more efficient.

59

5 10 15 20

10
−5

10
−4

10
−3

10
−2

CPU time

E
rr

or

KDC method
FEM based method

Figure 4.8: CPU time comparison for the SI-KDC and FEM solution methods with
dynamic boundary conditions.

(a) (b)

0 2 4 6 8
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

C
o
n
c
e
n
tr

a
ti
o
n
 o

f
m

a
c
ro

s
c
a
le

Traditional Model
Effective AAM

0 2 4 6 8
−0.01

−0.008

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

0.008

Time

E
rr

o
r

Traditional Model
Effective AAM

Figure 4.9: Comparing traditional two-scale and AAM results(a) and errors (b) using
FEM.

60

(a) (b)

0 0.2 0.4 0.6 0.8 1
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Time

C
o
n
c
e
n
tr

a
ti
o
n
 o

f
m

a
c
ro

s
c
a
le

(C
)

KDC method
FEM

0.2 0.4 0.6 0.8 1
0

0.002

0.004

0.006

0.008

0.01

Time

E
rr

o
r

KDC method
FEM

Figure 4.10: Comparison of SI-KDC method with FEM based method for the average-
aged model with dynamic boundary condition (left) and solution error(right).

61

Chapter 5

Parallelization for Krylov Deferred

Correction Methods

In this chapter, a new class of iterative time parallelization methods coupled with

Krylov Deferred Correction (KDC) techniques for initial value differential algebraic

equations (DAEs) is discussed. This study presents a way to parallelize the Krylov

deferred correction techniques to solve DAEs and a way to increase the efficiency of the

parareal algorithm [11, 33, 55, 62] by accelerating the convergence of the Newton-Krylov

schemes.

5.1 The Parareal Method

The parareal algorithm, which was first introduced by Lions et al. [55], is a time

integration scheme to compute in parallel the numerical solution of ordinary differential

equation systems (ODE) or discretized PDEs in the temporal direction.

u′ = f(t, u(t)), u(0) = u0 (5.1)

where f : Rd → Rd and u : R→ Rd.

Some parallelization schemes assign a processor to each sub-step or intermediate

stage of methods such as Runge-Kutta or general linear multistep methods simultane-

ously, and others assign a processor each to each sub-piece of problems by splitting of

the systems. By contrast, the parareal method approximates iteratively solutions of

Eq. (5.1) by assigning a processor to each interval over all intervals.

5.1.1 Algorithm

As in general parareal algorithm, we assume the time interval [0, T] is divided into

Np intervals with each interval being assigned to a different processor denoted proces-

sors P0 through PNp−1. On each interval, the parareal method iteratively computes a

succession of approximations Uk
n+1 ≈ u(tn+1), where k denotes the iteration number. It

is a general way to describe the parareal algorithm by using two propagation operators

G(tn+1, tn, un) and F (tn+1, tn, un). The G(tn+1, tn, un) operator (denoted G) provides a

rough approximation of u(tn+1),the solutions of Eq. (5.1) with given initial conditions.

By contrast, the F (tn+1, tn, un) operator (denoted F) typically gives a highly accurate

approximation of u(tn+1) on the fine discretization of time interval [tn, tn+1]. Note that

typically the G propagator is computationally less expensive than the F propagator,

that is, G is usually a low-order method or computed on a much coarser discretization,

while F is a higher-order method on a finer discretization. So, the parareal method

converges to solution of F applied in serial.

Figure 5.1: Diagram at k-th iteration

The algorithm is described as follows:

Step 0 The parareal method starts with sequentially initializing U0
n for n = 1, · · · , Np,using

G, i.e.,

U0
n+1 = G(tn+1, tn, U

0
n). (5.2)

63

with U0
0 = u0.

Step k Correction Step

(1) Based on Uk
n , each processor can compute the approximation F (tn+1, tn, U

k
n)

in parallel mode.

(2) The parareal algorithm computes the serial correction step G(tn+1, tn, U
k+1
n)

for n = 1, · · · , Np using the updated solution Uk+1
n .

(3) The approximation is updated based on (1) and (2) as follows:

Uk+1
n+1 = G(tn+1, tn, U

k+1
n) + F (tn+1, tn, U

k
n)−G(tn+1, tn, U

k
n). (5.3)

The method proceeds iteratively alternating between the parallel computation of

F (tn+1, tn, U
k
n) and the serial computation of Eq. (5.3). If the G propagator is compu-

tationally inexpensive, the initial step (step 0) and correction step (step k+1 (2)) are

less expensive than F sequentially. And the accuracy of this algorithm is improved by

an F propagator (step k+1 (1)) in the parallel way.

We notice that in order for parareal method to get reasonable efficiency, the total

number of the parareal iterations (denoted by K) must be sufficiently smaller than the

number of processors (denoted by NP) assigned to corresponding time intervals, and

the cost of the G propagator is as inexpensive as possible.

5.1.2 The Stability of Parareal Methods

The stability of the parareal methods has already been studied [11, 33, 73]. Ac-

cording to Staff and Ronquist [73], for the ODEs,

y′ = Ay = V DV −1y (5.4)

the stability function H can be defined

H(n, k, r, R) =
∑(

n

i

)
(r −R)iRn−i (5.5)

64

where R = R(λ∆T) is the stability function for the coarse propagator G using time

step ∆T , r = r(λδt) is the stability function for the fine propagator F using time step

δt, and λ is the eigenvalue of A. Stability can be achieved if

sup
1≤n≤N

sup
1≤k≤N

|H(n, k, r, R)| ≤ 1. (5.6)

For more analysis, we cite the following theorems from [73] :

Theorem 2 Based on the condition above, the parareal algorithm is stable for all pos-

sible values of the number of subdomains N and all number of iterations k ≤ N as long

as

r − 1

2
≤ R ≤ r + 1

2
. (5.7)

Theorem 3 For the ODEs (5.4), assuming that the fine propagator is close to exact

and that the system is stiff, i.e. λ∆T � −1. Then the stability function can be written

as

H(n, k,R) = (−1)k

 n− 1

k

Rn, (5.8)

and the parareal algorithm is stable if

lim
z→−∞

|R(z)| ≤ 1

2
(5.9)

Based on Theorem 2, the Backward Euler method as G propagator is unconditionally

stable, whereas the trapezoidal rule as G propagator in the parareal framework may

not be stable depending on the the stability region of the F propagator.

65

5.2 Modified Parareal Krylov Deferred Correction

Methods

Since any numerical method for F and G propagators in the parareal techniques

can be used, it is not surprising that KDC techniques can be embedded in the parareal

framework. In this section, we incorporate KDC techniques into parareal methods

and examine the efficiency of the modified parareal KDC methods. Note that there

are theoretically an infinite number of processors where each processor is assigned to

a time interval. The processors are homogeneous, so the parareal work is performed

synchronously.

5.2.1 Algorithm

In the KDC method [43, 44], Newton-Krylov (NK) techniques are used to accelerate

the convergence of SDC methods, so we can use the higher-order KDC schemes with

full Newton-Krylov iterations for the F propagator in parareal methods. However,

using full Newton-Krylov techniques in the KDC framework in every parareal iteration

would be inefficient, since the approximation at each parareal iteration is computed by

full NK processes using initial approximation from full NK iterations at the previous

intervals. So, instead, only one NK iteration in every parareal iteration is sufficient.

Note that the initial approximations at each Gaussian quadrature node for each NK

iteration are stored from one parareal iteration to the next by shifting from the solution

at the previous iteration to keep the solution on the same manifold.

The modified KDC parareal algorithm works as follows. The inexpensive coarse

propagator G gives a rough approximation to u(Tn), where u is the solution of equation

having u(Tn−1) as the initial condition. The expensive fine propagator F gives a more

accurate approximation to the same u(Tn). Partitioning the time domain (0, T) into

N-time subdomains ∆n = (Tn, Tn+1), the algorithm works as follows:

Step 0 Initialization

Starting with an initial value U0
n on the first processor, P0, compute U0

n+1 on

processor Pn+1, n = 0, · · · , N−1, which can be found using the coarse propagator

66

sequentially

U0
n+1 = G(Tn+1, Tn, U

0
n), U0

0 = u0, (5.10)

and the processor should wait to receive the value U0
n from the previous processor

Pn+1.

After calculating each initial approximation on each processor, predict the initial

approximation at the Gaussian collocation points needed for the NK iteration in

the KDC framework (F-propagator) by interpolation.

Step k+1 A correction step using both the coarse G and fine F propagator

(1) Given the approximation Uk
n from each previous step at t = Tn as the initial

condition, apply the KDC scheme to approximate the fine solution F (Tn+1, Tn, U
k
n)

using KDC techniques with 1 NK iteration in parallel mode.

(2) Receive a new approximated solution Uk+1
n from the previous time step and

compute a coarse solution G(Tn+1, Tn, U
k+1
n) in serial.

(3) Update the approximations at the Gaussian collocation points between Tn and

Tn+1 by shifting the values of the F propagator at the collocation points (result

from (1)) to the approximated solution of the G propagator at Tn+1(resultfrom(2)).

(4) Update the approximation solution at t = Tn+1 as follows.

Uk+1
n+1 = G(Tn+1, Tn, U

k+1
n) + F (Tn+1, Tn, U

k
n)−G(Tn+1, Tn, U

k
n). (5.11)

In serial mode, the KDC methods require a certain number of NK iterations to get

a certain accuracy. Instead of the several NK iterations, the modified parareal KDC

methods need almost the same number of parareal iterations using one NK iteration for

F in each parareal iteration. So, if we employ 2-NK iterations in KDC as F propagator

in each parareal iteration, the modified parareal KDC methods need half the parareal

iterations than using 1-NK iteration to get the same accuracy. After all, the CPU time

of these executions should be almost the same, since these need the same total number

of NK-iterations. Our numerical results validate this analysis.

67

5.2.2 Efficiency

In [62], it is shown the analysis of the theoretical parallel speedup and efficiency of

the hybrid parareal/SDC methods. Since the modified parareal KDC algorithms have

a quite similar structure to the hybrid parareal/SDC methods, we present a parallel

efficiency for the modified KDC parareal methods using the same terminology used in

the analysis in [62].

To begin with, we assume that each processor is identical and the communication

time among processors is negligible theoretically. For consistency of terminology in

[62], we utilize the same terms defined in [62]. Denote the time for a processor to

compute one step of the numerical method used in the G propagator and F propagator

by τG and τF , respectively. Denote the number of substeps as NG and NF for G and

F propagators, respectively. Hence the total cost of F and G are NF τF and NGτG,

respectively. Also, denote the number of processors by NP .

To investigate the speedup or efficiency of the modified parareal KDC methods, first

we consider the total cost of the serial KDC with full NK iterations. The total cost of

the KDC methods in serial mode is described in Fig. 5.2. Since the modified parareal

Figure 5.2: Total cost of KDC method in serial mode

KDC methods start with the the G propagator in a serial manner, the methods need

NPNGτG costs as seen in Fig. 5.3. In addition to this, the cost of each parareal iteration

is NF τF + NGτG, so the cost of K parareal iterations is K(NF τF + NGτG). Therefore,

the total cost of the modified parareal KDC methods is NPNGτG +K(NF τF +NGτG).

Based on the analysis above, the speedup of the method S is

S =
NPMNF τF

NPNGτG +K(NF τF +NGτG)
(5.12)

68

Figure 5.3: Total cost of KDC method in parallel mode

where M is the number of the Newton-Krylov iterations needed to compute the desired

accurate solution in serial. If the parallel efficiency E using NP processors is considered

S/NP , then

E =
MNF τF

NPNGτG +K(NF τF +NGτG)
(5.13)

Let α = NGτG
NF τF

, we can rewrite Eq. (5.14)

E =
M

αNP +K(1 + α)
=

M

α(NP +K) +K
(5.14)

When α(NP + K) is as small as possible, we can have full parareal efficiency M/K.

However, when NP is large for long-term simulations or α is not negligibly small, it is

not possible to get full efficiency. In practice, we can have optimum parareal efficiency

when K is much closer to M , although we still do not have the full efficiency.

It should be noted that the overhead time such as the communication time among

the processors is ignored. In practice, the overhead time should be considered, since the

current parallel computing systems are highly heterogeneous and must execute many

heterogeneous jobs simultaneously.

69

5.3 Numerical Results

In this section, numerical results are presented to examine the convergence behavior

and parallel efficiency of the modified parareal KDC methods compared to serial KDC

methods.

5.3.1 A simple nonlinear DAE system

In the first example, we consider a simple nonlinear DAE system

y′1 = −2y1 + 3 exp(−4t)

y′2 = −y1(y2 + sin t)− y3
0 = y2 + sin t+ y3 − cos t

where an analytic solution is [2.5 exp(−2t)−1.5 exp(−4t),− sin t, cos t]. To understand

the convergence behaviors of the modified parareal KDC methods in terms of the choice

of G propagators, the first order Backward Euler (BE) methods and the second order

trapezoidal rule (TR) schemes for G propagators are considered for comparison. For

the comparison, we march from t0 = 0.0 to tF = 2.0 with 20 processors, i.e, the time

step size ∆t = 0.1. In Fig. 5.4, we plot the error at the final time(t = 2.0) versus the

parareal iterations for different G propagators and the different number of Radau II

node points in the KDC methods. In this experiment, for KDC methods, 3, 4, and 5

Radau IIa nodes are used to compare the convergence behavior. It can be seen that

the overall convergence behavior of this algorithm for the same G propagator is similar,

while the accuracy of the algorithm after convergence depends on the number of Radau

IIa collocation nodes in the KDC methods.

Next, we examine the efficiency and speedup of the methods by plotting CPU

time versus error for the serial KDC and the modified parareal KDC schemes. The

Backward Euler methods are used for the G propagator in the parareal KDC scheme.

Four Radau IIa node points for the KDC techniques are used for the serial and the

parareal F propagator to march from t0 = 0.0 to tF = 0.1 with 4 and 8 fixed time step

sizes for the serial code and 4 and 8 processors for the parallel code, i.e. the step sizes

are ∆t = 0.025, and 0.0125, respectively.

Fig. 5.5 shows that the empirical parallel speedup is almost 4. Note that the cost

70

2 4 6 8 10
10

−15

10
−10

10
−5

Iteration

E
rr

or

1 Newton−Krylov iteration with 20 processors

n=3,G=BE
n=3,G=TR
n=4,G=BE
n=4,G=TR
n=5,G=BE
n=5,G=TR

Figure 5.4: Convergence using 20 processors

10
−3

10
−2

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

CPU time

E
rr

or

Comparison CPU time using 4 processors

Parallel
Serial

Figure 5.5: Comparing CPU time for serial and parallel using 4 processors

71

of the Backward Euler methods for the G propagator is small enough, and the number

of parareal iterations is almost the same as the number of full NK iterations in serial

KDC methods. Based on the analysis in Sec. 5.2.2, the speedup using 4 processors is

theoretically about S =

S =
NPMNF τF

NPNGτG +K(NF τF +NGτG)
=

4 · 4 · 84

4 · 7 + 4(7 + 4 · 21)
' 3.5. (5.15)

Similar to this, Fig. 5.6 shows the empirical speedup using 8 processors is about 6 due

to overhead time around 25 percent.

10
−3

10
−2

10
−10

10
−8

10
−6

10
−4

CPU time

E
rr

or

Comparison CPU time using 8 processors

Parallel
Serial

Figure 5.6: Comparing CPU time for serial and parallel using 8 processors

In addition, we investigate the convergence behavior for different numbers of Newton

Krylov iterations in KDC methods as an F propagator. As discussed earlier, if we use

two NK iterations in each parareal iteration, cost in each iteration is twice as much,

but the total number of parareal iteration can be half. Hence, the total cost of the

two NK iterations used is almost identical to that of 1 NK iteration used. In Fig. 5.7,

on the same setting of experiment above, we validate our analysis using 1 and 2 NK

iterations in the KDC methods for the F propagator in the parareal methods. It can

be seen that the convergence behavior and speedup for the two cases are quite similar.

Note that there are many parameters we can control in the Newton-Krylov methods.

Since we just use one NK iteration in the KDC level in each parareal iteration, the

72

10
−3

10
−2

10
−10

10
−8

10
−6

10
−4

CPU time

E
rr

or

Comparison CPU time using 8 processors

Parallel with 1−NK
Parallel with 2−NK
Serial

Figure 5.7: Comparing CPU time for serial and parallel using 8 processors

stopping criterion (η) for Krylov iterations is crucial in terms of the convergence rate.

An optimal use of the stopping criterion can improve parareal efficiency. In Fig. 5.8,

to investigate how the stopping criterion (eta) for Krylov subspace methods affects

efficiency, we march t0 = 0.0 to tF = 1.0 with 10 processors using the trapezoidal

rule for G propagator and four Radau IIa node points in the KDC scheme for the

F propagator. It shows that the convergence rate can be improved by adjusting the

criterion.

1 2 3 4 5 6
10

−12

10
−10

10
−8

10
−6

10
−4

Parareal Iteration

E
rr

or

Convergence Behavior for different stop criterion(eta)

eta=1e−1
eta=1e−2
eta=1e−3
eta=1e−5
eta =1e−7

Figure 5.8: Convergence behavior of different stopping criterion for Krylov Subspace
scheme

73

Using an appropriate choice (eta = 1e-5) of the stopping criterion based on this

analysis, we compare the CPU time versus accuracy for the serial KDC and the mod-

ified parareal KDC methods using 10 processors to march from t = 0.0 to tF = 1.0.

Fig. 5.9 shows that empirical speedup is about 7, and it is close to the theoretical one,

10
−3

10
−2

10
−11

10
−10

10
−9

10
−8

10
−7

CPU time

E
rr

or

Comparison CPU time using 10 processors

Parallel
Serial

Figure 5.9: Comparing CPU time for serial and parallel using 10 processors

allowing for technical overhead time among processors. By the analysis in Eq. (5.12),

the theoretical speedup is

S =
NPMNF τF

NPNGτG +K(NF τF +NGτG)
=

10 · 3 · 192

10 · 16 + 3(16 + 4 · 48)
' 7.5. (5.16)

5.3.2 Stiff ODE Problem

Next, we examine how the algorithm works for stiff systems. The algorithm is first

applied to the simple stiff ODE system

y′1 = 2y1 − y3 − 2 cos t

y′2 = −104(y2 − exp t)− exp t

y′3 = y1

where an analytic solution is [cos t, exp t, sin t]. For this experiment, we choose Back-

ward Euler(BE) methods for G propagator and KDC with 4 Radau IIa node points for

74

the F propagator to march from t0 = 0.0 to tF = 1.0 with 10 processors. From the

10
−2

10
−1

10
0

10
−10

10
−8

10
−6

10
−4

10
−2

CPU time

E
rr

or

Comparison CPU time using 10 processors

Parallel
Serial

Figure 5.10: Comparing CPU time for serial and parallel using 10 processors

analysis in Sec. 5.2.2, the parallel speedup can be approximately calculated

S ' 10 · 4 · 70

10 · 6 + 7(6 + 4 · 18)
' 5 (5.17)

This result shows that this algorithm works well for simple stiff systems. Based on this

result, we apply this to a stiff DAE system in the next section.

5.3.3 Transistor Amplifier Problem

In our next example, we consider the transistor amplifier problem in [1], which is a

stiff DAE system of index 1 consisting of 8 equations given by

M
dy

dt
= f(y), y(0) = y0, y′(0) = y′0,

75

0 ≤ t ≤ 0.2. The matrix M is of rank 5 and is given by

M =

−C1 C1 0 0 0 0 0 0

C1 −C1 0 0 0 0 0 0

0 0 −C2 0 0 0 0 0

0 0 0 −C3 C3 0 0 0

0 0 0 C3 −C3 0 0 0

0 0 0 0 0 −C4 0 0

0 0 0 0 0 0 −C5 C5

0 0 0 0 0 0 C5 −C5

.

The function f is defined as

f(y) =

−Ue(t)
R0

+ y1
R0

−Ub

R2
+ y2(

1
R1

+ 1
R2

)− (α− 1)g(y2 − y3)
−g(y2 − y3) + y3

R3

−Ub

R4
+ y4

R4
+ αg(y2 − y3)

−Ub

R6
+ y5(

1
R5

+ 1
R6

)− (α− 1)g(y5 − y6)
−g(y5 − y6) + y6

R7

−Ub

R8
+ y7

R8
+ αg(y5 − y6)
y8
R9

where g and Ue are auxiliary functions given by g(x) = β(e
x

UF − 1) and Ue(t) =

0.1 sin(200πt). Unlike other examples, it is not easy to rewrite the Hessenberg DAE

form [6], so the “y-formulation” would not be the best fit for this example, since the

discretization of the “y-formulation” would require a differentiation matrix rather than

an integration matrix, and spectral integration is numerically better conditioned than

spectral differentiation [37, 38]. For this experiment, instead of an one-step methods

such as Backward Euler or trapezoidal rule based on “y-formulation”, the KDC method

with 3 Radau IIa node points based on the “yp-formulation” is employed for the G

propagator and KDC with 6 Radau IIa node points is used for the F propagator to

utilize the “yp-formulation” efficiently.

In Fig. 5.11, we march from t0 = 0.0 to tF = 0.01 with 10 processors (i.e. ∆t =

76

0.001) using the 2 KDC schemes for G and F propagators and compare this with serial

KDC codes.

10
−0.5

10
−0.3

10
−0.1

10
−6

10
−5

10
−4

CPU time

E
rr

or

Comparison CPU time using 10 processors

Parallel
Serial

Figure 5.11: Comparing CPU time for serial and parallel using 10 processors

Parallel speedup S is

S =
NPMNF τF

NPNGτG +K(NGτG +NF τF)
=

10 · 3 · 658

10 · 300 + 7(300 + 658)
' 2. (5.18)

There may not be enough speedup using 10 processors. There are several issues to

consider to improve the parallel efficiency. First, in the current implementation, KDC

methods with coarse nodes are used for the G propagator. It needs more function

evaluations than other one-step methods such as Euler or Trapezoidal rule methods.

If there are other cheaper methods to substitute for the KDC methods or other tech-

niques to accelerate the convergence rate of KDC methods such as Full approximation

scheme (FAS) [19, 34], the parallel efficiency would be improved.

77

5.3.4 Index 2 nonlinear DAE system

In this section, we study the modified parareal KDC scheme for a nonlinear DAE

system of index 2,

x′1 = (α− 1

2−t)x1 + (2− t)αz + 3−t
2−t exp(t),

x′2 = 1−α
exp(t)

x1z − x2 + (α− 1)z + 2 exp(t),

0 = (t+ 2)x1 + (t2 − 4)x2 − (t2 + t− 2) exp(t)

where an analytic solution is [exp(t), exp(t), exp(t)
t−2]. We demonstrate the convergence

behavior of the methods by computing from t0 = 0.0 to tF = 0.1 using KDC methods

with 4 Radau IIa node points for the F propagator and Backward Euler(BE) methods

and Trapezoidal rule methods for the G propagator.

In Fig. 5.12, it can be seen that the parallel speedup for the method based on BE

for the G propagator is comparable. Parallel speedup S is theoretically calculated

10
−2

10
−1

10
0

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

CPU time

E
rr

or

Comparison CPU time using 10 processors

Parallel
Serial

Figure 5.12: Comparing CPU time for serial with parallel using 10 processors

S =
NPMNF τF

NPNGτG +K(NGτG +NF τF)
=

10 · 3 · 144

10 · 8 + 4(8 + 4 · 36)
' 6.5 (5.19)

As seen in other examples, the empirical speedup is 25-30 percent less than the theo-

retical speedup due to the communication time among processors.

78

Next, we examine the convergence behavior using the Trapezoidal rule for the G

propagator.

0 10 20 30
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

Parareal Iteration

E
rr

or

Trapezoidal Rule on 10 processors

0 5 10 15
10

−12

10
−10

10
−8

10
−6

10
−4

Parareal Iteration

E
rr

or

Backward Euler on 10 processors

Figure 5.13: Convergence behavior using Trapezoidal Rule as G propagator

Fig. 5.13 shows that the Trapezoidal rule starts to diverge at the first few parareal

iterations, but it eventually converges since the fine propagator in the parareal algo-

rithm gives accurate solutions after the first few iterations.Uncharacteristically, the

convergence behavior using the Trapezoidal rule is slower, compared to that using the

Backward Euler method. Notice that the parareal algorithm is useful when the the

number of parareal iterations k is small. When 1 ∼ k � the number of processors NP ,

the trapezoidal rule is not appropriate for the G propagator in the parareal algorithm

as we discussed the stability properties of the parareal methods in Sec. 5.1.2.

79

Chapter 6

Concluding Remarks

In this dissertation, we investigate how to improve the efficiency of the KDC meth-

ods for differential equations with algebraic constraints. First, a semi-implicit KDC

(SI-KDC) technique is introduced for stiff ODE and DAE systems and is compared

with the fully-implicit KDC (FI-KDC) methods. The SI-KDC technique treats the

non-stiff components in the SDC preconditioner using an explicit method and solves

the stiff parts using an implicit scheme. Our analysis shows that unlike the ODE cases,

the existence of algebraic equations and algebraic variables makes the design of optimal

semi-implicit schemes a challenging task for higher-index DAE systems, and requires

detailed analysis and understanding of the underlying system. Next, we generalize

the semi-implicit KDC technique to a two scale ODE/PDE model describing the mass

transfer processes in advanced water treatment devices. When coupled with recently

developed fast elliptic equation solvers, our numerical experiments show that the SI-

KDC technique is much more efficient than existing finite element schemes, especially

for higher accuracy requirements. To further accelerate the efficiency in multiscale

modeling, an effective age-averaged model is derived and validated, and the resulting

numerical algorithm avoids the expensive sampling of the residence time distributions

for different size particles required in the traditional Monte Carlo simulations. Lastly,

to further improve the performance of existing SDC based parareal algorithms, we

consider a new time parallelization technique combining the KDC methods with the

parareal framework. Our numerical results show that the parareal KDC scheme can

be more efficient than existing sequential KDC techniques, and has a great potential

in large-scale long-time simulations.

However, in order to fully take advantage of the KDC technique, there are still

issues to be resolved in order to further improve the efficiency and accuracy of the KDC

methods. In particular, we are currently studying adaptive strategies for optimal time

step size and order selections, improved and simplified Newton and Newton-Krylov

methods, and optimal parameters for error control. We also plan to generalize the

KDC schemes to more types of partial differential equations, including the Navier-

Stokes equations and hyperbolic type conservation laws, and study the analytical and

numerical properties and limitations of the KDC ideas. Finally, to benefit our research

community, my future research plans also include the development and maintenance of

open source KDC packages for ODEs, DAEs, and different types of PDEs. Research

results along these directions will be reported in the future.

81

Bibliography

[1] http://pitagora.dm.uniba.it/˜ testset/

[2] V. Ajjarapu, Computational Techniques for Voltage Stability Assessment and

Control, Springer, 2007.

[3] G. Akrivis, M. Crouzeix, and C. Makridakis, Implicit-explicit multistep

methods for quasilinear parabolic equations, Numer. Math., 82:521–541, 1999.

[4] B. K. Alpert, and V. Rokhlin, A fast algorithm for the evaluation of Legendre

expansions, SIAM J. on Sci. and Stat. Computing, 12,158-179, 1991.

[5] P. M. Anderson, Analysis of Faulted Power Systems, Wiley-IEEE Press, 1995.

[6] U.M. Ascher, and L.R. Petzold, Computer Methods for Ordinary Differential

Equations and Differential Algebraic Equations, SIAM, 1998.

[7] U. M. Ascher, S. J. Ruuth, and B. Wetton, Implicit-Explicit Methods For

Time-Dependent PDEs, SIAM J. Numer. Anal, 32, 797–823, 1997.

[8] U. M. Ascher, S. J. Ruuth, and R. J. Spiteri, Implicit-Explicit Runge-Kutta

Methods for Time-Dependent Partial Differential Equations Appl. Numer. Math,

25, 151–167, 1997.

[9] K. Atkinson, An Introduction to Advanced Numerical Analysis, 2nd edition, John

Wiley, 1989.

[10] W. Auzinger, H. Hofstatter, W. Kreuzer, and E. Weinmuller, Modi-

fied defect correction algorithms for ODEs. Part I: General theory, Numer. Algo-

rithms, 36: 135-156, 2004.

[11] Guillaume Bal On the Convergence and the Stability of the Parareal Algorithm

to Solve Partial Differential Equations. Proceedings of the 15th International

Domain Decomposition Conference, Lect. Notes Comput. Sci. Eng. 40

[12] R. Barrett, et al., Templates for the Solution of Linear Systems: Building

Blocks for Iterative Methods, 2nd Edition, SIAM, Philadelphia, 1994.

82

[13] S. Boscarino, Erroro analysis of IMEX Runge-Kutta methods derived from

differential-algebraic systems, SIAM J. Numer. Anal., Vol. 45, No. 4, pp. 1600–

1621, 2007.

[14] S. Boscarino, On an accurate third order implicit-explicit Runge-Kutta method

for stiff problems, Appl. Numer. Math, Vol. 59, pp. 1515–1528, 2009.

[15] A. Bourlioux, A.T. Layton, and M.L. Minion, High-Order Multi-implicit

spectral deferred correction methods for problems of reactive flow, J.Comput.

Phys., 189, 351–376, 2003.

[16] T. H. Boyer, and P. C. Singer, Bench-scale testing of a magnetic ion exchange

resin for removal of disinfection by-product precursors. Water Research, 39(7),

(2005) 1265–1276.

[17] T. H. Boyer, and P. C. Singer, A pilot-scale evaluation of magnetic ion

exchange treatment for removal of natural organic material and inorganic anions,

Water Research, 40(15), (2006) 2865–2876.

[18] T. H. Boyer, C. T. Miller, and P. C. Singer, Modeling the removal of dis-

solved organic carbon by ion exchange in a completely mixed flow reactor, Water

Research Volume 42, Issues 8-9, April 2008, 1897–1906.

[19] A. Brandt, Multi-level adaptive solutions to boundary value problems, Math.

Comp., 31, 1977.

[20] K. E. Brenan, S. L. Campbell, and L. R. Petzold, Numerical Solution of

Initial-Value Problems in Differential-Algebraic Equations, SIAM, Philadelphia,

1995.

[21] S. Bu, J. Huang, and M.M. Minion, Semi-implicit Krylov Deferred Correc-

tion Methods for Ordinary Differential Equations, Proceedings of the American

Conference on Applied Mathematics, Houston, May, 2009.

[22] M. P. Calvo, and C. Palencia, Avoiding the order eduction of Runge-Kutta

methods for linear initial boundary value problems, Math. Comput., 71, 1529-

1543, 2002.

83

[23] M. P. Calvo, J. de Frutos, and J. Novo, Linearly implicit Runge-Kutta

methods for advection-reaction-diffusion equations, Appl. Numer. Math., 37:535–

549, 2001.

[24] C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral

Methods in Fluid Dynamics, Springer-Verlag, 1988.

[25] K. Chen, A. Iserles, and P. G. Ciarlet (Editors), Matrix Preconditioning

Techniques and Applications, Cambridge University Press, 2005.

[26] H. Cheng et al., A wideband fast multipole method for the Helmholtz equation

in three dimensions, J.Comput.Phys.216(1), (2006) 300–325.

[27] H. Cheng, J. Huang, and T. J. Leiterman, An adaptive fast solver for

the modified Helmholtz equation in two dimensions , J.Comput.Phys.211(2),

(2006)616–637.

[28] K. Dekker, and J. G. Verwer, Stability of Runge-Kutta methods for stiff

nonlinear differential equations. CWI Monographs. North-Holland, 1984.

[29] A. Dutt, L. Greengard, and V. Rokhlin, Spectral deferred correction meth-

ods for ordinary differential equations, BIT, 40(2) 241-266, 2000.

[30] A. Dutt, M. Gu, and V. Rokhlin, Fast Algorithms for Polynomial Interpola-

tion, Integration, and Differentiation, SIAM J. on Num. Anal., 33(5), 1689-1711,

1996.

[31] F. Ethridge, and L. Greengard, A new fast-multipole accelerated Poission

solver in two dimensions, BIT 40(2),(200),241–266.

[32] J. Frank, W. Hundsdorfer and J. G. Verwer, Stability of Implicit-Explicit

Linear Multistep Methods, Applied Numerical Mathematics: Transactions of

IMACS, Vol.25,2–3, 1997

[33] M.J. Gander, and E. Hairer, Nonlinear Convergence Analysis for the Parareal

Algorithm , Proceedings of the 17th International Domain Decomposition confer-

ence

84

[34] M.J. Gander, and S. Vandewalle, Analysis of the Parareal Time-parallel

Time-integration Method, SIAM J. Sci. Comput., 29(2), 2007.

[35] M. Gander, and M. Petcu, Analysis of a Krylov Subspace Enhanced Parareal

Algorithm for Linear Problems.

[36] D. Gottlieb, and S. S. Orszag, Numerical Analysis of Spectral Methods,

SIAM, Philadelphia, 1977.

[37] L. Greengard, Spectral Integration and Two-Point Boundary Value Problems,

SIAM J. Num. Anal. 28, 1071-1080 1991.

[38] L. Greengard, and V. Rokhlin, A Fast Algorithm for Particle Simulations,

J. Comput. Phys., 73, 325–348, 1987.

[39] L. Greengard, and V.Rokhlin, A new version of the fast multipole method

for the Laplace equation in three dimensions, Acta Number 6, (1997) 229–269.

[40] E. Hairer, C. Lubich, and G. Wanner, Geometric Numerical Integration:

Structure-Preserving Algorithms for Ordinary Differential Equations, Springer-

Verlag, 2002.

[41] E. Hairer, C. Lubich, and M. Roche, The Numerical Solution of Differential-

Algebraic Systems by Runge-Kutta Methods, Springer-Verlag, 1989.

[42] E. Hairer, and G. Wanner, Solving Ordinary Differential Equations II,

Springer, 1996.

[43] J. Huang, J. Jia, and M. Minion, Accelerating the Convergence of Spectral

Deferred Correction Methods, J. of Comp. Physics, 214(2), 633–656 , 2006.

[44] Jingfang Huang, Jun Jia, Michael Minion, Arbitrary Order Krylov Deferred

Correction Methods for Differential Algebraic Equations, Comput. Phys., 221,(2),

739–760, 2007.

[45] Jun Jia, Jingfang Huang, Krylov deferred correction accelerated method of

lines transpose for parabolic problems, J. Comput Phys, 227(3),1739-1753, 2008.

[46] C. T. Kelley, Iterative Methods for Linear and Nonlinear Equations, SIAM,

1995.

85

[47] C. T. Kelley, Solving Nonlinear Equations with Newton’s Method, SIAM, 2003.

[48] C. A. Kennedy and M. H. Carpenter, Additive Runge-Kutta schemes for

convection-diffusion-reaction equations., Appl. Numer. Math., 44:139–181, 2003.

[49] D.A. Knoll, and D.E. Keyes, Jacobian-free Newton Krylov methods: A survey

of approaches and applications, J. Comput. Phys. 193 (2004) 357-397.

[50] P. Kolm, S. Jiang, and V. Rokhlin, Quadruple and octuple layer potentials

in two dimensions. I. Analytical apparatus, Appl. Comput. Harmon. Anal. 14,

no. 1, 2003.

[51] A. Kurita, H. Okubo, K. Oki, S. Agematsu, D. B. Klapper,

N. W. Miller, W. W. Price , J. J. Jr.Sanchez-Gasca, K. A. Wirgau,

T. D. Younkins , Multiple time-scale power system dynamic simulation , Power

Systems, IEEE Transactions on On page(s): 216- 223, Vol. 8, Issue: 1, Feb. 1993.

[52] A. T. Layton, and M. L. Minion, Conservative Multi-Implicit Spectral De-

ferred Correction Methods for Reacting Gas Dynamics, J. Comput. Phys, 194(2),

697-714, 2004.

[53] A. T. Layton, and M. L. Minion, Implications of the choice of quadrature

nodes for Picard integral deferred corrections methods for ordinary differential

equations, BIT, 45(2), 341-373, 2005.

[54] A. T. Layton and M. L. Minion, Implications of the Choice of Predictors for

Semi-Implicit Picard Integral Deferred Correction Methods, Comm.App. Math.

and Comp. Sci., 2(1),1–34, 2007.

[55] J.J. Lions, Y. Maday, and G. Turinici, A parareal in time discretization of

PDE’s, C.R. Acad. Sci. Paris, Serie I, 332(1):16, 2001.

[56] M. R. D. Mergen, B. Jefferson, S. A. Parsons, and P. Jarvis, Mag-

netic ion-exchange resin treatment: Impact of water type and resin use, Water

Research, 42, (2008) 1977–1988.

[57] F. Milano, An Open Source Power System Analysis Toolbox, Power Systems,

IEEE Transactions on, Vol. 20, No.3, 2005.

86

[58] M. L. Minion, Higher-order Semi-implicit Projection Methods in Numerical Sim-

ulations of Incompressible Flows, Papers from the workshop held in Half Moon

Bay, CA, June 19-21, 2001. also LLNL Technical Report UCRL-JC-145295.

[59] M. L. Minion, Semi-implicit spectral deferred correction methods for ordinary

differential equations, Comm. Math. Sci., 1:471–500, 2003.

[60] M. L. Minion, Semi-Implicit Projection Methods for Incompressible Flow based

on Spectral Deferred Corrections, Appl. Numer. Math., 48 (3-4), 369-387, 2004.

[61] M.L. Minion, and S.Willimas, Parareal and Spectral deferred corrections, In

AIP Conference Proceedings, 1048, 388-391, 2008

[62] M.L. Minion, A Hybrid Parareal Spectral Deferred Corrections Method, Comm.

App. Math. and Comp. Sci, 2010.

[63] N. Mohan, First Course on Power Systems, MNPERE, 2006.

[64] L. Pareschi and G. Russo, Implicit-Explicit Runge-Kutta schemes for stiff

systems of differential equations, volume 3, pages 269–287. Nova Science, 2000.

[65] J. A. Pedit, and C. T. Miller Heterogeneous soprtion processes in subsurface

systems. 2 Diffusion modeling approaches, Environmental Science and Technology

29(7), (1995) 1766–1772.

[66] J. O. Pessanha and A. A. Paz, Testing a differential-algebraic equation solver

in Long-term Voltage Stability Simulation, Mathematical Problems in Engineer-

ing, 2006.

[67] V. Pereyra, Iterated Deferred Correction for Nonlinear Boundary Value Prob-

lems, Numer. Math. 11, 111–125 (1968).

[68] L. R. Petzold, A Description of DASSL: A Differential-Algebraic System Solver,

SAND82-8637, Sandia National Lab, 1982.

[69] A. Rangan, Adaptive Solvers for Partial Differential and Differential-Algebraic

Equations, Ph.D. Thesis, University of California at Berkeley , 2003.

[70] A. Rangan, Deferred Correction Methods for Low Index Differential Algebraic

Equations, BIT, Vol.43, No.1,1-18, 2003.

87

[71] Y. Saad, and M. H. Schultz. GMRES: a generalized minimal residual al-

gorithm for solving non-symmetric linear systems, SIAM J. Sci. Stat. Comp.,

7:856–869, 1986.

[72] J. M. Sanz-Serna, J. G. Verwer, and W. H. Hundsdorfer, Convergence

and Order Reduction of Runge-Kutta Schemes Applied to Evolutionary Problems

in Partial Differential Equations, Numer. Math., 50, 405-418, 1986.

[73] G. A. Staff and E. M. Ronquist, Stability of the Parareal Algorithm

[74] J. W. Shen and X. Zhong, Semi-implicit Runge-Kutta schemes for the non-

autonomous differential equations in reactive flow computations, Proceedings of

the 27th AIAA Fluid Dynamics Conference, AIAA, June 1996.

[75] P. C. Singer, T. H. Boyer, A. Holmquist, J. Morran, and M. Bourke,

Integrated analysis of NOM removal by magnetic ion exchange, Journal American

Water Works Association, 101(1), (2009) 65–73.

[76] L. N. Trefethen, and M. R. Trummer, An instability phenomenon in spectral

methods, SIAM J. Numer. Anal, 24, 1008-1023, 1987

[77] P. K. Vijalapura, J. Strain, and S. Govindjee, Fractional step methods

for index-1 differential-algebraic equations, J. of Comp. Phys., 203(1), 305-320,

2005.

[78] S. C. Wu, and P. M. Gscjwend, Numerical modeling of sorption kinectics

of organic compounds to soil and sediment particles, Water Resources Reserach,

24(8), (1988) 1373–1383.

[79] D. Yong, and V. Ajjarapu, A Decoupled Time-Domain Simulation Method via

Invariant Subspace Partition for Power System Analysis, Power Systems, IEEE

Transactions on On page(s): 11- 18, Volume: 21, Issue: 1, Feb. 2006

[80] P. E. Zadunaisky, A method for the estimation of errors propagated in the

numerical solution of a system of ordinary differential equations, The Theory of

Orbits in the Solar System and in Stellar Systems. Proceedings of International

Astronomical Union, Symposium 25, 1964.

88

[81] P. E. Zadunaisky, On the Estimation of Errors Propagated in the Numerical

Integration of Ordinary Differential Equations, Numer. Math. 27, 21–40 (1976).

89

	Abstract
	1 Introduction
	2 Krylov Deferred Correction Methods
	2.1 Picard Integral Equation and Spectral Integration
	2.2 Error Equation and Spectral Deferred Corrections
	2.3 Newton-Krylov Method and Preconditioners
	2.4 Krylov Deferred Correction Methods
	2.5 KDC accelerated MoLT

	3 Semi-Implicit Krylov Deferred Correction Methods
	3.1 Semi-implicit KDC Technique
	3.2 Index One DAE System
	3.3 Index Two DAE System
	3.4 Numerical Results
	3.4.1 Nonlinear ODE Example
	3.4.2 Van der Pol Problem
	3.4.3 Linear Index One DAE System
	3.4.4 Nonlinear Index One DAE System
	3.4.5 Electrical Power System
	3.4.6 Linear Index Two DAE Systems

	4 An Evaluation of Solution for Modeling an Ion Exchange Process
	4.1 Modeling Dissolve Organic Carbon Removal Process
	4.1.1 Microscale Model
	4.1.2 Macroscale Model
	4.1.3 Two-Scale Model
	4.1.4 Age-Averaged Model

	4.2 KDC techniques coupled with Fast Elliptic Solvers
	4.2.1 Semi-Implicit KDC Method
	4.2.2 Fast Elliptic Solver

	4.3 Numerical Results
	4.3.1 Accuracy and Efficiency Comparisons
	4.3.2 Multiple Particle Size and Age System
	4.3.3 Age-Averaged Model

	5 Parallelization for Krylov Deferred Correction Methods
	5.1 The Parareal Method
	5.1.1 Algorithm
	5.1.2 The Stability of Parareal Methods

	5.2 Modified Parareal Krylov Deferred Correction Methods
	5.2.1 Algorithm
	5.2.2 Efficiency

	5.3 Numerical Results
	5.3.1 A simple nonlinear DAE system
	5.3.2 Stiff ODE Problem
	5.3.3 Transistor Amplifier Problem
	5.3.4 Index 2 nonlinear DAE system

	6 Concluding Remarks
	Bibliography

