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Abstract  

 

LAN FENG: Oil-filled Lipid Nanoparticles Containing Docetaxel Conjugates for 
Controlled Drug Release 

(Under the direction of Russell J. Mumper, Ph.D.) 

 

It has always been challenging to deliver anticancer agents effectively, safely 

and selectively to solid tumors. Taxotere, as the only marketed dosage form of 

docetaxel (DX), has various drawbacks. The overall objective of this dissertation was to 

develop oil-filled nanoparticles (NPs) as novel alternative formulation to deliver DX. 

Novel oil-filled NPs were developed by sequential simplex optimization. 

Miglyol 808 was selected as the oil phase due to its high solvation ability for DX. 

Despite the desirable formulation properties, DX was found to be very quickly released 

in mouse plasma in-vitro.  

To overcome the poor retention of DX in the NPs, three DX lipid conjugates: 

2’-lauroyl-docetaxel (C12-DX), 2’-stearoyl-docetaxel (C18-DX) and 

2’-behenoyl-docetaxel (C22-DX) were synthesized. The three conjugates showed 

10-fold higher solubility in Miglyol 808 than DX. Consequently, the conjugates were 

entrapped in NPs prepared with reduced surfactant and showed 50-60% entrapment 

efficiencies. All three conjugates had good retention in mouse plasma. In-vivo, 

NP-formulated DX conjugates showed 8-450-fold higher AUC0-∞ values than that of 

Taxotere. More importantly, C12-DX and C18-DX improved DX AUC0-∞ over that of 
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Taxotere. In addition, these conjugates were significantly less toxic than DX in-vitro. 

To further improve the hydrolysis kinetics, a bromoacyl DX-lipid conjugate 

2’-(2-bromohexadecanoyl)-docetaxel (2-Br-C16-DX) was synthesized. The conjugate 

exhibited similar entrapment efficiency and in-vitro release profile in mouse plasma 

with the other three conjugates without bromine. The NP-formulated 2-Br-C16-DX 

was slowly hydrolyzed to DX to an extent of 45% in 48 hr by esterases in-vitro. The 

superior hydrolysis kinetics led to improved cytotoxicity in-vitro with 2-Br-C16-DX 

NPs. In-vivo, the AUC0-∞ value of NP-formulated 2-Br-C16-DX was about 100-fold 

higher than Taxotere in mice. Furthermore, 2-Br-C16-DX NP improved DX AUC by 

4.3-fold compared to Taxotere. The 2-Br-C16-DX NPs extensively accumulated in 

solid tumors compared to Taxotere. The 2-Br-C16-DX NPs were well tolerated in mice. 

In mice bearing metastatic 4T1 tumor, 2-Br-C16-DX NPs showed marked anticancer 

efficacy as well as survival benefit over all controls. The results of these studies support 

that the oil-filled NPs containing hydrolyzable lipophilic DX prodrug 2-Br-C16-DX 

improved the therapeutic index of DX and were efficacious in the treatment of breast 

cancer in animal models.  
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Chapter 1.   

Lipid-based nanoparticles for taxane delivery: A review 

 

1.  Overview  

1.1.  Introduction of taxanes  

In the 1960s, the first taxoid was discovered by the National Cancer Institute.1 

During the massive screening of the antitumor activity of natural products, it was found 

that the extract from bark of the Pacific yew tree had activity against several murine 

tumors. Paclitaxel was later identified as the active ingredient of the extract. The early 

development and application of paclitaxel was limited by the scarcity of the active 

ingredient in the bark of the tree. Until 1986, docetaxel was semi-synthetically 

produced from a precursor isolated from European yew tree, 10-deacetylbaccatin III.2 

At a later time, paclitaxel was also semi-synthetically derived from the precursor.3 The 

precursor is extracted from the regenerable needles of the plant so that a continuous 

source of precursor is available for paclitaxel and docetaxel synthesis.  

The taxane family includes paclitaxel, docetaxel and analogues with the taxane 

skeleton. Docetaxel has two structural modifications compared to paclitaxel (Figure 

1.1). On the 10-position of baccatin ring, docetaxel has a hydroxyl group instead of an 
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acetyl group in paclitaxel and in the 3’ position of the lateral chain, docetaxel has a 

-OC(CH3)3 moiety instead of a benzamide phenyl group in paclitaxel. The high 

lipophilicity and the high lattice energy of paclitaxel and docetaxel which reflect their 

bulky and fused ring structure with several lipophilic substituents, result in very limited 

aqueous solubility. The water solubility of paclitaxel has been reported as 0.35-0.7 

µg/mL.4,5 Although both being water-insoluble, the structural differences make 

docetaxel about 10-fold more soluble in water (3-25 µg/mL) than paclitaxel. 6-8 

In 1979, Schiff et al. discovered the unique pharmacological mechanism of 

taxanes.9 Taxanes inhibit cell growth by binding to microtubules, stabilizing them, and 

preventing their depolymerization.10,11 Since the binding affinity of docetaxel to 

microtubule is 1.9-fold higher than that of paclitaxel, docetaxel is approximately twice 

as potent as paclitaxel.10,12,13 The in-vitro and in-vivo activities of paclitaxel and 

docetaxel have been studied and compared in many murine tumor models and human 

tumor xenografts. Docetaxel was found to be 1.3- to 12-fold more potent than paclitaxel 

after 96 hr exposure in several murine (P388, SVras) and human tumor cell lines 

(Calcl8, HCT116, T24, N417, and KB).14 In another in-vitro study, 2.5-times higher 

potency of docetaxel over paclitaxel was demonstrated in two murine cell lines J774.2 

and P388.10 In a number of freshly explanted human tumor cells, more than two thirds 

of the specimens tested, including breast, lung, ovarian, and colorectal cancers and 

melanomas, were more responsive to docetaxel than to paclitaxel.15,16 In six human 

ovarian-carcinoma cell lines, docetaxel showed an average 4-fold higher potency than 
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paclitaxel after continuous exposure or after a 2-hour exposure.17 The superior 

anticancer potency of docetaxel has been demonstrated in-vivo as well. In a B16 

melanoma xenograft model, docetaxel showed 2.7-fold higher potency over 

paclitaxel.18 

The higher in-vitro and in-vivo anticancer potency of docetaxel may not only be 

attributed to its higher affinity for microtubules, but also to its superior cellular 

accumulation. In support of this, an in-vitro study of the uptake and efflux of 

radiolabeled docetaxel and paclitaxel on P388 leukemia cells demonstrated that 

intracellular accumulation of docetaxel was 3-fold higher than that of paclitaxel with 

the same initial extracellular concentration.19 Conversely, the efflux rate of docetaxel 

from P388 cells was 3-fold lower than that of paclitaxel.  

As analogues in taxane family, paclitaxel and docetaxel share many common 

properties. They have similar structure and the same antitumor mechanism. 

Nevertheless, paclitaxel and docetaxel are not simply two of a kind. Their main 

similarities and differences are summarized in Table 1. Paclitaxel was investigated and 

delivered for at least a decade prior to docetaxel. Given the earlier introduction and thus 

larger body of clinical experience, the majority of research in the literature has focused 

on the formulation and development of paclitaxel. Since the formulation vehicle 

Cremophor EL (CrEL) used to solubilize paclitaxel presents more pharmacokinetic and 

pharmacodynamic drawbacks than polysorbate 80 used in the present docetaxel dosage 

form, an improvement is more likely warranted for paclitaxel. However, considering 
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the higher antitumor potency, favorable properties for formulation (e.g., higher water 

solubility) and the cheaper production cost, docetaxel deserves similar attention for 

development of improved delivery systems. Given the similarity between docetaxel and 

paclitaxel, the knowledge and experience accumulated from designing paclitaxel 

delivery systems may facilitate and inspire rationale designs of docetaxel delivery 

systems. Hence, although the focus of this dissertation is docetaxel formulation and 

drug delivery, both paclitaxel and docetaxel will be discussed in the present review.  

 

1.2.  Currently available formulations in the market  

Taxol®, the first injectable dosage form of paclitaxel is supplied in 50% CrEL 

(polyoxyethylated castor oil) and 50% dehydrated ethanol.20 In the clinic, it is 

administered intravenously over a period of 3-24 hr after dilution to a concentration of 1 

mg/mL. The most commonly prescribed dosage regimen is 135 mg/m2 or 175 mg/m2 

every 3 weeks. Following intravenous (i.v.) administration of Taxol, paclitaxel is 

rapidly eliminated from circulation in a biphasic manner. The average distribution 

half-life of paclitaxel after the administration of Taxol is 0.34 hr and the average 

elimination half-life is 5.8 hr.21,22 The initial rapid decline in blood represents 

distribution to the peripheral compartment and elimination of the drug. The later phase 

represents the slow efflux of paclitaxel from the peripheral compartment and 

elimination. The elimination of paclitaxel is mainly facilitated by CYP-mediated 
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hepatic metabolism (CYP2C8 and 3A4) and biliary excretion.23 Paclitaxel is highly 

bound to plasma protein (89-98%) and the steady-state volume of distribution is large.  

The pharmacokinetics of Taxol is nonlinear. It has been concluded that the 

nonlinear disposition of paclitaxel is due to the formulation vehicle CrEL. Two 

mechanisms have been proposed to explain the nonlinear pharmacokinetics of Taxol: 1) 

alteration of hepatic transport function by delivery vehicle,24 and 2) change of 

erythrocyte accumulation.25,26 The large quantity of CrEL in the formulation especially 

at high dose likely changes hepatic transporter activity, which in turn profoundly 

influences hepatic uptake and biliary excretion rates of paclitaxel or other 

co-administered compounds. Another more widely accepted mechanism is that 

paclitaxel is highly entrapped in CrEL micelles and the free drug fraction available for 

cellular partitioning is reduced, leading to alteration of paclitaxel accumulation in 

erythrocytes and thereby dose-dependent disposition. The nonlinear pharmacokinetics 

of Taxol may raise additional complexities when combination chemotherapy regimens 

are applied.  

The CrEL-related issue is not limited to pharmacokinetics of Taxol. 

CrEL-related side effects have been reported in clinical practice. It is generally believed 

that the hypersensitivity reactions associated with Taxol are largely attributed to the 

CrEL vehicle.27 To minimize the risk of hypersensitivity reactions, patients should be 

pretreated with a standard regimen containing corticosteroid (e.g., dexamethasone), H1 

and H2 blockers, prior to any paclitaxel infusion. However, minor hypersensitivity 
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reactions still occur in 40% of all patients even with these pretreatments.28 In addition, 

neurotoxic events such as ganglionopathy, axonopathy and demyelination are also 

attributable to the CrEL vehicle.29 

The only clinically approved alternative to Taxol is Abraxane®. This 

formulation consists of lyophilized cakes of paclitaxel nanoparticles, containing 100 

mg of paclitaxel and about 900 mg of human albumin in each 50 mL vial.30 Abraxane is 

formulated utilizing 130-nanometer albumin-bound technology (nabTM).31 This novel 

formulation is prepared by high-pressure homogenization of paclitaxel in the presence 

of human albumin, resulting in a nanoparticle colloidal suspension with a mean particle 

diameter of 130-150 nm.32 Albumin plays a critical role in binding and delivering many 

types of hydrophobic molecules including endogenous vitamins, hormones and 

exogenous drugs. Paclitaxel is hydrophobic and binds to albumin with high affinity. 

Through binding to a 60 kDa glycoprotein (i.e. gp60, albodin) receptor, albumin 

initiates transcytosis of albumin-bound cargo across the endothelial cell into the 

interstitial space.33 Recent evidence suggests that SPARC (secreted protein, acidic and 

rich in cysteine), which is overexpressed in about 50-60% of breast cancer may plays a 

role in concentrating albumin in areas of tumor, which, in turn may result in preferential 

intratumoral accumulation of albumin-bound paclitaxel.34-36 Clinical studies have 

demonstrated that the albumin-bound form of paclitaxel (i.e. nab-paclitaxel) has many 

clinical advantages over traditional Taxol. First of all, nab-paclitaxel is CrEL-free, so 

that nab-paclitaxel has markedly reduced the risk of inducing hypersensitivity reactions, 
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thus premedication is not required. Secondly, due to higher achievable formulation 

concentration with the nab-paclitaxel formulation, the drug can be administered over a 

shorter period of time (30 min) without special intravenous tubing needed. The 

nab-paclitaxel formulation either given weekly or every 3 weeks can achieve >50% 

higher dose than the typical dose used with CrEL-based paclitaxel formulation. Thirdly, 

in clinical trials, the response to nab-paclitaxel was shown to be greater than that of 

Taxol. Last but not the least, nab-paclitaxel was better tolerated than CrEL-paclitaxel. 

The incidence of grade 4 neutropenia is significantly reduced even with a 49% higher 

paclitaxel dose administered in nab-paclitaxel as compared to CrEL-paclitaxel.31 

Overall, nab-paclitaxel increases the therapeutic index of paclitaxel resulting in 

improved efficacy without increasing overall toxicity.  

Currently, the only commercially available dosage form of docetaxel is 

Taxotere®. The Taxotere concentrate is composed of 40 mg/mL docetaxel dissolved in 

polysorbate 80. Taxotere injection concentrate requires two dilutions before 

administration. It is firstly diluted with 13% ethanol in water to 10 mg/mL followed by 

secondary dilution to 0.3-0.74 mg/mL in either saline or 5% dextrose solution.37 The 

polysorbate 80 in the formulation solubilizes docetaxel into water by forming micelles 

and entrapping docetaxel inside. However, the resulting micellar solution is 

supersaturated, therefore, the drug ultimately crystallizes over time. For the purpose of 

physical stability of the product, Taxotere is provided in two vials (one vial contains 

docetaxel concentrate and another contains 13% ethanol in water as a diluent).  It 
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requires that the infusion is completed no more than four hours after the dosage 

preparation. In the clinic, Taxotere is usually administered at a dose of 60 to 100 mg/m2 

every 3 weeks as a one-hour i.v. infusion.  

The pharmacokinetic profile of docetaxel in Taxotere in humans is consistent 

with a three-compartment model, with half-lives of 4 min, 36 min and 11.1 hr for the α, 

β and γ phases, respectively.37 Following oxidative metabolism by CYP3A4, docetaxel 

and metabolites are excreted in both urine and feces, with fecal excretion as the main 

elimination route. In-vitro studies have demonstrated that about 94% of docetaxel is 

protein bound, mainly to α1-acid glycoprotein, albumin and lipoproteins.37 At clinically 

relevant concentrations, polysorbate 80 significantly increases the fraction of 

protein-unbound docetaxel due to the high binding affinity of docetaxel to polysorbate 

80.38 As a consequence, polysorbate 80 is associated with alteration of docetaxel 

pharmacokinetics due to the alteration of docetaxel protein binding profile. Moreover, 

studies have demonstrated that severe drug-induced hematological toxicity was more 

closely related to unbound docetaxel than total docetaxel exposure.39,40 Despite the fact 

that polysorbate 80 influences docetaxel pharmacokinetics, the area under the curve 

(AUC) of docetaxel was proportional to its dose up to 115 mg/m2, which is different 

from Taxol.41,42 In addition to the drug-induced toxicity, polysorbate 80 itself causes 

haemolysis and cholestasis.24  

In August 2010, Sanofi-aventis announced that the FDA approved a one-vial 

formulation of Taxotere (1-vial-Taxotere®). For the two-vial formulation 
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(2-vial-Taxotere®), the drug concentrate and the diluent (13% ethanol in water) are 

packed in two separated blisters, and two dilutions are required before administration. 

The one-vial formulation eliminates the need for initial dilution step with the diluent 

and is ready to be added directly into the infusion solution. The new one-vial 

formulation is composed of 20 mg/mL docetaxel in 50/50 (v/v) polysorbate 

80/dehydrated ethanol. The new formulation has the same final drug concentration and 

the same excipients as the two-vial formulation. The only difference is the alcohol 

concentration. With 50% dehydrated ethanol, the docetaxel concentrate is physically 

stable with reduced viscosity so that it can be directly withdrawn and added to the 

infusion solution.43 The one-vial formulation simplifies the manufacture and clinical 

preparations but does not solve the issues associated with its excipients polysorbate 80 

and ethanol. 

 

1.3.  Concerns for taxane delivery and clinical difficulties and issues  

First of all, paclitaxel and docetaxel administered in their current dosage forms have 

undesirable pharmacokinetic profiles. The rapid elimination, short half-lives and large 

volumes of distribution lead to limited drug accumulation in tumor sites with relatively 

high drug exposure in normal organs. In addition, the CrEL causes nonlinear 

pharmacokinetic profile of paclitaxel, which complicates the co-administration of other 

antitumor agents. Furthermore, rapid elimination of the drugs necessitates inconvenient 
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dosing schedules to realize optimal efficacy. 

Secondly, when administered systemically, adverse effects associated with 

Taxol and Taxotere include neutropenia, hypersensitivity reactions, fluid retention, 

peripheral neuropathy, myolosuppression, and gastrointestinal toxicity.29,41 Among 

these adverse effects, some of them are inevitable but controllable, such as neutropenia 

and gastrointestinal toxicity since paclitaxel and docetaxel are potent cytotoxic agents. 

While other adverse effects, like hypersensitivity reactions, are clearly vehicle-related 

and require premedication of corticosteroids or antihistamines. The undesirable 

pharmacokinetic and biodistribution profiles also make some drug-induced toxicity 

more severe as discussed above. 

The therapeutic index and toxicity of any cytotoxic agent are related to the 

duration of time that targeted tissues are exposed to a biologically relevant 

concentration of the drug. The unfavorable pharmacokinetic profile along with high 

toxicity has a profoundly negative impact on the therapeutic index of paclitaxel and 

docetaxel. Unfortunately, the excipients in Taxol and Taxotere, namely CrEL, 

polysorbate 80 and ethanol, not only fail to improve these issues but make them more 

complicated. Moreover, the limited drug loading in these formulations leads to long 

clinical infusion time. 

The novel CrEL-free Abraxane improved the therapeutic index of Taxol. It 

almost doubles the response rate and increases the time to progression (TTP).31 It is 

much better tolerated than Taxol due to its decreased systemic toxicity. However, since 
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the complexity of formulation requires recombinant albumin, the cost of Abraxane is 

comparatively high. Relative to the significantly higher cost, the antitumor efficacy 

improvement of Abraxane is only marginal. The TTP and patient survival time with 

nab-paclitaxel are longer than with Taxol but the benefit is only in the scale of weeks. 

In addition to the low therapeutic index, acquired multidrug resistance remains 

another major obstacle for the successful chemotherapy of taxanes in the clinic. 

Multidrug resistance (MDR) is a complex phenomenon often involving multiple 

mechanisms. Taxane resistance has been attributed to differential expression of various 

tubulin isotypes, decreased microtubule bundle formation, decreased expression of 

bcl-2, and overexpression of membrane efflux transporter P-gp.44 

 

1.4.  Criteria for ideal taxane delivery system  

The ultimate goal of an ideal taxane delivery system is to achieve maximal anticancer 

efficacy while minimizing adverse effects (Figure 1.2). As was discussed above, 

paclitaxel and docetaxel are quite insoluble in aqueous solutions due to the high 

lipophilicity and high lattice energy. An ideal formulation in terms of taxane delivery, 

first of all needs to solubilize taxanes to a high extent. The solubilization capability is 

directly related to drug loading, which partly determines the clinical infusion time. 

Shorter infusion period is favorable to both patients and clinical practitioners. Most 

importantly, taxanes should maintain a stable therapeutically meaningful concentration 
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in the tumor sites with minimal accumulation in normal tissues. For systemic 

administration, a high plasma AUC is a prerequisite but may not be sufficient for high 

tumor accumulation. Considering the short half-life of paclitaxel and docetaxel, the 

ideal delivery system should protect the taxanes from being rapidly eliminated from the 

circulation to gain high AUC. To achieve high blood AUC, the formulation needs to 

maintain two aspects of stability in-vivo: long circulation of the delivery vehicles and 

long retention of taxanes in the delivery vehicles. For long circulation, the delivery 

vehicle must escape from renal, hepatic filtration and reticuloendothelial system (RES) 

uptake. The long retention in the delivery vehicles requires high affinity of the drug for 

the carrier and slow drug release. Only with high drug concentration and prolonged 

exposure in the blood, are these drugs readily available for tumor accumulation over 

time. Furthermore, to ensure better tumor accumulation, the ideal taxane delivery 

system should also have some passive or active targeting ability for it to be more 

specifically distributed to the tumors while minimizing the accumulation in normal 

organs. Additionally, in terms of adverse effects, the excipients in the formulation 

should have low toxicity. By optimizing the drug release rate, pharmacokinetics and 

biodistribution, the delivery vehicle is able to shield or reduce the drug-related systemic 

toxicity. Another important property of the ideal taxane delivery system is that it could 

overcome MDR, which remains a significant clinical hurdle for taxane-based 

chemotherapy. 

From the manufacturing perspective, the manufacturing process of the 
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formulation should be simple, cheap, scalable, and reproducible. The final product 

should be easy to sterilize with high stability. 

From a clinical practice standpoint, the formulation should be easy to prepare 

for administration, ideally requiring only a bolus injection. 

For the sake of patients, low cost, shorter infusion time, and a less frequent 

dosing schedule is desirable in addition to a high therapeutic index. 

 

1.5.  Nano-formulation and tumor delivery overview 

The application of nano-formulation to deliver anticancer agents is closely related to 

the distinct physiological and pathological properties of solid tumors. These properties 

include: abnormal tumor vasculature, increased tumor vasculature permeability, lack of 

lymphatic drainage, structural changes in interstitial matrix and high interstitial fluid 

pressure (IFP).45,46 These properties create barriers for efficient drug delivery; on the 

other hand they provide opportunities for nano-based formulation delivery.  

To maintain rapid growth, tumor cells need efficient gas exchange, waste 

removal, and delivery of nutrients. These rely on the recruitment of new blood vessels 

caused by a process called angiogenesis. The tumor vessels generated from rapid 

angiogenesis are often disorganized with loops and trifurcations clearly different from 

those in normal tissues.47 The spatial distribution of tumor vasculature is heterogeneous 

because angiogenesis is more efficient near the tumor periphery as compared to the 
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center area.45 The insufficient blood supply to the central region of tumors makes it 

difficult to deliver drug to this area. On the other hand, the fact that tumor development 

highly depends on angiogenesis allows for the opportunity to starve tumor cells by 

cutting off their blood supply.  

The vasculature permeability is generally higher in tumors than in normal 

tissues due to large inter-endothelial junctions, increased numbers of fenestrations and 

abnormal basement membranes. The pore size cutoff in most tumors ranges from 200 

nm to 1200 nm, whereas a normal continuous endothelium has pore size no greater than 

2 nm.48-51 The difference in endothelial pore size between normal tissues and tumors 

provides the opportunity for nano-formulations to selectively extravasate to tumor sites 

without penetrating to the normal tissues with tight endothelial junctions. However, the 

leakiness of tumor vasculature is tumor type dependent and location dependent and 

therefore the drug delivery counting on this structural feature is often unpredictable 

with high variance. The leakiness of tumor vasculature is partly attributed to a 

multifunctional cytokine called vascular permeability factor/vascular endothelial 

growth factor (VPF/VEGF) secreted by tumors.45 The overexpression of VEGF 

receptors in the tumor and lining the tumor vessels also offers a potential target for 

active delivering.  

Studies have shown that lymphatic systems inside solid tumors are 

dysfunctional.52,53 The absence of lymphatic drainage causes prolonged retention of 

macromolecules once they extravasate the leaky vasculature and locate inside the 
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tumors. The enhanced permeability and retention (EPR) effect of macromolecules in 

solid tumors is a widely accepted concept in nano-formulation delivery research though 

recently it is argued that EPR effect is overestimated or artificial.54 However, despite 

the fact that the enhanced vessel permeability and impaired lymphatics bring potential 

benefit to nano-formulation delivery, they cause another major hurdle to tumor drug 

delivery, which is increased IFP. The IFP in normal tissues is around 0 mmHg whereas 

it is significantly elevated to around 20-45 mmHg in various tumors.55,56 Studies have 

shown that the IFP elevation strongly correlates with tumor size and tumor regions.55 

The IFP is lower near the tumor periphery but increases significantly along the tumor 

cross-section toward tumor central region and the larger tumor is associated with higher 

IFP. The detrimental outward pressure gradient not only hinders the transvascular drug 

penetration from blood vessel to the interstitial space but also causes great resistance 

for transport in the interstitial space with particular difficulties in large tumors.  

The tumor interstitial matrix is a space rich in collagen fibers and other 

additional components, such as proteoglycans and glycosaminoglycans.57,58 The 

mesh-like, tortuous structure of extracellular matrix along with its unique contents 

leads to high transport resistance to optimal drug delivery. The size, charge and surface 

properties of macromolecules determine their transport in this space. Apparently, a 

large particle size is not a favorable property to effectively diffuse through the 

collagen-rich matrix. The electro-interaction of charged particles with the oppositely 

charged components in the interstitial space resulting in trapping or aggregation causes 
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another transport hindrance. Particles with flexible configurations likely transport more 

efficiently than rigid particles of comparable size. Moreover, the compositions and 

distribution of components are heterogeneous in tumors and between tumor types. 

Some tumor (area) contains high collagen type I and fibrillar collagen contents while 

others are with low fiber concentration.58-60 The heterogeneous structure of tumor 

interstitial matrix also causes heterogeneous drug delivery and variance in different 

tumor types. 

Nano-based delivery systems have attracted a great deal of attention in the past 

two decades as a strategy to overcome the low therapeutic index of conventional 

anticancer drugs and delivery barriers in solid tumors. According to the definition of 

National Nanotechnology Initiative, nanoparticles are particles with sizes from about 1 

to 100 nm. A more commonly used definition in drug delivery research for nanoparticle 

is particles in the submicron range (1 to 1000 nm). The wide application of 

nanoparticles in anticancer agent delivery is based on their appealing and unique 

properties.  

Firstly, nano-formulations provide the physical and chemical protection for 

water insoluble and labile drugs. To date, parenteral administration is still the major 

administration route for highly cytotoxic anticancer agents. Hence, the low solubility of 

some agents such as taxanes, vinblastine, and topotecan, limits their optimal clinical 

application. By utilizing proper nano-materials, the poorly water-soluble drugs could 

be entrapped in nanoparticles and achieve high concentration in injectable aqueous 
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vehicles.61,62 Nano-formulations also offer protection for chemically unstable drugs by 

reducing their exposure to water or biological environments. Such examples include 

camptothecin, SN-38, ATRA, peptides, proteins, and nucleotides.63-65  

Secondly, nano-formulations can improve the pharmacokinetics of anticancer 

agents. As discussed previously, the improvement of pharmacokinetics relies on the 

long circulation of delivery vehicles and long retention of anticancer agent in the 

delivery vehicles. The importance of long circulation of nanoparticles has been widely 

recognized and extensively demonstrated for decades. It has been demonstrated that 

nanoparticles with hydrophobic surfaces are more prone to opsonization and uptake by 

the RES system. To shield the hydrophobic surface and evade the RES clearance, 

hydrophilic modifications have been made to nanoparticles. The most commonly used 

strategy is PEGylation, which is a process of decorating the particle surface with 

polyethylene glycol (PEG)-type polymers. The hydrophilic PEG chains make 

nanoparticles less visible to the RES system and therefore decrease elimination and 

increase circulation time in-vivo. Various PEG-coated nano-formulations have shown 

prolonged circulation time in-vivo.66-69 However, the importance of long retention of 

anticancer drugs in the nanoparticles is often underappreciated. The widely available 

materials for nano-formulation engineering enables manipulating release rate either by 

tuning the affinity of anticancer drug and delivery materials, or by choosing polymers 

with appropriate properties (e.g., molecular weight). It is worth noting that the 

correlation of in-vitro and in-vivo release behaviors is often poor due to the 
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methodology of in-vitro release studies. The slow and sustained release profile in 

simple aqueous medium such as PBS is misleading in many circumstances. A more 

biologically relevant release method is crucial to predict the actual in-vivo drug release.  

Thirdly, nano-formulations take advantage of the famous EPR effect and 

improve the biodistribution of anticancer agents. With a high concentration of drug in 

the circulation with prolonged period of time, the EPR effect plays a key role in passive 

targeting of nanoparticles. However, although PEGylation reduces the clearance by the 

RES, significant accumulation in the liver and spleen is still a typical distribution 

pattern for most nano-formulations. To further increase the selectivity, active targeting 

is utilized. The flexible surface chemistry of nanoparticles allows covalent or 

non-covalent incorporation of targeting ligands. The targeted receptor which may be 

over-expressed in tumor cells or site is expected to “attract” more nanoparticles. To date, 

it is still controversial about whether active targeting truly causes this “homing” effect; 

however, the internalization is proven to be evidently increased in tumor cells once the 

drug-loading nanoparticles reach tumor interstitial space.70 The passive and active 

targeting properties of nanoparticles increase the anticancer agent accumulation in 

tumors while decrease the penetration to normal tissues. The superior biodistribution 

ultimately leads to reduced systemic toxicity and increased efficacy.  

Finally, nano-formulation is versatile and multifunctional (Figure 1.3). 

Nano-formulations enable the co-delivery of multiple agents entrapped in the 

nanoparticles to gain synergistic anticancer effects or multi-functions. Various 
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modifications have been made to the nanoparticle surface as well. According to the 

application, the nanoparticles can be engineered to be positively-charged or 

negatively-charged. Active targeting ligands have been covalently attached to the distal 

end of PEG chain or directly attached to the lipids or polymers. Nanoparticle surface 

can be chelated with Ni and incorporate His-tagged antibody/affibody or vaccines.71,72 

Myriads of preclinical studies have been focused on developing 

nano-formulations to effectively deliver taxanes, one of the most important and most 

prescribed anticancer drug types in the clinic. Some of these nano-based delivery 

systems utilize natural carriers such as albumin and lipoproteins,32,73 while other 

systems such as polymeric nanoparticles, liposomes, micelles, nanoemulsions, solid 

lipid nanoparticles, nanocapsules, and dendrimers use synthetic materials. The rest of 

the review will focus on the advancement on development of lipid-based nanoparticles 

for taxane delivery. 

 

2.  Types of lipid-based nanoparticles to deliver taxanes 

2.1.  Liposomes 

Liposomes may be the earliest nano-carrier applied in pharmaceutical field dating back 

to the 1960s. They have been extensively investigated for delivering various 

hydrophobic and hydrophilic drugs including anticancer agents for several decades and 

vast amounts of data have been generated and reviewed. Liposomal anticancer drugs 
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were the first nano-formulations being approved for cancer therapy by FDA. The 

liposomal anticancer drugs approved and marketed for clinical oncology use in the U.S. 

include Doxil® (doxorubicin), DauoXome® (daunorubicin) and DepoCyt® 

(cytarabine).  

In the development of liposomes to deliver taxanes, increasing drug solubility, 

decreasing dose-limiting toxicities and altering undesirable pharmacokinetics are the 

main goals. The most commonly used preparation method of taxane liposome is simple. 

The drugs dissolved in an organic solvent are mixed with the lipid excipients dissolved 

in a miscible organic solvent. The thin lipid film produced by rotary evaporation is then 

hydrated by adding an aqueous solution. The resultant multilamellar liposomes are 

extruded through membranes with defined pore size or sonicated to form small 

unilamellar vesicles with size range 20-150 nm. The stability of liposomes remains one 

of the most important issues in the development of taxane liposomes. To prepare 

physically stable taxane liposomes, the lipid composition and the drug to lipid ratio 

have to be considered and balanced.74 The most widely utilized lipids in liposome 

preparation are neutral zwitterionic lipids such as phosphatidylcholine (PC). To 

minimize aggregation and increase stability, cholesterol or some anionic or cationic 

phospholipids are often included.75,76 The drug-lipid interaction determines the 

accommodation of water-insoluble taxanes to the lipid bilayer of liposomes. Ideally, a 

maximal drug to lipid ratio leads to high drug payload and reduces the vehicle-related 

toxicities. However, increasing the drug/lipid ratio decreases the physical stability of 
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liposomes in aqueous media.75 A drug loading of 3-3.5 mol% (paclitaxel to 

phospholipid) was physically stable for weeks to months, whereas 4-5 mol% paclitaxel 

was stable in the time range of just several hours to a day, and an 8% paclitaxel loading 

only resulted in 15 min of liposome stability. Thereby, to achieve a high drug/lipid ratio 

while retaining the long-term physical-chemical stability, a freeze-drying method is 

employed to obtain a dry drug-lipid powder, which is rehydrated in an aqueous solution 

immediately before use.77,78 The physical stability of taxane liposomes can be 

characterized by measurement of drug retention, circular dichroism spectropolarimetry 

(CD), differential scanning calorimetry (DSC) and other methods.79,80 Besides the 

physical stability, in-vivo stability is equally important if not more important. The 

long-circulation of liposomes has been realized by sterically stabilizing liposomes 

using the PEGylation approach.69 However, a decrease of the physical stability of 

paclitaxel liposomes has been reported by the incorporation of PEG-modified lipids.81 

It also has been demonstrated that repeated injection of PEGylated liposomes caused 

accelerated blood clearance of the following injected PEGylated liposomes.82 The 

phenomenon is attributed to the abundant IgM secreted by spleen upon first injection. 

In the clinic, taxanes require repeated doses, therefore this phenomenon may cause 

potential problems for taxane liposomal formulations. In addition to the stability and 

drug leakage issues, liposomes have other disadvantages including low loading 

capacity to lipophilic drugs and the requirement for the use of an organic solvent in the 

preparation. 
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Taxane liposomes have shown slower elimination, higher antitumor activity 

against various murine and human tumors and lower systemic toxic effect compared to 

Taxol.83-85 They have also shown antitumor effects in Taxol-resistant tumor models.77 

Cationic liposomes have been prepared from DOTAP and DOPE to encapsulate 

paclitaxel and selectively target angiogenic tumor endothelium.86 The 

paclitaxel-containing cationic liposomes remarkably inhibited the growth of A-Mel-3 

tumors while control tumors showed exponential growth. A liposomal paclitaxel 

formulation composed of cardiolipin, egg PC, cholesterol and D-α-tocopheryl acid 

succinate (Vitamin E) has progressed to a phase-I clinical trial.87 Unfortunately, despite 

the promising pre-clinical results, they failed to provide advantages over Taxol in 

patients with solid tumors. 

 

2.2.  Micelles  

Micelles are the simplest colloidal systems formed spontaneously by amphiphilic 

molecules. Depending on the types of amphiphilic molecules, micelles can be divided 

into lipid micelles, polymeric micelles and lipid-polymeric hybrid micelles. For lipid 

micelles, the amphiphilic molecules are usually small molecular surfactants. Different 

from the lipid bilayer structure of liposomes, the structure of lipid micelles is a 

monolayer structure with hydrophilic heads facing the outside aqueous environment 

and lipophilic tails forming the inner core. The shape of micelles can be spherical, 
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ellipsoidal or rod-like depending on the composition.88 At low concentration, the 

amphiphilic molecules exist in the aqueous media in a separated status. In contrast, 

when the concentration increases, they start to assemble to micellar structures driven by 

the decrease of free energy. The lowest concentration at which micelles are formed is 

called the critical micelle concentration (CMC). As a simple colloidal system, micellar 

nano-carriers are utilized in drug delivery fields to mainly deliver hydrophobic drugs, 

whereas hydrophilic or amphipathic agents are sometimes delivered as well.89-92 

Improving drug solubility is the major rationale of designing micellar nano-carriers. 

Hydrophobic drugs like taxanes are entrapped in the lipophilic core of the micelles. The 

commercial dosage forms of paclitaxel and docetaxel, Taxol and Taxotere, can be 

classified as micelles. However, lipid micellar nano-carriers have two main limitations: 

relatively low hydrophobic volume of the interior space and dissociation upon dilution. 

Due to the small interior hydrophobic space, the drug loading capacity of lipid micelles 

is often limited. Also, since the CMC of conventional lipid micelles is often high, they 

are not stable and tend to dissociate when they are diluted in-vitro or in-vivo. To address 

these issues, several alternative approaches have been pursued. In the case of Taxol and 

Taxotere, ethanol is incorporated in both dosage forms to facilitate the drug dissolution 

and stability. Besides the organic solvent related toxicities, for Taxotere, the micellar 

solutions after dilution with infusion medium are supersaturated and have to be used in 

4 hr before docetaxel begins to crystallize.  

In the field of micellar nano-carriers development, a larger amount of studies 
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have focused on the development of polymeric micelles because the CMC of polymeric 

micelles is extremely low, in the range of 10-6 to 10-7 M.93 To combine the advantages of 

lipid micelles and polymeric micelles, a novel sterically stabilized micellar (SSM) 

system composed of poly (ethylene glycol)-grafted 

distearoylphosphatidylethanolamine (DSPE-PEG) was developed to deliver 

water-insoluble drugs including paclitaxel.94-96 These phospholipid micelles are 

biocompatible and easy to prepare. The long acyl chains of DSPE-PEG creates a large 

hydrophobic inner core. To further increase the hydrophobic space and improve the 

solubilization of paclitaxel, another phospholipid, egg PC was incorporated to form 

sterically stabilized mixed micelles (SSMM) (Figure 1.4).91 SSMM solubilized 

1.5-times more paclitaxel than SSM for the same total lipid concentration. The PEG 

chains on the surface of these micelles and the strong hydrophobic interactions between 

the double acyl chains of the phospholipid residues result in lower CMC and higher 

thermodynamic stability compared to conventional micelles. The particle size and 

CMC of these micelles highly depend on the length of PEG chains. With the molecular 

weight of PEG increased from 750 to 5,000 Da, particle sizes increased from 7-15 nm 

to 10-35 nm, and CMC decreased from 1×10-5 to 7×10-6 M.97,98 The paclitaxel-loaded 

SSM and SSMM were monodispersed with mean particle sizes of 15 ± 1 nm and 13.1 ± 

1.1 nm, respectively. Moreover, the PEG chains are also expected to render protection 

against RES uptake and thus increase drug circulation time in-vivo. Furthermore, the 

active targeting property can be obtained by conjugating targeting moieties to the distal 
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end of PEG chains. The paclitaxel-loaded SSM and SSMM showed similar in-vitro 

cytotoxicity against human breast cancer MCF-7 with paclitaxel dissolved in 10% 

DMSO. However, in a more recent study, it was shown that by adding excessive empty 

micelles (1 µM), the IC50 value of both formulations was about 7-fold lower than that of 

paclitaxel dissolved in DMSO.95 This phenomenon provides an idea of preventing 

micelle rapid breakdown in-vivo by mixing empty micelles as a dilution cushion with 

drug-loading micelles. To date, there is no direct in-vivo evidence of improved 

pharmacokinetics or antitumor efficacy for the paclitaxel-loaded micelles over Taxol. 

The radiolabeled SSM showed increasing circulation half-life with the increase in the 

size of PEG block.98 These micelles efficiently and specifically accumulated in Lewis 

lung carcinoma and EL4 T lymphoma xenografts in mice. It has also been observed that 

DSPE-PEG2000 and DSPE-PEG5000 micelles retained their size characteristics after 

48 hr incubation with blood serum at room temperature. The integrity of micelles is 

likely associated with the drug retention in the nano-carriers. Collectively, these 

evidences suggest that the SSM or SSMM loaded with paclitaxel has the potential to 

prolong the drug circulation and achieve efficient tumor accumulation by the EPR 

effect. 

 

2.3.  Nano-emulsions (Emulsions, Micro-emulsions) 

Emulsions are mixtures of oil(s), water, and surfactant(s). The difference between 
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emulsion and micro-/nano-emulsion is obvious and can be detected by the naked eye: 

emulsions are cloudy suspensions with droplet sizes over 1 µm, whereas 

micro-/nano-emulsions are transparent or translucent. However, the misconception 

about micro-emulsion and nano-emulsions is common in the literature.99 Many of the 

systems referred to micro-emulsions in the literatures are actually nano-emulsions, 

while micro-emulsions are sometimes erroneously considered as nano-emulsions 

because they have the same apparent structure as nano-emulsions, which is spherical 

nano-sized droplets dispersed in a continuous phase. The fundamental difference 

between micro-emulsion and nano-emulsion is not their droplet sizes as suggested by 

their names (micro- vs. nano-) but their thermodynamic behaviors. Micro-emulsion is a 

thermodynamically stable system while nano-emulsion is thermodynamically unstable 

but kinetically stable. The key differences between micro-emulsion and nano-emulsion 

are not only critical to their preparation process and characterization, but also influence 

their applications (Table 2). Micro-emulsion, as a thermodynamic equilibrium system, 

is formed spontaneously by mixing oil, water and surfactant(s) and no energy is needed. 

To accelerate the emulsification process, in many cases some energy is input to 

overcome certain kinetic barriers through mechanical stirring or heating.100 On the 

contrary, nano-emulsion is in a non-equilibrium state and is generally formulated 

through the “high-energy” methods such as high-pressure homogenization, 

ultrasonication, to recruit high energy to breakdown the large droplets to submicron 

size.101 Nano-emulsions are also formulated by low-energy methods taking advantage 
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of the intrinsic physicochemical properties of the components. The phase inversion 

temperature (PIT) method is the most widely used low-energy method in industry. PIT 

is the temperature or temperature range at which a nonionic surfactant reaches the 

hydrophilicity and lipophilicity balance. The method is mainly based on the changes in 

solubility of the polyoxyethylene-type non-ionic surfactant with temperature. Another 

low-energy method is “spontaneous” emulsification. Nano-emulsions were formed 

simply by adding oil/surfactant mixture with an aqueous phase. However, the order in 

which the different components are mixed is essential for the formation of 

nano-emulsions in this method. Due to the small size of nano-emulsions, the 

sedimentation or aggregation rate is slow so that they are considered kinetically stable. 

The Oswald ripening is the only mechanism of nano-emulsion destabilization. The 

development of micro-emulsion is assisted by ternary phase diagram. As long as the 

component ratio is in the micro-emulsion forming domain, the mixing order does not 

influence the micro-emulsion formation. An important disparity associated with this is 

that micro-emulsion is not stable upon dilution because with the aqueous phase 

increasing, the composition of the water/oil/surfactant can reach out of the 

micro-emulsion forming boundary; in contrast, nano-emulsion is stable upon dilution 

or concentration once it is formed. Another important difference between 

micro-emulsion and nano-emulsion is that the phase behavior of micro-emulsion but 

not nano-emulsion is sensitive to temperature change.  

The instability of micro-emulsions toward dilution and temperature limits their 



28 

 

application as parenteral drug delivery carriers although their size may be in the 

nano-scale range. When administered intravenously, the formulation is largely diluted 

by blood and body fluids. In addition, the temperature is different as well. The 

breakdown of micro-emulsion in-vivo may cause a quick release of encapsulated drug 

or even drug precipitate leading to severe safety issues. The temperature sensitivity also 

makes sterilization of micro-emulsions by autoclave an invalid option. Overall, despite 

of the structural similarity, nano-emulsions and micro-emulsions are two different 

systems. The better stability of nano-emulsions to environmental stress makes them 

more suitable for parenteral drug delivery, while micro-emulsions have their 

applications in oral or topical delivery. Since micro-emulsions and nano-emulsions are 

both nano-sized drug carriers, their application in taxane delivery will both be 

reviewed. 

An early effort to develop CrEL-free paclitaxel dosage form formulated 

paclitaxel in an emulsion composed of triacetin as oil phase and soybean lecithin, 

pluronic F68, and ethyl oleate as surfactants.102 The emulsion was able to accommodate 

10-15 mg/mL paclitaxel. But as an emulsion system, the droplet size was large ranging 

from 0.5 to 5 µm and increased over time and eventually phase separation occurred. 

With the advance of technology in engineering, later, high-pressure homogenization 

was utilized to breakdown the droplets of coarse emulsion to smaller than 200 nm. A 

vitamin E-based nano-emulsion composed of tocopherol (vitamin E) as oil phase, 

TPGS and Poloxamer 407 as surfactants was prepared by high-shear 
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homogenization.103 The nano-emulsion of paclitaxel developed by Sonus 

Pharmaceuticals is named TOCOSOLTM. The nano-emulsions had a mean particle size 

of 62 nm and could load 8-10 mg/mL paclitaxel. In-vitro drug release was slow both in 

the presence and absence of human serum albumin. In the preclinical studies, the 

paclitaxel-loaded nano-emulsion was well tolerated with 3-fold higher maximum 

tolerated dose (MTD) over Taxol. It showed superior antitumor efficacy and survival 

benefit in B16 melanoma mouse model. In the pharmacokinetic and biodistribution 

studies, it was found that although the blood AUC of paclitaxel nano-emulsion was 

similar to that of Taxol in B16 melanoma mouse model, the tumor uptake of paclitaxel 

in nano-emulsion was significantly higher than that of Taxol.104 The tumor Cmax was 

1.5-times higher and AUC was 2.2-times higher after administration of paclitaxel 

nano-emulsion compared to Taxol. Based on the promising preclinical results, 

TOCOSOL entered a clinical trial. In phase I, patients received doses up to 225 mg/m2 

every 3 weeks. In phase II studies, the efficacy of TOCOSOL was investigated in 

patients with ovarian cancer, colorectal cancer, NSCL cancer or bladder cancer. In 2007, 

TOCOSOL was advanced to a phase III clinical trial. Unfortunately, phase III studies of 

TOCOSOL in women with metastatic breast cancer failed to show improvement on 

objective response rate (ORR) compared to the Taxol arm. In addition, the rates of 

neutropenia and febrile neutropenia in the TOCOSOL arm were significantly higher 

than the Taxol arm. Consequently, all clinical trials of TOCOSOL were terminated.  

A more recent report used high-pressure homogenization to prepare a 
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nano-emulsion system to deliver docetaxel.105 The entrapment efficiency determined 

by ultrafiltration and ultracentrifugation was greater than 90%. The pharmacokinetic 

study revealed a 3-fold higher AUC with docetaxel formulated in the nano-emulsion 

over Taxotere. Another nano-emulsion composed of tricaproin/tricaprylin 3:1, egg PC, 

and Tween 80 in glycerol solution was developed by first identifying an oil phase with 

high paclitaxel solubility.106 It was found that the triglycerols (tributyrin, tricaproin, and 

tricaprylin) generally had higher solubility to paclitaxel than the natural oils (corn oil, 

soybean oil, cotton seed oil and mineral oil) selected in the study. By sonication, the 

resultant nano-emulsions had particle size around 150 nm and were stable for at least 3 

months when stored at 4°C. The paclitaxel-loaded nano-emulsion showed survival 

benefit over paclitaxel-free nano-emulsion in ascetic-tumor-bearing mice, but whether 

the formulation had superior antitumor efficacy than Taxol was not investigated.  

Nano-emulsions have also been employed to improve the oral bioavailability of 

paclitaxel. The nano-emulsion was formulated with pine nut oil and egg lecithin by 

sonication method.107 After oral administration, a significantly higher concentration of 

paclitaxel was observed in the systemic circulation from paclitaxel nano-emulsions 

over a control paclitaxel solution. Yin et al. also reported enhanced bioavailability of 

docetaxel using a micro-emulsion.108 The micro-emulsion developed with the 

assistance of pseudo ternary phase diagrams was composed of Capryol 90, CrEL and 

Transcutol. The micro-emulsion significantly improved the bioavailability of docetaxel 

(34.4%) in rats compared to Taxotere (6.6%) after oral administration. These studies 
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demonstrated a proof-of-concept that a nano-emulsion/micro-emulsion could enhance 

the oral bioavailability of hydrophobic drugs such as taxanes. However, as oral delivery 

systems of taxanes for practical application, important toxicity issues remain to be 

thoroughly investigated, because as cytotoxic agents, taxanes are especially toxic to the 

rapid-proliferating intestinal epithelial cells. 

A novel cholesterol-rich nano-emulsion resembling low-density lipoprotein 

(LDL) was developed by Maranhao et al.109 LDL is the main carrier of plasma 

cholesterol in human. In some tumor types, LDL receptor was overexpressed in the 

neoplastic cells to meet the increased need of cholesterol for new membrane synthesis. 

Therefore, LDL can serve as a potential drug carrier to specifically deliver anticancer 

agent to cancer cells overexpressing LDL receptors. However, the isolation and 

handling of native LDL are difficult. It led to the design of a cholesterol-rich 

nano-emulsion that resembles the structure of LDL as a vehicle to paclitaxel. The 

nano-emulsion was prepared from a lipid mixture of 20 mg cholesteryl oleate, 40 mg 

egg PC, 1 mg triolein and 0.5 mg cholesterol. The final nano-emulsion had a mean 

particle size of 85 nm obtained by ultrasonication. The radiolabeled nano-emulsion was 

found to be more rapidly cleared from the patients with acute myeloid leukemia (AML) 

than in the patients with acute lymphocytic leukemia (ALL).109 The fact that LDL 

receptor is overexpressed in AML but not ALL suggests that the cholesterol-rich 

nano-emulsion was taken up by malignant cells with increased LDL receptor. Later, a 

lipophilic paclitaxel derivative paclitaxel-oleate was encapsulated into the 
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nano-emulsion. The formulation showed about 2-times higher AUC in both mice and 

patients with gynecologic cancers.110,111 The LD50 dose of the formulation was 9-times 

higher than that of Taxol in mice. Its therapeutic efficacy in B16F10 tumor bearing mice 

was remarkably greater than Taxol in terms of tumor growth inhibition, survival rates 

and % cure of treated mice. Another pilot clinical study in nine breast cancer patients 

also showed more than 3-fold increase of blood AUC compared to Taxol (Figure 

1.5).112 Both studies conducted in patients with gynecologic cancers and breast cancer 

showed 3-3.5-times higher drug accumulation in the malignant tumor tissues than in the 

normal tissues. The paclitaxel-oleate nano-emulsion showed great potential for further 

clinical development. The idea of constructing LDL-like nano-emulsion to target LDL 

receptor overexpressing cancer cells was also explored by another group.113 Instead of 

making the nano-emulsions cholesterol-rich to resemble LDL, they incorporated a 

29-amino acid synthetic peptide containing a lipid binding motif and an LDL receptor 

binding domain. Their in-vitro studies showed that the nano-emulsions containing 

paclitaxel-oleate inhibited the growth of LDL receptor overexpressing GBM cells and 

demonstrated that the drug was internalized via the LDL receptor. 

 

2.4.  Solid lipid nanoparticles  

Compared to the lipid nano-formulations discussed above, solid lipid nanoparticle 

(SLN) is a relatively new colloidal drug delivery system introduced in early 1990s. 
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Compared to other lipid nano-systems, SLNs have many advantages including ease of 

preparation and scale-up with low cost, good physical stability, controlled drug release, 

and versatile chemistry, in addition to others. SLNs can be prepared by high-pressure 

homogenization, micro-emulsion method, precipitation method by solvent evaporation, 

W/O/W double emulsion method, and high speed stirring/ultrasonication method.114 

The high-pressure homogenization methods include hot homogenization and cold 

homogenization. For both techniques the drug is firstly solubilized in the melted lipid. 

For the hot homogenization technique, the drug-containing lipid melt is dispersed under 

stirring in a hot aqueous surfactant solution with the same temperature. A hot O/W 

nano-emulsion is then obtained through high-pressure homogenization. SLNs are 

formed when the hot O/W nano-emulsion is cooled down to room temperature and the 

lipid recrystallizes. Different from the hot technique, the drug-containing lipid melt is 

dispersed in a cold surfactant solution for the cold homogenization technique leading to 

the formation of microparticles. The microparticles are then directly homogenized to 

nano-sized SLNs at or below room temperature.115 The high-pressure homogenization 

method has been scaled up to 2-10 kg batch sizes under GMP.116,117 SLNs can also be 

produced via micro-emulsions. A mixture of lipid, surfactant, co-surfactant and water 

heated above the melting point of the solid lipid in the micro-emulsion forming region 

firstly forms a thermodynamically stable micro-emulsion system. SLNs are then 

formed by dispersing the warm micro-emulsion into a cold aqueous medium under mild 

mechanical mixing. Mumper et al. developed a warm micro-emulsion precursor 



34 

 

process to manufacture SLNs in a one vessel process.118 The process has been scaled up 

to 10 liters in the lab and 1 liter under cGMP. For the precipitation method, solid lipid 

dissolved in an organic solvent is emulsified in a surfactant solution. The lipid 

precipitates forming SLNs after organic solvent evaporation. The involvement of 

organic solvent is an obvious disadvantage of this method. The W/O/W double 

emulsion method is a relatively new method developed recently to encapsulate 

hydrophilic molecules. The high-pressure homogenization, micro-emulsion method, 

precipitation method all have been employed to prepare SLNs to encapsulate paclitaxel 

and docetaxel.119-123 A large pool of solid lipids (mono-, di- and tri-glycerides, lipid 

acids, phospholipids, wax etc.) and surfactants are available for SLN engineering. 

Among these excipients, some lipids (e.g., glycerides, phospholipids) and surfactants 

(e.g., Tween 80, lecithin, Poloxamer 188, sodium glycocholate) are acceptable for i.v. 

injection. The wide availability of i.v.-acceptable solid lipid and surfactant makes SLN 

a versatile platform for drug delivery readily translational to clinical application 

although so far no SLN products have been introduced into the market for parenteral 

use. Due to the solid status of the SLN matrix, the physical stability of optimized SLN 

is generally more than one year.124,125 

The drug loading capacity and drug retention in the SLNs are closely related to 

the solubility and miscibility of drug with the lipid phase, as well as the 

physicochemical structure of the solid lipid matrix and the polymorphic state of the 

lipid material.115 Choosing a lipid with high drug solubility and miscibility is a 
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prerequisite for forming SLN with high drug loading and slow drug release. A 

paclitaxel-loaded SLN developed by Cavali et al. showed only 0.1% drug release in 

PBS in 2 hr following pseudo zero order release.123 Another paclitaxel-loaded SLN 

prepared from phospholipid and sucrose fatty acid esters released only 12.5-16.5% of 

paclitaxel within 14 days.126 More impressively, Lee et al. studied the release of 

paclitaxel from a SLN in 80% human plasma at 37°C using dialysis method. They 

found that only 10% of paclitaxel was released from the SLNs in 24 hr.120 

However, the solid lipids with highly organized crystal lattice structure are 

orderly and tightly packed together leaving very limited space to accommodate large 

amounts of drug molecules, which leads to low drug loading and burst release. It has 

been demonstrated that the extent of burst release is not only associated with the lipid 

matrix properties, but also is a function of production temperature and surfactant 

concentration.115,127,128 The initial burst release increases with increasing preparation 

temperature and increasing surfactant concentration. With higher production 

temperature and surfactant concentration, the drug solubility in the aqueous phase is 

higher. During the cooling process of SLN preparation when warm method is used, the 

drug solubility in the aqueous phase decreases while at the same time the lipid melts 

solidify and crystallize.129 The drug re-partitions into the lipids while the lipids increase 

structural perfection during the cooling, leading to the embedding of drug molecules 

onto the particle surface and formation of a drug-enriched shell. This unfavorable drug 

incorporation mode limits the drug loading capacity, and leads to drug expulsion during 



36 

 

storage and burst release. To overcome this potential issue, Muller et al. proposed a 

novel lipid nano-system called “nanostructured lipid carriers” (NLC).129 The NLC is a 

modification of the conventional SLN by making the solid lipid core a less organized 

nanostructure. The lipid cores with imperfect crystal structure can be realized by either 

using spatially different lipids, such as mono-, di-, tri-glycerides with different chain 

lengths, or mixing some liquid lipids (oils) with the solid lipid. The space between 

different fatty acid chains and crystal imperfections provide more accommodation for 

drug molecules. In addition, some drugs have higher solubility in oils than in solid 

lipids. Therefore, the NLC as a new generation of SLN increases the drug payload and 

decreases drug expulsion and burst release. Besides the lipid matrix, it is also possible 

to tune the release profile by adopting different production method (warm or cool) or 

modifying surfactant concentration. Finally, it is worth noting that burst release may not 

be necessarily a bad property for all drugs. When an initial high blood concentration is 

desirable according to the therapeutic needs, the burst release can be useful under more 

precise control. 

The in-vitro uptake and cytotoxicity of paclitaxel-loaded SLNs have been 

demonstrated in several cell lines.120,121,130,131 The lipid matrix materials seem to not 

only influence drug release rate but also affect cellular uptake as well. Yuan et al. 

investigated the cellular uptake of several SLNs composed of different lipid materials 

including monostearin, stearic acid, glycerol tristearate and Compritol 888 ATO 

(ATO888).130 Their results showed that the cellular accumulation preference was in the 
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order of glycerol tristearate SLN > monostearin SLN> stearic acid SLN> ATO888 SLN. 

This is explained by different affinity between fatty acids and cell membrane. Moreover, 

the PEGylated stearic acid SLN showed the highest cellular uptake among the materials 

tested. Paclitaxel loaded in these SLNs showed 1.6-10-fold higher cytotoxicity 

compared to Taxol. SLNs encapsulating paclitaxel not only showed higher anticancer 

activity in sensitive cell lines, but also overcame MDR in P-gp overexpressing cells. In 

a P-gp-overexpressing human ovarian carcinoma cell line NCI/ADR-RES, SLN G78 

containing paclitaxel showed 9-fold lower IC50 value.131 The potential mechanism of 

overcoming P-gp-mediated MDR was also investigated. It was demonstrated that the 

surfactant Brij 78 used in the SLN G78 temporarily decreased ATP level in resistant 

cells, thus the energy-dependent P-gp efflux was transiently inhibited. The increased 

uptake of high drug payload SLNs by endocytosis along with the inhibition of P-gp 

function resulted in greater cellular uptake and higher cytotoxicity in resistant cells. 

The blank SLNs themselves were well-tolerated both in-vitro and in-vivo. In-vitro 

experiments showed that SLN E78 did not cause blood cell lysis at concentration up to 

1 mg/mL and did not activate platelets.132 In-vivo i.v. bolus injections of cetyl palmitate 

SLNs into mice at dose up to 1.33 g/kg with 6 repeats did not cause acute toxicity or 

increase in liver and spleen weight.115 

SLN encapsulation improves drug pharmacokinetics and biodistribution. 

Similar to other nanoparticles, the long-circulation of SLNs can be achieved by 

modifying the particle surface with more hydrophilic moieties to evade RES clearance. 
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The most widely used method is PEGylation. As compared to other more 

well-established nano-systems such as liposomes, the development of stealth SLNs is 

still in its initial phase. Also due to the great diversity of SLNs, there are no certain rules 

and approaches that can be universally applied to all or most of the SLNs in terms of 

coating density, chain length and incorporation method. To date in the literature, stealth 

SLNs are PEGylated through either PEG-grafted lipids (e.g., DSPE-PEG2000, stearic 

acid-PEG) or surfactants with certain PEG chains (e.g., Brij 700, TPGS). Two 

long-circulating SLNs containing paclitaxel were developed and their 

pharmacokinetics were evaluated in mice by Chen et al.119 Both of the SLNs were 

composed of stearic acid and lethicin as oil phase, with Brij 78 as surfactant in one 

formulation (Brij78-SLN) and Poloxamer F68 and DSPE-PEG2000 in another 

(F68-SLN). Brij78-SLN and F68-SLN increased paclitaxel AUC 1.7-fold and 1.9-fold 

compared to Taxol, respectively. The longer PEG chain of DSPE-PEG2000 (Mw 2000) 

compared to Brij 78 (Mw 1200) may be responsible for the slightly longer circulation 

and higher AUC of F68-SLN. Interestingly, non-stealth SLNs without PEGylation also 

enhanced systemic circulation of encapsulated drugs.133-137 The mechanism of this 

unique characteristic of SLN is not clear. It is possible that some surfactants used in the 

so-called non-stealth SLNs carry similar properties as PEG. For example, Poloxamer 

used in the study of Yang et al. is a triblock copolymer composed of a central 

hydrophobic chain of polyoxypropylene flanked by two hydrophilic chains of 

polyoxyethylene.137 Another example is vitamin E-TPGS (alpha-Tocopheryl 
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Polyethylene Glycol 1000 succinate) which has a medium PEG chain with molecular 

weight of 1000. These surfactants may result in a hydrophilic shield on the SLNs to 

protect them from RES uptake. However, in more cases, this explanation may not apply. 

Further thorough investigations are needed to fully understand the underlying 

mechanism. Up until now, a considerable accumulation of SLNs in the organs of RES 

(liver, spleen, and lung) is still a typical distribution pattern after i.v. injection of either 

non-stealth or stealth SLNs. With prolonged exposure in the systemic circulation, SLNs 

deliver more entrapped drugs to solid tumor tissues taking advantage of the EPR 

effect.138 An extraordinary finding by many research groups revealed that SLNs 

improved the delivery of various drugs to brain.134,135,137,138 One potential explanation 

of the effect is that plasma proteins (e.g., apolipoproteins) bind to particle surfaces and 

mediate adherence to blood-brain-barrier (BBB) endothelial cells.114 The BBB 

endothelial cells are famous for their tight junctions and high expression of P-gp. Brain 

uptake of paclitaxel nanoparticles was evaluated by Koziara et al. using an in-situ rat 

brain perfusion model.139 Their results suggested that entrapment of paclitaxel in SLNs 

significantly increased the paclitaxel brain uptake. Possible mechanisms of increased 

brain delivery of these SLNs include: 1) shielding of drug from direct interaction with 

P-gp by nanoparticle entrapment, 2) modulating BBB P-gp function by the surfactant 

(Brij 78), and 3) triggering of endocytosis/transcytosis. These data suggest the 

possibility of brain delivery of chemotherapy with SLNs. 
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2.5.  Nanocapsules  

Nanocapsules are defined as nano-scaled particles with an oil core surrounded by a 

rigid shell. With the liquid oil core as a drug reservoir and rigid shell as a drug leaking 

barrier, nanocapsules are expected to have high drug encapsulation capacity, good drug 

retention and high stability. Similar to SLN, nanocapsules are generally stable over a 

year. They have fewer drug leakage problems associated with liposomes and avoid drug 

expulsion problems associated with SLNs. There are two types of nanocapsules, based 

on the structure and components of the shells: polymer-shelled nanocapsule and 

surfactant-shelled nanocapsule. The preparation of both polymer-shelled nanocapsule 

and surfactant-shelled nanocapsule is closely related to nano-emulsion/micro-emulsion. 

Polymer-shelled nanocapsules can be prepared by interfacial polymerization, 

salting-out, emulsification-diffusion, and nanoprecipitation etc.101 For the interfacial 

polymerization method, nano-emulsion droplets serve as individual nano-reactors, on 

the surface of which polymerization of monomers with different mechanisms occur and 

form polymeric shell encapsulating liquid oil core and drugs.140-142 Different from 

interfacial polymerization technique, the latter three methods disperse preformed 

polymer on nano-emulsion surface. The latter three methods were compared by 

Galindo-Rodriguez et al.143 Methacrylic acid copolymer and poly(vinyl alcohol) (PVA) 

were selected as polymer and emulsifying agent to prepare nanocapsules utilizing all 

three methods. The size distribution of nanocapsules prepared by nanoprecipitation was 

narrower than those by salting-out and emulsification-diffusion methods. The factors 
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influencing nanocapsule formation by salting-out and emulsification-diffusion methods 

were PVA chain interactions at the interface and in the bulk solution; while the 

parameter governing the nanocapsule characteristics from nanoprecipitation method 

was water-solvent interaction. All the methods for polymer-shelled nanocapsule 

preparation involve the use of organic solvent. Nanocapsules have been developed to 

deliver paclitaxel since 20 years ago.144 Unfortunately, the mice treated with 1.5 mg/kg 

paclitaxel-loaded nanocapsules died before control mice, suggesting high toxicity of 

the nanocapsules which was composed of poly(lactic acid), benzyl benzoate and 

Pluronic F68. Over the past 20 years, the development of nanocapsules for anticancer 

drug delivery is fairly slow compared to other lipid-based nano-carriers. Until more 

recently, several polymer-shelled nanocapsules are reported for paclitaxel delivery with 

only in-vitro studies. Nanocapsules were prepared using a freeze-drying method to 

directly disperse Pluronic F-127 triblock copolymer to the surface of lipid core 

composed of lecithin and paclitaxel.145 The paclitaxel-loaded lipid cores dispersed in 10 

wt% F-127 aqueous solution exhibited droplet size of 99 nm. However, after the 

freeze-drying to induce the formation of polymeric shell, a mean particle size of 267.4 

nm and broad distribution were observed. The large particle size and broad distribution 

may cause potential risks for parenteral application. PEO-PPO-PEO/PEG shell 

cross-linked nanocapsules were prepared by dissolving an oil (Lipiodol®) and an 

amine-reactive PEO-PPO-PEO derivative in DCM and consequently dispersing in an 

aqueous solution containing amine-functionalized six-arm-branched PEG by 
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ultrasonication.146 The resultant nanocapsules had an average particle size of 110 ± 9.9 

nm with paclitaxel-loading efficiency of 46.5 ± 9.5%. Zhang et al. prepared 

nanocapsules through interfacial polymerization of butylcyanoacrylate (BCA) with 

PEG as initiator.147 The particle sizes, paclitaxel entrapment and hemolytic potential of 

PEG-PBCA nanocapsules were all related to the quantity and molecular weight of 

mPEG. With longer PEG chain length, mPEG5000 served as a stronger stabilizer and 

formed smaller nanocapsules compared to mPEG2000. The encapsulation efficiency of 

paclitaxel also increased with increase of PEG concentration. The 10% (w/v) 

PEG-PBCA nanocapsules showed about 60% of paclitaxel encapsulation efficiency. 

With the increase of PEG concentration, the hemolysis rate decreased as well. 

Generally, the encapsulation efficiency of paclitaxel in polymer-shelled nanocapsules is 

not very high so far. 

The surfactant-shelled nanocapsules are prepared by the PIT method. Both 

nano-emulsions and nanocapsules can be prepared using the PIT technology. The three 

basic components are the same for nano-emulsions and nanocapsule; each containing 

an oil phase, an aqueous phase and surfactant(s). However, the fundamental 

composition of nanocapsules falls in the microemulsion-forming region (Winsor IV 

region); while the composition of nano-emulsions is in the Winsor III region. As briefly 

discussed in nano-emulsion production, the PIT method is based on the changes in 

solubility of the polyoxyethylene-type non-ionic surfactant with temperature. At 

temperatures below the PIT, the surfactant monolayer has a positive curvature forming 
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O/W emulsions; while above the PIT, the curvature becomes negative forming W/O 

emulsions. During the preparation of nanocapsules, the mixture of all components is 

heated to above the PIT (T2) then cooled to temperature below the PIT (T1). Several 

temperature cycles between T1 and T2 were carried out followed by a sudden dilution 

with cold water to induce an irreversible shock. This method developed by the Benoit 

group generally uses capric and caprylic acid triglycerides as the oil phase, and a small 

amount of Lipoid® as the hydrophobic surfactant.148,149 The leading role is played by 

the hydrophilic surfactant Solutol® HS 15, which is a mixture of free PEG 660 and PEG 

660 hydroxystearate. The nonionic surfactants finally crystallize since the final 

temperature is below their melting point (about 30°C), leading to the formation of a 

rigid shell. The shell is structured as a combination of hydrophobic surfactant (Lipoid) 

anchoring in the oil phase and hydrophilic surfactant (Solutol) orienting toward the 

aqueous phase. The percentage of Solutol and the number of temperature cycles have 

major influence on particle size and size distribution. With higher percentage of Solutol 

and more temperature cycles, the particle size decreases and size distribution becomes 

narrower. Paclitaxel was encapsulated in the surfactant-shelled nanocapsules by the 

same research group. The entrapment efficiency in these nanocapsules was 99.9%. The 

pharmacokinetics and biodistribution of radiolabeled blank nanocapsules were 

studied.150 The t1/2 and MRT values of nanocapsules (2-3 hr) indicated long circulation 

of the nanocapsules. The pharmacokinetics of paclitaxel-loaded nanocapsule was 

missing. However, the slow release of paclitaxel from the nanocapsules in-vitro along 
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with the long-circulation of blank nanocapsules in-vivo suggested the potential of 

improved paclitaxel pharmacokinetics.151 The antitumoral activity of paclitaxel-loaded 

nanocapsule was evaluated in a chemically induced hepatocellular carcinoma (HCC) 

model. Animals treated with 4×70 mg/m2 of paclitaxel-loaded nanocapsules showed 

significant increase in the mean survival time compared to the blank nanocapsule and 

saline groups but with no statistical significance compared to the Taxol group.150 The 

antitumoral activity was also studied in a glioma model with MDR.151 Paclitaxel-loaded 

nanocapsules significantly lowered both the tumor mass and tumor volume growth; 

whereas Taxol treatment showed no significant effect. The potential mechanisms of 

overcoming MDR by these nanocapsules were inhibition of MDR efflux pump by 

PEG-HS and redistribution of intracellular cholesterol. These nanocapsules were also 

administered orally to enhance the oral bioavailability of paclitaxel.152 The AUC of 

paclitaxel-loaded nanocapsule was 3-fold higher in comparison to the AUC of Taxol 

group, and comparable to the Taxol + verapamil group. The improvement of oral 

paclitaxel bioavailability when it was loaded in nanocapsules was likely due to the 

inhibition of P-gp by nanocapsules. Another research group prepared nanocapsules 

using the same PIT method to deliver docetaxel to solid tumor.153 Encapsulation of 

docetaxel in the nanocapsule increased its AUC in blood and in tumor 4-fold and 5-fold, 

respectively, compared to Taxotere. The pharmacokinetics and biodistribution profiles 

were found to depend on PEG density on the particle surface. PEGylation of 

nanocapsules with DSPE-PEG2000 at 6, 10 and 15 mol% greatly enhanced 
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nanocapsule circulation time. The highest blood concentration of docetaxel 2 hr 

post-injection was obtained with 120 nm 15 mol% PEG nanocapsules. Tumor 

accumulation seemed to increase with PEG density but not statistically significant until 

12 hr only between 6% and 15% of PEG groups.  

 

2.6.  Core/shell nanoparticles 

In contrast to nanocapsules which are nanoparticles with lipid core surrounded by 

polymers, the so-called core/shell nanoparticles are nanoparticles with polymer core 

surrounded by lipids although in the literature nanocapsules are sometimes called 

core/shell nanoparticles. These core/shell nanoparticles are essentially comprised of a 

hydrophobic poly (lactic-co-glycolic acid) (PLGA) core, a hydrophilic poly (ethylene 

glycol) (PEG) shell, and a lipid layer in the form of monolayer or bilayer. This type of 

hybrid nanoparticle combines the beneficial properties of liposomes and polymeric 

nanoparticles. The hydrophobic polymeric core provides the nanoparticles high drug 

loading capacity, high stability and controlled drug release. The PEG and lipid shells 

render the nanoparticles natural property, extra shield against drug leaking, stealth 

feature for long-circulation, and favorable surface for cellular uptake. The physical 

stability and particle size were controlled by various formulation parameters such as 

lipid/polymer mass ratio and lipid/lipid-PEG molar ratio.154 These factors also showed 

effects on the docetaxel release rate in water when docetaxel was entrapped into these 
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core/shell nanoparticles. The nanoparticles with 100% (w/w) lipid/polymer mass ratio 

released 90% docetaxel in 100 hr. Comparable release profiles were also reported by 

two other studies encapsulating docetaxel and paclitaxel.155,156 The nanoparticles did 

not cause significant cytotoxicity against HeLa cells and HepG2 cells.154 These 

nanoparticles showed good physical stability in 10% (v/v) human plasma or 100% FBS 

at 37°C.  

More interestingly, the core/shell structure enables co-delivery of a secondary 

drug. Combretastatin A4 (CA4) as a vascular disrupting agent was entrapped in the 

lipid layer of the core/shell nanoparticles and co-delivered with paclitaxel.156 The 

sequential release of these two drugs over a time difference of 36 hr provides an 

opportunity of sequential anti-angiogenesis and anticancer functions (Figure 1.6). In 

addition, the arginine-glycine-aspartic acid (RGD) was conjugated to the nanoparticles 

to render the particles further vascular-targeting properties. 

 

2.7.  Prodrug strategy for better lipid nanoparticle encapsulation  

Various paclitaxel and docetaxel prodrugs have been designed by conjugating small 

molecules, polymers, or targeting ligands etc. to realize different goals such as 

increasing water-solubility, site-specific release and tumor targeting.157 In this section, 

we only focus on the prodrug strategies to manipulate the taxane 

hydrophilicity/hydrophobicity to be better incorporated into different lipid 
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nano-carriers.  

Most lipid-based nanoparticles are designed to be more suitable and efficient for 

the encapsulation of lipophilic drugs. Paclitaxel and docetaxel are water-insoluble and 

often used as lipophilic model drugs when developing formulations that serve as 

lipophilic drug carriers. However, they have appreciable solubility in aqueous solutions 

and are highly protein bound. In addition, their solubilities in many lipids are limited. 

Therefore, in a biological environment, especially in-vivo, taxanes are no longer well 

retained in the nano-carriers. This issue is often neglected or underappreciated because 

most of the in-vitro release experiments are performed in simple aqueous solutions like 

PBS and have poor prediction of the in-vivo release behaviors. To address this potential 

issue, lipophilic taxane prodrugs were synthesized to further increase their lipophilicity 

and miscibility with lipids. Stevens et al. synthesized paclitaxel-7-carbonyl-cholesterol 

(Tax-Chol) and evaluated its incorporation into a nano-emulsion formulation.158 

Tax-Chol was incorporated into the nano-emulsion with greater than 90% entrapment 

efficiency. The release of Tax-Chol or paclitaxel from the nano-emulsions was 

determined in 45 mg/mL bovine serum albumin (BSA). The release of Tax-Chol was 

significantly slower than that of paclitaxel from the nano-emulsion. Paclitaxel was 

modified by attaching an oleoyl group to mimic cholesteryl esters and enhance its 

incorporation and retention in LDL-resembling nano-emulsions by several 

groups.110,113,159 The paclitaxel-oleate demonstrated significantly greater incorporation 

into nano-emulsions compared to unmodified paclitaxel.113 These paclitaxel-oleate 



48 

 

nano-emulsions showed promising in-vitro properties as well as in-vivo 

pharmacokinetics. To enhance the solubility of docetaxel in LabrafacTM (propylene 

glycol dicaprylate/dicaprate), a docetaxel prodrug was synthesized by attaching a 

lauroyl group to docetaxel through an ester link.160 The 2’-lauroyl docetaxel showed 

greater than 8-fold solubility in the oil compared to unmodified docetaxel. In a 

nano-emulsion using Labrafac as the oil phase, 2’-lauroyl docetaxel showed high 

loading capacity (5.7% w/w) and high entrapment efficiency (97%). Since medium 

chain glycerides are widely used in formulating various nano-emulsions, 

micro-emulsions and nanocapsules, this strategy has its potential application in a 

number of nano-carriers. Ali et al. synthesized a series of paclitaxel prodrugs with 

2-bromoacyl chains ranging from 6, 8, 12, 14 to 16 carbons in length.161 For 

comparison, hydrophobic paclitaxel prodrugs in acyl chain lengths from 6 to 16 without 

bromine at the 2-position were also synthesized. In-vitro, the cytotoxicity decreased 

with the increase of acyl chain length. In general, the taxanes lacking bromine were 50- 

to 250-fold less active than their bromoacyl counterparts indicating that the 

electron-withdrawing group facilitated the cleavage of active paclitaxel. The 

2-bromoacyl taxanes were formulated into liposomes and evaluated for their anticancer 

efficacy in an ovcar-3 ovarian mouse model. In-vivo results showed that prodrugs with 

a longer chain were therapeutically more efficacious than those with a shorter chain, 

which was opposite to the in-vitro cytotoxicity. The trend was probably explained by 

slower release and hydrolysis in the systemic circulation leading to higher 
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accumulation in the tumor site for prodrugs with a longer chain. 

Different than other lipid-based nano-carriers, liposomes are capable of directly 

encapsulating both lipophilic and hydrophilic drugs. However, drug loading of 

hydrophobic drugs in lipid bilayers of liposome is often limited. It has been 

demonstrated that paclitaxel and docetaxel are difficult to encapsulate and retain in 

liposomes. To overcome this issue, paclitaxel and docetaxel for liposomal delivery are 

modified more water-soluble. Water-soluble paclitaxel prodrug was synthesized by 

attachment of a methacrylic acid based oligomer with molecular weight of 1657 Da.162 

The optimized liposomal formulation encapsulated 3 mol% of paclitaxel prodrugs with 

entrapment efficiency of 91%. In 180 hr, 45% prodrug release was observed in saline. 

However, as a prodrug, it did not release paclitaxel efficiently both in-vitro and in-vivo. 

In rat plasma, less than 1% of paclitaxel was liberated from the prodrug in 24 hr. 

Another study developed a weak-base derivative of docetaxel, 

2’-O-(N-methyl-piperazinyl butanoyl) docetaxel.163 The weak-base prodrug was 

actively loaded into liposomes using pH gradient loading techniques and achieved 

stable drug encapsulation and retention. In-vitro cytotoxicity studies in several cancer 

cell lines showed similar activity as unmodified docetaxel, suggesting efficient 

converting of prodrug to active parent drug. The prodrug formulated in liposomes 

extended the circulation half-life to about 10 hr with 50-100-times higher plasma 

exposure compared to Taxotere or docetaxel derivative formulated in the Taxotere 

vehicle (Figure 1.7). The MTD of liposomal prodrug was 3-fold higher than that of 
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Taxotere. In a human breast cancer (MDA-MB-435/LCC6) xenograft model, at 

equimolar dose (25 mg docetaxel/kg), the liposomes and Taxotere had similar activity; 

while at dose level of 88 mg docetaxel/kg, the drug-loading liposomes was much more 

efficacious. 

It has been established that 2’-OH of both paclitaxel and docetaxel is more 

reactive than the 7-OH or other hydroxyl groups and the 2’-OH is critical for 

microtubule binding and cytotoxic effects.164 In contrast, 7-OH is not as essential for 

the cytotoxicity of taxanes as 2’-OH but derivatives at 7-OH position are very stable 

under physiological conditions.165,166 As a result, derivatives of taxanes are almost 

always carried out at 2’-OH generating less toxic taxane prodrugs. Besides the 

improvement of drug encapsulation in lipid nano-carriers, taxane prodrugs have other 

advantages such as reduced systemic toxicity and potential of site-specific release to 

active drugs depending on the conjugation chemistry. If the conjugation linkage is 

cleaved by some enzymes specifically expressed or overexpressed in tumor site, it will 

lend the prodrug formulation extra targeting properties and further enhanced 

therapeutic index. The prodrug strategies benefit taxane delivery in many aspects, but at 

the same time complicates taxane delivery in terms of drug release profile. In addition 

to the drug release from formulations, active drugs need to be liberated from the 

prodrugs as well. Problems can be caused by either premature cleavage and release of 

active drugs, or too slow cleavage and inefficient liberation of active drugs. Therefore, 

when designing taxanes prodrug, a suitable drug cleavage rate is critical.  
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3.  Active targeting of taxane lipid-based nanoparticle  

Passive targeting of nanoparticle is based on the unique property of 

nanoparticles as well as the unique physiology and microenvironment of solid tumors. 

Nano-scaled particles preferentially accumulate in solid tumors taking advantage of the 

EPR effect. Different from passive targeting happening in tissue level, active targeting 

is based on specific molecular recognition, binding and the following endocytosis. The 

active targeting property can be intrinsic due to the nature of the nanoparticles. For 

example, cholesterol-rich nanoparticles target LDL receptors due to their components 

and structure resembling native LDL.109 Cationic liposomes prepared from DOTAP and 

DOPE selectively target angiogenic tumor endothelium.86 There are only a few 

examples of “build-in” active targeting, but it represents an inspiring alternative of 

conventional active targeting strategy. The most commonly used active targeting 

strategy is to graft targeting ligands such as antibody, peptide, small molecules, or 

aptamer on the surface of nanoparticles. Because nanoparticles usually carry high 

payload of anticancer agents, fewer ligands are required to achieve high active targeting 

efficiency compared to other delivery systems such as drug-ligand conjugate. Choosing 

a suitable target as well as targeting ligand is critical for the successful active targeting 

therapeutics. Ideally, the expression of the receptor on the target cells should be highly 

specific with high expression level in majority of the target cells. In reality, it is almost 
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impossible that the receptors only express in malignant cells. Higher tumor to normal 

tissue expression ratio provides higher selectivity. The major molecular targets for 

active targeting strategy include three types: angiogenesis-associated targeting (e.g., 

VEGFR), uncontrolled proliferation targeting (e.g., transferring receptors, folate 

receptors) and tumor cell targeting (e.g., HER-2, asialoglycoprotein receptor).167 The 

targeting ligand should have high affinity with the target receptor to ensure sufficient 

retention time as well as trigger cellular uptake via receptor mediated endocytosis 

instead of remaining bound to the receptor. Furthermore, the targeting ligand should be 

amenable to the required chemistries to attach the ligand to the nano-carrier. To avoid 

spatial shield, targeting ligands are usually conjugated to the distal end of PEG chains. 

The incorporation method of PEG-ligand includes pre-insertion and post-insertion 

methods. The pre-insertion method is to mix functionalized lipid-PEG with other 

components and prepare nanoparticles first, and then covalently graft targeting ligands 

to the nanoparticle surface. The post-insertion method is to prepare nanoparticles first 

followed by mixing with preformed lipid-PEG-ligand conjugate. Alternatively, the 

preformed lipid-PEG-ligand conjugate can be directly mixed with other components 

and prepare nanoparticles.  

During the development of active targeting nanoparticles, several factors must 

be taken into consideration. From the targeting ligand point of view, the conjugation 

chemistry and preparation conditions should not alter their binding affinity. The 

functional group or structure essential for receptor recognition and binding should not 
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be abolished or shielded due to the coupling to PEG. For some antibodies or peptide 

ligands, certain configuration must be retained to keep their binding affinity. Thus, 

depending on their sensitivity to environment, preparation conditions such as high 

temperature or the involvement of organic solvent should be avoided or used with extra 

caution. On the other hand, the incorporation of targeting ligand should not negatively 

change the properties of nanoparticles in terms of particle size, drug loading, drug 

release profiles and in-vivo elimination rate. Moreover, the targeting ligand should 

stably associate with the nanoparticles until they reach the targeting site. However, in 

some types of lipid-based nanoparticle such as liposomes, the lipids are in constant 

exchange with the environment that they in contact such as cell membranes. 

Consequently, there is a potential risk of losing active targeting ligands in biological 

condition. Finally, defining optimal density of targeting ligand on the nanoparticles is 

another important task. High ligand density in a feasible range may increase target 

binding, yet higher than optimal density may cause issues like higher cost, or 

aggregation etc. 

The folate receptor is one of the mostly used targets for active targeting 

therapeutics. The folate receptor is significantly upregulated in many cancer cells 

including ovarian, lung, brain, head and neck, and breast cancers.168,169 What makes the 

folate receptor an interesting target is that normal cells use the reduced-folate carrier 

pathway that only transports reduced-folate but not folate conjugates of any type, while 

folate-conjugated nanoparticles can only use folate receptor pathway which has high 
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specificity in malignant cells.168 Folic acid has a very high affinity for folate receptor 

(Kd ～10-10). As small molecule, folic acid has many advantages over antibody ligand 

including small size, nonimmunogenicity, nontoxicity, ease to handle and conjugate to 

carriers, high stability in preparation, storage and circulation, and low cost. Folic acid 

has been conjugated to liposomes,170 SLNs,130 nanocapsules,146 nano-emulsions158 and 

core/shell nanoparticles155 for paclitaxel and docetaxel targeted delivery. Wu et al. 

developed a folate receptor-targeted liposome and demonstrated efficient uptake by KB 

cells, which have high folate receptor expression.170 The targeted liposomes containing 

paclitaxel showed 3.8-fold greater cytotoxicity compared to non-targeted liposomes in 

KB cells. The in-vivo half-life of targeted liposomes was comparable to that of 

non-targeted liposomes and both were much longer than the half-life of Taxol (7- to 

8-fold). Studies by Bae et al. revealed significantly enhanced cellular uptake and 

cytotoxicity of a folate-conjugated nanocapsule in KB cells using confocal microscopy 

and flow cytometric analysis.146 Enhanced cellular uptake and cytotoxicity were also 

observed for a folate-conjugated core/shell nanoparticle containing docetaxel in MCF7 

cells.155 In a folate receptor overexpressing A549 cell line, paclitaxel-loaded SLNs 

modified with folic acid-stearic acid enhanced the cellular uptake and cytotoxicity 

2-fold and 8.8-fold compared to non-targeted SLNs, respectively.130 Steven et al. 

delivered folate-conjugated nano-emulsions containing a paclitaxel lipophilic prodrug 

to mice bearing M109 tumors. Significantly greater tumor inhibition and animal 

survival were observed for targeted nano-emulsion treatment group compared to 
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treatment with non-targeted nano-emulsions or Taxol.158 

Asialoglycoprotein receptor (ASGP-R) is a promising receptor for liver 

targeting. Xu et al. designed SLNs using a galactose moiety to target ASGP-R.171 In 

in-vivo efficacy studies, mice bearing hepatoma were treated with 10 mg docetaxel/kg 

once a week for three weeks with targeted SLNs, non-targeted SLNs or Taxotere. The 

targeted SLNs demonstrated the most dramatic efficacy with complete tumor 

regression in all six mice (Figure 1.8). The outstanding antitumor efficacy of targeted 

SLNs was attributed to both increased accumulation in tumor indicated by 

biodistribution study and more cellular uptake by hepatoma cells demonstrated by 

confocal images.  

Overexpression of epidermal growth factor receptor (EGFR) has been detected 

in one third of all solid tumors, in many of which EGFR expression characterizes a 

more advanced disease stage.172 Docetaxel nanoparticles modified with recombinant 

human EGF showed improvement of cell internalization and higher cytotoxicity 

against MDA-MB-468 cells.173 In BALB/c mice bearing MDA-MB-468 tumor 

xenografts, targeted nanoparticles exhibited stronger inhibition of tumor growth 

compared to non-targeted nanoparticles or Taxotere. At a dose of 10 mg docetaxel/kg, 

tumor disappeared completely in the targeted nanoparticle treatment group. The 

dramatic antitumor activity was also consistent with the 3.6-times higher AUC over 

that of Taxotere and significantly higher tumor accumulation compared to non-targeted 

nanoparticles. 
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Vasoactive intestinal peptide (VIP) receptor is a relatively new target 

investigated for active pharmaceutical targeting. VIP receptors are found in high 

densities in human lung and breast cancers.174,175 VIP has been grafted to sterically 

stabilized micelles.95,176 The in-vitro internalization of VIP-grafted micelles in human 

MCF-7 breast cancer cells and increased cytotoxicity in drug resistant BC19/3 cells 

have been established. So far, in-vivo pharmacokinetics and antitumor efficacy data are 

still lacking, and a thorough understanding of VIP expression specificity in tumors 

compared to normal tissues remains to be mapped out. 

Nowadays, there are existing controversies about whether the targeting ligands 

influence nanoparticle tumor localization or uptake. There exist conflict observations in 

the literature. Some studies being discussed previously in this review as well as others 

reported enhancement of tumor accumulation, whereas others believe that ligand only 

increases tumor cellular uptake instead of tumor localization. Pirollo et al. proposed 

explanations for the conflict observations based on the detailed review of three 

studies.177 Their hypothesis is that the presence or absence of PEG makes a difference. 

In the works of Barlette et al.178 and Kirpotin et al.179, they used PEGylated 

nanoparticles with or without target ligands. PEGylation already achieved great 

improvement of nanoparticle circulation time which in turn increases tumor 

accumulation by the EPR effect so that further increase in tumor localization attributed 

to active ligand is masked. Conversely, when PEG chains are absent as in the reports of 

Wu et al.,180 the contrast becomes more apparent. However, the PEG theory does not 
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apply to many other cases. Hussain et al. reported a 2-fold tumor accumulation of 

EpCAM-targeted liposomes over non-targeted liposomes loaded with doxorubicin in 

mice bearing SW2 tumor xenografts.181 In this study, both targeted and non-targeted 

liposomes are PEGylated. For some nano-delivery systems, active target ligand alters 

nanoparticle surface property so that the clearance is reduced. It was reported that the 

transferrin on the surface of positively charged polymeric nanoparticles shielded some 

charges so that the elimination associated with the non-specific interactions was 

decreased and passive targeting was increased.182 It seems that the so-called “active 

targeting” is not that the ligand on the nanoparticles actively searches for its target in the 

circulation and directs the localization of its cargo; instead, active targeting is 

essentially an EPR effect with reinforced retention effect due to the ligand-target 

binding. Whether targeting ligand truly enhances active targeting nanoparticle tumor 

localization is a very complicated issue. In addition to PEGylation and nanoparticle 

surface properties, other factors such as target ligand type and property, ligand-target 

interaction and tumor type also play critical roles in this issue. To date there is no single 

theory that can be generalized to all observation conflicts. Comprehensive researches 

are definitely needed for a more complete understanding. Despite the controversy about 

target ligand’s essential function, enhanced therapeutic efficacy with targeted 

nanoparticles is commonly reported. The improvement of anticancer efficacy is 

explained by 1) active targeting ligand mediates endocytosis thus increases cellular 

accumulation of anticancer agents, and 2) some active targeting antibodies carry 
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anticancer activity by their own such as anti-EGFR antibody. The ligand-mediated 

endocytosis is particularly important for nucleotide (e.g., siRNA, oligonucleotide) 

delivery. 

Inclusion of active targeting moieties in nano-formulations renders enhanced 

specificity and selectivity for delivery of anticancer agents to tumors. However, a great 

deal of effort still needs to be made to address many issues such as immunogenicity, 

toxicity, cost, scale-up difficulties particularly for antibody-based active targeting. 

 

4.  Advantages and disadvantages of lipid-based nanoparticles compared to 

other nano-delivery systems  

Polymeric nanoparticles are another major class of nano-based system for taxane 

delivery. Because polymeric materials are synthetic, they can be designed to offer a 

more versatile structure and more functionality for linking various ligands to the 

surface of the colloidal systems. To date in the literature, more active targeting 

researches use polymeric nanoparticles as compared to lipid-based nanoparticles. One 

of the potential reasons is the higher stability of the targeting ligands on the polymeric 

nanoparticles both in-vitro and in-vivo over lipid-based nanoparticles. Polymeric 

micelles compared to conventional lipid micelles, are more stable due to their lower 

CMC. However, polymeric nanoparticles still lack a suitable and cost-efficient scale-up 

production method; while large scale production methods of lipid-based nanoparticles 

such as liposomes and SLNs are readily available. Lipid nanoparticles are generally 
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less toxic than polymeric systems attributed to their natural property.183 A comparative 

study demonstrated that the highest toxicity was observed for the faster degrading 

polymers, low molecular weight PLA and PLGA, and the least toxic effects were 

observed for SLNs.184 The toxicity may partly attribute to the acidic degradation 

products by these polymers.185 In addition, the preparation of polymeric nanoparticles 

almost always involves organic solvent which causes more production and toxicity 

issues. Most of the dendrimer carriers covalently graft taxanes to their surface 

functional groups.186,187 Very few of them physically solubilize taxanes.188 As a special 

type of polymer, dendrimers share the disadvantages of other polymers. Moreover, the 

covalent conjugation makes dendrimer carrier production even more complicated and 

difficult to scale up. 

Natural macromolecules account for another class of taxane delivery 

nano-carriers. The currently marketed paclitaxel formulation Abraxane employs the 

most abundant plasma protein albumin as a delivery vehicle. The details of its 

advantages and disadvantages have been discussed in the previous sections. 

Lipoproteins including native and synthetic LDL and HDL (high-density lipoprotein) 

have been used for taxane delivery.189-191 As endogenous carriers for lipids, lipoproteins 

have high biocompatibility, relatively long circulation half-life and functional capacity 

to deliver hydrophobic drugs.192 LDL and HLD also have intrinsic targeting properties 

to LDL or HDL receptors which are overexpressed in various malignant cells and 

tumors.193,194 Enhanced targeting can also be obtained by conjugating targeting 
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ligands.195 However, native paclitaxel-LDL complexes were proven to be unstable in 

the presence of human plasma.191 More importantly, the availability of lipoproteins is 

limited because of the difficulty in isolating native LDL/HDL or isolating 

apolipoproteins for the reconstitution of synthetic lipoproteins. As a result, production 

scale-up is challenging and cost is too high. The lipoprotein delivery system is still in 

their early development phase. Important safety issues such as immunogenicity have 

not been systematically investigated. Alternatively, the LDL-mimicking 

nano-emulsions without the protein component or using peptides replacing the binding 

function of apolipoprotein B-100 were developed.109,113 These lipid-based 

nanoparticles can be viewed as an evolution of lipoprotein-based formulations.  

In addition to these major types of nanoparticles, there are other minor classes of 

nanoparticles designed and investigated for the delivery of taxanes as well. One of the 

examples is inorganic nanoparticles including silica nanoparticles, gold nanoparticles, 

magnetic nanoparticles, and quantum dots, as well as others.196 The surface of these 

nanoparticles is usually physically or chemically modified or functionalized. Except for 

porous silica nanoparticles which incorporate hydrophobic drug into their interior pores, 

most of the inorganic nanoparticles covalently conjugate taxane to their functionalized 

surface.197-201 Besides their small, uniform and tunable particle sizes, another major 

advantage of these nanoparticles is their multi-functionality. The gold nanoparticles, 

magnetic nanoparticles, and quantum dots are capable of delivering anticancer agents 

with simultaneous optical imaging and localization of tumors. An obvious drawback of 
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these inorganic nanoparticles is their relatively low biocompatibility as compared to 

lipid-based nanoparticles. Researchers are working on the improvement of their 

biocompatibility by approaches like modifying the nanoparticles with a lipid coating.202 

 

5.  Future perspective  

Drug delivery is a highly interdisciplinary research field. The advances in material 

science, molecular biology and tumor biology facilitate the development of innovative 

nano-carriers with the potential to achieve the criteria for an “ideal” nano-delivery 

system.  

It has been proposed by clinical oncologists that to achieve the maximal 

anticancer effect, therapies that hit as many potential targets or pathways as possible are 

desirable because cancer cells are a population of highly heterogeneous cells. Hence, a 

delivery system capable of delivering combination of multiple anticancer agents, such 

as cytotoxic drugs, drugs targeting specific biomarkers, radiotherapeutics, vaccines, 

and even siRNA, is the future direction that researchers should definitely keep pursuing. 

Diagnostic probes can also be incorporated either on the surface or entrapped in the 

nanoparticles to achieve multiple functions. Co-delivery of anticancer agents and 

highly sensitive diagnostic probe may enable an early detection of drug response or 

resistance and an early evaluation of benefit/risk ratio of current therapy which makes 

prompt regimen adjustment and individualized medication possible.  
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Identifying novel targets and ligands with more specificity relies on the 

advances in molecular biology and would benefit active taxane targeting delivery. For 

example, the evolution of antibody-type ligand apparently brings benefits to active 

targeting. Early development of antibodies derived from animals causes high 

immunogenicity. Later, chimeric antibodies, completely humanized antibodies, Fab’, 

and single chain variable fragment were developed so that not only the issue of 

immunogenicity was substantially reduced, but also the size of ligand was significantly 

smaller which favors nano-formulations as a whole. More recently, a new generation of 

binding ligands such as monobodies, affibodies, heptameric binding domains have 

been developed for basic research while at the same time attract increasing interests for 

the application in active pharmaceutical delivery due to their high binding affinity and 

potentially low immunogenicity. Moreover, identifying more specifically expressed 

target such as receptors, integrins and enzymes in pathological tissues is also going to 

facilitate the development of active targeted therapeutics with more specificity. 

To date, parenteral infusion of taxanes is the only administration route used in 

the clinic. The development of oral dosage form for taxanes is impeded by their toxicity 

to rapidly proliferating intestinal epithelium. Although several studies have 

demonstrated enhanced bioavailability of taxanes facilitated by lipid-based 

nano-formulations, a great deal of efforts is needed to minimize the drug-associated GI 

toxicity as well as carrier-associated toxicity before oral taxane administration becomes 

feasible. Central nervous system (CNS) delivery has always been a great challenge due 
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to the low permeability of BBB. The advances of delivering chemotherapy across BBB 

for the treatment of brain tumor are still very limited and nanotechnology is holding the 

promise for a breakthrough in this field.  

Environmentally responsive drug delivery systems in response to temperature, 

pH, ionic strength, enzyme, or oxidative/reductive environment offer great advantages 

in drug delivery. The unique physiology of solid tumors such as slightly acidic pH, 

hypoxia in most solid tumors, and overexpression of some enzymes (e.g., sialidase, 

matrix metalloproteinase) provide great opportunity for the design of environmentally 

responsive drug delivery systems to specifically release taxanes in tumor site. However, 

these types of “smart” delivery systems mainly take advantage of unique 

physico-chemical properties of polymeric materials. Since many lipid-based delivery 

systems such as nanocapsules and core/shell nanoparticles are hybrid of lipid and 

polymeric carriers, the idea of environmentally responsive delivery also has the 

potential to be integrated to lipid-based nano-delivery systems. Alternatively, taxanes 

themselves can be modified to prodrugs with environmentally responsive linkers.  

Taxane, as one of the most potent cytotoxic anticancer agents in clinic, has to be 

delivered efficiently, specifically and safely. Nano-formulations are a rapid-developing 

field. All current-reported nano-formulations have improved some aspects of taxane 

delivery to some extent. However, there are still noticeable gaps and a great deal of 

efforts has to be devoted to approach the “ideal” taxane delivery system. 
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6.  Research hypotheses 

The research was guided by three hypotheses: 

 

Hypothesis #1: Oil-filled NPs prepared from oil-in-water microemulsion precursors 

can be used to formulate DX efficiently. 

Hypothesis #2: DX-lipid conjugate can be stably retained in oil-filled NPs in-vitro 

and in-vivo. 

Hypothesis #3: Bromoacyl DX-lipid conjugate can improve the hydrolysis kinetics 

and the overall therapeutic index of DX.  
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Table 1.1.  Similarities and differences between paclitaxel and docetaxel 

 

Similarity Difference 

Structure  
taxane skeleton  

Structure 
Paclitaxel, 10-acetyl group, 3’-benzamide 
phenyl group 

 Docetaxel, 10-OH, 3’-OC(CH3)3 

 
Pharmacological 
mechanism 

Inhibition of 
microtubule 
depolymerization 

Water solubility 
Paclitaxel, 0.35-0.7 µg/mL 
Docetaxel, 3-25 µg/mL 

 

 Uptake and efflux  
Docetaxel 3-fold higher uptake and 3-fold 
slower efflux than paclitaxel 
 

 Microtubule binding affinity 
Docetaxel 1.9-fold higher than paclitaxel 
 

 Anticancer potency 
Docetaxel about twice as potent as 
paclitaxel in-vitro and in-vivo 
 

 Pharmacokinetics 
Paclitaxel, nonlinear 
Docetaxel, linear up to 115 mg/m2 
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Table 1.2.  Similarities and differences between nano-emulsions and 
micro-emulsions 

 

 Similarity 

Appearance Transparent or translucent 

Size In the nano-scale range 

Structure 
Spherical nano-scaled droplets dispersed in a continuous 
phase 

 
Difference 

Nano-emulsion Micro-emulsion 
Stability Kinetically stable Thermodynamically stable 

Preparation 

Energy is required 
High-energy methods: 
high-pressure homogenization, 
ultrasonication 
low-energy methods: 
PIT method,  
“spontaneous” emulsification 

Energy is not required 
Spontaneously formed in the 
micro-emulsion forming 
domain of ternary phase 
diagram, mechanical stirring 
or heating may accelerate the 
equilibrium 

Destabilization 
mechanism 

Oswald ripening Dilution and temperature 

Application 
Parenteral drug delivery among 
others 

Oral and topical delivery, not 
suitable for parenteral 
delivery 
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Table 1.3.  Major advantages and disadvantages of each type of lipid-based 
nanoparticles 

 

 Advantages Disadvantages 

Liposomes 

Mature production engineering and 
scale-up techniques, capable of 
encapsulate both lipophilic and 
hydrophilic molecules 

Drug leakage, low loading 
capacity to lipophilic drugs 

Micelles Easy production  
Relatively low drug loading 
capacity, potential 
dissociation upon dilution 

Nano-emulsions 
High drug loading capacity, versatile 
chemistry 

Relatively low stability and 
drug retention 

Solid lipid 
nanoparticles 

Ease of preparation and scale-up with 
low cost, good physical stability, 
controlled drug release, versatile 
chemistry 

Potential of drug expulsion 
and burst release  

Nanocapsules 
High drug loading capacity, good 
drug retention, high stability 

Low entrapment efficiency 
of polymer-shelled 
nanocapsules 

Core/shell 
nanoparticles 

High drug loading capacity, high 
stability, controlled drug release, 
temporal co-delivery of a secondary 
drug 

Involvement of organic 
solvent during preparation, 
potential toxicity associated 
with polymers 
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Table 1.4.  Advantages and disadvantages of lipid-based nanoparticles compared 
to other nano-based delivery systems 

 

 Advantages Disadvantages 

Lipid-based 
nanoparticles 

High biocompatibility Low CMC of lipid micelles 

Polymeric nanoparticles 

More versatile chemistry 
and more functionality, 
More stable active ligand 
incorporation 

Higher toxicity, organic 
solvent involvement during 
preparation, scale-up 
difficulty 

Natural macromolecules 

High biocompatibility, 
functional capacity to 
deliver hydrophobic drugs, 
intrinsic targeting property 

Production difficulty, high 
cost 

Inorganic nanoparticles 
Simultaneous optical 
imaging 

Low biocompatibility 
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Figure 1.1.  Structures of (A) paclitaxel and (B) docetaxel 
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Figure 1.2.  Criteria for 
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Criteria for the ideal taxane delivery system 

 

 

 

 

 



 

 

Figure 1.3.  Multi-functional
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functional nanoparticles 

 

 

 

 

 

 

 

 

 

 



 

 

Figure 1.4.  Schematic structures of 
sterically stabilized mixed micelle
molecules 
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Schematic structures of sterically stabilized micelle (
stabilized mixed micelle (SSMM) and SSMM loaded hydrophobic drug 

 

 

 

 

 

 

 

 

 

 

sterically stabilized micelle (SSM), 
hydrophobic drug 
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Figure 1.5.  Plasma decay curve of [3H]-paclitaxel-oleate in LDL-resembling 
nano-emulsion (three patients, filled diamond, triangle and square) and 
[3H]-paclitaxel in CrEL  (two patients, multi symbol, asterisk) following i.v. bolus 
injection. Reprinted from Ref [112] with permission.   
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Figure 1.6.  In-vitro temporal release of paclitaxel (PTX) and combretastatin A4 
(CA4) from core/shell nanocapsules. Reprinted from Ref [156] with permission. 
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Figure 1.7.  Plasma concentration-time curves for Taxotere (triangle), docetaxel 
derivative formulated in Taxotere vehicle (square), and docetaxel derivative 
formulated in DSPC/Chol liposome (diamond). Reprinted from Ref [163] with 
permission. 
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Figure 1.8.  Antitumor efficacy of targeted SLN (tSLN), non-targeted SLN 
(nSLN), Taxotere or saline on nude mice bearing hepatoma after a schedule of 
multiple doses (10 mg docetaxel/kg once a week for three weeks). Data are 
presented as mean ± SD (n=5-6). Reprinted from Ref [171] with permission. 
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Chapter 2.   

Development of BTM nanoparticles to deliver docetaxel 

 

1.  Summary 

To develop a lipid-based nanoparticle (NP) formulation for efficient docetaxel 

(DX) delivery, liquid Miglyols (the lipid) were screened for their solvation ability for 

DX. Miglyol 808 was identified as the Miglyol with the highest solvation ability for DX 

that was capable of forming NPs. To facilitate the optimization of novel BTM NPs 

using Miglyol 808 as the oil phase, sequential simplex optimization was utilized. After 

16 trials, the optimal NP composition was identified as Miglyol 808 (2.8 mg/mL), Brij 

78 (3.7 mg/mL) and Vitamin E TPGS (1.2 mg/mL). The final optimized BTM 808 NPs 

successfully entrapped DX (0.3 mg/mL) with 85% entrapment efficiency as determined 

by ultrafiltration. The cytotoxicity studies showed that DX NPs significantly reduced 

IC50 values in PX-resistant cells over free DX, while in sensitive cells the IC50 values of 

free DX and DX NPs were comparable. A novel “ex-vivo” release method was 

developed to study the DX release from NPs in mouse plasma. Despite the desirable 

formulation properties, DX was found to be quickly released in mouse plasma in-vitro. 

To understand the rapid drug release in mouse plasma, the entrapment efficiency of DX 
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in NPs was re-characterized by size exclusion chromatography (SEC). The new 

entrapment efficiency results demonstrated that DX was not actually “released” from 

the NPs upon spiking into mouse plasma, but was not truly entrapped into the NPs 

during preparation. 

 

2.  Introduction 

DX is a potent anticancer drug used to treat various cancers including metastatic 

androgen-independent prostate cancer, breast cancer, and advanced non-small cell lung 

cancer.1-3 DX inhibits cell growth by binding to microtubules, stabilizing them, and 

preventing their depolymerization.4 Currently, Taxotere® is the only commercial 

formulation of DX on the market. The formulation contains a solvent system of 

polysorbate 80 and ethanol. Adverse effects related to these excipients have been 

reported such as hypersensitivity and fluid retention.5-9 Great effort has been made to 

develop safer formulations to effectively deliver DX, including micelles, liposomes, 

nanoemulsions, solid lipid NPs, nanocapsules and polymeric NPs.10-15 Given the 

hydrophobic property of DX, lipid-based NPs, especially liquid oil-filled NPs, serve as 

a viable alternative delivery system. Lipid-based NPs have the advantages of low 

toxicity, the capability of drug control release, and the potential to penetrate leaky 

vasculature of tumors. 

In early 1990s, solid lipid NPs started to attract extensive attention as a novel 

nanoparticulate delivery system. However, during the cooling process of solid lipid NP 
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preparation, the melting lipids solidify and crystallize. The increase in structural 

perfection during the process leads to the formation of a drug enriched shell, which 

limits the drug loading capacity, and leads to the burst drug release and drug expulsion 

during storage.16 In the light of this concept, novel liquid oil-filled BTM NPs were 

developed in our laboratory. The BTM NPs were composed of Brij 78, Vitamin E TPGS, 

and Miglyol 812.17 Miglyol® is the trade mark of a family of medium-chain 

triglycerides that differ in fatty acid content and extent on the R1, R2, and R3 of the 

glycerol backbone extracted from coconut and palm kernel. They are GRAS listed by 

the FDA and several have been shown to be safe after parenteral administration at levels 

of 0.5 g/kg, and the LD50 in mice by i.v. injection has been reported to be 3.7 g/kg.18 

Thus, the relatively non-toxic Miglyol could serve as a good oil phase to accommodate 

DX due to the high partition co-efficiency of DX in medium chain triglycerides.19 

During the initial development of paclitaxel (PX) NPs, Miglyol 812 was selected as the 

oil phase arbitrarily since there about nine other Miglyols available in the market that 

were not fully screened. The oil phase with the highest drug solvation ability represents 

better compatibility and affinity of the drug with the inner liquid oil core of the delivery 

vehicles thereby leading to higher drug loading capacity and longer retention of drugs 

in the NPs. 

The objective of these present studies was to develop a new generation of BTM 

NPs using the Miglyol with the highest solvation ability for DX with the goal to achieve 

high drug loading, high entrapment efficiency and slow drug release.  
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3.  Materials and Methods 

3.1.  Materials and cell culture 

DX and PX were purchased from Sigma-Aldrich (St. Louis, MO). Miglyol 612, 808, 

810, 812, 8108, 818, 829, 840, and 8810 were obtained from Sasol (Witten, Germany). 

Polyoxyl 20-stearyl ether (Brij 78) was obtained from Uniqema (Wilmington, DE). 

D-alpha-tocopheryl polyethylene glycol succinate (Vitamin E TPGS) was purchased 

from Eastman Chemicals (Kingsport, TN). BALB/c mouse plasma was purchased from 

Innovative Research Inc. (Novi, MI). Sepharose CL-4B was purchased from GE 

Healthcare (Uppsala, Sweden). Oasis HLB SPE cartridge was purchased from Waters 

(Milford, MA). 

The human prostate cancer cell lines, DU-145 and PC-3, were obtained from 

American Type Culture Collection (ATCC) and were maintained in RPMI-1640 

medium with 10% fetal bovine serum (FBS). The corresponding PX-resistant cell lines, 

DU-145-R and PC-3-R, were generously provided by Dr. Evan T. Keller’s laboratory 

(Unit for Laboratory Animal Medicine and Department of Pathology, University of 

Michigan). They were maintained in RPMI-1640 medium with 10% FBS and 5 nM DX 

upon arrival.  
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3.2.  Methods 

3.2.1.  Liquid lipid screening for DX NP development 

3.2.1.1  Semi-quantitative estimation of DX solubility in Miglyols 

Five (5) mg of each type of Miglyol (612, 808, 810, 812, 8108, 818, 829, 840, and 8810) 

was weighed accurately into 1 mL glass vials. Various amounts of DX (0.25-2.5 mg) 

dissolved in ethanol were added to the vials containing Miglyols. The vials were heated 

to 65°C on a hotplate. During mixing at 65°C, ethanol was evaporated with a nitrogen 

stream. The mixture was allowed to cool down to room temperature. The dissolution 

and dispersion of DX in each Miglyol were visually assessed.  

 

3.2.1.2  Preparation of blank BTM NPs 

Blank NPs were prepared using a warm oil-in-water (o/w) microemulsion precursor 

method previously developed in our laboratory. Briefly, 2.5 mg of the chosen Miglyol, 

3.5 mg Brij 78 and 1.5 mg Vitamin E TPGS were accurately weighed into glass vials 

and heated to 65°C. One (1) mL of pre-heated 10% lactose in water was added into the 

mixture of oil and melted surfactants. The mixture was stirred for 20 min at 65°C then 

cooled to room temperature. The resultant NPs were monitored for their appearance 

and particle size right after preparation and after 24 hr storage at 4°C. 
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3.2.1.3  Quantification of DX solubility in Miglyol 808 and 812 

Approximately 5 mg of DX was added to individual vials containing 50 µL of Miglyol 

808 or Miglyol 812. The mixtures were stirred at room temperature for 24 hr. The 

samples were then centrifuged for 1 hr at 14,000 rpm to remove undissolved drug. After 

centrifugation, the saturated supernatant was diluted with acetonitrile (ACN) and 

analyzed by HPLC.  

The DX concentrations were quantified by HPLC using a Finnigan Surveyor 

HPLC system with a Photodiode Array (PDA) plus detector, autosampler and LC pump 

plus with a Inertsil® ODS-3 column (4 µm, 4.6×150 mm, GL Sciences) at 25°C. 

Chromatographic separation was achieved by gradient elution using a mobile phase of 

2-propanol, ACN and water (5: 50: 45 v/v/v). The flow rate was 1.0 mL/min and the 

total run time was 25 min for each 25 µL injection. The wavelength was 230 nm. 

 

3.2.2. Optimization of DX BTM NPs by sequential simplex 

Miglyol 808 was selected as oil phase, and Brij 78 and Vitamin E TPGS were used as 

the surfactants to prepare the BTM 808 NPs. Sequential simplex optimization was 

performed to prepare BTM 808 NPs with desirable properties using MultiSimplex 

Software (CambridgeSoft Corporation, Cambridge, MA). The three control variables 

were Miglyol concentration, Brij 78 concentration and TPGS concentration. The four 

response variables were particle size, polydispersity index (P.I.) value, peak number 
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and % dust. The target response was set as: particle size 150 nm, P.I. value 0.15, peak 

number 1, and % dust 0. The starting simplex was based on our previously optimized 

BTM 812 NP composition (2.5 mg/mL Miglyol 812, 3.5 mg/mL Brij 78 and 1.5 mg/mL 

Vitamin E TPGS). The sequential simplex optimization was performed following the 

variable-size simplex rules.17 

 

3.2.3.  Characterization of DX BTM NPs 

3.2.3.1.  Particle size and zeta potential measurements  

Particle size and size distribution of NPs were determined using an N5 Submicron 

Particle Size Analyzer (Beckman). Five (5) µL of NPs was diluted with 1 mL of water 

to reach the intensity required by the instrument. Particle size was determined at 90° 

light scattering at 25°C. The zeta potential of NPs was determined using the Zetasizer 

Nano Z (Malvern Instruments, Southborough, MA).  

 

3.2.3.2.  Drug entrapment efficiency 

Drug entrapment efficiency was determined by separating free DX from DX-loaded 

NPs using a Microcon Y-100 column. Briefly, 100 µL of DX BTM NPs was applied to 

the Microcon Y-100 column and centrifuged at 14,000 rpm for 20 min. DX 

concentrations in filtrate and retained above filter were measured by HPLC 

respectively. The % drug entrapment efficiency was defined as 100% × the ratio of the 
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drug retained above filter to the total drug added. 

 

3.2.3.3.  Morphology  

The morphology of BTM NPs was examined using a Zeiss EM 900 Transmission 

Electron Microscope (TEM). Briefly, a drop of diluted NP suspension was placed onto 

standard copper microscopy grids, examined and photographed with TEM at an 

accelerating voltage of 60 kV (Carl Zeiss, Thornwood, NY, USA). 

 

3.2.3.4.  Physical stability of NPs 

The DX BTM NP suspension was stored at 4°C. At designated time points, the particle 

size was measured after the NP suspension being allowed to equilibrate to room 

temperature. 

 

3.2.4.  In-vitro cytotoxicity of drug BTM NPs  

3.2.4.1.  In-vitro cytotoxicity in sensitive and resistant cells 

The MTT assay was utilized to assess the cytotoxicity of free DX and DX NPs. Serial 

dilutions of free DX or DX-containing NPs were added to the testing cells and 

incubated for 48 hr. The cells were then incubated with the MTT solution for 4 hr and 

the formazan dyes were solubilized by DMSO. The absorbance was measured using 

the Synergy 2 Multi-Detection Microplate Reader at 570 nm, and the concentration of 

drug that inhibited cell survival by 50% (IC50) was determined from cell survival plots. 
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3.2.4.2.  Expression of P-gp in sensitive and resistant cells 

Cells (DU-145, PC-3, DU-145-R and PC-3-R) cultured in T75 flask were washed twice 

with ice-cold PBS and lysed in RIPA lysis buffer. Total protein content of samples was 

quantified by BCA assay with BSA as the reference standard. All samples were diluted 

in sample buffer to the same protein concentration and subjected to SDS-PAGE, 

electrophoretically separated. Proteins were transferred to a nitrocellulose membrane in 

the presence of a transfer buffer. The membrane was blocked with 6% milk in 

Tris-buffered saline with Tween 20 (TBS-T) for 1 hr at room temperature. The target 

protein (P-gp or beta-actin) was detected with a primary antibody and a horseradish 

peroxidase conjugated secondary antibody at the desired dilution. The membrane was 

exposed to chemiluminescence reagents. The Chemi-Doc Imaging System was used to 

visualize the target protein.  

 

3.2.5.  In-vitro release in mouse plasma 

3.2.5.1.  Development of in-vitro release method in mouse plasma 

To study the separation of NPs with plasma proteins, 200 µL of blank BTM NPs were 

mixed with 300 µL of BALB/c mouse plasma and applied to a Sepharose CL-4B 

column (15 cm, gravity-packed) and eluted using PBS pH 7.4. The dynamic light 

scattering intensity in each fraction (1 mL/fraction) was determined using an N5 

Submicron Particle Size Analyzer. The protein concentration in each fraction was 
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quantified by BCA assay with BSA as the reference standard.  

To study the extraction recovery of DX from plasma proteins by solid phase 

extraction (SPE) method, 10 µL, 50 µL and 100 µL of 50 µg/mL DX stock solution in 

methanol was aliquoted to individual tubes. Methanol was dried in a nitrogen stream 

and 0.5 mL of BALB/c mouse plasma was added to each tube to dissolve the drug. The 

DX was extracted from plasma proteins by SPE method. Briefly, HLB SPE cartridge 

was first activated and equilibrated by 20% methanol in DCM, 100% methanol and 

water successively. The DX-dissolved plasma samples were then applied to the 

cartridge. The cartridge was rinsed with 5% methanol in water and 55% methanol in 

water. Finally, DX was eluted by 20% methanol in DCM. The samples were dried in 

nitrogen stream and reconstituted in mobile phase followed by LC/MS/MS analysis. To 

study the recovery of SEC plus SPE, the same DX-dissolved plasma samples were 

firstly applied to a Sepharose CL-4B column and eluted using PBS. Fractions 1-20 were 

collected and subjected to SPE extraction as described above. The samples were 

analyzed by LC/MS/MS. 

The DX concentration was quantified by LC/MS/MS using a Finnigan Surveyor 

Autosampler Plus and Finnigan Surveyor MS Pump Plus. Chromatographic separations 

were achieved by gradient separation using a SunFire™ C18 column (2.1 × 30 mm, 3.5 

µm particle size, Waters) at 25ºC. The mobile phase consisted of 0.1% formic acid in 

water and methanol. The flow rate was 0.5 mL/min and the total run time was 8 min for 

each 25 µL injection. Mass spectrometric analysis was performed using a Thermo 
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Scientific TSQ Quantum Access with positive ionization. The capillary temperature 

was set up to 390ºC, and the spray voltage was 4000V.  For DX analysis, m/z 830.0 → 

549.0 was monitored with PX (m/z 876.3 → 308.0) as an internal standard. The 

recovery was calculated as 100% × the ratio of total DX weight detected after SPE or 

SEC+SPE to the DX weight spiked in the plasma. 

 

3.2.5.2.  In-vitro release in mouse plasma 

Before a release study, 0.5 mL of DX NPs were purified using a Microcon Y-100 

column and resuspended in 0.5 mL 10% lactose. The concentration of DX in the 

resuspended NPs was measured by HPLC. About 30 µL of purified DX NPs was mixed 

with 870 µL of BALB/c mouse plasma and the release mixture was incubated at 37°C 

under constant shaking. At pre-determined time points, 100 µL of the release mixture 

was removed and immediately applied to a Sepharose CL-4B column and eluted using 

PBS. Fractions 9 to 22 of the eluent (1 mL/fraction) were collected. DX was extracted 

from the plasma proteins by SPE method as described above. The concentration of DX 

reconstituted in mobile phase was determined by LC/MS/MS. The % DX released at 

any time point was calculated as 100% × (Drug weight detected in fraction 9-22 / Total 

drug weight). 
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3.2.6.  Re-characterization of DX BTM NPs 

3.2.6.1.  Entrapment efficiency determined by SEC 

DX NPs were separated with the free drugs using a Sepharose CL-4B column. NPs 

were eluted using PBS in fraction 5-8 (1 mL/fraction). Each fraction was evaporated to 

dryness in vacuo, resuspended in 1 mL ACN and analyzed by HPLC to determine the 

concentration of DX in each fraction. The % drug entrapment efficiency was defined as 

100% × (Weight of drug detected in fraction 5-8 / Total drug weight detected in all 

fractions collected). Free DX solution in water was also applied to the SEC column as a 

control. 

 

3.2.6.2.  Particle size analysis of fractions from SEC 

Five hundred (500) µL of blank BTM NPs were applied to a Sepharose CL-4B column 

and eluted using PBS. The particle size in each fraction (1 mL/fraction) was determined 

using an N5 Submicron Particle Size Analyzer (Beckman). 

 

3.2.7.  Statistical analysis 

Statistical comparisons were performed using one-way analysis of variances (ANOVA) 

(©1992-2007 GraphPad Prism Software, Inc.). Results were considered significant at 

95% confidence interval (p < 0.05). 
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4. Results 

4.1.  Oil lipid screening for DX nanoparticle 

The concentrations in vials with visible white specks were defined “insoluble” and the 

concentrations in vials with clear and transparent appearance were defined as “soluble”. 

Based on the maximal soluble concentrations of DX in each Miglyol, the Miglyols were 

divided into 3 groups: high (> 0.2 mg/mg oil), medium (0.05-0.1 mg/mg oil) and low (< 

0.05 mg/mg oil) solubility of DX as shown in Table 2.1. They were listed in the order of 

solubility from the highest to the lowest. In the same table, the chemical composition(s) 

of each Miglyol was also listed.  

Based on the semi-quantification results, the Miglyols in the category of “high 

solubility” were used to prepare NPs based on the previously developed BTM 812 NP 

composition (Miglyol 812, Brij 78 and Vitamin E TPGS). However, the efforts to 

develop NPs using all three Miglyols with high solubility did not achieve desirable 

results. Miglyol 829 formed turbid suspensions with particle size over 250 nm and high % 

dust. Miglyol 840 and 612 formed acceptable NPs right after preparation but phase 

separation was observed for both after the storage at 4ºC overnight. It was speculated 

that the difficulty of formulating NPs using these Miglyols may be due to their 

unfavorable properties, such as high viscosity (Miglyol 829) or volatility (Miglyol 612, 

840). Fortunately, Miglyol 808, the Miglyol with solubility right after the highest three 

Miglyols was capable of formulating NPs with desirable particle size using Brij 78 and 

Vitamin E TPGS as surfactant and co-surfactant. 
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To confirm the semi-quantification results of DX solubility, the solubility of DX 

in Miglyol 808 and 812 was quantitatively determined. The quantitative result showed 

that the solubility of DX in Miglyol 808 (52.07 ± 0.84 mg/mL) was significantly higher 

compared to that in Miglyol 812 (36.11 ± 0.10 mg/mL, p < 0.01). As a result, Miglyol 

808 was chosen as the oil phase for further formulation development. 

 

4.2.  Sequential simplex optimization of DX BTM NPs 

Sequential simplex optimization was performed as summarized in Table 2.2. A 

comparison of each trial was based on the membership value which represented the 

proximity of current trial to the optimum considering the four response variables 

(particle size, P.I. value, peak number and % dust) of the trial. The higher membership 

means that the responses were closer to the optimum. After 16 trials, four leading 

formulations were selected. In comparison, NPs of trial 6 and 8 were less stable than 

NPs of trial 13 and 15 after storage at 4°C for a week. As a result, trial 15 (Miglyol 808 

2.8 mg/mL, Brij 78 3.7 mg/mL and Vitamin E TPGS 1.2 mg/mL) was finally chosen as 

the optimal formulation to be further studied. 

 

4.3.  Characterization of DX BTM NPs 

The resultant blank BTM 808 NPs had a mean particle size of 190 nm with low P.I. 

value and a zeta potential of -5.78 mV (Table 2.3). Surprisingly, after loading 0.3 
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mg/mL of DX, the particle size decreased to around 160 nm. The image of the NPs 

observed by TEM showed consistent particle size with that determined by photon 

correlation spectroscopy (PCS) (Figure 2.1B). The entrapment efficiency of DX in the 

NPs determined by ultrafiltration was 85.3%. The physical stability of DX NP was 

evaluated by monitoring changes of particle sizes at 4ºC upon long-term storage. The 

particle size of DX BTM NPs did not significantly change at 4ºC for three months 

(Figure 2.2). 

 

4.4.  In-vitro cytotoxicity 

The cytotoxicity of DX NPs was tested in DU-145 and PC-3 cells as well as their 

corresponding PX-resistant lines (Figure 2.3). DX NPs showed dose-dependent 

cytotoxicity against all cells tested. In sensitive cell lines, the IC50 values of free DX 

and DX BTM NP were comparable. While in resistant cell lines, the IC50 values of free 

DX in DU-145-R and PC-3-R were 200-fold and 60-fold higher than those in sensitive 

lines respectively, showing that the PX-resistant cells were also cross-resistant to DX. 

In resistant cell lines, the IC50 value of DX NPs was about 3-fold lower compared to 

free DX. Blank NPs did not cause significant cytotoxicity in all cell lines in the 

equivalent concentration. Western blotting results showed that P-gp in resistant cells 

was overexpressed but not in the sensitive cells (Figure 2.4). Moreover, the P-gp 

expression level in DU-145-R was higher than in PC-3-R cells. 
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4.5.  In-vitro release 

A novel “ex-vivo” release method was developed to study the release of DX from the 

NPs in 100% mouse plasma. In the “ex-vivo” release method, NPs were spiked directly 

into 100% mouse plasma. Drug-containing NPs were separated from protein-bound 

DX and free DX by a Sepharose CL-4B column. The 15 cm, gravity-packed Sepharose 

CL-4B column was able to achieve baseline separation of the NPs with plasma proteins 

and free drugs, validated by dynamic light scattering intensity, BCA assay and HPLC 

analysis (Figure 2.5 and Figure 2.7B). The SPE method and SEC plus SPE showed 90 – 

110% recovery (Table 2.4). 

For the release studies, the DX-containing NPs were first purified by a 

Microcon Y-100 column. Unfortunately, upon spiking into the mouse plasma, DX was 

almost immediately released from the NPs (Figure 2.6).  

 

4.6.  Re-characterization of DX BTM NPs 

The entrapment efficiency of DX BTM NP was characterized again by another method, 

SEC. As indicated by dynamic light scattering intensity (Figure 2.5), NPs were eluted 

from Sepharose CL-4B column in fraction 5-8. However, DX was not detected in 

fraction 5-8 (Figure 2.7A). As shown in control, free DX was mainly eluted after 

fraction 13 (Figure 2.7B). For DX BTM NPs, about 70% of the drug was eluted in 

fraction 13-20, and another 30% in fraction 9-12, indicating that DX was not truly 
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entrapped in the NPs. 

Particle sizing of each fraction from SEC showed that fraction 5-8 contained 

particles with size 100-180 nm while fraction 9-12 was another population of smaller 

particles with particle size around 50 nm (Figure 2.8). 

 

5.  Discussion 

A novel liquid oil-filled NP BTM was previously developed in our laboratory, which 

was composed of Miglyol 812, Brij 78 and Vitamin E TPGS.17 During the initial 

development, Miglyol 812 was selected arbitrarily from a family of Miglyols available. 

For more rational formulation development, the oil phase was first screened in the 

Miglyol family in terms of their solvation ability for DX. To make a quick estimation, a 

semi-quantification method was first utilized. The higher solubility of some oils (e.g., 

Miglyol 829 and 840) may be attributed to their structural uniqueness. Other than these 

oils, the data showed a general trend that DX favored triglycerides with shorter alkyl 

chain (C6 > C8 > C10) within the range of the medium-chain triglycerides tested, 

probably due to the structural miscibility. Unfortunately, the three Miglyols with 

highest solubility of DX failed to form homogeneous and stable NPs. It should be noted 

that the results were merely based on limited combinations of surfactants and 

concentrations. The potential of these Miglyols to formulate NPs was worth further and 

more thorough investigations. For the present studies, Miglyol 808 was chosen for 

further development. In addition, the result of quantification was consistent with the 
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semi-quantification observation, suggesting that the semi-quantification observation as 

a preliminary estimation method is reliable and has the potential to be applied to future 

formulation development. To facilitate the NP formulation optimization, sequential 

simplex was used. Sequential simplex optimization is a powerful experimental design 

method. In this method, a simplex is a triangle in a hyperplane with three trials as its 

three vertices. The trial with the response furthest from optimum is reflected in the 

hyperplane to form a new simplex. New simplices are continually formed until the 

optimum is reached. Sequential simplex optimization is a step-wise strategy that helps 

to achieve optimal results with minimal number of experimental trials. Also, it takes 

inter-factorial interactions into consideration. Based on particle size, P.I. value, peak 

number and % dust, the optimal NP composition was identified as Miglyol 808 (2.8 

mg/mL), Brij 78 (3.7 mg/mL) and Vitamin E TPGS (1.2 mg/mL). The final optimized 

BTM 808 NPs successfully entrapped DX (0.3 mg/mL) with 85% entrapment 

efficiency as determined by ultrafiltration.  

The results of cytotoxicity studies indicated that DX NPs significantly reduced 

IC50 values in PX-resistant cells over free DX. The mechanisms of PX-resistance in 

DU-145-R and PC-3-R cells have been extensively investigated by the group who 

established them.20 They demonstrated that P-gp overexpression was the major 

mechanism of PX-resistance in these cells. Our western blotting results of P-gp 

expression in these cells were in agreement with their findings. Since DX is a P-gp 

substrate, it is not surprising that the P-gp overexpressing cells were cross-resistant to 
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DX. It has been reported that the BTM 812 NPs were able to overcome P-gp-mediated 

multidrug resistance by inhibiting P-gp and depleting ATP.21 It has been demonstrated 

that Brij 78, and not TPGS decreased ATP levels in resistant cells. Because P-gp efflux 

is an energy-dependent process, ATP depletion led to decreased drug efflux thus higher 

intracellular drug accumulation. In addition, the increased uptake of NPs by 

endocytosis could partially bypass P-gp. Current studies have not focused on the 

mechanism(s) of DX NPs overcoming multidrug resistance, however, due to the 

similarity between BTM 812 and BTM 808 NPs including Brij 78 as a component with 

comparable concentration and high drug loading, the mechanisms of BTM 812 NPs 

overcoming P-gp are likely to be logically extended to BTM 808 NPs as well.  

Previously, the release of PX from BTM 812 NPs was studied in PBS with 0.1% 

Tween 80 by dialysis.17 The cumulative release of PX was only 50% after 72 hr. 

However, in in-vivo pharmacokinetic study, PX BTM 812 NPs showed superimposable 

pharmacokinetic profile with Taxol (data not shown). The superimposable 

pharmacokinetic profile suggests that PX was very quickly released from NPs in-vivo 

so that it failed to take advantage of the long-circulating vehicle. The in-vitro drug 

release of nano-formulation is usually studied in aqueous buffer using a dialysis method. 

However, the correlation between the in-vitro release and in-vivo pharmacokinetic 

profile is often poor due to the more complex in-vivo environment, such as the presence 

of large amounts of proteins and enzymes in the plasma. The poor correlation in this 

case and many others certainly demands a more predictive in-vitro release method. In 
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the present studies, we developed a novel “ex-vivo” release method to better mimic the 

in-vivo environment. By using this “ex-vivo” release method, it was found that DX was 

very quickly released from the NPs. Although in-vivo pharmacokinetic study was not 

performed for DX BTM 808 NPs, based on the “ex-vivo” release results, it is fair to 

predict that DX BTM 808 NPs would have a very similar pharmacokinetic profile as 

with Taxotere.  

Previously, in our laboratory, drug entrapment in NPs was routinely determined 

by ultrafiltration. The entrapment efficiency of DX in BTM NPs measured by this 

ultrafiltration method was 85.3 ± 1.4%. However, different methods (e.g., dialysis) 

have been employed to determine the drug entrapment efficiency in solid NPs, 

liposomes and other nano-formulations. As the result of different separation methods, 

the entrapment efficiencies in these systems varied widely.  For the purpose of 

comparison and to understand the rapid drug release in mouse plasma, the entrapment 

efficiency of DX in NPs was characterized again by separating free DX from DX NPs 

using Sepharose CL-4B column. Surprisingly, no DX was detected in NP fractions. It is 

speculated that the DX eluted from latter fractions included free DX dissolved in 

aqueous phase, DX loosely associated with surfactants and DX entrapped in micelles 

formed by excessive surfactants. Although the particle size of DX-containing BTM 808 

NPs was regarded homogeneous based on the PCS result, the less light reflected 

micelles are often underestimated or neglected in this method. Figure 2.8 supports the 

hypothesis that another population of particles with smaller size existed in the NP 
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suspension. However, the ultrafiltration method could not differentiate the drug in the 

latter two forms with the drugs truly entrapped in the NPs. Thus, it is apparent that the 

inability to discriminate these different forms led to an overestimation of the 

entrapment efficiency in the BTM NPs.  The structure and the exact composition of 

these smaller particles remain unknown. However, regardless of their structure and 

composition, drugs in these systems in the latter fractions are expected to be eliminated 

from systemic circulation more quickly than desired in-vivo. Although DX is generally 

considered a water-insoluble drug, it has measurable solubility in aqueous solutions, 

which causes low drug entrapment and poor drug retention in the NPs using Miglyol 

808 as oil core. Collectively, it is clear that DX was not “released” from the NPs upon 

spiking into mouse plasma, but was not truly entrapped in the NPs in the first place. 

Strategies have to be taken not only to entrap the drug into the NPs but also to retain the 

drug in the NPs in the biologically relevant environment. 
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Table 2.1.  Physico-chemical properties of Miglyols 

 

Miglyol  Chemical composition 
Solubility 

of 
DX 

Viscosity 
mPa.s at 

20°C 
Volatility  

Ability 
to 

form 
NP 

612 Glyceryl trihexanoate 
High 
> 0.2 

mg/mg oil 

15 + Bad 

829 
Caprylic/capric/succinic 

triglyceride 
300 - Bad 

840 
Propylene glycol 

dicaprylate/dicaprate 
10 + Bad 

      
808 Caprylic triglyceride 

Medium 
0.05-0.1 

mg/mg oil 

23 - Good 

8108 
Caprylic/capric 

triglyceride 
25 N/A N/A 

8810 
Butylene glycol 

dicaprylate/dicaprate 
11 N/A N/A 

810 
Caprylic/capric 

triglyceride 
26 N/A N/A 

      

818 
Caprylic/capric/linoleic 

triglyceride 
Low 

< 0.05 
mg/mg oil 

33 N/A N/A 

812 
Caprylic/capric 

triglyceride 
28 - Good 
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Table 2.2.  Optimization of BTM 808 NPs by Sequential Simplex  

 

Trial 
No 

Miglyol 
808 

mg/ml 

Brij 
78 

mg/ml 

TPGS 
mg/ml 

Particle 
Size 
nm 

P.I. 
Peak 

number 
% 

Dust 
Current 

Membership 

1 2.5 3.5 1.5 191.1 0.380 1 2.5 0.59 
2 2 3 2 147.9 0.810 2 1.3 0 
3 3 3 1 183.2 0.198 2 1.2 0.37 
4 3 4 2 206.5 0.310 1 0 0.57 
5 3.7 4 1 186.5 0.192 2 2 0.35 
6 3.3 3.8 1.3 182.8 0.336 1 4 0.62 
7 2.9 4.5 2.2 112.3 1.04 2 3.8 0 
8  3 3.4 1.3 187.5 0.279 1 4 0.62 
9 2.9 3.1 0.7 192.9 0.170 2 1.9 0.34 
10 3 3.8 1.7 203.2 0.262 2 2.5 0.28 
11 2.6 3.8 1.4 196.3 0.322 1 8 0.44 
12 2.9 3.5 1 199.7 0.202 1 2.7 0.61 
13 2.8 3.8 1.2 185.6 0.282 1 4.4 0.62 
14 3.2 3.8 1.5 198.8 0.263 1 2.9 0.59 

6RE1 3.3 3.8 1.3 178.9 0.234 2 0 0.38 
15*  2.8 3.7 1.2 184.1 0.359 1 3.7 0.61 
16 3 3.5 1.2 190.6 0.313 2 0 0.33 

 

* Bold font indicates leading formulations 
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Table 2.3.  Characterization of DX BTM 808 NPs 

 

Formulation 
Particle 
size (nm) 

P.I. 
Zeta 

potential 
(mV) 

Drug 
loading 

% Drug 
entrapment 
efficiency 

DX BTM 808 167.8 ± 1.7 
0.19 ± 
0.05 

-3.08 ± 0.68 
0.3 

mg/ml 
w/w 

drug/oil 
10.7% 

85.3 ± 1.4* 
Blank BTM 

808 
191.7 ± 3.9 

0.19 ± 
0.1 

-5.78 ± 1.36 

 
* The data are presented as the mean of the particle size of NPs in different batches ± 
SD (n = 5).  
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Table 2.4.  Recovery of DX from plasma from SPE or SEC plus SPE 

 

DX concentration in 
plasma (µg/ml) 

Low Medium High 

1 5 10 

Recovery of SPE (%) 111.9 106.4 109.9 

Recovery of SEC + 
SPE (%) 

114.4 101.9 89.9 
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A. 

 

 

B.  

 

Figure 2.1.  Morphology of (A) DX BTM 808 NPs and (B) TEM images of DX 
BTM 808 NPs. 
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Figure 2.2.  Physical stability of DX BTM 808 NPs in 10% lactose stored at 4°C 
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A. 

 

B. 

 
Figure 2.3.  In-vitro cytotoxicity of free DX, DX BTM NPs and blank BTM NPs 
in (A) DU-145 and PC-3 cells, and (B) DU-145-R and PC-3-R cells after 48 hr 
incubation. Blank NPs were dosed at drug equivalent dose. Drug equivalent dose 
of NPs are calculated from the NP compositions. 

 

 



 

 

 

 

Figure 2.4.  The expression of P
corresponding PX-resistant DU
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The expression of P-gp in DU-145 and PC-3 cell lines and their 
resistant DU-145-R and PC-3-R cell lines. 
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Figure 2.5.  The separation of NPs with mouse plasma proteins in Sepharose 
CL-4B column (15-cm, gravity-packed). 
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Figure 2.6.  The “release” of DX from BTM 808 NPs in mouse plasma at 37°C. 
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A. 

 
B. 

 

Figure 2.7.  (A) The entrapment of DX in BTM 808 NPs determined by SEC as 
compared to (B) free DX dissolved in 10% lactose. 
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Figure 2.8.  The particle size of each fraction from Sepharose CL-4B column 
after blank BTM NPs were eluted using PBS. 
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Chapter 3.   

Development of lipid nanoparticles containing docetaxel fatty acid conjugates to 
control the drug release rate in-vitro and in-vivo 

 

1.  Summary  

 

Three docetaxel (DX) lipid conjugates: 2’-lauroyl-docetaxel (C12-DX), 

2’-stearoyl-docetaxel (C18-DX) and 2’-behenoyl-docetaxel (C22-DX) were 

synthesized to enhance the drug loading, entrapment and retention in liquid oil-filled 

lipid nanoparticles (NPs). The three conjugates showed 10-fold higher solubility in the 

liquid oil phase, Miglyol 808, than DX. To further increase the drug entrapment 

efficiency in NPs, orthogonal design was performed. The optimized formulation was 

composed of Miglyol 808 (2.5 mg/mL), Brij 78 (1.7 mg/mL) and Vitamin E TPGS (0.8 

mg/mL). The conjugates were successfully entrapped in the reduced-surfactant NPs 

with entrapment efficiencies about 50-60% as measured by size exclusion 

chromatography (SEC) at a final concentration of 0.5 mg/mL. All three conjugates  
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showed 45% initial burst release in 100% mouse plasma. Whereas C12-DX showed 

another 40% release over the next 8 hr, C18-DX and C22-DX in NPs showed no 

additional release after the initial burst of drug. All conjugates showed significantly 

lower cytotoxicity than DX in human DU-145 prostate cancer cells. The IC50 values of 

free conjugates and conjugate NPs were comparable except for C22-DX, which was 

non-toxic in the tested concentration range and showed only vehicle toxicity when 

entrapped in NPs. In-vivo, the AUC0-∞ values of all DX conjugate NPs were 

significantly greater than that of Taxotere, demonstrating prolonged retention of drug in 

the blood. The AUC0-∞ value of DX in Taxotere was 8.3-fold, 358.0-fold and 454.5-fold 

lower than that of NP-formulated C12-DX, C18-DX and C22-DX, respectively. The 

results of these studies strongly support that the physical/chemical properties of DX 

conjugates may be fine-tuned to influence the affinity and retention of DX in oil-filled 

lipid NPs which leads to very different pharmacokinetic profiles and blood exposure of 

an otherwise potent chemotherapeutic agent. These studies and methodologies may 

allow for improved and more potent NP-based formulations. 

 

2.  Introduction 

The enhanced permeability and retention (EPR) effect is the major mechanism for 

passive targeting of nano-formulations to accumulate in the tumor site. To ensure that 

the NPs take advantage of the EPR effect, the NPs need to maintain two aspects of 
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stability in-vivo: long circulation of delivery vehicles and long retention of anticancer 

agents in the NPs. The importance of long circulation of NPs has been widely 

recognized and extensively demonstrated for decades. Various polyethylene glycol 

(PEG)-coated nano-formulations have shown prolonged circulation time in-vivo.1-4 On 

the other hand, the importance of long retention of anticancer agent in the nano-carriers 

is often underappreciated. The enhancement of drug retention in long circulating NPs 

increases drug uptake and accumulation in the tumor tissue. To study the retention of 

drugs in the NPs, many in-vitro release studies have been conducted in aqueous buffers 

(e.g., PBS) and are expected to predict the in-vivo retention behavior of the 

nano-formulation. However, the correlation between the in-vitro release in PBS and 

in-vivo release behavior is often poor, especially when the entrapped drug has 

extremely low aqueous solubility and/or high protein binding affinity. Given that DX 

has poor water solubility and high protein binding,5 we developed a more predictive 

“ex-vivo” release method to better mimic the in-vivo environment with the goal to 

achieve better correlation with the in-vivo pharmacokinetic profiles.   

Previously, we developed liquid oil-filled BTM 808 NPs by sequential simplex 

optimization to deliver DX. However, despite the desirable formulation properties (e.g., 

monodispersed particle size, apparent drug entrapment efficiency, etc.), DX was found 

to be very rapidly released in mouse plasma in-vitro. Further investigation revealed that 

DX was not truly entrapped into the NPs during preparation. Despite that DX is a 

poorly water-soluble drug, DX has appreciable solubility in aqueous solutions and the 
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affinity of DX with the oil core was not high enough to prevent its rapid diffusion from 

the oil core to the aqueous phase. Strategies have to be taken to overcome the poor 

retention of DX in the NPs in aqueous phase and in biologically relevant medium. Most 

lipid-based NPs are more efficient for the encapsulation of lipophilic drugs. In the 

literature, lipophilic taxane prodrugs have been synthesized to further increase their 

lipophilicity and miscibility with lipids which in turn increases their entrapment in the 

lipid-based NPs by several research groups.6-10 

The objective of these present studies was to improve the affinity and retention 

of DX in the NPs to thereby achieve prolonged in-vivo blood exposure. To this end, we 

synthesized three lipid-DX prodrugs with different fatty acid chain lengths. The chain 

lengths (12, 18 and 22) were chosen to be compatible with the liquid oil core, Miglyol 

808, which is composed of caprylic acid triglycerides. By utilizing the new release 

method to investigate the in-vitro release of the conjugates from these NPs, a 

correlation between the in-vitro release and in-vivo pharmacokinetics was achieved. 

The superior pharmacokinetic profiles of the three conjugates in NPs compared to 

Taxotere makes these NPs promising candidates for preclinical anticancer efficacy 

studies. 
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3.  Materials and methods 

3.1.  Materials and Animals 

DX, paclitaxel (PX), lauroyl chloride (98%), stearoyl chloride (97%), behenoyl 

chloride (>99%), 4-(dimethylamino)pyridine (DMAP) and p-nitrophenylacetate 

(PNPA) were purchased from Sigma-Aldrich (St. Louis, MO). Miglyol 808 was 

obtained from Sasol (Witten, Germany). Polyoxyl 20-stearyl ether (Brij 78) was 

obtained from Uniqema (Wilmington, DE). D-alpha-tocopheryl polyethylene glycol 

succinate (Vitamin E TPGS) was purchased from Eastman Chemicals (Kingsport, TN). 

BALB/c mouse plasma was purchased from Innovative Research Inc. (Novi, MI). 

Sepharose CL-4B was purchased from GE Healthcare (Uppsala, Sweden). 

Hybrid-SPE® cartridge was purchased from Sigma-Aldrich Supelco (St. Louis, MO). 

The human prostate cancer cell line, DU-145, was obtained from American 

Type Culture Collection (ATCC) and was maintained in RPMI-1640 medium with 10% 

fetal bovine serum (FBS). Male athymic nude (nu/nu) mice, 4 to 5 weeks old, were 

obtained from the University of North Carolina, Division of Laboratory Animal 

Medicine (DLAM) and housed in a pathogen-free room. All experiments involving 

mice were conducted according to an approved animal protocol by the University of 

North Carolina Institutional Animal Care and Use Committee.  
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3.2.  Methods 

3.2.1.  Synthesis 

3.2.1.1. General procedure for the synthesis of 2’-lauroyl-docetaxel (1, C12-DX)8  

A flame-dried round-bottom flask was charged with DX (0.2 g, 2.48 × 10-4 mol, 1 equiv) 

and DMAP (0.06 g, 4.95 × 10-4 mol, 2 equiv) in dry CH2Cl2 (8 mL) under argon. The 

solution was stirred for 10 min at 0°C. Lauroyl chloride (57.2 µl, 2.48 × 10-4 mol, 1 

equiv) was added, and the reaction mixture was stirred for 6 hr at 0°C. The reaction was 

monitored by thin layer chromatography (TLC) (CH2Cl2: MeOH 9:1 v/v; Rf = 0.7) for 

completion. After completion, the solvent was removed by rotary evaporation in vacuo 

and the crude product was dissolved in diethylether (50 mL) and washed with 5% HCl 

(3 × 40 mL), and finally with brine (40 mL) to remove the salt byproducts. The organic 

phase was dried over anhydrous sodium sulfate, and the solvent was evaporated in 

vacuo. The product was purified by silica-packed column chromatography (9:1 

CH2Cl2:MeOH) to give the desired DX derivative as a white solid (0.21 g, yield 85%).  

1H NMR (400 MHz, CDCl3): δ (ppm) = 1.12 (t, 3H, –CH3(CH2)10), 1.23 (s, 6H, –H16,17), 

1.34 (s, 9H, –H7’-9’), 1.72 (s, 3H, –H19), 1.75 (m, 14H, –(CH2)7CH2CH3), 1.81 (m, 2H, 

–CH2CH2C1”), 1.84 (s, 3H, –H18), 1.87 (m, 2H, –H14), 2.26 (d, 2H, –CH2C1”), 2.36 (s, 

3H, –H22), 2.67 (m, 1H, –H3), 3.43 (s, 1H, –H7), 3.9 (d, 1H, –H4), 4.17 (d, 1H, –H6), 

4.24 (m, 1H, –H5), 4.3 (d, 1H, –H20), 4.61 (s, 1H, –H10), 4.93 (d, 1H, –H13), 5.21 (d, 1H, 

–H10), 5.67 (d, 1H, –H2), 6.21 (t, 1H, –H2’), 7.31 (m, 1H, –H3’), 7.36-7.61 (m, 8H, 
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–Ar-H26-28 and Ar-H30-35), 8.1 (d, 2H, –Ar-H25,29). 
13C NMR (100 MHz, CD3OD): δ 

(ppm) = 9.9 (–C19), 14.4 (–CH3(CH2)10), 20.6 (–C18), 22.5 (–C22), 24.8 

(–(CH2)9CH2CH3), 26.44 (–C16,17), 28.2 (–C7’-9’), 31.9 (–(CH2)8C1”), 34.4 (–C6,14), 43.1 

(–C15), 46.4 (–C3), 56.4 (–C3’),  57.6 (–C8), 72 (–C13), 72.4 (–C7), 74.5 (–C2), 74.8 

(–C10), 76.6 (–C20),  78.8 (–C6’), 80.2 (–C1), 81.1(–C4), 84.1 (–C5), 126. 7 (–C31,33,35), 

128 (–C32,34), 128.7 (–C26,28), 130.2 (–C24,25,29), 133.7 (–C27), 135.9 (–C11), 138.5 (–C12), 

155.3 (–C5’), 167.1, 167 (–C23), 172.7 (–C21), 174 (–C1), 177.8 (–C1”), 211.6 (–C9). 

 

3.2.1.2. General procedure for the synthesis of 2’-stearoyl-docetaxel (2, C18-DX)   

2’-stearoyl-docetaxel was synthesized following the same procedure outlined above for 

2’-lauroyl-docetaxel using stearoyl chloride to give the final conjugate as a white solid 

(0.17 g, yield 65%).  1H NMR (400 MHz, CDCl3): δ (ppm) = 0.8 (t, 3H, –CH3(CH2)16), 

1.05 (s, 6H, –H16,17), 1.14 (s, 9H, –H7’-9’), 1.16 (s, 3H, –H19), 1.26 (m, 14H, 

–(CH2)13CH2CH3), 1.45 (m, 2H, –CH2CH2C1”), 1.68 (s, 3H, –H18), 1.88 (m, 2H, –H14), 

2.25 (d, 2H, –CH2C1”), 2.37 (s, 3H, –H22), 2.38 (m, 1H, –H3), 3.43 (s, 1H, –H7), 3.85 (d, 

1H, –H4), 4.12 (d, 1H, –H6), 4.24 (m, 1H, –H5), 4.3 (d, 1H, –H20), 4.88 (d, 1H, –H13), 

5.14 (s, 1H, –H10), 5.3 (d, 1H, –H10), 5.61 (d, 1H, –H2), 6.2 (t, 1H, –H2’), 7.2 (m, 1H, 

–H3’), 7.25-7.53 (m, 8H, –Ar-H26-28 and Ar-H30-35), 8.05 (d, 2H, –Ar-H25,29). 
13C NMR 

(100 MHz, CD3OD): δ (ppm) = 8.9 (–C19), 13.2 (–CH3(CH2)16), 19.9 (–C18), 21.6 

(–C22), 23.7 (–(CH2)15CH2CH3), 25.3 (–C16,17), 27.1 (–C7’-9’), 30.9 (–(CH2)14C1”), 32.7 

(–C6,14), 42.1 (–C15), 45.4 (–C3), 56.4 (–C3’),  57.6 (–C8), 70.8 (–C13), 73.1 (–C7), 73.5 
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(–C2), 74 (–C10), 77.9 (–C20),  79.4 (–C6’), 79.9 (–C1), 83.2 (–C4), 84.1 (–C5), 125.3 

(–C31,33,35), 127.1 (–C32,34), 127.8 (–C26,28), 129.2 (–C24,25,29), 132.6 (–C27), 134.5 (–C11), 

138.2 (–C12), 154.1 (–C5’), 166.1 (–C23), 167.2 (–C21), 168.7 (–C1), 171.8 (–C1”), 210.6 

(–C9). 

  

3.2.1.3. General procedure for the synthesis of 2’-behenoyl-docetaxel (3, C22-DX)   

2’-behenoyl-docetaxel was synthesized following the same procedure outlined above 

for 2’-lauroyl-docetaxel using behenoyl chloride to give the final conjugate as a white 

solid (0.26 g, yield 95%).  1H NMR (400 MHz, CDCl3): δ (ppm) = 0.81 (t, 3H, 

–CH3(CH2)20), 1.05 (s, 6H, –H16,17), 1.14 (s, 9H, –H7’-9’), 1.16 (s, 3H, –H19), 1.23 (m, 

36H, –(CH2)18CH2CH3), 1.26 (m, 2H, –CH2CH2C1”), 1.45 (s, 3H, –H18), 1.62 (m, 2H, 

–H14), 1.67 (d, 2H, –CH2C1”), 1.9 (s, 3H, –H22), 2.26 (m, 1H, –H3), 2.4 (s, 1H, –H7), 

3.86 (d, 1H, –H4), 4.12 (d, 1H, –H6), 4.23 (m, 1H, –H5), 4.26 (d, 1H, –H20), 4.61 (s, 1H, 

–H10), 4.9 (d, 1H, –H13), 5.14 (d, 1H, –H10), 5.62 (d, 1H, –H2), 6.2 (t, 1H, –H2’), 7.2 (m, 

1H, –H3’), 7.22-7.53 (m, 8H, –Ar-H26-28 and Ar-H30-35), 8.05 (d, 2H, –Ar-H25,29). 
13C 

NMR (100 MHz, CD3OD): δ (ppm) = 8.9 (–C19), 13.2 (–CH3(CH2)20), 19.9 (–C18), 21.6 

(–C22), 23.7 (–(CH2)19CH2CH3), 25.3 (–C16,17), 27.1 (–C7’-9’), 30.9 (–(CH2)18C1”), 32.7 

(–C6,14), 42.1 (–C15), 45.4 (–C3), 56.5 (–C3’),  57.2 (–C8), 70.8 (–C13), 73.1 (–C7), 73.5 

(–C2), 74.0 (–C10), 76.3 (–C20),  77.9 (–C6’), 79.9 (–C1), 83.2(–C4), 84.1 (–C5), 125.3 

(–C31,33,35), 127.1 (–C32,34), 127.8 (–C26,28), 129.2 (–C24,25,29), 132.6 (–C27), 134.5 (–C11), 

138.2 (–C12), 154.2 (–C5’), 166.1, 167.2 (–C23), 168.4 (–C21), 171.8 (–C1), 177.8 (–C1”), 
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210.6 (–C9). 

 

3.2.2.  Characterization of DX and DX conjugates 

3.2.2.1.  Mass spectrometry 

Electrospray Ionization (ESI) coupled with direct injection was employed to determine 

the m/z of the final synthetic conjugate products by Thermo Scientific TSQ Quantum 

Access with positive ionization. The mass of the observed molecular ions were m/z = 

1012.6, 1096.7 and 1152.8, which clearly corresponded to the Na+ adducts of C12-DX, 

C18-DX and C22-DX, respectively. 

 

3.2.2.2.  High performance liquid chromatography (HPLC) 

The DX conjugate concentrations were quantified by HPLC using a Finnigan Surveyor 

HPLC system with a Photodiode Array (PDA) detector, autosampler and LC pump plus 

with a Inertsil® ODS-3 column (4 µm, 4.6×150 mm, GL Sciences) at 25°C. 

Chromatographic separation was achieved by gradient elution using a mobile phase of 

2-propanol, acetonitrile (ACN) and water (5: 55: 40 v/v/v). The flow rate was 1.0 

mL/min and the total run time was 25 min for each 25 µL injection. The wavelength 

was 230 nm. 

The DX concentration was quantified by LC/MS/MS using a Finnigan Surveyor 

Autosampler Plus and Finnigan Surveyor MS Pump Plus. Chromatographic separations 
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were achieved using a SunFire™ C18 column (2.1 × 30 mm, 3.5 µm particle size, 

Waters) at 25ºC. The mobile phase consisted of 0.1% formic acid in water and methanol 

using gradient separation. The flow rate was 0.5 mL/min and the total run time was 8 

min for each 25 µL injection. Mass spectrometric analysis was performed using a 

Thermo Scientific TSQ Quantum Access with positive ionization. The capillary 

temperature was set up to 390ºC, and the spray voltage was 4000V.  For DX analysis, 

m/z 830.0 → 549.0 was monitored with PX (m/z 876.3 → 308.0) as an internal 

standard. 

 

3.2.3.  Evaluation of DX conjugate solubility in Miglyol 808 and mouse plasma 

Approximately 50 mg of each DX conjugate was added to individual vials containing 

50 µL of Miglyol 808. For the evaluation of DX conjugate solubility in mouse plasma, 

around 1 mg of each DX conjugate was added to a vial containing 1 mL of BALB/c 

mouse plasma. The mixtures were stirred at room temperature for 24 hr. The samples 

were then centrifuged for 1 hr at 14,000 rpm to remove undissolved drug. After 

centrifugation, the saturated supernatant was diluted with ACN and analyzed by HPLC.  
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3.2.4.  Preparation and characterization of BTM NPs 

3.2.4.1.  Preparation of BTM NPs containing DX conjugates 

DX conjugates containing NPs were prepared using a warm oil-in-water (o/w) 

microemulsion precursor method previously developed in our laboratory.11 Briefly, 

Miglyol 808 and surfactants (Brij 78 and Vitamin E TPGS) were accurately weighed 

into glass vials and heated to 50-60°C. Drugs dissolved in ACN were added and the 

organic solvent was removed by nitrogen flow. One (1) mL of pre-heated 10% lactose 

in water was added into the mixture of melted oil, surfactants and drugs. The mixture 

was stirred for 20 min at 50-60°C then cooled to room temperature. Orthogonal design 

was performed to optimize NPs with desirable properties, including particle size and 

drug entrapment efficiency. 

For in-vivo studies, NPs were concentrated and PEGylated. The formulation 

was concentrated four-fold by adding four-fold less 10% lactose continuous phase 

while keeping the other components of the formulation unchanged. The NPs were 

PEGylated by adding 8% Brij 700 during the preparation wherein 8% was the w/w ratio 

of Brij 700 to Miglyol 808. 

 

3.2.4.2.  Characterization of BTM NPs containing DX conjugates 

3.2.4.2.1.  Particle size and zeta potential 

Particle size and size distribution of NPs were determined using an N5 Submicron 

Particle Size Analyzer (Beckman). Five (5) µL of NPs was diluted with 1 mL of water 
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to reach the intensity required by the instrument. Particle size was determined at 90° 

light scattering at 25°C. The zeta potential of NPs was determined using the Zetasizer 

Nano Z (Malvern Instruments, Southborough, MA).  

 

3.2.4.2.2.  Drug entrapment efficiency 

Drug entrapment efficiency was determined by SEC. DX conjugate NPs were separated 

with the free drugs using a Sepharose CL-4B column (15 cm). NPs were eluted using 

PBS in fraction 5-8 (1 mL/fraction, confirmed by dynamic light scattering intensity). 

Each fraction was evaporated to dryness in vacuo, resuspended in 1 mL ACN and 

analyzed by HPLC to determine the concentration of DX conjugate in each fraction. 

The % drug entrapment efficiency was defined as 100% × the ratio of the weight of 

drug detected in fraction 5-8 to the total drug weight detected.  

 

3.2.5.  In-vitro drug release in mouse plasma 

In-vitro release studies were performed in 100% plasma from BALB/c mice. Briefly, 

100 µL of purified DX conjugate NPs were spiked into 2 mL of mouse plasma. The 

release mixture was incubated at 37ºC in a water bath shaker. At designated time points 

from 0 hr to 8 hr, two aliquots of release mixture were removed. One aliquot (100 µL) 

was used to determine the total drug concentration by solid phase extraction (SPE) 

using Hybrid-SPE precipitate method. Briefly, one volume of release mixture was 
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mixed with three volumes of 2% formic acid in ACN. Following vortex and 

centrifugation, the supernatant was applied to a Hybrid-SPE cartridge. The eluate was 

collected for HPLC analysis. Another aliquot (100 µL) was used to determine the drug 

remained in the NPs using the method described above. The % DX released at any time 

point was calculated as 100% × [(Total drug detected – drug remaining in the 

NPs)/Total drug detected].     

 

3.2.6.  In-vitro esterase digestion 

3.2.6.1.  DX conjugate digestion in fresh mouse plasma 

The esterase digestion study was performed in fresh mouse plasma. The DX conjugate 

DMSO stock solutions (5 mg/mL) or DX conjugate NPs (0.5 mg/mL) were spiked into 

the plasma to make a final concentration of 10 µg/mL. The mixture was incubated at 

37ºC in a water bath shaker. At designated time points, 100 µL of digestion mixture was 

removed. The concentration of DX conjugates was determined by Hybrid-SPE 

precipitate method as described above followed by HPLC analysis. The % DX 

conjugate remaining at any time point was calculated as 100% × the ratio of remaining 

drug amount to the total drug spiked into this volume of plasma. The concentration of 

DX in the same sample was determined by LC/MS. The % DX conjugate hydrolyzed to 

DX at any time point was calculated as 100% × [(DX amount detected × conjugate Mw 

/ 807)/ the total drug spiked into this volume of plasma]. 
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3.2.6.2.  Esterase activity in plasma samples 

Fresh mouse plasma, commercial mouse plasma or human plasma was diluted in PBS 

to a protein concentration of about 0.3 mg/mL and incubated with PNPA (400 µM) at 

37ºC for 15 min. After incubation, equal volume of ice-cold ACN was added to 

terminate the reaction. The suspension was centrifuged for 5 min at 14,000 rpm at 4ºC. 

The liberated p-nitrophenol was determined (ε = 1.62 × 104 M-1cm-1) by measuring the 

absorbance at 405 nm using the Synergy 2 Multi-Detection Microplate Reader. One 

unit of esterase activity was defined as the quantity of enzyme required to release 1 

µmol of p-nitrophenol per minute under assay conditions. 

 

3.2.7.  Evaluation of in-vitro cytotoxicity 

The MTT assay was utilized to assess the cytotoxicity of free DX conjugates and the 

DX conjugate NPs. Serial dilutions of free drugs or drug containing NPs were added to 

the DU-145 cells and incubated for 48 hr, 72 hr or 96 hr. The cells were then incubated 

with MTT solution for 4 hr and the formazan dyes were solubilized by DMSO. The 

absorbance was measured using the Synergy 2 Multi-Detection Microplate Reader at 

570 nm, and the concentration of drug that inhibited cell survival by 50% (IC50) was 

determined from cell survival plots. 
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3.2.8.  In-vivo pharmacokinetic studies 

Male athymic nude mice were randomly divided into four groups. The mice (n=3/time 

point) were injected via tail vein with test samples (Taxotere, C12-DX NPs, C18-DX 

NPs and C22-DX NPs), all at a DX dose of 10 mg/kg. At designated time points from 3 

min to 24 hr, the mice were given an overdose of ketamine (100 mg/kg) and Domitor 

(0.5 mg/kg) for deep anesthesia prior to cardiac puncture to collect blood and a cervical 

dislocation was then performed to euthanize the mice. For plasma separation, the blood 

collected in heparin-coated tubes was centrifuged at 12,300 rpm for 15 min. The 

obtained plasma was processed with Hybrid-SPE precipitate method as described 

above. The concentrations of DX conjugates in plasma were determined by HPLC, and 

the DX concentrations were quantified by LC-MS. Pharmacokinetic analysis and 

modeling was performed by WinNonlin (version 5.2.1; Pharsight Corp, Mountain View, 

CA).  

 

3.2.9.  Statistical analysis 

Statistical comparisons were performed using one-way analysis of variances (ANOVA) 

(©1992-2007 GraphPad Prism Software, Inc.). Results were considered significant at 

95% confidence interval (p < 0.05). Orthogonal experimental design for formulation 

optimization was performed and statistically analyzed using Design Expert® (Version 

7.1 Trial; Stat-Ease, Minneapolis, MN).  
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4.  Results 

4.1.  Synthesis and characterization of DX conjugates 

The DX-lipid conjugates in these studies were prepared by a one-step esterification 

reaction using acid chloride derivatives of various chain length fatty acids (Figure 3.1). 

Although there are multiple hydroxyl groups in DX molecule, the 2’-OH is the most 

reactive and accessible one, followed by 7-OH.8 It has been previously reported that the 

conjugation of fatty acids to DX and PX occurred preferentially on 2’-OH. 8,9,12 By 

controlling the molar ratio of the fatty acid chloride to DX carefully, 2’-mono 

substituted DX conjugates were obtained with minimal formation of 2’,7-disubstituted 

byproducts and unreacted DX. In the case of C22-DX, only 2’-OH ester derivative was 

obtained after washing with 5% HCL and brine as determined by TLC and NMR 

without further chromatography required. The yield for this reaction was as high as 

95%.  

 

4.2.  Solubility of DX conjugates in Miglyol 808 and mouse plasma 

To enhance the drug loading capacity and retention of drug in the NPs, DX conjugates 

were synthesized and investigated for their solubility in Miglyol 808 (Table 3.1). The 

solubility of all three DX conjugates in Miglyol 808 was about 10-fold higher than the 
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solubility of DX in Miglyol 808. The solubility showed no chain-length dependency. 

The chemical composition of Miglyol 808 is caprylic acid triglyceride, so DX 

conjugates with a 12-22 carbon chain are more compatible than DX with Miglyol 808 

due to the similarity of the chemical structure.  

Since the in-vitro release of DX conjugates from NPs was studied in mouse 

plasma, the solubility of DX conjugates in BALB/c mouse plasma was determined and 

compared as well (Figure 3.2). In contrast to solubility in Miglyol 808, the solubility of 

DX conjugates in plasma showed significant chain-length dependency. With an 

increase in lipid chain, the solubility of the conjugate in plasma decreased. The 

solubility of C12-DX (377.0 ± 21.5 µg/mL) was about 10-fold higher than that of 

C22-DX (34.4 ± 0.6 µg/mL) and 6.5-fold higher than that of C18-DX (57.5 ± 2.6 

µg/mL). Given the extremely low water solubility of the DX conjugates, the solubility 

of the conjugates in plasma was attributed almost entirely to their binding with plasma 

proteins.  

 

4.3.  Optimization of DX conjugate containing NPs by orthogonal design 

The orthogonal design was based on the NP previously developed to formulate DX, 

which was composed of Miglyol 808 (2.8 mg/mL), Brij 78 (3.7 mg/mL), TPGS (1.2 

mg/mL) and DX (0.3 mg/mL). In the present study, the particle size and drug 

entrapment efficiency were chosen as responses in the optimization process. A criterion 
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in the orthogonal design strategy was to reduce the total amount of surfactant used in 

the formulation, as it had been previously observed that increased level of surfactants in 

the formulation decreased drug entrapment, especially for drugs that have amphipathic 

properties.  

Based on the preliminary studies, a 3 level-3 variable orthogonal experiment 

(L-9 33) was designed as shown in Table 3.2. The two responses selected were particle 

size and % entrapment efficiency. In this experiment, C12-DX was used as a 

representative DX conjugate. The resulting NP compositions based on the optimization 

using C12-DX were applied to other conjugates. Nine (9) batches of C12-DX NPs were 

prepared and characterized. The results are also shown in Table 3.2. Statistical analysis 

showed that temperature as a variable was not significant to the model (p > 0.05). The 

particle size, as a defined model response, was not responsive to the variables (p > 0.05).  

It should be noted that the general placebo composition for this formulation was 

previously optimized. Thus, it was anticipated that continued optimization with DX 

conjugates would lead to a relatively narrow response range. When the model focused 

on the effect of surfactant concentrations on the % entrapment efficiency, it was clear 

that decreasing the surfactant concentrations increased drug entrapment in the NPs 

(Figure 3.3). Although the % entrapment efficiency of batch 2 was slightly higher than 

batch 5, batch 5 was more stable over long-term (one month) storage in 4°C refrigerator 

(data not shown). The final composition was selected as shown in Table 3.3. Due to the 

enhanced solubility of drugs in the oil core, the newly developed formulation was 
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capable of loading more DX conjugate (0.5-1 mg/mL conjugates versus 0.3 mg/mL DX) 

without significantly changing the physical properties of the resultant NPs. The optimal 

NPs had a mean particle size of 200 nm with a zeta potential around 0 mV (Table 3.3). 

The entrapment efficiencies of the three DX conjugates were 55.2 ± 2.3%, 56.3 ± 7.6% 

and 59.6 ± 1.6% for C12-DX, C18-DX and C22-DX, respectively. The similar 

entrapment efficiency of three DX conjugates was predicted by their comparable 

solubility in Miglyol 808 as shown in Table 3.1.  

 

4.4.  In-vitro release of DX conjugates from NPs in mouse plasma 

In this study, the release of DX conjugates from the NPs was studied by the novel 

“ex-vivo” method in 100% mouse plasma. For the release studies, the DX conjugate 

containing NPs were first purified by SEC and only NPs with size around 200 nm 

(fraction 5-8) were collected. For all three DX conjugate NPs, an initial 45% burst 

release was observed upon spiking into the mouse plasma (Figure 3.4). After the initial 

burst release, C12-DX was slowly released to 86% in 8 hr, while no additional C18-DX 

and C22-DX was released from the NPs within 8 hr. A longer time point (96 hr) release 

study was carried out for the C18-DX NPs; however, no drug was released from the 

NPs after the burst (data not shown).  
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4.5.  In-vitro esterase digestion 

The digestion rate of both free DX conjugates and DX conjugate formulated in NPs in 

fresh mouse plasma was chain-length dependent (Figure 3.5A). C12-DX with the 

shortest fatty acid chain length showed 100% parent drug loss within 4-8 hr in free 

form and in NPs; while about 80% and 90% of C18-DX and C22-DX in their free forms 

were detected after 48 hr incubation, respectively. Surprisingly, when entrapped in NPs, 

the loss of C18-DX and C22-DX was more rapid than their free forms. After 48 hr 

incubation, only 43.7% and 66.5% of C18-DX and C22-DX remained intact, 

respectively.  

The DX liberation rate in fresh mouse plasma was consistent with the digestion 

rate of each DX conjugate (Figure 3.5B). In 48 hr, 60% and 45% of NP-entrapped 

C12-DX and free C12-DX were cleaved to DX, respectively. Whereas only 14% of 

NP-entrapped C18-DX was hydrolyzed to DX and negligible DX was hydrolyzed from 

free C18-DX, free C22-DX and NP-entrapped C22-DX. It is worth noting that the 

fraction of remaining DX conjugate plus the fraction of DX conjugate transferred to 

DX did not reach 100% for all three conjugates. The recovery of free conjugates was 

44%, 82% and 90% for C12-DX, C18-DX and C22-DX in 48 hr, respectively. The 

recovery of NP-entrapped conjugates was 52%, 57% and 68% for C12-DX, C18-DX 

and C22-DX in 48 hr, respectively. It suggests that besides hydrolysis to DX, DX 

conjugates have other transfer pathways and the reactivity decreases with the 

chain-length increases.  
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4.6.  Esterase activity in plasma samples 

The non-specific esterase activity of different plasma samples is shown in Figure 3.6. 

The fresh mouse plasma without freezing-thawing cycle showed the highest esterase 

activity. The esterase activity in human plasma was over 2-times lower than that in 

fresh mouse plasma. The commercial mouse plasma used in the drug release studies 

had the lowest esterase activity, which was 6-times lower compared to that in fresh 

mouse plasma. 

 

4.7.  In-vitro cytotoxicity 

The cytotoxicity of DX conjugate NPs was studied in human prostate cancer DU-145 

cells using the MTT assay (Figure 3.7). Both free DX conjugates and DX conjugate 

NPs showed a dose-dependent and time-dependent cytotoxicity in DU-145 cells. In 

general, all three DX conjugates had significantly lower cytotoxicity than unmodified 

DX in DU-145 cells. The decrease in cytotoxicity was chain-length dependent. As 

shown in Figure 3.7A, free C12-DX was 20.6-fold less active than DX, and free 

C18-DX was 36.5-fold less active than DX after 48 hr incubation. Free C22-DX was 

almost non-toxic to DU-145 cells. For 48 hr incubation, C12-DX and C18-DX NPs 

showed comparable IC50 values with their free forms, while C22-DX NPs only showed 

similar toxicity to the blank NPs. The blank NP IC50 was 1842 ± 287 nM in DX 
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conjugate equivalent dose.  

Figure 3.7B and C demonstrated the time-dependent cytotoxicity of free DX 

conjugates and NPs. For free C12-DX, the IC50 value decreased about 3-fold from 48 hr 

to 72 hr incubation and 2-fold from 72 hr to 96 hr. Free C18-DX and C22-DX did not 

show increased cytotoxicity in 72 hr over 48 hr; while from 72 hr to 96 hr, the IC50 

values of both C18-DX and C22-DX decreased 2-fold. The IC50 value of C12-DX NP 

decreased 8-fold from 48 hr to 72 hr incubation but only 1.7-fold from 72 hr to 96 hr. 

For both C18-DX NP and C22-DX NP, the IC50 values sequentially decreased 2-fold 

from 48 hr to 72 hr to 96 hr incubation. 

 

4.8.  In-vivo pharmacokinetics 

The plasma concentration-time curves in mice receiving i.v. bolus injections of 

Taxotere, C12-DX NPs, C18-DX NPs and C22-DX NPs at a dose of 10 mg DX/kg are 

shown in Figure 3.8A. Pharmacokinetic parameters obtained using a 

noncompartmental model of analysis are listed in Table 3.4A. The AUC0-∞ values of all 

NP-formulated DX conjugates were significantly higher than that of Taxotere. The 

AUCs increased as the conjugate chain lengths increased. The AUC0-∞ values of DX 

were 8.3-fold, 358-fold and 454.5-fold lower than that of NP-formulated C12-DX, 

C18-DX and C22-DX, respectively. The terminal half-lives of NP-formulated C18-DX 

and C22-DX were 1.9-fold and 3.4-fold longer than that of DX respectively. The 
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terminal half-life of NP-formulated C12-DX was shorter than that of DX. The volume 

of distribution of DX conjugates after administration of C12-DX NPs, C18-DX NPs, 

and C22-DX NPs were comparable. Overall, the volume of distribution of DX 

conjugate NPs was 20-fold lower than that of Taxotere.  

The plasma concentrations of DX as an active metabolite hydrolyzed from 

C12-DX, C18-DX and C22-DX were determined and shown in Figure 3.8B. DX 

concentrations of Taxotere are also shown as a reference for comparison. The 

pharmacokinetic parameters of noncompartmental model are shown in Table 3.4B. The 

plasma concentrations of DX from C22-DX NP were below the lower limit of 

quantification. C12-DX NPs and C18-DX NPs improved DX AUC about 3-fold 

compared to Taxotere. The AUC of DX from C12-DX NP was slightly higher than that 

of C18-DX NP and the Cmax of DX from C12-DX NPs was 16.7-fold higher than that of 

C18-DX NPs. However, the terminal half-life of DX from C18-DX NPs was 5-fold 

higher than that of C12-DX NPs. The DX from C12-DX NPs decreased promptly 

below the level of DX from C18-DX NPs 4 hr post injection. Eight (8) hr post 

administration, the DX concentration from C12-DX NP decreased to the same level as 

Taxotere, whereas DX from C18-DX NP could be detected until 24 hr.   

 

5.  Discussion 

In the present studies, three DX-lipid conjugates, C12-DX, C18-DX and C22-DX were 
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synthesized and characterized. The solubility of all three DX-lipid conjugates in 

Miglyol 808 was enhanced >10-fold over that of DX. Following optimization of the 

DX conjugate NP using orthogonal design, the final optimized NPs contained 

significantly reduced surfactant concentrations and increased drug entrapment. The 

improved retention of DX conjugates in the oil-filled NPs led to very different 

pharmacokinetic profiles and blood exposure of DX.  

A novel liquid oil-filled NP was previously developed in our laboratory, which 

was composed of Miglyol 812, Brij 78 and Vitamin E TPGS.13 During the initial 

development of NP to formulate DX, Miglyol 808 was selected over Miglyol 812 due to 

the significant higher solubility of DX in Miglyol 808 (52.07 ± 0.84 mg/mL) compared 

to in Miglyol 812 (36.11 ± 0.10 mg/mL, p < 0.01). The oil phase with higher drug 

solubility represents better compatibility and affinity of the drug with the inner liquid 

oil core of the delivery vehicles thereby leading to higher drug loading capacity and 

longer retention of drugs in the NPs. The high drug loading capacity allows formulating 

more drugs with less vehicle components so that the potential toxicity of the delivery 

vehicle could be minimized. The >10-fold increase in the solubility of DX conjugates in 

Miglyol 808 compared to DX allowed for a significant increase in drug loading and 

entrapment. The comparable entrapment efficiency of the three DX conjugates in BTM 

808 NPs was consistent with solubility of the conjugates in the Miglyol 808 liquid oil 

core. 

While the solubility of DX conjugates in Miglyol 808 strongly influenced the 
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drug loading and entrapment efficiency in the NP formulation, the partition of DX 

conjugates in plasma was the driving force of their release in-vivo. Results from the 

in-vitro release studies showed that after an initial burst, an additional 40% of C12-DX 

having a relatively higher solubility in plasma was released from the NPs in 8 hr. In 

contrast, the C18-DX and C22-DX were extensively retained in the NPs after the initial 

burst release. It should be noted that all three DX-lipid conjugates showed an initial 45% 

burst release in mouse plasma using this “ex-vivo” method, which suggests that the 

burst release was not related to the lipid chain length in this range. It is likely that the 

relatively more hydrophilic head group of the DX-lipid conjugates resided on the 

surface of NPs and promptly partitioned to plasma proteins upon mixing with plasma. 

The burst release may not be a desirable property of NPs; however, it almost certainly 

reflects the true release behavior in-vivo.  

In fresh mouse plasma bearing high esterase activity, the digestion rate of DX 

conjugates showed clear chain-length dependency. C12-DX, with a shorter acyl chain, 

likely has less steric hindrance and was more rapidly cleaved to release DX. In contrast, 

the longer acyl chains of C18-DX and C22-DX make them less susceptible to 

hydrolysis. A surprising finding in this experiment is that when entrapped in NPs, DX 

conjugates were more quickly hydrolyzed to DX than in their free forms. 

Nano-formulations are designed in many studies to protect chemically labile 

compounds. However in this case, oppositely, NP-encapsulation accelerated the 

digestion kinetics of DX conjugates. A hypothesis to explain this effect is that the 
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amphiphilic DX conjugates locate on the surface of the oil-filled NPs with relatively 

hydrophilic head orienting toward the aqueous phase and the lipid tail anchoring in the 

oil core. The huge specific surface area of NPs makes DX conjugates readily accessible 

to enzymes including esterases in the aqueous phase to transfer DX conjugates to DX 

and others. On the contrary, free DX conjugates, once spiked into plasma, tightly bind 

to the plasma proteins (e.g., albumin) leading to the shield of cleavage site.  

The chain-length dependent and NP-accelerated hydrolysis of DX conjugates is 

consistent with their in-vitro cytotoxicity patterns. C12-DX, with the highest hydrolysis 

rate/extent exhibited the highest cytotoxicity, whereas free C22-DX and 

NP-encapsulated C22-DX with no liberation of DX in 48 hr exhibited no cytotoxicity 

and only vehicle-related toxicity, respectively. When the incubation time was extended 

to 72 hr and 96 hr, the cytotoxicity of all conjugates and their NPs increased. The 

time-dependent cytotoxicity increase is more obvious in DX conjugate NPs compared 

to their free forms especially for C18-DX and C22-DX. In addition, at 72 hr and 96 hr, 

the cytotoxicity of C18-DX NP and C22-DX NP was significantly higher than their free 

forms while this effect was less remarkable for C12-DX. It is likely that after 48 hr, DX 

was slowly hydrolyzed from C18-DX and C22-DX, with even lower hydrolysis rate 

and/or extent in their free forms. From the digestion study, it is clear that the hydrolysis 

rate of C12-DX was much faster than the other two and the difference between free and 

NP was not as significant as the others. It is consistent with its less remarkable 

time-dependent and NP-enhanced cytotoxicity. 
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It should be noted that the commercially bought mouse plasma is different from 

the fresh mouse plasma in terms of esterase activity as indicated in Figure 3.6. The 

reason of low esterase activity in commercial mouse plasma is unknown. It is possible 

that the handling process and/or storage of commercial plasma compromised its 

enzymatic activity. In contrast to the digestion of NP-formulated DX conjugates in 

fresh plasma (except for C22-DX), all DX conjugates were kept intact in commercial 

plasma and no DX was detected from any of the conjugates in at least 8 hr in the 

in-vitro release studies (data not shown). The release profiles obtained in the plasma 

lack of esterase activity may not reflect the overall behavior of DX conjugate NPs 

in-vivo, however, the presence of physiologically relevant concentration of proteins 

still makes commercial plasma a more relevant release medium over simple aqueous 

solutions. Even better, the lack of esterase activity simplifies the system and enables the 

study to focus only on the “release” behavior without entangling with the hydrolysis at 

the same time. The enzyme expression and activity in plasma have species difference. 

The lower esterase activity in human plasma compared to mouse plasma found in this 

study is consistent with other reports.14,15 It has been reported that butyrylcholinesterase, 

paraoxonase, and albumin esterase but not carboxylesterase are present in human 

plasma.16 The lower esterase activity in human plasma may potentially influence the 

prodrug activation in human systemic circulation. It remains possible that the esterases 

in tumors cleave the prodrug and release active DX after DX conjugate NPs passively 

accumulate in the tumor site via the EPR effect. 
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In-vivo, NP-formulated C12-DX, C18-DX and C22-DX achieved much higher 

AUCs compared to Taxotere, which was expected due to their better anchoring in the 

long circulating NPs. The low volume of distribution of DX conjugates was attributed 

to the size of NPs which limited their distribution to the normal tissues.17 In addition to 

the elimination of conjugate containing NPs by the reticuloendothelial system (RES), 

the elimination of the conjugates was also attributed to two other possible mechanisms 

including release of the conjugate from the NPs and hydrolysis of the conjugates. The 

elimination routes and the relative contribution of each route varied for each conjugate. 

The DX plasma concentration-time curves indicated that C12-DX was more quickly 

hydrolyzed to DX in-vivo than the other two conjugates, which is consistent with the 

in-vitro digestion results. C12-DX in NPs was either released from the NPs followed by 

hydrolysis to DX or was hydrolyzed to DX first followed by quick release as DX. 

Regardless of the mechanism, C12-DX had the shortest terminal half-life in-vivo, 

which was even shorter than Taxotere; however, the plasma exposure of DX was the 

highest after C12-DX NP injection. In contrast, C18-DX is more slowly hydrolyzed and 

better anchored in the NPs in-vivo resulting in a significant increase of the plasma 

exposure of the conjugate. As a result, the AUC of NP-formulated C18-DX was 43-fold 

higher than that of C12-DX. Because of the slower hydrolysis, the DX AUC from 

C18-DX NPs was lower compared to C12-DX NPs. However, as shown in Figure 3.8B, 

the duration of DX exposure after C18-DX NP administration was much longer than 

C12-DX NPs. C18-DX NPs served as a drug reservoir and released DX in a sustained 
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manner. It has been reported that prolonged time above a threshold concentration is 

ideal for cell cycle-specific drugs.18 Although DX was not detected after C22-DX NPs 

were injected into the blood, it is possible that the hydrolysis kinetics of C22-DX was 

too slow and the released DX was too quickly eliminated to be detected. It is worth 

noting that in the tumor site the overall anti-tumor toxicity comes from three forms: DX 

taken up by the tumors from the systemic circulation, the accumulating DX conjugates 

by their own, and the DX hydrolyzed from the accumulating conjugates in the site. It is 

possible that C22-DX is hydrolyzed to DX slowly after accumulating in the tumors.  

While conjugating fatty acid chains to DX decreased its cell growth inhibitory 

activity in-vitro, the activity in-vivo may actually be enhanced. Many studies have 

reported the reduction of PX or DX activity in-vitro by conjugating fatty acid chains to 

2’-OH.8,9,12 This study is consistent with the previous reports that in general, all three 

DX-lipid conjugates were less potent than DX against DU-145 cells, and increasing the 

lipid chain length decreased the cell growth inhibitory activity in-vitro. It has been 

previously demonstrated that esterification at 2’-OH abolished the microtubule binding 

affinity of the conjugates but not the total toxicity.19 The DX conjugates as ester 

prodrugs are expected to be cleaved to release free DX and exert its antitumor toxicity 

after cleavage. In addition, it is possible that DX conjugates as intact prodrugs are with 

alternative cytotoxic mechanisms other than microtubule binding. These additional 

mechanisms, if any, still remain to be investigated. The chain length dependent 

cytotoxicity reduction may be explained by their different rate/extent of cellular uptake, 
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different cellular compartmental sequester, and/or different rate/extent of 

hydrolysis/degradation. However, many studies have reported that the in-vivo efficacy 

does not necessarily correlate with their in-vitro cytotoxicity. In a previous study,12 a 

series of PX prodrugs with various linkers and lipid anchors were synthesized. Among 

the lipophilic prodrugs of PX, the most potent compound (compound 7) in-vivo only 

showed moderate in-vitro cytotoxicity. Another study showed that the 

2’-(2-bromo)-hexadecanoyl PX with the lowest in-vitro cytotoxicity in its kind was 

most effective in-vivo, showing 100% survival at day 300 for ovcar-3-bearing SCID 

mice.9 The DHA-PX on clinical trial III prepared by linking PX to docosahexaenoic 

acid (DHA) was less toxic than PX in-vitro but cured 10/10 M109 tumor-bearing mice, 

whereas PX cured 0/10.20 In the present studies, the pharmacokinetics of the DX-lipid 

conjugate NPs provided the basis for enhanced in-vivo efficacy. 

In conclusion, the NP developed in these studies have low toxicity, long 

circulation in the blood, and released DX-lipid conjugates in a slow and sustained 

manner in the plasma. Thus, the NPs have the potential to exert superior anti-tumor 

efficacy and less systemic toxicity in-vivo. The results of these studies strongly support 

that the physical/chemical properties of DX conjugates may be fine-tuned to influence 

the affinity and retention of DX in oil-filled lipid NPs which therefore leads to very 

different pharmacokinetic profiles and blood exposure of DX. These studies 

demonstrate that the affinity of a drug for the core NP material may influence the 

retention and release rate of a drug from these NPs. In addition, the new “ex-vivo” 
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release method along with the digestion study provided good correlation and prediction 

of the in-vivo pharmacokinetic profile. These studies and methodologies may allow for 

improved and more potent NP-based formulations.   
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Table 3.1.  Solubility of DX and DX conjugates in Miglyol 808 and entrapment 
efficiency in BTM NPs (N=3) 

 

Drug DX C12-DX C18-DX C22-DX 

Solubility in Miglyol 808 
(mg/mL) 

52.1 ± 1.5 523.0 ± 18.2 550.5 ± 23.5 553.0 ± 21.0 

Entrapment efficiency 
(%) 

0 55.2 ± 2.3 56.3 ± 7.6 59.6 ± 1.6 
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Table 3.2.  Orthogonal design and responses 

 

Run 
Brij 78 

(mg/mL) 
TPGS 

(mg/mL) 
Temperature 

(ºC) 
Entrapment 

(%) 
Size 
(nm) 

1 3.7 1.2 50 36.25 219.7 

2 1.7 0.4 55 66.66 202.4 

3 3.7 0.8 55 44.44 198.2 

4 2.7 0.8 60 54.88 198.4 

5 1.7 0.8 50 65.12 202.9 

6 2.7 0.4 50 51.46 189.3 

7 2.7 1.2 55 52.15 204.0 

8 1.7 1.2 60 46.49 198.0 

9 3.7 0.4 60 45.89 184.0 

 
 Note:   Miglyol 808 concentration was 2.5 mg/mL for all 9 runs. 

C12-DX concentration was 0.5 mg/mL for all 9 runs. 
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Table 3.3.  Compositions and properties of BTM 808 NPs 

 

Note:  a. Temperature was not a significant variable so that average temperature of 
orthogonal design was utilized. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Miglyol 
808 

(mg/mL) 

Brij 78 
(mg/mL) 

TPGS 
(mg/mL) 

DX 
conjugate 
(mg/mL) 

Temperature 
(ºC) 

Particle 
size (nm) 

Zeta 
potential 

(mV) 

2.5 1.7 0.8 0.5 55a 204.3 ± 
8.9 

-0.97 ± 0.08 
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Table 3.4.  A. Pharmacokinetic parameters of DX conjugates and Taxotere in 
mice after i.v. bolus administration 

 

 Taxotere C12-DX NP C18-DX NP C22-DX NP 
t1/2 (hr) 3.63 0.99 6.80 12.4 

AUC0-24 (h*mg/L) 1.51 12.8 509 505 
AUC0-∞ (h*mg/L) 1.55 12.9 555 704 

Vd (L/kg) 5.61 0.22 0.17 0.26 
Kel (1/hr) 0.19 0.70 0.10 0.06 

CL (L/hr/kg) 6.43 0.77 0.02 0.01 
Cmax (mg/L) 7.21 71.6 108 108 
MRT (hr) 0.87 0.29 9.27 18.3 

 

B. Pharmacokinetic parameters of DX after i.v. bolus administration of DX 
conjugates and Taxotere in mice 

 

 Taxotere C12-DX NP C18-DX NP C22-DX NP 
t1/2 (hr) 3.63 1.09 5.42 

--a 

AUC0-24 (h*mg/L) 1.51 4.64 3.51 
AUC0-∞ (h*mg/L) 1.55 4.66 3.66 

Kel (1/hr) 0.19 0.63 0.13 
Cmax (mg/L) 7.21 12.3 0.74 
MRT (hr) 0.87 0.89 6.98 

 

 Note:  a. Below lower limit of quantification.  
 Abbreviations:   AUC, area under the curve; MRT, mean retention time. 
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Figure 3.1.  Synthesis of 2’-docetaxel conjugates. 
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Figure 3.2.  Solubility of DX conjugates in mouse plasma. 
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Figure 3.3.  3D surface plot for the modeling of the effect of Brij 78 and TPGS 
concentrations on % drug entrapment. 
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Figure 3.4.  Release of DX conjugates from BTM NPs in mouse plasma at 37oC. 
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Figure 3.5.  The digestion of free DX conjugates and DX conjugate NPs in fresh 
mouse plasma. (A) The loss of DX conjugates. (B) The formation of DX.  Data 
are shown as mean ± SD (n = 3). 
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Figure 3.6.  Non-specific esterase activity in fresh mouse plasma, commercial 
mouse plasma and human plasma samples. 
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Figure 3.7.  In-vitro cytotoxicity of free DX and DX conjugates and their NPs in 
DU-145 cells (A) after 48 hr incubation. The time-dependent cytotoxicity of (B) 
free conjugates and (C) conjugate NPs with different incubation time (48, 72, and 
96 hr) in DU-145 cells. Blank NPs were dosed at drug equivalent dose. Drug 
equivalent dose of NPs are calculated from the NP compositions. 
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Figure 3.8.  Plasma concentration-time curves for (A) DX, C12-DX, C18-DX 
and C22-DX after administration of Taxotere, C12-DX NPs, C18-DX NPs and 
C22-NPs (10 mg DX/kg), and (B) DX as an active metabolite from C12-DX NPs 
and C18-DX NPs using Taxotere as a reference. The plasma concentrations of DX 
from C22-DX NP were below the lower limit of quantification. Data are shown as 
mean ± SD (n = 3).  
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Chapter 4.   

Oil-filled lipid nanoparticles containing 2’-(2-bromohexadecanoyl)-docetaxel for 
the treatment of breast cancer 

 

1.  Summary 

A docetaxel (DX) lipid conjugate 2’-(2-bromohexadecanoyl)-docetaxel 

(2-Br-C16-DX) was synthesized to enhance the drug loading, entrapment and retention 

in liquid oil-filled lipid nanoparticles (NPs). The conjugate was successfully entrapped 

in the previously optimized NPs with an entrapment efficiency of 56.8% as measured 

by size exclusion chromatography (SEC). In-vitro release study in 100% mouse plasma 

showed an initial 45% burst release with no additional release within 8 hr. The 

conjugate was able to be hydrolyzed to release DX by esterases in-vitro and the 

hydrolysis rate was accelerated by encapsulation in NPs. The conjugate was less potent 

than unmodified DX in DU-145 and 4T1 cells. However, NPs containing the conjugate 

showed significantly higher cytotoxicity compared to its free form especially in 4T1 

cells. In-vivo, the AUC0-∞ value of NP-formulated 2-Br-C16-DX was about 100-fold 

higher than DX in Taxotere. Furthermore, 2-Br-C16-DX NP improved DX AUC 

4.3-fold compared to Taxotere. The high concentration and prolonged exposure of both 
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2-Br-C16-DX and DX from 2-Br-C16-DX NPs in circulation caused a 10-fold and 

1.5-fold higher accumulation of 2-Br-C16-DX and DX, respectively, in tumors 

compared to Taxotere. The 2-Br-C16-DX NPs were well tolerated in mice with a 5-fold 

and 2.5-fold increase in the single-dose and multiple-dose maximum tolerated dose 

(MTD), respectively, over Taxotere. In mice bearing 4T1 xenograft tumors, 

2-Br-C16-DX NPs showed marked anticancer efficacy as well as survival benefit over 

all controls. The results of these studies support that the oil-filled NPs containing 

hydrolyzable lipophilic DX prodrug 2-Br-C16-DX improved the therapeutic index of 

DX and were more efficacious in the treatment of breast cancer. The formulation may 

have broad applications in other tumors and the prodrug approach may be potentially 

applied to other anticancer agents. 

 

2.  Introduction 

Previously, we developed oil-filled BTM 808 NPs by sequential simplex optimization 

to deliver DX. However, despite the desirable formulation properties (e.g., 

monodispersed particle size, apparent drug entrapment efficiency, etc.), DX was found 

to be very quickly released in mouse plasma in-vitro. Further investigation revealed 

that DX was not truly entrapped into the NPs during preparation. To overcome the poor 

retention of DX in the BTM 808 NPs in simple aqueous phase and in biologically 

relevant medium, DX was modified by attaching fatty acid chains with different chain 
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lengths to the 2’-position of DX via an ester bond. The three DX-lipid conjugates 

synthesized in Chapter 3 increased the solubility in Miglyol 808 by 10-fold. 

Consequently, the actual entrapment efficiency determined by SEC increased from zero 

for DX to about 50-60% for the DX-lipid conjugates. The DX-lipid conjugates were 

well retained in the NPs even in 100% plasma. The retention of DX conjugates in the 

long-circulating NPs resulted in significantly reduced elimination, high and prolonged 

in-vivo drug exposure. 

However, in-vitro cytotoxicity studies revealed that these DX conjugates were 

much less potent than the unmodified DX. Similar results have been reported by other 

groups.1 It has been long recognized that the 2’-OH is critical for the microtubule 

binding and cytotoxic effect of DX.2 Hence, the biological activity of these ester 

prodrugs mostly depends on the liberation of active DX. The compromised cytotoxicity 

suggests inefficient release of DX in cell culture. The in-vitro hydrolysis and in-vivo 

pharmacokinetics also revealed sub-optimal hydrolysis kinetics of these conjugates.  

Ali et al. synthesized a series of lipid paclitaxel (PX) prodrugs with or without a 

bromine atom at the 2-position on the fatty acid chain.3 In general, the prodrugs lacking 

bromine were 50- to 250-fold less active than their bromoacyl counterparts indicating 

that the electron-withdrawing group facilitated the cleavage of active PX. The 

bromoacylated PX showed higher anticancer efficacy against OVCAR-3 tumor 

in-vivo.3,4 Their findings suggest that a straightforward modification has the potential 

to favorably change the physicochemical and biological properties of the current DX 
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conjugates. 

The objective of these present studies was to further tune the prodrug hydrolysis 

kinetics while retaining the high drug entrapment and retention in the oil-filled NPs. 

With optimized activation kinetics, the new prodrug containing NPs are expected to 

achieve sustained release of active drug, low systemic toxicity, and enhancement of 

antitumor efficacy in-vivo. 

 

3.  Materials and methods 

3.1.  Materials and Animals 

DX, PX, 2-bromohexadecanoic acid (>99%), 4-(dimethylamino) pyridine (DMAP) and 

N,N’-dicyclohexyl-carboiimide (DCC, 99%) were purchased from Sigma-Aldrich (St. 

Louis, MO). Miglyol 808 was obtained from Sasol (Witten, Germany). Polyoxyl 

20-stearyl ether (Brij 78) was obtained from Uniqema (Wilmington, DE). 

D-alpha-tocopheryl polyethylene glycol succinate (Vitamin E TPGS) was purchased 

from Eastman Chemicals (Kingsport, TN). BALB/c mouse plasma was purchased from 

Innovative Research Inc. (Novi, MI). Sepharose CL-4B was purchased from GE 

Healthcare (Uppsala, Sweden). Hybrid-SPE® cartridge was purchased from 

Sigma-Aldrich Supelco (St. Louis, MO). 

The human prostate cancer cell line DU-145, and murine breast cancer cell line 

4T1 were obtained from American Type Culture Collection (ATCC) and were 
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maintained in RPMI-1640 medium with 10% fetal bovine serum (FBS). Female 

BALB/c mice, 4 to 5 weeks old, were purchased from Charles River (Wilmington, MA) 

and housed in a pathogen-free room. All experiments involving mice were conducted 

according to an approved animal protocol by the University of North Carolina 

Institutional Animal Care and Use Committee.  

 

3.2.  Methods 

3.2.1. General procedure for the synthesis of 2’-(2-bromohexadecanoyl) 

-docetaxel (2-Br-C16-DX)3   

A flame-dried round-bottom flask was charged with (±)-2-bromohexadecanoic acid 

(0.62 g, 1.85 × 10-3 mol, 1.5N) and DCC (0.5 g, 2.47 × 10-3 mol, 2N) in dry CH2Cl2 (200 

mL) under argon. The solution was stirred for 10 min at room temperature. DX (1.0 g, 

1.24 × 10-3 mol, 1N) was added along with a catalytic amount of DMAP (0.15 g, 1.24 × 

10-3 mol, 1N) and the reaction mixture was stirred at room temperature for an extra 5 

min. The reaction was monitored by TLC (CH2Cl2: MeOH 95:5 v/v; Rf = 0.58) for 

completion. The white precipitate of dicyclohexylurea byproduct was filtered through a 

fritted funnel, and the filtrate was evaporated under vacuo. The crude product was 

purified by preparative TLC in CHCl3: MeOH (95:5). The silica gel was removed by 

filtration through a fine fritted funnel and the filtrate was evaporated under vacuo to 

give the desired product as a white powder (0.4 mg, 86%).  1H NMR (400 MHz, 
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CDCl3): δ (ppm) = 0.8 (t, 3H, –CH3(CH2)14), 1.05 (s, 6H, –H16,17), 1.16 (s, 9H, –H7’-9’), 

1.19 (s, 3H, –H19), 1.23 (m, 28H, –(CH2)14CH3), 1.68 (s, 3H, –H18), 1.78 (m, 2H, –H14), 

1.67 (d, 2H, –CH2C1”), 1.87 (s, 3H, –H22), 2.24 (m, 1H, –H3), 2.38 (s, 1H, –H7), 3.86 (d, 

1H, –H4), 4.12 (d, 1H, –H2), 4.2 (t, 1H, –CHBrC1”), 4.26 (t, 2H, –H13), 4.88 (d, 1H, 

–H10), 5.2 (d, 2H, –H20), 5.22 (d, 1H, –H2’), 5.62 (d, 1H, –H3’), 7.22-7.53 (m, 8H, 

–Ar-H26-28 and Ar-H30-35), 8.05 (d, 2H, –Ar-H25,29). 
13C NMR (100 MHz, CD3OD): δ 

(ppm) = 8.9 (–C19), 14.1 (–CH3(CH2)20), 20.9 (–C18), 22.6 (–C22), 23.7 

(–(CH2)19CH2CH3), 27 (–C16,17), 28.1 (–C7’-9’), 29.6 (–(CH2)14C1”), 31.9 (–C6,14), 43.1 

(–C15), 44.5 (–C3), 45 (–CHBr), 46.4 (–C3’),  57.5 (–C8), 71.8 (–C13), 72.1 (–C7), 74.4 

(–C2), 75 (–C10), 75.3 (–C20),  78.9 (–C6’), 79.9 (–C1), 80.9 (–C4), 84.2 (–C5), 126.3 

(–C31,33,35), 128.9 (–C32,34), 129.2 (–C26,28), 130.2 (–C24,25,29), 133.6 (–C27), 135.5 (–C11), 

138.9 (–C12), 154.2 (–C5’), 167 (–C23), 167.3 (–C21), 169 (–C1), 169.7 (–C1”), 211.5  

(–C9). 

 

3.2.2.  Characterization of DX and DX conjugates 

3.2.2.1.  Mass spectrometry 

Electrospray Ionization (ESI) coupled with direct injection was employed to determine 

the m/z of the final synthetic conjugate product by Thermo Scientific TSQ Quantum 

Access with positive ionization. The m/z of the observed molecular ion was 1125, 

which clearly corresponded to the H+ adduct of 2-Br-C16-DX. 
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3.2.2.2.  High performance liquid chromatography (HPLC) 

The 2-Br-C16-DX concentrations were quantified by HPLC using a Finnigan Surveyor 

HPLC system with a Photodiode Array (PDA) detector, autosampler and LC pump plus 

with an Inertsil® ODS-3 column (4 µm, 4.6×150 mm, GL Sciences) at 25°C. 

Chromatographic separation was achieved by gradient elution using mobile phase 

2-propanol, acetonitrile (ACN) and water (5: 55: 40 v/v/v). The flow rate was 1.0 

mL/min and the total run time was 25 min for each 25 µL injection. The wavelength 

was 230 nm. 

The DX concentration was quantified by LC/MS/MS using a Finnigan Surveyor 

Autosampler Plus and Finnigan Surveyor MS Pump Plus. Chromatographic separations 

were achieved using a SunFire™ C18 column (2.1 × 30 mm, 3.5 µm particle size, 

Waters) at 25°C. The mobile phase consisted of 0.1% formic acid in water and 

methanol using gradient separation. The flow rate was 0.5 mL/min and the total run 

time was 8 min for each 25 µL injection. Mass spectrometric analysis was performed 

using a Thermo Scientific TSQ Quantum Access with positive ionization. The capillary 

temperature was set up to 390°C, and the spray voltage was 4000V.  For DX analysis, 

m/z 830.0 → 549.0 was monitored with PX (m/z 876.3 → 308.0) as an internal 

standard. 
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3.2.3.  Preparation and characterization of BTM NPs 

3.2.3.1.  Preparation of BTM NPs containing 2-Br-C16-DX 

NPs containing 2-Br-C16-DX were prepared using a warm oil-in-water (o/w) 

microemulsion precursor method previously developed and later optimized in our 

laboratory.5 Briefly, Miglyol 808 (2.5 mg), Brij 78 (1.7 mg) and Vitamin E TPGS (0.8 

mg) were accurately weighed into glass vials and heated to 60°C. Drugs (0.5-1 mg) 

dissolved in ACN were added and the organic solvent was removed by nitrogen flow. 

One (1) mL of pre-heated 10% lactose in water was added into the mixture of melted oil, 

surfactants and drugs. The mixture was stirred for 20 min at 60°C then cooled to room 

temperature.  

For in-vivo studies, NPs were concentrated and PEGylated. The formulation 

was concentrated 4-13-fold by adding 4-13-fold less 10% lactose continuous phase 

while keeping the other components of the formulation unchanged. The NPs were 

PEGylated by adding 8% Brij 700 during the preparation wherein 8% was the w/w ratio 

of Brij 700 to Miglyol 808. 

 

3.2.3.2.  Characterization of BTM NPs containing 2-Br-C16-DX 

3.2.3.2.1.  Particle size and zeta potential 

Particle size and size distribution of NPs were determined using an N5 Submicron 

Particle Size Analyzer (Beckman). Five (5) µL of NPs was diluted with 1 mL of water 

to reach the intensity required by the instrument. Particle size was determined at 90° 
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light scattering at 25°C. The zeta potential of NPs was determined using the Zetasizer 

Nano Z (Malvern Instruments, Southborough, MA).  

 

3.2.3.2.2.  Drug entrapment efficiency 

Drug entrapment efficiency was determined by SEC. 2-Br-C16-DX NPs were 

separated with the free drug by a Sepharose CL-4B column (15 cm). NPs were eluted 

using PBS in fractions 5-8 (1 mL/fraction, confirmed by dynamic light scattering 

intensity). Each fraction was evaporated to dryness in vacuo, resuspended in 1 mL ACN 

and analyzed by HPLC to determine the concentration of 2-Br-C16-DX in each fraction. 

The % drug entrapment efficiency was defined as 100% × the ratio of the weight of 

drug detected in fractions 5-8 to the total drug weight detected.  

 

3.2.3.2.3.  Physicochemical stability of 2-Br-C16-DX NPs 

The 2-Br-C16-DX NP suspension was stored at 4°C. At designated time points, the 

particle size was measured after the NP suspension being allowed to equilibrate to room 

temperature. The 2-Br-C16-DX concentration was determined by HPLC. 

 

3.2.4.  In-vitro drug release in mouse plasma 

In-vitro release studies were performed in 100% BALB/c mouse plasma. Briefly, 100 

µL of purified 2-Br-C16-DX NPs were spiked into 2 mL of mouse plasma. The release 
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mixture was incubated at 37ºC in a water bath shaker. At designated time points from 0 

hr to 8 hr, two aliquots of release mixture were removed. One aliquot (100 µL) was used 

to determine the total drug concentration by solid phase extraction (SPE) using 

Hybrid-SPE precipitate method. Briefly, one volume of release mixture was mixed with 

three volumes of 2% formic acid in ACN. Following vortex and centrifugation, the 

supernatant was applied to a Hybrid-SPE cartridge. The eluate was collected for HPLC 

analysis. Another aliquot (100 µL) was used to determine the drug remained in the NPs 

using the method described above. The % DX released at any time point was calculated 

as 100% × [(Total drug detected – drug remaining in the NPs)/Total drug detected].     

 

3.2.5.  2-Br-C16-DX digestion  

3.2.5.1.  2-Br-C16-DX digestion in fresh mouse plasma 

The esterase digestion study was performed in fresh BALB/c mouse plasma. The 

2-Br-C16-DX DMSO stock solution (5 mg/mL) or 2-Br-C16-DX NPs (0.5 mg/mL) 

was spiked into the plasma to make a final concentration of 10 µg/mL. As controls, 

2-Br-C16-DX DMSO solution mixed with blank NPs or Brij 78 (1.7 mg/mL) and TPGS 

(0.8 mg/mL), was as well spiked into the plasma to make a final concentration of 10 

µg/mL. The mixture was incubated at 37°C in a water bath shaker. At designated time 

points, 100 µL of digestion mixture was removed. The concentration of 2-Br-C16-DX 

was determined by Hybrid-SPE precipitate method as described above followed by 
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HPLC analysis. The % 2-Br-C16-DX remaining at any time point was calculated as 100% 

× the ratio of remaining drug amount to the total drug spiked into this volume of plasma. 

The concentration of DX in the same sample was determined by LC/MS. The % 

2-Br-C16-DX hydrolyzed to DX at any time point was calculated as 100% × [(DX 

amount detected × 1124 / 807)/ the total drug spiked into this volume of plasma]. 

 

3.2.5.2.  2-Br-C16-DX digestion in 4T1 tumor homogenate 

The 4T1 solid tumor was collected from 4T1 xenografted mice after euthanasia. Three 

hundred (300) µL of PBS was added to every 100 mg of tumor tissues. Tumors were 

homogenized using Omni Bead Ruptor 24 homogenizer with 2.8 mm zirconium oxide 

beads (Omni International, Kennesaw, GA). The 2-Br-C16-DX DMSO stock solution 

(5 mg/mL) or 2-Br-C16-DX NPs (0.5 mg/mL) was spiked into the homogenate to make 

a final concentration of 10 µg/mL. The mixture was incubated at 37°C in a water bath 

shaker. At designated time points, 100 µL of homogenate was removed. The 

concentration of 2-Br-C16-DX was determined by Hybrid-SPE precipitate method as 

described above followed by HPLC analysis. The % 2-Br-C16-DX remaining at any 

time point was calculated as 100% × the ratio of remaining drug amount to the total 

drug spiked into this volume of tumor homogenate. The concentration of DX in the 

same sample was determined by LC/MS. The % 2-Br-C16-DX hydrolyzed to DX at 

any time point was calculated as 100% × [(DX amount detected × 1124 / 807)/ the total 

drug spiked into this volume of tumor homogenate]. 
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3.2.6.  Evaluation of in-vitro cytotoxicity 

The MTT assay was utilized to assess cytotoxicity of free 2-Br-C16-DX and the 

2-Br-C16-DX NPs. Serial dilutions of free drugs or drug containing NPs were added to 

the DU-145 cells or 4T1 cells and incubated for 48 hr. The cells were then incubated 

with MTT solution for 4 hr and the formazan dyes were solubilized by DMSO. The 

absorbance was measured using the Synergy 2 Multi-Detection Microplate Reader at 

570 nm, and the concentration of drug that inhibited cell survival by 50% (IC50) was 

determined from cell survival plots. 

 

3.2.7.  In-vivo pharmacokinetics and biodistribution of 2-Br-C16-DX NPs 

Female BALB/c mice were injected s.c. in the right interscapular region 1 × 10-6 4T1 

cells suspended in 100 µL of FBS-free RPMI-1640 medium. When the tumor volume 

reached 400 – 500 mm3, mice were randomly divided into two groups. The mice 

(n=3/time point) were injected via tail vein with Taxotere or 2-Br-C16-DX NPs, all at a 

DX dose of 10 mg/kg. At designated time points from 3 min to 96 hr, the mice were 

given an overdose of ketamine (100 mg/kg) and Domitor (0.5 mg/kg) for deep 

anesthesia prior to cardiac puncture to collect blood and a cervical dislocation was then 

performed to euthanize the mice. After euthanasia, organs (heart, liver, spleen, lung and 
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kidney) and tumor were collected and flash frozen in liquid nitrogen. For plasma 

separation, the blood collected in heparin-coated tubes was centrifuged at 12,300 rpm 

for 15 min. The obtained plasma was processed with Hybrid-SPE precipitate method as 

described above. For organs and tumor, 300 µL of 2% formic acid in ACN was added to 

every 100 mg of tissues. Tissues were homogenized using Omni Bead Ruptor 24 

homogenizer with 2.8 mm zirconium oxide beads. Following vortex and centrifugation, 

the supernatant was applied to a Hybrid-SPE cartridge. The eluate was collected for 

analysis. The concentrations of 2-Br-C16-DX in plasma and tissue extract were 

determined by HPLC, and the DX concentrations were quantified by LC/MS. 

Pharmacokinetic analysis and modeling was performed by WinNonlin (version 5.2.1; 

Pharsight Corp, Mountain View, CA).  

 

3.2.8.  Evaluation of maximum tolerated dose (MTD) 

3.2.8.1.  Single-dose MTD 

Female BALB/c mice were randomly divided into four groups. The mice (n = 8) were 

injected via tail vein with test samples (100 mg conjugate/kg, 130 mg conjugate/kg and 

150 mg conjugate/kg 2-Br-C16-DX NPs). The mice in the control group were not 

treated. All mice were monitored after injection. Body weight and body conditions 

were monitored daily for a week. 
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3.2.8.2.  Multiple-dose MTD 

Female BALB/c mice were randomly divided into five groups. The mice (n = 5) were 

injected via tail vein with test samples Q7d × 3 (40 mg conjugate/kg, 70 mg 

conjugate/kg, 100 mg conjugate/kg and 130 mg conjugate/kg 2-Br-C16-DX NPs). The 

mice in the control group were not treated. All mice were monitored after injection. 

Body weight and body conditions were monitored daily for three weeks. 

 

3.2.9.  In-vivo antitumor efficacy  

Female BALB/c mice were injected s.c. in the right interscapular region 1 × 10-6 4T1 

cells suspended in 100 µL of FBS-free RPMI-1640 medium. When the tumor volume 

reached 70 – 100 mm3, mice were randomly divided into multiple groups. For the first 

efficacy study, the mice (n = 8) were injected via tail vein with test samples twice per 

week (10 mg conjugate/kg 2-Br-C16-DX NPs, 10 mg DX/kg Taxotere, and 10 mg 

conjugate/kg 2-Br-C16-DX in Taxotere vehicle). For the second efficacy study, the 

mice (n = 9) were injected via tail vein with test samples Q5d × 2 (130 mg conjugate/kg 

2-Br-C16-DX NPs, 130 mg conjugate/kg equivalent blank NPs, 20 mg DX/kg Taxotere, 

and 10 mg conjugate/kg 2-Br-C16-DX in Taxotere vehicle). For the third efficacy study, 

the mice (n = 9) were injected via tail vein with test samples Q7d × 2 (70 mg 

conjugate/kg 2-Br-C16-DX NPs, 70 mg conjugate/kg equivalent blank NPs, 20 mg 

DX/kg Taxotere, and 10 mg conjugate/kg 2-Br-C16-DX in Taxotere vehicle). The mice 
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in the naive group were not treated. Tumor volume was measured by caliper three times 

per week. Tumor volume was calculated as length × (width)2/2. The body weight and 

body conditions were monitored as well. Tumor growth and mouse mortality were 

recorded until day 23. Percentage survival of each group was calculated and plotted for 

the third efficacy study. 

 

3.2.10.  Statistical analysis 

Statistical comparisons were performed using analysis of variances (ANOVA) 

(©1992-2007 GraphPad Prism Software, Inc.). Results were considered significant at 

95% confidence interval (p < 0.05).  

 

4.  Results 

4.1.  Synthesis and characterization of 2-Br-C16-DX  

DX were modified to a more lipophilic prodrug 2-Br-C16-DX by a one-step 

esterification reaction with a 2-bromohexadecanoyl chain attached to the 2’-position of 

DX (Figure 4.1). The 2’-OH is the most reactive hydroxyl group among the multiple 

hydroxyl groups in DX molecule, followed by 7-OH and 10-OH.1 The presence of 

bromine on the acyl chain made the carboxylic acid more reactive than its counterpart 

lack of bromine so that in addition to 2’-substitution, byproducts with 7- and 
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10-substitution were also formed. Pure 2’-monosubstituted DX conjugate was obtained 

after purification by preparative TLC and confirmed by TLC, NMR and mass 

spectrometry.  

 

4.2.  Preparation and characterization of 2-Br-C16-DX BTM NPs 

The previously optimized BTM NPs were able to entrap 2-Br-C16-DX with an 

entrapment efficiency of 56.8 ± 2.8%. The 2-Br-C16-DX NPs had a mean particle size 

of 210 ± 2.15 nm with a zeta potential of -5.52 ± 0.97 mV (Table 4.1). The 

2-Br-C16-DX NPs were physically and chemically stable at 4°C upon long-term 

storage. The particle size slightly increased from 210 nm to 230 nm and 2-Br-C16-DX 

concentration in the NP suspension was unchanged for at least 5 months (Figure 4.2). 

 

4.3.  In-vitro drug release in mouse plasma 

The release of 2-Br-C16-DX from NPs in 100% mouse plasma was studied using the 

“ex-vivo” method developed in previous studies. Similar to C18-DX and C22-DX lack 

of bromine, an initial 45% burst release was observed upon spiking into the mouse 

plasma with no additional release within 8 hr (Figure 4.3).  
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4.4.  2-Br-C16-DX digestion 

In fresh mouse plasma, 10% of 2-Br-C16-DX was hydrolyzed to DX in 48 hr when it 

was spiked into plasma in DMSO solution (Figure 4.4). When entrapped in NPs, 45% 

of 2-Br-C16-DX was hydrolyzed to DX and 35% of 2-Br-C16-DX remained intact in 

48 hr. The NP-encapsulation induced digestion was consistent with the other three DX 

conjugates lack of bromine. The digestion rate and extent of 2-Br-C16-DX was 

significantly higher than C18-DX and C22-DX as expected especially when being 

entrapped in NPs. The mass balance did not reach 100% for NP-encapsulated 

2-Br-C16-DX after 48 hr incubation suggesting the presence of alternative transfer 

pathways. To further investigate the mechanism of NP-encapsulation induced digestion, 

free 2-Br-C16-DX was also incubated with blank BTM NPs or the same surfactant 

components in BTM NPs in fresh mouse plasma. The digestion profiles of these two 

controls were more comparable to that of free 2-Br-C16-DX rather than 2-Br-C16-DX 

NP, indicating that the drug has to be encapsulated in the NPs to be more rapidly 

hydrolyzed. 

In 4T1 tumor homogenate, only 6% of NP-encapsulated 2-Br-C16-DX and 2% 

of free 2-Br-C16-DX were hydrolyzed to DX within 48 hr (Figure 4.5). However, the 

loss of conjugate in NPs in 48 hr was 100%, whereas 20% loss of parent drug was 

observed with free 2-Br-C16-DX. The recovery of total drug mass was about 82% and 

6% for free conjugate and NP-encapsulated conjugate, respectively.  
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4.5.  In-vitro cytotoxicity 

The in-vitro cytotoxicity was evaluated in two cell lines human prostate cancer cell 

DU-145 and murine breast cancer cell 4T1. In DU-145 cells, free 2-Br-C16-DX was 

16.4-fold less active than DX (Figure 4.6A). Compared to the three DX conjugates 

without bromine, the free 2-Br-C16-DX was more toxic than any of those conjugates. 

C12-DX and C18-DX NPs showed comparable IC50 values with their free forms, and 

C22-DX NPs showed only vehicle-related toxicity for 48 hr incubation. In contrast, the 

cytotoxicity of 2-Br-C16-DX NPs increased 6.5-fold compared to free 2-Br-C16-DX, 

which was still 2.5-fold lower than DX. 

In 4T1 cells, free 2-Br-C16-DX was 2.8-fold less potent than DX (Figure 4.6B). 

When entrapped in BTM NPs, the cytotoxicity increased 12.7-fold compared to free 

2-Br-C16-DX. More impressively, the IC50 value of 2-Br-C16-DX NP was 4.5-fold 

lower than that of free DX. It is the first time in these studies that a DX conjugate in any 

form had higher cytotoxicity than unmodified DX. The blank NPs did not show 

significant cytotoxicity in either cell lines (IC50 was 1842 ± 287 nM in DU-145 and 

2955 ± 435 nM in 4T1 in drug equivalent dose, respectively). 

 

4.6.  In-vivo pharmacokinetics and biodistribution of 2-Br-C16-DX NPs 

The plasma concentration-time curves in mice receiving i.v. bolus injections of 

Taxotere and 2-Br-C16-DX NPs at a dose of 10 mg DX/kg are shown in Figure 4.7A. 
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Pharmacokinetic parameters obtained using a noncompartmental model of analysis are 

listed in Table 4.2. The AUC0-∞ value of NP-formulated 2-Br-C16-DX was about 

100-fold higher than that of Taxotere. The DX concentration in plasma was below the 

lower limit of quantification after 8 hr, whereas 2-Br-C16-DX could be detected until 

96 hr. The terminal half-life of NP-formulated 2-Br-C16-DX was 8.7-fold higher 

compared to that of Taxotere. The plasma concentrations of DX as an active metabolite 

hydrolyzed from 2-Br-C16-DX were determined and shown in Figure 4.7B. DX 

concentrations of Taxotere are also shown as a reference for comparison. The 

pharmacokinetic parameters of DX from 2-Br-C16-DX NP are also shown in Table 4.2. 

The DX from 2-Br-C16-DX NP was detectable until 24 hr and below the lower limit of 

quantification after that. 2-Br-C16-DX NP improved DX AUC 4.3-fold compared to 

Taxotere. The terminal half-life of DX from 2-Br-C16-DX NP was comparable with 

that of Taxotere but its MRT was 6.4-fold higher than that of Taxotere.  

The biodistribution of 2-Br-C16-DX and DX in main organs and tumors after i.v. 

administration of 2-Br-C16-DX NP and Taxotere is presented in Figure 4.8. The 

concentrations of DX from Taxotere in all organs rapidly decreased with time except 

for in tumors (Figure 4.8B). The lack of time-dependent elimination in the tumor likely 

reflects the abnormal tumor vasculature and dysfunctional lymphatic drainage. The 

overall concentrations of 2-Br-C16-DX were significantly higher than DX in all organs 

and tumors. A significant accumulation of 2-Br-C16-DX in liver and spleen was 

observed after the administration of 2-Br-C16-DX NP (Figure 4.8A). The 
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2-Br-C16-DX concentration in liver and spleen increased in the first several hours 

indicating the slow uptake of NPs by RES. The tumor accumulation of 2-Br-C16-DX 

and DX was shown in Figure 4.9. The AUC0-96 of 2-Br-C16-DX was 10-fold higher 

compared to Taxotere in xenografted 4T1 solid tumors (Table 4.3). The DX from 

2-Br-C16-DX NP in the tumor generally increased with time and the AUC0-96 was 

1.5-fold higher than that of Taxotere. The AUCplasma and AUCtumor of Taxotere obtained 

in these studies are comparable with other reports in the literature.6,7 

 

4.7.  MTD of 2-Br-C16-DX NPs 

The tolerability of 2-Br-C16-DX NP was assessed by body weight change and body 

conditioning evaluation. The MTD was defined as the maximum dose that causes only 

minor signs of toxicity (e.g., weight loss, poor coat condition) and no mortality. After 

single i.v. bolus injection of 150 mg conjugate/kg 2-Br-C16-DX NP, 7/8 mice died 5 

min post injection and 1/8 died after 24 hr indicating acute toxicity at this dose, likely 

hematologic toxicity. The body weight of the control group and groups receiving single 

injection of 100 mg conjugate/kg or 130 mg conjugate/kg 2-Br-C16-DX NP is shown 

in Figure 4.10A. Mice receiving 100 mg conjugate/kg dose gained about 2% body 

weight while mice receiving 130 mg conjugate/kg dose kept their body weight almost 

unchanged, suggesting that these doses were well tolerated. As a result, the single-dose 

MTD was identified as 130-150 mg conjugate/kg (equivalent 93-108 mg DX/kg). The 
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MTD of Taxotere has been reported in the literatures as 15-33 mg/kg.7,8 The MTD of 

2-Br-C16-DX NP was about 5-fold higher than that of Taxotere.  

Multiple-dose MTD was also evaluated because in preclinical efficacy studies 

and in clinical practice, repeated treatments are required. The multiple-dose MTD was 

assessed by treating BALB/c mice with 2-Br-C16-DX NP at a dose ranging from 40 to 

130 mg conjugate/kg, once per week for three weeks. Figure 4.10B demonstrates the 

body weight change of all five groups in three weeks. After the second dose at day 7, 

mice in 100 mg conjugate/kg group and 130 mg conjugate/kg group continuously lost 

weight. Until day 18, 2/5 mice in 100 mg conjugate/kg group and 3/5 mice in 130 mg 

conjugate/kg group were observed over 20% body weight loss. In contrast, the mice 

receiving 70 mg conjugate/kg 2-Br-C16-DX NP kept their body weight unchanged 

during the experimental time frame, therefore the multiple-dose MTD was identified as 

70 mg conjugate/kg (equivalent 50 mg DX/kg) for at least three treatments. The 

multiple-dose MTD was about 2.5-fold higher compared to Taxotere indicating that 

2-Br-C16-DX NP can be administered at significantly higher doses. 

 

4.8.  In-vivo antitumor efficacy 

The antitumor efficacy of 2-Br-C16-DX NP was evaluated in a 4T1 breast cancer 

xenograft mouse model. In the first study, mice were treated with a low dose of 

2-Br-C16-DX NP and Taxotere with high dose frequency (10 mg DX or conjugate/kg, 
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twice a week). The greatest tumor growth inhibition was observed with 2-Br-C16-DX 

NP treatment group (Figure 4.11). Taxotere and free 2-Br-C16-DX also showed some 

antitumor effect as compared to naive group. A statistically significant difference of 

2-Br-C16-DX NP with all other treatments was observed at day 13 and 15, with 

post-hoc least significant difference test. 

In the second efficacy study, a single-dose MTD of 2-Br-C16-DX NP (130 mg 

conjugate/kg) and Taxotere (20 mg DX/kg) was administered. Due to the solubility 

limitation, the maximum formulatable dose of 2-Br-C16-DX in Taxotere vehicle (10 

mg conjugate/kg) was adopted. Mice were treated with these doses every 5 days. 

Tumor volume increased with control, blank BTM NPs, free 2-Br-C16-DX and 

Taxotere administration (Figure 4.12). The tumor growth in the 2-Br-C16-DX NP 

treatment group was almost completely inhibited. Taxotere at this high dose also 

significantly inhibited tumor growth. A statistically significant difference of 

2-Br-C16-DX NP with all other treatments was observed at as early as day 5 and 

continued to the end of the study, with post-hoc Tukey’s test. However, the aggressive 

dose regimen caused evident toxicity in 2-Br-C16-DX NP treatment group. At day 12, a 

20% of body weight loss was observed in 3/9 mice in 2-Br-C16-DX NP treatment group 

after only two doses. It should be noted that mice in Taxotere group also lost some body 

weight but not as significant as 2-Br-C16-DX NP group. The results of the second 

efficacy study demonstrated that dose adjustment for multiple treatments was 

warranted. 
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In the third efficacy study, multiple-dose MTD of 2-Br-C16-DX NP was 

administered and dose frequency was adjusted to Q7d. Tumor volume increased with 

control, blank BTM NPs, free 2-Br-C16-DX and Taxotere administration (Figure 4.13). 

The most significant tumor growth inhibition was observed with 2-Br-C16-DX NP 

treatment group. Antitumor effect of Taxotere was comparable with the second efficacy 

study. In the third efficacy study, a statistically significant difference of 2-Br-C16-DX 

NP with all other treatments was observed starting from day 7 and continued to the end 

of the study, with post-hoc Tukey’s test. Figure 4.14 shows the Kaplan-Meier survival 

curves of mice until day 23. The 50% survival time of naive, blank BTM NP, free 

2-Br-C16-DX and Taxotere groups was between 14 days and 19 days. All mice in naive, 

blank BTM NP, free 2-Br-C16-DX and Taxotere groups died within 21 days. In 

2-Br-C16-DX NP treatment group, 100% survival through day 23 was observed. 

 

5.  Discussion 

In the present studies, a lipophilic DX conjugate 2-Br-C16-DX was synthesized and 

characterized. The new conjugate was well entrapped and retained in the oil-filled NPs. 

The digestion kinetics of 2-Br-C16-DX was improved compared to the three DX-lipid 

conjugates which lacked bromine. The retention of the conjugate in the long-circulating 

NPs, along with its very different digestion kinetics, resulted in a significantly 

improved pharmacokinetic profile, blood exposure of DX and tumor accumulation, 
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which in turn led to superior antitumor efficacy. 

In the previous chapter, three DX-lipid conjugates were synthesized to 

overcome the poor retention of DX in the BTM 808 NPs in aqueous phase and in 

biologically relevant medium. The >10-fold increase in the solubility of DX conjugates 

in Miglyol 808 compared to DX allowed for a significant increase in drug loading, 

entrapment and retention in plasma. However, as prodrugs, their digestion kinetics was 

not optimal. The hydrolysis of C12-DX was too rapid whereas the hydrolysis rate and 

extent of C18-DX and C22-DX were too low in mouse plasma bearing high esterase 

activity. To further optimize the hydrolysis kinetics while retain the good drug 

entrapment and retention, the DX conjugate was modified by choosing a lipid with 

chain length between 12 and 18, and with a bromine at the 2-position of the lipid chain. 

The new DX conjugate 2-Br-C16-DX was successfully encapsulated in the BTM NPs 

with comparable entrapment efficiency and very similar release profile in mouse 

plasma with the other DX-lipid conjugates. The ester bond is more susceptible to 

hydrolysis with an electron-withdrawing group at the 2-position. As expected, the 

hydrolysis profile of 2-Br-C16-DX fell in between C12-DX and C18-DX. In contrast to 

C12-DX, 60% of which was rapidly hydrolyzed to DX in 4 hr, or C18-DX, only 14% of 

which was hydrolyzed to DX in 48 hr, 2-Br-C16-DX was slowly hydrolyzed to DX to 

an extent of 45% in 48 hr. The slower but higher extent of hydrolysis is expected to 

benefit the sustained release of DX in-vivo and further improve the DX blood exposure.  

Despite of the different digestion kinetics, a NP-encapsulation induced 
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digestion was also observed for 2-Br-C16-DX in-vitro. A hypothesis was proposed in 

the previous chapter to explain the phenomenon. It is speculated that the amphiphilic 

DX conjugate molecules locate on the surface of the oil-filled NPs with relatively 

hydrophilic head orienting toward the aqueous phase and the lipid tail anchoring in the 

oil core. The huge specific surface area of NPs makes DX conjugate readily accessible 

to enzymes including esterases in the aqueous phase to transfer DX conjugate to DX 

and others. On the contrary, free DX conjugate molecules, once spiked into plasma, 

tightly bind to the plasma proteins (e.g., albumin) leading to the shield of cleavage site. 

To rule out the possibility that some components in the BTM NPs synergistically 

accelerated the hydrolysis of DX conjugate, in the present studies, two control 

experiments were conducted. The blank BTM NPs or the same surfactant components 

in BTM NPs co-incubation with free 2-Br-C16-DX did not accelerate the hydrolysis of 

2-Br-C16-DX indicating that the more rapid hydrolysis of NP-encapsulated 

2-Br-C16-DX was not caused by the catalysis of NP ingredient(s). Furthermore, the 

results also rule out the possibility that the NP-encapsulation induced digestion was 

caused by a simple solubilization effect, since the surfactants with the same 

concentration in the NPs were also capable of solubilizing the conjugate. However, 

these surfactants also did not accelerate the digestion. These results further support the 

hypothesis described above. 

The cytotoxicity of 2-Br-C16-DX was higher compared to all three DX-lipid 

conjugates without bromine in DU-145 cells after 48 hr incubation. The higher 
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cytotoxicity may be partly attributed to its sustained but high extent of hydrolysis to DX. 

It remains possible that intact 2-Br-C16-DX possesses cell growth inhibition activity by 

its own right. The cytotoxicity of 2-Br-C16-DX NP was 6.5-fold and 12.7-fold higher 

compared to free 2-Br-C16-DX in DU-145 and 4T1 cells, respectively. This effect 

could be explained by NP-encapsulation induced digestion of 2-Br-C16-DX in the 

medium or intracellularly, but there are other possibilities as well. The higher 

cytotoxicity of 2-Br-C16-DX NP may also be explained by increased cellular uptake 

and/or different cellular compartmental sequester facilitated by NP. These factors may 

also contribute to the higher cytotoxicity of 2-Br-C16-DX NP in the highly aggressive 

breast cancer cell 4T1 compared to unmodified free DX. The low sensitivity of 4T1 

cells to DX is probably due to their extremely rapid proliferation as well as other 

intrinsic detoxification mechanisms (e.g., degradation of DX). Hence, the uptake of 

high drug payload NPs by endocytosis followed by sustained release of DX may play 

essential roles in the improved cytotoxicity of 2-Br-C16-DX NP in 4T1 cells. 

In-vivo, NP-formulated 2-Br-C16-DX achieved 100-fold higher AUC 

compared to Taxotere. The remarkably high AUC, long terminal half-life and long 

MRT were attributed to the stable anchoring of 2-Br-C16-DX in the long-circulating 

NPs as predicted by the in-vitro release study. The elimination routes of 2-Br-C16-DX 

include: 1) uptake of drug containing NPs by RES, 2) release of conjugate followed by 

elimination as free drug, and 3) hydrolysis of the conjugate to DX. All NP-formulated 

conjugates shared the first elimination route while NP-formulated 2-Br-C16-DX also 
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had similar release profile with NP-formulated C18-DX and C22-DX. The significantly 

higher hydrolysis kinetics differentiated NP-formulated 2-Br-C16-DX from the other 

two conjugates. As a result, the pharmacokinetic profile of NP-formulated 

2-Br-C16-DX fell in between NP-formulated C12-DX and C18-DX, which was 

consistent with their trend of the in-vitro hydrolysis rates. Due to the sustained and high 

extent of hydrolysis, the AUC of DX in the plasma after the administration of 

2-Br-C16-DX NPs was not only over 4-fold higher than that of Taxotere, but also 

significantly higher than the other three conjugates. The 2-Br-C16-DX NPs served as a 

drug reservoir and released DX in a sustained manner as shown in Figure 4.7B. The 

high concentration and prolonged exposure of both 2-Br-C16-DX and DX from 

2-Br-C16-DX NPs in the plasma were beneficial to their passive tumor accumulation 

via the EPR effect. The AUCtumor of 2-Br-C16-DX was 10-fold greater than that of 

Taxotere. The AUCtumor of DX from 2-Br-C16-DX NP was 1.5-fold greater than that of 

Taxotere. However, the overall ratio of AUCtumor of DX from 2-Br-C16-DX NP to that 

of 2-Br-C16-DX was low in 96 hr. The DX in the tumor was from two potential routes: 

direct uptake of DX from the systemic circulation and cleavage from the 2-Br-C16-DX 

accumulated in the tumors. The clear ascending trend of DX with time in the tumor 

suggests that the in-situ hydrolysis dominated the DX tumor concentration. The low 

rate of hydrolysis in the tumor in-vivo is consistent with its in-vitro tumor homogenate 

hydrolysis, suggesting low esterase activity in 4T1 tumor. The non-specific esterase 

activity in various human malignant tumors has been studied by histochemical analysis. 
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It has been previously reported that the esterase activity in breast tumors is generally 

low.9 In contrast, esterase activity is highly elevated in some tumor types compared to 

their normal tissue of origin such as colon and rectum adenocarcinoma, and thyroid 

tumors. It is likely that these tumor types with high esterase activity would serve as 

better models for the ester prodrugs that mostly depend on the enzymatic conversion to 

their active forms to exert antitumor effects. The NP-formulated 2-Br-C16-DX showed 

a marked accumulation in liver and spleen and the accumulation was increasing during 

the first several hours of the study. It clearly indicated a slow uptake of drug containing 

NPs by the RES. Although PEGylation reduces RES clearance, a great accumulation in 

RES-related organs is unfortunately still a typical distribution pattern for most of the 

NPs.10,11  

Murine breast cancer 4T1 is a highly aggressive and metastatic tumor model. 

They can spontaneously metastasize to the lung, liver, lymph nodes and brain while the 

primary tumor grows in-situ after injected s.c. into BALB/c mice. The tumor growth 

and metastatic spread of 4T1 cells in BALB/c mice very closely mimic human breast 

cancer.12,13 The in-vivo efficacy study in mice bearing breast cancer 4T1 xenografts 

using low dose (10 mg DX or conjugate/kg) demonstrated a statistically significant 

tumor growth inhibition effect by 2-Br-C16-DX NP compared to the standard-of-care 

therapy, which was consistent with their superior plasma pharmacokinetics and tumor 

distribution. However, given the high aggressiveness of 4T1 tumor model, it is not 

surprising that the low dose regimen did not achieve optimal antitumor efficacy. Since 
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2-Br-C16-DX NP was much better tolerated than Taxotere as indicated by the MTD 

studies, higher doses can be given expecting to achieve maximum tumor inhibition. In 

the second efficacy study, the single-dose MTD of 2-Br-C16-DX NP almost completely 

inhibited the tumor growth. However, the single-dose MTD with a relatively high 

dosing frequency caused fatal toxicity in mice at the same time. The acceptable body 

condition scoring values and body weight after treatment with the blank NPs suggested 

that the toxicity was not caused by the delivery vehicle but an accumulative effect of 

2-Br-C16-DX itself (data not shown). It is speculated that most of the systemic side 

effects are likely attributed to the DX released in the circulation due to the high esterase 

activity in mouse plasma. However, since human plasma esterase activity is much 

lower than mouse as shown in Chapter 3 and demonstrated by others,14,15 it can be 

anticipated that in humans or in esterase-deficient mice, 2-Br-C16-DX NP would be 

better tolerated than in BALB/c mice. DX as a potent cytotoxic agent, once released in 

the circulation, causes inevitable toxicity to normal cells especially rapidly proliferating 

cells. Therefore, a fine balance between tolerable adverse effects and as high as possible 

efficacy is critical when choosing a therapeutic dose. With the objective to better 

balance the toxicity and efficacy, a third efficacy study was performed. Although the 

tumor inhibition effect was not as outstanding as in the second study, the body 

conditions of NP-treatment group were well maintained suggesting that 70 mg 

conjugate/kg is an optimal dose for the repeated treatment of 2-Br-C16-DX NP. The 

tumor growth was significantly suppressed by only two doses of 2-Br-C16-DX NP and 
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the suppression effect continued to at least day 23. The long-lasting antitumor effect of 

2-Br-C16-DX NP reflected its prolonged exposure in the circulation as well as in 

tumors. In contrast, in Taxotere treatment group, after the last treatment at day 7, tumor 

growth quickly resumed. The rapid tumor growth after the termination of the 

treatment caused 100% mortality in 21 days despite its antitumor efficacy during the 

treatment. The short antitumor effect of Taxotere was consistent with its short half-life 

in-vivo. 

In conclusion, the 2-Br-C16-DX NP developed in these studies maintained the 

high drug entrapment and long drug retention in the NPs while improving the 

hydrolysis kinetics of the conjugate in-vitro. The 2-Br-C16-DX NP developed in these 

studies had long circulation in the blood, high accumulation in the tumor and low 

toxicity, which therefore led to superior antitumor efficacy and less systemic toxicity 

in-vivo. Collectively, these studies demonstrate that the oil-filled lipid NPs containing a 

DX-lipid conjugate with fine-tuned lipophilicity and activation kinetics successfully 

improved the therapeutic index of DX. The encouraging results of these studies suggest 

that the novel formulation holds great promise for further clinic development. 

 

 

 

 

 



204 

 

 

 

Table 4.1.  Compositions and properties of 2-Br-C16-DX NPs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Miglyol 
808 

(mg/mL) 

Brij 78 
(mg/mL) 

TPGS 
(mg/mL) 

2-Br-C16-DX  
(mg/mL) 

Temperature 
(ºC) 

Particle 
size 
(nm) 

Zeta 
potential 

(mV) 

% 
Entrapment 

efficiency 

2.5 1.7 0.8 0.5 60 
215.6 ± 

2.15 
-5.52 ± 

0.97 
56.8 ± 2.8 
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Table 4.2.  Pharmacokinetic parameters of 2-Br-C16-DX and DX in mice after i.v. 
bolus administration of 2-Br-C16-DX NP and Taxotere  

 

 
Taxotere 

NP-formulated 
2-Br-C16-DX 

DX from 
2-Br-C16-DX NP 

t1/2 (hr) 4.04 35.3 5.62 

AUC0-96 (h*mg/L) 2.36 230 10.1 

AUC0-∞ (h*mg/L) 2.47 265 10.6 

Vd (L/kg) 4.48 0.55 -- 

Kel (1/hr) 0.17 0.02 0.12 

CL (L/hr/kg) 4.05 0.04 -- 

Cmax (mg/L) 10.5 192 2.59 

MRT (hr) 1.10 15.2 7.06 
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Table 4.3.  Tumor accumulation of 2-Br-C16-DX and DX in mice after i.v. bolus 
administration of 2-Br-C16-DX NP and Taxotere 

 

 Taxotere 
NP-formulated 
2-Br-C16-DX 

DX from 
2-Br-C16-DX NP 

AUC0-96 (µg/g*h) 7.10 70.6 10.4 
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Figure 4.1.  Synthesis of 2’-(2-bromohexadecanoyl)-docetaxel conjugate 
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Figure 4.2.  Physicochemical stability of 2-Br-C16-DX NPs stored at 4oC. 
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Figure 4.3.  Release of 2-Br-C16-DX from BTM NPs in 100% mouse plasma at 
37oC. 
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Figure 4.4.  The digestion of 2-Br-C16-DX in fresh 100% mouse plasma at 37oC. 
(A) The loss of DX conjugates. (B) The formation of DX. Data are shown as mean 
± SD (n = 3). 
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Figure 4.5.  The digestion of 2-Br-C16-DX in 4T1 tumor homogenate at 37oC. (A) 
The loss of DX conjugates. (B) The formation of DX. Data are shown as mean ± 
SD (n = 3). 
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Figure 4.6.  In-vitro cytotoxicity of free 2-Br-C16-DX and 2-Br-C16-DX NPs in 
(A) human prostate cancer cell DU-145 cells and (B) murine breast cancer cell 
4T1 cells. Blank NPs were dosed at drug equivalent dose. Drug equivalent dose of 
NPs are calculated from the NP compositions. 
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Figure 4.7.  Plasma concentration-time curves for (A) DX and 2-Br-C16-DX 
after administration of Taxotere and 2-Br-C16-DX NPs (10 mg DX/kg), and (B) 
DX as an active metabolite from 2-Br-C16-DX NPs using Taxotere as a reference. 
Data are shown as mean ± SD (n = 3). 
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Figure 4.8.  Biodistribution of (A) 2-Br-C16-DX and (B) DX in heart, liver, 
spleen, lung, kidney and tumor after i.v. administration of 2-Br-C16-DX NP and 
Taxotere (10 mg DX/kg). Data are shown as mean ± SD (n = 3). 
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Figure 4.9.  Tumor accumulation of (A) 2-Br-C16-DX from NPs and DX from 
Taxotere, and (B) DX as an active metabolite from 2-Br-C16-DX NPs after i.v. 
administration of 2-Br-C16-DX NP and Taxotere (10 mg DX/kg) using Taxotere 
as a reference. Data are shown as mean ± SD (n = 3). 
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Figure 4.10.  Body weight of mice after (A) single i.v. administration of 
2-Br-C16-DX NPs, and (B) Q7d × 3 i.v. administration of 2-Br-C16-DX NPs with 
different doses. 
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Figure 4.11.  The first antitumor efficacy study. 4T1 xenografted female BALB/c 
mice bearing 70 – 100 mm3 tumor were treated i.v. with 10 mg/kg 2-Br-C16-DX 
NPs, 10 mg/kg Taxotere, or 10 mg/kg 2-Br-C16-DX in the Taxotere vehicle on day 
0, 3, 7, 10, and 14. Data are shown as mean ± SD (n = 8). * p < 0.05. 
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Figure 4.12.  The second antitumor efficacy study. 4T1 xenografted female 
BALB/c mice bearing 70 – 100 mm3 tumor were treated i.v. with 130 mg/kg 
2-Br-C16-DX NPs, 130 mg/kg equivalent blank NPs, 20 mg/kg Taxotere, or 10 
mg/kg 2-Br-C16-DX in the Taxotere vehicle on day 0 and 5. Data are shown as 
mean ± SD (n = 9). * p < 0.05. 

 

 

 

 

 

 

 

 

 



219 

 

 

 

 

0 2 4 6 8 10 12 14
0

500

1000

1500

2000

Untreated

Blank NP

2-Br-C16-DX NP

Taxotere

Free 2-Br-C16-DX

*

*

*

Day

T
u

m
o

r 
si

ze
 (

m
m

3
)

 

Figure 4.13.  The third antitumor efficacy study. 4T1 xenografted female 
BALB/c mice bearing 70 – 100 mm3 tumor were treated i.v. with 70 mg/kg 
2-Br-C16-DX NPs, 70 mg/kg equivalent blank NPs, 20 mg/kg Taxotere, or 10 
mg/kg 2-Br-C16-DX in the Taxotere vehicle on day 0 and 7. Data are shown as 
mean ± SD (n = 9). * p < 0.05. 
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Figure 4.14.  Kaplan-Meier survival curves of 4T1 xenografted female BALB/c 
mice treated with 70 mg/kg 2-Br-C16-DX NPs, 70 mg/kg equivalent blank NPs, 20 
mg/kg Taxotere, or 10 mg/kg 2-Br-C16-DX in Taxotere vehicle (n=9) on day 0 and 
7. 
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Chapter 5.   

Summary and future directions 

 

1.  Summary 

DX is one of the most potent anticancer drugs used in the clinical treatment of 

various cancers. Taxotere is currently the only commercial dosage form of DX on the 

market. Drawbacks associated with the formulation have been widely recognized and 

reported. The overall goal of this project was to develop a formulation that safely, 

effectively and selectively delivered DX to solid tumors utilizing state of the art 

nanotechnology. The developmental process generated three generations of 

formulation. The first generation was oil-filled NPs containing DX. The second 

generation was oil-filled NPs containing DX-lipid conjugates with different fatty acid 

chain lengths. The third generation was oil-filled NPs containing a bromoacyl DX 

conjugate 2-Br-C16-DX. The three generations of DX formulations were described in 

detail in Chapter 2, Chapter 3 and Chapter 4, respectively. 

 

Generation 1 

The focus of the studies in Chapter 2 was the development of oil-filled NP. The 

highlight of these studies was the methodology of studying the drug release in pure 
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mouse plasma. The formulation was based on the previously developed BTM 812 NPs 

for the delivery of PX. Liquid lipid Miglyols were firstly screened for their solvation 

ability for DX to select a lipid phase with the highest drug solubility. Miglyol 808 was 

identified as the Miglyol with the highest solvation ability for DX that was capable of 

forming NPs. Miglyol 808 was used as the oil phase to develop new BTM NPs by the 

guidance of sequential simplex optimization. The final optimized BTM 808 NPs 

successfully entrapped DX with 85% entrapment efficiency as determined by 

ultrafiltration. The formulation was physically stable at 4°C for at least three months. 

The oil-filled NPs containing DX showed similar cytotoxicity compared to free DX in 

sensitive DU-145 and PC-3 cells while in their resistant counterparts, the IC50 values of 

DX NPs were 3-fold lower compared to free DX. These results confirmed our previous 

findings that the oil-filled BTM NPs could overcome P-gp-mediated resistance in-vitro. 

To better mimic in-vivo physiological environment and overcome the poor 

in-vitro/in-vivo correlation, a novel “ex-vivo” release method was developed to study 

the DX release from NPs in mouse plasma. To our knowledge, this is the first in-vitro 

release method in which NPs are spiked directly into 100% plasma samples. Despite the 

desirable formulation properties, DX was found to be very quickly released in mouse 

plasma. The re-characterization by SEC revealed that DX was not truly entrapped into 

the NPs during preparation. The different entrapment efficiencies suggest that 

depending on the formulation, different measurement methods may result in very 

different results. The first generation oil-filled NPs containing DX may not be 



225 

 

considered a successful formulation. However, the methodologies developed in these 

studies provided more meaningful guidance for the development of improved 

formulations with better drug retention. 

 

Generation 2 

To overcome the poor retention of DX in the oil-filled NPs in simple aqueous phase and 

in biologically relevant medium, three DX lipid conjugates (C12-DX, C18-DX and 

C22-DX) were synthesized and fully described in Chapter 3. The three conjugates 

showed >10-fold solubility increase in the liquid oil phase Miglyol 808 over DX. On 

the basis of previously developed BTM NPs, another experimental design orthogonal 

design was performed to further increase the drug entrapment efficiency in the NPs. 

The optimized formulation significantly reduced the surfactant concentration. The 

conjugates were successfully entrapped in the reduced-surfactant NPs with entrapment 

efficiencies about 50-60% as measured by SEC. The DX conjugates were well retained 

in the NPs not only during preparation in 10% lactose, but also in mouse plasma. In 100% 

mouse plasma, after the initial 45% burst of drug, C12-DX showed another 40% release 

within 8 hr, whereas C18-DX and C22-DX in NPs showed no additional release. 

In-vitro hydrolysis studies showed that the hydrolysis rate was C12-DX > C18-DX > 

C22-DX, which was predicted by their different steric hindrance. In-vivo, 

NP-formulated DX conjugates showed 8-450-fold higher AUC0-∞ values than that of 

Taxotere, demonstrating prolonged retention of DX conjugate in the blood. More 
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importantly, C12-DX and C18-DX improved DX AUC0-∞ over that of Taxotere. The 

prolonged exposure of DX from C18-DX demonstrated that C18-DX NPs served as a 

drug reservoir and released DX in a sustained manner. C18-DX NPs have the potential 

to exert higher in-vivo anticancer efficacy. The generation 2 formulation comprised of 

oil-filled NPs containing DX-lipid conjugates achieved stable drug retention and the 

consequent superior pharmacokinetic profiles. The highlight of this chapter is that the 

in-vitro release in mouse plasma and in-vitro hydrolysis well correlated with the in-vivo 

pharmacokinetic profiles of both DX conjugates and activated DX, indicating that the 

combination of these in-vitro assays could serve as a good predictor for the in-vivo 

pharmacokinetics. However, the DX conjugate with more desirable in-vivo 

pharmacokinetics (C18-DX) showed significantly lower cytotoxicity than DX in-vitro. 

The results suggested that the activation kinetics of DX lipid conjugate remains to be 

further tuned. 

 

Generation 3 

The generation 3 formulation focused on the modification of the entrapped prodrug. A 

bromoacyl DX conjugate 2-Br-C16-DX was synthesized to maintain the high drug 

loading, entrapment and retention in oil-filled lipid NPs while improve the hydrolysis 

kinetics. The conjugate was successfully entrapped in the previously optimized NPs 

with an entrapment efficiency of 56.8%. In-vitro release studies in 100% mouse plasma 

showed an initial 45% burst release with no additional release within 8 hr. The 
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entrapment efficiency and release profile were similar to those of C18-DX. In contrast, 

45% of the new conjugate was hydrolyzed to DX by esterase in-vitro in 48 hr. 

Consistent with its more efficient hydrolysis, the conjugate showed comparable 

cytotoxicity with unmodified DX in DU-145 and 4T1 cells when encapsulated in NPs. 

In-vivo, the AUC0-∞ value of NP-formulated 2-Br-C16-DX was about 100-fold greater 

than that of Taxotere. 2-Br-C16-DX NP improved DX AUC 4.3-fold compared to 

Taxotere. More importantly, the high concentration and prolonged exposure of both 

2-Br-C16-DX and DX from 2-Br-C16-DX NPs in circulation led to a 10-fold and 

1.5-fold greater accumulation of 2-Br-C16-DX and DX in tumors compared to Taxotere, 

respectively. The 2-Br-C16-DX NPs were well tolerated in mice as compared to 

Taxotere. In mice bearing metastatic 4T1 tumors, 2-Br-C16-DX NPs showed marked 

anticancer efficacy as well as survival benefit over all controls. The highlight of the 

studies in this chapter is that the generation 3 formulation improved the overall 

therapeutic index of DX and was significantly more efficacious in the treatment of 

metastatic breast cancer relative to the standard-of-care Taxotere.  

 

In conclusion, an injectable NP formulation was successfully developed for the 

delivery of DX by step-by-step and rationale development and optimization approach. 

The encouraging results of these studies suggest that the oil-filled NPs containing 

bromoacyl DX conjugate 2-Br-C16-DX hold great promise to be translated to clinical 

application and the approach may be extended to other tumor types. The strategy of 
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developing a hydrolyzable lipophilic prodrug may render an alternative approach for 

other therapeutic agents to be delivered in lipid-based NPs. In addition, the novel 

“ex-vivo” release method developed in these studies provides more predictive in-vitro 

guidance for the development of improved and more potent nano-formulations. 

2.  Future directions 

The nano-formulations developed in the present studies have been proven to 

passively target solid tumors taking good advantage of the EPR effect and achieve high 

tumor accumulation. The next logical step would be incorporating active targeting into 

the formulation to actively target tumors and selectively kill cancer cells. Human 

epidermal growth factor receptor (EGFR), a transmembrane receptor, has emerged as 

an attractive target for targeted drug delivery. Overexpression of EGFR has been 

detected in one third of all solid tumors, in many of which EGFR expression 

characterizes a more advanced disease stage.1 Our laboratory has successfully 

developed oil-filled NPs with surface-chelated nickel (Ni-NPs) using a Brij 78-NTA-Ni 

conjugate.2 The surface of the Ni-NPs was decorated with a novel high affinity histidine 

×6-tagged EGFR-binding Z domain (heptameric ZEGFR domain) via his-tag-Ni affinity 

binding. The novel targeting ligand was generated by Liu et al. by fusing a 

heptamerization domain with an EGFR-binding Z domain of an affibody molecule. The 

EGFR-targeting NPs have shown enhanced internalization in EGFR-overexpressing 

A431 cells in-vitro. In-vivo studies showed an extensive localization (19% of the total 
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detected fluorescence) in tumor tissue and 2-fold increase of intracellular uptake with 

the targeted Ni-NPs. Our colleagues and collaborators are now working on a trimeric 

EGFR-binding ligand that is more stable with smaller size. Combining the 

EGFR-targeting NPs with the hydrolyzable, long-retention DX prodrug, higher 

anticancer efficacy is expected in the EGFR-overexpressing tumor models such as 

A431 and MDA-MB-468 tumors. Our preliminary studies have shown that the 

incorporation of trimeric EGFR-binding ligand did not alter the entrapment efficiency 

of 2-Br-C16-DX in the NPs. This formulation remains to be further optimized and fully 

characterized. With the concerns of in-vivo stability, alternatively, we can covalently 

attach cysteine-terminated EGFR-targeted Z domain to the NP surface using a Brij 

78-maleimide reagent. 

Despite the thorough characterization of the DX conjugate NPs in-vitro, many 

aspects of their in-vivo behaviors are not yet clear. First of all, the pharmacokinetics and 

biodistribution studies only quantified the total drug concentrations. It remains 

unknown that what fraction of the total drug represents released drug and what fraction 

is still retained in the NPs. The most commonly used method to study this is to 

radiolabel the NPs.3 The radioactivity-time curve represents the circulation of the 

delivery vehicles. A stable drug to NP ratio indicates stable drug retention in the 

delivery vehicles. Alternatively, a more direct approach is to differentiate the free drug 

with the NP-formulated drug. Zamboni et al. have developed a solid-phase separation 

method to physically separate liposome-encapsulated and released drug in mouse 
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plasma.4,5 Compared to the radiolabeling method, the development of this approach 

takes a lot more effort, and the method is often drug and formulation dependent. Not 

until we can differentiate the free drug with NP-formulated drug will it be clear about 

how the drug release in-vitro correlates with the in-vivo release profile of the NPs. 

Without the direct evidence showing the in-vivo release of NPs, the slow/no in-vitro 

release in plasma and high in-vivo AUC suggest that a slow in-vivo release is very 

likely. If it holds true that 2-Br-C16-DX as well as C18-DX and C22-DX are not further 

released from the NPs in-vivo after the burst, is it a favorable property or not? In the 

systemic circulation, “no release” is surely a good property for the drugs to take 

advantage of the long-circulating NPs and avoid systemic toxicity because the drug 

must be released to exert its pharmacological activity. Once located in the tumor site, at 

the cellular level, the integrity of drug-containing NP is also critical. For example, for 

NPs that overcome efflux pump mediated resistance, the endocytosis of high drug 

payload NPs is one of the mechanisms. For active targeting NPs, since the targeting 

ligands are on the NPs, the retention of drug in the NPs is apparently desirable. 

Collectively, generally speaking, “no release” before the cellular internalization is a 

favorable property. Given that “no release” is desirable, the burst release observed with 

the current formulations should be reduced or prevented by formulation optimization. 

Following this issue, many questions remain to be answered. How and where are the 

drugs released from the NPs in the cell? What is the ultimate intracellular fate of lipid 

NPs? How do NPs traffic intracellularly? What enzymes are responsible for the NP 
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breakdown and what are their kinetics? Further investigations will definitely help us to 

understand the NP behaviors on the cellular level.  

Another issue associated with formulation remaining to be fully characterized 

and further improved is PEGylation. So far, a reliable approach to accurately quantify 

the PEG chain on the NP surface is still missing. In the development of Ni-NPs for 

active targeting, it was found that the incorporation of Brij 78-NTA-Ni in the NPs (～

90%) was significantly higher than the incorporation of Brij 700-NTA-Ni (～50%).2 

The results suggest that a surfactant with a medium PEG chain (Brij 78) anchors 

better in the oil-filled BTM NPs probably due to its miscibility with Miglyol 808. On 

the contrary, surfactant with a relatively longer PEG chain (Brij 700) tends to 

participate into the aqueous phase due to its higher hydrophilicity. In the light of this 

hypothesis, Brij 78-PEG 750, a PEGylation agent with medium PEG chain was 

synthesized in our laboratory. To fully understand what PEG chain length and what 

PEG density are optimal for RES stealth, systematic studies are definitely needed in 

the future. 

Prodrugs are an important drug delivery strategy. In addition to the delivery 

carrier, there remains opportunity to improve and optimize the prodrug approach. In 

Chapter 3, three DX conjugates were synthesized and compared. It was found that 

many physical/chemical properties of these conjugates are chain-length dependent. In 

Chapter 4, only one modified conjugate 2-Br-C16-DX was synthesized and 

investigated based on the previous findings. Although this modified conjugate showed 
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improved hydrolysis kinetics compared to the other three DX conjugates and marked 

in-vivo anticancer efficacy, it is premature to claim that 2-Br-C16-DX is the best of its 

kind. The acyl chain length and the electron-withdrawing group are two factors that can 

be further tuned. In addition, it remains unclear about whether the conjugates have their 

own antitumor activity and, if any, what then is the mechanism(s). Our colleague found 

that a PX-lipid conjugate C22-PX had appreciable microtubule-binding affinity, which 

is different from most of the reports in the literature.6,7 Besides the microtubule binding 

mechanism, other mechanisms if any remain to be investigated. 

Choosing a suitable animal model plays essential roles in demonstrating the 

advantages of ester prodrug containing NPs and interpreting the preclinical results to 

the relevance of clinical applications. In the present studies, in-vitro and in-vivo results 

all indicated that 2-Br-C16-DX was highly cleaved in the plasma but not in the tumor 

tissues. In an ideal scenario, DX should not be released in the systemic circulation but 

only liberated in the targeted action site such as the tumor. However, mouse plasma 

bears high esterase activity while the esterase activity in the 4T1 breast cancer selected 

in these studies is probably low. This former limitation may be overcome, to some 

extent, by using a carboxylesterase-deficient mouse model to better mimic human 

plasma. On the other hand, the DX ester prodrug that mostly depends on the 

esterase-mediated activation may exert significantly enhanced anticancer activity in the 

high-esterase-activity tumor models such as colon tumors or thyroid tumors. Additional 

in-vivo efficacy studies will be carried out in more clinically relevant cancer models. 
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Currently, we have shown preliminary efficacy in an orthotopic non-small cell lung 

cancer (NSCLC) mouse model with 2-Br-C16-DX NPs. The orthotopic NSCLC model 

was established by directly injecting luciferase-expressing A549-luc-c8 cells (Caliper 

Life Sciences) into the left lung parenchyma of nude mice. In this model, 2-Br-C16-DX 

NPs administered i.v. at a dose of 70 mg/kg, Q7d ×5 showed significantly lower 

luminescence level than 20 mg/kg standard-of-care Taxol and Taxotere. Survival 

benefit is expected in the future studies. The efficacy of 2-Br-C16-DX NPs will also be 

evaluated in genetically engineered mouse model (GEMM) developed in UNC Mouse 

Phase 1 Unit (MP1U) by collaboration. These studies will extend the application of 

oil-filled NPs containing DX prodrug to the treatment of various cancers. 
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Appendix. 

SiRNA targeting using injectable nano-based delivery systems 

 

Summary 

The 2006 Nobel Prize in Physiology or Medicine was awarded to Andrew Fire 

and Craig Mello who demonstrated a fundamental control of gene expression called 

RNA interference. Since the first time siRNA was shown to knock down the expression 

of a target protein in mammal cells in 2001, a significant surge of interest has been 

focused on this promising area. This chapter will provide an overview of RNAi and 

siRNA, siRNA-based therapeutics, as well as review the current state-of-the-art of 

injectable siRNA nano-delivery systems and targeting strategies. The review will also 

discuss the chemical, physical, and biological barriers as well as ideal criteria for 

effective siRNA nano-based therapeutics.  
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I.  Overview 

1.1.  RNAi Mechanisms and siRNA  

 Antisense is a ubiquitous and conserved phenomenon in cells. Antisense 

nucleotides suppress the gene expression through several distinct mechanisms, such as 

RNaseH-induced degradation of complimentary mRNA through antisense 

oligonucleotides hybridizing to their target mRNA; sterical inhibition of mRNA 

translation or pre-translational splicing; cleavage of target mRNA by some ribozymes 

or deoxyribozymes due to their intrinsic catalytic activity; RNA induced silencing 

complex (RISC)-mediated degradation of target mRNA by double-stranded RNA 

(dsRNA) [1-3].  

 RNA interference, or RNAi is the antisense effect caused by RNA. 

Double-stranded RNAs (dsRNAs) are important regulators of gene expression in 

eukaryotic cells. Interfering dsRNAs cleave mRNA through several steps. First, the 

“DICER” enzyme and its co-factors cleaves dsRNA to 21-23 base-pair segments, 

which are called small interfering RNAs (siRNAs) and assists their loading onto the 

RISC. RISC removes the sense strand, uses the antisense strand as a guide to seek the 

complimentary region in the mRNA and pairs the antisense strand to its target. RISC 

contains an important protein Argonaute 2 (Ago 2) which has an RNaseH-like domain 

carrying the activity of RNA cleavage. After cleavage, the resulting 5’ and 3’ fragments 

are subsequently subjected to full degradation by other nucleases [2-4]. Interfering 
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dsRNA can be either endogenously produced or exogenously provided. However, 

exogenous dsRNAs longer than 30 base pairs cause severe toxic responses in mammals 

which limit their applications [5]. In 2001, Elbashir and colleagues published a paper in 

Nature reporting the use of synthetic 19 base-pair duplexes siRNAs with 2 base 3’ 

overhangs to mediate RNAi in mammalian cell culture systems [6]. Later, researchers 

extended this to recombinant DNA expressing similar short interfering RNA in order to 

have longer effect in cells. siRNA has quickly become one of the most powerful and 

indispensable tools in molecular biology. 

 

1.2.  Therapeutic Target and Applications 

 Since siRNA is a highly specific tool for target gene knockdown, it has been 

used in the field of molecular biology to understand gene function, as well as to identify 

and validate genes [7-11]. On the basis of knowledge of gene function, siRNA designed 

to target gene encoding disease-associated protein is currently under intensive 

investigation as a potent and specific therapeutic agent.  

 RNAi was found as an anti-viral defense in plant [12]. Thus siRNA as a 

treatment of human virus diseases may hold the greatest promise in the clinic. Recently, 

several groups have explored the therapeutic effects of RNAi on Hepatitis B virus 

(HBV) [13], Hepatitis C virus (HCV) [14], human immunodeficiency virus type 1 

(HIV-1) [15-17], Herpes simplex virus 2 (HSV-2) [18], respiratory syncytial virus 
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(RSV) [19, 20], human papillomavirus (HPV) [21, 22] as well as others through 

inhibiting viral replication and production mechanisms. All the studies have yielded 

encouraging results. Another strategy is to inhibit the host proteins for pathogen 

invasion or signaling pathways that initiate the inflammatory response such as cell 

death receptor Fas [23-25] and Caspase 8 [26, 27]. 

 A second therapeutic application for RNAi is the treatment of dominant 

genetic diseases. Autosomal dominant diseases caused by mutant gene encoding 

essential proteins can be treated by siRNA targeting the mutated alleles. Studies have 

demonstrated that many familial neurodegenerative diseases, such as Huntington’s 

disease, spinobulbar muscular atrophy and slow channel congenital myasthenic 

syndrome (SCCMS) caused by the overexpression of mutated genes or CAG-repeat 

expansions that encode polyglutamine in the disease protein might be treated by 

siRNAs [28, 29]. Another example is the Cu, Zn superoxide dismutase (SOD1) gene in 

amyotrophic lateral sclerosis (ALS). Schwarz et al. reported that siRNA was specific 

enough to discriminate single nucleotide polymorphism. Many SOD1 mutations are 

single nucleotide mutations which makes siRNA a promising potential therapeutic 

strategy for the treatment of ALS [30]. 

 Along with the intensive research in molecular biology on cancer, the 

involvement of more and more signaling pathways and oncogenic genes has been 

demonstrated, which in turn makes RNAi anticancer therapy possible. Oncogenic 

genes are often important for cell survival and growth when normally expressed and 
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strictly regulated. In addition, inhibitors of oncogenic proteins are not specific and often 

cause severe side effects. The high specificity of siRNA allows the selective 

knockdown of mutated oncogenes without influencing normal cells. Mutations of Ras 

are present in many cancers such as pancreatic cancers, colon cancers, leukemia, as 

well as others. In oncogenic K-RasV12, a point mutation results in a valine instead of a 

glycine in wild-type K-Ras. A viral siRNA transfection targeting this region strongly 

inhibited the expression of K-RasV12 and tumor formation in nude mice [31, 32]. 

Besides targeting oncogenes like Bcr-Abl [33], Bcl-2 [34], Survivin [35], some 

alternative strategies have also been investigated and have obtained success to some 

extent. Suppression of tumor angiogenesis by effectively silencing epidermal growth 

factor receptor gene (EGFR) and vascular endothelial growth factor receptors (VEGFR) 

inhibited the in-vivo growth of non-small lung cancer [36] and PC-3 prostate cancer 

cells [37], respectively. An RNAi approach also enhanced the effects of chemotherapy 

in resistant breast cancer cells due to the suppression of MDR1 [38, 39].  

 

1.3.  Delivery Barriers and Challenges 

 As a potential therapeutics of human diseases, siRNA needs to be efficiently 

delivered in-vivo. Before designing an effective delivery system for siRNA, it is crucial 

to understand the six main challenges and barriers of siRNA delivery.  

 First, siRNAs are vulnerable to nucleases in serum and tissues. Second, siRNA 
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would be rapidly cleared from circulation by renal excretion and reticuloendothelial 

system (RES) uptake especially delivered in a nanoparticulate formulation that was 

prone to RES uptake and elimination. Third, extravasation of siRNA across the 

endothelium and access to the target tissue is difficult due to its size and negative charge. 

Fourth, as hydrophilic, negatively charged macromolecules, siRNAs may have poor 

plasma membrane penetrating properties. Furthermore, if the siRNAs enter cells 

through endocytosis mechanism, another important barrier is endosomal escape. 

Eventually siRNA would end up in late endosome or lysosome and be digested if they 

could not be released to cytoplasm where its effect takes place. Finally, the persistence 

of siRNA effect is not permanent due to inability to reproduce itself.  

 

1.4.  Available Delivery Approaches 

 Both non-carrier and carrier strategies are available for in-vivo siRNA delivery. 

Aimed at overcoming individual delivery barriers, various non-carrier systems or 

methods have been developed. Chemical modifications have been applied to improve 

the nuclease stability of siRNA; for example, sulfur substitution for a non-bridging 

oxygen in the phosphodiester linkages [40]. Simple conjugation of siRNAs with 

ligands represents a large portion in this category. Cholesterol siRNA conjugation 

reduces renal excretion and increases circulation half-life by binding to plasma albumin. 

Long chain fatty acid conjugation of siRNA may facilitate the cellular uptake of siRNA 
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by receptor-mediated endocytosis [41]. A considerable effort has been devoted to cell 

penetrating peptide (CPP) conjugate investigation. These small polycationic peptides 

rich in arginine and lysine promote the cell penetrating of the coupled cargo, which 

could be siRNA or siRNA containing complexes. However, the mechanism of uptake 

and the delivery efficiency is still controversial. An intravenous injection of naked 

siRNA in massive volume through mouse tail vein has been performed to increase the 

transport of siRNA through capillary endothelial cells. This method is termed 

hydrodynamic injection and induces hepatic gene silencing [42]. Other non-carrier 

methods include topical application and the gene gun, among others. Generally, these 

methods are less efficient and/or practical than carrier strategies. 

 As for carrier strategies, these can be further divided into viral and non-viral 

carriers. To this point, viruses are still the most efficient vehicles for gene delivery. Due 

to their intrinsic nature and function, they can easily penetrate capillary membranes, 

cell membrane and even nuclear membranes to reach their destination. When the 

siRNA containing nucleic acid is inserted to the genetic DNA, it enables long-term 

expression thus has the ability to chronically suppress gene expression. However, the 

disadvantages are obvious and inevitable. For example, viral carriers have the 

difficulties of preparation and storage, immunogenicity, and potential carcinogenicity if 

they either suppress tumor suppressor genes or activate oncogenes.  Hence, extensive 

attention has been attracted to the design and study of non-viral nano-scale siRNA 

delivery systems. Although this is a relatively novel area, a growing number of 
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achievements have been made in the recent years as will be discussed in detail.     

 

1.5.  Differences between siRNA and pDNA Delivery 

 As double-stranded nucleic acids, siRNA and double-stranded DNA (dsDNA) 

share many common properties. They have similar back-bone structure with the same 

negative charge to nucleotide ratio. They both can interact electrostatically with 

positively charged agents so that many delivery systems are designed based on this 

principle. Plasmid DNA (pDNA) has been investigated and delivered for at least two 

decades. Considering the similarity between siRNA and pDNA, applying the 

knowledge from pDNA delivery systems can facilitate rationale approaches to the 

delivery of siRNA. However, understanding the key differences between pDNA and 

siRNA is critical for designing the most efficient and safe siRNA delivery systems. 

 First, RNA is more sensitive to enzymatic degradation than DNA. The 

5’-carbon sugar in RNA nucleotides is ribose instead of deoxyribose in DNA. This 

structure makes the RNA backbone more susceptible to spontaneous breakdown and 

hydrolysis by nucleases. Moreover, DNase and RNase are present in various 

environments both in-vitro and in-vivo. To avoid unexpected degradation during 

handling and preparation process, creating a DNase/RNase-free environment is of great 

importance. However, DNase inhibition can be easily achieved while RNase inhibition 

is much more difficult. In particular, RNase A is extremely stable in an aqueous 
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environment [43]. Chemical modifications have been performed to increase the 

stability of dsRNA, e.g. 2’-O-methyl modification, incorporation of locked nucleic 

acids (LNAs), phosphorothioate etc. [40]. The greater susceptibility of RNA highlights 

the critical need for a protective carrier to effectively deliver siRNA. 

 Second, the delivery destination or intracellular location needed for pDNA and 

siRNA action is quite different. Plasmid DNA requires delivery into the nucleus of the 

host cell where it can use the transcriptional machinery of the host cell to carry out its 

therapeutic effect. Unlike pDNA exerting its effect in the nucleus, the target of siRNA is 

its complementary mRNAs that has already been released from the nucleus after 

transcription. Therefore, siRNA only needs to be delivered to cytoplasm. For this 

reason, pDNA delivery often requires a nuclear localization mechanism such as the 

inclusion of a nuclear localization sequence or carriers that can carry their cargo to 

nucleus.  

 Third, due to their different action mechanisms, the duration of siRNA and 

pDNA effects differs as well. Naked siRNAs, unlike pDNA-expressed siRNAs, are not 

regenerated in cells. Thus, in rapidly dividing cells, the typical gene silencing duration 

is 3-7 days because of the dilution of the siRNAs below a certain level. In contrast, in 

slowly or non-dividing cells, the gene knockdown effect can last as long as 3 weeks 

depending on the stability and half-life of the suppressed protein [44]. The therapeutic 

effects with pDNAs not only depend on their own stability, but also the strength of their 

promoters if they are non-integrative. In comparison, it is well known that the 
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therapeutic effects of integrated DNA vectors could be long-term or even permanent. 

Hence, the contrast between the pDNA and siRNA requirements above highlight the 

fact that successful siRNA therapy will necessitate repeated treatment which makes 

selection of the carrier with low cytotoxicity and immunogenicity even more important 

for siRNA.   

 Another obvious difference between pDNA and siRNA is the molecular 

weight and size of the molecules. The pDNAs used in gene therapy are usually several 

kilobase pairs while siRNAs are only 21-23 bp. In pDNA delivery, it is often complexed 

and condensed to nanometric-sized particles directly with cationic agents. However, it 

is well known that many types of cationic condensing agents (polymers, lipids, etc.) 

often times lead to aggregation of the condensed particles. Due to its smaller size, 

siRNA is perhaps easier to complex with cationic condensing agents.  However, these 

complexes with siRNA are often unstable and decomplex since the smaller siRNA is 

not condensed and the ionic interaction is much easier to compete off with counter-ions. 

RNA is somewhat stiffer than DNA. The persistence length, which is a basic 

mechanical property quantifying the stiffness of a long chain molecule, of dsDNA is 

450-500 Å and that of double-stranded RNA is ~700 Å [45]. At 2.7 Å per base pair, the 

persistence length for RNA is 260 bp. So basically, 21-23 bp siRNA behaves as a rod 

and is not likely to be further condensed. Therefore, electrostatic interaction between 

siRNA and cationic agents could lead to a relatively uncontrolled interaction and 

forming complexes of large sizes and poor stability, and as a consequence incomplete 
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encapsulation [46].  

 Considering the differences discussed above, the strategy for the delivery of 

pDNA and siRNA should be interrogated carefully. One should not assume that a 

delivery system that works for pDNA could be simply transferred to siRNA delivery 

system before more thorough investigation is performed. 

 

II.  Ideal injectable nano-based systems for siRNA delivery 

For an ideal injectable nano-based delivery system to efficiently deliver siRNA, 

no matter it is for topical or systemic administration, certain criteria must be met. For 

systemic injection of siRNA, additional criteria need to be considered.   

Generally speaking, at the cellular level, a successful delivery vehicle must be 

formulated to have the following characteristics: (1) provide protection to siRNA 

against degradation in extracellular fluids; (2) facilitate efficient cellular uptake; (3) 

facilitate endosomal escape before the early endosome becomes late endosome or 

lysosomes in which the siRNA will be destroyed; (4) be able to readily release siRNA 

upon arrival at the cytosol where the RNAi effect takes place; (5) non-toxic to the cells; 

(6) be stable during storage and in the vehicle for administration solution i.e., 

chemically and physically stable. 

For a systemically administered siRNA nano-carrier, there are some additional 

concerns: (1) provide protection to siRNA against degradation not only in  the 
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extracellular fluids but also in the systemic circulation; (2) be stable in the systemic 

circulation with limited break-down and/or aggregation before it arrives at the target 

site; (3) be able to extravasate blood vessels and penetrate tissues to gain access to the 

target site; (4) maintain proper particle size and surface properties to avoid clearance 

and/or elimination via the kidneys and RES.  

To further increase the efficiency of in-vivo siRNA delivery, target strategies are 

widely applied. As for targeted systemic nano-carrier, choosing a suitable target ligand 

is critical as well. First of all, the targeting should be specific enough, i.e. the expression 

of the receptor on the target cells should be highly specific, highly expressed, and not 

shed, among others. Second, the targeting ligand should have high affinity with the 

target receptor to ensure sufficient retention time as well as trigger cellular uptake via 

receptor mediated endocytosis instead of remaining bound to the receptor. Last but not 

least, the targeting ligand should be amenable to the required chemistries needed to 

attach the ligand to the nano-carrier, as well as have low or no immunogenicity.   

 

III.  Nano-based delivery systems 

3.1.  Complexes 

RNA is a molecule consisting of a chain of nucleotide units. Each nucleotide is 

composed of a nitrogenous base, a ribose sugar, and a phosphate. RNA is a 

negatively-charged molecule due to the negative charge on phosphate groups at 



247 

 

physiological pH. siRNA molecules are double stranded RNA with 19-21 base pairs. 

Calculating the charge density gives about 3 negative charges per kilo-dalton (kD) 

molecular weight of siRNA. 

To date, complexes of siRNA with various positively charged materials by 

electrostatic interaction represent the largest portion of active research. In this category, 

there are two major subgroups and some others. 

 

3.1.1.  Lipoplex 

The most often referenced formulation in this group is cationic liposomes. 

When cationic liposomes are mixed with negatively charged siRNA, the organized 

bilayer structure of the liposome is altered by electrostatic interaction so that they are no 

longer referred to as liposomes, but have a new name of “lipoplexes”. 

The DOTAP Liposomal Transfection Reagent is a commercially available 

liposome formulation of the monocationic lipid 

1,2-Dioleoyl-3-Trimethylammonium-Propane (DOTAP) that can be used for the 

transfection of nucleic acids. Mixing the DOTAP reagent with the negatively charged 

siRNA results in a spontaneously formed stable complex that can be directly added to 

the tissue culture medium with or without serum. Commercially available DOTAP is 

not only used as an instrumental tool for in-vitro siRNA delivery to investigate gene 

functions in molecular biology, it has been used to deliver siRNA in mice to prove the 
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concept and feasibility of certain therapeutic ideas [47-50]. 

Dioleoyl-phosphatidylethanolamine (DOPE) is a neutral helper lipid usually used with 

DOTAP to formulate transfection reagent. It is generally believed that DOPE enhances 

transfection due to its tendency to form hexagonal phase structures at temperatures 

above 10°C which facilitates siRNA endosomal escape [51].  

Based on this classical liposome formulation, targeting ligands have been 

included to deliver siRNA to specific tissues. For example, Chang et al. developed a 

tumor targeting immunoliposome that takes advantage of elevated transferring receptor 

(TfR) levels on tumor cells to deliver pDNA, antisense oligonucleotides, imaging agent 

or siRNA [52-54]. The anti-transferrin receptor single-chain antibody fragment was 

incorporated into the liposomes and formed immunoliposomes. This intravenously 

administered immunoliposome delivered its cargo (which could be pDNA, antisense 

oligonucleotides, imaging agent or siRNA) specifically and efficiently to 

primary/metastatic tumors. In addition, a pH-sensitive histidine-lysine peptide (HoKC) 

was included in the complex to further increase the endosomal escape. In a recent report, 

the results showed increased potency of the liposome-HoKC complex and their ability 

of carrying anti-HER2 siRNA to target and sensitize tumor cells, silencing the target 

gene, and inhibiting tumor growth in-vivo [55]. Lima et al. associated transferrin 

instead of the TfR antibody to DOTAP/cholesterol liposome, another conventional 

cationic liposome, to target TfR expressing cells [56]. In-vitro experiments by the 

group showed enhanced gene knockdown activity of transferrin-associated liposome 



249 

 

compared to the conventional liposomes by anti-GFP siRNA. Besides tumor targeting, 

siRNA liposomes are targeted to other tissues and organs such as the liver. Kim and his 

colleagues formulated anti-HBV siRNA into a complex of DOTAP/Chol liposome and 

apolipoprotein A-I (apo A-I) [57]. Apolipoprotein is recognized by class B, type 1 

scavenger receptor (SR-BI) which is predominantly expressed in the liver. When the 

liver-targeting formulation was injected intravenously into a HBV carrying mouse 

model, the viral protein expression was reduced to about 30% and its effect lasted up to 

8 days upon a single treatment.  

In addition to the commercially available lipids, some cationic lipids are also 

designed and synthesized to improve the transfection efficiency and reduce the 

cytotoxicity. It has been reported that an ether linkage containing cationic lipid, such as 

1,2-dioleyloxypropyl-3-trimethylammonium chloride (DOTMA), has higher in-vivo 

transfection efficiency than the corresponding ester analogue DOTAP [58]. Based on 

the structure-activity information, Chien et al. synthesized ether-linked cationic 

cardiolipin analogue (CCLA) where the phosphate groups of cardiolipin were replaced 

with quaternary ammonium groups as shown in Figure A.3 (a) [59].  

Their report showed that the transfection efficiency of the luciferase reporter 

gene in mice was seven-fold higher than the commercially available DOTAP-based 

liposome and the CCLA-based liposome had lower toxicity than DOTAP transfection 

reagent. When the CCLA-based liposome was used to deliver the c-raf siRNA in mice 

bearing human breast cancer (MDA-MB-231) xenografts, the tumor growth was 
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inhibited 73% as compared to free siRNA treatment. For the same reason, many groups 

synthesized other cationic lipids to meet the needs of in-vitro and in-vivo delivery such 

as cationic cholesterol-based polyamine lipid N’- 

cholesteryloxycarbonyl-3,7-diazanonane-1,9-diamine (CDAN) [46], 2- (3- [bis- (3- 

amino- propyl)- amino]- propylamino)- N- ditetradecylcarbamoylmethyl- acetamide 

(RPR209120) [60], MVL5 [61]. Their structures are shown in Figure A.3 (b-d). 

Positive charges could also be incorporated by adding aminoglycoside to the lipid. 

Desigaux et al. synthesized a series of cationic lipids (DOST, DOSK, DOSP, DOSN) 

bearing various aminoglycosides (tobramycin, kanamycinA, paromomycin and 

ethylthioneomycin B, respectively) linked to two dioleyl chains by a succinyl spacer for 

specific interaction with siRNA [62].  

Besides lipid-aided cellular delivery, some positively charged cell penetrating 

peptides (CPP) have been incorporated into conventional liposomes. In a study by 

Mudhakir et al., liposomes composed of egg phosphatidylcholine (EPC) and 

cholesterol were modified by direct conjugation of a novel peptide IRQRRRR (IRQ) to 

the surface of liposomes [63]. IRQ is a peptide ligand that targets skeletal muscle found 

by in-vivo phage display. Since the novel peptide IRQ is rich in arginine, it not only 

serves as a tissue-target moiety, but also triggers the cellular uptake via caveolar 

endocytosis.  

An interesting concept called site-specific release is applied to liposomal siRNA 

targeting delivery as well. It is well known that under pathological conditions the 
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expressions of many proteins are altered including intracellular receptors and enzymes, 

as well as others. Most of the recent studies have focused on targeting modified 

receptors using either an antibody or a small molecular receptor substrate. However, 

changed expression of enzymes in the pathological tissue could also serve as a novel 

target by triggering site-specific release of therapeutic agent. For example, sPLA2 is an 

enzyme upregulated in cancer and inflammatory tissues, but it is present at low levels in 

the blood circulation. Foged et al. formulated a liposome including lipid 

dipalmitoylphosphatidylglycerol (DPPG), which is favored by Human group IIA 

sPLA2. They hypothesized that the liposome could site-specifically release siRNA in 

inflammatory tissue but not in the systemic circulation or other tissues [64].  Moreover, 

the hydrolysis products were thought to disturb the cellular membrane and facilitate the 

uptake of siRNA. Although their data showed that the sPLA2 degradable liposomes did 

not silence EGFP expression in HeLa cells, they did show that the siRNA from the 

liposomal formulation was taken up by HeLa cells and that uptake was augmented by 

the addition of sPLA2. The concept of site-specific release with no active targeting 

moieties opens an alternative avenue and deserves more attention. 

 

3.1.2.  Polyplex 

Polymers, either natural or synthetic, represent another major group of 

complexing agents for siRNA delivery. The formulation of nucleic acids complexed 
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with polymers is generally called “polyplex” in this chapter even though in various 

literatures they are sometimes referred to as nanoparticles or micelles. 

Cationic polymers, e.g. polyethylenimine (PEI), polypropylenimine (PPI), 

poly-L-lysine (PLL), polyallylamine (PAA), cationic dextran and chitosan are the most 

commonly used materials for siRNA complexation. Among them, PEI is the most 

widely used polymer for complexing with siRNA.  

The native branched PEI (25 kDa) is a prototype polymeric transfection agent 

that has gained widespread use. Branched PEI contains primary, secondary and tertiary 

amines in the molar ratio of 1:2:1. The primary amines are mainly responsible for 

nucleic acid condensation while the secondary and tertiary amines provide buffering 

capacity and therefore facilitate endosomal escape via the so-called “proton sponge” 

effect. The transfection efficiency of PEI, along with its cytotoxicity, strongly depends 

on its molecular weight. Usually, high molecular weight PEI has higher transfection 

efficiency but with higher toxicity as well, while low molecular weight PEI has lower 

cytotoxicity with reduced transfection efficiency. To enhance the gene delivery 

efficiency and minimize cytotoxicity of PEI, there has been a great deal of effort 

focused on structurally modifying PEI. For example, Hua et al. cross-linked low 

molecular weight 800 Da PEI with short diacrylate linkages to form higher molecular 

weight PEI structures [65]. The modification combines the favorable low toxicity of 

low molecular weight PEI with the higher transfection efficiency of high molecular 

weight PEI. The biodegradable ester bonds are hydrolyzed under physiological 
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conditions within the cell after delivery and convert the cross-linked high molecular 

weight PEI into low toxic low molecular weight PEI. In a study of pDNA transfection, 

an optimal cross-linked PEI, EGDMA-PEI 800-4h (the product of conjugation of 

amino groups of 800-Da PEI to EGDMA for 4 h), resulted in a 9-fold increase in gene 

delivery efficiency in B16F10 cells and a 16-fold increase in 293T cells compared to 

commercially available 25 kDa PEI control. Later the modified PEI was used to deliver 

plasmid-encoded focal adhesion kinase-1 (FAK) siRNA in-vivo and prolonged the 

survival of the tumor-bearing mice [66]. To address the associated cytotoxicity with the 

use of PEI for siRNA delivery, Swami et al. cross-linked PEI with 1,4-butanediol 

diglycidyl ether (bisepoxide) [67]. The modification converted primary amines, which 

are believed to be the main source of cytotoxicity to secondary and secondary to tertiary 

amines. The system was found to deliver siRNA more efficiently into HEK cells as 

compared to native PEI 25 kDa with significantly reduced cytotoxicity.  

Jere et al. conjugated low molecular weight PEI and PEG with biodegradable 

poly (β-amino ester) (PAE) [68]. The high repetitive PEI units are thought to result in 

high delivery efficiency while PEG units and the ester linkage facilitate more rapid 

intracellular siRNA release and lead to enhanced polymer degradation resulting in 

lower cytotoxicity. As a result, PAE as a carrier was found to be less toxic and 1.5-fold 

more effective than standard PEI 25 kDa. Several other PEI modifications have been 

investigated by Wagner et al. [69]. The groups performed a number of modifications 

including ethyl acrylate, acetylation of primary amines, or introduction of negatively 
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charged propionic acid or succinic acid groups to the PEI structure. All the conjugates 

led to reduced toxicity in comparison to the unmodified PEI. In particular, 

succinylation of PEI resulted in up to 10-fold lower toxicity in Neuro2A cells. 

In order to facilitate release of siRNA in the cell, branches of PEI have been 

derivatized with ketal linkages [70]. Ketal linkages are acid-degradable under mild 

acidic pHs (e.g., pH 5.0) and facilitate the release of siRNA in the endosomal 

environment as shown in Figure A.4. The ketalized PEI complexed with siRNA into 

siRNA/PEI polyplexes with a particle size range of 80-200 nm showed enhanced 

delivery efficiency with reduced cytotoxicity.  

One of the primary disadvantages of the use of positively-charged complexing 

agents is that they are prone to aggregation or disassociation in the blood when 

complexed to siRNA. Moreover, positively-charged complexing agents tend to interact 

with the negatively-charged proteins in the systemic circulation and are taken up by the 

RES system. To address this potential problem, PEG has been utilized to shield the 

surface of the complex which serves to provide enhanced stability. PEG has either been 

conjugated directly to siRNA or to the cationic polymer. For example, Kim et al. 

conjugated PEG to siRNA via a disulfide linkage which could then be cleaved in the 

reductive environment in endosomes and cytoplasm. The PEG-siRNA conjugate was 

then complexed with PEI to form a nanoparticle [71]. The resulting nanoparticle has an 

inner core comprised of siRNA/PEI surrounded by a hydrophilic PEG shell. This kind 

of structure is similar to amphiphilic lipidic micelle and could be spontaneously formed, 
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so it is called a self-assembled micelle even though the particle size is often not in the 

traditional micellar range. In-vivo imaging results from Kim et al. showed enhanced 

accumulation of micelles in the tumor region following intravenous injection. 

PEGylated siRNA has also been complexed with other cationic polymers such as 

poly-L-lysine (PLL) [72].  

PEG has also been conjugated to the cationic polymer.  For example, PEG 

derivatized diblock or triblock copolymers have been designed and synthesized by 

many groups. A recent publication reported the synthesis of a triblock polymer 

consisting of monomethoxy poly(ethylene glycol) (PEG), poly(3-caprolactone) (PCL) 

and poly(2-aminoethyl ethylene phosphate) (PPEEA) (Figure A.5) [73]. The polymers 

in an aqueous solution spontaneously formed positively charged micelles surrounded 

by PEG corona. siRNA was post-loaded into the formed micelles resulting in 

complexes with an average particle size from 98 to 125 nm depending on the nitrogen 

to phosphate (N/P) ratio.  

Besides the linear copolymers, cationic graft comb-like copolymers were 

synthesized and used to deliver siRNA. Sato et al. prepared and evaluated a series of 

cationic comb-type copolymers (CCCs) consisting of a PLL backbone and PEG or 

dextran side chains [74]. The water soluble dextran side chains of the copolymer are in 

abundance (more than 70 wt. %) and the highly dense PEG brush reinforced the 

electronic interaction between copolymers and siRNA instead of hindering it. The most 

remarkable property of the CCC with higher side chain content (10 wt.% PLL and 90% 
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wt.% PEG) is that it increased circulation time of siRNA in mouse bloodstream by 

100-fold [74]. Interestingly, even when the CCC was injected into mouse intravenously 

20 min prior to the injection of siRNA, the CCC still increased the half-life of the 

post-injected siRNA by more than 60-fold suggesting that the CCC prefers interaction 

with siRNA to other anions existing in blood. 

While some investigators increase the stability and systemic half-life of siRNA 

polyplexes by incorporating PEG, others provide protection to the polycation/siRNA 

complex with another layer of lipid coating. Kim et al. synthesized a water soluble 

lipopolymer (WSLP) by conjugating cholesteryl chloroformate to PEI 1.8 kDa through 

a hydrophobic lipid anchor [75]. The lipopolymer combined the advantages of both 

liposomes and cationic PEI. While the positively charged head group PEI complexed 

with siRNA and enhanced endosomal escape, the lipid coating on the complex further 

protected the complex from aggregation and RES clearance and increased the cell 

membrane permeability. The in-vivo data showed that WSLP/VEGF siRNA complexes 

reduced tumor volume by 55% at 21 days and by 65% at 28 days relative to control 

tumors. 

While most of the approaches discussed so far increase the transfection 

efficiency of PEI by reducing its cytotoxicity or provide protection against systemic 

clearance to some extent, a novel approach is to directly attaching PEI with a membrane 

active peptide. Melittin (Mel) is the major bioactive component of the bee venom. Mel 

has been conjugated to PEGylated PEI or PLL [76]. To avoid its extracellular lytic 
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activity, the amines of Mel were modified with dimethylmaleic anhydride which was 

cleaved under acidic pH in the endosome and enhanced the endosomolytic activity of 

Mel. PEG-PEI-Mel and PEG-PLL-Mel showed 70% and more than 90% in-vitro 

luciferase gene knockdown, respectively.  

To achieve targeted delivery, targeting moieties have been attached to PEI. PEI 

is usually PEGylated with ligands conjugated to the distal end of the PEG, while direct 

attachment of ligands to PEI is performed as well. Schiffelers et al. targeted tumor 

neovasculature expressing integrins by conjugating an Arg-Gly-Asp (RGD) peptide to 

25 kDa PEI [77]. siRNA specific to vascular endothelial growth factor receptor-2 

(VEGF R2) was complexed with the modified PEI at a N/P ratio of 2 to 6, resulting in 

the formation of polyplexes with average particle size of about 100 nm. The 

intravenous administration of these polyplexes to nude mice showed tissue-specific 

accumulation of PEI-PEG-RDG/siRNA. Related, Kim et al. utilized a similar approach 

to complex siRNA with PEI-PEG-folate [78]. Interestingly, their results showed that 

the delivery of siRNA led to the most pronounced gene silencing effect compared to the 

delivery of antisense oligodeoxynucleotide (AS-ODN) or siRNA expressing plasmid 

DNA. Another recently published paper reported on the using of hyaluronic acid (HA) 

as a ligand to target lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1) [79]. 

In-vitro data showed that increased siRNA uptake in HA receptor expressing cells but 

not in non-expressing cells, and that the gene silencing effect was inhibited by free HA 

in a concentration-dependent manner.  
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Compared to the relatively extensive investigation of PEIs and PLLs for siRNA 

delivery to date, studies on the use of other polymers is limited. Chitosan is one 

polymer being investigated for siRNA delivery. Although chitosan has been studied for 

more than a decade as delivery system for pDNA, there are only few studies using it as 

a carrier of siRNA. Chitosan is a copolymer of N-acetyl-D-glucosamine (GlcNAc) and 

D-glucosamine (GlcN) produced by the alkaline deacetylation of chitin. As a natural 

polymer, chitosan is considered to be biocompatible and non-toxic, although this 

depends on various physical-chemical properties such as purity, % deacetylation, and 

Mw, among others. The primary amines in the chitosan backbone become positively 

charged at the pH levels below the pKa of the primary amine (pKa 6.5) so that chitosan 

forms complex with siRNA with electrostatic interaction. Several studies of 

chitosan/siRNA complex have shown that the ability of the chitosan to deliver siRNA to 

cells is dependent on the weight ratio, Mw of chitosan, and the degree of deacetylation 

[80-83]. Similar to other complexes, chitosan/siRNA complexes can be formed by 

simple mixing and stirring process. Different from other synthetic polymers, the N/P 

ratios to prepare chitosan/siRNA are much higher. For example, Kjems et al. used N/P 

ratio as high as 285, however, these high ratios reduced cell viability [80]. The in-vitro 

data showed that chitosan/siRNA complexes formed using high Mw (114 and 170 kDa) 

and deacetylation degree (84%) at N/P 150 were most stable with particle size about 

200 nm [81]. The group showed that 80% enhanced green fluorescent protein (EGFP) 

gene silencing efficiency was obtained after 24 h in H1299 green cells in-vitro. 



259 

 

Effective in-vivo gene silencing was achieved in mice bronchiole epithelial cells (37% 

and 43% reduction of EGFP positive cells compared to scramble siRNA and untreated 

control, respectively) after nasal administration. However, the ability of the complexes 

to deliver siRNA systemically requires further investigation. 

Thiamine pyrophosphate (TPP) has been used to form salts with chitosan to 

improve chitosan water solubility [83]. Chitosan is a weak base with pKa value of 

6.2-7.0, thus of poor solubility at neutral to alkaline pH. TPP is a zwitterionic 

compound, which can increase the water solubility of chitosan due to the phosphate 

groups. On the other hand, the amine groups of TPP together with chitosan bind to 

negatively charged siRNAs to form complexes. The maximal EGFP gene silencing 

effect mediated by chitosan-TPP/siRNA was 70-73%. Another study by Katas et al. 

used sodium tripolyphosphate to ionically cross-link chitosan to form nanoparticles 

[82]. siRNA was either mixed with sodium tripolyphosphate, and then dripped into a 

chitosan salt solution, or adsorbed to preformed chitosan/tripolyphosphate particles. 

The particle size of chitosan/tripolyphosphate was 510 ± 22.9 nm and 276 ± 17.9 nm 

formed using chitosan glutamate 470 kDa and 160 kDa, respectively. The particle size 

of chitosan/tripolyphosphate was 709 ± 50.3 nm and 415 ± 44.6 nm formed using 

chitosan hydrochloride 270 kDa and 110 kDa, respectively.  

Mixson et al. synthesized several branched peptide polymers composed of 

histidine and lysine (HK polymer) [84]. Figure A.6 shows the structure of a branched 

HK polymer with eight terminal branches and histidine-rich domains (H3K8b). An 
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integrin-binding ligand RGD was further added to increase the delivery efficiency of 

siRNA. Although the sizes of HK polymer/siRNA polyplexes were over 400 nm, the 

in-vitro delivery efficiency was significant. The complex of H3K8b and 

anti-β-galactosidase (β-gal) siRNA inhibited β-gal expression by more than 80% after 

48 h in SVR-bag4 cells that stably expressed β-gal. The H3K8b/anti-luciferase siRNA 

complex inhibited more than 90% luciferase activity in MDA-MB-435 cells which 

were cotransfected with a luciferase expression plasmid. 

 

3.1.3.  Others 

In addition to the two larger families of cationic complexing reagents, lipids and 

polymers, there are several other molecules that have been proposed to make 

nano-based siRNA delivery systems.   

Positively charged natural proteins are a pool of convenient reagents in terms of 

their potential to complex and deliver siRNA. In a broad sense, protein is also a group 

of polymers. To date, atelocollagen is the only protein used alone to delivery siRNA 

both in-vitro and in-vivo [85]. Atelocollagen is a highly purified decomposition product 

of type I collagen derived from dermis of cattle with a molecular weight of 300 kDa. 

The amino acid sequence at both N- and C-terminal of a collagen called telopeptide is 

the main source of the immunogenicity. Therefore, atelocollagen lack of telopeptides, 

obtained by pepsin treatment, is low in immunogenicity. It is a rod-like molecule with a 
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length of 300 nm and a diameter of 1.5 nm. Atelocollagen, which is positively charged, 

interacts with the negatively charged siRNA to form an atelocollagen/siRNA complex 

with a diameter of 100-300 nm. An interesting property of atelocollagen is that it is 

soluble at a lower temperature but solidifies at a temperature over 30oC. Therefore, the 

atelocollagen/siRNA complexes were prepared and stored at 4oC. Once introduced into 

animals, the complex becomes solidified and releases siRNA in a controlled manner for 

a period of time due to the biodegradable nature of atelocollagen. Direct intratumoral 

injection of human HST-1/FGF-4 (fibroblast growth factor) siRNA complexed with 

atelocollagen resulting in about 12-fold and 8-fold tumor growth inhibition compared 

to atelocollagen alone and control siRNA, respectively, in an orthotopic xenograft of a 

human non-seminomatous germ cell tumor at 21 days after treatment.  

Based on the barriers that must be overcome to deliver siRNA, some innovative 

carriers have been synthesized to fulfill multiple functions in one system. 

1,4,7-triazanonylimino-bis [N-(oleicyl-cysteinyl-histinyl)-1-aminoethyl) 

propionamide] (THCO) (Figure A.7) and (1-aminoethyl) imino-bis 

[N-(oleicyl-cysteinyl-histinyl-1-aminoethyl)propionamide] (EHCO) are two molecules 

containing a protonatable amines head group of different pKas, two cysteine residues 

and two 8-heptadecenyl tails [86, 87]. They form stable complexes with siRNA through 

charge and hydrophobic interaction. The protonatable amino head group consists of 

primary, secondary and tertiary amines having different pKas (the pKa values of 

primary, secondary and tertiary amines are approximately 6.5, 7.0 and 6.0, respectively), 
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which is similar to branched PEI. Thus, these molecules not only complex siRNA, but 

also facilitate endosomal escape. The dithiol groups in the molecules can be 

polymerized by forming disulfide bonds to further provide stability to the formed 

siRNA complex. The disulfide bonds may be reduced in the endosome and cytoplasm 

resulting in the dissociation and release of siRNA. The multifunctional compounds 

mediated 40-88% silencing of luciferase expression with 100 nM siRNA in U87-luc 

cells. 

Additionally, there are some interesting carriers that are quite unique in terms of 

geometry and other physical-chemical properties. For example, a cone-shaped 

macrocyclic octaamine as shown in Figure A.8 has been proposed by Aoyama et al. 

[88]. The novel carrier has four long alkyl chains and eight amino groups on the 

opposite side of the calix[4]resorcarene macrocycle. What makes the macrocyclic 

octaamine different from other cationic lipids or polymers is that being a small and 

single molecule (Mw 1740), the compound unimolecularly presents a positive charge 

cluster motif with a well-defined geometry. Like amphiphilic micelle-forming 

polymers, the macrocyclic octaamine itself may form small micelle-like particles, with 

hydrophilic amino groups outside and lipophilic chain inside as illustrated in Figure 

A.8. As a result, the cone-shaped macrocyclic octaamine formed complexes with 

siRNA in compact size of ~10 nm.  Although the in-vitro delivery of macrocyclic 

octaamine/siRNA complex occurred with 90-95% knockdown of luciferase expression 

in HeLa, HepG2 and HEK293 cells at 48 h, its in-vivo performance remains to be 
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investigated. 

The KALA peptide (WEAK LAKA LAKA LAKH LAKA LAKA LKAC EA ) is 

a well-known cationic, amphiphilic and fusogenic peptide, which has been popularly 

studied as an endosomal escaping peptide complexing with various nucleic acids. 

However, it was reported that KALA/siRNA complexes did not show sufficient gene 

silencing effect in the presence of serum proteins. In a recent study, two cysteine 

residuals were added to both terminals of KALA [89]. The cysteine-KALA-cysteine 

peptide (CWEAK LAKA LAKA LAKH LAKA LAKA LKAC) self-cros slinked 

through reducible di-sulfide linkage. The crosslinked KALA (cl-KALA) formed more 

stable and compact complexes with siRNA. To further improve the colloidal stability, 

siRNA was modified with PEG. According to a previous report of the same group, 

direct PEG conjugation to siRNA could form more stable complexes than those by PEG 

modified cationic polymers [71]. Although cl-KALA/siRNA and 

cl-KALA/siRNA-PEG only showed 23.6% and 47% knockdown of GFP expression in 

MDA-MB-435-GFP cells at the N/P ratio of 64, the data showed their potential as a 

nano-based delivery system for siRNA. 

 

3.2. Nanoparticles 

In a broad sense, all particles in the nano-scale range are called nanoparticles. 

However, in this chapter, nanoparticles are differentiated from nanocomplexes by their 
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more organized structures, i.e., well defined shell and core structures. 

Huang et al. has developed a targeted nanoparticle formulation for siRNA 

systemic delivery to metastatic tumors overexpressing the sigma receptor [90, 91]. The 

core of the nanoparticle is a complex of siRNA, calf thymus DNA and protamine, a 

highly positively charged peptide. The shell of the nanoparticle is a reorganized 

liposome structure consisting of DOTAP and cholesterol (1:1 molar ratio) (Figure A.9). 

Thus, the nanoparticle is referred to as “LPD”, or Liposome-Polycation-DNA. The 

nanoparticles are formed spontaneously by mixing the core complexes with pre-formed 

cationic liposomes.  To create a sterically-stabilized particle and for subsequent 

targeting, DSPE-PEG2000 (1,2- distearoyl-sn- glycerol-3- phosphoethanolamine-N- 

[methoxy(polyethylene glycol)2000]) or DSPE-PEG-anisamide was post-inserted into 

the preformed LPD. The in-vitro results showed that the delivery efficiency of the 

targeted nanoparticles was 4-7-fold higher than the non-targeted nanoparticles. The 

in-vivo tissue distribution results suggested that LPD surface-modified by PEG 

delivered a therapeutic dose to the tumor and avoided substantial accumulation in the 

liver with either targeted or untargeted LPD.  These results suggest that the tumor 

accumulation of LPD with particle size around 100 nm is primarily due to the EPR 

(enhanced permeability and retention) effect as compared to targeting. After a single i.v. 

injection of 150 µg/kg anti-luciferase siRNA, 70-80% luciferase activity was silenced 

in a metastatic mouse tumor model. To avoid potential immunogenicity and 

inflammatory responses with calf thymus DNA, the calf thymus DNA has also been 
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replaced with hyaluronic acid to produce LPH (Liposome-Polycation-Hyaluronic acid) 

nanoparticles [92]. The results showed that while the gene silencing effect of LPH 

nanoparticles is comparable to LPD nanoparticles, the immunotoxicity of LPH is much 

lower.  

A similar structure to LPH has also been reported by Peer et al. to develop 

leukocyte-directed nanoparticles to deliver anti-Cyclin D1 siRNA [93]. The pre-formed 

liposome is composed of phosphatidylcholine (PC), 

dipalmitoylphosphatidylethanolamine (DPPE), and cholesterol (Chol). High molecular 

weight hyaluronan (850 kDa), was attached to the outer surface of the liposomes by 

covalent linkage to DPPE to provide steric stabilization. The resulting nanoparticles 

were equipped with targeting function through covalently conjugating to the 

hyaluronan a monoclonal antibody FIB504 against β7 integrins which are highly 

expressed in gut mononuclear leukocytes. Anti-Cyclin D1 siRNA loaded nanoparticles 

were formed by rehydrating lyophilized liposomes with water containing 

protamine-condensed siRNA. In an experimentally induced colitis mouse model, the β7 

integrins targeted nanoparticles knocked down the Cyclin D1 expression to the normal 

level and ameliorated the colitis score.  

An organic-inorganic hybrid nanoparticle was developed by Kataoka et al. [94, 

95]. The organic-inorganic shell-core structure is a core composed of nanocrystals of 

siRNA/CaP (calcium phosphate) complexes surrounded by a hydrophilic shell of a 

PEG-PAA block copolymer (polyethylene glycol-aspartic acid). Due to its potential 
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biocompatibility, CaP is widely applied in various biomedical applications. Its binding 

affinity to a variety of molecules including proteins, nucleic acid and small molecule 

drugs makes it a potential controlled release material. However, one of the difficulties 

in using CaP to form nanoparticles is the relatively rapid crystallization rate of CaP. In 

the absence of other materials, the growth of siRNA/CaP complex crystals is rapid and 

precipitates are formed within minutes after mixing siRNA and CaP solutions. However, 

in the presence of a PEG-polycarboxylate block copolymer, such as PEG-PAA, the 

rapid crystal growth is controlled or even prevented through the absorption of the PAA 

segment of PEG-PAA on the formed crystal surface. The resulting complex 

nanoparticles have diameters ranging from 100 to 300 nm depending on the PEG-PAA 

and CaP concentrations. Moreover, the CaP core dissociates in the intracellular 

environment with lower calcium concentration as compared to the extracellular fluids, 

allowing the controlled release of siRNA from the core matrix. However, since the 

complex nanoparticles lack the ability to escape the endosomes, in-vitro gene 

knockdown experiments are performed by pretreatment of the cells with chloroquine, a 

well known adjuvant to provide endosomal escape. Although the in-vitro luciferase 

expression was silenced by the siRNA/CaP/PEG-PAA nanoparticles to about 40% in 

293 cells, the requirement of chloroquine makes this formulation less practical for 

siRNA delivery. To facilitate endosomal escape provided by the nanoparticle itself, 

PAA was replaced with polymethacrylic acid (PMA), another polyanion that undergoes 

a conformational change at pH 4-6 to expose a more hydrophobic structure that is able 
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to interact with the endosomal membrane and disturb its structure. As a result, the 

luciferase activity was inhibited to 20% in 293 cells using as low of a siRNA 

concentration of 25 nM without the use of chloroquine. 

Davis et al. designed a modular-delivery vehicle that utilizes an inclusion 

complex for targeted delivery of siRNA [96]. The inclusion complex was comprised of 

siRNA and a synthesized cyclodextrin-containing polycation (CDP) that provided two 

functions. One, the polycation contains 2 mol of positive charge per CDP monomer, 

which complexes with negatively charged siRNA and self assembles to nanoparticles. 

Two, the cyclodextrin motifs on the surface of the nanoparticle serve as a “loading dock” 

to incorporate PEGs and target ligands. PEG molecules containing adamantane (AD) 

on the proximal end and either methoxy (AD-PEG) or a targeting ligand such as 

transferrin (AD-PEG-Tf) on the distal end was mixed with CDP at a 1:1 AD-PEG/β-CD 

(mol/mol) ratio in water. AD-PEG or AD-PEG-Tf was attached to the polymer via 

inclusion complex formation between adamantane and the β-CD motifs on the 

polycation backbone. A calculation of the stoichiometry of each particle estimated that 

a 70 nm particle contained about 2000 siRNA molecules and around 100 AD-PEG-Tf 

molecules. Thus, each CDP nanoparticle could theoretically deliver a large payload of 

siRNA with a large ratio of siRNA to targeting ligand (20:1). The functional efficiency 

of CDP nanoparticles was demonstrated through knockdown of luciferase reporter 

protein expression. HeLa cells treated with CDP nanoparticles containing both pGL-3 

plasmid DNA expressing firefly luciferase and siRNA against luciferase showed 50% 
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lower expression of luciferase than cells that received either the plasmid alone or the 

plasmid plus control siRNA. 

While most of the nanoparticle designs tend to entrap or hide siRNA in the 

nanoparticle core thus providing siRNA protection against degradation, a few groups 

have attempted to adsorb siRNA on the surface of solid nanoparticles. For example, 

Kim et al. developed cationic solid lipid nanoparticles consisting of natural components 

of protein-free low-density lipoprotein (LDL) to deliver siRNA [97]. LDLs are natural 

nano-carriers abundant in the bloodstream, transporting lipids, cholesterol, proteins and 

hydrophobic drugs throughout systemic circulation. Solid lipid nanoparticles, 

mimicking natural LDL, have been shown to be very stable and behave similarly to 

native LDL when injected into the bloodstream. The solid lipid nanoparticles were 

comprised of 45% (w/w) cholesteryl ester, 3% (w/w) triglyceride, 10% (w/w) 

cholesterol, 14% (w/w) DOPE, and 28% (w/w) 3β-[N- (N’, N’- dimethylaminoethane)- 

carbamoyl]- cholesterol (DC-chol). The function of the cationic DC-chol was to make 

the surface of the nanoparticles positively-charged with a zeta potential of about +40 

mV. siRNA was conjugated to PEG via a disulfide linkage and anchored onto the 

surface of cationic solid lipid nanoparticles through charge interaction. Under an 

optimal weight ratio of DC-chol and siRNA-PEG conjugate, the LDL-like 

nanoparticles silenced the expression of green fluorescent protein (GFP) and VEGF to 

40% and showed much less cytotoxicity than PEI 25k in MDAMB435 cells. Although 

work with the LDP-like particles has only progressed to in-vitro studies, it is expected 
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that the LDL-like nanoparticle may be useful for in-vivo tumor targeting delivery of 

siRNA since elevated levels of low density lipoprotein receptor (LDLR) are reported in 

various cancer cells such as myeloid leukemic cells, colon, kidney, and brain tumor 

cells. 

Finally, like DOTAP liposomes, nanoparticles for nucleic acid delivery 

including siRNA are also patented and commercially available for the purpose of 

scientific research. Bioalliance (Paris, France) patented a chitosan-coated 

poly-isohexylcyanoacrylate (PIHCA) nanoparticle in 2004. The nanoparticle was 

directly utilized by Pille et al. to deliver anti-RhoA (Ras homologous A) siRNA in mice 

and to prove the therapeutic potential of the strategy to treat aggressive breast cancers 

[98].  

 

3.3. Nanocapsules 

Nanocapsules are structurally similar to nanoparticles except for having a 

liquid-filled core instead of a solid core. To date, there are just a few publications on the 

use of nanocapsules as siRNA delivery carriers. The following will discuss two such 

nanocapsules that have novel properties as potential siRNA delivery systems.   

Ideally, to entrap siRNA in the internal core of a nanocapsule, the core should be 

aqueous to accommodate the hydrophilic siRNA. The preparation of nanocapsules 

usually involves the preparation of an emulsion. An oil-in-water emulsion is unable to 
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encapsulate the hydrophilic siRNA alone. In addition, a water-in-oil emulsion leads to 

nanocapsules suspended in an oil phase which may not be desirable for intravenous 

administration or would have to be removed prior to injection. To facilitate the 

formulation of siRNA in a nanocapsule, Couvreur et al. developed a nanocapsule with 

an aqueous core that also could suspend in an aqueous vehicle [99]. A water-in-oil 

nanoemulsion was first prepared by adding an aqueous phase containing siRNA to an 

oil phase comprised of Miglyol and Span 80. Then, isobutylcyanoacrylate (IBCA) 

monomer was added to the nanoemulsion under mechanical stirring. When IBCA 

polymerized, it formed a shell structure surrounding the aqueous core containing 

entrapped siRNA. Later, the oil phase and surfactant were removed by 

ultracentrifugation. The resulting pellet was resuspended in water to produce a 

nanosuspension with a particle size of 350 ± 100 nm. In-vitro studies in NIH/3T3 cells 

stably transfected with human EWS-Fli1 gene showed that siRNA against EWS-Fli1 

oncogene delivered in the nanocapsules inhibited the EWS-Fli1 mRNA level to 40%. 

When tested in-vivo in xenograft mice bearing EWS-Fli1-expressing tumors, the 

nanocapsules were found to inhibit 80% of the tumor growth after intratumoral 

injection when compared with the saline treated control mice. This is the first study 

reporting on the use of aqueous core nanocapsules for the delivery of siRNA with 

resulting efficacy in-vivo. 

To facilitate endosomal escape and release siRNA to the cytosol where RNAi 

events take place, various endosomal escaping agents have been utilized such as 
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fusogenic lipids and peptides, polymers exerting proton-sponge effect etc. A novel 

endosomal breaking formulation called thermo-sensitive hydrogel nanocapsules were 

developed by Park et al. [100]. The thermo-sensitive Pluronic F-127/PEI 2K 

nanocapsules were synthesized by interfacial crosslinking reaction between 

pre-activated Pluronic F-127 and low Mw PEI 2K at the oil-in-water interface. The 

resulting Pluronic/PEI 2K nanocapsules had an interior structure filled with aqueous 

fluid surrounded by a crosslinked Pluronic/PEI 2K shell. Most pluronic copolymers 

have the critical micelle temperature (CMT) ranging from 25 to 40oC. Above the CMT, 

the pluronic co-polymers self-assemble to form a spherical micellar structure by 

dehydration of the poly-(propylene oxide) (PPO) moieties within the structure. The 

average particle size of Pluronic/PEI 2K nanocapsules was 118.9 ± 15.3 nm at 37 oC 

and 412.3 ± 83.2 at 15oC, respectively. According to the temperature-dependent 

property of pluronic, the collapse of the nanocapsules with increasing temperature is 

primarily caused by enhanced hydrophobic interactions between the PPO blocks in the 

Pluronic F-127 copolymers. PEG conjugated siRNA was anchored to the surface of 

Pluronic/PEI 2K nanocapsules through charge interaction. In in-vitro cell transfection 

experiments, 3 h after the cells treated with the nanoparticles at 37oC, 15 min of 15oC 

cold shock was given to the cells. The increased particle size under 15oC caused a 

41.7-fold volume change which disrupts the endosomal membrane by physical strength. 

With cold shock treatment, the expression of GFP in HeLa cells and VEGF in PC-3 

cells was reduced to 37.3% and 3.2%, respectively.  
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3.4. Dendrimers 

Polycationic dendrimers such as poly-(amidoamine) (PAMAM) dendrimers 

have long been used to deliver DNA. Recent studies have shown that PAMAM may 

also serve as siRNA delivery carriers [101]. PAMAM dendrimers contain primary 

amine groups on the surface and tertiary amine groups in the internal architecture. The 

primary amines bind siRNA, while the tertiary amines act as a proton-sponge and 

facilitate the endosomal release of siRNA into the cytoplasm. The siRNA-PAMAM 

complexes are very stable which could only been dissociated under very strong ionic 

strength conditions. PAMAM dendrimers are termed as Gn with n denoting dendrimer 

generation number. As the generation number increases, the number of terminal amines 

increases. Thus, similar to DNA-PAMAM affinities, an increase in PAMAM generation 

leads to stronger interactions between the dendrimer and the siRNA. Zhou et al. showed 

that GL3Luc siRNA-G7 complex reduced the expression of luciferase to 20% in 

A549Luc cells in-vitro [102]. To lower the cytotoxicity of G7 PAMAM dendrimers 

while maintaining the siRNA binding affinity, surface PAMAM-NH2 was acetylated 

with acetic anhydride, and internal PAMAM-OH was quanternized with methyl iodide 

[103]. Both modifications generate neutral outer surface with internal positive charges. 

It was found that the modifications did not interfere with the binding ability but 

significantly decrease the cytotoxicity of G7 PAMAM dendrimers. An effort was also 
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made to further increase the cellular uptake of siRNA-PAMAM complex by 

conjugating the cell penetrating peptide, Tat; however, the conjugation of Tat did not 

improve the efficiency of the dendrimer [104]. 

The terminal groups of G3 PAMAM dendrimer was partially conjugated with 

α-cyclodextrin (α-CDE) to deliver siRNA [105]. CDE, at high concentration, disturbs 

the cellular membrane components such as phospholipids and cholesterol, leading to 

increased membrane permeability. Moreover, the α-CDE has low cytotoxicity even at 

high charge ratio of α-CDE/nucleic acid. Thus, the G3 PAMAM dendrimer/α-CDE 

conjugate was developed to reduce the cytotoxicity and increase the delivery efficiency 

for nucleic acids. A pilot study showed that siRNA against pGL3 luciferase delivered 

by G3 PAMAM dendrimer /α-CDE conjugate suppressed the luciferase gene expression 

level in-vitro by about 50% in NIH3T3-luc cells. 

Dendritic poly(L-lysine) generation 6 (KG6) was used to deliver several siRNAs 

by Okitsu et al. [106]. KG6 was used in combination with the amphiphilic weak-base 

peptide Endo-Porter (EP), which is a commercially available cellular delivery reagent 

available from Gene-Tools. Neither KG6 nor EP could efficiently deliver GAPDH 

siRNA when KG6 or EP was used alone. However, when KG6/EP was used together, 

GAPDH was efficiently knocked down at both protein levels and mRNA levels in 

H4IIEC3 cells. 
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3.5. Other novel carriers 

In addition to the traditional siRNA delivery carriers discussed above, there are 

several highly innovative new strategies that are being developed and tested as potential 

delivery systems for siRNA.  

Quantum dots (QD) are a nano-scaled semiconductor inorganic material that 

has provided greatly enhanced capabilities for medical imaging and diagnostics. Gao et 

al. developed a class of dual-functional nanoparticle for both siRNA delivery and 

imaging based on the use of QDs [107]. Highly luminescent QDs were first synthesized 

and encapsulated in the poly-(maleic anhydride-alt-1-tetradecene) bearing surface 

carboxylic acid groups. The carboxylic acid groups were then partially converted to 

tertiary amines. It was found that by balancing the ratio of the carboxylic acid and 

tertiary amine moieties, the proton-sponge effect could be precisely controlled. The 

resulting polymer coated QDs were suitable for siRNA binding, penetrating the cell, 

and for providing a mechanism for endosomal escape (Figure A.10). In comparison to 

cationic lipids and polymer-based siRNA delivery systems, the QD-based nanoparticles 

have much smaller size and more uniform size distribution. QDs with core size of 6 nm 

yielded polymer coated dots with sizes of 13 nm and 17 nm before and after siRNA 

binding, respectively. The QD nanoparticles efficiently delivered siRNA against 

cyclophilin B in a human breast cancer cell line and led to nearly complete suppression 

of cyclophilin B expression, which was superior to three most commonly used 

transfection reagents (LipofectamineTM, TransIT-TKOTM, and JetPEITM). Another 
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advantage of the QD-siRNA particles is that they provide simultaneous delivery of 

siRNA with imaging allowing for real-time tracking and intracellular localization of 

QDs during delivery.    

Guo et al. have also engineered protein- and lipid-free multifunctional RNA 

nanoparticles to deliver siRNA and combine targeted therapy and imaging in a natural 

modality, pRNA (packing RNA), by utilizing RNA nanotechnology [108]. pRNA is a 

vital component of molecular motor which uses ATP as energy to package DNA into the 

procapsid during the replication of linear dsDNA viruses. The 117-nucleotide pRNA 

monomer contains two functional domains: the intermolecular-interacting domain and 

the double-stranded helical DNA packaging domain. The intermolecular-interacting 

domain contains left and right loops like two arms that interlock with other pRNA 

monomers via base-pairing to form dimer, trimer, or hexamers with size of 10-30 nm. 

Figure A.11 shows the structure of a pRNA trimer. According to their study, the 

replacement of pRNA helical region with siRNA, or connection of the RNA aptamer, or 

connection of other chemical components did not interfere with the folding and 

trimering of the pRNA as long as the two strands are paired, nor the function of siRNA 

and other connected moieties. Therefore, they tried to replace the helical region with 

small RNA fragments and connect RNA aptamer or other chemical components to this 

region to engineer a variety of chimeric pRNAs. The pRNA trimers with size of about 

20 nm are extremely compact and versatile nanoparticles and of lots of advantages. For 

example, as shown in Figure A.11, a trimeric complex composed of pRNA/aptamer 
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(CD4), pRNA/siRNA (BIM), and pRNA/FITC could target CD4 positive cells and 

simultaneously deliver siRNA against proapoptosis factor BIM and imaging molecule 

FITC to these cells. In addition, more than one siRNA could be constructed to the 

pRNA nanoparticles to inhibit the expression of multiple oncogenes. RNA aptamers, 

comparing to antibodies and phage-displaying peptides, have very low immunogenicity. 

Furthermore, the size, shape, stoichiometry and the functions of the final product are 

highly controllable.  

 

IV.  Future Perspective  

The promise of siRNA applications as a powerful therapeutic agent relies on a 

successful delivery vehicle. In part II, a series of criteria of an “ideal” nano-based 

siRNA delivery system were addressed and can be summarized as: efficient, specific 

and safe. From part III, it is obvious that a great deal of efforts has been devoted to 

pursuing the “ideal” nano-based systems for siRNA delivery and the field is developing 

rapidly. However, all current-reported formulations have recognizable gaps.  

The delivery efficiency depends on many factors. First, the structures of carrier 

materials are critical. Currently, although there are some general rules to design and 

synthesize siRNA complexing agents (for example, the presence of positive charges), 

the investigation of structure-efficiency relationship is still under a trial-and-error mode. 

In the future, when large amount of compounds have been studied, database could be 
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built, and thus computer simulation and modeling would be performed to rationally 

design the delivery agent and to predict binding and assembly with siRNA.  

Particle size is another factor controlling the in-vivo efficiency of siRNA 

nanoparticles. Nanoparticles with a broad range of particle size (from 20 nm up to about 

800 nm) have been reported in the literature to deliver siRNA in-vitro. However, since 

most of the studies have stopped at in-vitro experiments, the in-vivo efficacy of the 

siRNA nanoparticles remains a question so that the optimal particle size that facilitates 

cellular uptake, tissue penetration and minimizes systemic clearance is not fully 

understood yet. 

In addition to particle size and size distribution, other properties such as shape, 

mechanical properties, and surface texture and morphology are also important factors 

affecting siRNA delivery efficiency of nanoparticles both in-vitro and in-vivo. While 

chemical modifications of carrier materials are the major strategy to increase the 

efficiency of siRNA delivery nowadays, the influence of physical properties of the 

nano-formulation has been underestimated. Together with particle size, these physical 

properties and their influence on the nanoparticle behavior in circulation, tissue 

distribution, cell penetration, and cellular trafficking require more attention. 

The specificity of siRNA delivery primarily depends on the selection of a target 

and ligand, both of which would benefit from progress and advances in other fields.  

The advances in molecular biology would help find more specifically expressed target 

such as receptors, integrins or enzymes in pathological tissues as well as more specific 
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and high affinity ligand via, for example, in-vivo phage display.  

Years ago, the incorporation of PEG in various nano-formulations dramatically 

decreased their non-specific RES clearance and increased their circulation half-life. As 

the non-specific RES clearance decreases, the accumulation of nanoparticles in target 

organ or tissue increases. Hence, to increase the delivery specificity, active targeting 

using a targeting ligand is preferred; however, improved delivery by passive targeting 

may also have therapeutic potential and utility. 

In terms of the safety of nano-based siRNA delivery system, on one hand, 

efforts need to be given to further decrease the cytotoxicity of carrier materials and to 

look for less immunogenic targeting ligands. On the other hand, the toxicity of different 

formulations is mostly identified and/or estimated by in-vitro experiments. However, 

cytotoxicity is often cell-type dependent. Thus, the field also is in need of improved, 

predictive, in-vitro models to more accurately reflect the in-vivo environment. 

There is no doubt that delivering siRNA safely and efficiently is a challenging 

task. The field is in need of a breakthrough.   
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Figure A.1.  Mechanism of RNA interference 
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Figure A.2.  Challenges for siRNA delivery. The barriers include (1) 
susceptibility in the blood circulation and tissues after injection, (2) rapid 
clearance by renal excretion and RES uptake, (3) extravasation across the 
endothelium and to the target tissue (4) penetration through the cell membrane, (5) 
endosomal escape, and (6) transient persistence in cells 
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Figure A.3.  Structures of (a) CCLA, (b) CDAN, (c) RPR209120, and (d) MVL5 
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Figure A.4.  Dissociation of nucleic acids from ketalized PEI upon hydrolysis.  
Figure adapted from Shim et al. (2008) 
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Figure A.5.  Self-assembling of cationic micellar nanoparticles and loading of 
siRNA.  Figure adapted from Sun et al. (2008) 
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Figure A.6.  Schematic structure of H3K8b polymer.   
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Figure A.7.  Structure of THCO 
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Figure A.8.  Cone-shaped structure of macrocyclic octaamine. Figure adapted 
from Matsui et al. (2006)  
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Figure A.9.  Preparation of PEGylated LPD. Figure adapted from Li et al. 
(2006) 
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Figure A.10.  Adsorption of siRNA onto surface-modified QDs. 
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Figure A.11.  Schematic structure of engineering pRNA nanoparticle containing 
siRNA, aptamer and fluorescent label.   
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