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ABSTRACT

BRADLEY D. SHRAGO: Fuel Price Beliefs and the Consumer Response to Price Fluctuations:
The Choice between Gasoline and Diesel Vehicles.

(Under the direction of Brian McManus)

When consumers make fuel choices in vehicle adoption, they must form beliefs regarding each

fuel’s price over the life-cycle of the vehicle. Whereas prior research has found that current gaso-

line prices are a reasonable proxy for consumers’ gasoline price beliefs, the same may not hold for

the price difference between diesel and gasoline, a key determinant of the savings associated with

adopting a diesel engine. I consider the market for gasoline and diesel powered pickup trucks in the

state of Washington, where the time-series variation in the diesel premium is transient while geo-

graphic variation in the premium is relatively persistent. Because time-series variation in the diesel

premium exhibits mean-reversion, a forward-looking individual’s price beliefs may not respond to

such variation. In order to consider the importance of modeling price beliefs in a manner which

allows consumers to exhibit different responses to different types of price variation, I develop a

two-period model of truck choice and subsequent usage. I employ a rich dataset of vehicle regis-

trations and high-frequency local fuel prices which allows me to separately identify the consumer

response to time-series variation in the diesel premium relative to all other sources of fuel price

variation. My estimates suggest the response to the former is roughly one-tenth as strong as the

latter. Using a variety of counterfactual simulations, I document that modeling price beliefs in a

more flexible manner which allows for different responses to different types of fuel price variation

increases common measures of the consumer response to price fluctuations by roughly 15-20% in

this setting.
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SECTION 1

INTRODUCTION

Understanding consumers’ responsiveness to fuel prices and their willingness to substitute into

non-gasoline powered engines carries significant importance to both environmental and economic

policy. In the United States, the transportation sector accounts for roughly one fourth of green-

house gas emissions, the majority of which can be attributed to usage of petroleum-based fuels

in automobiles and trucks. Overall, energy expenditures have typically represented between 5%

and 10% of GDP over the past few decades. In recent years, a variety of policy mechanisms

have been proposed and implemented in hopes of reducing environmental damages and reliance

on foreign energy sources. Broadly speaking, policy goals tend to be aimed at reducing per-mile

fuel consumption from gasoline and diesel-powered engines as well as incentivizing development

and adoption of vehicles which operate on renewable fuels.1 Despite the recent attention to non-

gasoline fleet development and recent growth in availability of electric and diesel-powered cars,

market shares of non-gasoline powered cars, SUVs, and vans remain low throughout the United

States. This poses a challenge for researchers studying fuel choice among U.S. automobile pur-

chasers, as fuel choice has not been a matter of serious consideration for the vast majority of car,

SUV, and van purchasers for much of the last century.

In this paper, I consider the market for pickup trucks as a means to study the role of price

expectations and heterogeneity in expected use on fuel choice, fuel economy, and subsequent us-

age decisions. My decision to focus on this market is based on the limited availability and low

1Examples of such policies include federal and state-level purchase subsidies for electric vehicles, subsidies at the
federal and state level granted towards the production of biofuels such as ethanol and biodiesel, and generous treatment
of such vehicles under recent Corporate Average Fuel Economy (CAFE) regulations. Diesel-powered cars enjoy a
subtler advantage under CAFE regulations, as diesel engines generally enjoy a fuel economy advantage between 25%
and 40% over a similarly powered gasoline engine. On a per-gallon basis, diesel requires more petroleum and emits
around 15-20% more CO2 when it is burned, but CAFE regulations currently do not adjust diesel fuel economy for
the fuel’s higher carbon content.

http://www.eia.gov/tools/faqs/faq.cfm?id=307&t=11


adoption rates of non-gasoline vehicles in the United States, as the market for pickup trucks is the

only segment of the U.S. automobile market where (i) vehicles powered by different fuels have

significant market shares and (ii) a large share of vehicles is purchased by individuals rather than

fleet managers.2 I employ a rich dataset of vehicle registrations and high-frequency retailer-level

fuel prices in the state of Washington from 2012-2015. My fuel price data, along with the presence

of odometer readings attached to a subset of vehicle observations, allows me to account for two

econometric challenges facing researchers who study fuel choice: modeling price expectations in

a manner consistent with the beliefs of vehicle purchasers, and accounting for the role of selection

into fuel type on anticipated usage.

The issue of selection on anticipated usage is well-documented in the literature and summa-

rized by Bento et al. (2011), who show that the energy paradox in fuel economy could be partly

explained by unobserved heterogeneity in usage intensity.3 Selection on anticipated usage is an im-

portant consideration for fuel choice in the pickup truck market as well. In this market, the diesel

engine option is a costly upgrade (typically several thousand dollars) available on large trucks as

a means to reduce operating costs and improve performance.4 Thus, one might suspect that those

individuals with a high level of anticipated usage should have a greater willingness to pay for the

engine’s attributes, and in turn be more likely to select the upgrade. In order to account for se-

lection on anticipated usage, I use a two-period model of product choice and subsequent usage

following Einav et al. (2013) and Gillingham (2013). In my specification, individuals’ expected

utility from operating the vehicle is scaled by a parameter which represents their usage type at the

point of vehicle purchase. For those individuals with a high level of expected usage, it is more

2Based on vehicle registration data provided to me by the Washington Department of Licensing (DOL), roughly
one fifth of new, personally-registered pickup trucks purchased from 2012-2015 in the state run on diesel, with all but
a few dozen of the remaining vehicles operating on gasoline.

3The energy paradox refers to the phenomenon wherein individuals seemingly undervalue the present discounted
value of energy savings when making purchases.

4Until the 2014 model year, the diesel engine had only been available on heavy-duty pickup trucks. Dodge began
offering a diesel engine in the ‘Full-Size’ Ram 1500 in 2014. General Motors began offering a diesel engine in the
‘Mid-Size’ Colorado (and alternatively badged Canyon) in 2016. Nissan became the first foreign manufacturer to offer
a diesel engine in a truck in the United States with their Nissan Titan XD which was released late in 2016.
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likely that the utility gains associated with adoption of the more efficient, high-performance diesel

engine will outweigh the upgrade cost. By employing odometer readings for a subset of my vehicle

registrations, I am able to identify the distribution of usage types and allow adoption decisions to

shift based on individuals’ anticipated usage levels.

Within any model of vehicle choice the researcher must consider consumers’ formation of fuel

price beliefs over the life-cycle of the vehicle. Forecasting gasoline and oil prices is a rich liter-

ature unto itself, and there is a plethora of studies which attempt to improve upon a no-change

forecast, where the expected price of gasoline at any point in the future is equivalent to its current

price.5 Alquist et al. (2011) summarize the predictive power of a variety of methods of forecasting

oil prices, and find limited evidence of models which offer a forecast improvement over the no-

change forecasting model. This evidence is consistent with consumers’ elicited beliefs from sur-

veys as well. Anderson et al. (2013) find that after controlling for inflation expectations, long-term

household gasoline price expectations can be reasonably approximated by a no-change forecast.

Given this evidence, prior researchers have often specified a no-change forecast for gasoline prices

when modeling vehicle adoption, an approach which I also follow for gasoline prices.

The decision of whether to upgrade to a diesel engine requires consumers to forecast operating

costs, relative to the engine’s gasoline counterpart, over the vehicle’s life. While gasoline price

beliefs may be reasonably approximated by a no-change forecast, this need not hold for the price

differential between the two fuels (referred to as the ‘diesel premium’ below). In Washington,

variation in the diesel premium consists of both geographic price variation which is relatively

persistent, as well as time-series variation which exhibits mean-reversion.6 This suggests that

the price beliefs of a forward-looking individual may respond differently to different sources of

variation in the diesel premium.7 As a result, a no-change forecast of the diesel premium over the

5I use the term no-change forecast to refer to the family of price forecasts where the forecast price in the future is
today’s price. As such, a random walk price forecast fits into this family.

6In §A.5, I document the mean-reverting nature of the diesel premium.

7Li et al. (2014) document that consumers exhibit a stronger response to variation in gasoline taxes than to other
sources of variation in gasoline prices, and suggest this may be due to consumers’ perceived persistence of tax changes.
They also discuss the possibility that this results from greater public awareness of tax changes versus other price
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life of a vehicle may be improved upon by forecasting the diesel premium based on the historical

average in the individual’s locale rather the current diesel premium.

My model of vehicle adoption and subsequent usage offers the opportunity to endow individ-

uals with a variety of price beliefs. Considering the mean-reverting nature of the diesel premium,

one approach is to specify expectations based on the average diesel premium in an individual’s lo-

cale, and assume that individuals’ diesel price forecasts fully account for mean-reversion. An alter-

native approach is to consider the possibility that individuals do not recognize the mean-reverting

nature of the diesel premium and assume the same no-change forecast used for gasoline prices is

applied to the diesel premium. A third possibility is that neither of these approaches are consistent

with individuals’ price beliefs, and that individuals’ price beliefs do change in response to mean-

reverting variation in the diesel premium, but to a lesser extent than the no-change forecast would

imply. Rather than making an ex-ante assumption regarding which of the three possibilities repre-

sents consumers’ price beliefs, I specify price expectations such that a parameter to be identified

sheds light on which beliefs are most consistent with consumer behavior.

Identifying the type of price beliefs most consistent with consumer behavior within the confines

of my model requires me to separately identify consumers’ responsiveness to time-series variation

in the diesel premium from other sources of fuel price variation which consumers may perceive as

more likely to persist throughout the life of a vehicle. This can be accomplished because of the

atypically high level of cross-sectional variation in both gasoline prices and the diesel premium

within the state of Washington. Whereas the western portion of the state receives fuel primarily

from West Coast fuel transportation networks, the eastern portion of the state receives fuel pri-

marily from the Rocky Mountain region’s fuel transportation networks. There is no pipeline which

crosses the Cascade mountains, which bisect the state from north to south. Transporting fuel across

the state is costly as it must either be done via roadways or marine transport via the Columbia River

(EIA, 2015). As a result, gasoline prices tend to be higher and the diesel premium lower to the

west of the Cascades relative to prices to the east of the Cascades. Persistently higher levels of

fluctuations.
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gas prices and a lower diesel premium result in considerably larger operating cost savings from

upgrading to a diesel engine. In terms of the lifetime operating cost differential between a gasoline

and diesel powered variant of a particular truck, such cross-sectional variation in fuel prices results

in thousands of dollars of variation in savings associated with the diesel option. Given that my

data contain upwards of 90,000 new truck purchases across the state, this cross-sectional variation

in fuel prices allows me to identify consumers’ responsiveness to a relatively persistent source of

variation in the diesel premium. Given consumers’ responsiveness to this source of price variation,

the extent to which consumers respond to time-series variation in the diesel premium allows me to

identify a crucial parameter attached to price beliefs.

Estimation results convey the importance of tailoring price expectations to the market of inter-

est when considering the consumer response to fuel price fluctuations when multiple fuels enjoy a

significant market share. In the context of fuel choice in pickup truck adoption, this entails allow-

ing consumers to respond differently to time-series variation in diesel prices than cross-sectional

variation. In my structural model, results suggest consumers are roughly one-tenth as responsive

to time-series variation in the diesel premium as they are to all other sources of fuel price vari-

ation. My estimates indicate that failing to decompose price beliefs leads to underestimation of

consumers responsiveness to fuel prices by around 15-20% across a variety of different measures.

Implicit discount rates, computed based on consumers’ implied trade-off between a vehicle’s pur-

chase price and its yearly operating cost, are three to four percentage points lower in specifications

which decompose price beliefs. Likewise, estimates of the vehicle fleet’s elasticity of fuel econ-

omy, the elasticity of driving, and the elasticity of fuel consumption are roughly 15-20% higher

when price beliefs are decomposed to account for the differential response to time-series variation

in the diesel premium. Intuitively, the no-change forecast in this environment treats all sources of

price variation in the same manner. However, as estimates suggest, consumers are not particularly

responsive to time-series variation in the diesel premium. By including a source of price varia-

tion which has little effect on consumers’ purchasing decisions in the same manner as sources of

price variation which have a more significant impact on consumer behavior, the no-change forecast

produces a depressed estimate of the consumer response to price fluctuations.
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Although the specific nature of the diesel premium’s transitory time-series variation need not

apply in other settings, this treatment of price expectations embedded in a structural model of

vehicle adoption can be employed in any situation where a no-change forecast may not represent

a reasonable proxy for price beliefs, given the proper identifying variation. For example, in the

case of electric vehicles, one might surmise based on increasing deployment of charging stations

that individuals forecast the operating cost of an electric vehicle to decrease over the vehicle’s life-

cycle. With adequate variation in both (i) installed charger bases at the time of purchase and (ii)

rates of charger deployment across locations, one could estimate the importance of both current

charging infrastructure as well as expectations over future infrastructure.

In the next section, I present a brief review of the relevant literature. I proceed by discussing the

data used in the project and presenting some descriptive evidence on the importance of decompos-

ing fuel prices and accounting for selection on anticipated usage. I follow my descriptive evidence

by presenting and estimating a two-period model of vehicle adoption and subsequent usage. Re-

sults and counterfactuals are presented in the penultimate section, after which I conclude with a

discussion of caveats and suggestions for future research. For the interested reader, the appendices

at the end of the document contain additional information regarding the institutional details of the

pickup truck market (A.1), my data cleaning procedure (A.2) and (A.3), fuel prices and their prop-

erties (A.4), and a variety of different results produced from alternative model specifications (B,

D).
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SECTION 2

LITERATURE REVIEW

The automotive industry is one of the largest in the United States and has been studied ex-

tensively by economists over the past century. An early literature review on the industry was

conducted by Griffin (1928), and it has continued to garner interest from economists over the past

century. As such, I limit my review to the areas of literature to which this project most directly

contributes. The primary contribution of this project lies at the intersection between two related

but largely separate branches of research, as I study the consumer response to fuel economy in

an environment where multiple fuels enjoy a significant market share. This paper makes a direct

contribution to the literature on the consumer response to fuel price fluctuations as well as the liter-

ature on fuel choice. In addition to the primary contributions made across these two branches, the

findings in this project also have relevance for the literature on fuel taxation as well as an emerg-

ing literature which considers the adoption of larger vehicles, a product class which has garnered

limited interest in earlier work on the consumer response to fuel price fluctuations.

2.1 The Consumer Response to Fuel Economy

A wide swath of the literature on automobile demand concerns the role of fuel economy in the

automobile industry and the consumer valuation of this product characteristic. This literature is

thoroughly reviewed by Helfand and Wolverton (2009), so I focus my discussion on more recent

research. One of the primary parameters of interest in this literature is the elasticity of the vehicle

fleet’s fuel economy, which is the percentage change in average miles-per-gallon of a vehicle fleet

corresponding to a percentage change in fuel prices. A variety of researchers have produced an

estimate of this figure. Li et al. (2009) estimate the long-run elasticity of fleet fuel economy as

roughly 0.20 after the entire vehicle stock is replaced; this estimate includes both the effect of

gasoline prices on the new vehicle fleet’s fuel economy and the differential effect of fuel prices on



scrappage decisions of efficient versus inefficient vehicles. In a paper which is methodologically

similar to mine, Gillingham (2013) considers the importance of selection into fuel efficient vehicles

on anticipated usage when estimating the elasticity of fleet fuel economy. Using data on odometer

readings from California’s smog check programs, he is able to model selection on anticipated usage

and estimates the elasticity of the new vehicle fleet’s fuel economy as 0.09. Klier and Linn (2010)

exploit a thirty-year panel of fuel prices and vehicle sales and estimate an elasticity of new vehicle

fleet fuel economy of 0.12, whereas Austin and Dinan (2005) produce an estimate of 0.22 in a

paper which includes a supply-side model of the automobile industry. Gramlich (2009) likewise

incorporates a supply-side model where manufacturers can respond to fuel price fluctuations by

selecting the fuel economy of their automobiles, and also produces estimates suggestive of a higher

elasticity than those papers which do not include a supply-side model.

A related line of literature considers the energy paradox. In this context, this refers to the

possibility that consumers undervalue savings in fuel costs relative to savings on vehicles’ purchase

prices. Historically, researchers were unable to obtain detailed information on transaction prices,

instead relying on MSRP’s for new vehicle prices and publicly available data sources such as Kelley

Blue Book or the National Automobile Dealers Association’s used car pricing guides for used

vehicle prices (e.g. Kahn, 1986). Because auto dealers can discount inefficient vehicles in response

to rising gasoline prices, this results in measurement error which is correlated with fuel prices when

MSRP is used as a proxy for transaction prices. As such, studies which lack transaction prices may

find evidence that consumers undervalue fuel economy. More recent studies in this area have used

transaction-level price data and have found mixed evidence on the energy paradox. Busse, Knittel,

and Zettelmeyer (2013) gather a rich database of transaction-level prices for both new and used cars

and find little evidence of consumer myopia in either market. Allcott and Wozny (2014) similarly

use transaction-level price data and estimate that consumers are indifferent between an increase of

$1.00 in discounted future gasoline costs and $0.76 in the vehicle purchase price, results which are

indicative of an energy paradox in fuel economy. Most recently, Sallee et al. (2016) use time-series

variation in used vehicle prices and estimate that this variation is consistent with full valuation of

fuel economy.
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2.2 Automobile Fuel Choice

Owing to the dominance of gasoline-powered automobiles in the U.S. and the fact that avail-

ability of vehicles with multiple fuel offerings was limited until recent years, the literature on fuel

choice in the U.S. automobile market is somewhat limited. Early research studying fuel choice in

the U.S. market, such as Brownstone et al. (1996, 2000) and Brownstone and Train (1999), relies

in part on stated preference data over hypothetical alternative-fuel vehicles due to the absence of

available alternative-fuel vehicles. More recently, researchers have considered the role of network

effects and purchase subsidies on the adoption of newer alternative-fuel technologies. Corts (2010)

and Shriver (2015) study the impact of flex-fuel vehicle adoption on the subsequent development

of E85 retail infrastructure, and estimate that adoption of flex-fuel vehicles increases the number

of local fuel retailers offering E85 fuel. However, the market for these vehicles differs from many

alternative-fuel adoption choices as the fuel choices made by drivers of flex-fuel vehicles are made

at the pump rather than at the point of vehicle purchase. Further, evidence indicates that even

among those who do own a flex-fuel vehicle, the fuel is not widely used (Anderson and Sallee,

2011). The role of network effects and purchase subsidies in electric vehicle (EV) adoption is

considered by Li et al. (2015), while Holland et al. (2015) document the importance of regional

heterogeneity in environmental impacts associated with EV adoption when determining optimal

purchase subsidies.

In countries where the penetration of non-gasoline powered personal vehicles is more signif-

icant, consumers often do face a fuel choice in automobile adoption. As such, there is a larger

literature considering the impact of fuel prices on fuel choice outside of the U.S. market. Yeh

(2007) considers various policies which may drive cross-country differentials in natural gas vehi-

cle adoption, estimating that the price of natural gas would need to be roughly 50% cheaper than

gasoline or diesel to lead to widespread adoption in the U.S.1 The choice between gasoline and

diesel vehicles has been studied by Verboven (2002) and Linn (2014). Verboven (2002) studies

1Historically, natural gas is only about 20% cheaper than gasoline and diesel. Many personal vehicles in the U.S.
which run on natural gas are dual fuel vehicles which can also run on gasoline.
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quality-based price discrimination in the European automobile market by considering consumers’

choices over gasoline and diesel engines. Verboven’s work differs from mine for a few reasons.

Most importantly, Verboven’s work is aimed towards studying price discrimination, where the

more efficient diesel engines represent a higher quality variant of the vehicle. While fuel prices

enter the model of engine choice, he does not aim to identify the impact of separate sources of

price variation or explicitly model price beliefs. Whereas my work relies on both time-series and

cross-sectional variation in the incentives to adopt a diesel engine as a means to identify responses

to these different types of price variation, Verboven relies on cross-sectional policy differences

between different nations to identify consumers’ preferences over fuel efficiency. Linn (2014)

considers the determinants of cross-country variation in diesel adoption rates, and finds evidence

that underlying heterogeneity in consumer preferences over fuel economy explains a significant

share of the variation.

2.3 The Elasticity of Demand for Gasoline

There is a rich literature built around estimating the price elasticity of demand for gasoline,

owing to the importance of gasoline consumption to climate change, energy security, and its role

in the production process of a wide variety of firms. While my work allows me specifically to

produce estimates of the elasticity of fuel consumption for pickup truck drivers, it is worthwhile

to be aware of broader estimates of this demand elasticity. Espey (1998) conducts a meta-analysis

of the elasticity of gasoline demand which acts to summarize studies conducted between 1966 and

1997. She documents a median estimate of -0.23 for the short-run elasticity and a median estimate

of -0.43 for the long-run elasticity of demand for gasoline. Recent literature, however, suggests

that the demand for gasoline has become more inelastic since the turn of the millennium. Hughes

et al. (2008) estimate that whereas the short-run price elasticity of gasoline demand lay between

-0.21 and -0.34 between 1975 to 1980, this price elasticity had fallen to an estimated range between

-0.03 and -0.08 between 2001 and 2006.

Related to broader work on the elasticity of demand for gasoline, other research considers the

elasticity of demand for driving (a key component of the demand for gasoline), and researchers

have found this elasticity has decreased as well in recent years. Small and Van Dender (2007)
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document a declining rebound effect, wherein individuals who purchase more energy-efficient

products increase their utilization. Over the course of a thirty-five year panel spanning 1966-2001,

they estimate a short-run (long-run) rebound effect of 0.045 (0.222). Estimates from this paper

using the higher real income levels and lower real gasoline prices towards the end of the sample

yield estimates roughly half the size of their estimates from the full period, again suggesting the

consumer response has moderated in recent years. Whereas the rebound effect measures the impact

of a decrease in operating costs on driving behavior resulting from higher fuel efficiency, other

work considers the impact of decreased operating costs on driving behavior which results from

lower gasoline prices. Linn (2013) documents that the magnitude can differ significantly, as he

estimates an elasticity of vehicle miles traveled with respect to gasoline prices between -0.09 and

-0.20 whereas he estimates a rebound effect between 0.20 and 0.40. In addition to producing

an estimate of the elasticity of fleet fuel economy, Gillingham (2013) estimates the elasticity of

demand for driving as -0.15 among a large sample of California drivers, whereas Gillingham (2014)

produces a demand elasticity of -0.22 while also documenting significant heterogeneity in the

elasticity across various demographics.

2.4 Fuel Prices and Behavior of Heavy Vehicle Operators

An additional contribution to the literature is my consideration of vehicles which fall into a

class which is not typically studied in the literature on automobile demand. Much of the literature

in the U.S. uses fuel economy ratings produced by the EPA, which are unavailable for some pickup

trucks, while the literature on trucks is limited to large, commercial vehicles. Although vehicles

without a fuel economy rating only represent roughly one quarter of the vehicles in my sample, my

use of user-generated fuel economy ratings may be of particular use to those researchers studying

behavior of commercial motor vehicle operators. Within this literature, Parry (2008) considers tax

policy towards heavy-duty trucks and estimates optimal taxation structures for heavy-duty trucks,

while Luechinger and Roth (2016) estimate the effects of a mileage tax implemented in Switzerland

on truck traffic. Most closely related to this paper in the literature on truck drivers’ behavior is

recent work by Leard et al. (2015), who estimate the rebound effect for different types of heavy-

duty trucks. Owing to the lack of fuel economy data for their vehicles, they use self-reported
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measures from the Vehicle Use and Inventory Survey.2 However, the age of the data, which were

last collected in 2002, limits its applicability to future studies in this area. A case-study approach is

taken by Klemich et al. (2014) to study the energy paradox among motor carriers. They document

a significant use of a wide variety of fuel saving tactics by motor carriers, and offer a discussion

of the determinants for whether particular technologies were adopted. One of the most significant

challenges in this area is limited public availability of data regarding fuel economy and vehicle

usage, and while my work does not directly contribute to this line of research on commercial

vehicles usage, my use of user-generated data on fuel economy could be of interest to researchers

looking to further explore this topic.

2Leard et al. do not consider pickup trucks due to the limited sample observed in their micro-data. Therefore,
vehicles studied by Leard et al. are almost exclusively large commercial vehicles, whereas I exclude commercial fleets
from my sample.
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SECTION 3

DATA

Throughout this project, I use two primary datasets which I appended with data from additional

sources. The Washington Department of Licensing (DOL) provides a database of all vehicle trans-

actions within the state of Washington from January 1 2012 through December 31 2015. From

this database, I extract information on new vehicle purchases, as well as driving intensity from

a subset of these purchases. To measure fuel prices, I acquired a database of daily, retailer-level

gasoline and diesel prices in the state of Washington from January 1 2012 through December 31

2015 from Oil Price Information Service (OPIS). I appended these two datasets with data from

additional sources. I use fuel economy measures provided by two sources, and I present a compar-

ison of the two different measures in §3.3. Local demographics at the zip-code level come from

the American Community Survey (ACS) as provided by the American Fact Finder web page.1 The

Western Regional Climate Center provides county-level weather data. For each county in the state

of Washington, I extract the average yearly snow and rainfall from a weather station within the

county of interest.2

3.1 Vehicle Purchases

In the registration database provided to me by the DOL, I observe all vehicle transactions which

occur in Washington, hence an observation is generated whenever any of a variety of transactions

(new vehicle registration, vehicle transfer, registration renewal, title transfer, etc.) occurs. For each

event, I observe the Vehicle Identification Number (VIN), type of owner (e.g. personal, business),

zip code and county of registration, and in certain cases an odometer reading at the time of the

1Some zip codes are sparsely populated and ACS estimates are unavailable at such a fine level for these zip codes.
In these cases, I impute county-level demographics as provided by the ACS.

2I use a weather station in the county’s largest city if one is provided. If the largest city does not have a weather
station which provides data, I use another weather station in the county which is at a similar elevation.



transaction. Due to the nature of identification throughout this manuscript, it is critical that the

observed registration date lies close to the date the vehicle was purchased. This is generally the

case with new vehicle purchases in Washington, as the dealer is required to file the registration

documents with the DOL shortly after the purchase. From this registration database, I attempt to

extract all registrations which are associated with a new pickup truck purchase. While the process

is thoroughly described in §A.2, I outline the process here, which beings with a database of all

VINs which have an associated transaction in the state from 2012 through 2015:

1. I extract all VINs from Model Years 2000-2016 where the DOL has recorded a vehicle model

which could be a pickup truck.

2. For each unique VIN stub (the first ten letters of the VIN), I extract one observation and use

online VIN decoding software to attach relevant vehicle characteristics to the VIN stub.3

3. Vehicle characteristics are merged onto all observations with the same VIN stub.

4. Observations which pertain to a new pickup truck registration are retained.

5. I drop rarely chosen vehicle specifications, vehicles which are registered to locations with

insufficient fuel price information, vehicles with an unclear owner type, and vehicles larger

than the ‘one-ton’ pickup class.

I describe this process at length in §A.2. The sample initially contains a total of 128,174 obser-

vations, which is reduced to 124,310 observations after dropping 3,864 observations during step

(5) of the cleaning process. A wide variety of vehicle characteristics is identifiable through the

VIN, and my decoding software populated the vast majority of observations in my sample with

a rich set of product characteristics. In the event of decoding errors or missing information, I

manually corrected vehicle characteristics based on information provided by a variety of sources

3To verify the accuracy of VIN decodes, I manually decoded a subset of observations using the National Insurance
Crim Bureau’s Passenger Vehicle Identification Manuals.
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which cover the automobile industry.4 A total of 24 different models of pickup trucks were avail-

able during this time period, and their market shares for each of the four relevant owner types are

listed in Table 3.1. The majority of new pickup trucks are personal registrations (71.3%), with

business registrations accounting for the next largest share of purchases (17.9%). Owners with at

least five vehicles are allowed to register their vehicles as a fleet, in which case these registrations

are recorded as business registrations. Vehicles owned by small businesses which operate fewer

than five vehicles are recorded as personal registrations by the DOL. The remaining ten percent

of observations are categorized either as leased vehicles or exempt from registration fees, where

the latter generally refers to vehicles which are owned by municipal, state, or federal government

agencies. The majority of analysis in this project is limited to personal registrations, although

descriptive evidence in the next section is presented for the full sample as well. The analysis of

business and government registrations is limited due to the fact that many of these vehicles are

purchased by fleet managers rather than individuals; analysis of leased vehicle choices is limited

because I do not observe a proxy for prices faced by lessees.

Pickup truck models are typically offered in many permutations due to different engine, drive-

train, body style, trim, etc. options. This presents a challenge when it comes to defining choice sets,

and in order to facilitate my discrete-choice model in §5.1, I aggregate vehicles up to the level of

Model, Series, Generation, Engine, Cab Type, Drivetrain, Wheel Configuration, and Work Truck

Trim. Notably, I do not include all trim levels and transmission specifications, as VINs do not

always uniquely identify these characteristics. Manufacturer’s Suggested Retail Prices (MSRPs)

are used as a proxy for transaction prices. I further discuss the implications of using MSRPs rather

than transaction prices in §5.2.5.

Tables 3.2 and 3.3 list summary statistics for the estimation sample used throughout §4, pre-

sented for both the full sample of registrations as well as the sample of personal registrations. I

stratify the sample by broadly-defined truck classes, where the mid-size category includes sport-

utility-trucks (SUT) and mid-size trucks, the full-size category includes only half-ton trucks, and

4For example, a few vehicles which were decoded were populated with an incorrect engine displacement. The
primary sources used to correct this information were autoblog.com and caranddriver.com.
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the heavy-duty category includes both three-quarter ton and one-ton trucks. The most popular

class of pickup truck is the full-size truck, which includes vehicles such as th Ford F-150 and Ram

1500. Such full-size trucks are usually offered with a range of gasoline-powered engines which

allow consumers to weigh the importance of fuel economy against performance and the engine’s

upgrade cost.5 These engines are typically more powerful than engines offered in cars and SUVs,

as can be noted by the fact that full-size trucks in my full sample produce an average of 355 horse-

power and 379 pound-feet of torque. Prior to recent diesel engine offerings in the Ram 1500,

Chevrolet Colorado, GMC Canyon, and Nissan Titan, diesel engines had historically only been

available as a costly upgrade in heavy-duty trucks.6 The base engine offering on heavy-duty trucks

is typically an eight-cylinder gasoline engine, with a high-performance diesel engine upgrade avail-

able at a cost of roughly $6,000 - $9,000. The diesel engines offered in heavy-duty trucks offer a

massive performance boost (on average, these engines produce around 800 pound-feet of torque)

in addition to improving fuel economy by 15-30% relative to their gasoline counterparts. These

engines are popular despite the cost, as roughly three quarters of all heavy-duty trucks purchased

in the full sample are equipped with a diesel engine.

Two additional upgrades that are typically selected by consumers are the upgrade to a four-

door body and a drivetrain which sends power to all four wheels (4WD). The base body type for

most trucks is the ‘regular cab’, which is a two-door body with either two or three seats in a single

row. Roughly 26% of trucks in my full sample are upgraded to the ‘extended cab’ configuration

with a second row of seats, whereas about two thirds are upgraded to the ‘crew cab’ configuration

which offers more legroom in the second row of seats and four full doors.7 These upgrades carry

5For example, the base engine offering on the 2015 Ram 1500 was a V6 which produced 269 pound-feet of torque
and yielded 19.0 miles-per-gallon (MPG). For an additional $1,150, consumers could upgrade to a V8 gasoline engine
which produces 410 pound-feet of torque but only 15.3 MPG. The Ram 1500 is also the first full-size truck to offer
a diesel engine; this upgrade was priced at $4,270 over the base V6, but the diesel V6 produced 420 pound-feet of
torque and offered fuel economy of 22.6 MPG.

6The Colorado and re-badged Canyon were offered with a diesel engine beginning in late 2015. The most recent
generation of the Nissan Titan, which is classified somewhere between the full-size and heavy-duty classes, is also
being offered with a diesel engine option.

7Many ‘extended cab’ trucks have front-hinged doors for passengers to access the back seats.
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a significant cost; upgrading to an extended cab typically costs around $2,000 - $3,000 whereas

upgrading to a crew cab typically costs around $5,000 - $6,000. The upgrade to a 4WD truck

is similarly popular, as roughly 90% of trucks in the full sample are equipped with the upgraded

drivetrain despite an upgrade cost which typically ranges between $3,000 and $4,000. As shown

in Table 3.4, there is significant variation in uptake of the Crew Cab and Four Wheel Drive options

across vehicle models.

3.1.1 Odometer Readings

One of the difficulties facing researchers who study fuel choice is the possibility that individuals

with a high expected usage level self-select into more fuel efficient engines. Ideally, the researcher

would observe high-frequency data on odometer readings, but this data is generally unavailable.

In the vehicle registration data provided by the DOL, I observe an odometer reading whenever

a transaction other than a registration renewal is made with the DOL. Therefore, for any vehicle

which was initially purchased after 01/01/2012 and transferred to a different party by 12/31/2015,

I am able to construct a measure of yearly vehicle miles traveled (VMT) while the vehicle was

owned by the initial purchaser. I observe a sample of 7,040 odometer readings out of 88,623

personally registered new truck purchases in my sample.

As shown in Table 3.5, the distribution of VMT for trucks varies across truck classes and fuel

types (within truck class). For each class-fuel type combination, the distribution of VMT can be

reasonably approximated using a lognormal distribution. Figure 3.1 shows the fitted log-normal

distribution of VMT for diesel-powered heavy-duty trucks. Consistent with the distribution of

VMT observed by Gillingham (2013), there is a high level of variation in usage, with an interquar-

tile range of 8,810 miles to 19,330 miles for drivers of diesel heavy-duty trucks. Kernel density

estimates of VMT by fuel type for heavy-duty trucks shown in Figure 3.2 illustrate the role of

selection on anticipated usage in fuel choice. On average, heavy-duty trucks powered by diesel

engines are driven roughly 25% more miles per year than heavy-duty trucks powered by gasoline

engines.

Because of the non-random nature in which odometer readings are observed, one might expect

to see differences in product and demographic characteristics between vehicles which carry an
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odometer reading and those that don’t. As shown in Table 3.6, these differences are modest. When

the sample is broken into three subsamples based on length of vehicle ownership, vehicle char-

acteristics and demographic characteristics are similar across the three subsamples. It should be

noted that heavy-duty trucks, and particularly diesel powered heavy-duty trucks, are somewhat less

likely to carry an odometer reading than other trucks. By far the strongest determinant of whether

an odometer reading is recorded is the vehicle’s initial purchase date, which can be seen in Table

3.7, where I present the results of a logistic regression of an odometer reading dummy variable

on a variety of demographic characteristics. This relationship motivates a selection adjustment I

use in §5.2.4 to account for non-random entry of odometer readings when estimating my structural

model.

3.2 Fuel Prices

Daily, retailer-level fuel prices are provided by OPIS, who use a variety of means to gather

data at the retailer-level on fuel prices in the United States, including fleet cards carried by motor

carriers, data scraping, and agreements with individual retailers wherein the retailer will update

OPIS with their prices on a frequent basis. As a result of their sampling methodology the quantity

of retailers which report a price varies across the sample, but reporting rates are reasonably high

and improve throughout the course of the sample. I observe an average of 1,968 retailers in a

given day reporting a gasoline price. The count of retailers reporting a gasoline price ranges from

a minimum of 1,225 to a maximum of 2,184 throughout the sample. Diesel prices are not reported

as frequently, but coverage is still sufficient for the purposes of this project. I observe an average of

1,021 retailers reporting a diesel price on a given day, with the observation count ranging from 384

retailers to 1,298 retailers. It should be noted that the proportion of retailers which sell diesel is

significantly higher than the ratio of daily gasoline retailers reporting a price to daily diesel retailers

reporting a price, and it appears that the vast majority of retailers in the state sell both gasoline

and diesel (see §A.3 for more details).8 The breadth of this data allows me to observe daily fuel

prices across the entire state of Washington, which allows me to exploit significant cross-sectional

8For this reason, I do not consider the impact of fuel availability on fuel choice throughout the paper.
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variation in fuel prices, in addition to time-series variation which is typically seen in a panel of this

length. For this project’s purposes, I aggregate fuel prices up to the level of daily county averages

for both gasoline and diesel. The aggregation process, and my handling of missing data throughout

the course of my sample in certain low population counties, is also described further in §A.3 for

the interested reader.

Two important phenomena present in the diesel premium are worth discussing as a means to

motivate my empirical analysis. First, the unique geography and structure of the refined products

pipelines servicing the state of Washington creates significant geographical variation in the diesel

premium. Counties to the east of the Cascade Mountains source most of their gasoline and diesel

from refineries in the Rocky Mountain region, where gasoline prices are relatively low but the

diesel premium is relatively high. Refineries located in Northwest Washington supply most of the

gasoline and diesel consumed to the west of the Cascades. In this area of the state, gasoline tends

to be relatively expensive while the diesel premium is relatively low. This combination of higher

gasoline prices and a lower diesel premium results in significantly larger operating cost reductions

associated with upgrading to the diesel engine. For reference, the location of pipelines and re-

fineries in Washington can be seen in Figure 3.3. In Figure 3.4, I present the diesel premium over

the course of my sample for two counties on opposite sides of the Cascade Mountains. Whatcom

county, located to the west of the Cascade Mountains in the Northwest corner of the state, typ-

ically has a significantly lower premium on diesel than Spokane county, which is located to the

east of the Cascade Mountains on the Eastern border of the state. Diesel prices are similar in each

out these counties, and the difference in the premium is due to lower gasoline prices in Spokane

county, as can be seen in Figure 3.5 and 3.6. While these per-gallon differences in the premium

between different geographic regions in the state may appear modest, they can result in significant

differences in the expected fuel cost savings associated with upgrading to a diesel engine. For

example, consider the fuel cost savings over the lifetime of a particular truck which might result

from upgrading to a diesel engine. Suppose that an individual faces the choice between a gasoline
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engine which achieves 12 miles per gallon versus a diesel upgrade which achieves 15 miles per gal-

lon.9 Figure 3.6 presents the operating cost savings associated with upgrading to the diesel engine

and driving 150,000 miles at each county’s fuel price over the course of the vehicle’s life, were

the current prices to persist. Depending on the an individual’s location and the date of purchase,

operating cost savings associated with adopting the diesel engine range between $0 and $8,000.

Comparing different regions of the state, an individual living in Whatcom county typically stands

to save between $1,500 and $2,500 more by upgrading to the diesel engine than an individual in

Spokane county.

Second, within each county, the diesel premium (as well as the savings associated with upgrad-

ing to the diesel engine) exhibits mean-reversion to the county’s average diesel premium. Gaso-

line and diesel prices are highly correlated over time as the primary determinant of each fuel’s

price is the price of crude oil. However, the diesel premium fluctuates throughout the year due

to factors such as seasonality in diesel and gasoline demand, short-term refinery outages, and a

variety of other minor factors. Given the durable nature of automobiles, it stands to reason that a

forward-looking individual ought to be relatively irresponsive to time-series variation in the diesel

premium. For example, consider a consumer who is deciding between the gasoline and diesel

variant of a particular truck in Spokane County during July 2015. At this time, the diesel premium

was roughly $0.00. If this consumer is aware of the history of the diesel premium, her expectation

of the diesel premium over the life of the vehicle should not be $0.00, as it should account for

the fact that the average premium in Spokane County has been around $0.50 per gallon. Simply

put, forward-looking individuals ought to respond differently to such fuel price variation than they

do to more persistent sources of fuel price variation. In §4 and §5 I illustrate the importance of

allowing consumers to exhibit a different response to different sources of price variation. For the

interested reader, I document the stationarity of the diesel premium for a significantly longer panel

of fuel prices in §A.5.10

9These fuel economy figures are similar to those of the gasoline and diesel variants of the Chevrolet Silverado
2500.

10I do not have access to county-level data prior to 01/01/2012, so I use the longer panel which corresponds to
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3.3 Comparison of User-Generated Fuel Economy Data to EPA Measures

Researchers studying the automobile market in the United States typical use the Environmen-

tal Protection Agency’s (EPA) fuel economy ratings as a measure of fuel consumption.11 For each

vehicle measured, the EPA releases a separate estimate for city and highway driving, and reports

a combined fuel economy measure which is computed as a weighted harmonic mean using 55%

city driving and 45% highway driving. These estimates are meant to inform consumers of the fuel

efficiency of vehicles being considered for purchase, and in recent years manufacturers have been

required by the EPA to post window stickers containing this information on new vehicles. Over

the past few decades, a variety of adjustments have been made in methodology for measuring fuel

economy with hopes of providing consumers with estimates that are predictive of the vehicles’

fuel consumption. For example, beginning with MY2008, the EPA adjusted their methodology

to better account for real-world acceleration, air conditioning usage, and climate conditions. De-

spite these changes, researchers have documented significant differences between the EPA’s fuel

economy measures and those recorded by individuals operating the vehicles (‘Self-Reported Fuel

Economy’). Greene and Lin (2011) consider the relationship between the EPA measures and self-

reported measures which were recorded by individuals on the EPA’s “My MPG” system. On this

platform, users can record their fuel expenditures and compute their fuel economy, along with

recording a variety of individual-level characteristics. When comparing self-reported fuel econ-

omy to those which use the EPA’s 2008 methodology, they note that “...the 2008 estimates under-

estimate the on-road fuel economy by 14%-16% depending on efficiency level” (Greene and Lin,

p. 89).

At the time of this project, the EPA did not produce fuel economy ratings for pickup trucks

with a gross vehicle weight rating over 8,500 pounds. As mentioned earlier in this section, roughly

one quarter of all new trucks purchased in my sample are heavy-duty trucks which lie above the

8,500 pound threshold and as such, are not rated by the EPA. In order to measure the fuel economy

broader geographic areas to illustrate the mean-reverting nature of the diesel premium.

11As mentioned in the previous section, Leard et al. (2015) use self-reported fuel economy data when considering
the rebound effect for heavy-duty trucks.
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of these vehicles, I employ self-reported fuel economy data from fuelly.com, an online platform

where individuals can track vehicles’ fuel economy. The platform is well populated, and most truck

models in my sample have hundreds of vehicles being tracked by consumers. While the EPA’s “My

MPG” system is still on-line, I chose to use fuelly for two important reasons. First, fuelly has a

significantly higher number of pickup trucks being tracked. For example, as of 04/22/2017, a total

of 114 MY2016 Ford F-150s equipped with the V8 engine option were being tracked on fuelly,

whereas only one such vehicle was being tracked on the “My MPG” platform. Second, the “My

EPA” system does not allow drivers to track vehicles which are not tested by the EPA, whereas

fuelly allows drivers to track a wide variety of vehicles. This allows me to construct measures of

fuel economy for heavy-duty pickup trucks.

For a total of seventy-four unique combinations of make-model-series-generation-engine within

my sample from the previous section, I extracted self-reported fuel economy data from fuelly.com

during June, 2016. For each make-model-series-model year-engine combination, I recorded the

number of vehicles being tracked, the total quantity of miles driven, and the average fuel economy,

each of which can be easily scraped from fuelly’s interface (for an example, see Figure 3.8).12

I then aggregated this information up from the level of model year to the level of generation in

order to increase the sample size of vehicles being tracked.13 Due to the lack of large samples of

certain trucks equipped with 2WD, I aggregate fuel economy ratings at the level of make-model-

series-generation-engine. Rather than disaggregating down the the level of drivetrain to adjust fuel

economy for 4WD trucks, I use differences in EPA ratings for 2WD versus 4WD trucks to adjust

vehicles’ fuel economy accordingly (see §A.3 for details).

Abstracting from differences between ‘real-world’ driving styles and the EPA’s attempts to

approximate ‘real-world’ driving styles in their fuel economy measures, one might imagine two

12During MY 2015 and MY 2016, the Ford F-150 was offered with two different 3.5 Liter V6 engines, an entry-
level 282 horsepower engine and an upgraded ‘EcoBoost’ engine which is rated at 365 horsepower. Because fuelly
users typically only enter engines at the level of displacement and cylinder configuration, I am unable to separate
self-reported fuel economy for these two engines in either the 2015 or 2016 model year. In my next chapter, I use the
EPA measurements for these configurations.

13Generation is a well-defined concept in the automobile industry. Roughly speaking, each ‘generation’ corresponds
to a significant redesign and adjustment to product characteristics.
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primary reasons self-reported fuel economy could differ from estimates produced by the EPA.

First, selection into tracking fuel expenditures and fuel economy is presumably not random. For

example, those individuals who are more interested in tracking their fuel economy may also be

more likely to drive in a manner which increases fuel efficiency.14 Such a selection mechanism

could possibly explain the findings of Greene and Lin (2011), who report that individuals on the

“My MPG” platform tend to outperform EPA estimates. Second, the nature of ‘real-world’ driving

conditions can be more challenging to define with pickup trucks than other vehicles. Pickup trucks

can be used for a wide variety of pleasure and work-related tasks, and fuel economy can decrease

significantly when a truck is used to haul a significant amount of payload or tow a heavy trailer. In

particular, we might expect that if the propensity to haul payload or tow is higher for larger pickup

trucks than smaller pickup trucks, the self-reported measures might be significantly lower for large

pickup trucks than the EPA measures.

A descriptive analysis of my self-reported measures of fuel economy (SRP) suggest that de-

spite the aforementioned concerns, the two different sets of fuel economy measures are strongly

correlated. In Figure 3.9, I present a histogram of the differentials between the EPA estimates and

the SRP estimates pulled from fuelly. Whether the differentials are computed prior to adjusting

for drivetrain differences or after adjusting for differences in drivetrain, the differences are modest.

The vast majority of observations lie within ten percent of their corresponding EPA estimates, with

no difference more than three miles per gallon. As an additional exercise, I run an OLS regression

of the EPA’s fuel economy measurements on my SRP measures:

SRPj = β0 + β1EPAj + εj

S̃RP j = β0 + β1EPAj + εj

where SRPj refers to my fuel economy measurement which is not adjusted for different drivetrains

14Fuel economy gains from ‘hypermiling’ techniques such as coasting into turns, slowly accelerating, and driving
without air conditioning can range upwards of 25%. In some extreme cases, hypermilers are able to achieve massive
efficiency gains. “Lowest fuel consumption driving to 48 contiguous US States (diesel car).” Guinness World Records,
07 July 2015, http://www.guinnessworldrecords.com/world-records/lowest-fuel-consumption-48-us-states
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and S̃RP j refers to my fuel economy measure which adjusts for different drivetrains. I run each

regression for five different sets of observations based on the quantity of vehicles I observed (Nj)

and the quantity of miles which were recorded by the vehicles (VMTj), and present the results

in Table 3.8. My measure which adjusts for drivetrain exhibits a mildly higher correlation with

the EPA measures, although both measures have a reasonably strong fit, as estimates using SRPj

result in an R2 between 0.750 and 0.788, and estimates using S̃RP j result in an R2 between 0.787

and 0.820. Unlike Greene and Lin (2011), my regression coefficients do not show evidence of a

systemic difference between the EPA’s measures and my SRP estimates. In the five specifications

using SRPj the coefficient on the EPA measure ranges between 0.911 and 0.946 whereas the

estimated intercept lies between 0.573 and 1.260. Results are similar when the S̃RP j measure is

used, with the coefficient on the EPA measure ranging between 0.951 and 0.975 and the intercept

ranging from 0.088 to 0.602. In all ten specifications, ninety-five percent confidence intervals for

the coefficients contain both β0 = 0 and β1 = 1. Thus, the systemic difference between SRP

and EPA measures reported in Greene and Lin (2011) does not show up here, possibly allaying

concerns about the correlation between drivers’ likelihood of tracking their fuel economy and the

extent to which they engage in fuel efficient driving practices.

As shown in Figures 3.10 and 3.11, the linear specification in the preceding tables appears to

be reasonable, and the variance of the residuals does not vary significantly based on the EPA’s

fuel economy estimate. Although there is some concern that EPA measures might overestimate

the real-world fuel economy of larger trucks if such trucks are more likely to be hauling payload

or towing large trailers, such a bias does not manifest itself in my data. While I cannot similarly

consider the accuracy of my fuel economy measurements for those trucks which are not tested by

the EPA, the evidence presented in this section is suggestive of the possibility that SRP measures

could offer a plausible means of capturing fuel economy for such vehicles. For the remainder of

this project, I employ the SRP measures which are adjusted for different drivetrains.
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Table 3.1: Market Shares (%), by Owner Type

All Personal Business Leased Exempt Owner
Observations 124,310 88,667 22,301 9,236 4,106
Avalanche 0.37 0.43 0.28 0.12 0.02
Canyon 0.28 0.29 0.33 0.18 0.00
Colorado 1.57 1.17 1.88 2.65 6.26
Dakota 0.02 0.01 0.06 0.00 0.00
Escalade EXT 0.05 0.05 0.08 0.05 0.00
F-150 19.50 17.64 22.64 26.72 26.35
F-150 SVT 0.64 0.72 0.65 0.12 0.02
F-250 3.87 2.34 6.41 4.60 21.53
F-350 5.09 4.70 6.35 1.78 14.15
Frontier 3.04 2.88 3.52 3.81 1.92
Ram 1500 11.16 11.76 10.21 8.02 10.42
Ram 2500 4.56 5.25 4.07 0.89 0.63
Ram 3500 2.84 3.46 1.99 0.09 0.19
Ranger 0.25 0.24 0.29 0.31 0.05
Ridgeline 0.79 0.98 0.18 0.80 0.00
Sierra 1500 3.18 3.24 3.66 2.79 0.24
Sierra 2500 1.58 1.64 2.13 0.35 0.07
Sierra 3500 0.50 0.56 0.58 0.04 0.00
Silverado 1500 12.64 12.07 15.44 12.57 10.08
Silverado 2500 4.48 3.92 6.93 3.76 4.90
Silverado 3500 2.13 1.94 3.58 0.64 1.88
Tacoma 13.09 15.43 4.88 15.73 1.17
Titan 0.53 0.60 0.52 0.19 0.10
Tundra 7.81 8.68 3.33 13.77 0.00
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Table 3.2: Selected Descriptive Statistics: All Registration Types

All Trucks Mid Size Full Size Heavy Duty
Observations 124,310 24,165 68,979 31,116
MSRP $37,226 $27,079 $36,728 $46,197
Regular Cab 0.07 0.05 0.06 0.09
Extended Cab 0.26 0.31 0.30 0.14
Crew Cab 0.67 0.64 0.64 0.77
Four Wheel Drive 0.90 0.81 0.92 0.93
Dual Rear Wheels 0.01 0.00 0.00 0.06
Work Truck Trim 0.13 0.12 0.13 0.14
Length (Feet) 22.69 20.76 22.83 23.86
Width (Feet) 7.88 7.40 7.97 8.04
Height (Feet) 7.52 6.98 7.57 7.85
Diesel Engine 0.19 0.00 0.02 0.72
Gas: Torque (100/lb-ft) 349.30 250.19 378.79 393.84
Diesel: Torque (100/lb-ft) 783.30 NA 420.00 801.48
Gas: Horsepower/100 326.96 230.71 355.07 374.16
Diesel: Horsepower/100 381.65 NA 240 388.74
Gas: Miles/Gallon 16.20 18.49 15.91 12.11
Diesel: Miles/Gallon 14.55 NA 22.57 14.15

Table 3.3: Selected Descriptive Statistics: Personal Registrations

All Trucks Mid Size Full Size Heavy Duty
Observations 88,623 19,041 48,508 21,118
MSRP $37,624 $27,388 $37,111 $48,033
Regular Cab 0.03 0.03 0.04 0.01
Extended Cab 0.23 0.30 0.27 0.09
Crew Cab 0.74 0.67 0.69 0.90
Four Wheel Drive 0.94 0.85 0.96 0.99
Dual Rear Wheels 0.01 0.00 0.00 0.05
Work Truck Trim 0.10 0.10 0.11 0.09
Length (Feet) 22.70 20.79 22.89 24.00
Width (Feet) 7.86 7.42 7.97 8.01
Height (Feet) 7.52 6.99 7.57 7.86
Diesel Engine 0.21 0.00 0.02 0.85
Gas: Torque (100/lb-ft) 348.50 253.58 383.55 391.53
Diesel: Torque (100/lb-ft) 782.88 NA 420 801.73
Gas: Horsepower/100 325.18 233.08 358.86 372.01
Diesel: Horsepower/100 379.85 NA 240 387.12
Gas: Miles/Gallon 16.31 18.32 15.78 12.15
Diesel: Miles/Gallon 14.57 NA 22.57 14.16
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Table 3.4: Selected Characteristics of Pickup Truck Models

Model Make Class Model Years $MSRP Diesel Uptake Gas MPG Diesel MPG Crew Cab 4WD Footprint (sqft)
Avalanche Chevrolet SUT 2011-2013 $48,576 14.31 1.00 1.00 175.05
Canyon GMC Midsize 2011-2012, 2014-2016 $33,769 19.39 0.89 1.00 154.24
Colorado Chevrolet Midsize 2011-2012, 2014-2016 $27,940 19.87 0.52 0.65 150.84
Dakota Dodge Midsize 2011 $27,360 16.18 0.00 1.00 156.66
Escalade EXT Cadillac SUT 2011-2013 $69,640 14.20 1.00 1.00 175.60
F-150 Ford 1

2 -Ton 2011-2016 $37,913 16.28 0.62 0.89 183.05
F-150 SVT Ford 1

2 -Ton 2011-2014 $46,161 13.18 0.91 1.00 199.36
F-250 Ford 3

4 -Ton 2011-2016 $43,080 0.43 12.47 14.50 0.48 0.84 189.27
F-350 Ford 1-Ton 2011-2016 $48,278 0.81 11.32 13.26 0.79 0.92 198.06
Frontier Nissan Midsize 2011-2016 $24,752 18.12 0.62 0.78 150.35
Ram 1500 RAM 1

2 -Ton 2011-2016 $35,923 0.17 15.69 22.57 0.50 0.94 180.98
Ram 2500 RAM 3

4 -Ton 2011-2016 $46,446 0.82 12.98 15.18 0.97 0.99 188.44
Ram 3500 RAM 1-Ton 2011-2016 $49,034 1.00 13.20 1.00 1.00 191.82
Ranger Ford Compact 2011 $22,557 20.22 0.00 0.34 139.45
Ridgeline Honda SUT 2011-2014 $35,004 17.37 1.00 1.00 160.97
Sierra 1500 GMC 1

2 -Ton 2011-2016 $39,972 16.40 0.68 0.95 183.02
Sierra 2500 GMC 3

4 -Ton 2011-2016 $47,374 0.70 12.13 14.90 0.80 0.99 190.79
Sierra 3500 GMC 1-Ton 2011-2016 $51,618 1.00 14.01 1.00 1.00 192.56
Silverado 1500 Chevrolet 1

2 -Ton 2011-2016 $36,632 16.40 0.52 0.87 179.68
Silverado 2500 Chevrolet 3

4 -Ton 2011-2016 $43,390 0.51 12.11 14.90 0.65 0.94 189.29
Silverado 3500 Chevrolet 1-Ton 2011-2016 $46,310 0.79 10.51 13.80 0.72 0.86 194.66
Tacoma Toyota Midsize 2011-2016 $26,217 18.56 0.63 0.82 154.01
Titan Nissan 1

2 -Ton 2011-2015 $35,554 13.61 0.84 1.00 178.56
Tundra Toyota 1

2 -Ton 2011-2016 $33,087 14.69 1.00 0.99 182.83
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Table 3.5: Yearly Vehicle Miles Traveled

Class Fuel Observations µVMT σVMT

Compact Gasoline 1,465 11,966 6,863
Compact Diesel 0 NA NA
Sport Utility Truck Gasoline 145 12,244 6,053
Sport Utility Truck Diesel 0 NA NA
Half Ton Gasoline 4,087 13,068 7,016
Half Ton Diesel 5 13,842 11,517
Three-Quarter Ton Gasoline 214 12,486 7,283
Three-Quarter Ton Diesel 558 14,946 8,434
One Ton Gasoline 23 10,828 9,749
One Ton Diesel 543 14,705 8,506
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Table 3.6: Summary Statistics, by Length of Ownership

Variable µA σA µ1 σ1 µ2 σ2

Observations 81583 NA 4016 NA 3024 NA
Purchase Date 2.228 1.13 1.281 0.738 0.700 0.482
Elapsed Years NA NA 1.472 0.29 2.606 0.45
Odometer Reading Time NA NA 2.753 0.728 3.305 0.479
Yearly VMT NA NA 13.013 7.297 13.151 7.270
Rain, ft./year 2.735 1.315 2.723 1.376 2.709 1.369
Snow, ft./year 0.766 0.713 0.766 0.696 0.782 0.724
Commute Length, Minutes 2.625 0.632 2.616 0.634 2.632 0.648
Median Household Income 6.339 1.887 6.241 1.829 6.282 1.889
Rural Population Share 0.237 0.3 0.227 0.292 0.228 0.288
Unemployment Rate 9.168 3.21 9.225 3.337 9.214 3.175
Compact 0.2 0.4 0.205 0.404 0.213 0.409
Sport Utility Truck 0.014 0.116 0.019 0.137 0.022 0.148
Half Ton 0.544 0.498 0.585 0.493 0.577 0.494
Three-Quarter Ton 0.134 0.34 0.113 0.316 0.105 0.307
One Ton 0.109 0.312 0.079 0.269 0.083 0.275
Crew Cab 0.74 0.439 0.703 0.457 0.695 0.461
Four Wheel Drive 0.941 0.236 0.942 0.233 0.933 0.25
Diesel Engine 0.217 0.412 0.158 0.365 0.156 0.363
Diesel Engine, if Heavy-Duty 0.848 0.359 0.819 0.385 0.828 0.378
Miles/Gallon 15.958 2.105 15.743 1.909 15.65 1.948
a Ownership A indicates that I do not observe a vehicle transaction which requires an

odometer reading to be taken. Option 1 indicates that between 366 days and 730
days elapsed between a vehicle’s original purchase date and my observed odometer
reading. Option 2 indicates that greater than 731 days elapsed between a vehicle’s
original purchase date and my observed odometer reading.

b Purchase date gives elapsed time, in years after January 1, 2012, at the time of ve-
hicle purchase. Elapsed years gives number of years the vehicle was driven before
observing an odometer reading. Odometer Reading Time gives elapsed time, in years
after January 1, 2012, at the time of the odometer reading.

c Demographics are specified at the zip-code level, while weather data are specified at
the county-level. Demographic data are only available for the bulk of zip-codes if
ACS five-year averages are used, hence these data are drawn from 2010-2014 and as
a result, unemployment figures are relatively high.
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Table 3.7: Logit: Odometer Reading Dummy

Variable Specification 1 Specification 2
Purchase Date -1.076 (0.015) -1.086 (0.015)
Rain, ft./year -0.015 (0.012) -0.011 (0.012)
Snow, ft./year 0.031 (0.023) 0.031 (0.023)
Commute Length, Minutes 0.114 (0.026) 0.109 (0.026)
Median Household Income -0.037 (0.008) -0.038 (0.008)
Rural Population Share -0.232 (0.052) -0.267 (0.052)
Unemployment Rate 0.006 (0.004) 0.006 (0.004)
Sport Utility Truck -0.233 (0.100) -
Half Ton -0.041 (0.053) -
Three-Quarter Ton -0.244 (0.115) -
One Ton -0.484 (0.151) -
Crew Cab -0.007 (0.031) -
Four Wheel Drive -0.040 (0.066) -
Diesel Engine -0.061 (0.091) -
Miles/Gallon -0.045 (0.015) -
Intercept 0.069 (0.315) -0.770 (0.088)

Table 3.8: OLS Regressions of EPA Combined Fuel Economy on Self-Reported Measures

Measure Sample Observations Slope (β1) Intercept (β0) R2

SRP Nj > 0 47 0.911 (0.064) 1.26 (1.038) 0.782
SRP Nj > 10 46 0.919 (0.064) 1.097 (1.035) 0.788
SRP Nj > 20 40 0.946 (0.082) 0.573 (1.350) 0.750
SRP VMTj > 100K 45 0.922 (0.068) 1.059 (1.096) 0.780
SRP VMTj > 250K 38 0.938 (0.081) 0.759 (1.328) 0.750
S̃RP Nj > 0 71 0.951 (0.052) 0.602 (0.872) 0.816
S̃RP Nj > 10 70 0.958 (0.052) 0.459 (0.872) 0.820
S̃RP Nj > 20 61 0.975 (0.067) 0.088 (1.132) 0.787
S̃RP VMTj > 100K 68 0.955 (0.055) 0.511 (0.924) 0.812
S̃RP VMTj > 250K 58 0.960 (0.066) 0.415 (1.113) 0.787
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Figure 3.1: Lognormal Fit of Diesel VMT Distribution

Figure 3.2: Comparison of Gasoline and Diesel VMT Distributions

31



Figure 3.3: Topographical Map of Washington with Oil Distribution Network

Source: Energy Information Administration. Dashed pipelines are used to distribute gasoline, diesel, and other refined
products, while the solid pipeline in the Northwest of Washington is used to distribute crude oil. The square ’oil-
barrel’ figures denote oil refineries, the triangle ’oil-barrel’ figures denote petroleum product terminals, and the square
’droplet’ figures denote bio-diesel plants.
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Figure 3.4: Price Difference between Gasoline and Diesel, 01/01/2012-12/31/2015

Figure 3.5: Gasoline Price, 01/01/2012-12/31/2015
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Figure 3.6: Diesel Price, 01/01/2012-12/31/2015

Figure 3.7: Example of Savings from Diesel Engine Upgrade
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Figure 3.8: Screenshot of Fuelly Interface

Figure 3.9: Differences between Self-Reported and EPA Fuel Economy Estimates
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Figure 3.10: Scatterplot of Self-Reported and EPA Measures (A)

Figure 3.11: Scatterplot of Self-Reported and EPA Measures (B)
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SECTION 4

DESCRIPTIVE ANALYSIS

In this section I present descriptive evidence on the determinants of fuel choice and subsequent

usage intensity. This subsection is not intended to present or discuss any causal effects, but merely

to illustrate patterns present in my data as a means of motivating my structural model, which is

presented in §5.

4.1 Descriptive Evidence: Fuel Choice

As discussed in the introduction to this paper, the limited adoption of vehicles operating on

any fuel other than gasoline has posed challenges for researchers studying fuel choice among U.S.

automobile purchasers. The market for pickup trucks has a significantly higher adoption rate of

non-gasoline powertrains, as diesel engines have been available in heavy-duty pickup trucks for

several decades. In this subsection, I present a descriptive analysis of the determinants of fuel

choice among purchasers of heavy-duty trucks. This analysis considers the determinants of fuel

choice conditional on purchasing a heavy-duty truck, and as this explicitly ignores substitution

between other classes of pickup truck and heavy-duty trucks, the usual caveats apply.1 I estimate a

linear-in-parameters binary logit model of the following form:

Pr(Diesel|Heavy −Duty) =
exp(β0 + β1Zi + β2Pi)

1 + exp(β0 + β1Zi + β2Pi)

where Zi refers to a vector of local taste-shifters and Pi refers to a vector of fuel price data. Re-

sults pertaining to the sample which consists of all registration types (N = 31, 166) are presented

in Table 4.1, while results pertaining to the sample which consists of only personal registrations

(N = 21, 118) are presented in Table 4.2. In the appendix, Table B.1 gives results from the sample

1The structural model presented in the next chapter allows for substitution between pickup truck classes.



of business registrations (N = 7, 147). The primary parameters of interest are those attached to

fuel prices. In specification (1) for each sample, I include the county-average gasoline price (pgC,t)

and county-average diesel price differential (pdC,t − pgC,t).
2 In both samples with this specifica-

tion, the marginal effects corresponding to the fuel price parameters are modest; in the sample of

personal registrations the estimated marginal effect of increasing the price of both fuels by $1.00

(hence, leaving the difference unchanged) is a 2.2 percentage point increase in diesel engine up-

take. Given that increasing the price of both fuels increases the savings associated with adopting

the diesel engine, this marginal effect is intuitively plausible. The point estimate attached the price

differential is small but statistically insignificant, the marginal effect is likewise small but statisti-

cally insignificant. Recalling the mean-reverting nature of the diesel premium over time, the small

and imprecise point estimate is consistent with the possibility of forward-looking individuals not

adjusting their beliefs about the diesel premium in response to transient variation in the premium.

In a second set of regressions, I construct fuel prices in an alternative manner to allow for

different responses to transient sources of diesel price variation as opposed to more persistent

sources of diesel price variation. In §3.2, I discuss the nature of the diesel price premium, and note

that whereas time-series variation within a particular location is transitory, geographic variation

across counties is reasonably persistent owing to the pipeline network in Washington. I decompose

the current diesel price in a given location as

pdC,t = (pgC,t + τC)︸ ︷︷ ︸
≡p̄dC,t

+p̃dC,t

where for each county, I define τC = 1
T

∑T
t=1(pdC,t − pgC,t) as the average price diesel premium

within each county over the course of my sample. By construction, p̃dC,t is mean-zero for each

county, but varies over time. In specification (2) in Table 4.1 and 4.2, I include each component

of the decomposed diesel price in the regression. Focusing on the marginal effects in the personal

2I define fuel prices on the date I observe the registration, which may lag the purchase date by a few days. Further,
this could lag the date when the consumer made her purchase decision by more than a week. Given the rate at which
fuel prices move, I don’t believe this generates an overly concerning level of measurement error.
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registration results from Table 4.2, the importance of allowing for different responses to different

sources of fuel price variation is apparent. By construction, a $1.00 increase in both the gasoline

and diesel prices raises pgC,t and p̄dC,t by $1.00. The marginal effects corresponding to each param-

eter estimate indicate a similar response to such a price change as we saw in specification (1), with

a 2.9 percentage point increase in diesel engine adoption. Fixing the gasoline price, the coefficient

and marginal effect attached to p̄dC,t allows us to consider the relationship between τC and diesel

engine uptake. This estimated marginal effect is large and statistically significant, and suggests

that a $1.00 increase in a county’s average diesel premium is associated with a 25.0 percentage

point decrease in diesel engine uptake. The point estimate attached to p̃dC,t curiously has a positive

sign; however, the marginal effect is statistically insignificant.

Across both specifications and samples, point estimates attached to local characteristics have

the anticipated signs. Counties with a higher share of rural residents have significantly higher

adoption rates of diesel engines, all else held constant. However, the point estimate and estimated

marginal effect of the impact of rural population share on the probability of selecting a diesel

engine are significantly lower among personal registrants than business registrants (see Table B.1

in the appendix for the results pertaining to business registrations). Given that the diesel engine is

a costly upgrade on the order of $6,000 - $9,000, the positive point estimate on the local median

income and negative point estimate on the local unemployment rate are generally reasonable.

While the analysis contained in this subsection is intended to be read as descriptive rather

than causal, the results are crucial for motivating my construction of price beliefs in the struc-

tural model presented in the next chapter. To the extent that consumers purchasing a heavy-duty

truck recognize that the time-series variation in the diesel premium is transitory, one would ex-

pect that forward-looking individuals would be largely irresponsive to such price variation. On the

other hand, given the more persistent nature of geographic variation in the diesel price premium,

forward-looking individuals ought to respond to such price variation when choosing between the

two fuels.
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4.2 Descriptive Evidence: Vehicle Miles Traveled

I now consider the determinants of usage intensity among pickup truck drivers. As mentioned

earlier in the data section, I observe a non-random sample of 9,822 odometer readings attached

to my new vehicle purchases, of which 7,071 correspond to personal registrations and 1,749 cor-

respond to business registrations. For the descriptive results presented here, I do not account for

selection into reporting an odometer reading and treat odometer readings as if they are missing-

at-random. In the next chapter, I address the possibility of non-random entry with a selection

correction. However, the reader should note that whereas the previous exercise largely serves to

motivate my treatment of price beliefs in the next chapter, the exercises presented here are sugges-

tive of the importance of accounting for selection on anticipated usage in the next chapter. For each

observation in my sample, I define the usage intensity as the average yearly vehicle miles traveled

between the two odometer readings (VMTij). I estimate an ordinary least squares regression of

the form

lnVMTij = β0 + β1Zi + β2Xj + β3 lnOCij + εij

whereZi represents a vector of local taste-shifters,Xj represents a vector of vehicle characteristics,

and OCij represents individual i’s average per-mile fuel cost of operating vehicle j.3 The results

of these regressions are presented in Table 4.3 for the full registration sample and Table 4.4 for

the personal registration sample. In specifications (1) and (2) of Table 4.3 the reader can note

that in absence of conditioning on vehicle characteristics, there is a positive association between

operating costs and yearly mileage. This result is suggestive of the possibility that individuals with

a high anticipated usage level self-select into larger vehicles with higher levels of performance,

a feature which I account for in my structural model. Once controlling for a variety of vehicle

characteristics, the anticipated negative coefficient attached to operating costs is observed. While

this is a crude measure of the elasticity of driving to operating costs owing to the lack of controls

for selection into vehicle type and selection into reporting an odometer reading, the estimates

3Hence, I am conditioning on individual i having purchased vehicle j.
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contained in columns (3) and (4) lie within the range of estimates in the literature discussed in

§2.3.
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Table 4.1: Logistic Regression of Fuel Choice in Heavy-Duty Trucks: All Registrations

Variable (1) (2)
pgC,t 0.260 (0.047) 3.044 (0.272)
pdC,t − p

g
C,t 0.026 (0.076)

p̄dC,t -2.778 (0.276)
p̃dC,t 0.205 (0.078)
Rain, ft./year -0.004 (0.001) -0.009 (0.001)
Snow, ft./year -0.000 (0.002) -0.001 (0.002)
Rural Population Percentage 0.926 (0.049) 0.837 (0.049)
Unemployment Rate -0.025 (0.005) -0.029 (0.005)
Median Income, $10K 0.117 (0.010) 0.119 (0.010)
Years Elapsed from 01/01/2012 0.112 (0.023) 0.114 (0.023)
Constant -6.573 (1.420) -5.597 (1.429)
Marginal Effects (1) (2)
pgC,t 0.052 (0.009) 0.611 (0.054)
pdC,t − p

g
C,t 0.005 (0.015)

p̄dC,t -0.557 (0.055)
p̃dC,t 0.041 (0.016)
Rain, ft./year 0.001 (0.000) -0.002 (0.000)
Snow, ft./year 0.000 (0.000) 0.000 (0.000)
Rural Population Percentage 0.186 (0.010) 0.017 (0.010)
Unemployment Rate -0.005 (0.001) -0.006 (0.001)
Median Income, $10K 0.024 (0.002) 0.024 (0.002)
Years Elapsed from 01/01/2012 0.022 (0.005) 0.023 (0.005)
(Negative) Pseudo-LL 18215 18157
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Table 4.2: Logistic Regression of Fuel Choice in Heavy-Duty Trucks: Personal Registrations

Variable (1) (2)
pgC,t 0.173 (0.090) 2.162 (0.400)
pdC,t − p

g
C,t 0.046 (0.113)

p̄dC,t -1.935 (0.406)
p̃dC,t 0.179 (0.116)
Rain, ft./year -0.004 (0.001) -0.007 (0.002)
Snow, ft./year -0.002 (0.003) -0.001 (0.003)
Rural Population Percentage 0.193 (0.066) 0.142 (0.066)
Unemployment Rate -0.006 (0.007) -0.010 (0.007)
Median Income, $10K 0.053 (0.015) 0.055 (0.015)
Years Elapsed from 01/01/2012 0.070 (0.035) 0.074 (0.035)
Constant -2.999 (2.141) -2.484 (2.149)
Marginal Effects (1) (2)
pgC,t 0.022 (0.012) 0.279 (0.051)
pdC,t − p

g
C,t 0.006 (0.015)

p̄dC,t -0.250 (0.052)
p̃dC,t 0.023 (0.015)
Rain, ft./year 0.000 (0.000) -0.001 (0.000)
Snow, ft./year 0.000 (0.000) 0.000 (0.000)
Rural Population Percentage 0.025 (0.009) 0.018 (0.009)
Unemployment Rate -0.001 (0.001) -0.001 (0.001)
Median Income, $10K 0.007 (0.002) 0.007 (0.002)
Years Elapsed from 01/01/2012 0.009 (0.005) 0.010 (0.005)
(Negative) Pseudo-LL 9027 9014

Table 4.3: OLS Regression of Log Yearly Mileage: Full Registration Sample

Variable (1) (2) (3) (4)
Log Operating Cost 0.329 (0.085) 0.303 (0.046) -0.152 (0.067) -0.180 (0.068)
Rain, ft./year -0.002 (0.000) 0.019 (0.007) -0.001 (0.000) 0.020 (0.007)
Snow, ft./year -0.002 (0.001) -0.028 (0.004) -0.002 (0.001) -0.028 (0.004)
Rural Population Percentage 0.162 (0.026) 0.162 (0.029) 0.147 (0.026) 0.156 (0.029)
Unemployment Rate 0.004 (0.003) 0.004 (0.003) 0.003 (0.003) 0.003 (0.003)
Median Income, $10K -0.009 (0.004) -0.007 (0.005) -0.009 (0.004) -0.009 (0.005)
Extended Cab 0.111 (0.058) 0.102 (0.058)
Crew Cab 0.143 (0.058) 0.138 (0.058)
Four Wheel Drive 0.018 (0.038) 0.025 (0.038)
Dual Rear Wheels -0.245 (0.106) -0.249 (0.107)
Torque, 100 lb. ft. 0.000 (0.000) 0.000 (0.000)
Work Truck Trim 0.000 (0.023) 0.003 (0.023)
Length, ft. 0.025 (0.019) 0.028 (0.019)
Width, ft. 0.108 (0.047) 0.120 (0.047)
Height, ft. 0.065 (0.063) 0.042 (0.062)
Constant 3.044 (0.085) 3.383 (0.121) 0.187 (0.344) 0.553 (0.354)
County FEs No Yes No Yes
R2 0.015 0.037 0.031 0.052
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Table 4.4: OLS Regression of Log Yearly Mileage: Personal Registration Sample

Variable (1) (2) (3) (4)
Log Operating Cost 0.269 (0.052) 0.269 (0.052) -0.178 (0.076) -0.139 (0.077)
Rain, ft./year -0.001 (0.001) 0.013 (0.008) -0.001 (0.001) 0.012 (0.007)
Snow, ft./year -0.001 (0.001) -0.013 (0.007) -0.001 (0.001) -0.013 (0.007)
Rural Population Percentage 0.250 (0.028) 0.232 (0.033) 0.242 (0.028) 0.234 (0.032)
Unemployment Rate 0.004 (0.003) 0.003 (0.003) 0.004 (0.003) 0.003 (0.003)
Median Income, $10K 0.012 (0.005) 0.019 (0.006) 0.011 (0.005) 0.014 (0.006)
Extended Cab 0.225 (0.069) 0.226 (0.069)
Crew Cab 0.299 (0.068) 0.297 (0.068)
Four Wheel Drive 0.102 (0.043) 0.103 (0.044)
Dual Rear Wheels -0.307 (0.130) -0.304 (0.131)
Torque, 100 lb. ft. 0.000 (0.000) 0.000 (0.000)
Work Truck Trim 0.028 (0.024) 0.030 (0.024)
Length, ft. 0.023 (0.020) 0.019 (0.020)
Width, ft. 0.219 (0.057) 0.218 (0.058)
Height, ft. -0..178 (0.076) -0.174 (0.068)
Constant 2.691 (0.101) 2.818 (0.173) 0.529 (0.395) 0.890 (0.420)
County FEs No Yes No Yes
R2 0.018 0.031 0.042 0.053
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SECTION 5

MODEL

In this section, I present a two-period model of vehicle adoption and subsequent usage as a

means to model price expectations in a concise manner and account for selection on anticipated

usage. I then proceed by presenting an empirical analogue to my theoretical model which is es-

timated using maximum simulated likelihood (MSLE). The structure of the model is motivated

by Gillingham (2013), who applies a model based on that of Einav et al. (2013) to automobile

adoption.

5.1 Theoretical Model

I assume that individuals exogenously enter the market to purchase one new pickup truck. As

a result of this assumption, estimates and counterfactuals presented in the next section should be

viewed as conditional on selection into the new truck purchasing market. Based on the aggrega-

tion process described in Section 2, I use the subscript ‘j’ to refer to a vehicle’s combination of

model-series-model year-body-drivetrain-wheel configuration-engine. The timing of the model is

as follows:

1. First Period: Consumers choose which truck to purchase based on:

• Purchase price, denoted MSRPj .

• Vehicle attributes, denoted Xj . Fuel economy is not included in Xj , as I assume that

individuals do not directly derive utility from operating a more efficient vehicle, but

only through the fuel savings provided by a more efficient vehicle. Heterogeneity in

consumers’ preferences over vehicle characteristics can be introduced with random

coefficients attached to Xj .



• Expected utility from driving the vehicle during the second period. Price expectations

and fuel economy enter here, as they determine consumers’ expected per-mile operat-

ing costs in the second period.

2. Second Period: Given the vehicle choice from the first period, consumers choose how many

miles to drive after observing operating costs.

I proceed by discussing consumers’ optimal second-period usage decisions conditional on own-

ing a particular truck. Given consumers’ second-period usage decisions, I then derive an expres-

sion for consumers’ first-period expected utility under general fuel price expectations. I discuss the

structure placed on price expectations prior to outlining my empirical analogue to the theoretical

model.

5.1.1 Second Period: VMT Decision

The realization of the fuel price for the chosen vehicle occurs at the beginning of the second

period, at which point consumers decide how many miles to drive. I parameterize second-period

utility from using vehicle j, net of fuel costs, as

u2 = γj

(
VMTij −

1

2ηi
VMT 2

ij

)
− αip̃ijVMTij (5.1)

The vector γj ≡ βXXj acts to shift the marginal utility of driving vehicle j based on a vector of

characteristics of vehicle j denoted by Xj , while the rate at which the marginal utility of driving

diminishes is scaled by ηi. Fuel costs are specified as the per-mile price faced by individual i

to drive vehicle j: p̃ij =
pij

MPGj
, where pij is the per-gallon fuel price faced by individual i.1

Abstracting from corner solutions, the second-period utility function with respect to VMT yields

the second-period demand for driving, conditional on owning vehicle j:

VMT ∗ij = ηi

[
1− αip̃ij

γj

]
(5.2)

1The per-gallon fuel price varies by fuel type, but does not vary for individual i across vehicles of the same fuel
type.
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The solution for VMT exhibits a couple of important properties. First, the individual-specific ηi

represents the individual’s level of driving in absence of fuel costs, and usage is multiplicative in ηi.

This feature allows me to derive a tractable likelihood function for second-period usage decisions

with a lognormally distributed usage shock. Second, driving is linear in fuel costs. In estimation, I

only observe a single odometer reading attached to a subset of vehicles; the linearity of the demand

curve allows me to model mileage as a function of the average fuel price during the second period.

5.1.2 First Period: Vehicle Choice

In the first period, I model consumers who have exogenously entered the market to purchase a

new pickup truck and decide to choose the truck which maximizes their expected utility. I specify

first-period expected utility as

Ei[u1] = δEi[u2]− αiMSRPj + εij (5.3)

The individual’s expected utility in the first period consists of two pieces. She incurs the cost

of purchasing the vehicle in the first period and faces an expected utility flow from operating the

vehicle in the second period. I abstain from modeling the resale market and instead assume that the

second-period utility flows can be freely transferred to another individual. Given an individual’s

optimal driving level, expected second period utility can be written as2

Ei[u2] = δE[ηi]

[
γj
2

+
α2
i (V ar(pi) + E[pi]

2)

2γjMPG2
j

− αiE[pi]

MPGj

]
(5.4)

In the first period, individuals must take expectations over future realizations of fuel prices and

the usage parameter ηi. Given that the empirical distribution of VMT can be approximated as

a lognormal distribution, I specify ηi = exp{βZZi + σkε
k
i + σuε

u
i }, where Zi is a vector of ex-

ogenous taste shifters, εki ∼ N(0, 1) is a shifter of ηi which is known by the vehicle purchaser

in the first period, and εui ∼ N(0, 1) is a second-period shock to ηi which is independent of Zi

and εki . Therefore, consumers’ expected value of ηi at the time of vehicle purchase is given by

2A derivation of this result is given in §C.1.
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Ei[ηi] = exp{βZZi +σkε
k
i + σ2

u

2
}. For the time being, I do not impose additional structure on price

expectations, as I cover this at length when discussing my empirical implementation. Plugging this

expression into Ei[u2] in (5.4) gives the individual’s first period expected utility from purchasing a

vehicle j ∈ J :

Ei[u1] = δ exp{βZZi + σkε
k
i +

σ2
u

2
}
[
γj
2

+
α2
i (V ar(pi) + E[pi]

2)

2γjMPG2
j

− αiE[pi]

MPGj

]
− αiMSRPj + εij

(5.5)

This expected utility specification clarifies the role of anticipated usage on engine selection. Con-

sider, for the sake of simplicity, an individual who is making a decision between a gasoline (G)

and diesel (D) engine in an otherwise identical truck. If the diesel engine improves performance

capabilities (γD > γG) and fuel economy ( E[pD]
MPGD

< E[pG]
MPGG

), then for any value of ηi the second

period expected utility is greater for the diesel engine. The difference in second-period utility as-

sociated with the diesel engine is multiplicative in ηi. The decision of whether to upgrade to the

diesel engine depends on whether the difference in expected second period utility outweighs the

difference in the purchase price (αi(MSRPD −MSRPG)). In this example, individuals with a

sufficiently high level of E[ηi] will select the diesel engine while those with a sufficiently low level

of E[ηi] will select the gasoline engine. By estimating the distribution of ηi, I am able to account

for the role of selection on anticipated usage in fuel choice.3

5.2 Empirical Implementation

I model choices at the level of an individual deciding to purchase some vehicle j in her choice

set J which maximizes her expected utility at the time of purchase. As discussed in §3.1, I de-

fine vehicles at the level of model-series-model year-cab type-drivetrain-engine-work trim-wheel

configuration. For all vehicles of a particular model, series, and model year, I define the first date

of availability as the first observed date of purchase. In a similar fashion, I define the last date of

availability as the earlier of (i) the last date a vehicle of the same model, series, and model year is

purchased or (ii) the first date a vehicle of the same model and series but subsequent model year

3More generally, I account for the role of selection on anticipated usage in truck choice.
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is purchased. At this point, all vehicles of a particular model-series effectively ‘switch’ to the new

model year.4 The dates of availability typically apply to all different vehicles of a given model,

series, and model year.5

In addition to estimating an empirical analogue of (5.5), I use my subsample with odometer

readings attached to estimate a model of the second period usage decisions. For those observations

with an odometer reading attached, the likelihood contributions are represented by the joint prob-

ability of purchasing vehicle j and conditional on purchasing vehicle j, choosing to drive VMTij

miles. This strengthens identification of key parameters in the model, which I further discuss to-

wards the end of this section. A significant shortcoming of my data on odometer readings is that

I observe an odometer reading attached to just under 10% of my observations. I partition my data

into two subsets of buyers; those individuals in subset N1 owned the vehicle from the date of pur-

chase through the end of 2015, and as such I do not observe an odometer reading for individuals in

N1. Purchasers in subset N2 either transferred the vehicle by the end of 2015 or had an odometer

reading recorded for another reason. I first consider the likelihood of observing outcomes recorded

in each of these datasets separately, and then combine them to generate my likelihood function.

Following the derivation of the likelihood function under the assumption that odometer readings

are missing-at-random, I present a selection correction and derive the likelihood function which

accounts for the non-random nature of odometer reading entries.

In estimation, I deviate from my theoretical model by specifying that the utility of operating

the vehicle is accrued over repeated one year periods. As such, I attach a different coefficient on

operating cost than is attached to the vehicle’s purchase price, as the operating cost is incurred

4Within generation but across model years, there are minor differences in vehicle characteristics and MSRPs.
However, this step reduces choice sets by around 50% to 60% and in turn vastly decreases the computational burden
of estimation.

5When a new model year is released, most or all permutations of the truck are usually available. Suppose, for
example, that I observe the first purchase of a four-wheel drive 2015 F-150 on October 3, 2014, while I do not observe
an otherwise identical two-wheel drive 2015 F-150 until October 25,2014. Most likely, both vehicles were available
in both choice situations, but the latter was simply not selected by a consumer until the later date. In one important
instance, the 2014 Ram 1500 Diesel was not released until a few months after the other 2014 Ram 1500s. As such, I
specify the first date of availability for all 2014 Ram 1500 Diesels as the first date a 2014 Ram 1500 with the diesel
engine was purchased.
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for several years. Given estimates of (i) consumers’ responsiveness to operating costs and (ii)

consumers’ responsiveness to purchasing price, the discount rate is implicit given an assumption

regarding the number of years a vehicle is operated (Hausman, 1979).

5.2.1 Specifying Price Beliefs

To estimate the model presented in the previous subsection, I must make an assumption re-

garding consumers’ fuel price beliefs. I refer to three possible sets of price beliefs through-

out the remainder of this paper. First, under a ‘no-change’ forecast, the expected price of both

gasoline and diesel fuel at any future date t is given by the current price of each respective fuel

f ∈ {d, g} : E[pft ] = pf0 , where 0 denotes the date when the consumer forms her price beliefs. I

follow much of the literature and use a ‘no-change’ forecast for gasoline price beliefs, but I con-

sider an alternative possibility for diesel price expectations which is motivated by the results from

my logistic regressions on fuel choice in the previous section. Under a ‘decomposed’ forecast, I

decompose the current diesel price as pd0 = pg0+τC+p̃d0. I then specify the ‘decomposed’ forecast as

E[pdt ] = pg0 + τC +φp̃d0, where φ is a parameter to be estimated which represents the weight placed

on the time-series variation in the diesel premium. By construction, the decomposed forecast is

equivalent to the no-change forecast when φ = 1.00. This specification allows for the possibility

that consumers respond differently to different types of price variation. In this environment, the

decomposition is motivated by the fact that under a random-walk process for gasoline prices as

suggested by the prior literature, a forward-looking consumer would update their beliefs one-for-

one when the prices of both fuels rise. Likewise, given the persistence of variation in the diesel

premium across counties, a forward-looking individual in a county with a high average diesel pre-

mium (τC) should expect the diesel premium to remain higher than an individual in a county with

a low average diesel premium over the life of her vehicle. On the other hand, a forward-looking

consumer may not respond to time-series variation in the diesel premium (p̃d0) owing to its transi-

tory nature. The extent to which consumers respond to time-series variation in the diesel premium

relative to the aforementioned sources of price variation is captured by φ. I proceed by estimating

the model under a decomposed forecast and a no-change forecast, and contrast the results in the
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next section.6

5.2.2 Likelihood Contributions

As discussed earlier in this chapter, I observe odometer readings attached to a potentially non-

random subset of observations. In order to derive my likelihood function which allows for the

possibility of non-random selection into reporting an odometer reading, I split my sample into two

subsets based on whether an odometer reading is observed. For the remainder of the paper, I let N1

denote the sample of observations where I observe a vehicle purchase but not an odometer reading,

N2 denote the sample of observations where I observe a vehicle purchase as well as an odometer

reading, and θ denote the full set of parameters to be estimated in the model.

There is a variety of reasons one might suspect my odometer readings appear for a non-random

subset of observations given the data entry process described earlier. For example, those individ-

uals who have a high ‘known’ taste for driving, σkεki , could be more likely than those with a low

σkε
k
i to wear out their vehicles and subsequently be less likely to transfer their vehicles owing to

lower resale values. Alternatively, these individuals could have a stronger preference upgrading to

newer, more luxurious vehicles given the greater amount of time they spend in their vehicles and

exhibit a higher probability of recording an odometer reading. While neither of these are explicitly

modeled, my selection correction aims to account for either possible relationship between σkεki

and odometer reading reporting. One could similarly suspect that those individuals who receive

an extreme draw of σu after purchasing their vehicle may be more likely to transfer their vehicle

and subsequently receive an odometer entry. If an individual initially purchased a large, inefficient

vehicle and then switched jobs to one which required an additional 20 miles of daily commuting

(high σu), we might expect her to replace this vehicle with a more efficient one. For the sake of

exposition, I begin by presenting the likelihood contributions under the assumption that odometer

readings are entered randomly. I then continue to present a selection correction and discuss its

implementation.

6I define the variance in each respective fuel price as the observed daily price variance in an individual’s county
throughout the sample. For the decomposed forecast, the variance is approximated by V ar(pgi + τC) + φ2V ar(p̃di ).
Because Cov(pgi + τC , p̃

d
i ) ≈ 0, I drop the covariance term and consider my measure an approximation.
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5.2.3 Likelihood Contributions: Random Odometer Entry

Because I do not observe an odometer reading for individuals in subsample N1, the likelihood

contributions for these individuals only considers their first-period vehicle choices. I assume that

the idiosyncratic match value εij follows an extreme value distribution which is independent and

identically distributed across individuals and vehicles. Up to each individual’s draw of εij , the

expected utility of individual i from adopting vehicle j is given by

Vij = exp{µk+βZZi+σkε
k
i +

σ2
u

2
}
[
γj
2

+
α2
f (V ar(pi) + E[pi]

2)

2γjMPG2
j

− αfE[pi]

MPGj

]
−αpMSRPj (5.6)

where notation is identical to that used in the theoretical model, with the exception that αf is at-

tached to yearly operating costs while αp is attached to the purchase price. Given this specification,

the discount rate is implied based on the vehicle’s expected life and the values of αf and αp. I spec-

ify εki ∼ N(0, 1) where σk is a parameter to be identified. Given a particular draw of εki and the

distributional assumption on εij , the probability of an individual i choosing some vehicle j ∈ J is

given by

Pri(j|θ) =
eVij∑
h∈J e

Vih
(5.7)

This logit choice probability represents likelihood the contributions of individuals who do not

report an odometer reading, conditional on a draw of εki . Integrating out over the distribution of εki ,

the likelihood contribution of an observation in N1 given the full parameter vector θ is given by

Li(θ) =

∫
Pri(j|θ)f(εk)dεk (5.8)

In specifications which include random coefficient(s) attached to vehicle characteristics, likeli-

hood contributions must also integrate over the distribution of these random coefficients. In §6,

I estimate a specification which includes a random coefficient attached to torque which specifies

βiT = exp{βT + σT εiT} where T denotes torque and εiT ∼ N(0, 1) is independent of εki and εui .

For the sake of notational simplicity, I suppress this integral throughout this section.

For observations with an odometer reading, the likelihood contributions are given by the joint
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probability of purchasing vehicle j in the first period, and then conditional on this purchase, choos-

ing to drive VMTij miles in the second period. I specify εui ∼ N(0, 1) and assume the shock is

independent across i, j, εki . Given the realization of εui , the individual’s optimal VMT is given by

VMT ∗ij = exp{βZZi + σkε
k
i + σuε

u
i }
[
1− αf p̃ij

γj

]
(5.9)

Taking the natural log of VMT ∗ij and letting µij ≡
[
1− αf p̃ij

γj

]
, the density of ln(VMTij) condi-

tional on a draw of εki and owning vehicle j is given by

f(ln(VMT ∗ij)|j, θ) =
1

σu
√

2π
∗ exp

[
−(ln(VMTij)− βZZi − σkεki − ln(µij))

2

2σ2
u

]
(5.10)

Given a draw of εki , the likelihood contribution of an individual inN2 is given by Pri(j)∗f(ln(VMT ∗ij)|j).

Integrating out over the distribution of εki , the likelihood contribution of an observation in N2 is

given by

Li(θ) =

∫ (
Pri(j|θ) ∗ f(ln(VMT ∗ij|j, θ))

)
f(εk)dεk (5.11)

5.2.4 Selection Correction

I now present an adjustment to the likelihood function which allows for the possibility of non-

random entry of odometer readings. Recall that for all individuals sample N1 and sample N2, I

observe a vehicle purchase, but only observations in N2 have an odometer reading. I specify yi as

a latent variable which is determined by the following selection equation:

yi = Kiδ + ζσkε
k
i + vi

I assume that the outcome of the selection equation determines whether I observe an odometer

reading:
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lnVMTi =


βZZi + σkε

k
i − ln(µij) + σuε

u
i if yi > 0

unobserved if yi ≤ 0

(5.12)

Following Heckman (1979), I specify the following joint distribution of the error term in the

selection equation and the second-period shock to driving:

σuεu
v

 ∼ N


0

0

 ,

 σ2
u ρσu

ρσu 1




where εui ∼ N(0, 1) and the variance of the error term in the selection equation is normalized

to σ2
v = 1. Under these assumptions regarding the distribution of disturbances, the likelihood

contribution of an observation in sample N1 is the joint probability of (1) an individual choosing

vehicle j ∈ J and (2) not reporting an odometer reading:

Li(θ) =

∫
εk

(Pr(yi ≤ 0|θ) ∗ Pr(j|θ))f(εk)dεk

where Pri(j|θ) is given by (5.7). Given our assumption that vi ∼ N(0, 1), note that Pr(yi ≤

0|θ) = Pr(vi ≤ −Kiδ − ζσkεki ) = 1 − Φ(Kiδ + ζσkε
k
i ). Our likelihood contributions for obser-

vations in N1 are thus given by

Li(θ) =

∫
εk

(1− Φ(Kiδ + ζσkε
k
i )) ∗

[
eVij∑
h∈J e

Vih

]
f(εk)dεk (5.13)

For the subset of observations which carry an odometer reading (N2), the likelihood contribu-

tions after making the selection correction are now given by the joint probability of (1) an individ-

ual choosing vehicle j ∈ J and (2) the joint probability of driving a particular number of miles

and reporting the odometer reading:

Li(θ) =

∫
εk

(Pr(lnVMTij, yi > 0|j, θ) ∗ Pr(j|θ)) f(εk)dεk

Using Bayes’ rule, Pr(lnVMTij, yi > 0|j, θ) = f(lnVMTij|j, θ)∗Pr(yi > 0| lnVMTij, j, θ).
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Given that yi = Kiδ + ζσkε
k
i + vi, the probability of observing an odometer reading is given by

Pr(vi > −Kiδ − ζσkεki | lnVMTij, j, θ) =

∫ ∞
−Kiδ−ζσkεki

f(vi|εui )dvi

Using the properties of the conditional distribution function of the normal distribution,

∫ ∞
−Kiδ−ζσkεki

f(vi|εui )dvi =

∫ ∞
−Kiδ−ζσkεki

φ

(
vi − ρ

σu
(ln(VMT )− βZZi − σkεki − ln(µij))√

1− ρ2

)
dvi

= 1− Φ

(
−Kiδ − ζσkεki −

ρ
σu

(ln(VMT )− βZZi − σkεki − ln(µij))√
1− ρ2

)

= Φ

(
Kiδ + ζσkε

k
i + ρ

σu
(lnVMT − βZZi − σkεki − ln(µij))√

1− ρ2

)
where the last step follows by the symmetry of the normal distribution. This gives us the likelihood

contributions for individuals in sample N2:

Li(θ) =∫
εk

[
eVij∑
h∈J e

Vih

]
∗
[

1

σu
√

2π
∗ exp

{
−(ln(VMT )− βZZi − σkεki − ln(µij))

2

2σ2
u

}]
∗

Φ

(
Kiδ + ζσkε

k
i + ρ

σu
(lnVMT − βZZi − σkεki − ln(µij))√

1− ρ2

)
f(εk)dεk (5.14)

I approximate the integrals in (5.13) and (5.14) using simulation, as my model is estimated with

MSLE. For each individual in the sample, I take 200 draws of εki using antithetic acceleration.7

Given an individual’s draws, her simulated likelihood contribution is given by the average of the

likelihood contributions corresponding to each of her R = 200 draws. For individuals in each

7In specifications that include random coefficient(s) on vehicle characteristics, the same process is used. Train
(2009) provides a thorough discussion of this procedure.
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respective sample, the simulated likelihood contributions are given by

SLi(θ) =


1
R

∑R
r=1 [Pr(j|θ) ∗ Pr(yi ≤ 0|j, θ)] if i ∈ N1

1
R

∑R
r=1 [Pr(j|θ) ∗ f(ln(VMTij)|j, θ) ∗ Pr(yi > 0| lnVMTij, j, θ)] if i ∈ N2

(5.15)

Letting SL1(θ) = Πi∈N1SLi(θ) and SL2(θ) = Πi∈N2SLi(θ), the joint probability of observing

the data in sample N1 and sample N2 is given by SL(θ) = SL1(θ) ∗SL2(θ). Taking logs gives the

simulated log likelihood function which I maximize in estimation:

SLL(θ) =
∑
i∈N1

ln(SLi(θ)) +
∑
i∈N2

ln(SLi(θ)) (5.16)

5.2.5 Identification

The set of parameters to identify includes σk, σu, αf , αp, φ, βZ , and βX . The key to the identifi-

cation of fuel price parameters in this paper lies in the richness of my fuel price data and the breadth

of my registration data. I observe significant cross-sectional and time-series variation in the fuel

prices which consumers face. Within my decomposed model of fuel price expectations, I must

identify two parameters on fuel prices. Consumers’ disutility (αf ) associated with a one dollar

increase in operating costs is identified through exogenous variation in fuel prices at the time and

location of vehicle purchase, and strengthened by the second-period vehicle usage equation which

I estimate. Both cross-sectional and time-series variation in fuel prices are especially useful in this

setting where consumers have two different fuel options as they generate significant variation in the

anticipated fuel savings associated with adopting the diesel engine. This variation strengthens my

identification of consumers’ valuation of fuel savings from the diesel engine separately from their

valuation of the performance attributes, which would otherwise rely on very limited time-series

variation in diesel engine offerings.8 As discussed in §3.2, counties in the east of the state have

8All manufacturers always offer one diesel engine option in both their three-quarter ton and one-ton trucks, and
engine characteristics did not significantly change over the course of the sample. Identification of consumer valuation
of vehicle characteristics relies on exogenous variation in the choice set; however, there is significantly greater variation
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persistently low gasoline prices and a high average diesel premium. Counties in western Washing-

ton have persistently high gasoline prices and a low average diesel premium. As shown in Figure

5.1, this difference can result in thousands of dollars of variation in the fuel savings associated with

adopting a diesel engine. Given identical choice sets, the cross-sectional variation in incentives to

adopt the diesel engine allows me to separately identify consumers’ willingness to pay for fuel

efficiency from their tastes for diesel engine attributes.

Given the identification of αf , I use time-series variation in the diesel premium at the time of

purchase to separately identify φ. The intuition behind this identification argument lies in Figure

5.2, which gives the lifetime expected fuel savings associated with adopting a diesel engine in one

particular truck over the course of my sample. Given αf , the extent to which diesel engine upgrades

respond to time-series variation in the diesel premium identifies φ. As shown in Figure 5.2, under

no-change fuel price expectations (φ = 1.00), time-series variation in fuel prices generates massive

variation in the incentive to adopt the diesel engine. Under this price forecast, within-year variation

in the the diesel premium would result in upwards of ten thousand dollars of variation in the savings

associated with adopting the diesel engine. Under a forecast where φ = 0, the time-series variation

in the incentives to adopt a diesel engine is modest. As such, the extent to which sales respond to

the time-series variation in the diesel premium, relative to how they respond to all other sources of

price variation, identifies φ.9

A shortcoming of the data used in this paper is that transaction prices are unavailable, and as

such, I use MSRPs as a proxy for vehicle prices. As documented by Busse et al. (2013) and

Langer and Miller (2013) using MSRPs as a proxy for transaction prices induces measurement

error which is correlated with fuel price fluctuations. Such measurement error can bias estimates

of consumers’ willingness to pay for fuel economy downwards. There are two factors which may

help mitigate the magnitude of the bias in this paper. First, I rely heavily on cross-sectional fuel

in gasoline engine offerings than diesel engine offerings.

9While I’ve primarily discussed the differing types of variation in the diesel premium for the sake of exposition,
the other sources of price variation referred to here includes both cross-sectional variation in the diesel premium and
variation in gasoline prices, based on the construction of decomposed price beliefs which is illustrated in §5.2.1.
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price variation within a relatively small geographic area, while many of the incentive programs

which are used by manufacturers in response to fuel price fluctuations may be set regionally or

nationally. Further, in the case of discounts at the dealer-level, it is feasible for consumers make

a one-time vehicle purchase at a dealership a couple of hours from their domicile. If dealers east

of the Cascades began offering a discount of $1,000 on diesel powered trucks, shoppers from the

west of the Cascades may also be able to take advantage of these savings.10 Thus, the extent to

which such geographical differentials in vehicle prices can persist may be mitigated by consumer

search behavior.11 Second, the extent to which dealers offset changes in operating costs over the

life of vehicles in response to changing fuel prices is estimated by Langer and Miller (2013) to be

smaller for trucks than smaller vehicles.12

As alluded to earlier, the parameters attached to vehicle characteristics are of interest in this

project, but are identified with standard arguments from the vehicle demand estimation literature.

The assumption that model characteristics evolve exogenously from the standpoint of the consumer

is used to identify these parameters. This exogenous variation in choice sets allows me to observe

how consumers substitute between products with varying attributes as their choice sets evolve over

time, which in turn allows me to identify consumer preferences towards vehicle attributes.13

The role of both observed and unobserved heterogeneity in individuals’ demand for VMT is

10As shown in Figure 5.1, this could represent a 25%-50% offset in the fuel savings associated with the diesel engine
between the counties.

11Search costs are undoubtedly high. However, consumer search would presumably place a bound on persistent
vehicle price differentials which could arise due to persistent fuel price variation across counties.

12They estimate a mean offset of 61% for cars, 30% for SUVs, and only 18% for trucks. Used vehicle prices also
appear to be significantly more responsive to fuel price fluctuations than new vehicle prices. Busse et al. and Langer
and Miller (2013) each estimate that a $1 change in gas prices is associated with around a $300 change in relative
prices between a new vehicle in the top quartile of fuel economy and a new vehicle in the bottom quartile of fuel
economy. Busse et al. (2013) estimate this figure is around $2,000 for used vehicles.

13Petrin (2002) provides a nice discussion of the intuition behind this identification argument, as well as the identi-
fication of random parameters attached to vehicle characteristics. The reader should note that I ignore the possibility
of strategic delay in vehicle adoption due to the static nature of my model. However, because there is only modest
technological advancement during my panel, I do not view this as a significant concern.
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captured by the distribution of ηi, which is parameterized as exp{βZZi + σkε
k
i + σuε

u
i }. Taste-

shifters βZ are identified by the variation in second-period usage decisions which results from ex-

ogenous variation in Zi. The timing of the model and the observed second-period usage decisions

allow me to separately identify the parameters of the known component (µk, σk) of unobserved het-

erogeneity and the unknown component of unobserved heterogeneity (σu). Given the assumption

of a mean-zero second period usage shock, the coefficient attached to the constant in Zi, which I

denote as µk from now on, is identified based on the observed mean level of usage where Zi = ~0.14

This identification argument is best illustrated through the choice of whether to adopt a gasoline

or diesel engine in a heavy-duty truck. Recall Figure 3.2, which plots the distributions of usage

for gasoline and diesel heavy-duty truck drivers. Given consumers’ tastes for the performance

characteristics of each engine contained in βX and her fuel price expectations, there is a threshold

of anticipated usage above which it is optimal to purchase the diesel engine and below which it is

optimal to purchase the gasoline engine. This threshold varies across time and across locations as

fuel prices vary. Variation in adoption rates of the diesel engine across time and counties, given an

individuals’ set of price expectations, allows me to trace out the distribution of σkεki . The remain-

ing parameter σu is then identified through observed variation in second-period usage decisions,

given the estimated values of βZ , µk, and σk.

14Recall that ηi represents the intercept of the VMT demand function, where VMT ∗
ij = ηi

[
1− αf p̃ij

γj

]
. Given

αf , βX , we can identify the mean of the intercept of the demand curve where Zi = 0.
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Figure 5.1: Cross-Sectional Identifying Variation with Kernel Density Estimate

Figure 5.2: Time-Series Identifying Variation
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SECTION 6

RESULTS

In this section, I present my parameter estimates and counterfactual simulations. My estimation

routine simulates over 200 draws of εki which are drawn using antithetic acceleration. In specifi-

cations where a random coefficient is attached to torque, an identical procedure is used to take the

draws. My estimation sample consists of all 7,040 of the observations with an attached odome-

ter reading (N1 = 7, 040) and a randomly drawn sample of 20% of observations (N2 = 16, 388)

which do not have an attached odometer reading. I present results from three different specifica-

tions of the model, each with two different sets of price beliefs. In Table 6.1, I first present my

results from estimating the model without the selection correction discussed in §5.2.4. In Table

6.2, I present the results with the selection correction from §5.2.4. The final specification shown

in Table 6.3 includes a random coefficient attached to torque, where I simulate over 200 draws of

this coefficient once again using antithetic acceleration.1 In all specifications, VMT is defined in

thousands of miles per year, whereas vehicle prices are scaled in terms of thousands of dollars and

operating costs are scaled in terms of thousands of dollars per thousand miles. All standard errors

are computed by taking the square root of the elements along the diagonal of the inverse of the

Hessian.2

6.1 Parameter Estimates

There are four sets of parameters which I present in my tables: price parameters which include

αf and αp as well as φ when decomposed price beliefs are specified, the parameters of the usage

1In addition to these specifications, Table D.1 in §D presents results from a sample consisting only of those obser-
vations which have an odometer reading attached. Hence, the selection adjustment is not made for this specification.

2In §D, I also present the results from a linear-in-parameters multinomial logit model of vehicle choice which
illustrates the importance of allowing consumers to respond differently to separate sources of fuel price variation in a
more familiar discrete choice model.



distribution (µk, βZ , σk, σu), the parameters attached to vehicle characteristics (βX), and finally

those in the selection equation when relevant (δ, ζ, ρ). Each of the three tables includes two dif-

ferent forms of price beliefs. In the left-hand column beliefs are specified as a no-change forecast,

whereas in the right-hand column I specify beliefs using the decomposed forecast. In addition the

the parameter values, I report the implicit discount rate which is computed using αf , αp, and the

median lifespan of a light truck as estimated by NHTSA (2006).

Recall that from the theoretical model, the parameters attached to vehicle characteristics repre-

sent the marginal utility of operating the vehicle for the first thousand miles in a year, and that the

marginal utility of driving diminishes as VMT increases. Almost all estimated parameters in βX

have the expected sign. The lone exception is the parameter attached to the diesel engine; however,

this is explainable as conditional on a particular level of torque (the sole measure of engine power

used here), diesel engines have lower levels of horsepower than gasoline engines.3 Operating a

vehicle with an engine which produces more torque increases the marginal utility of operation, as

more powerful engines by this measure improve vehicles’ acceleration and smoothness of opera-

tion when towing or carrying heavy payload. In specifications which include a random coefficient

on torque, I estimate little heterogeneity in the marginal utility of torque.4 The omitted categories

for cab, drivetrain, trim, and wheel configuration are regular cab, two wheel drive, standard trim,

and single rear wheels. Upgrading to a more comfortable extended cab increases the marginal

utility of driving the truck, but to a lesser extent than upgrading to the even larger crew cab. Like-

wise, the four-wheel-drive option, which entails a significant cost but is nonetheless selected by

3I limit the number of vehicle characteristics used here merely as a means to decrease the computational burden.
I use torque as the sole measure of engine power due to its association with towing capability, and I do not include
horsepower because it is highly collinear with torque conditional on the value of the diesel engine dummy variable.

4Two additional specifications of the random coefficient on torque were estimated. In one additional specification,
I specified a normally distributed coefficient on torque. I also estimated a specification where a randomly distributed
valuation of torque entered consumer utility linearly as a first-period payoff. Intuitively, this specification is consistent
with consumers who value torque due to its impact on usage modes such as towing and hauling which are used only
during a small percentage of driving situations for many consumers. In all cases, I estimate a low level of heterogeneity
and find that including the random coefficient slightly decreases the objective function. In addition to this, I ran the
estimation routine while fixing the shape parameter at higher levels than those estimated, but in each case this lead
to a poorer fit and higher value of the objective function being minimized. In the appendix to this section, I include
estimates from counterfactual simulations where I fix the shape parameter on torque to 0.25. This exercise has little
effect on the relevant elasticities which I estimate using simulation.
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nearly 95% of truck purchasers, increases the marginal utility of driving the vehicle by a simi-

lar magnitude as the crew cab upgrade.5 The negative parameter attached to the dual rear wheel

configuration is consistent with the possibility that this configuration is a nuisance to the majority

of drivers, as driving a heavy-duty truck with this configuration makes it challenging to drive on

small streets and park in a single spot. The work truck trim level represents a downgrade from the

omitted trim level and decreases the marginal utility of driving the vehicle.6 Truck class dummies

account for unobservable vehicle characteristics which vary across truck classes. The negative co-

efficient on three-quarter ton trucks (e.g. Ford F-250) may reflect a lower likelihood of consumers

selecting unobservable ‘comfort’ upgrades. In this market, the scale of unobservable product qual-

ity differences within a particular truck class is modest, so I use these class dummies rather than

model-level fixed effects as a means to lower the computational burden.7

The distribution of the usage intensity parameter ηi is summarized by the estimated values of

µk, σk, βZ , and σu. As a result of the functional form of the second-period utility function, recall

that ηi represents the intercept of the demand curve for VMT. The estimates of this distribution

do not change significantly when price expectations are altered; to illustrate the properties of this

distribution I consider the estimates from the model with decomposed price beliefs in Table 6.2. As

a baseline, consider an individual who has the mean known component of usage and lives in a zip

code which is entirely urbanized with a median household income of $60,000. For this individual,

E[ηi] ≈ 14.824, indicating that such an individual would expect to drive 14,824 miles per year

in absence of fuel costs. Were this same individual living in a fully rural zip code, her expected

value of ηi would indicate an expected usage level of 18,620 miles per year. The estimate of σk

illustrates a significant level of heterogeneity in expected usage. Considering the individual with

5Recall that the crew cab upgrade is costlier than the four-wheel-drive upgrade, but selected by only about two-
thirds of truck purchasers.

6It is common to aggregate up to a single trim level if it is not possible to uniquely identify vehicle trim levels. I
leave the work trim option because certain configurations are not offered with upgraded trim levels (for example, two-
wheel drive, regular cab trucks are sometimes only offered with the base trim package). The ‘work trim’ represents a
base trim on trucks, while the omitted category represents a one level upgrade from the base trim.

7Beresteanu and Li (2011) employ model-level fixed effects as a means to account for the correlation between
unobservable vehicle attributes and vehicle prices.
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E[ηi] = 14.824, an otherwise identical individual with a draw of σkεki one standard deviation above

the mean would expect to drive 22,137 miles per year in absence of fuel costs. I find that across

all specifications, σk < σu, although the scale of the parameters is qualitatively similar. This

indicates that the variance in second-period usage shocks is greater than that of the first-period

unobservable heterogeneity. While perhaps counterintuitive, this estimate is not surprising given

the observed usage distributions. The empirical usage distribution of gasoline heavy-duty truck

purchasers shown in Figure 3.2 includes many individuals who drive over 20,000 miles per year.

Fuel savings associated with the diesel engine for such individuals typically outweigh the upgrade

cost even at a relatively high discount rate; accounting for the fact that the performance attributes

of the diesel engine are greater than the gasoline engine, her choice is rationalized by the model

with a large, positive second-period usage shock.

In the specifications in 6.2 and 6.3 where I include the selection correction, those parameters

are presented in the bottom block of the table. This specification of the selection equation includes

the same local taste-shifters and the VMT distribution as well as a variable capturing the initial

purchase date of the vehicle, which is excluded from the VMT distribution. Given the assump-

tion that individuals exogenously enter the market to purchase a new pickup truck, this exclusion

restriction comes naturally; however, it should be noted that this places additional weight on an

assumption which may be invalid. The large negative estimate of the coefficient attached to the

vehicle purchase date (defined as years elapsed since the beginning of the sample in January 2012)

is consistent with the observed pattern that individuals who purchased a vehicle earlier in the data

sampling period were more likely to transfer their vehicle and have an odometer reading entered.

The parameters attached to local income and local rurality are small by comparison, and have little

impact on the likelihood that I observe an odometer reading. The negative estimates of ζ and ρ sug-

gest that individuals with a higher (unobservable) first-period known usage level or second-period

usage shock are less likely to report an odometer reading. Parameter estimates attached to fuel

prices and vehicle characteristics scale downwards by roughly ten percent in magnitude once the

selection correction is included. I further discuss the implications of controlling for selection into

reporting an odometer reading in the next subsection where I conduct counterfactual simulations.
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Of utmost interest in this project is the estimated responsiveness to fuel prices and the extent

to which fuel price expectations are adjusted in response to different sources of fuel price varia-

tion. The former is captured by αf , which represents the decrease in first-period expected utility

associated with a one dollar increase in yearly fuel costs. The latter is captured by φ, which can be

interpreted as the weight consumers place on time-series variation in the diesel premium relative

to the weight that is placed on all other sources of fuel price variation when forming price expecta-

tions. In the three specifications which use the decomposed forecast, the estimate of φ lies between

0.110 and 0.117 and is not statistically significantly different from zero in any specification. Tak-

ing the highest estimate of φ for the sake of example, the interpretation of this point estimate is

that individuals’ price expectations adjust to $1.00 of time-series variation in the diesel premium

in the same manner as they adjust to a $0.117 increase in the remaining sources of price variation.

The importance of allowing individuals’ price expectations to adjust differently to different types

of price variation is illustrated by comparing the estimates of αf across different models of fuel

price expectations. The difference in αf across each specification of price beliefs is similar in each

of the three specifications, and ranges from 16.6% higher in the specification with the selection

correction (and a random coefficient) to 17.3% higher in the specification with neither.

The bottom row of the table lists the implied discount rate under the assumption that fuel costs

are incurred once yearly, and vehicle survival is given by the median light truck survival length of

14 years which is reported by NHTSA (2006). The level of these estimates should be taken with

caution given the documented measurement error which is the result of using MSRPs rather than

transaction prices. Across all specifications and models of price beliefs, estimated discount rates

are higher than the average interest rate on loans for new automobiles during this time.8 However,

the comparison of estimated discount rates between different specifications of price expectations

is illustrative of the importance of allowing for price expectations to adjust differently to different

8For reference, the average interest rate on a 48 month auto loan in February 2011 was 5.85% (FRED, 2017).
Insofar as the discount from MSRP is lower (greater) for vehicles with high (low) fuel efficiency when fuel prices
are high, the estimated discount rates with transaction price data would be lower. If dealers’ prices for diesel and
gasoline engines respond to time-series variation in the diesel premium, one could view φ as the lower bound of how
consumers’ price expectations respond to time-series variation in the diesel premium. Alternatively, the parameter can
take a reduced-form interpretation and be thought of as how vehicle sales respond to such price variation.
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types of fuel price variation. In each of the three main specifications, estimating the model with

decomposed beliefs results in an implicit discount rate which is roughly four percentage points

below the implicit discount rate which results when no-change beliefs are specified. Like the

difference in the point estimates of αf , this indicates that estimating price beliefs in the more

flexible manner in this environment is important to adequately capture the consumer response to

fuel price fluctuations.

6.2 Counterfactuals

To further illustrate the importance of allowing consumers to respond differently to different

types of price variation, I conduct counterfactual simulations of consumers’ first and second-period

decisions in response to increased fuel prices. While simulations are conducted using the estimates

of all three specifications each with two different sets of price beliefs, I focus on estimates from

the specification which includes the selection adjustment but does not include a random coefficient

on torque, as shown in Table 6.2. When relevant, I discuss the similarities and differences between

the three specifications, but for the sake of brevity I leave the results from counterfactuals drawn

from estimates in Table 6.1 and Table 6.2 in §D. All simulations are conducted over 20 draws of

εij , εik, εiu, and when relevant, the random coefficient attached to torque. The reader should note a

few caveats with regards to the interpretation of the counterfactuals and their place in the broader

literature on the consumer response to price fluctuations. First and foremost, recall that all esti-

mates presented here are conditional on the decision to purchase a new pickup truck. As such, the

elasticities presented here are only applicable to the new pickup truck fleet rather than the broader

fleet of passenger vehicles. Second, my price variation in each respective fuel covers a range of

roughly $2.50 per gallon to roughly $4.50 per gallon. As such, these simulations are best applied

to the scale of price variation which is used to identify my model. Choice sets are held fixed in my

simulations; given that manufacturers may offer vehicles with significantly better fuel economy in

response to a 50% to 100% increase in fuel prices, specifying a model which would allow firms

to adjust product offerings in response to fuel price fluctuations may lead to a higher estimated

elasticity of fleet fuel economy. However, while these restrictions should be taken seriously with

regards to the scale of my estimates, they carry less importance when comparing estimates within
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this paper across different price beliefs. As discussed throughout this manuscript, modeling price

beliefs in a more flexible manner carries importance when forward-looking consumers respond

differently to different types of price variation; as such, I give special attention to the difference in

counterfactual outcomes across price beliefs.

My simulations provide estimates of three relevant measures of the consumer response to price

fluctuations: the elasticity of the vehicle fleet’s average fuel economy, the elasticity of vehicle miles

traveled, and the elasticity of fuel consumption. In Table 6.4, I present approximated elasticities

resulting from a 5% change in fuel prices for each of the three specifications across each set of price

beliefs. Comparing estimates using the no-change price beliefs to those using the decomposed

price beliefs, those which are produced using the more flexible beliefs are roughly 15-20% larger in

magnitude across each of the three elasticities. The intuition behind the difference in the outcomes

lies in the nature of time-series variation in the diesel price premium. As illustrated in Figure

5.2, specifying no-change price beliefs (φ = 1.00) results in a massive amount of variation in

the savings associated with upgrading to a diesel engine. Under the no-change forecast, expected

savings can vary by upwards of $10,000 in a given year. If we observe similar diesel uptake

regardless of the current level of expected savings under this forecast, the model must moderate αf

in order to rationalize these decisions. In essence, treating a source of price variation (time-series

variation in the diesel premium) which forward-looking vehicle purchasers may not respond to

in the same fashion as all other sources of fuel price variation depresses the estimated consumer

responsiveness. At the end of this section, Figures 6.1-6.5 compare the consumer response across

different specifications of price beliefs which illustrate the same bias as the discussed differences

in elasticities across a wider range of simulated prices.

Compared to the literature, I estimate a relatively low elasticity of fleet fuel economy of 0.061

in the preferred specification. A highly inelastic estimated elasticity of the new vehicle fleet’s

fuel economy is typical within studies which do not specify a supply-side model where firms can

respond to high fuel prices by increasing the fuel economy of their offerings. Gillingham (2013)

similarly accounts for selection on anticipated usage and estimates an elasticity of 0.09, whereas

Klier and Linn (2010) consider a significantly longer panel than I do and estimate an elasticity of
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0.12. Studies which include a supply side model or consider the elasticity of the entire vehicle

fleet’s fuel economy generally produce higher estimates. While Li et al. (2009) include the effect

on scrappage of used vehicles and estimate an elasticity of 0.20, Austin and Dinan (2005) include

a supply-side model and produce a similar estimate of 0.22. My estimated elasticity of vehicle

miles traveled of -0.090 lies on the low end of recent estimates. Because this estimate includes the

rebound effect’s impact on driving, it is directly comparable to Gillingham (2013) who estimates

the elasticity of demand for VMT of -0.15. Accounting for the fact that my estimates include the

rebound effect, fixing the individual’s fuel efficiency would modestly increase the magnitude of

the estimate. Comparing my estimates to those of Linn (2013), whose estimates of the elasticity of

VMT are isolated from the rebound effect, they lie within his estimated range of -0.09 to -0.20.

Considering the difference between my estimates and those in the recent literature, it is worth

considering a few reasons why this might occur in my market of interest. One possibility is that

the elasticity of the new pickup truck’s fleet fuel economy is relatively low because pickup trucks

are more likely to be needed to haul heavy payload or tow cargo than other vehicles. The cost to

a sedan purchaser from choosing a less powerful, more fuel efficient engine may be a reduction in

acceleration, but it may not fundamentally alter how the individual can use the vehicle. A pickup

truck purchaser who chooses a less powerful, more efficient engine which decreases payload ca-

pacity and towing capabilities may no longer be able to operate the vehicle in the manner which

they desire.9 The possibility that purchasers of pickup trucks are less responsive than purchasers of

other vehicles is also noted by Langer and Miller (2013), who document that manufacturer incen-

tives attached to trucks are less responsive to fuel prices than smaller vehicles. Within-household

substitution between pickup trucks and smaller vehicles could explain why estimates of the elastic-

ity of vehicle miles traveled do fall within the range of estimates produced by researchers studying

car and light truck markets. While testing these possibilities is outside the scope of this paper,

future research may consider the reasons pickup truck purchasers appear to be less responsive to

9For example, a purchaser of either a truck or a car would find it more difficult to pass another vehicle on a two-lane
expressway with a less powerful engine. For a truck purchaser, however, the decrease in power may prevent them from
towing their boat, hauling gravel for a home-improvement project or require them to risk an engine malfunction.
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fuel price fluctuations in greater detail.

The selection correction has a negligent impact of the relevant elasticities, but it does have a

noteworthy impact on the simulated distributions of usage. In Table 6.5, I present percentiles of

the distribution of vehicle miles traveled at the observed level of fuel prices for the true usage

distribution as well as the simulated distribution. Comparing the simulated distribution in N1 to

the observed odometer readings reveals a reasonably good fit between the 5th and 95th percentiles

of the distribution. The quality of fit is poorer in the tails of the distribution, as the lognormal

specification of ηi fits the distribution with a fatter right-tail than I observe in the data. This can

also be seen in Figure 6.6, which plots the observed and simulated distributions of usage for N1.

The impact of higher fuel prices on the simulated usage distribution is presented in Figure 6.7 for

the simulation corresponding to decomposed price beliefs. Consistent with the estimated elasticity

of vehicle miles traveled, this distributions shifts to the left as fuel prices increase. The primary

impact of the selection adjustment on my results lies in the difference in the distribution of usage

between individuals in N1 versus those in N2. As a result of the estimated negative correlation

coefficient between the error term in the selection equation and σu, the simulated usage levels of

those individuals who did not report an odometer reading are higher than those who did report an

odometer reading. However, this difference small due to the magnitude of ρ, with the median level

of simulated usage only 2.4% higher for sample N2. As illustrated in Figure 6.8, the selection

adjustment results in higher mean vehicle miles traveled than the model without the selection

adjustment, but it does not have a significant impact on the scale of the consumer response to

increased fuel prices.
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Table 6.1: Estimates without Selection Correction

No-Change Decomposed
Parameters Beliefs Beliefs

Price Parameters:
αf 0.856 (0.033) 1.004 (0.037)
αp 0.126 (0.003) 0.127 (0.003)
φ 0.117 (0.071)

Usage Distribution:
µk 2.351 (0.021) 2.365 (0.021)
Income (x $10K) 0.016 (0.003) 0.017 (0.003)
Rural Share 0.224 (0.018) 0.223 (0.018)
σk 0.372 (0.009) 0.372 (0.009)
σu 0.526 (0.007) 0.527 (0.007)

Vehicle Characteristics:
Extended Cab 0.286 (0.009) 0.286 (0.009)
Crew Cab 0.436 (0.009) 0.436 (0.009)
Four Wheel Drive 0.381 (0.007) 0.379 (0.007)
Dual Rear Wheels -0.174 (0.010) -0.173 (0.010)
Work Truck Trim -0.194 (0.004) -0.192 (0.004)
Length (ft.) -0.017 (0.003) -0.019 (0.003)
Width (ft.) 0.050 (0.007) 0.055 (0.007)
Height (ft.) 0.163 (0.010) 0.170 (0.010)
Torque (100 lb. ft.) 0.111 (0.002) 0.114 (0.002)
Diesel Engine -0.163 (0.009) -0.180 (0.009)
Sport-Utility Truck -0.031 (0.009) -0.030 (0.009)
Full-Size Truck -0.052 (0.007) -0.051 (0.007)
Heavy-Duty: 3

4 Ton Truck -0.209 (0.011) -0.195 (0.011)
Heavy-Duty: One Ton Truck -0.191 (0.012) -0.169 (0.012)

Log Likelihood 108,967 108,911
Implicit Discount Rate 14.18% 10.53%
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Table 6.2: Estimates with Selection Correction

No-Change Decomposed
Parameters Beliefs Beliefs

Price Parameters
αf 0.772 (0.038) 0.901 (0.043)
αp 0.126 (0.003) 0.127 (0.003)
φ 0.110 (0.070)

Usage Distribution
µk 2.436 (0.035) 2.458 (0.036)
Income (x $10K) 0.017 (0.003) 0.017 (0.003)
Rural Share 0.228 (0.018) 0.228 (0.018)
σk 0.401 (0.010) 0.401 (0.010)
σu 0.521 (0.008) 0.522 (0.008)

Vehicle Characteristics:
Extended Cab 0.269 (0.011) 0.267 (0.011)
Crew Cab 0.407 (0.014) 0.403 (0.014)
Four Wheel Drive 0.356 (0.012) 0.351 (0.012)
Dual Rear Wheels -0.154 (0.010) -0.152 (0.011)
Work Truck Trim -0.178 (0.006) -0.175 (0.006)
Length (ft.) -0.016 (0.002) -0.018 (0.002)
Width (ft.) 0.044 (0.006) 0.048 (0.006)
Height (ft.) 0.152 (0.010) 0.157 (0.010)
Torque (100 lb. ft.) 0.101 (0.004) 0.102 (0.004)
Diesel Engine -0.145 (0.009) -0.160 (0.010)
Sport-Utility Truck -0.028 (0.008) -0.027 (0.008)
Full-Size Truck -0.047 (0.006) -0.045 (0.006)
Heavy-Duty: 3

4 Ton Truck -0.192 (0.012) -0.177 (0.012)
Heavy-Duty: One Ton Truck -0.175 (0.012) -0.154 (0.012)

Selection Parameters:
Constant 1.210 (0.079) 1.222 (0.079)
Income (x 10K) -0.011 (0.005) -0.011 (0.005)
Rural Share -0.082 (0.034) -0.082 (0.034)
Purchase Date -0.708 (0.011) -0.708 (0.011)
ζ -0.489 (0.060) -0.500 (0.060)
ρ -0.062 (0.055) -0.077 (0.056)

Log Likelihood 120,213 120,155
Implicit Discount Rate 16.88% 12.99%
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Table 6.3: Estimates with Selection Correction and Random Coefficient

No-Change Decomposed
Parameters Beliefs Beliefs

Price Parameters: αf 0.771 (0.037) 0.899 (0.042)
αp 0.126 (0.003) 0.126 (0.003)
φ 0.111 (0.071)

Usage Distribution:
µk 2.439 (0.033) 2.461 (0.034)
Income (x $10K) 0.017 (0.003) 0.017 (0.003)
Rural Share 0.226 (0.018) 0.225 (0.018)
σk 0.402 (0.010) 0.402 (0.010)
σu 0.520 (0.007) 0.521 (0.008)

Vehicle Characteristics:
Extended Cab 0.269 (0.011) 0.267 (0.011)
Crew Cab 0.406 (0.014) 0.403 (0.014)
Four Wheel Drive 0.355 (0.011) 0.351 (0.011)
Dual Rear Wheels -0.154 (0.010) -0.152 (0.010)
Work Truck Trim -0.178 (0.006) -0.175 (0.006)
Length (ft.) -0.016 (0.002) -0.017 (0.002)
Width (ft.) 0.044 (0.006) 0.048 (0.006)
Height (ft.) 0.152 (0.010) 0.157 (0.010)
Torque: Mean (100 lb. ft.) 0.101 (0.036) 0.102 (0.036)
Torque: Shape Parameter 0.006 (0.032) 0.001 (0.020)
Diesel Engine -0.145 (0.009) -0.160 (0.009)
Sport-Utility Truck -0.028 (0.008) -0.027 (0.008)
Full-Size Truck -0.047 (0.006) -0.046 (0.006)
Heavy-Duty: 3

4 Ton Truck -0.193 (0.011) -0.178 (0.011)
Heavy-Duty: One Ton Truck -0.176 (0.012) -0.155 (0.012)

Selection Parameters:
Constant 1.222 (0.079) 1.233 (0.078)
Income (x 10K) -0.011 (0.005) -0.011 (0.005)
Rural Share -0.081 (0.034) -0.081 (0.035)
Purchase Date -0.709 (0.011) -0.709 (0.011)
ζ -0.500 (0.060) -0.510 (0.059)
ρ -0.062 (0.051) -0.077 (0.052)

Log Likelihood 120,211 120,153
Implicit Discount Rate 16.94% 13.03%

Table 6.4: Approximated Elasticities from 5% Fuel Price Change

Specification Price Beliefs Fleet Fuel Economy VMT Fuel Consumption
No Selection Adjustment No-Change 0.052 -0.080 -0.136
Selection Adjustment No-Change 0.052 -0.078 -0.135
Random Coef. on Torque No-Change 0.053 -0.078 -0.135
No Selection Adjustment Decomposed 0.062 -0.092 -0.160
Selection Adjustment Decomposed 0.061 -0.090 -0.158
Random Coef. on Torque Decomposed 0.062 -0.090 -0.158
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Table 6.5: Observed vs. Simulated VMT Percentiles

Percentile Observed: N1 Simulated: N1 Simulated: N2

1% 1,434 2,590 2,587
5% 3,650 4,049 4,025

10% 5,160 5,056 5,128
25% 8,068 7,598 7,703
50% 11,758 11,738 12,020
75% 16,595 18,482 18,668
90% 22,534 26,733 27,956
95% 27,015 33,770 36,002
99% 37,916 52,365 55,125

Figure 6.1: Counterfactual Fleet Fuel Economy
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Figure 6.2: Counterfactual Change in Fleet Fuel Economy

Figure 6.3: Counterfactual Change in Mean VMT
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Figure 6.4: Counterfactual Average Fuel Consumption

Figure 6.5: Counterfactual Change in Fuel Consumption
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Figure 6.6: Observed and Simulated VMT Distribution for Sample N1

Figure 6.7: Counterfactual VMT Distribution, Full Sample
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Figure 6.8: Counterfactual Mean VMT With/Without Selection Adjustment
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SECTION 7

CONCLUSION

For the past century the U.S. market for automobiles has been dominated by gasoline-powered

vehicles. Because gas prices have been notoriously difficult to forecast, modeling price expec-

tations with a no-change forecast when gasoline is the sole fuel considered can be a reasonable

approximation to consumer beliefs. When a fuel other than gasoline is offered on vehicles in con-

sumers’ choice sets, using a no-change forecast for each fuel may not approximate consumers’

beliefs. The proposed approach here, where price expectations are tailored to account for the

transient nature of time-series variation in the diesel premium, allows for the possibility that such

variation results in smaller changes in price expectations than is assumed under a no-change fore-

cast.1 My results indicate that price expectations are considerably less responsive to time-series

variation in the diesel premium, and in turn, a no-change forecast results in underestimation of

consumers’ responsiveness to fuel price fluctuations. The magnitude of the bias is significant de-

spite the modest scale of time-series variation in the diesel premium, as parameter estimates and

the relevant elasticities change by about 15-20% when the decomposed forecast is specified.

Future research on consumers’ responsiveness to fuel price fluctuations will need to give in-

creasing consideration to adoption of non-gasoline powered vehicles as their market shares rise.

Just as forward-looking pickup truck purchasers should form price beliefs which account for the

mean-reverting nature of time-series variation in the diesel premium, forward-looking purchasers

of alternative-fuel vehicles ought to consider the evolution of the operating costs when forming

1The challenge of specifying beliefs over product attributes which are consistent with those generating the data
is by no means limited to automobile adoption. In many cases, the quality of product attributes (in this case, fuel
economy) evolve according to some process wherein the expected attribute quality over the life of the product differs
from its value at purchase. For example, Bishop and Murphy (2016) consider the willingness to pay for neighborhood
safety among home purchasers, which also has a mean-reverting tendency, and derive a bias adjustment to incorporate
the possibility of forward-looking behavior in a static model.



price beliefs. In the case of electric vehicles, forward-looking consumers should account for the

time-trend in electric vehicle charging infrastructure. Given the increasing quality and quantity

of EV chargers, consumers’ expected refueling cost should decrease over the life of the vehicle.2

Further, with rapid change in both refueling costs and EV quality over the past decade, this would

be a natural application to consider the role of price beliefs within a dynamic model of vehicle

adoption. I leave the prospect of modeling price beliefs in a dynamic model of vehicle adoption

for later work.

A second area of future research to be considered is the adoption and usage of large vehicles.

Medium-duty and heavy-duty vehicles are covered under a different regulatory umbrella than light-

duty vehicles in the United States. While such vehicles represent only about 5% of all vehicles in

operation in the U.S., they represent roughly one fifth of greenhouse gas emissions associated with

the transportation sector (EPA 2011). Under the most recent standard developed jointly by the

EPA and NHTSA, these vehicles will have to decrease emissions by roughly 25% over the next

decade, some of which must result from increased fuel economy. Despite the renewed policy inter-

est placed on trucks, the rich literature on consumers’ responsiveness to fuel price fluctuations is

largely focused on vehicles covered by CAFE regulations. While Parry (2008) considers optimal

taxation for heavy-duty trucks and Leard et al. (2016) estimate a rebound effect for drivers of such

vehicles, additional research into the costs of taxation versus the newly developed emissions reg-

ulation is warranted. Such research poses several challenges, including the difficulty of modeling

the decisions of fleet managers rather than individual consumers, measuring fuel prices when con-

sumers purchase fuel in many different locales, and obtaining high-quality data on fuel economy of

heavy-duty trucks. For the aforementioned policy importance and the intrigue of modeling vehicle

choice in this context, I leave this avenue open for future research.

2In the case of EVs, this can refer to either the nuisance cost of recharging the vehicle or the monetary cost.
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APPENDIX A

APPENDIX: CHAPTER 3

A.1 Institutional Details

The United States automobile market has historically seen a high proliferation of personally

owned pickup trucks compared to most other markets. These vehicles have a sizable market share,

with the ‘big three’ pickup models (Ford F-Series, Chevrolet Silverado, and Dodge Ram) often

ranking first, second, and third among all vehicle models in U.S. sales. It is well documented that

the light truck market segment, which includes pickup trucks, SUV’s, and vans, has been highly

important to U.S. manufacturers over the past quarter-century. While the market share of domestic

automobiles fell steadily over much of the past half-century, its stabilization from the early 1980s

through mid 1990’s is largely attributed to sales of light trucks (Klier, 2009). Looking more closely

at the sub-classes of vehicles within the ‘light truck’ category further reveals the importance of the

pickup truck sub-class. Whereas domestic manufacturers captured only a 34% market share of cars

from the 2015 model year and a 49% market share of SUV’s and vans, they enjoyed a market share

of better than 85% of pickup trucks, including a 100% market share among heavy-duty pickup

trucks. Although the entry of Japanese automakers such as Toyota, Honda, and Nissan into the

U.S. pickup truck market has lead to some erosion in the domestic market share, this decline is

comparatively small to that observed in other vehicle classes.

Pickup trucks in the U.S. typically fall into one of five classes which constitute the vast majority

of sales: mid-size (e.g. Chevrolet Colorado), sport-utility truck (e.g. Honda Ridgeline), half

ton (e.g. Chevy Silverado 1500), three-quarter ton (e.g. Chevy Silverado 2500), and one ton

(Chevy Silverado 3500).1 Vehicles vary significantly across classes based on their performance

characteristics. Across Chevrolet’s line of model year 2016 (MY2016) trucks, maximum towing

(payload) capacities are reported as 7,700 (1,580) pounds for the Colorado, 12,000 (2,260) pounds

1Half-ton trucks are also commonly referred to as full-size trucks, while three-quarter-ton and one-ton trucks are
commonly referred to as heavy-duty trucks. Compact trucks such as the Chevrolet S-10 and Ford Ranger enjoyed
large market shares throughout the late 20th century, but no pickup truck currently offered on the market fits into the
compact category. The Ranger is expected to return to the U.S. market for MY2019 with a diesel engine available to
pose as a competitor to the Chevrolet Colorado.

http://www.caranddriver.com/features/2019-ford-ranger-25-cars-worth-waiting-for-feature


for a Silverado 1500, 18,000 (3,534) pounds for the Silverado 2500, and 23,200 (7,153) pounds

for the Silverado 3500 with dual rear wheels. The reader should note the dissonance between the

class definitions of ‘half’, ‘three quarter’, and ‘one’ ton. Historically, these figure were loosely

tied to the maximum amount of payload which could be hauled in a truck of each respective class.

Just as the shift towards larger, more powerful vehicles in the light-duty segment is documented by

Knittel (2013) among others, this trend is also readily apparent among large pickup trucks.

Owing to the significant growth in these vehicles’ size and performance capabilities, many of

the pickup trucks produced today are not regulated under the same set of policies as cars, SUV’s,

and most vans. Under the first and second phases of the Greenhouse Gas Emissions Standards and

Fuel Efficiency Standards set forth jointly by the Environmental Protection Agency (EPA) and Na-

tional Highway Traffic Safety Administration (NHTSA), pickup trucks with a gross vehicle weight

rating (GVWR) under 8,500 pounds are regulated under Corporate Average Fuel Economy (CAFE)

standards as light-duty vehicles whereas pickup trucks with a GVWR over 8,500 pounds are reg-

ulated under a separate standard for medium and heavy-duty vehicles.2 When CAFE standards

were initially developed in the late 1970’s, all vehicles under a GVWR of 6,000 pounds fell under

this regulatory umbrella; this threshold was raised to its current level of 8,500 pounds for pickup

trucks shortly thereafter. The predecessors to many of the trucks discussed in this paper which

now fall above the 8,500 pound threshold fell below the threshold when it was put in place some

thirty-five years ago. For example, the 1982 the Chevrolet C/K 20 ranges in GVWR from 6,400

to 8,600 pounds while its 2013 analogue, the Chevrolet Silverado 2500, ranges in GVWR from

9,300 to 10,000 pounds. The 8,500 GVWR threshold has garnered criticism from some groups

(see Mackenzie et al. 2005), and was increased to 10,000 pounds for SUV’s and vans, but it has

not been adjusted for pickup trucks. Today, pickup trucks over the 8,500 GVWR threshold remain

classified as medium-duty vehicles. Although recent regulations require medium and heavy-duty

vehicles to significantly reduce emissions levels over the next decade, manufacturers which are

constrained by CAFE standards may retain an incentive to offer or report vehicles with GVWR’s

2GVWR refers to the maximum weight of the vehicle when it is fully loaded with passengers, cargo, payload, fuel,
etc.
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above the 8,500 pound threshold as a means of improving their CAFE.3

The diesel engine option in pickup trucks is typically a costly upgrade which historically was

available only on heavy-duty models as a means to improve towing capability as well as decrease

fuel costs. In recent years, however, many manufacturers have given serious consideration to de-

veloping and offering diesel engines in smaller trucks as a means of reaching more stringent CAFE

requirements and differentiating truck offerings from competitors’ offerings. Dodge became the

first manufacturer to offer a diesel engine option in a half-ton truck when it released a RAM 1500

equipped with a diesel engine late in MY2014. More recently, General Motors began offering a

diesel engine option in both the Chevrolet Colorado and the alternatively-badged GMC Canyon,

while Nissan has taken aim at the U.S. manufacturers’ market share of heavy-duty trucks with the

release of their so-called ‘five-eighths ton’ Nissan Titan XD, which has been offered with a 5.0L

Cummins diesel engine since late in the 2016 model year. While the petroleum savings associated

with adoption of diesel engines rather than conventional gasoline engines are modest compared

to the savings associated with hybrid electric vehicles (e.g. Toyota Prius) or plug-in electric ve-

hicles (e.g. Nissan Leaf), the latter technologies have failed to gain any significant traction in the

U.S. pickup truck market. However, given the size and corresponding fuel efficiency of pickup

trucks, modest improvements in fuel efficiency are associated with comparatively large reductions

in petroleum usage and carbon dioxide emissions. As a simple comparison, note that driving

12,000 miles in a 2015 Toyota Camry equipped with the available 4-cylinder hybrid engine rather

than the 4-cylinder gasoline engine decreases carbon emissions by roughly one ton whereas driv-

ing 12,000 miles in a 2015 RAM 1500 equipped with the available 6-cylinder diesel engine rather

than the 8-cylinder gasoline engine decreases carbon emissions by roughly 1.2 tons.4 Although a

3As shown in Mackenzie et al. (2005), ten of the eighteen vehicles considered which crossed the 8,500 pound
threshold did so by under 200 pounds. Selling vehicles above the 8,500 pound threshold which satisfy emissions
requirements for medium-duty vehicles rather than selling vehicles just below the threshold can result in improved
CAFE. For example, selling one additional truck with a GVWR of 8,400 pounds with fuel economy of 15 miles-per-
gallon would decrease any major automaker’s CAFE. However, selling one additional truck with a GVWR of 8,500
pounds with fuel economy of 14 miles-per-gallon would not.

4Calculations based on EIA estimates of CO2 released resulting from burning each respective fuel (18.95 pounds
per-gallon of E10 gasoline, 22.3 pounds per-gallon of B5 diesel) and user-generated fuel economy data from fuelly.com
which is used throughout the rest of this paper. RAM 1500’s equipped with the V8 engine do enjoy a modestly higher

82



few manufacturers have been experimenting with hybrid engine offerings, it remains to be whether

others will follow suit and when these engines will ultimately be released.5

A.2 Data Cleaning

A.2.1 Sample Extraction

In this subsection, I describe the process I undertook to extract new pickup truck purchases

from the registration files provided to me by the DOL. The DOL recorded each registered vehicle’s

model in the registration database, but a significant proportion of these entries either did not map

to a single model (e.g. ”PICKUP”, ”F-SERIES”) or contained an error (e.g. a vehicle with make

listed as ”HOND” and model listed as ”COROLLA”). Vehicles with a recorded model year before

2000 were also dropped from the sample. In order to identify any vehicle which could likely be a

pickup truck, I extracted all VINs where the model field may indicate the vehicle is a pickup truck.

When it was unclear whether the VIN represented a pickup truck, it was included. From this set of

VINs, I kept one VIN for each unique combination of the first ten digits of the VIN. This process

produced a list of 10,238 unique VIN Stubs containing the first ten digits of a VIN. For each VIN

Stub, I retained one VIN which I then fed through my online decoder. I was able to decode a

total of 8,954 out of the 10,238 VIN Stubs, but I was unable to decode a nontrivial proportion

of the VIN stubs. However, while the proportion of VIN Stubs which I was unable to decode is

somewhat high (12.54%), these observations represent a relatively small proportion of vehicles in

my data. Many of the observations which I failed to decoded appear to be associated with an error

in data entry, whereas others are associated with larger commercial vehicles than those considered

in this project. Out of a total of 7,464,165 observations in my registration files, a total of 7,417,400

(99.37%) are associated with a VIN Stub which was decoded. Out of the remaining 8,954 VIN

Stubs which correspond to 7,464,165 observations, I proceeded to drop any VIN Stub which did

level of performance, but the point of this calculation is to note that substitution towards more efficient engines in
trucks can yield surprisingly large decreases in carbon emissions. This point is also made by Larrick and Soll (2008).

5General Motors offered a hybrid engine from MY2009-MY2013 in the Chevy Silverado and GMC Sierra, but
uptake was low and the option was abandoned. Ford and Toyota developed a partnership in 2011 in hopes of developing
a hybrid pickup truck offering, but Ford pulled out of the project in 2013. Both firms have stated publicly that they
plan to release hybrid pickup trucks in the future, but official release dates have not been set.
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not represent a pickup truck; these observations represented a total of 1,267 VIN Stubs which are

associated with a total of 2,158,578 registration observations.6

Given the timing of my fuel price data, the project is restricted to new vehicle purchases be-

tween January 1, 2012 through December 31, 2015. In order for an observation to be included in

the estimation sample, it must satisfy the four conditions. First, I must observe the original transca-

tion for a vehicle some time between January 1, 2012 and December 31, 2015; any vehicle which

does not carry an entry coded as an ‘original transaction’ by the DOL within these dates was not

purchased as a new vehicle during those dates. Second, vehicles must carry a model year of 2010

or later. This is done so as to limit choice sets; a subset of vehicles purchased after January 1, 2012

do have a model year before 2010, but the vast majority of new vehicle sales correspond to a model

year no more than one year lower than the calendar year. Third, I retain only those vehicles with

an odometer reading below 1,000 miles at the time of their initial registration. This distinction is

made to eliminate vehicles which were likely purchased outside of Washington and only registered

in the state at a later date. 7 Fourth, pickup trucks must be either at or below the ‘one-ton’ pickup

truck size class.8 A total of 128,174 vehicles satisfy all four conditions, and this figure should be

taken as the starting value with regards to sample construction. I drop 395 observations which cor-

respond to MY 2010, are listed with a specialty trim which could not be aggregated, or have a body

type which is not some sort of pickup truck.9 In order to limit choice sets in the third chapter of

6As discussed earlier, any vehicle with a model name (as recorded by the DOL) which could have reasonably
represented a pickup truck was decoded. A large share of these observations which were dropped are associated
with the Ford Explorer, a popular full-size SUV. From 2000 through 2010, Ford produced the Explorer Sport Trac, a
pickup truck based on the Explorer. For either of these vehicles, it was common for the DOL to record the model as
’EXPL’, and a total of 411 of the decoded VIN Stubs which were not pickup trucks were from some variant of the
Ford Explorer.

7For example, if an individual purchased a new F-150 in Oregon and later moved to Washington, this entry would
be coded as an ‘original transaction’. However, the odometer reading threshold would eliminate this vehicle from the
sample of ‘new vehicle purchases’.

8For reference, the Ford F-350 is a ‘one-ton’ pickup truck and is included in the sample, whereas the larger Ford
F-450 is dropped from the sample.

9These body types include ‘Cab and Chassis’ trucks and a few commercial vans.
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this project, I drop 2,399 observations which correspond to products (defined at the level of Make-

Model-Cab-Drivetrain-Dual Rear Wheels-Engine-Work Truck Trim-Generation) which makes up

less than 0.02% of the sample. Due to minor limitations in fuel price data for two sparsely popu-

lated counties, I drop 846 observations from San Juan County and Garfield County, as well as those

with an unknown registration county. Dropping an additional 44 observations which are listed with

an owner type of “In care of” results in a final sample of 124,310 observations.

A.2.2 Aggregation Process

As mentioned in the body of this paper, reducing choice sets to a point where estimation is com-

putationally feasible requires that the researcher aggregate vehicles up to certain characteristics; I

describe my aggregation process in detail here.

1. For vehicles with identical Model-Model Year-Series-Body-Drivetrain-Wheel Configuration-

Engine-Trim-Wheelbase Option-Doors, but different MSRPs, all values are specified to the

values of the vehicle with the lower MSRP. Vehicles which were identical according to the

aforementioned characteristics but a higher MSRP typically include some small upgrade,

e.g. a chrome wheel package, which carries an upgrade cost on the order of a couple hun-

dred dollars.

2. For vehicles with identical Model-Model Year-Series-Body-Drivetrain-Wheel Configuration-

Engine-Trim-Wheelbase Option, but a different number of doors, all values are specified to

the value of the vehicle with four doors. This is only pertinent to a few trucks which were

offered with both a 2-door and 4-door extended cab.

3. For vehicles with identical Model-Model Year-Body-Drivetrain-Wheel Configuration-Engine-

Trim, but a different wheelbase, all values are specified to the value of the vehicle with the

standard wheelbase (in most cases, this gives a vehicle with similar interior dimensions but

a smaller pickup box). Upgrading to a longer pickup box generally costs somewhere around

a few hundred dollars.
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I aggregate trim to a maximum of two trim levels per vehicle.10 Trim levels are entered as

follows:

• For vehicles where the trim level cannot be determined from the VIN (this occurs for around

half of my VINs, primarily Ford F-Series trucks), I enter a trim which is one level up from

the ‘base’ or ‘work’ specification. For example, I enter the trim for all F-Series as ‘XLT’.

• For vehicles where the trim level can be determined from the VIN, I initially enter the trim

implied by the VIN. All trim levels above the ‘base’ or ‘work’ specification are then aggre-

gated down a level comparable to Ford’s ‘XLT’ line.

• The exception to the prior rule applies to two models. For the Chevrolet Avalanche and

Honda Ridgeline, an even higher trim was chosen by the majority of purchasers. For these

vehicles, which make up a small percentage of my sample, I aggregate to these higher trim

levels.11

For many vehicles, this leaves a single trim option. I leave the ‘work truck’ trim level as an op-

tion where applicable, because in some instances this is the only trim level available for particular

combinations of body-type and drivetrain (typically regular cab, 2-wheel-drive configurations).12

In order to further pare-down choice sets to decrease computation time, I aggregate to the level of

generation rather than Model Year. Like cars, pickup trucks do not undergo significant changes in

style and characteristics on a yearly basis. Rather, truck models are overhauled somewhere in the

neighborhood of once every five years. 13 I aggregate characteristics to those of the newest model

10I define the Ford F-150 SVT Raptor, a high-performance model with a 6.2L engine typically utilized in their
heavy-duty trucks, as a separate series of vehicle.

11There are Model Years where for these vehicles, I do not observe a purchase below the specified trim level. Thus,
some fairly laborious manual data entry would be necessary to aggregate at a lower trim level. These are the only
‘Sport Utility Trucks’ available; specifications which include a dummy for truck class should account for the different
trim entry.

12This stipulation applies to the Nissan Frontier as well as most RAM and GM trucks.

13For example, the 12th generation of the Ford F-150 was released beginning on Model Year 2009, and the 13th
generation was released beginning in Model Year 2015.
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year that has been purchased up to a given point in time in the data; however, within a vehicle

generation, changes in characteristics tend to be minor.14

A.3 Fuel Economy Drivetrain Adjustment

Because equipping a vehicle with four-wheel drive typically decreases fuel economy (relative

to the two-wheel drive counterpart), I adjust fuel economy based on the vehicle’s drivetrain in order

to properly estimate the willingness to pay for four-wheel drive. While this process undoubtedly

leads to some measurement error in the fuel economy variable, I believe it to be of a fairly small

magnitude, and significantly decreases measurement error relative to a process where I make no

such adjustment. To account for differences in fuel economy between four-wheel-drive and two-

wheel-drive versions of otherwise identical vehicles, I use the EPA’s fuel economy datafiles to

compute the estimated percentage change in fuel economy which results from a vehicle having

four-wheel-drive. At the level of Model-Series-Generation-Engine (the same level as the fuelly

data is entered), I compute the proportion of vehicles which are equipped with two-wheel-drive

and four-wheel-drive, respectively. I assume that the vehicles which generated my fuelly data

had this proportion of two-wheel-drive and four-wheel-drive vehicles.15 Thus, the observed fuel

economy pulled from fuelly is given by:

FE =
Pr(4WD) + Pr(2WD)

Pr(4WD)
MPG2∗P + Pr(2WD)

MPG2

where MPG2 denotes the fuel economy of the two-wheel drive version, P denotes the fuel

economy of the four-wheel-drive version as a percentage of the two-wheel drive version (hence,

MPG4 = MPG2 ∗ P ), and Pr(4WD), P r(2WD) give the probabilities of a particular vehicle

14The most significant change within generation is generally the availability of a new engine (a tune-up of the
previous year’s engine is common in diesel heavy-duty pickup trucks, where the manufacturer will find a way to yield
a few extra horsepower or pound-feet of torque out of the same base engine), or in some instances a new drivetrain or
cab type. However, given that I leave these disaggregated, aggregating to the level of generation rather than model year
will not aggregate vehicles with the same generation, a different Model Year, and significantly different characteristics.

15A potential problem here is that distributions of drivetrains may be different across different geographies, and
while my data are confined to Washington, the fuelly data may be entered from across the country. For example,
regions with heavy (light) snowfall likely have greater (lower) rates of four-wheel-drive adoption. However, given
that the fuel economy penalty from four-wheel-drive is generally in the neighborhood of five percent, such differences
would not significantly alter estimated fuel economy.
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having four-wheel drive or two-wheel drive, respectively. Solving this for MPG2 yields the esti-

mated fuel economy of the two-wheel drive version, and multiplying this estimate by P gives the

estimated fuel economy of the four-wheel drive version.

MPG2 = FE ∗ Pr(4WD) + P ∗ Pr(2WD)

P

The fuel economy penalty for purchasing a four-wheel drive truck, rather than an otherwise iden-

tical two-wheel drive version, is typically on the order of five percent. Because heavy-duty trucks

are not tested by the EPA, I do not observe any measure of the difference between two-wheel drive

and four-wheel drive versions of these vehicles. In order to adjust fuel economy of heavy-duty

trucks, I must impute the percentage difference between fuel economy of the two-wheel drive and

four-wheel drive versions. To do so, I regress the four-wheel drive penalty for vehicles tested by the

EPA on the vehicle’s wheelbase, engine cylinders, engine displacement, torque, and a dummy for

whether the engine uses diesel.16 I then impute values as predicted by this regression as estimated

fuel economy penalties for heavy-duty trucks with four-wheel drive.

A.4 Fuel Prices

While I briefly discuss OPIS data collection process in §3.2, it is worthwhile noting a few more

details about this process as it pertains to my sample of retailers. First, the quantity of retailers

which sell diesel is substantially higher than the ratio of daily diesel reports to daily gasoline

reports (for reference, the mean ratio is approximately 51.88%, and a time-series of price reports

by fuel type is shown in Figure A.1). In Figure A.2 and Figure A.3, I present a histogram of

the count of daily price reports by retailer for diesel and gasoline, respectively. Out of the 2,649

retailers which report a gasoline price at least once in my sample, only 102 (3.85%) never report

a diesel price, whereas 472 retailers (17.82%) report a diesel price on fewer than one dozen days

throughout the sample. Although my data do not allow me to see when retailers are offering diesel

fuel, the pattern of diesel price reports suggests that at any given point in time, the vast majority of

16As with earlier, this is computed by comparing the EPA-estimated unrounded combined fuel economy for vehicles
which are identical up to Model-Series-Model Year-Engine, but have a different drivetrain.
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retailers in the state sell diesel.

As mentioned in §3.2, a few counties in Washington have very low population levels and few

filling stations. Thus, even when aggregating at the level of day-county, my data contain missing

observations in several counties. To impute observations, I run a simple algorithm. In the first

round, the missing daily county-average fuel price is coded as the county-average price from the

next day; if the price is still missing, it is coded as the county-average price from the previous

day. In the second round, any remaining missing daily county-average fuel price is coded as the

county-average price from two days later; if the price is still missing, it is coded as the county-

average price from two days prior. For all but two counties, one iteration is sufficient to impute all

missing gasoline prices, while four iterations is sufficient to impute all missing diesel prices. The

two remaining counties, Garfield and San Juan, have significantly more missing observations than

any other county and as such, require dozens of iterations to fill in all of the relevant prices.17 For

this reason, I drop observations which are registered in either of these counties. The outcomes of

this data entry process are shown in Table A.1.

A.5 Stationarity of the Diesel Premium

To verify the stationarity of the diesel premium, I gathered monthly average gasoline and diesel

prices in the United States from the Energy Information Administration (EIA). Beginning in March

1994, I compute the monthly average price difference between diesel and gasoline for the coun-

try as a whole as well as five regions within the United States, and deflate all prices using the

Consumer Price Index as provided by the Bureau of Labor Statistics. As shown in Table A.3,

the diesel premium in the West Coast Petroleum Administration for Defense District (PADD) has

been noticeably lower than the diesel premium in the four other PADDs. The time-series of diesel

premium over this period is illustrated in A.4 for the United States, A.5 for the Rocky Mountain

PADD, and A.6 for the West Coast PADD. The reader should note a shift in the diesel premium

during this period as Ultra-low-sulfur-diesel was phased in throughout the United States during the

17San Juan County is a set of islands which are not accessible from the mainland by road with a population of
15,769. Garfield County is the least densely populated and least populated county in Washington with just 2,266
residents (Census 2010).
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2000’s. The phase-in was complete by the beginning of the data period for all other sections of this

manuscript, which begin in January 2012.

To consider the stationarity of the diesel premium, I conduct an augmented Dickey-Fuller test

on the time series of diesel premium data in each of the three aforementioned regions from 1994

through 2016. Letting the price difference as p̃t, this test runs an OLS regression on

∆p̃t = α + ρp̃t−1 + δt+ ut

Under the null hypothesis, there is a unit root and ρ = 1. Insofar as the seasonality in fuel prices

(among other factors) could result in serial correlation in ut, I also run an augmented Dickey-Fuller

test with three lags of the form

∆p̃t = α + βp̃t−1 + δt+ ζ1∆p̃t−1 + ζ2∆p̃t−2 + ζ3∆p̃t−3 + εt

where we seek to test the null hypothesis that there is a unit root (β = 0). Results for the United

States, the Rocky Mountain region, and the West Coast are presented in Tables A.4-A.6. As noted

by the Mackinnon approximate p-values in the bottom row of the table, in all scenarios we reject

the null hypothesis of a unit root at a 1% significance level.
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Table A.1: Missing Observations by Stage of Data Entry Algorithm by County

Diesel Zero One Two Three Four Gasoline Zero One Two Three Four
Adams 1 Adams
Asotin 357 48 10 2 Asotin 12
Benton Benton
Chelan Chelan
Clallam 1 Clallam
Clark Clark
Columbia 313 36 4 1 Columbia 18
Cowlitz Cowlitz
Douglas 6 Douglas
Ferry 291 23 4 Ferry 15
Franklin Franklin
Garfield 1271 987 786 636 549 Garfield 341 76 34 19 12
Grant Grant
Grays Harbor Grays Harbor
Island 1 Island
Jefferson 24 1 Jefferson
King King
Kitsap Kitsap
Kittitas Kittitas
Klickitat 22 Klickitat
Lewis Lewis
Lincoln 87 2 Lincoln
Mason 1 Mason
Okanogan 5 Okanogan
Pacific Pacific
Pend Oreille 21 Pend Oreille 2
Pierce Pierce
San Juan 1152 811 608 474 384 San Juan 125 46 39 33 28
Skagit Skagit
Skamania 163 9 Skamania 3
Snohomish Snohomish
Spokane Spokane
Stevens 7 Stevens
Thurston Thurston
Wahkiakum 98 9 Wahkiakum 18
Walla Walla Walla Walla
Whatcom Whatcom
Whitman Whitman
Yakima 7 Yakima
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Table A.2: Fuel Price Summary Statistics, by County

County p̄D pMin
D pMax

D p̄G pMin
G pMax

G ∆ ∆Min ∆Max

Adams 3.78 2.35 4.50 3.43 2.00 4.24 0.35 -0.36 0.97
Asotin 3.68 2.24 4.50 3.29 1.81 4.10 0.39 -0.43 1.12
Benton 3.73 2.38 4.46 3.31 1.80 4.16 0.42 -0.05 0.92
Chelan 3.83 2.48 4.58 3.43 2.12 4.27 0.39 -0.25 0.91
Clallan 3.75 2.40 4.62 3.50 2.13 4.41 0.25 -0.23 0.77
Clark 3.72 2.51 4.47 3.44 2.11 4.31 0.28 -0.08 0.69
Columbia 3.85 2.30 4.53 3.44 1.99 4.29 0.41 -0.13 1.20
Cowlitz 3.71 2.43 4.46 3.47 2.21 4.32 0.23 -0.27 0.70
Douglas 3.78 2.35 4.61 3.37 2.05 4.25 0.42 -0.17 1.04
Ferry 3.74 2.40 4.51 3.40 1.86 4.27 0.34 -0.42 1.37
Franklin 3.77 2.46 4.50 3.33 1.82 4.16 0.45 0.01 0.97
Garfield* 3.68 2.50 4.47 3.41 2.02 4.13 0.41 -0.28 1.01
Grant 3.77 2.29 4.57 3.40 1.96 4.25 0.37 -0.26 0.78
Grays Harbor 3.80 2.56 4.65 3.53 2.22 4.40 0.27 -0.13 0.77
Island 3.73 2.32 4.55 3.53 2.30 4.37 0.20 -0.24 0.57
Jefferson 3.78 2.45 4.60 3.48 2.15 4.31 0.30 -0.19 0.94
King 3.86 2.70 4.59 3.52 2.29 4.36 0.34 -0.03 0.73
Kitsap 3.79 2.52 4.61 3.44 2.15 4.29 0.35 -0.09 0.81
Kittitas 3.68 2.18 4.55 3.42 1.90 4.34 0.26 -0.45 0.74
Klickitat 3.74 2.35 4.58 3.50 2.24 4.38 0.25 -0.32 0.71
Lewis 3.72 2.43 4.53 3.46 2.16 4.35 0.26 -0.23 0.70
Lincoln 3.80 2.21 4.52 3.37 1.89 4.19 0.42 -0.22 1.05
Mason 3.70 2.13 4.54 3.45 2.10 4.32 0.26 -0.37 0.84
Okanogan 3.85 2.39 4.63 3.46 1.98 4.31 0.39 -0.09 1.01
Pacific 3.79 2.25 4.63 3.57 2.32 4.37 0.22 -0.40 0.73
Pend Oreille 3.82 2.54 4.52 3.39 1.88 4.10 0.43 -0.14 1.01
Pierce 3.79 2.61 4.56 3.45 2.17 4.33 0.34 -0.06 0.77
San Juan* 4.16 2.88 5.08 4.05 2.78 5.08 0.13 -0.49 0.72
Skagit 3.71 2.27 4.57 3.46 2.13 4.38 0.24 -0.25 0.65
Skamania 3.76 2.50 4.60 3.54 2.32 4.44 0.23 -0.26 0.70
Snohomish 3.80 2.56 4.55 3.48 2.21 4.32 0.32 -0.04 0.72
Spokane 3.72 2.52 4.36 3.27 1.74 3.99 0.45 0.01 1.05
Stevens 3.72 2.12 4.55 3.35 1.75 4.17 0.37 -0.38 0.86
Thurston 3.81 2.64 4.58 3.46 2.19 4.34 0.35 -0.05 0.81
Wahkiakum 3.82 2.77 4.57 3.56 2.22 4.40 0.26 -0.20 0.69
Whatcom 3.76 2.29 4.61 3.52 2.11 4.46 0.23 -0.25 0.66
Whitman 3.76 2.45 4.60 3.37 1.89 4.15 0.39 -0.19 0.84
Yakima 3.74 2.46 4.51 3.38 1.96 4.24 0.37 -0.09 0.76
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Table A.3: United States Gasoline and Diesel Prices, by PADD

p̄D p̄G (p̄D − p̄G) (p̄D − p̄G) (p̄D − p̄G)
Region 1994-2016 1994-2016 1994-2016 1994-2000 2010-2016
United States 2.69 2.54 0.15 0.02 0.32
East Coast 2.71 2.52 0.19 0.04 0.38
Gulf Coast 2.61 2.41 0.21 0.01 0.44
Midwest 2.65 2.50 0.16 0.02 0.34
Rocky Mountain 2.73 2.54 0.19 0.02 0.39
West Coast 2.86 2.79 0.06 -0.01 0.16

Table A.4: Dickey-Fuller Test Results: United States

Specification (1) (2) (3)
ρ 0.8938 (0.0272) 0.8413 (0.0325)
β -0.2173 (0.0375)
ζ1 0.2667 (0.0601)
ζ2 0.0300 (0.0612)
ζ3 0.0528 (0.0612)
δ 0.0003 (0.0001) 0.0004 (0.0001)
α 0.0162 (0.0076) -0.0138 (0.0129) -0.0192 (0.0130)

Approximate P-Value 0.0020 0.0003 0.0000

Table A.5: Dickey-Fuller Test Results: Rocky Mountain Region

Specification (1) (2) (3)
ρ 0.9046 (0.0258) 0.8547 (0.0351)
β -0.2114 (0.0351)
ζ1 0.4093 (0.0588)
ζ2 -0.0272 (0.0622)
ζ3 0.0616 (0.0611)
δ 0.0003 (0.0001) 0.0004 (0.0001)
α 0.0193 (0.0084) -0.0096 (0.0136) -0.0149 (0.0130)

Approximate P-Value 0.0041 0.0010 0.0000
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Table A.6: Dickey-Fuller Test Results: West Coast

Specification (1) (2) (3)
ρ 0.8414 (0.0327) 0.8231 (0.0342)
β -0.2314 (0.0401)
ζ1 0.1849 (0.0610)
ζ2 0.0562 (0.0611)
ζ3 0.0571 (0.0612)
δ 0.0002 (0.0001) 0.0002 (0.0001)
α 0.0097 (0.0078) 0.0130 (0.0152) -0.0167 (0.0155)

Approximate P-Value 0.0000 0.0001 0.0000

Figure A.1: Count of Retailers Reporting Fuel Prices
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Figure A.2: Count of Daily Diesel Price Reports, by Filling Station

Figure A.3: Count of Daily Gasoline Price Reports, by Filling Station
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Figure A.4: U.S. Diesel Premium, 1994-2016

Figure A.5: Rocky Mountain Region Diesel Premium, 1994-2016
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Figure A.6: West Coast Region Diesel Premium, 1994-2016
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APPENDIX B

APPENDIX: CHAPTER 4

Table B.1: OLS Regression of Log Yearly Mileage: Business Registration Sample

Variable (1) (2) (3) (4)
Log Operating Cost 0.104 (0.094) -0.022 (0.101) -0.516 (0.145) -0.656 (0.156)
Rain, ft./year -0.004 (0.001) 0.002 (0.015) -0.003 (0.002) 0.003 (0.016)
Snow, ft./year 0.000 (0.003) -0.022 (0.005) -0.001 (0.003) -0.022 (0.005)
Rural Population Percentage 0.274 (0.065) 0.164 (0.086) 0.214 (0.065) 0.132 (0.089)
Unemployment Rate 0.001 (0.007) -0.006 (0.008) 0.000 (0.007) -0.005 (0.008)
Median Income, $10K -0.016 (0.010) -0.014 (0.010) -0.012 (0.011) -0.009 (0.012)
Extended Cab 0.159 (0.117) 0.126 (0.116)
Crew Cab 0.164 (0.125) 0.128 (0.123)
Four Wheel Drive 0.076 (0.089) 0.095 (0.098)
Dual Rear Wheels 0.029 (0.150) 0.066 (0.155)
Torque, 100 lb. ft. 0.000 (0.000) 0.000 (0.000)
Work Truck Trim -0.098 (0.074) -0.110 (0.071)
Length, ft. -0.114 (0.055) -0.091 (0.050)
Width, ft. 0.007 (0.091) 0.024 (0.087)
Height, ft. 0.715 (0.165) 0.652 (0.150)
Constant 3.113 (0.192) 3.469 (0.246) -0.966 (0.767) -0.736 (0.156)
County FEs No Yes No Yes
R2 0.028 0.117 0.074 0.157



Table B.2: Logistic Regression of Fuel Choice in Heavy-Duty Trucks: Business Registrations

Variable (1) (2)
pgC,t 0.290 (0.088) 2.872 (0.529)
pdC,t − p

g
C,t 0.365 (0.143)

p̄dC,t -2.574 (0.536)
p̃dC,t 0.551 (0.147)
Rain, ft./year -0.003 (0.002) -0.011 (0.002)
Snow, ft./year 0.002 (0.004) 0.000 (0.004)
Rural Population Percentage 0.881 (0.092) 0.795 (0.093)
Unemployment Rate -0.019 (0.008) -0.022 (0.009)
Median Income, $10K 0.038 (0.018) 0.040 (0.018)
Years Elapsed from 01/01/2012 0.129 (0.044) 0.134 (0.044)
Constant -8.064 (2.655) -7.103 (2.671)
Marginal Effects (1) (2)
pgC,t 0.072 (0.022) 0.713 (0.131)
pdC,t − p

g
C,t 0.091 (0.035)

p̄dC,t -0.639 (0.133)
p̃dC,t 0.137 (0.036)
Rain, ft./year -0.001 (0.000) -0.003 (0.001)
Snow, ft./year 0.000 (0.001) 0.000 (0.001)
Rural Population Percentage 0.219 (0.023) 0.197 (0.023)
Unemployment Rate -0.005 (0.002) -0.005 (0.002)
Median Income, $10K 0.010 (0.004) 0.010 (0.004)
Years Elapsed from 01/01/2012 0.032 (0.011) 0.033 (0.011)
(Negative) Pseudo-LL 4856 4840
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APPENDIX C

APPENDIX: CHAPTER 5

C.1 Theoretical Model

I now show how I derive (5.4) starting with the first-period expected utility expression given

in (5.3). Recall that the solution to the individual’s second-period VMT decision is given by

VMT ∗ij = ηi

[
1− αip̃ij

γj

]
. First, recall that the expected second-period utility can be written as

Ei[u2] = Ei

[
γj

(
VMTij −

1

2ηi
VMT 2

ij

)
− αip̃ijVMTij

]

First, consider the terms within the expectations operator, which I will now simplify after substi-

tuting in my derived expression for VMT ∗ij . Concerning the term on the right-hand side of the

previous equation, this can be expanded as

αip̃ijVMTij = ηiαip̃ij −
ηiαip̃ij
γj

(C.1)

Squaring the expression for VMT ∗ij gives the following:

VMT ∗2ij = η2
i −

2η2
i αip̃ij
γj

+
η2
i α

2
i p̃

2
ij

γ2
j

(C.2)

The second-period utility associated with driving the vehicle (without considering the fuel costs)

is given by γj
(
VMT ∗ij − 1

2ηi
VMT 2∗

ij

)
. Plugging (C.2) and VMT ∗ij to this expression yields

γj

(
VMT ∗ij −

1

2ηi
VMT 2∗

ij

)
=

(
γjηi

2
−
γjηiα

2
i p̃

2
ij

2γ2
j

)
(C.3)

Subtracting (C.1) from (C.3) and recalling that p̃ij ≡ pi
MPGj

, the term inside the expectation oper-

ator is given by

ηi

[
γj
2

+
α2
i p

2
i

2γjMPG2
j

− αipi
MPGj

]
(C.4)



Taking expectations, noting (i) the assumption that fuel prices evolve exogenously with respect

to the second-period shocks εui and rewriting E[p2
ij] = V ar(pi) + E[pi]

2 leads to the following

expression:

Ei[u2] = Ei[ηi]

[
γj
2

+
α2
i [V ar(pi) + E[pi]

2]

2γjMPG2
j

− αE[pi]

MPGj

]
(C.5)

Given the assumption that εui ∼ N(0, 1) is independent of εki and Zi, the expected value of ηi can

be written as Ei[ηi] = exp
{
βZZi + σkε

k
i + µk + σ2

u

2

}
. Substituting this expression into Ei[ηi] in

(C.5) gives the second-period expected utility expression. Plugging this into (5.3) result in (5.4).
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APPENDIX D

APPENDIX: CHAPTER 6

In addition to the structural model presented in §5, I estimate a linear-in-parameters parameters

multinomial logit model of vehicle choice. This specification notably ignores the importance of se-

lection on anticipated usage in vehicle choice. However, it is instructive as a means to illustrate the

importance of allowing consumers to respond differently to separate sources of fuel price variation

in a common discrete choice model. I specify

E[uij] = βXXj − αpMSRPj − αfE[OCij] + εij

Notation is consistent with the two-period model presented in §5 wherever possible. Likewise,

I assume that the idiosyncratic match value εij follows an extreme value distribution which is

independent and identically distributed across individuals and vehicles. Expected yearly operating

costs are denoted by E[OCij]. This specification does not model second-period driving behavior

or allow for selection on anticipated usage, so expected operating costs are defined using the mean

usage level of pickup trucks observed in my sample (VMT = 13, 072 miles per year). Using this

value, I specify E[OCij] ≡ VMT∗E[pi]
MPGj

. I follow the same construction of price beliefs as §5, where

the ‘no-change’ forecast specifies that the expected price of both gasoline and diesel at any future

date t is given by the current price of each respective fuel f ∈ {d, g} : E[pft ] = pf0 . Under the

‘decomposed’ forecast, I specify E[pdt ] = pg0 + τC + φp̃d0 and retain the no-change forecast for

gasoline prices. The interpretation of φ is identical to its interpretation in §5, as it represents the

weight attached to variation in p̃d0 relative to all other sources of price variation. For the sake of

notational simplicity, I replace the t subscript with i and omit this subscript when possible, taking

i to denote the choice situation of i, including the date of purchase.

Comparing across the two columns in Table D.1 gives results from each specification of price

beliefs. I find that consumers do not exhibit a statistically significant response to variation in p̃d0, and

the point estimate of φ from the linear-in-parameters logit specification is qualitatively similar to

the estimate from the two-period structural model. Likewise, the difference in αf is similar across



the specifications of price beliefs to §5, with decomposed beliefs resulting in an estimate roughly

15.75% higher than no-change beliefs. Unlike the two-period model from §5, this approach is

limited by its inability to estimate the distribution of consumers’ driving behavior after making a

vehicle purchase. As shown in Figure 6.6, the two-period model estimates a usage distribution

which accounts for selection on anticipated usage and fits the empirical distribution closely. The

second-period usage model which is used to fit this distribution is used to simulate counterfactual

VMT and fuel consumption. In absence of a model of second-period driving behavior, the linear-

in-parameters logit model is limited in this regard.

Table D.1: Multinomial Logit Estimates

No-Change Decomposed
Parameters Beliefs Beliefs

Price Parameters:
αf 0.889 (0.034) 1.029 (0.037)
αp 0.112 (0.003) 0.113 (0.003)
φ 0.122 (0.083)

Vehicle Characteristics:
Extended Cab 1.568 (0.045) 1.585 (0.045)
Crew Cab 2.616 (0.048) 2.641 (0.048)
Four Wheel Drive 2.200 (0.032) 2.227 (0.032)
Dual Rear Wheels -1.319 (0.072) -1.331 (0.073)
Length (ft.) -0.146 (0.019) -0.156 (0.019)
Width (ft.) 0.353 (0.049) 0.383 (0.049)
Height (ft.) 1.107 (0.069) 1.144 (0.069)
Torque (100 lb. ft.) 0.807 (0.016) 0.836 (0.016)
Diesel Engine -1.293 (0.064) -1.422 (0.067)
Sport-Utility Truck -0.369 (0.063) -0.348 (0.063)
Full-Size Truck -0.429 (0.049) -0.408 (0.049)
Heavy-Duty: 3

4 Ton Truck -1.480 (0.076) -1.371 (0.077)
Heavy-Duty: One Ton Truck -1.353 (0.085) -1.184 (0.087)

Log Likelihood 102,739 102,691
Implicit Discount Rate 10.39% 7.55%
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Table D.2: Estimates from Sample Limited to N1

No-Change Decomposed
Parameters Beliefs Beliefs

Price Parameters:
αf 0.986 (0.065) 1.106 (0.070)
αp 0.139 (0.005) 0.139 (0.005)
φ 0.121 (0.148)

Usage Distribution:
µk 2.367 (0.028) 2.379 (0.028)
Income (x $10K) 0.014 (0.004) 0.014 (0.004)
Rural Share 0.221 (0.023) 0.220 (0.023)
σk 0.305 (0.011) 0.304 (0.011)
σu 0.550 (0.007) 0.551 (0.007)

Vehicle Characteristics:
Extended Cab 0.260 (0.014) 0.260 (0.014)
Crew Cab 0.395 (0.014) 0.394 (0.014)
Four Wheel Drive 0.373 (0.011) 0.373 (0.011)
Dual Rear Wheels -0.247 (0.022) -0.165 (0.022)
Work Truck Trim -0.166 (0.006) -0.165 (0.006)
Length (ft.) 0.003 (0.005) 0.002 (0.005)
Width (ft.) 0.072 (0.011) 0.076 (0.011)
Height (ft.) 0.111 (0.017) 0.113 (0.017)
Torque (100 lb. ft.) 0.130 (0.005) 0.133 (0.005)
Diesel Engine -0.230 (0.021) -0.253 (0.022)
Sport-Utility Truck -0.005 (0.015) -0.004 (0.015)
Full-Size Truck -0.051 (0.013) -0.050 (0.013)
Heavy-Duty: 3

4 Ton Truck -0.225 (0.022) -0.212 (0.022)
Heavy-Duty: One Ton Truck -0.167 (0.025) -0.147 (0.025)

Log Likelihood 37,024.8 37,011.4
Implicit Discount Rate 13.12% 10.49%
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Figure D.1: Simulated VMT Distribution, by Subsample

Figure D.2: Counterfactual VMT Distribution, by Subsample
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Figure D.3: Comparison of Results Across Specifications: Fleet Fuel Economy

Figure D.4: Comparison of Results Across Specifications: Vehicle Miles Traveled
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Figure D.5: Comparison of Results Across Specifications: Fuel Consumption

Figure D.6: Counterfactual Fleet Fuel Economy (A)

107



Figure D.7: Counterfactual Change in Fleet Fuel Economy (A)

Figure D.8: Counterfactual Change in Mean VMT (A)

108



Figure D.9: Counterfactual Average Fuel Consumption (A)

Figure D.10: Counterfactual Change in Fuel Consumption (A)
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Figure D.11: Counterfactual Fleet Fuel Economy (B)

Figure D.12: Counterfactual Change in Fleet Fuel Economy (B)
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Figure D.13: Counterfactual Change in Mean VMT (B)

Figure D.14: Counterfactual Average Fuel Consumption (B)
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Figure D.15: Counterfactual Change in Fuel Consumption (B)
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