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ABSTRACT

DIMITRIS KATSORIDAS: Applications of Generalized Fiducial Inference in High
Frequency Data

(Under the direction of Jan Hannig)

Fiducial inference was introduced by R.A. Fisher Fisher (1930) as a response to the

Bayesian approach to inference. The Bayesian paradigm begins by assuming a prior dis-

tribution on the parameter space and inference is conducted via the posterior distribution.

Fisher, however, was concerned about the choice of the prior distribution, especially when

there is insufficient information about the parameters of interest. To overcome this weakness,

Fisher introduced the fiducial argument which is based on the following idea: randomness

is transferred from the model space to the parameter space and a distribution on the pa-

rameter space can is defined that captures all of the information the data contains about

these parameters. Fisher’s idea, however, soon fell into disfavor since some of the properties

Fisher claimed did not hold.

Recently, Fisher’s inferential framework was revived through its connection to general-

ized inference. Hannig (2009) generalized Fisher’s idea and introduced a framework where

fiducial distributions can be defined properly. The main topic of this dissertation is to apply

generalized fiducial inference methods to study intraday volatility using high frequency stock

market data. In particular, we apply a generalized fiducial framework that is designed for

interval data to study high frequency volatility, Hannig (2013). Our approach allows us to

view the bid-ask spread as a natural interval around the latent price and use high frequency

quotes for estimation. Modeling the spread in this manner allows us to take advantage of

the features of the observed prices inherent to the trading process, such as rounding, and

reduce the impact microstructure frictions cause to estimation. We demonstrate that our

approach is very effective in estimating volatility and outperforms all alternative estima-

tors. In chapter 2, we apply this idea, assuming that rounding errors are the only source

iii



of microstructure frictions. In chapter 3, we extend our framework to allow for additive

components. In the final chapter, we perform an empirical study to compare alternative

realized volatility estimators through option pricing formulas. We find that the choice of

volatility estimators does matter.
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CHAPTER 1

Introduction

1.1 Thesis overview

In this thesis, there are main three contributions divided in three chapters. In chapter 2,

we apply a generalized fiducial framework that is designed for interval data to study high

frequency volatility. We assume that the only source of microstructure noise is rounding

errors. In chapter 3, we extend our framework to allow for additive components. In the final

chapter, we perform an empirical study to compare alternative realized volatility estimators

through option pricing formulas. We find that the choice of volatility estimators does matter.

All supplementary material is included in the appendices.

1.2 Generalized Fiducial Inference

Fiducial inference was introduced by R.A. Fisher (Fisher, 1930) as a response to the Bayesian

approach to inference. The Bayesian paradigm begins by assuming a prior distribution on the

parameter space and inference is conducted via the posterior distribution. Fisher, however,

was concerned about the choice of the prior distribution, especially when there is insufficient

information about the parameters of interest. To overcome this weakness, Fisher introduced

the fiducial argument which is based on the following idea: randomness is transferred from

the model space to the parameter space and a distribution on the parameter space can

is defined that captures all of the information the data contains about these parameters.

Subsequently, the fiducial distribution, which resembles the Bayesian posterior, can be used

for inference procedures such as parameter estimation and confidence sets.

As a simple illustration of the idea we consider the following example: Let y be a

realization of a random variable Y where Y ∼ N(µ, 1). We know we can express the

random variable Y as Y = µ + Z where Z is a standard normal random variable. Given



the observed value y, the fiducial argument solves for the unknown parameter µ, that is,

µ = y−Z. Even though the actual value of Z is unknown, its distribution is fully known and

can be used to construct a distribution on the unknown parameter . This distribution on

is known as the fiducial distribution, which in this example is simply µ v N(y, 1). Hannig

(2009) provides a solid introduction to the fiducial argument, together with facts about the

historical development of the idea.

Soon after its inception, fiducial inference fell into disrepute among statisticians since it

was shown that some of the properties Fisher claimed did not hold. In particular, not only

statistical procedures based on the fiducial argument were non-exact in the frequentist sense,

but also, there were non-uniqueness issues associated with the specification of these proba-

bility measures, see for example Lindley (1958) and Zabell (1992). Even though some recent

attempts were made to revive fiducial procedures (Fraser (1961a,b, 1966, 1968), Dempster

(1968), Dawid and Stone (1982), Barnard (1995)), it was until recently when Hannig et al.

(2006) connected fiducial inference to generalized inference, introduced by Tsui and Weera-

handi (1989). Tsui and Weerahandi (1989) performed hypothesis testing by introducing the

concept of generalized p-values and Weerahandi (1993) constructed generalized confidence

intervals by introducing the notion of a generalized pivotal quantity, based on the former

idea of generalized p-values. Hannig et al. (2006) showed that most generalized pivotal

inference procedures are identical to procedures obtained using fiducial inference. In fact,

their recipe was introduced as a generalization of the idea of a generalized pivot.

The generalized fiducial argument expresses the data X through a data generating equa-

tion of the form

X =G (U, ξ) (1.2.1)

where G(�, �) is a jointly measurable structural equation based on the model under con-

sideration, ξ ∈ Ξ are the parameters of interest, and U is the random component of the

structural equation; a random vector whose distribution is completely known, independent

of any parameters. The data generating equation defines a set function through the inverse

2



image of G as follows

Q(x,u) = {ξ ∈ Ξ : x=G (u, ξ)} (1.2.2)

where x is the observed data and u is a realization of U.

The next step is to use the set function Q and define a distribution on the parameter

space Ξ. The distribution of U will be used to draw samples of Q(x,u) given the data

x. However, using equation 1.2.2 to define a fiducial distribution needs caution. There are

three sources of non-uniqueness that may arise in this framework and one needs to address

them in order to define fiducial distributions properly. In particular, non-uniqueness can

occur if Q has more than one element, if Q is empty, or due to the selection of the structural

equation.

In the case where there is more than one element in Q, non uniqueness can be resolved

by defining a rule, say V , for selecting an element in Q. Therefore, V (Q (x,u)) will be used

to define the fiducial distribution. Discussion on how to select a rule can be found in Hannig

(2009). In the case where Q is empty, non-uniqueness can be resolved by conditioning on

the event {Q (x,U) 6= ∅}. This can be achieved by removing realizations of U for which

there is no ξ solving equation x=G (u, ξ) and then re-normalizing the probabilities, i.e.,

use the distribution of U conditional on the event {there is at least one ξ solving equation

x=G (u, ξ)}. A generalized fiducial distribution for parameter ξ is then defined as

V (Q (x,U∗)) | {Q (x,U∗) 6= ∅} (1.2.3)

where U∗ represents an independent copy of U .

A random element Rξ with distribution 1.2.3 is termed generalized fiducial quantity

(GFQ). Hannig (2009) showed that if the data generating equation 1.2.1 can be re-written

as Xi = gi (U, ξ) for i = 1, . . . , n, implying that G = (g1, . . . , gn), then one can identify the

generalized fiducial density of Rξ. Assuming that the dimension of parameter ξ is p, where

p ≤ n, we can define the following quantities. Let i = (i1, . . . , ip) denote a random selection

of indices from {1, . . . , n}. Let Xi =
(
Xi1 , . . . , Xip

)
and Ui =

(
Ui1 , . . . , Uip

)
denote the

corresponding data and random elements so that Xi = Gi (Ui, ξ). Moreover, let Xic , Uic
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and Gic denote the remaining components of X, U and G respectively. Then, assuming

that Gi is invertible and differentiable with respect to Ui, the generalized fiducial density is

given by

fRξ (ξ) =
fX (x|ξ) J (x, ξ)´

Ξ fX (x|ξ′) J (x, ξ′) dξ′

where

J (x, ξ) =

(
n

p

)−1 ∑
i=(i1,...,ip)

∣∣∣∣∣ det ∂
∂ξG

−1
i (yi, ξ)

det ∂
∂yi
G−1

i (yi, ξ)

∣∣∣∣∣
It should be clear that when the dimension of the parameter space is p, we can arbitrarily

select p equations to solve for ξ and condition the remaining n − p equations of G on the

solution of the first p.

From the discussion above, it is evident that the event {Q (x, U∗) 6= ∅} has zero probabil-

ity only if the probability of generating the data {X = x} is zero. However, the probability

of observing data coming from a continuous distribution is always zero and conditioning

on sets of probability zero may not be well defined (Borel paradox). This problem can be

addressed by taking advantage of the fact that observed data have some degree of known

uncertainty. For example, most data-sets are discretized due to the resolution of the in-

strument that collects them, computers store discretized data due to memory limitations

and financial prices move in minimum increments (ticks). Using this “known” uncertainty,

we can create a small interval around the observed value set and replace the zero proba-

bility event {X = x} with the event {X ∈ Ax} where Ax contains the observed value x.

Since Pξ(X ∈ AX) > 0 the Borel paradox is resolved. Hannig (2013) presents the general-

ized fiducial inference framework for discretized data, pointing out that the nature of this

data provide an attractive way to define generalized fiducial distributions, overcoming the

non-uniqueness due to Borel paradox.

A simple illustration on how discretized/interval data can be used in the context of

generalized fiducial inference is the following: Consider Y = µ + σZ where (µ, σ) are un-

known and Z ∼ N (0, 1). Suppose now we observe ai ≤ yi ≤ bi for i = 1, . . . , n instead of

4



Figure 1.1: Illustration of the sampling scheme. The left panel illustrates how the
first two inequalities can be used to generate Q, given that we generated z1 and z2 (with
no restriction). The middle panel illustrates how the third inequality trims the polygon
Q, given that we generated z3 conditional on the first two inequalities. The right panel
illustrates the update of Q using the fourth inequality.

(y1, . . . , yn). In order to identify the set Q, equation 1.2.2, we can use the first two inequali-

ties1 and solve for the unknown parameters (µ, σ). This generates four pairs of (µ, σ), given

that we generated z1 and z2 (with no restriction). The only requirement for this step is to

have z1 6= z2, but we note that P (Z1 6= Z2) = 1. Subsequently, we generate z3 such that the

first three inequalities are satisfied and we update the set Q (a polygon in this setup) in a

way that all points (µ, σ) satisfy all inequalities. We repeat the same steps for all remaining

inequalities. Finally, Picking randomly points (µ, σ) from Q amounts to sampling from the

fiducial distribution (2). Repeating the procedure several times generates a fiducial sample.

Figure 1.1 illustrates the sampling scheme for this simple model.

1.3 Volatility Estimation and Microstructure Noise

Estimating volatility using high frequency data (HFD) has been in the forefront of research

in financial econometrics. However, the enormous availability of HFD has been a blessing

and a curse to researchers since recorded prices are contaminated by market microstructure

frictions. As a result, the maintained hypothesis that efficient prices are semimartingales

is not consistent with observed data. In fact, observed prices resemble semimartingales

1For simplicity, we select the first two inequalities. As mentioned above, any other pair can be used to
solve for the parameters.

5



recorded with error (MS noise).

In the standard microstructure setup, the efficient/unobserved log-price process, denoted

by Xt = log (St), is assumed to follow an Ito process:

Xt = X0 +

ˆ t

0
µsds+

ˆ t

0
σsdWs

where Wt is a Brownian motion, µt is the drift of the process and σt is the instan-

taneous variance of the returns. Both µt and σt are adapted locally bounded ran-

dom processes. The process is assumed to evolve in [0, T ] and is observed in the grid

Gn = {0 = t0 < t1 < ... < tn = T} . The quantity of interest is integrated volatility over the

time period [0, T ], namely,

〈X,X〉T =

ˆ T

0
σ2
t dt

In the absence of market microstructure frictions, integrated volatility can be estimated

consistently with the so called “realized volatility” estimator. This estimator is nothing but

the quadratic variation relative to the grid Gn. That is

[X,X]Gnt =
∑
tj+1≤t

(
Xtj+1 −Xtj

)2 p→ [X,X]t = 〈X,X〉t =

ˆ t

0
σ2
sds

However, microstructure noise is present and the estimator above is heavily biased. The

first remedy to MS noise was to use sparse samples. For example, Andersen et al. (2001)

showed that sampling every five minutes helps mitigate the effects of microstructure noise.

However, this amounts to discarding most the data available. For instance, if we have

available transaction records on a liquid stock traded once every second, then the sample

consists of 23,400 observations2. Therefore, if sampling takes place once every 5 minutes,

then - whether or not this is the optimal thing to do - it amounts to retaining only 78

observations. Stated differently, one is throwing away 299 out of every 300 transactions.

From a statistical perspective, this is unlikely to be the optimal solution, see Aït-Sahalia

et al. (2005).

2A trading day has 6.5 hours = 23,400 seconds.
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The first solution to MS noise was to assume that observed prices are the sum of the effi-

cient log-price and a stochastic component capturing all microstructure frictions. Typically,

the observed log-prices Ytm are assumed to be versions of Xtm under the usual representation

Ytm = Xtm + Utm

where Utm is introduced to capture a variety of frictions. These include frictions inherent in

the trading process, such as, bid–ask bounces and discreteness of price changes, as well as,

frictions attributed to informational effects, such as, differences in trade sizes, informational

content of price changes, gradual response of prices to a block trade, strategic component

of the order flow and inventory control effects, see for example Aït-Sahalia et al. (2005).

Microstructure frictions are responible for most of the stylized facts of the high frequency

returns. For example, price discreteness leads to transaction changes of zero, 1 cent, 2 cents,

etc. which may result in a very small number of log-returns. As a result, log-returns

excibit high kurtosis (most tick-by-tick transactions equal their most recent transaction)

and temporal dependence. Moreover, bid-ask bounces3 bias upwards the variance of the

log-returns and cause negative first order autocorrelation, see for example Engle and Russell

(2004).

Estimation of volatility accounting for microstructure noise has been studied both para-

metrically and non-parametrically. Parametric modeling includes the framework by Aït-

Sahalia et al. (2005) and Xiu (2010). Non-parametric modeling consists mainly of three dif-

ferent approaches. Zhang et al. (2005) and Zhang (2006) developed the Two-Scale (TSRV)

and Multi-Scale (MSRV) realized volatility estimators, Barndorff-Nielsen et al. (2008) de-

veloped the Realized Kernel (RK) volatility estimators and Podolskij and Vetter (2009) use

the pre-averaging method. Most of the aforementioned estimators were originally developed

on the assumption that noise Utm is iid with mean zero and variance σ2
u, independent of X.

Below, we discuss briefly the most commonly used approaches in this literature.

3Bid-ask bounces are attributed to price discreteness. Transactions occur either on the bid or the ask.
Usually we expect buy orders to be executed “close” to the ask, and sell orders “close” to the bid. The
opposite occurs when traders are impatient, making the price oscillate between the the two quotes.

7



1.3.1 Quasi Maximum Likelihood Estimation

Following Aït-Sahalia et al. (2005), the process is assumed to evolve in [0, T ] and is ob-

served/quoted in the grid Gn = {0 = t0 < t1 < ... < tn = T}. The observed log-prices Ytm

are assumed to be versions of Xtm under the usual representation Ytm = Xtm + Utm . The

latent efficient price follows the process Xt = σWt and MS noise is Gaussian, independent

of the price process. Inference for this model is conducted through the log-likelihood of the

log-returns

l
(
σ2, σ2

u

)
= −n

2
ln (2π)− 1

2
ln (detΣ)− 1

2
Y ′Σ−1Y

where

Σ =



σ2∆t1 −σ2
u · · · 0

−σ2
u σ2∆t2 · · · 0

...
...

. . .
...

0 0 · · · σ2∆tm


and ∆tm = tm − tm−1.

In the case where observation times are equally spaced (calendar time sampling), that

is ∆tm ≡ ∆, and MS noise is independent of the price process, then the MLE is consistent

and its asymptotic variance is given by

AV ar
(
σ̂2
)

= 8σ3σu∆
1
2 + 2σ4∆ + o (∆)

In the case where ∆tm is random, independent of the process the asymptotic variance needs

a further approximation, see section 8 in Aït-Sahalia et al. (2005). In our applications

estimate the asymptotic variance as if observation times are equally spaced, approximating

∆ by 1/n, where n is the number of observations in [0, T ] and T = 1. Xiu (2010) showed

that when volatility is stochastic, but assumed constant, the MLE is a Quasi-Maximum

Likelihood Estimator (QMLE) of integrated volatility. Specifically, the MLE is a consistent,

efficient and robust estimator of integrated volatility.
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1.3.2 Pre-averaging Approach

The second estimator we are considering is the pre-averaging estimator introduced by Jacod

et al. (2009). The pre-averaging estimator is designed to estimate integrated volatility when

the underlying efficient price process is a continuous semimartingale.

Xt = X0 +

ˆ t

0
µsds+

ˆ t

0
σsdWs

where Wt is a standard Wiener process, µt is the drift of the process and σt is the instanta-

neous variance of the returns. Both µt and σt are adapted locally bounded random processes.

Assuming equally spaced observation times, up to time t, we observe n = [t/∆n] contaminated

prices. As before, Yi∆n = Xi∆n + Ui∆n . The error term Ut, conditional on X is centered

and independent, that is E (Ut|X) = 0 and Ut ⊥ Us, t 6= s, conditional on X. Moreover,

the conditional variance of the noise process Ut, defined as at = E
(
U2
t |X

)
, is adapted with

the process E
(
U8
t |X

)
being locally bounded. The attractive feature of the pre-averaging

method is that it allows for noise structure that can incorporate rounding errors explicitly.

More details on the assumptions can be found in Jacod et al. (2009). The pre-averaging

estimator is based on the idea of replacing the observed returns ∆n
i Y = Yi∆n − Y(i−1)∆n

by

the weighted averaged returns

Y
n
i =

kn∑
j=1

g

(
j

kn

)
∆n
i+jY

in an attempt to reduce the impact on noise. Here, kn that satisfies kn∆
1/2
n = θ + o

(
∆

1/4
n

)
,

where θ is selected by the modeler. Function g : [0, 1]→ R is nonzero, continuous, piecewise

continuously differentiable, such that g′ is piecewise Lipschitz, with g (0) = g (1) = 0.

Usually g(x) = x ∧ (1− x). The estimator is given by

Cnt =

√
∆n

θψ2
V (Y, 2)nt −

ψ1∆n

2θ2ψ2
RV n

t
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where

V (Y, 2)nt =

[t/∆n]−kn∑
i=0

∣∣Y n
i

∣∣2
is the RV estimator based on the pre-averaged returns,

RV n
t =

[t/∆n]∑
i=0

|∆n
i Y |

2

is the RV and for i = 1, 2, ψi = ϕi (0) where ϕ1 (s) =
´ 1
s g
′ (u) g′ (u− s) du and ϕ2 (s) =

´ 1
s g (u) g (u− s) du. The pre-averaging estimator is a consistent and asymptotically mixed

normal estimator of integrated volatility, that is

∆−
1
4 (Cnt − IVt) −→MN (0,Γt)

where converge is stable. The asymptotic variance process is given by

Γt =

ˆ t

0
γ2
sds

where γ2
s = 4

ψ2
2

(
Φ22θσ

4
s + 2Φ12

σ2
sa

2
s

θ + Φ11
a4
s
θ3

)
, Φij =

´ 1
0 φi (s)φj (s) ds, i, j = 1, 2. The

consistent estimator of the conditional variance Γt is given by

Γ n
t =

4Φ22

3θψ4
2

[t/∆n]−kn∑
i=0

∣∣Y n
i

∣∣4
+

4∆n

θ3

(
Φ12

ψ3
2

− Φ22ψ1

ψ4
2

) [t/∆n]−2kn+1∑
i=0

∣∣Y n
i

∣∣2 i+2kn−1∑
j=i+kn

∣∣∆n
j Y
∣∣2

+
∆n

θ3

(
Φ11

ψ2
2

− 2
Φ12ψ1

ψ3
2

+
Φ22ψ

2
1

ψ4
2

) [t/∆n]−2∑
i=1

|∆n
i Y |

2
∣∣∆n

i+2Y
∣∣2

In practice we use the adjusted version of the estimator which are given by

Cn,adjt =

(
1− ψ1∆n

2θ2ψ2

)−1( [t/∆n]
√

∆n

([t/∆n]− kn + 2) θψ2
V (Y, 2)nt −

ψ1∆n

2θ2ψ2
RV n

t

)
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Γ n,adj
t =

(
1− ψ1∆n

2θ2ψ2

)−2
 4Φ22 [t/∆n]

3θψ4
2 ([t/∆n]− kn + 2)

[t/∆n]−kn∑
i=0

∣∣Y n
i

∣∣4
+

4∆n [t/∆n]

θ3 ([t/∆n]− kn + 2)

(
Φ12

ψ3
2

− Φ22ψ1

ψ4
2

) [t/∆n]−2kn+1∑
i=0

∣∣Y n
i

∣∣2 i+2kn−1∑
j=i+kn

∣∣∆n
j Y
∣∣2

+
∆n [t/∆n]

θ3 ([t/∆n]− 2)

(
Φ11

ψ2
2

− 2
Φ12ψ1

ψ3
2

+
Φ22ψ

2
1

ψ4
2

) [t/∆n]−2∑
i=1

|∆n
i Y |

2
∣∣∆n

i+2Y
∣∣2

The quantities ψi and Φij for i, j = 1, 2 can be replaced by their finite-sample analogs which

is beneficial for the finite sample bias.

1.3.3 Realized Kernels

Another class of estimators we are considering is the Realized Kernel estimators, introduced

by Barndorff-Nielsen et al. (2008). The setup is similar to the pre-averaging framework,

where Yi∆n = Xi∆n + Ui∆n and MS noise is independent of the process with E (Ut) = 0,

E
(
U2
t

)
= ω2 and V ar

(
U2
t

)
= λω4 , for some λ > 0. The flat-top realized kernel estimator

is

K (Y∆n) = γ0 (Y∆n) +
H∑
h=1

k

(
h− 1

H

)
(γh (Y∆n) + γ−h (Y∆n))

where γh (Y∆n) =
∑n

i=1

(
Yi∆n − Y(i−1)∆n

) (
Y(i−h)∆n

− Y(i−h−1)∆n

)
is realized autocovaria-

tion process and k (·) is the kernel weight function, which is twice continuously differentiable

on [0, 1]. Further, if k (0) + k (1) = 0 and H = c0n
2/3, where c0 can be estimated, the con-

vergence rate of these estimators is n1/6. If k′ (0)2 + k′ (1)2 = 0 and H = c0n
1/2 then the

convergence rate is n1/4 which is the optimal. For example, the Tukey-Hanning2kernel

k (x) = sin2
{π

2
(1− x)2

}

has the optimal convergence rate. Barndorff-Nielsen et al. (2008) showed for the “faster”

estimators that

n
1/4

(
K (Y∆n)−

ˆ t

0
σ2
udu

)
−→MN

(
0, 4t

ˆ t

0
σ4
udu

(
c0k

0,0
• + 2c−1

0 k1,1
• ρξ2 + c−3

0 k2,2
• ξ4

))
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where k0,0
• =

´ 1
0 k (x)2 dx, k1,1

• =
´ 1

0 k
′ (x)2 dx and k2,2

• =
´ 1

0 k
′′ (x)2 dx. Also,

ξ2 =
ω2(

t
´ t

0 σ
4
udu

)1/2
ρ =

´ t
0 σ

2
udu(

t
´ t

0 σ
4
udu

)1/2

The choice ofH requires an estimate of c0 in a way that it minimizes the asymptotic variance

. Rewriting H = c0n
1/2 = cξn1/2 the asymptotic variance becomes

4t
´ t

0 σ
4
udu

(
c0k

0,0
• + 2c−1

0 k1,1
• ρξ2 + c−3

0 k2,2
• ξ4

)
= ω

(
t
´ t

0 σ
4
udu

)3/4
4
(
ck0,0
• + 2c−1k1,1

• ρ+ c−3k2,2
•

)

and c is chosen to minimize it4. That is,

c∗ =

(
ρ
k1,1
•

k0,0
•

(
1 +

√
1 +

3d

ρ

)) 1
2

, d =
k0,0
• k2,2

•(
k0,0
•

)2

Moreover, an estimate of ξ is required, therefore, estimates of ω2 and the integrated quar-

ticity are necessary. So, ξ2 is estimated by ξ̂2 = ω̂2/
√

ˆIQ, where ω̂ = RVall/2n and ˆIQ ' ˆIV
25.

1.3.4 Two-Scales and Multi-Scales Realized Volatility

The Two-Scales Realized Volatility estimator, introduced by Zhang et al. (2005), uses the

following setup. The efficient/unobserved log-price process. Xt is assumed to follow an Ito

precess:

dXt = µtdt+ σtdWt, X0 = x0

where Wt is a Brownian motion, µt is the drift of the process and σt is the instantaneous

variance of the returns. Both µt and σt are adapted (to the underlying filtration (Ft)) locally

bounded random processes. The process is assumed to evolve in [0, T ] and is observed in

the grid Gn = {0 = t0 < t1 < ... < tn = T}. We additionally assume that observation times

are non-random, therefore ignoring their potential explanatory power over the process, and

4In the case of the Tukey-Hanning2kernel, k0,0
• = 0.219, k0,0

• = 1.71, k0,0
• = 41.7 and c∗ = 5.74.

5Here ˆIV = RVsparse , where usually 20 minutes returns are used. RVall uses all available data.
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allow the observations to be irregularly spaced. Also we require max
1≤j≤n

|tj − tj−1| = op (1).

Zhang et al. (2005) use the following setup. The observed log-price Y is denoted by

Ytj = Xtj + εtj

where ε iid∼ N
(
0, Eε2

)
. First, they point out that [Y, Y ]Gnt =

∑
tj+1≤t

(
Ytj+1 − Ytj

)2 is

estimating integrated volatility, but MS noise6. If we divide by 2n we will be getting a

consistent estimate of the variance of the MS noise since7

[Y, Y ]Gnt =
∑
tj+1≤t

(
Ytj+1 − Ytj

)2
= 2nEε2 +Op

(√
n
)

The first solution to this problem is to sample sparsely at some lower frequency and

reduce the effect of MS noise. The choice of the sampling frequency is ad hoc. Let

Hm = {0 = τ0 < τ1 < ... < τm = T} be a sparse grid of times, not necessarily correspond-

ing to observation times8. Then, they show that the quantity [Y, Y ]Hmt has the following

approximate distribution

[Y, Y ]HmT
L
≈ 〈X,X〉T + 2mEε2 +

[
4mEε4 +

2T

m

ˆ T

0
σ4
t dt

] 1
2

Z

where Z is a standard normal random variable. The second term in the RHS denotes the

bias of the estimator due to noise. The estimator based on the sparse grid can be further

improved if we select the grid optimally. This can be done by minimizing the MSE with

respect to m. he optimal sampling frequency is

m? =

(
T

4 (Eε2)2

ˆ T

0
σ4
t dt

) 1
3

6This was also noticed by Bandi and Russell (2006)

7 [Y, Y ]Gn
t = [X,X]Gn

t + [ε, ε]Gn
t + 2 [X, ε]Gn

t

8If at a particular sampling time an observation does not exist, we can built one using either the previous
tick method or an interpolation method
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It is evident that the sparse estimator based on the optimal sampling frequency still remains

biased.

The idea of sparse sampling lead them introduce the Average Realized Volatility (ARV)

estimator who uses the full sample. This is achieved by averaging estimators based on sparse

samples of on non overlapping grids. Let G = {0 = t0 < t1 < ... < tn = T} denote the full

grid. The full grid will be partitioned in K non overlapping grids G(k) such that

G =

K⋃
k=1

G(k), where G(k)
⋂
G(l) = ï£¡ for k 6= l

Usually, these grids have the following form G(k) = {tk−1, tk−1+K , tk−1+2K , ..., tk−1+nkK}

for k = 1, ...,K. That is, we start sampling at tk−1 and pick every Kth sample point, until

we exhaust the full grid. nk is the integer making tk−1+nkK the last element of the grid G(k)

and, also, denotes the sample size of G(k) . The new estimator based on these grids is

[Y, Y ]
(avg)
T =

1

K

K∑
k=1

[Y, Y ]
(k)
T , where [Y, Y ]

(k)
T =

∑
tj ,tj+∈G(k)

(
Ytj+ − Ytj

)2

where tj+ denotes the following element of tj in G(k). The quantity [Y, Y ]
(avg)
t has the

following approximate distribution

[Y, Y ]
(avg)
T

L
≈ 〈X,X〉T + 2n̄Eε2 +

[
4
n̄

K
Eε4 +

4T

n̄

ˆ T

0
σ4
t dt

] 1
2

Z

where n̄ denotes the average size of the K grids. As before, this estimator is biased and can

be improved if we set K? ≈ n/n̄? where

n̄? =

(
T

6 (Eε2)2

ˆ T

0
σ4
t dt

) 1
3

Since the bias can be estimated, a bias corrected version of the ARV estimator. This

estimator is called the Two Scales Realized Volatility (TSRV) and is given by

̂〈X,X〉T = [Y, Y ]
(avg)
T − n̄

n
[Y, Y ]

(all)
T
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If the sub-grids are selected by K = cn2/3 then

̂〈X,X〉T
L
≈ 〈X,X〉T +

1

n1/6

[
8

c2

(
Eε2

)2
+ c

4T

3

ˆ T

0
σ4
t dt

] 1
2

Z

where c can be optimally selected

c? =

(
T

12 (Eε2)2

ˆ T

0
σ4
t dt

)− 1
3

Clearly this estimator is centered. The only disadvantage of this estimator is that it converges

with the small rate of n−1/6.

Zhang (2006) extended the TSRV estimator to MSRV estimator. The MSRV is a

weighted average of ARV estimators of the form [Y, Y ]
(k)
T , namely

̂〈X,X〉T =
M∑
j=1

αj [Y, Y ]
(Kj)
T

where M denotes the number of scales used. The weights have the form

αj =
1

M
wM

(
j

M

)
, j = 1, ...,M

and

wM (x) = xh (x) +M−1xh1 (x) +M−2xh2 (x) +M−3xh3 (x) + op
(
M−3

)
where the functions h and h1 are independent of M . The conditions these functions satisfy

can be found in Zhang (2006). The MSRV satisfies

n−
1
4

(
̂〈X,X〉T − 〈X,X〉T

)
→ νhZ

where

νh = 4c−3
(
Eε2

)2 ˆ 1

0
h (x)2 dx+ c

4

3
Tη2

ˆ 1

0
dx

ˆ x

0
h (y)h (x) y2 (3x− y) dy

+4c−1var
(
ε2
) ˆ 1

0

ˆ y

0
xh (x)h (y) dxdy + 8c−1E

(
ε2
) ˆ 1

0

ˆ 1

0
h (x)h (y)min (x, y) dxdy 〈X,X〉
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1.4 Sequential Monte Carlo (SMC) methods

As we mentioned above, in order to sample from the generalized fiducial distribution of

the parameters, we will utilize SMC techniques. In this section we provide a very basic

introduction to these algorithms, in order to stimulate the discussion below. A thorough

introduction and applications of SMC methods can be found in Doucet et al. (2001).

SMC algorithms, or particle filters, are techniques for iteratively obtaining samples from

an evolving target distribution (i.e. the distribution of interest) by employing importance

sampling, and resampling, techniques. The principle application of these techniques is the

approximate solution of the filtering, prediction and smoothing problems in Hidden Markov

Models (HMMs). SMC methods are based on importance sampling (IS) techniques. IS is a

technique for approximating integrals under one probability distribution (target distribution)

using a collection of samples from another, instrumental distribution (proposal distribution).

This can be presented using the importance sampling identity: given a distribution of interest

π with support RX , and some instrumental distribution π̃ with support R′X , such that

RX ⊂ R′X , and any integrable function h : RX → R

Eπ (h(X)) =

ˆ
h (x)

π (x)

π̃ (x)
π̃ (x) dx =

ˆ
h (x)ω (x) π̃ (x) dx = Eπ̃ (ω (X)h(X))

The reason we are considering this identity is the following: If we have a random

sample(X1, ..., Xn) from π, we can estimate Eπ (h(X)) by calculating Êπ (h(X)) =

1
n

∑n
i=1 h (xi). The law of large numbers in this case guarantees a good approximation

of Eπ (h(X)). In the absence of (X1, ..., Xn), we can estimate the same integral by using a

sample (Y1, ..., YN ) from π̃, and evaluate Êπ̃ (ω (X)h(X)) = 1
N

∑N
i=1 ω (yi)h (yi). Again the

law of large numbers guarantees a good approximation of Eπ (h(X)). Therefore, if in the

problem under consideration it is difficult to sample from the target distribution, we can use

another distribution (proposal) from which we can easily sample and use the new sample

together with the weights to estimate the relevant quantity.

We will now present the basic SMC algorithm. Suppose we are observing data Y1:t =

(y1, ..., yt) sequentially in time. We are assuming that there is an underlying process (signal
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process) Z0:t = (z0, ..., zt) that causes Y1:t. The signal process is latent and our goal is to

obtain a sample from it given Y1:t. In other words, or goal is to sample from the density

π1:t (Z0:t|Y1:t). If it is not possible to sample from π1:t, then a proposal distribution π̃1:t

will be utilized. The proposal distribution is selected in a manner so that the importance

weights π1:t/π̃1:t can be updated recursively with the arrival of a new data point yt+1. In the

IS setting, the unnormalized importance weight at time t for particle k = 1, ..., N would be

written

W1:t

(
Z

(k)
0:t

)
=
π1:t

(
Z

(k)
0:t |Y1:t

)
π̃1:t

(
Z

(k)
0:t |Y1:t

) (1.4.1)

In our setup we can derive the following relationships: First, the target distribution at time

t+1, π1:t+1 (Z0:t+1|Y1:t+1) can be written in terms of a marginal and conditional distribution

π1:t+1 (Z0:t+1|Y1:t+1) = π1:t (Z0:t|Y1:t)πt+1|1:t (Zt+1|Z0:t, Y1:t) (1.4.2)

If we write the proposal in the same manner, then we can derive a recursive formula for the

weights

W1:t+1 = W1:t

πt+1|1:t (Zt+1|Z0:t, Y1:t)

π̃t+1|1:t (Zt+1|Z0:t, Y1:t)
(1.4.3)

The generated values Z(k)
0:t for k = 1, 2, ..., N are called particles and together with their

associated normalized importance weights Ŵ (k)
1:t =

W
(k)
1:t∑N

k=1W
(k)
1:t

, they form a particle system,

namely
{
Z

(k)
0:t , Ŵ

(k)
1:t

}N
k=1

. Unfortunately, this method is destined to fail as t increases.

The importance weights degenerate to a single particle (i.e. one particle has a normalized

importance weight equal to one, the rest zero), making the particles useless for practical

purposes. The reason of this degeneracy has to do with the fact that the variance of the

importance weights increases with t making them inefficient. This degeneracy is usually

measured by the effective sample size (ESS), a measure of the distribution of the weights of

the particles. The ESS at time t is often estimated by

ESSt =
(∑N

k=1W
(k)
1:t

)2

/
∑N
k=1

(
W

(k)
1:t

)2

If the ESS has dropped below some designated threshold (usually ESSt ≤ N/2 ), then the
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particle system is resampled removing the particles with low weights and replicating the

particles with higher weights. There are several ways to resample the particle system, all of

which are based on the normalized importance weights.
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CHAPTER 2

Generalized Fiducial Inference for High Frequency Data in the Presence
of Rounging Errors

2.1 Summary

In this chapter, we adapt a generalized fiducial framework to study volatility using high

frequency data. Our framework, which is designed for interval data, allows to view the

bid-ask spread as a natural interval around the latent efficient price and use high frequency

quotations as our dataset. Unlike the standard microstructure literature our modeling ap-

proach does not require additive components to model noise. In fact, our framework takes

advantage of the features of the observed prices inherent to the trading process, such as

rounding, and reduces the impact microstructure frictions cause to estimation.

Generalized fiducial methods produce distribution estimators that can be used to obtain

quantities beyond point estimators, such as approximate confidence intervals. Inference is

performed by splitting the trading day into blocks where volatility is assumed constant. A

novel combination scheme allows to join the information from all blocks. Both our simulation

study and empirical application demonstrate that the proposed volatility estimator performs

remarkably well even at very high frequencies.

Moreover, we prove a Bernstein - von Mises theorem establishing that, under some

regularity conditions, the generalized fiducial distribution can be approximated by a normal

distribution.

2.2 Introduction

Recently, volatility estimation using high frequency data (HFD) has received considerable

attention in financial econometrics. However, HFD are contaminated by market microstruc-

ture frictions and, as a result, the maintained hypothesis that the underlying efficient price



process is an Itï£¡ semimartingale is not consistent with observed data. In fact, observed

prices resemble semimartingales recorded with error (MS noise). Consequently, volatility

estimates ignoring microstructure can be heavily biased and, therefore, unreliable for infer-

ence procedures. Moreover, the bias is amplified as the sampling frequency increases, since

market microstructure noise accumulates.

In the standard microstructure setup, the efficient/unobserved log-price process, denoted

by Xt = log (St), is assumed to follow an Ito process:

Xt = X0 +

ˆ t

0
µsds+

ˆ t

0
σsdWs

where Wt is a standard Wiener process, µt is the drift of the process and σt is the in-

stantaneous variance of the returns. Both µt and σt are adapted locally bounded ran-

dom processes. The process is assumed to evolve in [0, T ] and is observed in the grid

Gn = {0 = t0 < t1 < ... < tn = T} . The quantity of interest is integrated volatility over the

time period [0, T ], namely,

〈X,X〉T =

ˆ T

0
σ2
t dt

Typically, the observed log-prices Ytm are assumed to be versions of Xtm under the usual

representation

Ytm = Xtm + Utm

where Utm is introduced to capture a variety of effects, including frictions inherent to the

trading process, informational effects and other type of measurement errors, see for example

Aït-Sahalia et al. (2005).

Modeling noise in this simple setup can be unsatisfactory since microstructure frictions

include rounding1. For example, Li and Mykland (2007) analyzed the effect of rounding

on the TSRV estimator and showed that it may not be a robust estimator of integrated

volatility. Rounded Ito processes were initially studied by Jacod (1996) and Delattre and

Jacod (1997) in a non-financial setup. Subsequently, Li and Mykland (2007) and Jacod et al.

(2009) introduced a transition probability so that, conditional on X, observed log-prices Y

1Stocks are traded on grids and, therefore, observed prices are multiples of the tick size, usually a cent.
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are distributed around X. This new approach allows to endogenize rounding and construct

estimators that are robust in its presence, for example, Jacod et al. (2009). However,

their estimator cannot accommodate the case where the source of error is mainly rounding.

Recently, Li and Mykland (2014) proposed a bias corrected RV estimator when rounding is

the only source of noise. This case is particularly interesting for less expensive stocks, since

rounding is the main source of noise. They showed that the new estimator performs better

than the traditional RV estimator as the sampling frequency increases, but cannot reach

very high frequencies such as 1-5 seconds.

In this chapter our goal is to study volatility by taking advantage of the rounding errors.

In particular, we work under the assumption that the latent efficient price process is between

the (rounded) bid-ask prices. Namely, we assume that at any arrival time tm, the process is

contained in the interval [btm , atm ], that is

btm ≤ Xtm ≤ atm

where both btm and atm are the log versions of the observed bid-ask prices. Volatility mod-

eling in this setup is clearly not affected by rounding and the spread related microstructure

frictions , making the additive component introduced in the aforementioned literature re-

dundant. The assumption that the latent efficient price process is between the bid-ask prices

has been used primarily in classical microstructure literature, see Roll (1984), Harris (1990)

and Hasbrouck (1999). However, other intervals that can be justified to contain the latent

price can be a possible candidates. In our empirical study below, besides the direct use of the

spread, we propose a simple way to combine transactions and bid-ask prices to identify such

intervals. Moreover, we work under the additional assumption that volatility is constant ,

that is

Xt = X0 + σWt

This approach is similar in spirit with Aït-Sahalia et al. (2005) and Xiu (2010).

In the high frequency volatility literature the parametric approach assumes constant

volatility in the entire interval [0, T ]. We deviate from this assumption and consider constant
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volatility over a short period of time2. In other words, we split the daily data into blocks

of successive observations and generate samples for each block. Subsequently, we estimate

daily volatility using two methods. The first method computes daily volatility by simply

aggregating the block point estimates and the second method relies on a novel combination

scheme. That is, inference is conducted through a distribution generated by combining

the block distributions into one that summarizes all information from all the blocks under

consideration. In a sense, the combination scheme works as an importance sampler by re-

weighing all particles with weights computed through a metric that utilizes the Gaussian

kernel. As we demonstrate, the combined distribution approximates remarkably well the

distribution we would have generated if we had used all data together in one sample.

We test our methodology by conducting a simulation study employing a realistic simu-

lation scheme. We generate our data by simulating the efficient price process in the original

scale and, at observation times, we round the process upwards and downwards, towards the

two nearest ticks. This type of contamination incorporates rounding errors explicitly and

is similar in spirit with the two stage contamination scheme of Li and Mykland (2007) and

Jacod et al. (2009). The proposed simulation scheme renders the choice of the starting price

X0 relevant, since the magnitude of the spread increases for less expensive stocks, due to the

log-transformation, see Li and Mykland (2007, 2014). Therefore, our simulation study uses

different starting prices to capture this effect. For the volatility parameter (signal), in addi-

tion to the standard values in the literature, we use low values since a weak signal introduces

price sluggishness, intensifying the effect of rounding errors. Our simulation study shows

that we can effectively estimate true volatility, constant or stochastic, even in cases where

rounding errors dominate, and outperform the competing parametric and non-parametric

estimators.

Finally, our empirical study reveals that robust volatility estimation is possible without

having to assume unrealistic microstructure noise structures. We compare our estimator

2Mykland and Zhang (2009) studied this type of local constancy and showed that in sufficiently small
neighborhoods of observations one can act as if volatility is constant. In this article we do not explore the
extent where volatility is held constant. We consider blocks that contain at most 500 observations. For
example, a block of 300 observations observed on average every two seconds amounts to a time frame of 10
minutes. In this small time frame we assume that volatility, even if stochastic, does not vary much.
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with the standard parametric and non-parametric alternatives and show that it is very

competitive.

2.3 Generalized Fiducial Inference for HF data

In our setup, we will assume that the efficient log-price follows a Geometric Brownian

motion. The process is assumed to evolve in [0, T ] and is observed/quoted in the grid

Gn = {0 = t0 < t1 < ... < tn = T}. In addition to the grid Gn, we will consider the sub-

grid Hn = {0 = τ0 < τ1 < ... < τMn = T} ⊆ Gn where volatility is assumed constant for

all ti,m ∈ (τ i−1, τ i]. Specifically, in the interval (τ i−1, τ i] the log-price, given Xτi−1 = xτi−1 ,

evolves according to

dXt = στi−1dWt

In the high frequency literature, it is common practice to to assume that µ = 0. The order

of magnitude of the diffusive component (
√
dt) is much larger than the order of magnitude

of the drift component (dt), making the drift component mathematically negligible at high

frequencies. Moreover, maintaining it, may have adverse effects on the estimation procedure

since it is estimated with a large standard error. Our preliminary simulation study showed

that maintaining the drift component does not have any impact on the quality of the gen-

erated fiducial distributions. It adds though computational burden and, therefore, it is not

included in our reported simulations.

At observation times, within the interval (τ i−1, τ i], the process is assumed to be between

the bid and ask log-prices

bti,m ≤ Xti,m ≤ ati,m (2.3.1)

Noting that Wt =
√
tZ where Z ∼ N (0, 1) we can re-write equation 2.3.1 as

bti,m ≤ στi−1

√
ti,mZti,m ≤ ati,m (2.3.2)
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In terms of the fiducial argument, the structural equation is

G(U, ξ) = G(Z, σ) = σ
√
tZ

The inverse image of G(z, σ) is

Q ((b,a],Z) = {σ ∈ R+ : b < G(z, σ) ≤ a} (2.3.3)

The corresponding generalized fiducial distribution is

V (Q ((b,a], Z)) | {Q ((b,a], Z) 6= ∅} (2.3.4)

Generating samples from the generalized fiducial distribution requires the use of Sequential

Monte Carlo (SMC) methods. The SMC algorithm is based on the algorithm developed by

Cisewski and Hannig (2012), where they performed inference for the parameters of normal

linear mixed models and is presented in section 4. In section 5, we prove a Bernstein - von

Mises theorem establishing that, under some regularity conditions, the generalized fiducial

distribution 2.3.4 can be approximated by a normal distribution.

2.4 Estimation Method

2.4.1 Sequential Monte Carlo Algorithm

In this section we present the Sequential Monte Carlo algorithm to generate samples from

the generalized fiducial distribution of the parameters of interest. We consider the interval

(τ i−1, τ i] where the process is assumed to be between the bid and ask log-prices, as give

by equation 3.3.2. To ease notation we will drop the dependence i and we will embed
√
t

in Zt such that Zt ∼ N (0, t). We will be denoting Zt1:tm = (Z∆t1 , ..., Z∆tm), where ti ∈

{t1, ..., tm}, ∆ti = ti − ti−1, t0 = 0, and m = 1, ..., n where n ≡ ni = # {j, τ i−1 < ti,j ≤ τ i}.

In our setup, Z1,∆tj ∼ N (0,∆tj). The generalized fiducial distribution of the parameters

will be
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V
(
Q
(

(bn,an], Z
(K)
t1:tn

))
|
{
Q
(

(bn,an], Z
(K)
t1:tn

)
6= ∅
}

(2.4.1)

where Q(K)
n = Q

(
(bn,an], Z

(K)
t1:tn

)
is the set function containing the values of the parameters

that satisfy the structural equation 3.3.2 for all m ≤ n, given the data (bn,an] and the

generated Z(K)
t1:tn for particle K , where K = 1, 2, ..., N . Generating a sample from 2.4.1 is

equivalent to simulating sequentially for each m, Z(K)
t1:tm such that Q(K)

m is non-empty until

we reach n. The corresponding target distribution up to time tm, denoted by πt1:tm , is

πt1:tm (Zt1:tm | (b,a]t1:tm) ≡ πt1:tm (Zt1:tm)

∝
m∏
j=1

1

(∆tj)
1/2

exp

(
− 1

2∆tj
Z2

∆tj

)
ICm (Zt1:tm) (2.4.2)

where ICm (Zt1:tm) is an indicator random variable of the set

Cm =

{
Zt1:tm : btj ≤ σ

j∑
k=1

Z∆tk ≤ atj , for all j = 1, ...,m

}
(2.4.3)

Restriction 2.4.3 is required in order to generate a representative sample from the fiducial

distribution. It ensures that all inequalities up to time tm are satisfied simultaneously. In

practice, this can be achieved easily if at time tm, given that we have sampled Z(K)
t1:tm−1

, we

sample Z(K)
∆tm

by truncating it between the two values

Lm

(
Z

(K)
t1:tm−1

)
= min

btm − σ
∑m−1

j=1 Z
(K)
1,∆tj

σ
, σ ∈ Q(K)

m−1


Rm

(
Z

(K)
t1:tm−1

)
= max

atm − σ
∑m−1

j=1 Z
(K)
1,∆tj

σ
, σ ∈ Q(K)

m−1


Utilizing these type of restrictions we can write

ICm (Zt1:tm) = ICm−1 (Zt1:tm) I(Lm,Rm) (Z1,∆tm) =
m∏
j=1

I(Lj ,Rj)

(
Z1,∆tj

)
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The proposal distribution for our SMC algorithm utilizes the Cauchy distribution

π̃t1:tm (Zt1:tm | (b,a]t1:tm) ≡ π̃t1:tm (Zt1:tm)

∝ πt1 (Zt1)

m∏
j=2

1

(∆tj)
1/2

(
1 +

Z2
tj

∆tj

)
(F (Rj)− F (Lj))

I(Lj ,Rj)

(
Z∆tj

) (2.4.4)

where F denotes the cdf of the Cauchy distribution. It is important to point out that

the proposal distribution treats Zt1 as unrestricted, that is, Zt1 is drawn from the target

distribution. The reason is that Zt1 will be used to identify Q(K)
1 = Q

(
(bt1 , at1 ], Z

(K)
t1

)
, for

each particle K , where K = 1, 2, ..., N . This generates the interval

[
bt1

Z1,∆t1

,
at1

Z1,∆t1

]

and, clearly, any σ in this interval satisfies the first set of inequalities. The rest of the

inequalities will be used sequentially to trim the interval in a way that all inequalities will

be satisfied.

The conditional proposal distribution for m > 1, which will be used to draw samples in

the algorithm is

π̃tm|t1:tm−1
∝

I(Lm,Rm) (Z1,∆tm)

(∆tm)
1/2
(

1 +
Z2
tm

∆tm

)
(F (Rm)− F (Lm))

(2.4.5)

The final component of the algorithm is the importance weights. The weights are computed

as

Wt1:tm =
πt1:tm

π̃t1:tm

=
πtm|t1:tm−1

πt1:tm−1

π̃tm|t1:tm−1
π̃t1:tm−1

= WtmWt1:tm−1 (2.4.6)

where

Wtm =
πtm|t1:tm−1

π̃tm|t1:tm−1
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is the incremental weight. The incremental weight is given by

Wtm ∝ exp

(
− 1

2∆tm
Z2
tm

)(
1 +

Z2
tm

∆tm

)
(F (Rm)− F (Lm)) (2.4.7)

2.4.2 Resampling - Alteration Step

In our setup the resampling step resembles that of a general SMC algorithm. To overcome

the degeneracy of the particle system as tm increases, we measure the effective sample size

(ESS) at time tm

ESStm =
(∑N

k=1 W
(k)
t1:tm

)2

/
∑N
k=1

(
W

(k)
t1:tm

)2 (2.4.8)

and if the ESS for the particle system has dropped below a designated threshold (usually

N/2), the particle system is resampled removing the particles with low weights and replicating

the particles with higher weights. In this setup, replicating particles will not generate a

representative sample of the fiducial distribution. As mentioned above, each of the particles

forms an interval in the parameter space, and therefore, if the particles are simply copied,

the intervals will be concentrated in a narrow area, due to particles with initially higher

weight. Moreover, as the algorithm progresses, the particles will not be able to move from

those regions. A solution to this issue is to alter the particles selected from resampling in

a way that they will maintain their heavy weight, while still allowing for an appropriate

sample of the fiducial distribution.

The alteration step is performed as follows: Suppose that at time tm particleK is selected

in the resampling step and will be copied. Up to time tm, we have observed the following

inequalities (We are suppressing the dependence in K):

bm ≤ σVmZm ≤ am

We perform the following decomposition for Zm

Zm = ‖Zm‖
Zm
‖Zm‖

(2.4.9)
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The SMC algorithm

Step Action
1. Initialization For k = 1, 2, ...,K draw Z

(k)
t1

∼ πt1 (Eq. 2.4.2) and set W (k)
t1

= 1

2. For tm > t1 and tm ≤ tn For k = 1, 2, ...,K draw Z
(k)
tm

∼ π̃tm|t1:tm−1
(Eq. 2.4.5)

3. For tm > t1 and tm ≤ tn Calculate weights W (k)
t1:tm

= W
(k)
tm
W

(k)
t1:tm−1

(Eq. 2.4.6)
4. For tm > t1 and tm ≤ tn Calculate ESStm (Eq. 2.4.8). If ESStm ≤ threshold go to step 5.

Else go to step 2 and set m = m+ 1

5. For tm given ESStm ≤ thd Resample particles and set Wt1:tm = N−1. Go to step 6.
6. For tm Perform alteration as described above and set m = m+ 1

where ‖Zm‖ denotes L2 norm of Zm. By setting D = ‖Zm‖ and κ = Zm
‖Zm‖ decomposition

2.4.9 can be re-written as

Zm = Dκ (2.4.10)

Moreover, by assumption Zm ∼ N (0, Im), therefore, D ∼
√
χ2
m .

Decomposition 2.4.9 allows us to alter Zm by sampling new values of D according to its

distribution. If we denote by D̃ the generated values, then we can use Z̃m = D̃κ to update

the set

Qm = {σ : bm ≤ σVmZm ≤ am}

We achieve that by noting that, since σ solves bm ≤ σVmZm ≤ am, then we need to identify

σ̃ that solve bm ≤ σ̃VmZ̃m ≤ am. Using the following equality

σVZm = σVDκ = σ̃VmD̃κ = σ̃VmZ̃m

we can solve for σ̃, that is

σ̃ = σ
D

D̃

The table below gives an outline of the steps of the algorithm.

2.5 Theoretical Results

2.5.1 Preliminaries - Likelihood of Exact Data

We assume that the efficient log-price follows a Geometric Brownian motion. The process is

assumed to evolve in [0, T ] and is observed on the grid Gn = {0 = t0 < t1 < ... < tn = T}.
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Furthermore, assume that ti − ti−1 = ∆, fixed. Specifically, the log-price, given Xt0 = x0,

evolves according to

Xt = x0 + σWt

Suppose we fully observe the process. Then, the corresponding likelihood is

L
(
σ2,Xn

)
=

n∏
i=1

p
(
Xti | Xti−1

)

where, p
(
Xti | Xti−1

)
=
(
2πσ2∆

)−1/2
exp

{
− 1

2σ2∆

(
Xti −Xti−1

)2}. The log-likelihood is

l
(
σ2,Xn

)
= −n

2
log
(
2πσ2∆

)
− 1

2σ2∆

n∑
i=1

(
Xti −Xti−1

)2
The score is

l̇
(
σ2,Xn

)
= − n

2σ2
+

1

2σ4∆

n∑
i=1

(
Xti −Xti−1

)2
= − n

2σ2
+

n

2σ4
σ̂2
n

where σ̂2
n = 1

n∆

∑n
i=1

(
Xti −Xti−1

)2 is the MLE, i.e., the solution to the score equation.

Taking the expectation under the true parameter σ2
0 we have that E

(
l̇
(
σ2,Xn

))
= 0. The

derivation of the Fisher information relies on

l̈
(
σ2,Xn

)
=

n

2σ4
− 1

σ6∆

n∑
i=1

(
Xti −Xti−1

)2
=

n

2σ4
− n

σ6
σ̂2
n

Denote by In the Fisher Information, derived from

In = E
(
−l̈
(
σ2,Xn

))
=

n

2σ4
0

= nI0

where I0 = 1
2σ4

0
and the expectation is taken under the true parameter.
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2.5.2 Likelihood of Rounded Data

The data are observed with rounding errors which occur in the original scale. Therefore, if

αn denotes the accuracy of the measurement, then, by denoting s(αn) = αn bs/αnc, we have

that at arrival times Gn = {0 = t0 < t1 < ... < tn = T}

S
(αn)
ti
≤ Sti ≤ S

(αn)
ti

+ αn

Therefore, we observe Rn = [bt1 , at1 ] × · · · × [btn , atn ], such that bti = logS
(αn)
ti

and ati =

log
(
S

(αn)
ti

+ αn

)
. This implies

bti ≤ Xti ≤ ati

Let X? be an independent copy of X such that bti ≤ X?
ti ≤ ati . To state this differently,

X? ∼
1RnL

(
Xn, σ

2
)

L (σ2, Rn)

We are interested in the probability/likelihood of the data Rn.

L
(
σ2, Rn

)
=

ˆ at1

bt1

p
(
X?
t1 | xt0

)
dX?

t1 · · ·
ˆ atn

btn

p
(
X?
tn | X

?
tn−1

)
dX?

tn =

ˆ
Rn

L
(
σ2,X?

n

)
dX?

n

(2.5.1)

Lemma 1. Denote by l
(
σ2, Rn

)
= logL

(
σ2, Rn

)
the log-likelihood 2.5.1. The score equation

is given by

l̇
(
σ2, Rn

)
=

n

2σ4

(
E
(
σ̂2?
n | X?

n ∈ Rn
)
− σ2

)
The solution to the score equation yields a “maximum likelihood estimator”. That is

σ2
Rn = E

(
σ̂2?
n | X?

n ∈ Rn
)

where σ̂2?
n = 1

n∆

∑n
i=1

(
X?
ti −X

?
ti−1

)2
is the MLE had we observed the the data Xn. The

expectation is taken with respect to the density 1RnL(Xn,σ2)
L(σ2,Rn)

. The Fisher information is

E
(
−l̈
(
σ2, Rn

))
= In − I2

nE
(
V ar

(
σ̂2?
n | X?

n ∈ Rn
))
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where V ar
(
σ̂2?
n | X?

n ∈ Rn
)

= E
((
σ̂2?
n − σ2

Rn

)2 | X?
n ∈ Rn

)
and the expectation is taken

under the true value σ2
0.

Remark 1. The second term on the RHS of the Fisher Information expresses the loss of

information due to the discretization error.

Denote the local parameter by h =
√
n
(
σ2 − σ2

0

)
and the corresponding log-likelihood

by lRn,h = l
(
σ2

0 + h/
√
n, Rn

)
. Expanding the log-likelihood around the local parameter we

have that

lRn,h − lRn,0 =
h√
n
l̇
(
σ2

0, Rn
)

+
1

2

h2

n
l̈
(
σ2

0, Rn
)

+Remn,h (2.5.2)

where Remn,h = 1
6
h3

n3/2

...
l Rn

(
σ̄2, Rn

)
for some σ̄2 such that σ2

0 ≤ σ̄2 ≤ σ2
0 + h/n. Recall that

In = n
2σ4

0
, then we can easily show that

l̇
(
σ2

0, Rn
)

= In
(
E
(
σ̂2?
n | X?

n ∈ Rn
)
− σ2

0

)
(2.5.3)

and

l̈Rn
(
σ2

0, Rn
)

= −In
(
1− InV ar

(
σ̂2?
n | X?

n ∈ Rn
))
− 2

σ2
0

In
(
E
(
σ̂2?
n | X?

n ∈ Rn
)
− σ2

0

)
(2.5.4)

Substituting equations 2.5.3 and 2.5.4 in equation 2.5.2 we have that

lRn,h − lRn,0 =
h√
n
In
(
E
(
σ̂2?
n | X?

n ∈ Rn
)
− σ2

0

)
− h2

2n
In
(
1− InV ar

(
σ̂2?
n | X?

n ∈ Rn
))

− h2

nσ2
0

In
(
E
(
σ̂2?
n | X?

n ∈ Rn
)
− σ2

0

)
+Remn,h

=
h√
n
In
(
E
(
σ̂2?
n | X?

n ∈ Rn
)
− σ2

0

)
− h2

2n
In
(
1− InV ar

(
σ̂2?
n | X?

n ∈ Rn
))

+Remn,h + op (1)

(2.5.5)

The op (1) term in equation 2.5.5 stems from the fact that once we establish the behavior of

the score function, that is, 1√
n
l̇
(
σ2

0, Rn
)
, then

1

nσ2
0

In
(
E
(
σ̂2?
n | X?

n ∈ Rn
)
− σ2

0

)
=

1√
nσ2

0

1√
n
l̇
(
σ2

0, Rn
)

= op (1)
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Denote

Sn =
1√
n
In
(
E
(
σ̂2?
n | X?

n ∈ Rn
)
− σ2

0

)
and

Fn =
1

n
In
(
1− InV ar

(
σ̂2?
n | X?

n ∈ Rn
))

Then, equation 2.5.5 becomes

lRn,h − lRn,0 = Snh−
1

2
Fnh

2 +Rem+ op (1) (2.5.6)

2.5.3 Approximation of the distribution of the score equation

To simplify the notation, we fix T = 1 and ti − ti−1 = ∆ = 1
n or simply ti = i

n .

Before we prove the theorem, we need to understand the behavior of the quantity
√
n
(
E
(
σ̂2?
n | X?

n ∈ Rn
)
− σ̂2?

n

)
, since we can rewrite the score equation as

1√
n
In
(
E
(
σ̂2?
n | X?

n ∈ Rn
)
− σ2

0

)
=

1√
n
In
(
E
(
σ̂2?
n | X?

n ∈ Rn
)
− σ̂2?

n

)
+

1√
n
In
(
σ̂2?
n − σ2

0

)
Consider the collection of σv-fields Fk,n = σ {X?

1 , . . . X
?
k , Rn} for k ≤ n. Clearly, Fk−1,n ⊆

Fk,n. Then, denote

ξn,k = E
(
σ̂2?
n | Fk−1,n

)
− E

(
σ̂2?
n | Fk,n

)
which is a martingale difference. Notice that

E
(
σ̂2
n | F0,n

)
− σ̂2

n =

n∑
k=1

ξn,k

which is a martingale. Then, there is a constant C such that

|ξn,k| ≤ Cα2
n

The following lemma states Azuma’s inequality without proof.

Lemma 2. (Azuma’s Inequality) Let Y0, . . . , Yn be a martingale with bounded differences,
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namely, |Yi − Yi−1| ≤ mi. Then

P (|Yn − Y0| ≥ t) ≤ 2 exp

{
− t2

2
∑n

i=1m
2
i

}

Using Lemma 2 we can derive an upper bound on the variance of
√
n
∑n

k=1 ξn,k

E

(
√
n

n∑
k=1

ξn,k

)2

=

ˆ ∞
0

P

(√n n∑
k=1

ξn,k

)2

≥ t

 dt =

ˆ ∞
0

P

(∣∣∣∣∣
n∑
k=1

ξn,k

∣∣∣∣∣ ≥
√
t√
n

)
dt

≤
ˆ ∞

0
2 exp

{
− t

2n
∑n

i=1 α
4
nC

2

}
dt

≤ 4n2α4
nC

2

Assuming that αn = Op

(
n−

1
2

)
, then the upper bound of the variance then upper bound on

the variance of
√
n
∑n

k=1 ξn,k is Op (1). Assuming that αn = Op

(
n−

1
2
−ε
)
, then the bound

is op (1). Under the assumption αn = Op

(
n−

1
2
−ε
)
, we can easily see that

nV ar
(
σ̂2?
n | X?

n ∈ Rn
)

= E

(√n n∑
k=1

ξn,k

)2

| X?
n ∈ Rn

→ 0

which implies InV ar
(
σ̂2?
n | X?

n ∈ Rn
)
→ 0. Then

Sn =
1√
n
In
(
E
(
σ̂2?
n | X?

n ∈ Rn
)
− σ2

0

)
→ N (0, I0) (2.5.7)

and

Fn =
1

n
In
(
1− InV ar

(
σ̂2?
n | X?

n ∈ Rn
))
→ I0 (2.5.8)

2.5.4 Generalized Fiducial Density

The derivation of the generalized fiducial density in the case of interval data is a rather

difficult task. The reason is that the set Q ((bn,an],Z) is an interval, and therefore, the are

more than one values of σ. However, we can derive a generalized fiducial distribution of one

of its extremal points. We note that both these points are the outcome of using some of data

inequalities with equality. Then, we know that the extremal point was generated by some

33



x0 +σ
√
m/nZm/n = am/n

3. Then, using this information and properties of the brownian path

we can arrive at a unique solution for σ, namely

σ =
am/n − x0√
m/nZm/n

(2.5.9)

Denote R−m =
[
b1/n, a1/n

]
×· · ·×

[
b(m−1)/n, a(m−1)/n

]
×
[
b(m+1)/n, a(m+1)/n

]
×· · ·× [b1, a1] . That

particular σ and observations R−m, will be used to derive the generalized fiducial of σ.

We start by determining the joint density of (σ,R−m), that is

fσ,R−m
(
σ,R−m|am/n

)
= f

(
σ, |am/n

)
L̃
(
σ2, R1:m−1|x0, am/n

)
L̃
(
σ2, Rm+1:n|am/n

)
(2.5.10)

where L̃
(
σ2, R1:m−1|x0, am/n

)
is the likelihood of the processXt starting at x0, going through

R1:m−1 =
[
b1/n, a1/n

]
×· · ·×

[
b(m−1)/n, a(m−1)/n

]
and ending at am/n. In other words, Xt, for this

section, behaves like a brownian bridge. L̃
(
σ2, Rm+1:n|am/n

)
is the probability likelihood of

the process Xt starting at am/n and going through Rm+1:n =
[
b(m+1)/n, a(m+1)/n

]
×· · ·×[b1, a1].

Finally, f
(
σ, |am/n

)
is the fiducial density of σ derived from equation 2.5.9, namely

f
(
σ, |am/n

)
= ϕ

(
g−1

(
σ, am/n

)) ∣∣∣∣det

(
∂

∂σ
g−1

(
σ, am/n

))∣∣∣∣ =

∣∣am/n − x0

∣∣
σ

p
(
am/n | x0

)
where g−1

(
σ, am/n

)
=

am/n−x0

σ
√
m/n

and ϕ is the density of the standard normal. Using the

properties of the brownian bridge, we can show that the joint density of a process starting

at Xt0 = x0, observed at times {0 = t0 < t1 < ... < tn < T} and ending at XT = xT is

p (xT | xtn)

p (xT | x0)

n∏
i=1

p
(
xti | xti−1

)

Therefore, denote L̃
(
σ2,X?

1:m−1|x0, am/n
)

= L
(
σ2,X?

1:m−1

)
p
(
am/n | x(m−1)/n

)
/p
(
am/n | x0

)
.

So,

L̃
(
σ2, R1:m−1|x0, am/n

)
=

ˆ
R1:m−1

L̃
(
σ2,X?

1:m−1|x0, am/n
)
dX?

1:m−1 (2.5.11)

3We could have used bm/n.
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and

L̃
(
σ2, Rm+1:n|am/n

)
=

ˆ
Rm+1:n

p
(
X?

(m+1)/n | am/n
)
L
(
σ2,X?

m+2:n

)
dX?

m+1:n (2.5.12)

Using 2.5.11 and 2.5.12, we can re-write 2.5.10, namely,

fσ,R−m
(
σ,R−m|am/n

)
=

ˆ
R1:m−1

∣∣am/n − x0

∣∣
σ

p
(
am/n | x0

)
L̃
(
σ2,X?

1:m−1|x0, am/n
)
dX?

1:m−1 × L̃
(
σ2, Rm+1:n|am/n

)
=

ˆ
R1:m−1

∣∣am/n − x0

∣∣
σ

L̃
(
σ2,X?

1:m−1, am/n|x0

)
dX?

1:m−1 × L̃
(
σ2, Rm+1:n|am/n

)
= J

(
am/n, σ

)
L̃
(
σ2, R1:m−1, am/n|x0

)
L̃
(
σ2, Rm+1:n|am/n

)
(2.5.13)

where J
(
am/n, σ

)
=
|am/n−x0|

σ is the Jacobian factor and L̃
(
σ2, R1:m−1, am/n|x0

)
=

´
R1:m−1

L̃
(
σ2,X?

1:m−1, am/n|x0

)
dX?

1:m−1. The generalized fiducial density of the parameter

σ is given by

gn
(
σ|am/n, R−m

)
=

fσ,R−m
(
σ,R−m|am/n

)
´

Θ fσ,R−m
(
σ,R−m|am/n

)
dσ

(2.5.14)

where Θ = R+.

2.5.5 Bernstein-von Mises theorem

Previously, we determined the expansion of the likelihood of rounded data. The same

derivations apply if we replace L
(
σ2, Rn

)
with L̃

(
σ2, R1:m−1, am/n|x0

)
L̃
(
σ2, Rm+1:n|am/n

)
.

Denote by

l
(
σ2, R̃n

)
= l
(
σ2, R−m, am/n

)
= log

(
L̃
(
σ2, R1:m−1, am/n|x0

)
L̃
(
σ2, Rm+1:n|am/n

))
(2.5.15)

It is very easy to see that Lemma 1 applies at modified likelihood. In this case

σ2
Rn = E

(
σ̂2?
n | X?

−m ∈ R−m, X?
m/n = am/n

)
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where σ̂2?
n is simply the MLE when we replace X?

m/n with am/n. The expansion 2.5.6 for the

modified likelihood remains the same, namely,

lRn,h − lRn,0 = Snh−
1

2
Fnh

2 +Rem+ op (1) (2.5.16)

where

Sn =
1√
n
In
(
E
(
σ̂2?
n | X?

−m ∈ R−m, X?
m/n = am/n

)
− σ2

0

)
(2.5.17)

and

Fn =
1

n
In
(

1− InV ar
(
σ̂2?
n | X?

−m ∈ R−m, X?
m/n = am/n

))
(2.5.18)

Under αn = Op

(
n−

1
2
−ε
)
, the results 2.5.7 and 2.5.8 extend to the modified versions, namely

Sn → N (0, I0) (2.5.19)

and

Fn → I0 (2.5.20)

We now collect the required conditions for the theorem.

1. The likelihood 2.5.15 satisfies the standard regularity conditions. That is, is thrice

differentiable with respect to σ2 in a neighborhood
(
σ2

0 − δ, σ2
0 + δ

)
.

2. In view of lemma 1, E
(
l̇
(
σ2, R−m, am/n

))
= 0 and

E
(
−l̈
(
σ2, R−m, am/n

))
= In − I2

nE
(
V ar

(
σ̂2?
n | X?

−m ∈ R−m, X?
m/n = am/n

))

is finite.

3. Under αn = Op

(
n−

1
2
−ε
)
, the results 2.5.19 and 2.5.20 hold. Moreover,

sup
σ̄2∈(σ2

0−δ,σ2
0+δ)

1

n

...
l
(
σ̄2, R−m, am/n

)
= Op (1)

36



4. For any δ > 0 there is ε > 0 such that

sup
σ2 /∈(σ2

0−δ,σ2
0+δ)

P

{
1

n

(
l̃
(
σ2, R1:m−1, am/n|x0

)
− l̃
(
σ2

0, R1:m−1, am/n|x0

))
≤ −ε

}
→ 1

and similarly

sup
σ2 /∈(σ2

0−δ,σ2
0+δ)

P

{
1

n

(
l̃
(
σ2, Rm+1:n|am/n

)
− l̃
(
σ2

0, Rm+1:n|am/n
))
≤ −ε

}
→ 1

5. Under the local parameter h =
√
n
(
σ2 − σ2

0

)
, let Jn,h = J

(
am/n, h

)
. Then Jn,h → J0,

where J0 is continuous and positive on a neighborhood of σ2
0.

The conditions are verified below.

We now re-write the generalized fiducial density 2.5.14 in terms of the local parameter

h =
√
n
(
σ2 − σ2

0

)
and the expansion 2.5.16 that is

gn

(
h|R̃n

)
=

Jn,h exp
{
lR̃n,h − lR̃n,0

}
´
Hn
Jn,h exp

{
lR̃n,h − lR̃n,0

}
dh

(2.5.21)

where Hn is the parameter space under the local parameter h.

Theorem 1. (Bernstein-von Mises) Let αn = Op

(
n−

1
2
−ε
)
. Under the conditions 1-5,

the total variation between the density 2.5.21 and the density of the normal distribution

N
(
X, I−1

0

)
, with X ∼ N (0, I0), converges to zero in probability. That is

ˆ
Hn

∣∣∣gn (h|R̃n)− ϕI−1
0 X,I−1

0
(h)
∣∣∣ dh P−→ 0

Proof. Since

ˆ
Hn

∣∣∣gn (h|R̃n)− ϕI−1
0 X,I−1

0
(h)
∣∣∣ dh ≤ C−1

n

ˆ
Hn

∣∣∣∣∣∣
Jn,h exp

{
lR̃n,h

}
exp

{
lR̃n,0

} − J0e
Snh− 1

2
Fnh2

∣∣∣∣∣∣ dh
+

ˆ
Hn

∣∣∣C−1
n J0e

Snh− 1
2
Fnh2 − ϕI−1

0 X,I−1
0

(h)
∣∣∣ dh
(2.5.22)

where Cn =
´
Hn
Jn,h exp

{
lR̃n,h − lR̃n,0

}
dh and Jn,h → J0, it suffices to show that the
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right hand side (RHS) of 2.5.22 converges to zero in probability. This can be established by

showing that
ˆ
Hn

∣∣∣∣∣∣
Jn,h exp

{
lR̃n,h

}
exp

{
lR̃n,0

} − J0e
Snh− 1

2
Fnh2

∣∣∣∣∣∣ dh P−→ 0 (2.5.23)

and C−1
n = OP (1). The latter can be easily established since the result in 2.5.23 implies∣∣∣Cn − ´Hn J0e

Snh− 1
2
Fnh2

dh
∣∣∣ P−→ 0. Also, we can easily show that

C1e
− 1

2
F−1
n S2

n ≤
ˆ
Hn

eSnh−
1
2
Fnh2

dh ≤ C2e
− 1

2
F−1
n S2

n

for some constants C1 and C2
4, therefore Cn = OP (1). For the second integral of the RHS

of 2.5.22, let I1 =
´
Hn

eSnh−
1
2
Fnh2

dh and I2 =
∣∣C−1

n J0 − I−1
1

∣∣. It follows that second integral

of the RHS 2.5.22 of can be expressed as I1I2 and is oP (1), since I1 is OP (1) and I2 is oP (1)

by 2.5.23. To establish 2.5.22, we split the parameter space Hn into 3 regions and establish

convergence in each one separately. The regions are,

A1,n =
{
h : |h| < c log

(√
n
)}
∩Hn

A2,n =
{
h : c log

(√
n
)
< |h| < δ

√
n
}
∩Hn

A3,n =

{
h : |h| > δ

√
n

2

}
∩Hn

for suitably chosen positive constants κ and λ.

Region A2,n: For the integral in equation 2.5.23 we have that

ˆ
A2,n

∣∣∣Jn,heSnh− 1
2
Fnh2+Remn,h − J0e

Snh− 1
2
Fnh2

∣∣∣ dh
≤
ˆ
A2,n

Jn,heSnh−
1
2
Fnh2+Remn,hdh+

ˆ
A2,n

J0e
Snh− 1

2
Fnh2

dh

≤ sup
h∈A2,n

Jn,h
ˆ
A2,n

eSnh−
1
2
Fnh2+Remn,hdh+

ˆ
A2,n

J0e
Snh− 1

2
Fnh2

dh

(2.5.24)

4The constants C1 and C2 exist due to the fact that Θ −
{
σ2

0

}
⊂ Hn ⊂ R.
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Notice that

ˆ
A2,n

J0e
− 1

2
Fnh2

dh ≤ 2J0e
− 1

2
Fnc log(

√
n) (δ√n− c log

(√
n
))
≤ KJ0n

1
2
− 1

4
cFn

therefore, choosing c large enough, the integral goes to zero. As a result, the second integral

in the RHS of 2.5.24 also goes to zero. For the first integral in the RHS of 2.5.24, we

need a bound for the remainder. Since, Remn,h = 1
6
h3

n3/2

...
l Rn

(
σ̄2
)
for some σ̄2 such that

σ̄2 ∈
(
σ2

0 − δ, σ2
0 + δ

)
, then, in the region A2,n

|Remn,h| =
1

6

h3

n3/2

...
l R̃n

(
σ̄2
)
≤ δ1

6
h2 1

n

...
l R̃n

(
σ̄2
)

Since supσ̄2∈(σ2
0−δ,σ2

0+δ)
1
n

∣∣∣...l R̃n (σ̄2
)∣∣∣ = Op (1), we can choose δ small enough to ensure

P

(
Remn,h <

1

4
Fnh

2; for all h ∈ A2,n

)
> 1− ε

for some ε > 0 or equivalently

P

(
Snh−

1

2
Fnh

2 +Remn,h < Snh−
1

4
Fnh

2; for all h ∈ A2,n

)
> 1− ε

therefore, with probability 1− ε we have that

sup
h∈A2,n

Jn,h
ˆ
A2,n

eSnh−
1
2
Fnh2+Remn,hdh ≤ sup

h∈A2,n

Jn,h
ˆ
A2,n

eSnh−
1
4
Fnh2+dh

which also goes to zero using a similar argument as before.
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Region A1,n: For the integral in equation 2.5.23 we have that

ˆ
A1,n

∣∣∣Jn,h exp
{
lR̃n,h − lR̃n,0

}
− J0e

Snh− 1
2
Fnh2

∣∣∣ dh
≤
ˆ
A1,n

∣∣∣Jn,heSnh− 1
2
Fnh2+Remn,h − Jn,heSnh−

1
2
Fnh2

∣∣∣ dh+

ˆ
A1,n

|Jn,h − J0| eSnh−
1
2
Fnh2

dh

≤
ˆ
A1,n

Jn,heSnh−
1
2
Fnh2 ∣∣eRemn,h − 1

∣∣ dh+

ˆ
A1,n

|Jn,h − J0| eSnh−
1
2
Fnh2

dh

≤ sup
h∈A1,n

Jn,h
ˆ
A1,n

eSnh−
1
2
Fnh2

eRemn,h |Remn,h| dh+

ˆ
A1,n

|Jn,h − J0| eSnh−
1
2
Fnh2

dh

(2.5.25)

For the first integral in the RHS of 2.5.25, as before, we need a bound for the remainder. In

the region A1,n

|Remn,h| =
1

6

h3

n3/2

...
l R̃n

(
σ̄2
)
≤ 1

6

(c log (
√
n))

3

n3/2

...
l R̃n

(
σ̄2
)

=
c3

6

(log (
√
n))

3

√
n

1

n

...
l R̃n

(
σ̄2
)

= op (1)

thus, the first integral in the RHS of 2.5.25 is op (1). The second integral in the RHS of

2.5.25 is also op (1) since J is continuous at σ2
0.

Region A3,n: For the integral in equation 2.5.23 we have that

ˆ
A3,n

∣∣∣Jn,heSnh− 1
2
Fnh2+Remn,h − J0e

Snh− 1
2
Fnh2

∣∣∣ dh
≤
ˆ
A3,n

Jn,heSnh−
1
2
Fnh2+Remn,hdh+

ˆ
A3,n

J0e
Snh− 1

2
Fnh2

dh

(2.5.26)

Clearly, the second integral is op (1). For the first integral we have that

ˆ
A3,n

Jn,heSnh−
1
2
Fnh2+Remn,hdh

=

ˆ
A3,n

Jn,hp
(
am/n | x0

)
elR̃n,h−lR̃n,0−log p(am/n|x0)dh

=

ˆ
A3,n

Jn,hp
(
am/n | x0

)
el̃(h,R1:m−1,am/n|x0)−l̃(σ2

0 ,R1:m−1,am/n|x0)−log p(am/n|x0)×

el̃(h,Rm+1:n|am/n)−l̃(σ2
0 ,Rm+1:n|am/n)dh

Notice that
´
Hn
Jn,hp

(
am/n | x0

)
dh = 1 since Jn,hp

(
am/n | x0

)
is a density. Due to condi-

tions 5, the integral goes to zero.
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2.5.6 Proofs and Auxiliary Results

Proof of Lemma 1

Denote the likelihood as L
(
σ2,X?

n

)
=
∏n
i=1 p

(
x?i | x?i−1

)
. Then we can easily show that

∂

∂σ2
logL

(
σ2,X?

n

)
= − n

2σ2
+

n

2σ4
σ̂2?
n

We are interested in the probability/likelihood

L
(
σ2, Rn

)
=

ˆ
Rn

L
(
σ2,X?

n

)
dX?

n

∂L
(
σ2, Rn

)
∂σ2

=
∂

∂σ2

ˆ
Rn

L
(
σ2,X?

n

)
dX?

n =

ˆ
Rn

L
(
σ2,X?

n

){
− n

2σ2
+

n

2σ4
σ̂2?
n

}
dX?

n

= − n

2σ2
L
(
σ2, Rn

)
+

n

2σ4
L
(
σ2, Rn

)
E
(
σ̂2?
n | X?

n ∈ Rn
)

This implies

∂ logL
(
σ2, Rn

)
∂σ2

= − n

2σ2
+

n

2σ4
E
(
σ̂2?
n | X?

n ∈ Rn
)

= − n

2σ2
+

n

2σ4
σ2
Rn

where σ2
Rn

= E
(
σ̂2?
n | X?

n ∈ Rn
)
. In order to calculate the Fisher information we will use

the following facts. First

∂

∂σ2
log

L
(
σ2,X?

n

)
L (σ2, Rn)

=
∂

∂σ2
logL

(
σ2,X?

n

)
− ∂

∂σ2
logL

(
σ2, Rn

)
= − n

2σ2
+

n

2σ4
σ̂2?
n −

(
− n

2σ2
+

n

2σ4
σ2
Rn

)
=

n

2σ4

(
σ̂2?
n − σ2

Rn

)
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and second

∂

∂σ2
σ2
Rn =

∂

∂σ2
E
(
σ̂2
n | X?

n ∈ Rn
)

=
∂

∂σ2

ˆ
Rn

σ̂2
n

L
(
σ2,X?

n

)
L (σ2, Rn)

dX?
n

=
∂

∂σ2

ˆ
Rn

σ̂2?
n exp

{
log

L
(
σ2,X?

n

)
L (σ2, Rn)

}
dX?

n

=

ˆ
Rn

σ̂2
n

L
(
σ2,X?

n

)
L (σ2, Rn)

{
∂

∂σ2
log

L
(
σ2,X?

n

)
L (σ2, Rn)

}
dX?

n

=
n

2σ4

ˆ
Rn

σ̂2?
n

(
σ̂2?
n − σ2

Rn

) L (σ2,X?
n

)
L (σ2, Rn)

dX?
n

=
n

2σ4

{
E
(
σ̂4?
n | X?

n ∈ Rn
)
− σ4

Rn

}
=

n

2σ4
V ar

(
σ̂2?
n | X?

n ∈ Rn
)

Therefore

l̈Rn
(
σ2
)

=
∂

∂σ2

{
− n

2σ2
+

n

2σ4
σ2
Rn

}
=

n

2σ4
− n

σ6
σ2
Rn +

n2

4σ8
V ar

(
σ̂2?
n | X?

n ∈ Rn
)

(2.5.27)

The Fisher information is simply the expectation under the true value σ2
0 of the negative of

2.5.27 and the fact that

E
(
σ2
Rn

)
= E

(
E
(
σ̂2?
n | X?

n ∈ Rn
))

= Eσ̂2?
n = σ2

0

.

42



Verification of Conditions

Condition 3: For the third derivative we need ∂
∂σ2V ar

(
σ̂2?
n | X?

n ∈ Rn
)

=

∂
∂σ2

{
E
(
σ̂4?
n | X?

n ∈ Rn
)
− σ4

Rn

}
. Therefore

∂

∂σ2
E
(
σ̂4?
n | X?

n ∈ Rn
)

=
∂

∂σ2

ˆ
Rn

σ̂4?
n

L
(
σ2,Xn

)
L (σ2, Rn)

dX?
n

=

ˆ
Rn

σ̂4?
n

L
(
σ2,X?

n

)
L (σ2, Rn)

{
∂

∂σ2
log

L
(
σ2,X?

n

)
L (σ2, Rn)

}
dX?

n

=
n

2σ4

ˆ
Rn

σ̂4?
n

(
σ̂2?
n − σ2

Rn

) L (σ2,X?
n

)
L (σ2, Rn)

dX?
n

=
n

2σ4

{
E
(
σ̂6?
n | X?

n ∈ Rn
)
− σ2

RnE
(
σ̂4?
n | X?

n ∈ Rn
)}

and
∂

∂σ2
σ4
Rn = 2σ2

Rn

∂

∂σ2
σ2
Rn =

n

σ4
σ2
Rn

{
E
(
σ̂4?
n | X?

n ∈ Rn
)
− σ4

Rn

}
So

∂

∂σ2
V ar

(
σ̂2?
n | X?

n ∈ Rn
)

=
n

2σ4

{
E
(
σ̂6?
n | X?

n ∈ Rn
)
− σ2

RnE
(
σ̂4?
n | X?

n ∈ Rn
)}

− n

σ4
σ2
Rn

{
E
(
σ̂4?
n | X?

n ∈ Rn
)
− σ4

Rn

}
=

n

2σ4
E
[(
σ̂2?
n − σ2

Rn

)3 | X?
n ∈ Rn

]
Then,

...
l Rn

(
σ2
)

=
∂

∂σ2

{
n

2σ4
− n

σ6
σ2
Rn +

n2

4σ8
V ar

(
σ̂2?
n | X?

n ∈ Rn
)}

= − n

σ6
+

3n

σ8
σ2
Rn −

n2

2σ10
V ar

(
σ̂2?
n | X?

n ∈ Rn
)

− n2

σ10
V ar

(
σ̂2?
n | X?

n ∈ Rn
)

+
n2

4σ8

∂

∂σ2
V ar

(
σ̂2?
n | X?

n ∈ Rn
)

= − n

σ6
+

3n

σ8
σ2
Rn −

3n2

2σ10
V ar

(
σ̂2?
n | X?

n ∈ Rn
)

+
n3

8σ12
E
[(
σ̂2?
n − σ2

Rn

)3 | X?
n ∈ Rn

]

Then, since nV ar
(
σ̂2?
n | X?

n ∈ Rn
)

= op (1) and E
[(
σ̂2?
n − σ2

Rn

)3 | X?
n ∈ Rn

]
= 0

1

n

...
l Rn

(
σ2
)

= Op (1)
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Condition 4: Recall that

L̃
(
σ2, R1:m−1, am/n|x0

)
=

ˆ
R1:m−1

L̃
(
σ2,X?

1:m−1, am/n|x0

)
dX?

1:m−1

For the log-likelihood l̃
(
σ2,X?

1:m−1, am/n
)

= log L̃
(
σ2,X?

1:m−1, am/n
)
, the following condition

holds. For any δ > 0, there is ε > 0 such that

sup
σ2 /∈(σ2

0−δ,σ2
0+δ)

P

{
1

n

(
l̃
(
σ2,X?

1:m−1, am/n|x0

)
− l̃
(
σ2

0,X
?
1:m−1, am/n|x0

))
≤ −ε

}
→ 1

since this is a standard Gaussian log-likelihood. On this set,

L̃
(
σ2,X?

1:m−1, am/n|x0

)
≤ e−nεL̃

(
σ2

0,X
?
1:m−1, am/n|x0

)
Then, the first result follows because

l̃
(
σ2, R1:m−1, am/n|x0

)
= log

ˆ
R1:m−1

L̃
(
σ2,X?

1:m−1, am/n|x0

)
dX?

1:m−1

≤ log

ˆ
R1:m−1

e−nεL̃
(
σ2

0,X
?
1:m−1, am/n|x0

)
dX?

1:m−1

= −nε+ l̃
(
σ2

0, R1:m−1, am/n|x0

)
The second results can be derived in a similar manner.

2.6 Combinations of Fiducial Distributions

In this section we present a novel method to combine the generated fiducial samples from

different blocks of data into one sample that summarizes all information. Combination

schemes for fiducial distributions are not very common in the literature and most of them

rely on ideas drawn from combination schemes for confidence distributions, see for example

Hannig and Xie (2012) and the references therein. Additionally, all current combination

schemes are for exact data and utilize the underlying likelihood functions. Applying a

similar approach in our framework is a challenging task, since we are using interval data.
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Our scheme aggregates the generated samples from all blocks under considera-

tion by re-weighing all particles. The new weights are computed through a met-

ric that utilizes the Gaussian kernel, together with point estimates of the sam-

ple mean and the Fisher information matrix. Traditionally, the Fisher informa-

tion matrix, if it is not known in closed form, is approximated numerically from

the log-likelihood. In our case, the corresponding log-likelihood is based on the

transition probabilities Pσ

(
btj ≤ X̃tj ≤ atj | btj−1 ≤ X̃tj−1 ≤ atj−1

)
, where X̃t = Xt +

Ut. These probabilities require require a further approximation, for example,

Pσ

(
btj ≤ X̃tj ≤ atj | X̃tj−1 =

atj−1+btj−1

2

)
, which renders the estimation numerically unsta-

ble. Our approach, utilizes the fiducial samples to estimate the Fisher information matrix.

The procedure is the following.

Let (σi,Wi) denote the generated particle systems in block (τ i−1, τ i], i = 1, ...M , where

σi =
{
σ

(k)
i

}N
k=1

, Wi =
{
w

(k)
i

}N
k=1

and N is the number of particles used in the simulation.

Suppose we want to combine fiducial distributions from M segments. For each particle k in

block i and every other block j = 1, ...,M , i 6= j, we calculate the following weight

W
(k)
i,j = exp

{
−1

2
Ij

(
σ

(k)
i − σ̂j

)2
+

1

2
log Ij

}

where σ̂j denotes the point estimate σ̂j =
∑N

k=1W
(k)
j σ

(k)
j in block j and Ij denotes

Ij =

(
N∑
k=1

W
(k)
j

(
σ

(k)
j − σ̂j

)2
)−1

which is the point estimate of Fisher information. In other words, for every particle k in

block i, we calculate its “weighted” distance from the point estimate in block j through a

Gaussian kernel, where j = 1, ...,M , i 6= j.

Once we generate weights W (k)
i,j , the final weight for particle k in block i, is calculated

by

W̄
(k)
i = W

(k)
i

∏
h6=i

W
(k)
i,h

for all i = 1, ...,M .

To illustrate the effectiveness of the combination scheme we simulate a small samples
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Figure 2.1: Combination of block distributions. A sample of 200 observations is split
into two blocks of 100 observations. The fiducial distributions of the entire sample (target)
and the two blocks are generated and subsequently combined. The combined distribution
approximates the target remarkably well.

of 200. We split the sample in two blocks of 100 observations and generate the block

distributions for each block and the entire sample. The distribution of the entire sample will

serve as target distributions. Figure 2.1 illustrates the combination scheme. It is evident

that the combined distributions approximate the target distributions remarkably well.

2.7 Simulation and Robustness checks

In this section we investigate our procedure by reporting a Monte Carlo simulation study

under constant and stochastic volatility. We generate our data by simulating the efficient

price process in the original scale and, at observation times, we round the process upwards

and downwards, towards the two nearest ticks. Subsequently, we take the log transformation.
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In other words, the upper and lower (ask and bid) prices at time tm are given by

atm = γ

⌈
exp(Xtm)

γ

⌉
btm = γ

⌊
exp(Xtm)

γ

⌋

where γ = 0.01 reflects that rounding occurs to the nearest tick.

This type of contamination is similar in spirit with the two stage contamination scheme of

Li and Mykland (2007) and Jacod et al. (2009). In their framework, observed log-prices are

given by Ytm = log
(
γ
⌊
exp(Xtm+Utm )

γ

⌋)
with the additive component being essential, since

in a pure rounding model integrated variance cannot be estimated. Moreover, the proposed

simulation scheme renders the choice of the starting price X0 relevant, since the magnitude

of the spread increases for less expensive stocks. As noted by Li and Mykland (2007, 2014)

rounding errors, when modeled explicitly, are intensified for less expensive stocks. In our

simulation study we wish to capture this effect by using different starting prices, namely

S0 ∈ {10, 30}.

Based on the simulation scheme, we generate daily samples which we split into blocks

of observations of difference size. We consider blocks of at most 200, 300 and 500 observa-

tions5. Additionally, observation times are randomly generated to create non-synchronicity,

a common feature high frequency data. Following Aït-Sahalia and Yu (2009), observation

times follow a Poisson process with intensity λ, independent of the process X. λ ranges

from 2 to 20 seconds. We generate the samples using the SMC algorithm discussed in the

appendix and for each block we generate a sample of 40,000 observations6.

As mentioned above, we can perform inference with two different ways. Daily integrated

variance can be estimated by either aggregating the block point estimates or by applying the

combination scheme above. We call the first point estimator, block point estimator and the

second, combined point estimator. Unlike the simple aggregation scheme, the combination

scheme generates a distribution for the entire day and, therefore, confidence intervals are

5For example, if we observe 10,000 observation in a day and we decide to split the sample in blocks of at
most 200 observations, then we generate 50 blocks.

6In other words, we use 40,000 particles for the SMC algorithm.
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immediate.

We demonstrate the effectiveness of our methodology by comparing our estimators with

the parametric and non-parametric alternatives. In particular, we employ the quasi maxi-

mum likelihood estimator (QMLE) of Aït-Sahalia et al. (2005), the pre-averaging estimator

of Jacod et al. (2009) and the realized kernel estimator of Barndorff-Nielsen et al. (2008).

The observations for these estimators use the same sample paths for efficient price process,

with rounding occurring towards the nearest tick. We note that out of these estimators, only

the pre-averaging estimator is designed to incorporate rounding errors explicitly. Discussion

about the implementation of these estimators can be found in the appendix.

2.7.1 Constant Volatility

We start with constant volatility. Table 3.1 reports the performance of the combined point

estimator together with the parametric and non-parametric alternatives. The block point

estimator is reported in table 3.2 since there are no confidence intervals. Intensity λ is 2

seconds. Table 3.1 reports the coverage7, the average length of the confidence intervals, the

RMSE, the bias, which is defined as the average of σ̂2−σ2
0 and the three quantiles of σ̂2−σ2

0.

A close inspection of the results reveals that our estimator outperforms all other esti-

mators. In terms of coverage, the most competitive estimator is the pre-averaging, since it

is robust to rounding errors and the calculation of the asymptotic variance is adjusted in

a way to reduce finite sample bias. However, the variance of our estimator is significantly

lower and, therefore, our estimator is much more accurate. This is reflected by the smaller

RMSE and the narrower confidence intervals. The QMLE when the starting price is low

(S0 = 10) or the signal is low (σ0 = 15%) is heavily upward biased. This observation is

similar to the observation by Li and Mykland (2007), where the Two-Scales RV estimator

was suffering by the same issue8. The realized kernel estimators do not perform well in terms

of coverage. The asymptotic variance is not estimated accurately and, therefore, coverage

7The nominal is 95%.

8The performance of the QMLE can be improved if a two stage contamination scheme is employed.
However, as in the case of the TSRV, the variance of additive component needs to be sufficiently large.
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Figure 2.2: Rounding Issue. The figure demonstrates the case where the starting price is
S0 = 10 and the signal is σ0 = 15%. In this case the signal is so weak that is obliterated by
rounding errors.

is low and RMSEs are high.

Out of the four different combinations of starting prices and parameters, the case where

the starting price is low (S0 = 10) and the signal is low (σ0 = 15%) is of particular interest.

This is the case where all estimators underperform. This is no surprise, since the aforemen-

tioned combination together with arrival intensity λ = 2 seconds generates sample paths

where the signal is so weak that is obliterated by rounding errors. Figure 2.2 illustrates the

effect. In view of this issue, sampling sparsely is a quick fix, therefore, table 3.3 reports

the performance of the combined point estimator in a similar manner as before, with the

arrival intensity varying. That is, intensity λ is set at 5, 10 and 20 seconds. The block point

estimator is reported in table 3.4. As before our estimator outperforms all other estimators.

In addition to the simulation study above, we include a small sample simulation study

for the combination scheme. That is, for the generated block distributions we apply the

scheme progressively, by combining the first two blocks, then the first three blocks, and so

on, until we use all blocks. Tables B.1-B.6 in appendix B report the coverage, the average

length of the confidence intervals, the RMSE, the bias, which is defined as the average of

σ̂2 − σ2
0 and the three quantiles of σ̂2 − σ2

0. A quick look reveals that in most cases the

procedure performs remarkably well.
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2.7.2 Stochastic Volatility

Our methodology assumes that volatility is constant, at least locally. However, it is well

known that volatility is in fact time varying. Therefore, we conduct a small simulation

study where the true data generating mechanism exhibits stochastic volatility. Specifically,

we adapt a standard stochastic volatility model where the efficient price process follows the

diffusion:

dXt = σtdW1t

dσ2
t = κ

(
υ − σ2

t

)
dt+ sσtdW2t

where W1t and W2t are dependent Brownian Motions with E (dW1tdW2t) = ρdt. We select

υ = 0.04 (which amounts to 20% volatility per year), κ = 5, s = 0.5 and ρ = −0.5.. These

parameters belong in the range of values used in Aït-Sahalia and Kimmel (2007) and Aït-

Sahalia and Yu (2009). It is common in this type of simulations to initialize the volatility

process by drawing σ2
0 from its stationary distribution. However, due to the small size of our

simulation, we set σ2
0 = υ. Parameter υ = 0.04 together with parameter s = 0.5 can lead to

low values of the spot volatility and, therefore, intensify the effect of rounding. Integrated

variance is approximated by
´ 1

0 σ
2
t dt ' 1

n

∑n
i=1 σ

2
ti , where ∆ti = 1

23,400 .

In a similar manner as above, table 3.5 reports the performance of the combined point

estimator together with the parametric and non-parametric alternatives. The block point

estimator is reported in table 3.6. Tables 3.7 and 3.8 report the outcome of the simulation

study with time varying intensity; λ takes the values 5 and 10. The results reveal a clear

advantage of the proposed estimators.

2.8 Empirical Study

In our empirical analysis we focus, initially, on the illustration of the methodology, together

with data handling issues and concerns. Subsequently, we demonstrate that our approach

is sufficient to estimate integrated volatility without additive components. The data were

collected from the TAQ database and were cleaned according to the filters found in Barndorff-

Nielsen et al. (2009). A short description of these filters can be found in appendix C.
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Moreover, we apply our methodology on bid and ask quotes that have a corresponding

transaction.

2.8.1 Illustration

We analyze data for Alcoa Inc. (AA) collected on May 2007. The particular month contains

daily data, studied by Barndorff-Nielsen et al. (2009), and is ideal for a direct comparison.

We split our daily samples in blocks of at most 500 observations9. The upper panel of

figure 2.3displays the high frequency quotes on May 4th, which according to Barndorff-

Nielsen et al. (2009), was reported as an exemplary day in terms of the stability of the

volatility signature plots. After applying the filters, we arrive at 14,630 quotations and

5,203 transactions. Therefore, the sample under consideration consists of 5,203 quotations

that have a corresponding transaction. This amounts to a new observation roughly every

4.5 seconds. The sample in 11 blocks of observations, each one containing 473 observations.

The left lower panel of figure 2.3 displays the block estimates of σ2 with the confidence

intervals superimposed. In the same panel, we include the daily estimates of the other

competing. At first glance, the block point estimates reveal a U-shaped pattern. Volatility

is quite high in the beginning of the day, much lower in the middle of the day and higher

towards the end. This pattern is the reason we do not apply the combination scheme on all

block distributions. Volatility for this particular day exhibits sudden changes, indicating the

presence of volatility jumps and a combined distribution using all blocks leads to a nearly

degenerate distribution, as indicated by the small effective sample size. Instead, we combine

distributions from adjacent blocks, provided that the efficient sample size of the generated

distribution is high. Typically, distributions located within a band of 10% annual volatility

can be combined. The right lower panel displays the combined point estimates. Figure 2.4

displays all point estimates of the integrated variance for the entire month. It is evident

that most of the noise is attributed to rounding and spread related frictions.

9The analysis using smaller block sizes did not reveal any substantial differences and, therefore is not
reported in the paper.
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Figure 2.3: Alcoa Inc. (AA) on May4, 2007. The upper panel illustrates the high-
frequency quotes for Alcoa Inc. (AA) on May4, 2007. The sample is split in 11 blocks
of 473 observations. The lower left panel illustrates the block volatility estimates with
the confidence intervals superimposed. The right panel illustrates the combined volatility
estimates with the confidence intervals superimposed. The daily volatility estimates are also
included.

Figure 2.4: Volatility Estimates for Alcoa Inc. (AA) on May 2007. The figure
displays all point estimates of the integrated variance for the entire month.
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Figure 2.5: Spread distribution and revised quotes of Alcoa Inc. (AA), on May
4, 2007.

2.8.2 Time varying spread

In this section we discuss the implications of time varying spread in our methodology. In our

modeling approach, we do not account for the relationship between the spread and volatility.

If the variation of the spread was independent with volatility, then our methodology would

be robust in the presence of time varying spreads. However, information based market

microstructure theory suggests that the spread is positively correlated with volatility. For

instance, Zhang et al. (2008) show that high volatility in the transaction price process widens

the spread symmetrically about the efficient price. This suggests that an extension of the

current framework that accounts for this relationship is needed, but will be considered in

future work.

Our concern is that wide spreads, usually more than three of four cents, increase our

uncertainty about the location of the latent efficient price. Given that our goal is to form

an interval about the latent efficient price, a wide spread may have adverse effects on the

estimation procedure. Moreover wide intervals add to the uncertainty of the generated

distributions, especially if several of these observations are in the same block. The left panel

of figure 2.5 displays the spread distribution of the day under consideration. The spread

for roughly 87% of these observations is smaller or equal to two cents, roughly 12% is three

cents and the rest is above three cents, with only five observations above five cents.

To address this potential issue we propose to replace the quotes where the spread is

higher than some pre-specified threshold with new quotes, ensuring that they contain the
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Figure 2.6: Volatility Estimates for Alcoa Inc. (AA) on May 2007. The upper panel
displays all point estimates of the integrated variance for the entire month without altering
the spread; this is the same as in figure 4. In the middle panel, the maximum spread is 2
cents and at the lower panel the maximum spread is one cent.

latent process. A simple way to achieve this is to use the corresponding transactions as a

guide to reduce the spread. For instance, if we do not wish to allow observations with spread

higher or equal than 3 cents, we can reduce the spread by selecting an interval about the

transaction, with length equal to, say, two cents, provided that we do not exceed the quotes.

For example, if the recorded spread is three cents and the corresponding transaction occurs

at the ask price, the spread can be reduced by shifting the bid price upwards by one cent.

The right panel of figure 2.5 displays the revision of the quotes for the first 14 observations.

A closer inspection at the revised quotes reveals that reducing the spread may introduce

price jumps, which may have an adverse effect in the estimation.

We apply this idea to the monthly data analyzed above by restricting the spread. The

upper panel of figure 2.6 displays all point estimates of the integrated variance for the entire

month without altering the spread; this is the same as in figure 2.4. In the middle panel, the

maximum spread is 2 cents and at the lower panel the maximum spread is 1. As expected,

the reduction of the spread has increased volatility slightly, however, the point estimates are

remarkably close to the competing ones.
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2.9 Conclusion

In this chapter we propose a novel framework to study high frequency financial data for

volatility estimation, by taking advantage the features of the observed prices, especially

rounding errors. Assuming that the efficient price-process follows a time homogenous dif-

fusion process, we proposed a framework that allows us to specify a generalized fiducial

distribution on the parameter space. The attractive feature of the framework is that it en-

ables us to view the bid-ask spread as a natural interval around the latent efficient price and

use quotes for volatility estimation, instead of transactions or mid-points. However, other

intervals that are justified to contain the latent efficient price may be used. Moreover, our

framework deviates from the current literature, since there are no unrealistic additive noise

components, introduced to explain the deviations of the efficient price from the observed

one.

The new methodology was applied assuming that volatility remains constant for a short

period of time. The daily samples were split in blocks of observations and inference was

performed on each block. Joint inference became feasible through our novel combination

scheme which is a tool to combine the block distributions into one that summarizes the infor-

mation from all the blocks under consideration. Our simulation study, which was designed

to incorporate features of observed data, verified that volatility estimation is feasible at very

high frequencies in the presence of rounding errors and outperforms both the parametric

and non-parametric alternatives. Our empirical study showed that in very high frequencies

microstructure noise is attributed to rounding effects.
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CHAPTER 3

Generalized Fiducial Inference for High Frequency Data in the Presence
of Presence of Rounging and Additive Errors

3.1 Summary

In this chapter, we extend the generalized fiducial inference framework introduced in the pre-

vious chapter. In particular, we study volatility using a generalized fiducial framework that

is designed for interval data, but allows for an additive component. The additive component

is assumed to be a Gaussian white noise, independent of the process. White noise compo-

nents have been used extensively in the literature to model microstructure noise. However,

since our modeling approach is robust in rounding errors, which is a major component of

MS noise, we term the additive component as residual MS noise. It’s functionality is to

remove any remaining noise, since it allows the latent process to lie outside the observed

interval (potentially the bid-ask spread). As before, we perform inference by splitting the

trading day into blocks where volatility is assumed constant. The combination scheme is ex-

tended and joins the information from all blocks. Both our simulation and empirical studies

demonstrate that the proposed volatility estimator performs remarkably well even at very

high frequencies.

3.2 Introduction

We remain in the standard microstructure setup used in the previous chapters. Briefly, in

the standard microstructure setup, the efficient/unobserved log-price process, denoted by

Xt = log (St), is assumed to follow an Ito process:

Xt = X0 +

ˆ t

0
µsds+

ˆ t

0
σsdWs



where Wt is a Brownian motion, µt is the drift of the process and σt is the instan-

taneous variance of the returns. Both µt and σt are adapted locally bounded ran-

dom processes. The process is assumed to evolve in [0, T ] and is observed in the grid

Gn = {0 = t0 < t1 < ... < tn = T} .

In this chapter we apply generalized fiducial inference to study volatility using high

frequency data. The generalized fiducial recipe defines the distributions of interest through

a data generating equation of the form X =G (U, ξ), where G(�, �) is a jointly measurable

structural equation based on the model under consideration, ξ ∈ Ξ are the parameters of

interest, and U is the random component of the structural equation. Following the recipe

for interval data, our first task is to specify the data generating equation. The role of G will

play the contaminated price process and, since we intend to work in a parametric framework,

we employ the framework of Aït-Sahalia et al. (2005), where the log of the efficient price

follows a time homogenous diffusion process and microstructure noise is additive, Gaussian,

iid and independent of the process. So, at any arrival time tm, the process is contaminated

by additive noise and belongs in the interval [btm , atm ], that is

btm ≤ Xtm + Utm ≤ atm

where Utm ∼ N
(
0, σ2

u

)
and X ⊥ U . The structural equation is the function G (U, ξ) =

µt+ σWt + σuZt, with U = (Wt, Zt) where Zt ∼ N (0, 1) and ξ = (µ, σ, σu).

The additive component in our framework has a different functionality from its original

use. Initially, the additive component was introduced to capture a variety of microstructure

frictions, including rounding and spread related effects. In our framework, the effect of

frictions related to rounding is expected to attenuate, however, other sources of noise exist

and the additive component may help to account for them. For this reason, we term the

additive component as residual microstructure noise. Also, since we work in a parametric

framework, we would like to have a direct comparison of our methodology with the standard

likelihood approach and the presence of the additive component will serve this purpose.

Moreover, from an empirical point of view we expect, at least in high frequencies, residual

noise to be virtually zero. The reason is that a frequently traded or quoted stock implies
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a liquid market, therefore, informational frictions may be insignificant relative to rounding

errors. The proposed model will allow us to test this hypothesis. The case where the

model has no additive component and frictions are exclusively attributed to rounding will

be considered in future work.

The parametric framework under consideration assumes constant volatility in the entire

interval [0, T ]. We will deviate and study this model assuming local constancy of the volatil-

ity over blocks of successive observations. Mykland and Zhang (2009) studied this type of

local constancy and showed that in sufficiently small neighborhoods of observations one can

act as if volatility is constant. In this article we do not explore the extent where volatility

is held constant. The size of the blocks we consider consists of at most 400 observations.

For example, a block of 300 observations observed on average every two seconds amounts

to a time frame of 10 minutes. In this small time frame we assume that volatility, even if

stochastic, does not vary much.

In the literature research primarily focuses on daily volatility estimates. In that spirit,

we present a novel method to combine the generated fiducial samples from different blocks

of data, into one sample that summarizes all information from all the blocks under consid-

eration. In a sense, the combination scheme works as an importance sampler by re-weighing

all particles with weights computed through a metric that utilizes the Gaussian kernel. As

we demonstrate, the combined distribution approximates remarkably well the distribution

we would have generated if we had used all data in one sample.

We test our methodology by conducting a simulation study employing a realistic sim-

ulation scheme. The scheme is based on the two stage contamination scheme of Li and

Mykland (2007), which incorporates rounding errors explicitly. Initially, at sampling/arrival

times, additive noise contaminates the efficient price and subsequently, the contaminated

process will be rounded upwards and downwards to the two nearest ticks. The proposed

simulation scheme renders the choice of the starting price X0 relevant, since the magnitude

of the spread increases for less expensive stocks, due to the log-transformation, see Li and

Mykland (2007, 2014). Therefore, we select different starting prices to capture this effect.

We also use a variety of combinations of the parameters {σ, σu} to illustrate the effective-

ness of our methodology. Contrary to the standard values used in the literature, we also
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use low values for volatility and additive noise. Low volatility introduces price sluggishness,

intensifying the effect of rounding errors. Low additive noise renders rounding errors the

only source of noise, which makes our framework ideal in the case where rounding errors is

the only source of noise. Our simulation study shows that we can effectively capture true

volatility, even in cases where rounding errors dominate, and outperform the competing ML

estimator of Aït-Sahalia et al. (2005), Xiu (2010). We also examine our methodology in the

presence of stochastic volatility with equally positive results.

Finally, we conduct a small empirical study to illustrate the use of our methodology

in real data. The results indicate that after accounting for rounding, residual MS noise is

virtually zero.

This chapter is organized as follows. In section 3, we apply the generalized fiducial

inference framework for interval data for the model under consideration. In Section 4 we

present the sequential Monte Carlo algorithm used to sample from the generalized fiducial

distributions and establish its consistency. Namely, we illustrate that proposed algorithm,

as the number of particles approaches infinity, targets the generalized fiducial distribution.

In Section 5 we extend the the combination scheme introduces in the previous chapter in

the case where there are more that one parameters. The simulation study is in section 6

and the empirical study is in section 7. Section 8 concludes.

3.3 Generalized Fiducial Inference for HF data

In our setup, we will assume that the efficient log-price follows a Geometric Brownian

motion. The process is assumed to evolve in [0, T ] and is observed/quoted in the grid

Gn = {0 = t0 < t1 < ... < tn = T}. In addition to the grid Gn, we will consider the sub-

grid Hn = {0 = τ0 < τ1 < ... < τMn = T} ⊆ Gn where volatility is assumed constant for all

ti,m ∈ (τ i−1, τ i]. Specifically, in the interval (τ i−1, τ i] the log-price, given Xτi−1 = xτi−1 , is

dXt = µτi−1dt+ στi−1dWt

where, Wt is a Brownian motion, µτi−1 is the drift of the process, σ2
τi−1

the diffusion coeffi-

cient. In the high frequency literature, it is common practice to to assume that µ = 0. The
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order of magnitude of the diffusive component (
√
dt) is much larger than the order of magni-

tude of the drift component (dt), making the drift component mathematically negligible at

high frequencies. Moreover, maintaining it, causes estimation problems since it is estimated

with a large standard error. Our preliminary simulation study showed that maintaining the

drift component does not affect the quality of the generated fiducial distributions. It adds

though computational burden and, therefore, it is not included in our reported simulations.

At observation times, the process is contaminated by residual microstructure noise and

is between the bid and ask log-prices

bti,m ≤ Xti,m + Uti,m ≤ ati,m

Additionally, we assume that for all ti,m ∈ (τ i−1, τ i], Uti,m ∼ N
(

0,
(
σiu
)2) andXti,m ⊥ Uti,m .

So, for ti,m ∈ (τ i−1, τ i] and every i we have that

bti,m ≤ µτi−1ti,m + στi−1Wti,m + Uti,m ≤ ati,m (3.3.1)

Noting that Wt =
√
tZ1,t where Z1,t ∼ N (0, 1) and Ut = σuZ2,t where Z2,t ∼ N (0, 1), we

can re-write equation 3.3.1 as

bti,m ≤ µτi−1ti,m + στi−1

√
ti,mZ1,ti,m + σiuZ2,ti,m ≤ ati,m (3.3.2)

In terms of the fiducial argument, the structural equation G(z, ξ) is the linear part of equa-

tion 3.3.2, the parameters ξ =
(
µτi−1 , στi−1 , σu,τi−1

)
∈ R × R2

+ and z is a realization of

Z = (Z1, Z2). The inverse image of G(z, ξ) is

Q ((b,a],Z) =
{

(µ, σ, σu, ) ∈ R× R2
+ : b < G(z, ξ) ≤ a

}
(3.3.3)

The corresponding generalized fiducial distribution is

V (Q ((b,a], Z)) | {Q ((b,a], Z) 6= ∅} (3.3.4)

Generating samples from the generalized fiducial distribution requires the use of Sequential
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Monte Carlo (SMC) methods. The SMC algorithm is based on the algorithm developed by

Cisewski and Hannig (2012), where they performed inference for the parameters of normal

linear mixed models. The SMC algorithm is presented analytically in appendix A. Figure

3.1 illustrates our methodology for simulated data.

Parms. Point Est. Median Mode Conf. Interval Variance Skewness Kurtosis
σu 4.66*10-5 4.88*10-5 8.33*10-5 [0, 1*10-4] 7.81*10-10 0.1313 2.295
σ 0.0185 0.0186 0.0174 [0.0152, 0.0222] 3.28*10-6 0.2315 3.017

Figure 3.1: Illustration of the fiducial methodology. The left panel displays the sim-
ulated quotes used to generate the fiducial distributions with the predicted price super-
imposed on it. The middle and right panels show the distributions for σ and σu respec-
tively. The block under consideration has 200 observations and the parameters used are
σ = 0.0189 (= 30%/

√
252) and σu = .005%. The table below the figure contains summary

statistics for the fiducial distributions.

3.4 Estimation

3.4.1 The SMC Algorithm

In this section we present the Sequential Monte Carlo algorithm we developed to generate

samples from the generalized fiducial distribution of the parameters of interest. We present

the algorithm in the case where all parameters are present, namely ξ =
(
µτi−1 , στi−1 , σu,τi−1

)
for each i, however the nested case where µτi−1 = 0 can be easily reproduced. To ease

notation we will drop the dependence in i and we will embed
√
t in Z1,t such that Z1,t ∼

N (0, t). We will be denoting Zt1:tm = (Zt1 , ..., Ztm), where Ztj =
(
Z1,tj , Z2,∆tj

)
, ti ∈

{t1, ..., tm}, ∆ti = ti − ti−1, t0 = 0, and m = 1, ..., n where n ≡ ni = # {j, τ i−1 < ti,j ≤ τ i}.

In our setup, Z1,∆tj ∼ N (0, ,∆tj) and Z2,tj ∼ N (0, 1). The generalized fiducial distribution

of the parameters will be
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V
(
Q
(

(bn,an], Z
(K)
t1:tn

))
|
{
Q
(

(bn,an], Z
(K)
t1:tn

)
6= ∅
}

(3.4.1)

where Q(K)
n = Q

(
(bn,an], Z

(K)
t1:tn

)
is the set function containing the values of the parameters

that satisfy the structural equation 3.3.2, given the data (bn,an] and the generated Z(K)
t1:tn

for particle K , where K = 1, 2, ..., N . Generating a sample from 3.4.1 is equivalent to

simulating sequentially for each m, Z(K)
t1:tm such that Q(K)

m is non-empty until we reach n.

The corresponding target distribution up to time tm, denoted by πt1:tm , is

πt1:tm (Zt1:tm | (b,a]t1:tm) ≡ πt1:tm (Zt1:tm)

∝
m∏
j=1

1

(∆tj)
1/2

exp

(
− 1

2∆tj
Z2

1,∆tj

)
exp

(
−1

2
Z2

2,tj

)
ICm (Zt1:tm)

(3.4.2)

where ICm (Zt1:tm) is an indicator random variable of the set

Cm =

{
Zt1:tm : btj ≤ µtj + σ

j∑
k=1

Z1,∆tk + σuZ2,tj ≤ atj , for all j = 1, ...,m

}
(3.4.3)

Restriction 3.4.3 is required in order to generate a representative sample from the fiducial

distribution. It ensures that all inequalities up to time tm are satisfied simultaneously. In

practice, this can be achieved easily if at time tm, given that we have sampled Z(K)
t1:tm−1

and

Z
(K)
2,tm

, we sample Z(K)
1,∆tm

by truncating it between the two values

Lm

(
Z

(K)
t1:tm−1

, Z
(K)
1,tm

)
= min

btm − µtm − σ
∑m−1

j=1 Z
(K)
2,∆tj

− σuZ(K)
1,tm

σ
, (µ, σ, σu) ∈ Q(K)

m−1



Rm

(
Z

(K)
t1:tm−1

, Z
(K)
1,tm

)
= max

atm − µtm − σ
∑m−1

j=1 Z
(K)
2,∆tj

− σuZ(K)
1,tm

σ
, (µ, σ, σu) ∈ Q(K)

m−1


We pick to restrict Z1 because it makes more statistical sense to truncate the component

that drives the process. Utilizing these type of restrictions we can write
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ICm (Zt1:tm) = ICm−1 (Zt1:tm) I? (Z2,tm) I(Lm,Rm) (Z1,∆tm) =
m∏
j=1

I?
(
Z2,tj

)
I(Lj ,Rj)

(
Z1,∆tj

)
where I? indicates the lack of restriction.

The proposal distribution for our SMC algorithm utilizes the Cauchy distribution

π̃t1:tm (Zt1:tm) ∝ πt1:t3 (Zt1:t3)

m∏
j=4

exp
(
−1

2Z
2
2,tj

)
I?
(
Z2,tj

)
· I(Lj ,Rj)

(
Z1,∆tj

)
(∆tj)

1/2

(
1 +

Z2
1,∆tj

∆tj

)
(F (Rj)− F (Lj))

(3.4.4)

where F denotes the cdf of the Cauchy distribution. It is important to point out that

the proposal distribution treats Zt1:t3 as unrestricted, since these will be used to solve for

the parameters and pin down the location of the particle. In particular, we sample Zt1:t3

from the target distribution and use the first three inequalities as two double equalities (one

for atj and one for btj , j = 1, 2, 3) to form eight systems of equations by combining the

equalities (using one for each j = 1, 2, 3). Solving these system of equations (the unknowns

are (µ, σ, σu)) we end up with eight points of the space R3 which form a polyhedron. Any

point in the polyhedron satisfies all three inequalities1. The rest of the inequalities will

be used sequentially to trim the polyhedron in a way that all inequalities will be satisfied.

Below, there we present a more practical illustration of the sampling scheme.

The conditional proposal distribution for m > 3, which will be used to draw samples in

the algorithm is

π̃tm|t1:tm−1
∝

exp
(
−1

2Z
2
1,tm

)
I? (Z2,τm) I(Lm,Rm) (Z1,∆τm)

(∆tm)
1/2

(
1 +

Z2
1,∆tm
∆tm

)
(F (Rm)− F (Lm))

(3.4.5)

That is, at time tm, Z2,tm is drawn from a standard normal and Z1,∆tm is drawn form a

truncated Cauchy distribution.

1When we generate a negative value for either σ or σu, we flip its sign by simultaneously flipping the sign
of the corresponding Z.
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The final component of the algorithm is the importance weights. The weights are com-

puted as

Wt1:tm =
πt1:tm

π̃t1:tm

=
πtm|t1:tm−1

πt1:tm−1

π̃tm|t1:tm−1
π̃t1:tm−1

= WtmWt1:tm−1 (3.4.6)

where

Wtm =
πtm|t1:tm−1

π̃tm|t1:tm−1

is the incremental weight. The incremental weight is given by

Wtm ∝ exp

(
− 1

2∆tm
Z2

1,tm

)(
1 +

Z2
1,tm

∆tm

)
(F (Rm)− F (Lm)) (3.4.7)

Practical Illustration of the Sampling Scheme

In figure 3.2 we present the first steps of our sampling scheme. For simplification we set

µ = 0. Otherwise, the figures would have been 3-dimensional. The left panel displays how

to use the data generating equation and derive the location of one particle. By setting µ = 0

our assumptions require that

btj ≤ σ
j∑

k=1

Z1,∆tk + σuZ2,tj ≤ atj , for all j = 1, ...,m

In this simple setup, the first two sets of inequalities will be used to solve for (σu, σ), given

the generated without any restriction Zt1:t2 . For the first set of observations {bt1 , at1}, we

use the first set of inequalities (j = 1) and solve for σu as a function of σ. This generates

the two equations:

σu =
ct1
Z2,t1

−
Z1,∆t1

Z2,t1

σ, ct1 ∈ {at1 , bt1} (Eq.1 and 2)

Similarly, for the second set of observations {bt2 , at2}, we use the second set of inequalities

(j = 2) and solve for σu as a function of σ. This generates the two equations:

σu =
ct2
Z2,t2

−
Z1,∆t1 + Z1,∆t2

Z2,t2

σ, ct2 ∈ {at2 , bt2} (Eq.3 and 4)
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Figure 3.2: Practical illustration of the sapling scheme. The left panel displays
the how the first four equations, Eq.1 to Eq.4, can be used to pin down the location of the
particle in the space of (σ, σu). The middle panel displays how equations Eq.5 and Eq.6 trim
the parallelogram. All points in the red shaded area satisfy the first three inequalities. The
right panel in figure displays the trimming procedure using the fourth set of observations
{bt4 , at4}. Similarly, all points in the red shaded area satisfy the first four inequalities.

Combining these four equations one can identify the four vertices of the parallelogram (a

2-dimensional polyhedron) and any point in the interior of the formed parallelogram satisfies

the first tow inequalities.

Subsequently, Zt3 is sampled from the conditional proposal distribution π̃t3|t1:t2 ; equa-

tion 3.4.5. Given Zt3 and Zt1:t2 , we can use the third set of inequalities, corresponding

to observations {bt3 , at3} and trim the parallelogram. The new observations generate two

equations:

σu =
ct3
Z2,t3

−
Z1,∆t1 + Z1,∆t2 + Z1,∆t3

Z2,t3

σ, ct3 ∈ {at3 , bt3} (Eq.5 and 6)

The middle panel in figure 3.2 illustrates the trimming the parallelogram. The right

panel in figure 3.2 displays the trimming procedure using the fourth set of observations

{bt4 , at4}.

3.4.2 Resampling - Alteration Step

In our setup the resampling step resembles that of a general SMC algorithm. To overcome

the degeneracy of the particle system as tm increases, we measure the effective sample size

(ESS) at time tm
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ESStm =
(∑N

k=1 W
(k)
t1:tm

)2

/
∑N
k=1

(
W

(k)
t1:tm

)2 (3.4.8)

and if the ESS for the particle system has dropped below a designated threshold (usually

N/2), the particle system is resampled removing the particles with low weights and replicating

the particles with higher weights. In this setup, replicating particles will not generate a

representative sample of the fiducial distribution. As mentioned above, each of the particles

forms a polyhedron in the parameter space, and therefore, if the particles are simply copied,

the polyhedrons will be concentrated in a narrow area, due to particles with initially higher

weight. Moreover, as the algorithm progresses, the particles will not be able to move from

those regions. A solution to this issue is to alter the particles selected from resampling in a

way that they will maintain their high weight, while still allowing for an appropriate sample

of the fiducial distribution.

The alteration step is performed as follows: Suppose that at time tm particleK is selected

in the resampling step and will be copied. Up to time tm, we have observed the following

inequalities in vector form (for simplicity dependence in K is suppressed):

bm ≤ Tmµ+ σV1,mZ1,m + σuV2,mZ2,m ≤ am

where Tm = (t1, t2, . . . , tm)′, V2,m = Im and

V1,m =



√
t1 0 · · · 0

√
t1
√
t2 · · · 0

...
...

. . . 0

√
t1
√
t2 · · ·

√
tm


Then we form matrix A = [−Tm −V1,mZ1,m V2,m] and decompose Z2,m the following way

Z2,m = Πn(A)Z2,m +
∥∥Z2,m −Πn(A)Z2,m

∥∥ Z2,m −Πn(A)Z2,m∥∥Z2,m −Πn(A)Z2,m

∥∥ (3.4.9)

where Πn(A)Z2,m denotes the projection of Z2,monto the null space of matrix A, which is
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n (A) = {η : Aη = 0} and ‖·‖ denotes the L2 norm. Since A has the form A =
[
Ã V2,m

]
,

where Ã = [−Tm −V1,mZ1,m], we can further decompose the basis of the null space as

η = (η1, η2)′ and write Aη = Ãη1 + V2,mη2 = 0, where η2 is orthonormal, i.e. ηᵀ2η2 = I.

From this decomposition we can write Πn(A)Z2,m = η2η
ᵀ
2Z2,m. By setting C = ηᵀ2Z2,m,

D =
∥∥Z2,m −Πn(A)Z2,m

∥∥ and κ =
Z2,m−Πn(A)Z2,m

‖Z2,m−Πn(A)Z2,m‖ decomposition 3.4.9 can be rewritten

as

Z2,m = η2C +Dκ (3.4.10)

Moreover, by assumption Z2,m ∼ N (0, Im), C ∼ N (0, Im) and D ∼
√
χ2
m−d where d =

rank (n(A)). Also C and D are independent by design.

Decomposition 3.4.9 allows us to alter Z2,m by sampling new values for C and D accord-

ing to their distributions. If we denote by C̃ and D̃ the generated values, then we have a

new value for Z2,m, namely Z̃2,m = η2C̃ + D̃κ. The final step in the alteration procedure is

to update the set

Q =
{

(µ, σ, σu) : bm ≤ Tmµ+ σV1,mZ1,m + σuV2,mZ2,m ≤ am
}

for the new Z̃2,m. We achieve that by noting that, since (µ, σ, σu) solve bm ≤ Tmµ +

σV1,mZ1,m+σuV2,mZ2,m ≤ am, then we need to identify (µ̃, σ̃, σ̃u) that solve bm ≤ Tmµ̃+

σ̃V1,mZ1,m + σ̃uV2,mZ̃2,m ≤ am. Furthermore, if we consider the following equality

Tmµ+ σV1,mZ1,m + σuV2,m (η2C +Dκ) = Tmµ̃+ σ̃V1,mZ1,m + σ̃uV2,m

(
η2C̃ + D̃κ

)

together with the fact that [−Tm −V1,mZ1,m] η1 + V2,mη2 = 0 and the orthogonality of C

and D, then we can easily identify the updated (µ̃, σ̃, σ̃u)

σ̃u = σu
D

D̃ µ̃

σ̃

 =

 µ

σ

− σuη1

(
C̃D

D̃
− C

)

After altering Z2,m, the procedure is repeated to alter Z1,m, which, as mentioned above, is
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The SMC algorithm

Step Action

1. Initialization For k = 1, 2, ...,K draw Z
(k)
t1:t3

∼ πt1:t3 (Eq. 3.4.2) and set W (k)
t1:t3

= 1

2. For tm > t3 and tm ≤ tn For k = 1, 2, ...,K draw Z
(k)
tm
∼ π̃tm|t1:tm−1

(Eq. 3.4.5)

3. For tm > t3 and tm ≤ tn Calculate weights W (k)
t1:tm

= W
(k)
tm

W
(k)
t1:tm−1

(Eq. 3.4.6)

4. For tm > t3 and tm ≤ tn Calculate ESStm (Eq. 3.4.8). If ESStm ≤ threshold go to step 5.

Else go to step 2 and set m = m+ 1

5. For tm given ESStm ≤ thd Resample particles and set Wt1:tm = N−1. Go to step 6.

6. For tm Perform alteration as described above and set m = m+ 1

now N (0, Im). The table below gives an outline of the steps of the algorithm.

3.4.3 Convergence of the Algorithm

In this section, we are interested in establishing the behavior of the particle system as

the number of particles approaches infinity. The following result is based on the results

for general SMC methods by Douc and Moulines (2008) and follows closely the proof by

Cisewski and Hannig (2012). For a particle system generated by the proposal distribution

3.4.4 targeting distribution 3.4.2, we want to establish the following result.

Theorem 2. Given a particle system
{
W

(J)
τ1:τn , Z

(J)
τ1:τn

}N
J=1

targeting 3.4.2, then for any func-

tion f belonging in a proper set (defined below),

(
N∑
J=1

W (J)
τ1:τn

)−1 N∑
J=1

W (J)
τ1:τnf

(
Z(J)
τ1:τn

)
P→
ˆ
f (Zτ1:τn) dπτ1:τn , as N →∞ (3.4.11)

The theorem simply states that, as the number of particles grows, the weighted sample

consistently estimates the target distribution. Douc and Moulines (2008) provide a frame-

work for weighted sample consistency. We will adapt their framework in our setup, first by

stating a series of definitions and results and then by applying them to our framework. We

start with the definition of a proper set:

Definition 1. Let C ⊆ X be a subset of a general state space X. The set C is said to be

proper if it satisfies the following conditions: (i) For any f, g ∈ C and real numbers a, b, C

is a linear space, i.e., af + bg ∈ C. (ii) If some measurable function f satisfies |f | ≤ |g|

where g ∈ C, then f ∈ C and (iii) C contains all constant functions.

Using the notion of a proper set, weighted sample consistency is defines as follows:
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Definition 2. Denote by π a probability measure on (Θ,B (Θ)). A weighted sample

{Wi, Zi}Ni=1 on Θ is said to be consistent for the probability measure π and the proper set C

if for any f ∈ C, as N → ∞, Ω−1
N

∑N
i=1Wif (Zi)

P→
´

Θ f (z)π (dz) and Ω−1
N max

1≤i≤N
Wi

P→ 0,

where ΩN =
∑N

i=1Wi.

Next, we state, without proof, theorem A.11 by Douc and Moulines (2008), which is

essential for establishing consistency.

Theorem 3. Let {Uj}Nj=1 denote a triangular array of random variables defined on (Ω,F , P )

and {Fj}Nj=1 denote a triangular array of sigma-fields, such that Fj−1 ⊆ Fj. Each random

variable Uj is measurable with respect to Fj. Moreover we assume that E [|Uj | |Fj−1] < ∞

for every j = 1, ..., N , and

sup
N
P

 N∑
j=1

E [|Uj | |Fj−1] ≥ λ

→ 0 as λ→∞ (3.4.12)

N∑
j=1

E [|Uj |1 {|Uj | ≥ ε} |Fj−1]
P→ 0 for any ε > 0 (3.4.13)

Then

max
1≤i≤N

∣∣∣∣∣∣
i∑

j=1

Uj −
i∑

j=1

E [Uj |Fj−1]

∣∣∣∣∣∣ P→ 0

Now we have the necessary tools to establish consistency. We will tackle the proof by

focusing on the transition from τm−1 to τm for the sampling step and then we will address

the resampling and alteration steps at time τm. We begin by defining a collection of sigma

fields which will be used throughout the proof. Let F0 , σ

({
Z

(J)
τ1:τm−1

}N
J=1

, (b, a]τ1:τm

)
and FJ , F0 ∨ σ

({
Z

(K)
τ1:τm

}J
K=1

, (b, a]τ1:τm

)
. The first sigma field contains the information

of the particles up to time τm−1 and the data up to time τm. The J th indexed sigma fields

represent a triangular array of sigma fields, each augmented with the information of the

particles up to time τm.

Since we will be focusing on the transition from τm−1 to τm, we need to define the

transition kernel from from τm−1 to τm. The transition kernel from
(
Θτ1:τm−1 ,B

(
Θτ1:τm−1

))
×

(Θτm ,B (Θτm)) into [0, 1] is the map F : Θτ1:τm−1 × B (Θτm) → [0, 1]. For any function
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f ∈ B
(
Θτ1:τm−1 ×Θτm

)
such that

ˆ
Θτm

∣∣f (Zτ1:τm−1 , Zτm
)∣∣F (Zτ1:τm−1 , dZτm

)
<∞

we define

F
(
Zτ1:τm−1 , f

)
=

ˆ
Θτm

f
(
Zτ1:τm−1 , Zτm

)
F
(
Zτ1:τm−1 , dZτm

)
(3.4.14)

where, in our setup,

F
(
Zτ1:τm−1 , A

)
= I? (Z2,τm) I(Lm,Rm) (Z1,∆τm) (Φ (Rm)− Φ (Lm))πτm|τ1:τm−1

(A)

for any A ∈ Θτm . The following definition defines the notion os a proper set. Next, we

define the following set

Cτm =
{
f ∈ L1 (Θτ1:τm ,B (Θτ1:τm) , πτ1:τm) , F (·, |f |) ∈ Cτm−1

}
(3.4.15)

Lemma 3. The set Cτm , defined above, is proper.

Proof. Let a, b be real numbers and f, g ∈ Cτm . The latter implies that
´
|f | dπτ1:τm <∞ and

´
|g| dπτ1:τm < ∞. It follows that

´
|af + bg| dπτ1:τm < ∞, since |af + bg| ≤ |a| |f |+ |b| |g|,

therefore af + bg ∈ Cτm . Next, we consider some measurable function f which satisfies

|f | ≤ |g| where g ∈ Ct. Then f ∈ Cτm since
´
|f | dπτ1:τm ≤

´
|g| dπτ1:τm <∞. Finally, Cτm

contains all constant functions since πτ1:τm (Θτ1:τm) = 1.

Consistency in our framework is defined as follows:

Definition 3. The weighted sample
{
W

(J)
τ1:τm , Z

(J)
τ1:τm

}N
J=1

is consistent for the prob-

ability measure πτ1:τm and the proper set Cτm if for any f ∈ Cτm , as N →

∞, Ω−1
τm

∑N
J=1W

(J)
τ1:τmf

(
Z

(J)
τ1:τm

)
P→

´
f (zτ1:τm)πτ1:τm (dzτ1:τm) , πτ1:τm (f) and

Ω−1
τm max

1≤J≤N
W

(J)
τ1:τm

P→ 0, where Ωτm =
∑N

J=1W
(J)
τ1:τm .

The following theorem establishes the consistency of the sampling step:

Theorem 4. (Sampling Step) Let Cτm be as in 3.4.15 and let
{
W

(J)
τ1:τm−1 , Z

(J)
τ1:τm−1

}N
J=1

be a weighted sample consistent for
(
πτ1:τm−1 , Cτm−1

)
. Then the weighted sample
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{
W

(J)
τ1:τm , Z

(J)
τ1:τm

}N
J=1

is consistent for (πτ1:τm , Cτm).

Proof. Let f ∈ Cτm . We will consider the triangular array of random variables

ŨJ = E
[
W (J)
τ1:τmf

(
Z(J)
τ1:τm

)
|FJ−1

]

For these random variables the following identity holds

E
[
W (J)
τ1:τmf

(
Z(J)
τ1:τm

)
|FJ−1

]
= W (J)

τ1:τm−1
E
[
W (J)
τm f

(
Z(J)
τ1:τm

)
|FJ−1

]
= W (J)

τ1:τm−1

ˆ
f
(
Z(J)
τ1:τm

)
I? (Z2,τm) I(Lm,Rm) (Z1,∆τm)W (J)

τm π̃τm|τ1:τm−1
(dZτm)

= W (J)
τ1:τm−1

ˆ
f
(
Z(J)
τ1:τm

)
I? (Z2,τm) I(Lm,Rm) (Z1,∆τm) (Φ (Rm)− Φ (Lm))πτm|τ1:τm−1

(dZτm)

= W (J)
τ1:τm−1

F
(
Zτ1:τm−1 , f

)
(3.4.16)

We derived this equation using 3.4.14, noting that in our setup Zτm is drawn from π̃τm|τ1:τm−1

and the relation of the conditional proposal and target probability measures is given by

Wτm π̃τm|τ1:τm−1
(Zτm) = (Φ (Rm)− Φ (Lm))πτm|τ1:τm−1

(Zτm). For the triangular array UJ =

Ω−1
τm−1

E
[
W

(J)
τ1:τmf

(
Z

(J)
τ1:τm

)
|FJ−1

]
we can show the following

Ω−1
τm−1

N∑
J=1

E
[
W (J)
τ1:τmf

(
Z(J)
τ1:τm

)
|FJ−1

]
= Ω−1

τm−1

N∑
J=1

W (J)
τ1:τm−1

F
(
Z(J)
τ1:τm−1

, f
)

P→
ˆ
F
(
Zτ1:τm−1 , f

)
π
(
dzτ1:τm−1

)
= πτ1:τm−1

(
F
(
Zτ1:τm−1 , f

))
(3.4.17)

The first equality comes from equation 3.4.16 and convergence is established since

the weighted sample
{
W

(J)
τ1:τm−1 , Z

(J)
τ1:τm−1

}N
J=1

is consistent for
(
πτ1:τm−1 , Cτm−1

)
and

F
(
Zτ1:τm−1 , f

)
∈ Cτm−1 . Next we will apply theorem 3 for the triangular array UJ =
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Ω−1
τm−1

W
(J)
τ1:τmf

(
Z

(J)
τ1:τm

)
starting with equation 3.4.12. Note that

N∑
J=1

E
[∣∣∣Ω−1

τm−1
W (J)
τ1:τmf

(
Z(J)
τ1:τm

)∣∣∣ |FJ−1

]
= Ω−1

τm−1

N∑
J=1

W (J)
τ1:τm−1‘

E
[
W (J)
τm

∣∣∣f (Z(J)
τ1:τm

)∣∣∣ |FJ−1

]
= Ω−1

τm−1

N∑
J=1

W (J)
τ1:τm−1‘

F
(
Z(J)
τ1:τm−1

, |f |
)

P

→ πτ1:τm−1

(
F
(
Zτ1:τm−1 , |f |

))
(3.4.18)

Therefore condition 3.4.12 (tightness)

sup
N
P

 N∑
j=1

E
[∣∣∣Ω−1

τm−1
W (J)
τ1:τmf

(
Z(J)
τ1:τm

)∣∣∣ |Fj−1

]
≥ λ

→ 0 as λ→∞

follows from the fact that F (·, |f |) ∈ Cτm−1 . We continue to establish equation 3.4.13, by

introducing first another transition kernel based on the conditional proposal distribution.

Namely we define

G
(
Zτ1:τm−1 , A

)
= I? (Z2,τm) I(Lm,Rm) (Z1,∆τm) π̃τm|τ1:τm−1

(A)

for for any A ∈ Θτm . In a similar manner we define, assuming integrability

G
(
Zτ1:τm−1 , |f |

)
<∞

G
(
Zτ1:τm−1 , f

)
=

ˆ
Θτm

f
(
Zτ1:τm−1 , Zτm

)
F
(
Zτ1:τm−1 , dZτm

)
=

ˆ
Θτm

f
(
Zτ1:τm−1 , Zτm

)
I? (Z2,τm) I(Lm,Rm) (Z1,∆τm) π̃τm|τ1:τm−1

(dZτm)

It is easy to that

G
(
Zτ1:τm−1 ,Wτm |f |

)
= F

(
Zτ1:τm−1 , |f |

)
Therefore for ε > 0 it holds

G
(
Zτ1:τm−1 ,Wτm |f |1 {Wτm |f | ≥ ε}

)
≤ G

(
Zτ1:τm−1 ,Wτm |f |

)
= F

(
Zτ1:τm−1 , |f |

)
therefore G (·,Wτm |f |1 {Wτm |f | ≥ ε}) ∈ Cτm−1 . Using again the triangular array UJ =
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Ω−1
τm−1

W
(J)
τ1:τmf

(
Z

(J)
τ1:τm

)
, for ε > 0 we have the following

N∑
J=1

E
[∣∣∣Ω−1

τm−1
W (J)
τ1:τmf

(
Z(J)
τ1:τm

)∣∣∣1{∣∣∣Ω−1
τm−1

W (J)
τ1:τmf

(
Z(J)
τ1:τm−1

)∣∣∣ ≥ ε} |Fj−1

]
× 1

{
Ω−1
τm−1

max
1≤I≤N

W (I)
τ1:τm ≤ ε/K

}
= Ω−1

τm−1

N∑
J=1

W (J)
τ1:τm−1

ˆ ∣∣∣W (J)
τm f

(
Z(J)
τ1:τm

)∣∣∣1{∣∣∣Ω−1
τm−1

W (J)
τ1:τmf

(
Z(J)
τ1:τm−1

)∣∣∣ ≥ ε}
× 1

{
Ω−1
τm−1

max
1≤I≤N

W (I)
τ1:τm ≤ ε/K

}
I? (Z2,τm) I(Lm,Rm) (Z1,∆τm) π̃τm|τ1:τm−1

(dZτm)

≤ Ω−1
τm−1

N∑
J=1

W (J)
τ1:τm−1

ˆ ∣∣∣W (J)
τm f

(
Z(J)
τ1:τm

)∣∣∣
× 1

{∣∣∣Ω−1
τm−1

W (J)
τ1:τmf

(
Z(J)
τ1:τm−1

)∣∣∣ ≥ Ω−1
τm−1

max
1≤I≤N

W (I)
τ1:τmK

}
× I? (Z2,τm) I(Lm,Rm) (Z1,∆τm) π̃τm|τ1:τm−1

(dZτm)

= Ω−1
τm−1

N∑
J=1

W (J)
τ1:τm−1

ˆ ∣∣∣W (J)
τm f

(
Z(J)
τ1:τm

)∣∣∣1
 W

(J)
τ1:τm

max
1≤I≤N

W
(I)
τ1:τm

∣∣∣f (Z(J)
τ1:τm−1

)∣∣∣ ≥ K


× I? (Z2,τm) I(Lm,Rm) (Z1,∆τm) π̃τm|τ1:τm−1
(dZτm)

≤ Ω−1
τm−1

N∑
J=1

W (J)
τ1:τm−1

ˆ ∣∣∣W (J)
τm f

(
Z(J)
τ1:τm

)∣∣∣1{W (J)
τm

∣∣∣f (Z(J)
τ1:τm−1

)∣∣∣ ≥ K}
× I? (Z2,τm) I(Lm,Rm) (Z1,∆τm) π̃τm|τ1:τm−1

(dZτm)

= Ω−1
τm−1

N∑
J=1

W (J)
τ1:τm−1

G
(
Zτ1:τm−1 ,Wτm

∣∣∣f (Z(J)
τ1:τm−1

)∣∣∣1{Wτm

∣∣∣f (Z(J)
τ1:τm−1

)∣∣∣ ≥ K})
P→
ˆ
G
(
Zτ1:τm−1 ,Wτm

∣∣f (Zτ1:τm−1

)∣∣1{Wτm

∣∣f (Zτ1:τm−1

)∣∣ ≥ K})πτ1:τm−1

(
dZτ1:τm−1

)
P→ 0

as K →∞. The final result is derived by a direct application of the dominated convergence

theorem since 1
{
Wτm

∣∣f (Zτ1:τm−1

)∣∣ ≥ K} P→ 0 as K → ∞ and the dominating function
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being F
(
Zτ1:τm−1 , |f |

)
. Also, noting that 1

{
Ω−1
τm−1

max
1≤I≤N

W
(I)
τ1:τm ≤ ε/K

}
P→ 1 since by as-

sumption Ω−1
τm−1

max
1≤I≤N

W
(I)
τ1:τm

P→ 0 it is easy to see that

N∑
J=1

E
[∣∣∣Ω−1

τm−1
W (J)
τ1:τmf

(
Z(J)
τ1:τm

)∣∣∣1{∣∣∣Ω−1
τm−1

W (J)
τ1:τmf

(
Z(J)
τ1:τm−1

)∣∣∣ ≥ ε} |Fj−1

]
× 1

{
Ω−1
τm−1

max
1≤I≤N

W (I)
τ1:τm ≤ ε/K

}
P→

N∑
J=1

E
[∣∣∣Ω−1

τm−1
W (J)
τ1:τmf

(
Z(J)
τ1:τm

)∣∣∣1{∣∣∣Ω−1
τm−1

W (J)
τ1:τmf

(
Z(J)
τ1:τm−1

)∣∣∣ ≥ ε} |Fj−1

]

These two results together imply condition 3.4.13 of the theorem above. The theorem then

states that

max
1≤I≤N

∣∣∣∣∣Ω−1
τm−1

I∑
J=1

W (J)
τ1:τmf

(
Z(J)
τ1:τm

)
− Ω−1

τm−1

I∑
J=1

E
[
W (J)
τ1:τmf

(
Z(J)
τ1:τm

)
|Fj−1

]∣∣∣∣∣ P→ 0 (3.4.19)

Equation 3.4.19 together with equation 3.4.17 imply that

Ω−1
τm−1

I∑
J=1

W (J)
τ1:τmf

(
Z(J)
τ1:τm

)
P→ πτ1:τm−1

(
F
(
Zτ1:τm−1 , f

))
Applying this for f = 1 we get

Ω−1
τm−1

Ωτm = Ω−1
τm−1

I∑
J=1

W (J)
τ1:τm1

P→ πτ1:τm−1

(
F
(
Zτ1:τm−1 , 1

))
which will be used to complete the proof. That is

Ω−1
τm

I∑
J=1

W (J)
τ1:τmf

(
Z(J)
τ1:τm

)
=

Ω−1
τm−1

∑I
J=1W

(J)
τ1:τmf

(
Z

(J)
τ1:τm

)
Ω−1
τm−1Ωτm

P→
πτ1:τm−1

(
F
(
Zτ1:τm−1 , f

))
πτ1:τm−1

(
F
(
Zτ1:τm−1 , 1

))
=

´
· · ·
´
f (Zτ1:τm) I? (Z2,τm) I(Lm,Rm) (Z1,∆τm)πτ1:τm (dzτ1:τm)´
· · ·
´
I? (Z2,τm) I(Lm,Rm) (Z1,∆τm)πτ1:τm (dzτ1:τm)

= πτ1:τmf

The result follows since πτ1:τm = (Φ (Rm)− Φ (Lm))πτm|τ1:τm−1
πτ1:τm−1 .
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Then next theorem, Theorem 3 by Douc and Moulines (2008), ensures that the consis-

tency of the algorithm is still valid after the resampling step.

Theorem 5. (Resampling Step, Theorem 3 by Douc and Moulines (2008)) If the weighted

sample
{
W

(J)
τ1:τn , Z

(J)
τ1:τn

}N
J=1

is consistent for (πτ1:τn , Cτn), then the uniformly weighted sam-

ple
{
1

(J)
n , Z̃

(J)
τ1:τn

}N
J=1

obtained using multinomial or deterministic-plus-residual multinomial

resampling is also consistent for (πτ1:τn , Cτn).

The following theorem ensures that the consistency of the algorithm is still valid after

the alteration step.

Theorem 6. (Alteration Step) If the uniformly weighted sample
{
1

(J)
n , Z

(J)
τ1:τn

}N
J=1

is con-

sistent for (πτ1:τn , Cτn), then the altered uniformly weighted sample
{
1

(J)
n , Z̃

(J)
τ1:τn

}N
J=1

is con-

sistent for
(
πτ1:τn , C̃τn

)
.

Proof. Consider f ∈ Cτm and the decomposition Z̃τ1:τm = η2C̃ + D̃κτ1:τm , where C̃ and D̃

are the generated values used to alter the particle, κτ1:τm =
Zτ1:τm−Πn(A)Zτ1:τm

‖Zτ1:τm−Πn(A)Zτ1:τm‖ and η2 is

defined in the alteration step above. The decomposition refers to both Z1,m and Z2,m. Also

let, F̃0 , σ

({
Z̃

(J)
τ1:τm−1

}N
J=1

, (b, a]τ1:τm

)
and F̃J , F̃0 ∨ σ

({
Z̃

(K)
τ1:τm

}J
K=1

, (b, a]τ1:τm

)
be

the collection of sigma fields corresponding to the altered sample. Then,

E
(
f
(
Z̃(J)
τ1:τm

)
|Fj−1

)
=

ˆ
f
(
η2C̃ + D̃κτ1:τm

)
dπ

C̃,D̃

where π
C̃,D̃

is the joint probability distribution of C̃ and D̃. Denote by hf
(
Z

(J)
τ1:τm

)
this

conditional expectation, which is a fiction of Zτ1:τm , by the definition of κτ1:τm . We need

to show that the altered particles still target the same target distribution. So it remains to

show

1

N

N∑
J=1

E
[
f
(
Z̃(J)
τ1:τm

)
|FJ−1

]
=

1

N

N∑
J=1

hf

(
Z(J)
τ1:τm

)
−→
ˆ
hf (Zτ1:τm) dπτ1:τm (Zτ1:τm) =

ˆ
f (Zτ1:τm) dπτ1:τm (Zτ1:τm)

(3.4.20)

since E
(
f
(
Z̃

(J)
τ1:τm

)
|Fj−1

)
= f

(
Z̃

(J)
τ1:τm

)
. Ti establish the limit in 3.4.20, we need to sow
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that hf ∈ Cτm . This requires f to be selected in a way such that, first

ˆ ∣∣∣hf (Z̃τ1:τm

)∣∣∣ dπτ1:τm =

ˆ ∣∣∣∣ˆ f
(
η2C̃ + D̃κτ1:τm

)
dπ

C̃,D̃

∣∣∣∣ dπτ1:τm <∞ (3.4.21)

and second

F
(
Zτ1:τm−1 , hf

)
=

ˆ
Θτm

hf
(
Zτ1:τm−1 , Zτm

)
I? (Z2,τm) I(Lm,Rm) (Z1,∆τm)×

(Φ (Rm)− Φ (Lm)) π̃τm|τ1:τm−1
(dZτm)

=

ˆ
Θτm

ˆ
f
(
η2C̃ + D̃κτ1:τm

)
dP

C̃,D̃
I? (Z2,τm) I(Lm,Rm) (Z1,∆τm)×

(Φ (Rm)− Φ (Lm)) π̃τm|τ1:τm−1
(dZτm) <∞

(3.4.22)

Denote by C̃τn the set where for f ∈ Cτn such that 3.4.21 and 3.4.22 hold. Then clearly, C̃τn

is a subset Cτn and is non-empty, since all bounded f satisfy 3.4.21 and 3.4.22. The final

step in this proof is to show the last equality in 3.4.20. We have the following

ˆ
hf (Zτ1:τm) dπτ1:τm =

ˆ
h?f (κτ1:τm) dπκτ1:τm

=

ˆ [ˆ
f
(
η2C̃ + D̃κτ1:τm

)
dπ

C̃,D̃

]
dπκ

=

ˆ [ˆ
f (η2C +Dκτ1:τm) dπC,D

]
dπκ

=

ˆ
f (η2C +Dκτ1:τm) dπC,D × dπκ

=

ˆ
f (Zτ1:τm) dπτ1:τm

where simply h?f (κτ1:τm) = hf (Zτ1:τm). In this step, we used the fact that κτ1:τm (Zτ1:τm) =

κτ1:τm

(
Z̃τ1:τm

)
and Fubini’s theorem. That is, C̃ and D̃ are independent of κ by construc-

tion.

3.5 Combinations of Fiducial Distributions

In this section we extend the combination scheme introduced in the previous chapter. Our

scheme aggregates the generated samples from all blocks under consideration by re-weighing

all particles. The new weights are computed through a metric that utilizes the Gaussian

kernel, together with point estimates of the sample mean and the Fisher information matrix.
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The procedure is the following.

Let (ξi,Wi) denote the generated particle systems in block (τ i−1, τ i], i = 1, ...M , where

ξi =
{
ξ

(k)
i

}N
k=1

=
{
µ

(k)
τi−1 , σ

(k)
τi−1 , σ

(k)
u,τi−1

}N
k=1

, Wi =
{
w

(k)
i

}N
k=1

and N is the number of

particles used in the simulation. Suppose we want to combine fiducial distributions from

M segments. For each particle k in block i and every other block j = 1, ...,M , j 6= i, we

calculate the following weight

W
(k)
i,j = exp

{
−1

2

(
ξ

(k)
i − ξ̂j

)′
I−1
j

(
ξ

(k)
i − ξ̂j

)
+

1

2
log
∣∣∣det I−1

j

∣∣∣}

where ξ̂j denotes the point estimate ξ̂j =
∑N

k=1W
(k)
j ξ

(k)
j in block j and Ij denotes

Ij =

[
N∑
k=1

W
(k)
j

(
ξ (l)

(k)
j − ξ̂j

)(
ξ(m)

(k)
j − ξ̂j

)′]
l,m=1,2,3

which the point estimate of the 3× 3 Fisher information matrix. In other words, for every

particle k in block i, we calculate its “weighted” distance from the point estimate in block j

through a Gaussian kernel, where j = 1, ...,M , i 6= j.

Once we generate weights W (k)
i,j , the final weight for particle k in block i, is calculated

by

W̄
(k)
i = W

(k)
i

∏
h6=i

W
(k)
i,h

for all i = 1, ...,M .

3.6 Simulation and Robustness checks

In this section we report a Monte Carlo simulation study that investigates the performance

of our procedure under constant volatility. Stochastic volatility is studied in section 4.2.

To generate quotes data we will employ a version of the Li and Mykland (2007) two stage

contamination scheme. Initially, at sampling times, additive noise contaminates the efficient

price and, subsequently, the contaminated process is rounded upwards and downwards,
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towards the two nearest ticks. The log-ask and bid prices at time tm are given by

log(atm) = log

(
γ

⌈
exp(Xtm + Utm)

γ

⌉)
log(btm) = log

(
γ

⌊
exp(Xtm + Utm)

γ

⌋)

where γ = 0.01 to reflect that rounding occurs to the nearest tick.

The proposed simulation scheme renders the choice of the starting priceX0 relevant, since

the magnitude of the spread increases for less expensive stocks, due to the log-transformation.

As noted by Li and Mykland (2007, 2014) rounding errors, when modeled explicitly, are

intensified for less expensive stocks. In our simulation study we wish to capture this effect

by using different starting prices, that is, we set S0 ∈ {10, 20, 30}.

To illustrate the effectiveness of our methodology, the parameters for the simulation study

include both typical values used in the literature and values relatively smaller2. Specifically,

the diffusion coefficient is set σ ∈ {15%, 30%} in annual terms and additive noise is set

σu ∈ {.005%, .01%, .02%}. Unlike the typical value σ = 30%, the value σ = 15% - low

signal - causes price sluggishness, intensifying the effect of rounding errors. This a common

feature of observed prices (both transactions and quotations), especially in the middle of

the trading day.

The values chosen for the noise component include values smaller than the typical values

used in the literature. As we argued above, additive noise in our setup is considered as

residual noise and, therefore, is expected to be smaller. Moreover, the value σu = .005%

has small contribution, making rounding the primary source of error. This is of particular

interest, since for stocks traded frequently the MS variance is smaller. For example, Aït-

Sahalia and Yu (2009) applied the parametric framework in a large number of stocks and

showed that MS variance is smaller for frequently traded stocks. Our empirical study verifies

this stylized fact. Larger values, such as σu = .02%, are also considered, however these

are more relevant for moderate and low frequencies, since, in high frequencies, the value

2As mentioned above, for computational benefits, the drift of the process is not included in the simulation,
even though it does not affect the simulation outcomes
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σu = .005%, σ = 15% σu = .01%, σ = 15% σu = .02%, σ = 15%

Stock Price σu σ σu σ σu σ

S0 = 10 95.67% 82.43% 88.49% 83.46% 91.25% 83.93%
S0 = 20 96.13% 92.64% 92.47% 90.98% 91.16% 81.71%
S0 = 30 95.25% 94.48% 92.30% 90.68% 90.73% 77.18%

σu = .005%, σ = 30% σu = .01%,σ = 30% σu = .02%, σ = 30%

Stock Price σu σ σu σ σu σ

S0 = 10 98.43% 92.96% 96.32% 93.16% 92.66% 91.75%
S0 = 20 98.63% 94.69% 94.19% 94.53% 92.26% 90.78%
S0 = 30 98.46% 95.54% 93.02% 93.69% 92.45% 88.76%

Table 3.1: Empirical coverage of the parameters. The nominal coverage is 95%. We simulate
200 sample paths of the process, each having 10,000 observations. Each sample is split in
blocks of 200 observations, generating 50 blocks per sample path and, therefore, 10,000
blocks overall. The table reports coverage based on the 10,000 generated distributions.

σu = .02% generates unreasonable sample paths due to our simulation scheme3.

Another feature of HFD we incorporate in the simulation is the non-synchronicity of the

arrival of the quotations. Following Aït-Sahalia and Yu (2009), arrival times follow a Poisson

process with intensity λ = 2, independent of the process X. For different combinations of

the parameters we simulate 200 sample paths of the process. We use samples of 10,000

observations, which are split in blocks of 200 observations. So, each sample path is split into

50 blocks of observations. The SMC algorithm was implemented using 40,000 particles.

Based on the generated distributions, we perform two separate studies. The first study

examines the block distributions generated from all sample paths. Conditional independence

of the processes allows us to aggregate the results of each block of every generated sample

path to investigate block coverage. Subsequently, we investigate the performance of the

daily block point estimator for all generated sample paths. That is, we calculate the a point

estimate of the variance for each day by aggregating the block point estimates. The second

study investigates the performance of the combined point estimator.

Table 3.1 reports the coverage for all combinations of prices and parameters, which in

most cases is very close to the nominal (95%). Table 3.2 reports the performance of the

daily block point estimator summarized by the RMSE of σ̂2
fid and the quantiles and mean of

σ̂2
fid−σ2

0. Coverage is very close to the nominal in the cases where the signal is stronger than

3In our simulation scheme we keep the spread constant. In practice, the spread fluctuates, reducing the
effect of residual additive noise.
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Volatility σ = 15% σ = 30%

Noise RMSE Q1 Median Q3 Mean RMSE Q1 Median Q3 Mean

S0 = 10

σu = .005% 2.04 1.23 1.75 2.52 1.84 1.52 -0.87 0.15 1.02 0.17

σu = .01% 2.38 1.76 2.27 2.75 2.25 2.20 0.70 1.68 2.57 1.62

σu = .02% 2.72 2.06 2.64 3.10 2.63 3.95 2.39 3.66 4.70 3.58

S0 = 20

σu = .005% 0.57 0.18 0.44 0.67 0.44 1.02 -1.02 -0.45 0.30 -0.42

σu = .01% 1.08 0.67 1.05 1.28 0.99 2.27 1.37 1.96 2.65 2.05

σu = .02% 1.90 1.36 1.87 2.20 1.82 3.29 1.83 3.06 3.88 2.90

S0 = 30

σu = .005% 0.50 0.23 0.42 0.60 0.41 0.84 -0.64 -0.12 0.43 -0.12

σu = .01% 0.91 0.53 0.83 1.08 0.82 2.28 1.29 2.00 2.70 2.03

σu = .02% 1.95 1.48 1.87 2.24 1.87 5.40 2.52 3.26 4.13 5.46

Table 3.2: In this table we report the performance of the daily block point estimator. The
sample size is 10,000 (= 50 blocks × 200 obs) observations. Intensity of the arrival times is
λ = 2. Column 3 reports the RMSE of σ̂2. Columns 4-7 report the quantiles and the mean
of σ̂2 − σ2

0. All entries are multiples of 10−5.

additive (residual) noise. In the presence of rounding errors and at the current sampling

frequency, high additive noise makes signal discovery more difficult, especially when the

stock price is low. Also, when additive noise is high, table 3.2 reveals that daily block point

estimator has lower RMSE as the stock price increases, even though block coverage appears

lower. This can be explained from the magnitude of the spread, since the block distributions

are more dispersed when both the spread (lower stock price) and additive noise are high.

The aforementioned issue can be resolved with two approaches. Either one can reduce

the sampling frequency or increase the number of observations per block. In the case where

both signal and stock price level are low, prices are sluggish, which may introduce some bias

in the generated distributions. We demonstrate the first approach by repeating the above

simulation for moderate frequencies, focusing on the most challenging case where S0 = 10

and σ = 15%. Tables 3.3 and 3.4 report the results for all combinations of additive noise.

It is evident that both coverage and RMSE improved substantially, as arrival times are

less frequent. This outcome is no surprise, since the impact of additive noise and rounding

errors is smaller. For different starting prices and parameters the results improve in a similar

manner. For the second approach, we increase the sample size per block from 200 to 300 and

400 observations. The results in table 3.5 indicate an improvement in coverage and RMSE.

The second study investigates the performance of the combination scheme. We apply the
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Ms Noise σu = .005% σu = .01% σu = .02%

Intensity σu σ σu σ σu σ

λ = 2 95.67% 82.43% 88.49% 83.46% 91.25% 83.93%
λ = 5 96.53% 90.13% 91.83% 91.05% 92.05% 89.28%
λ = 10 96.35% 93.75% 94.45% 93.65% 91.50% 91.10%

Table 3.3: Empirical coverage of the parameters as the intensity of the arrival times becomes
larger. The starting price is S0 = 10, volatility is σ = 15% and the nominal coverage is
95%. We simulate 200 sample paths of the process. When intensity is λ = 2, we have 10,000
observations of the process, split in 50 blocks. When intensity is λ = 5, we have 4,000
observations of the process, split in 20 blocks. When intensity is λ = 10, we have 2,000
observations of the process, split in 10 blocks. The reported coverage is based on the 10,000
generated distributions when λ = 2, 4,000 generated distributions, when λ = 5 and 2,000
generated distributions, when λ = 10.

scheme progressively by combining a few blocks until we use all 50 blocks. Tables B.1-B.6

in appendix B report the coverage, the average length of the confidence intervals, the root

mean square error of the point estimator of σ2 and the average effective sample size4 for

all combinations of the parameters and starting prices, as the sample size increases. It is

evident that in most cases the procedure performs remarkably well. In an analogous manner

as above, coverage is lower in the cases where the starting price is lower and additive noise is

high. However, when the block size increases there is substantial improvement in coverage.

Table B.7 illustrates the improvement in coverage when the block size increases to 300 and

400. The next section analyzes the 50-block combined estimator together with the MLE

and shows that lowering the sampling frequency may lead to substantial improvement in

coverage.

3.6.1 Comparison with the MLE

We investigate the performance of the MLE in the presence of rounding errors, by employ-

ing the two stage contamination simulation scheme of Li and Mykland (2007). In order to

have a direct comparison with our framework, we simulate the same sample paths for Xt.

The difference with the simulation scheme above, is that now the process is rounded to the

nearest tick. We focus on the case where the sample consists of 10,000 observations and

4The effective sample size indicates the quality of the generated distributions. It gives an estimate of the
number of particles (parameters (σu, σ)) that have high (importance) weight in the sample.
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Block Size Covg. σu Covg. σ RMSE Q1 Median Q3 Mean
200 98.43% 92.96% 1.52 -0.87 0.15 1.02 0.17
300 98.04% 93.53% 1.51 -0.68 0.13 1.24 0.27
400 97.94% 93.68% 1.45 -0.56 0.23 1.26 0.30

Table 3.5: In this table we report the coverage of the individual blocks and performance
the daily block point estimator when the block size increases from 200 to 300 and 400. The
starting price is S0 = 10 and the true parameters are σ = 30%, σu = .005%. The sample
size is 10,200 (= 34 blocks × 300 obs) observations when the block size is 300 and 10,000
(= 25 blocks × 400 obs) when the block size is 400. Intensity of the arrival times is λ = 2.
Columns 2-3 report the coverage of the two parameters. Column 4 reports RMSE of σ̂2.
Columns 5-8 report the quantiles and the mean of σ̂2−σ2

0. All entries are multiples of 10−5.

compare the ML estimator with the point estimator of the combined distributions. Tables

3.6 to 3.9 report coverage, the average length of the confidence intervals of both point es-

timators for the three starting prices. The estimation errors are summarized through the

root mean square error (RMSE) and their 1st quartile, median, 3rd quartile and the mean

of σ̂2− σ2
0, where σ̂2 is either the MLE or the point estimator of the combined distribution.

Also, the average efficient sample size is included to indicate the quality of the generated

distributions. It is evident that the combination of rounding and small additive noise de-

teriorates the performance of the MLE substantially. At this relatively high frequency, the

MLE overestimates the true value, and only when fundamental volatility or the initial stock

price is large coverage and RMSEs improve. The effect of small σu on the estimation of σ

is similar with the finding of Li and Mykland (2007) where the TSRV estimator requires a

sufficiently large variance of the additive component to perform well.

3.6.2 Stochastic Volatility

To illustrate the robustness of our methodology, we conduct a small simulation study where

the true data generating mechanism exhibits stochastic volatility. Specifically, we adapt a

standard stochastic volatility model where the efficient price process follows the diffusion:

dXt = σtdW1t

dσ2
t = κ

(
υ − σ2

t

)
dt+ sσtdW2t

whereW1t andW2t are independent Brownian Motions. We select υ = 0.04 (which amounts

to 20% volatility per year), κ = 5 and for the volatility of the volatility parameter s = 1.
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σ0 = 15% σ̂2 Coverage ALCI RMSE Q1 Median Q3 Mean ESS

σu = .005%
Fid 73.00% 1.99 0.96 -0.30 0.36 0.86 0.35 1.26

MLE 0.00% 2.80 13.8 12.7 13.7 14.7 13.7 NA

σu = .01%
Fid 54.50% 1.96 1.13 0.28 0.81 1.32 0.79 .83

MLE 0.00% 2.47 7.17 6.31 7.10 7.90 7.08 NA

σu = .02%
Fid 65.50% 1.94 1.03 0.16 0.64 1.25 0.68 1.98

MLE 27.00% 2.10 1.59 0.99 1.41 1.90 1.46 NA

σ0 = 30% σ̂2 Coverage ALCI RMSE Q1 Median Q3 Mean ESS

σu = .005%
Fid 75.00% 4.95 2.13 -2.45 -1.43 -0.47 -1.44 5.43

MLE 0.00% 5.98 20.0 18.1 20.1 21.7 19.8 NA

σu = .01%
Fid 90.00% 5.29 1.51 -1.09 -0.06 1.01 -0.07 4.36

MLE 0.00% 5.76 11.7 10.1 11.4 13.1 11.5 NA

σu = .02%
Fid 88.50% 5.61 1.82 -1.40 -0.27 0.88 -0.25 3.62

MLE 53.50% 5.62 3.14 1.46 2.67 3.71 2.64 NA

Table 3.6: In this table we report the performance of the fiducial point estimator of the
combined distributions against the MLE. Starting price is S0 = 10, and the sample size
is 10,000 (= 50 blocks × 200 obs) observations. Intensity of the arrival times is λ = 2.
Columns 2-5 report the coverage, the average length of the confidence intervals and the
RMSE of σ̂2. Columns 6-9 report the quantiles and the mean of σ̂2−σ2

0. Column 10 reports
the average efficient sample size of the combined distributions. Coverage of the MLE relies
on the asymptotic variance. Entries in columns 4-9 are multiples of 10−5. The ESS is a
multiple of 103.

σ0 = 15% σ̂2 Coverage ALCI RMSE Q1 Median Q3 Mean ESS

σu = .005%
Fid 90.00% 1.32 0.40 -0.28 -0.01 0.26 -0.01 4.01
MLE 0.00% 1.44 3.00 2.64 2.96 3.27 2.95 NA

σu = .01%
Fid 88.00% 1.40 0.51 -0.39 0.01 0.37 -0.03 3.09
MLE 62.00% 1.39 0.70 0.26 0.63 0.84 0.57 NA

σu = .02%
Fid 64.50% 1.39 0.93 -0.45 0.09 0.56 0.00 1.22
MLE 92.50% 1.60 0.45 -0.28 -0.01 0.30 0.01 NA

σ0 = 30% σ̂2 Coverage ALCI RMSE Q1 Median Q3 Mean ESS

σu = .005%
Fid 83.00% 3.70 1.28 -1.50 -0.85 -0.17 -0.86 7.05
MLE 44.50% 3.61 2.45 1.08 1.98 2.98 2.07 NA

σu = .01%
Fid 91.00% 4.30 1.25 -0.37 0.41 1.26 0.48 5.34
MLE 87.00% 3.84 1.27 -0.19 0.58 1.42 0.61 NA

σu = .02%
Fid 83.50% 4.69 1.59 -1.23 -0.27 0.80 -0.32 3.31
MLE 90.00% 4.51 1.33 -1.01 -0.23 0.74 -0.17 NA

Table 3.7: In this table we report the performance of the fiducial point estimator of the
combined distributions against the MLE. Starting price is S0 = 20, and the sample size
is 10,000 (= 50 blocks × 200 obs) observations. Intensity of the arrival times is λ = 2.
Columns 2-5 report the coverage, the average length of the confidence intervals and the
RMSE of σ̂2. Columns 6-9 report the quantiles and the mean of σ̂2−σ2

0. Column 10 reports
the average efficient sample size of the combined distributions. Coverage of the MLE relies
on the asymptotic variance.Entries in columns 4-9 are multiples of 10−5. The ESS is a
multiple of 103.
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σ0 = 15% σ̂2 Coverage ALCI RMSE Q1 Median Q3 Mean ESS

σu = .005%
Fid 93.50% 1.15 0.32 -0.11 0.09 0.31 0.08 4.74
MLE 42.50% 1.09 0.71 0.37 0.61 0.88 0.62 NA

σu = .01%
Fid 86.50% 1.26 0.45 -0.35 -0.07 0.20 -0.07 3.70
MLE 91.00% 1.20 0.34 -0.19 0.03 0.28 0.04 NA

σu = .02%
Fid 54.00% 1.23 0.92 -0.58 0.05 0.58 -0.04 4.70
MLE 91.50% 1.51 0.43 -0.33 -0.01 0.24 -0.04 NA

σ0 = 30% σ̂2 Coverage ALCI RMSE Q1 Median Q3 Mean ESS

σu = .005%
Fid 93.00% 3.35 0.93 -0.87 -0.28 0.29 -0.28 7.35
MLE 89.00% 3.00 0.98 -0.57 0.10 0.81 0.11 NA

σu = .01%
Fid 94.00% 4.04 1.12 -0.74 0.03 0.72 0.03 5.18
MLE 88.00% 3.84 1.30 -0.33 0.52 1.28 0.52 NA

σu = .02%
Fid 80.50% 4.44 1.70 -0.84 0.21 1.31 0.22 2.66
MLE 93.00% 4.53 1.33 -0.75 0.06 1.11 0.17 NA

Table 3.8: In this table we report the performance of the fiducial point estimator of the
combined distributions against the MLE. Starting price is S0 = 30, and the sample size
is 10,000 (= 50 blocks × 200 obs) observations. Intensity of the arrival times is λ = 2.
Columns 2-5 report the coverage, the average length of the confidence intervals and the
RMSE of σ̂2. Columns 6-9 report the quantiles and the mean of σ̂2−σ2

0. Column 10 reports
the average efficient sample size of the combined distributions. Coverage of the MLE relies
on the asymptotic variance. Entries in columns 4-9 are multiples of 10−5. The ESS is a
multiple of 103.

λ = 5 σ̂2 Coverage ALCI RMSE Q1 Median Q3 Mean ESS

σu = .005%
Fid 85.50% 2.38 0.84 -0.74 -0.05 0.39 -0.13 5.60
MLE 0.00% 3.01 8.94 7.70 8.76 9.83 8.80 NA

σu = .01%
Fid 84.00% 2.41 0.82 -0.25 0.24 0.74 0.21 3.84
MLE 0.00% 2.77 4.73 3.70 4.55 5.31 4.59 NA

σu = .02%
Fid 87.00% 2.51 0.84 -0.25 0.28 0.86 0.30 4.70
MLE 69.50% 2.53 1.17 0.35 0.88 1.43 0.91 NA

λ = 10 σ̂2 Coverage ALCI RMSE Q1 Median Q3 Mean ESS

σu = .005%
Fid 94.50% 2.78 0.76 -0.46 0.02 0.47 -0.01 11.04
MLE 0.00% 3.23 6.11 4.55 5.77 7.05 5.87 NA

σu = .01%
Fid 92.50% 2.86 0.79 -0.43 0.12 0.57 0.08 7.78
MLE 9.00% 3.04 3.22 2.17 2.92 3.78 2.98 NA

σu = .02%
Fid 87.00% 3.02 0.96 -0.61 -0.02 0.67 -0.01 7.34
MLE 83.00% 2.95 1.07 -0.03 0.56 1.12 0.58 NA

Table 3.9: In this table we report the performance of the fiducial point estimator of the
combined distributions against the MLE. Starting price is S0 = 10 and σ0 = 15%. Intensity
of the arrival times is λ = 5 and λ = 10. Sample size is 4,000 (= 20 blocks × 200 obs) and
2,000 (= 10 blocks × 200 obs) observations respectively. Columns 2-5 report the coverage,
the average length of the confidence intervals and the RMSE of σ̂2. Columns 6-9 report the
quantiles and the mean of σ̂2 − σ2

0. Column 10 reports the average efficient sample size of
the combined distributions. Coverage of the MLE relies on the asymptotic variance. Entries
in columns 4-9 are multiples of 10−5. The ESS is a multiple of 103.
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S0 = 10 σ̂2 Coverage ALCI RMSE Q1 Median Q3 Mean ESS

σu = .005%
Fid 88.00% 2.83 0.97 -0.80 -0.15 0.52 -0.15 1.83

MLE 0.00% 3.77 17.20 15.50 17.10 18.50 17.10 NA

σu = .01%
Fid 80.00% 2.92 1.17 -0.31 0.41 1.17 0.43 1.84

MLE 0.00% 3.51 9.43 8.02 9.21 10.30 9.27 NA

σu = .02%
Fid 79.50% 2.96 1.37 -0.33 0.36 1.10 0.36 2.68

MLE 36.00% 3.14 2.18 1.19 1.87 2.64 1.92 NA

S0 = 30 σ̂2 Coverage ALCI RMSE Q1 Median Q3 Mean ESS

σu = .005%
Fid 89.50% 1.77 0.50 -0.42 -0.07 0.25 -0.08 4.13

MLE 70.00% 1.65 0.77 0.13 0.50 0.91 0.49 NA

σu = .01%
Fid 81.50% 2.04 0.72 -0.72 -0.31 0.09 -0.31 3.42

MLE 86.50% 1.85 0.65 -0.39 0.01 0.47 0.02 NA

σu = .02%
Fid 59.50% 2.05 1.20 -1.12 -0.19 0.50 -0.27 1.01

MLE 86.50% 2.35 0.79 -0.47 -0.07 0.43 -0.08 NA

Table 3.10: In this table we report the performance of the fiducial point estimator of the
combined distributions against the MLE. Starting price is S0 = 10, and the sample size
is 10,000 (= 50 blocks × 200 obs) observations. Intensity of the arrival times is λ = 2.
Columns 2-5 report the coverage, the average length of the confidence intervals and the
RMSE of σ̂2. Columns 6-9 report the quantiles and the mean of σ̂2 − 1

n

∑n
i=1 σ

2
ti . Column

10 reports the average efficient sample size of the combined distributions. Coverage of the
MLE relies on the asymptotic variance. Entries in columns 4-9 are multiples of 10−5. The
ESS is a multiple of 103.

These parameters belong in the range of values used in Aït-Sahalia and Kimmel (2007)

and Aït-Sahalia and Yu (2009). It is common in this type of simulations to initialize the

volatility process by drawing σ2
0 from its stationary distribution. Due to the small size of

our simulation, we set σ2
0 = υ. Parameter υ = 0.04 together with parameter s = 1 can lead

to low values of the spot volatility and, therefore, intensify the effect of rounding. Similarly

to the case of constant volatility, for different combinations of starting prices and additive

noise we simulate 200 sample paths of the process. Arrival times have intensity λ = 2,

therefore, we use samples of 10,000 observations, which roughly constitute a trading day.

Each sample path is split in 50 blocks of 200 observations and the combination scheme is

applied. Integrated variance is approximated by
´ 1

0 σ
2
t dt ' 1

n

∑n
i=1 σ

2
ti , where ∆ti = 1

23,400 .

Table 3.10 reports the performance of fiducial point estimator and the MLE in a similar

manner as above. Coverage of the approximate integrated variance is very high and the

fiducial estimator outperforms the MLE in most cases.
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Figure 3.3: Alcoa Inc. (AA) on May4, 2007.High-frequency quotes for Alcoa Inc. (AA)
on May4, 2007, split in 18 blocks of 298 observations.

3.7 Empirical Study

Our empirical analysis focuses primarily on the illustration of the methodology, together

with data handling issues and concerns. We analyze data for Alcoa Inc. (AA) collected on

May 4. The particular day was studied by Barndorff-Nielsen et al. (2009) and was reported

as an exemplary day in terms of the stability of the volatility signature plots. The data

were collected from the TAQ database and were cleaned according to the filters found in

Barndorff-Nielsen et al. (2009). Moreover, we apply our methodology on bid and ask quotes

that have a corresponding transaction.

3.7.1 Analysis of Alcoa Inc. on May 4, 2007

After applying the filters, we arrive at 14,630 quotations and 5,203 transactions. There-

fore, the sample under consideration consists of 5,203 quotations that have a corresponding

transaction. This amounts to a new observation roughly every 4.5 seconds. Next, we split

the sample in 18 blocks of observations, each one containing 298 observations. Figure 3.3

displays the high frequency quotes with the block division superimposed on it.

Figure 3.4 displays all the block density estimates together with the combined density

estimates for parameter σ. The left panel displays the first six blocks and right panel

the last 12 blocks. Evidently, the locations of the block distributions indicate a U-shaped

pattern. Volatility is quite high in the beginning of the day, much lower in the middle

of the day and higher towards the end. This pattern is the reason we do not apply the
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Figure 3.4: Fiducial densities for Alcoa Inc. (AA) on May4, 2007. Combined and block
fiducial distributions for Alcoa Inc. (AA) on May4, 2007. Left panel displays the first six
blocks. Blocks 2-3 and 4-5 can be combined. Blocks 1 and 6 cannot be combined with
adjacent blocks. Left panel displays the last 12 blocks. Blocks 7-16 and 17-18 can be
combined.

Blocks/Time Parms. Point Est. Median Mx. Weight Conf. Interval Variance Skew. Kurt.

Block 1 σu 1.91*10-5 1.71*10-5 5.37*10-5 [0, 5.60*10-5] 2.69*10-10 0.7337 3.135

9:30:12-9:42:16 σ 0.0301 0.0300 0.0281 [0.0273, 0.0332] 2.26*10-6 0.2390 3.102

Blocks 2-3 σu 1.14*10-5 1.09*10-5 1.23*10-5 [0, 3.02*10-5] 7.92*10-11 0.4735 2.622

9:42:16-10:13:01 σ 0.0196 0.0196 0.0203 [0.0182, 0.0210] 5.32*10-7 0.0938 3.034

Blocks 4-5 σu 1.26*10-5 1.15*10-5 3.07*10-5 [0, 3.13*10-5] 8.01*10-11 0.5282 2.739

10:13:01-11:03:06 σ 0.0107 0.0108 0.0116 [0.0098, 0.0117] 2.44*10-7 -0.0921 2.994

Block 6 σu 2.68*10-5 2.72*10-5 4.11*10-5 [8.05*10-6, 4.34*10-5] 7.79*10-11 -0.2359 3.236

11:03:06-11:22:44 σ 0.0184 0.0184 0.0180 [0.0168, 0.0202] 7.52*10-7 0.1161 3.030

Blocks 7-16 σu 1.66*10-5 1.65*10-5 1.63*10-5 [1.04*10-5, 2.27*10-5] 1.02*10-11 0.0061 2.919

11:22:44-15:39:34 σ 0.0079 0.0079 0.0080 [0.0075, 0.0082] 3.00*10-8 0.0048 2.903

Blocks 17-18 σu 1.12*10-5 1.09*10-5 2.06*10-5 [0, 2.70*10-5] 5.71*10-11 0.4100 2.877

15:39:34-16:00:00 σ 0.0125 0.0125 0.0124 [0.0115, 0.0137] 3.16*10-7 0.1323 3.008

Table 3.11: Summary statistics for the combined distributions for Alcoa Inc. (AA)
on May 4, 2007.

combination scheme on all block distributions. Volatility for this particular day exhibits

sudden changes, indicating the presence of volatility jumps. A combined distribution using

all block distributions leads to a nearly degenerate distribution, as indicated by the small

effective sample size. Instead, we combine distributions from adjacent blocks, provided that

the efficient sample size of the generated distribution is high. Typically, distributions located

within a band of 10% annual volatility can be combined. Figure 3.4 displays the combined

distributions. Information for the combined distributions can be found in table 3.11.

Figure 3.5 displays the block, combined and ML point estimates for both σ2 and σ2
u.
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Figure 3.5: Volatility and noise estimates for Alcoa Inc. (AA) on May 4, 2007.
The left panels display the fiducial block point estimates for σ2 (upper) and σ2

u (lower),
together with the ML estimates. The fiducial point estimates of σ2 and σ2

u for the entire
day are 1.46 ∗ 10−4 and 4.56 ∗ 10−10 respectively. The ML estimates are 2.11 ∗ 10−4 and
1.19∗10−8 respectively. The right panels display the same information for the point estimates
of the combined distributions. The fiducial point estimates are 1.40 ∗ 10−4 and 3.92 ∗ 10−10

respectively.

The left upper panel displays the block estimates of σ2 with the confidence intervals super-

imposed. In the same panel, we display the daily variance estimate, as a result of the sum of

the block estimates, together with ML estimate5. In a similar manner, the left lower panel

displays the estimates of σ2
u. The right panels display the same information, but for the

combined distribution point estimates. Although the daily estimates for σ2 are relatively

close, the estimates for σ2
u are quite different. In fact, the fiducial noise estimate is virtually

zero, indicating that most of the noise for this particular day is attributed to rounding and

spread related frictions.

We conclude this section by generating volatility signature plots. We form the sub-

samples by keeping every ith observation in the sample, where i = 1, 2, ..., 5. In addition to

the parametric estimators, we also include the Parzen realized kernel with optimal band-

width. The left panel in figure 3.6 displays the signature plots for integrated variance. The

signature plot for the fiducial estimator is very smooth and much closer to the RK estimates.

5The ML estimate was based on the corresponding transactions.
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Figure 3.6: Volatility and noise signature plots for Alcoa Inc. (AA) on May 4,
2007. The left panel displays point estimates for σ2 at different sampling frequencies for
the fiducial (combined), ML and RK-Parzen. At the highest frequency the estimates are
1.40 ∗ 10−4 (Fid), 2.11 ∗ 10−4 (ML) and 1.48 ∗ 10−4 (RK). The right panel displays the same
information for σ2

u . At the highest frequency the estimates are 3.92∗10−10 (Fid), 1.19∗10−8

(ML) and 2.74 ∗ 10−7 (RK).

The right panel displays signature plots for additive noise. Noise is virtually zero for the

fiducial estimator as the sample size decreases.

3.7.2 Time varying spread

In this section we discuss the implications of time varying spread in our methodology. In

the previous chapter, we explained how the time varying spread may have adverse effects

on the estimation. As before, we modify the quotes where the spread is higher than some

pre-specified threshold. That is, we modify the data by restricting the spread to be no

larger than three cents. Figure 3.7 displays the block, combined and ML point estimates for

both σ2 and σ2
u, in a similar manner as in figure 3.5. Table 3.12 reports the results for the

first block before the reduction of the spread and after. The small difference in the results

can be explained by a closer inspection of the revised spread. Before the reduction of the

spread, large movements in transactions (potential jumps) were irrelevant to the estimation.

However, if we use transactions as a guide to revise the spread, large changes in transactions

will be carried over.
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Figure 3.7:

Figure 8: Volatility and noise estimates for Alcoa Inc. (AA) on May 4, 2007

with revised quotes. The left panels display the fiducial block point estimates for σ2

(upper) and σ2
u (lower), together with the ML estimates. The fiducial point estimates of σ2

and σ2
u for the entire day are 1.69 ∗ 10−4 and 1.39 ∗ 10−9 respectively. The ML estimates are

2.11∗10−4 and 1.19∗10−8 respectively. The right panels display the same information for the

point estimates of the combined distributions. The fiducial point estimates are 1.58 ∗ 10−4

and 1.31 ∗ 10−9 respectively.

Block 1 Parms Point Est. Median Mx. Weight Conf. Interval Variance Skew. Kurt.

Original
σu 1.91*10-5 1.71*10-5 5.37*10-5 [0, 5.60*10-5] 2.69*10-10 0.7337 3.135
σ 0.0301 0.0300 0.0281 [0.0273, 0.0332] 2.26*10-6 0.2390 3.102

Revised
σu 4.08*10-5 3.85*10-5 1.04E-04 [0, 9.98*10-5] 8.48*10-10 0.3726 2.320
σ 0.0366 0.0365 0.0305 [0.0328, 0.0406] 3.87*10-6 0.1180 3.057

Table 3.12: Summary statistics for the first block distributions for Alcoa Inc. (AA) on May
4, 2007, before and after the quote revision.
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3.8 Conclusion

In this article we propose a novel framework to study high frequency financial data for

volatility estimation. Assuming that the efficient price-process follows a time homogenous

diffusion process, we proposed a framework that allows us to specify a generalized fiducial

distribution on the parameter space. The attractive feature of the framework is that it

enables us to view the bid-ask spread as a natural interval around the unobservable effi-

cient price and use quotes for volatility estimation, instead of transactions or mid-points.

Moreover, our framework is flexible enough that allows us to maintain the additive noise

component, introduced in the current literature to explain the deviations of the efficient

price from the observed one.

The new methodology was applied assuming that volatility remains constant for a short

period of time. The samples under consideration were split in blocks of observations and

inference was performed on each block. Additionally, the proposed combination scheme

introduced a tool to combine the block distributions into one that summarizes the informa-

tion from all the blocks under consideration. Our simulation study, which was designed to

incorporate features of observed data, verified that volatility estimation is feasible at very

high frequencies in the presence of rounding errors and outperforms the standard paramet-

ric approach. Our empirical study reports two findings. First, residual noise is virtually

zero indicating that in very high frequencies microstructure noise is attributed to rounding

effects. Second, daily volatility exhibits a rough U-shaped pattern indicating the presence

of volatility jumps.
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CHAPTER 4

Option Pricing with Alternative Realized Volatility Estimators

4.1 Summary

In this chapter we utilize the generalized affine realized volatility (GARV) option pricing

model of Christoffersen et al. (2014), which extends the Heston and Nandi (2000) (HN)

option pricing framework by incorporating realized volatility, to compare the performance

of alternative realized volatility estimators. Specifically, we use 7 alternative estimators of

realized volatility. Our benchmark estimator is the standard realized volatility estimator

based on 5-minute returns (RV-5min). The other estimators are the Two-Scale (TSRV)

and Multi-Scale (MSRV) realized volatility estimators developed by Zhang et al. (2005)

and Zhang (2006) respectively, the parametric estimator (QMLE introduced by Aït-Sahalia

et al. (2005) and Xiu (2010), two Realized Kernel (RK) volatility estimators developed by

Barndorff-Nielsen et al. (2008), particularly the estimators using the Tukey-Hanning2 kernel

and the Parzen kernel, and finally, the Pre-Averaging (PAV) introduced by Podolskij and

Vetter (2009). The GARV model has a closed-form option pricing formula based on Fourier

transforms. Using the four realized volatility estimators, we estimate the GARV model using

call option data on the S&P 500 index. The estimation method we employ is minimization of

the implied volatility root mean square error (IVRMSE) criterion. We find that the QMLE,

the RK estimators and the PAV outperform the standard RV-5min by reducing the option

pricing errors more than the RV-5min, with the RK-Parzen performing the best.

4.2 Introduction

In many finance applications it is of paramount importance to measure volatility. In partic-

ular, when the ultimate goal is the pricing of derivatives securities, like options, volatility

is one of the important drivers of the price. While volatility initially was treated as being



constant through time, for example, the classical papers by Black and Scholes (1973) and

Merton (1976), it is by now well understood that the volatility of most financial return

series varies through time. An extensive empirical literature has documented the empirical

biases of the Black-Scholes option valuation model, which arrive in the form of differences

between observed market prices and model predictions. Specifically, observed market prices

for out-of-the-money put prices and in-the-money call prices are higher than Black-Scholes

prices. This stylized fact is known as the volatility “smirk” or the volatility “smile”. Im-

plied volatilities for at-the-money options also contain a term structure effect that cannot

be explained by the Black-Scholes model.

The most popular approach to modeling the smirk is the use of GARCH and stochastic

volatility models, which extend the classical constant volatility framework and allow for

time varying volatility. Additionally, these models allow for negative correlation between

the level of the stock return and its volatility. This negative correlation captures the stylized

fact that decreases in the stock price are associated with larger increases in volatility than

similar stock price increases, for example see Black (1976) and Christie (1982). This stylized

fact, known as the leverage effect, is important for equity index option valuation, because

it increases the probability of a large loss and consequently the value of out-of-the-money

put options. The leverage effect induces negative skewness in stock returns, which in turn

yields a volatility smirk.

The GARCH framework, initially proposed by Engle (1982) and extended by Bollerslev

(1986), has been applied extensively in the empirical finance literature. In this framework

volatility is treated as a time varying process depending on lagged values of volatility itself

and on lagged squared innovations to the returns. Hence in this setting volatility can be

estimated entirely from the return data by using the return innovations as a proxy for

volatility. Heston and Nandi (2000) derived the first closed form option pricing formula in

a discrete time setup when volatility follows a GARCH process. Their model, although is

easy to implement, suffers from the forecasting disability of the GARCH models themselves.

GARCH models, although they have been very successful in describing conditional volatility,

they do not perform as well in forecasting it. This apparent shortcoming in forecasting

volatility, as documented by several studies, is mainly because the history of the returns is
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not enough to explain the conditional volatility.

In the continuous time SV framework, volatility is in fact treated as being “truly” stochas-

tic. Models of this type have been extensively used in the theoretical derivative pricing lit-

erature as it is often possible to derive option pricing models more elegantly in a continuous

time world. Classical examples include among others the work of Heston and Nandi (2000),

Hull and White (1987), Johnson and Shanno (1987), Scott (1987) and Wiggins (1987).

However, when it comes to empirically applying these models, a consistent estimation of the

volatility process is needed. Given that stochastic volatility is an unobserved state variable,

complicated filtering techniques are required which complicates the application for empirical

option pricing.

These single-factor GARCH and stochastic volatility models, as several recent studies

documented, have the structure to capture some of the empirical biases of the early models,

but not all. By now, it is well known that richer volatility dynamics are needed to capture

the empirical discrepancies. For instance Bates (2000), Duffie et al. (2000), Christoffersen

et al. (2008), Christoffersen et al. (2009a) and Christoffersen et al. (2009c) point out that

more than one volatility component is needed.

A recent trend in the financial econometrics literature is the use of high frequency intra-

day data for constructing non-parametric measures to estimate volatility. As demonstrated

in the literature, these types of measures can be more accurate estimators of ex post volatil-

ity than the traditional sample variances based on daily or coarser frequency data. The

construction of these volatility measures relies on the properties of the price processes which

are assumed to evolve as special semimartingales, that is, they have a unique decomposition

into a local martingale part and a predictable process of finite variation. Given that the

local martingale part captures the variation of the process in the form of a stochastic in-

tegral of the instantaneous volatility (called integrated volatility), based on the theoretical

properties of the semimartingales, we are in the position to construct efficient estimators of

the stochastic quantity using high frequency intraday data. The estimators of the integrated

volatility are called realized volatility estimators/measures.

In the option pricing literature integrated volatility is a very important quantity. For

example, the Hull-White stochastic volatility model demonstrates that the call option price
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is the conditional expectation (under the risk neutral measure) of the Black-Scholes formula

evaluated at the average future integrated volatility. It is immediate then that integrated

volatility is a key component to pricing options. Therefore, incorporating realized volatility

in an option pricing framework might prove to be valuable in our effort to price options

efficiently.

There are very few recent papers that incorporate realized volatility in option pricing.

Feunou and Meddahi (2009) extended the class of affine models with non-Markovian dynam-

ics and proposed the pricing of options with realized volatility as one possible application

of this extension. In Stentoft (2008) an Inverse Gaussian model of a 30–minute realized

volatility is used to price options on some individual stocks. However, their work does not

provide a formal change of measure for the RV process, but it only considers the case when

the risk neutral and physical dynamics of RV are the same (i.e. when the volatility risk

is not priced). Corsi et al. (2013) proposed the Heterogeneous Auto-Regressive Gamma

(HARG) process as a discrete-time stochastic volatility option pricing model that exploits

the historical information contained in the high frequency data. One shortcoming of these

proposed models is the lack of a closed form pricing formula. Both Stentoft (2008) and Corsi

et al. (2013) price options using Monte-Carlo simulations.

Christoffersen et al. (2014) attempt to combine the need for richer volatility dynamics

with the forecasting improvements of realized volatility and investigate how all these can be

translated into economic value added. They do that by using incorporating realized volatility

into the Heston and Nandi (2000) framework. Specifically, they develop a new class of affine

discrete-time models that allow for closed-form option valuation formulas using conditional

moment generating functions. What is different from the HN model is that the new models

contain not only a GARCH-type component of past squared returns, but also a realized

volatility GARCH-type component. For their application they use only realized volatility

constructed by 5 and 60 minutes returns only.

In what follows we will utilize the GARV model they developed and estimate it using

alternative volatility estimators. Specifically, we use 7 alternative estimators of realized

volatility. Our benchmark estimator is the standard realized volatility estimator based on 5-

minute returns (RV-5min). The other estimators are the Two-Scale (TSRV) and Multi-Scale
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(MSRV) realized volatility estimators developed by Zhang et al. (2005) and Zhang (2006)

respectively, the parametric estimator (QMLE introduced by Aït-Sahalia et al. (2005) and

Xiu (2010), two Realized Kernel (RK) volatility estimators developed by Barndorff-Nielsen

et al. (2008), particularly the estimators using the Tukey-Hanning2 kernel and the Parzen

kernel, and finally, the Pre-Averaging (PAV) introduced by Podolskij and Vetter (2009). The

GARV model has a closed-form option pricing formula based on Fourier transforms. Using

the four realized volatility estimators, we estimate the GARV model using call option data

on the S&P 500 index. The estimation method we employ is minimization of the implied

volatility root mean square error (IVRMSE) criterion. We find that the QMLE, the RK

estimators and the PAV outperform the standard RV-5min by reducing the option pricing

errors more than the RV-5min, with the RK-Parzen performing the best.

The paper proceeds as follows. In part 3, we introduce the GRV model. In part 4, we

present the option pricing framework. In part 5 we present the estimation results, together

with the data and the estimation methodology.

4.3 The GARV Model

The log-returns process in the GARV model is specified as follows

rt+1 = Xt+1 −Xt = rf + λh̄t −
1

2
h̄t +

√
h̄tε1,t+1

where h̄t denotes the conditional variance for day t+ 1 which known at the end of day t and

is defined as a convex combination of the following two factor GARCH-type processes:

h̄t = nht + (1− n)RVt

ht+1 = ω1 + β1ht + α1

(
ε1,t − γ1

√
h̄t

)2

RVt+1 = ω2 + β2RVt + α2

(
ε2,t − γ2

√
h̄t

)2

where the joint distribution of the innovations (ε1,t, ε2,t) is assumed to be bivariate standard

normal with correlation ρ. In this setup, realized volatility RVt is assumed to follow the

same affine dynamics as in the Heston and Nandi model, which is ideal for option pricing.

Additionally, this specification nests the HN model as a special case whenever n = 1, and
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nests a purely realized-volatility based model (RV) whenever n = 0. The latter can be

considered as a discrete-time stochastic volatility model since the innovation of the process is

different from that of the returns process. This assumption allows for two separate leverage

effects via γ1 and ργ1, which can be seen through the conditional covariance of the spot

return and the augmented variance process

Covt
(
rt+1, h̄t+1

)
= −2 (nα1γ1 + (1− n)α2ργ2) h̄t

For option pricing purposes we will need to identify the dynamics of the model under

a risk neutral probability measure, known as the equivalent martingale measure (EMM).

This is achieved by utilizing a change of measure argument. The specification of the pricing

kernel (Radon-Nikodym derivative) together with the no-arbitrage argument that leads to

the construction of the EMM is given analytically in the appendix. Here we will only show

the correspondence between the historical and the risk neutral measures. Under the risk

neutral measure
rt+1 = rf − 1

2 h̄t +
√
h̄tε

?
1,t+1

ht+1 = ω1 + β1ht + α1

(
ε?1,t − γ?1

√
h̄t

)2

RVt+1 = ω2 + β2RVt + α2

(
ε?2,t − γ?2

√
h̄t

)2

where the map between the two measures amounts to γ?1 = γ1 + λ and γ?2 = γ2 + χ. Here,

λ denotes the market risk premium parameter and χ denotes the (realized) volatility risk

premium parameter. That is, the risk-neutral parameters are endogenously determined by

the risk premium parameters , λ and χ.

4.4 Option Pricing

4.4.1 Risk neutralization

Christoffersen et al. (2009b) studied a large class of specifications of the underlying asset

return in discrete time for the purpose of the valuation of European-style contingent claims

with the use of the risk neutral valuation relationship (RNVR). Their approach did not in-

volve the characterization of the preferences underlying the RNVR. Instead, they specified a
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class of Radon-Nikodym derivatives and, using no-arbitrage arguments, constructed a class

of equivalent martingale measures (EMMs) suitable for pricing contingent claims for which

the resulting risk-neutral return dynamics are from the same family of distributions as the

physical return dynamics. The class of processes that can be studied under their approach

is relatively large, provided that the conditional moment-generating function (MGF) exists.

It contains conditionally non-normal heteroskedastic processes, such as GARCH processes,

as well as general discrete time stochastic volatility models. As mentioned above, the GRV

model can be considered as special discrete time stochastic volatility model with the sec-

ond source of randomness coming from realized volatility. The candidate Radon-Nikodym

derivative for the above specification is given by:

dQ

dP

∣∣∣∣
Ft

= exp

(
u

t∑
i=1

(ν1,i−1ε1,i + ν2,i−1ε2,i + Ψt (ν1,i−1, ν2,i−1))

)

where ν1,i and ν2,i are predetermined sequences and Ψt (u1, u2) is defined as the natural

logarithm of the conditional MGF

Ψt (u1, u2) = logEPt−1 [exp (u1ε1,t + u2ε2,t)]

We can easily show that dQ
dP

∣∣∣
Ft

is a valid Radon-Nikodym derivative by noting first that by

construction is non-negative and that EP0

(
dQ
dP

∣∣∣
Ft

)
= 1 .The latter results from the use of

the law of iterated expectations. Now we can easily show that the probability measure Q

defined by the Radon-Nikodym derivative dQ
dP

∣∣∣
Ft

is an EMM if and only if

Ψt

(
ν1,t−1 −

√
ht−1, ν2,t−1

)
−Ψt (ν1,t−1, ν2,t−1) + λh̄t −

1

2
h̄t = 0

This result is derived by using the RNVR. That is, under Q, the discounted process of the

asset is a martingale

EQt−1

[
St
Bt

]
=
St−1

Bt−1
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To get the above result, all we need to do is change the measure to P using the Radon-

Nikodym derivative . That is,

EQt−1

[
St
St−1

Bt
Bt−1

]
= EQt−1

 dQ
dP

∣∣∣
Ft

dQ
dP

∣∣∣
Ft−1

St
St−1

Bt
Bt−1

 = 1

since EQt−1

[
dQ
dP

∣∣∣
Ft

]
= dQ

dP

∣∣∣
Ft−1

. The last result also identifies the pricing kernel which is

Zt =

dQ
dP

∣∣∣
Ft

EPt−1

[
dQ
dP

∣∣∣
Ft

] =

dQ
dP

∣∣∣
Ft

dQ
dP

∣∣∣
Ft−1

= exp (ν1,t−1ε1,t + ν2,t−1ε2,t + Ψt (ν1,t−1, ν2,t−1))

Since we assume that the innovations (ε1,t, ε2,t) are distributed bivariate standard normal

with correlation ρ, we have that

Ψt (ν1,t−1, ν2,t−1) = logEPt−1 [exp (ν1,t−1ε1,t + ν2,t−1ε2,t)] = −
ν2

1,t−1

2
−
ν2

2,t−1

2
− ν1,t−1ν2,t−1ρ

The pricing kernel becomes

Zt = exp

(
ν1,t−1ε1,t + ν2,t−1ε2,t −

ν2
1,t−1

2
−
ν2

2,t−1

2
− ν1,t−1ν2,t−1ρ

)

and the necessary and sufficient condition for the probability measure to be an EMM becomes

ν1,t−1 + ν2,t−1ρ+ λ
√
h̄t = 0

It is interesting to note that we can reach the same conclusion by using the pricing kernel and

imposing that under the risk neutral measure Q, EQt−1 [exp (rt)] = exp (rf ). This condition,

although is very valuable for the characterization of the risk neutral distribution of the

returns process, points out that the second error term is responsible for a new source of

non-uniqueness since it is an equation with two unknowns ν1,t and ν2,t. In order to identify

the risk neutral distribution we need to compute the risk neutral conditional MGF of the
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two error terms

EQt−1 [exp (u1ε1,t + u2ε2,t)] = EPt−1 [Zt exp (u1ε1,t + u2ε2,t)]

= exp

(
u1 (ν1,t−1 + ν2,t−1ρ) + u2 (ν2,t−1 + ν1,t−1ρ)− u2

1

2
− u2

2

2
− u1u2ρ

)

Using this result we can identify that under the risk neutral measure Q, the two “new” error

terms ε?1,t = ε1,t − (ν1,t−1 + ν2,t−1ρ) and ε?2,t = ε2,t − (ν2,t−1 + ν1,t−1ρ) are bivariate normal

with correlation ρ. We can use this information to rewrite the model as follows

rt+1 = rf + λh̄t −
1

2
h̄t +

√
h̄tε1,t+1

= rf + λh̄t −
1

2
h̄t +

√
h̄t
(
ε?1,t+1 + ν1,t + ν2,tρ

)
= rf −

1

2
h̄t +

√
h̄tε

?
1,t+1

after using ν1,t−1 +ν2,t−1ρ+λ
√
h̄t = 0. So, in the risk neutral version of the returns process,

λ vanishes. The dynamics of the GARCH component of the volatility become

ht+1 = ω1 + β1ht + α1

(
ε1,t − γ1

√
h̄t

)2

= ω1 + β1ht + α1

(
ε?1,t+1 + ν1,t + ν2,tρ− γ1

√
h̄t

)2

= ω1 + β1ht + α1

(
ε?1,t+1 − γ?1

√
h̄t

)2

where γ?1 = γ1 + λ. The dynamics of the RV-component of the volatility become

RVt+1 = ω2 + β2RVt + α2

(
ε2,t − γ2

√
h̄t

)2

= ω2 + β2RVt + α2

(
ε?2,t+1 + ν2,t + ν1,tρ− γ2

√
h̄t

)2

= ω2 + β2RVt + α2

(
ε?2,t+1 − γ?2

√
h̄t

)2

where γ?2 = γ2 − ν2,t+ν1,tρ√
h̄t

.

In order to keep the model affine under the risk neutral probability measure we assume

that ν2,t + ν1,tρ = −χ
√
h̄t which implies γ?2 = γ2 + χ. By this assumption we resolve

the non-uniqueness problem stated above. This assumption, which is very common in the
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option pricing literature, is made to preserve the affine structure in the RV component of

the volatility. Parameter χ is nothing but the price of (realized) volatility risk. This in the

spirit of Heston (1993).

4.4.2 Option Pricing

Using the risk neutral model above we can proceed to evaluate European call options with

payoff (ST −K)+at time t and maturity T . The price of a European call option is given by

the following formula

Ct = Et (ST −K)+ = exp (−rfT )StP1,t − exp (−rfT )KP2,t

where

P1,t =
exp (rfT )

2
+

ˆ +∞

0
Re

exp
(

ΨQ
t,T (1 + iu)− iu log (K/St)

)
πiu

 du
and

P1,t =
1

2
+

ˆ +∞

0
Re

exp
(

ΨQ
t,T (iu)− iu log (K/St)

)
πiu

 du
Quantity ΨQ

t,t+T denotes the multi-period risk-neutral conditional characteristic function

which is given by its physical counterpart. Namely,

ΨP
t,T (u) = EPt

exp

u T∑
j=1

rt+j


In order to use these functions for option pricing all we need to do is to use their risk neutral

version, which is, we have to replace the parameters in these functional forms with the risk

neutral ones. Appendix C has the functional forms analytically.

4.5 Data, Methodology and Results

4.5.1 Data

In this section we perform in sample estimation of the parameters of the option pricing

formula. For the estimation we will use European S&P 500 index call options together
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with high frequency data on the index. For the empirical application the option data,

gathered from OptionMetrics, are observed from February 9, 2000 through December 26,

2007. We choose the 7 most liquid, out-of-the-money, closing on Wednesday call options

with maturity less than 150 days. The sample consists of 2,821 options. Table 4.1 below

provides information about the dataset.

4.5.2 Methodology

In the option pricing literature where option prices are computed in closed form, researchers

have proposed the construction of loss functions as a way to price options. In this chapter,

we employ the IVRMSE criterion

IV RMSE =

√√√√ 1

N

N∑
j=1

(
IV Data

j − IV (θ)Model
j

)

where IV Data is the Black-Scholes implied volatility using the actual data, IV (θ)Model is the

Black-Scholes implied volatility using the fitted option price and θ denotes the parameters

of the option pricing formula. This loss function, overcomes the weighting problems, mak-

ing the estimation more tractable, since the implied volatility metric provides an intuitive

weighting of options across strikes and maturities.

The procedure to estimate the option pricing model is the following. The first step is

to initialize the algorithm by picking starting values. Usually, the MLE estimates are good

candidates. The second step in to calculate the option prices using the formula

Ct = Et (ST −K)+ = exp (−rfT )StP1,t − exp (−rfT )KP2,t

The formula requires the calculation of P1,t and P2,t which requires the calculation of the

conditional characteristic function

ΨP
t,T (u) = EPt

exp

u T∑
j=1

rt+j

 = exp (C1 (u, T )ht + C2 (u, T )RVt +D (u, T ))

The calculation requires the knowledge of ht (since RVt is observed). This is calculated
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easily, since it is a function of the parameters, the history of the log-returns and the history

of the realized volatility process. To generate the process, we use variance targeting. That

is, we set h̄0 equal to the model implied long run mean of the variance. That is, we set t h̄0

equal to the average implied variance of the “at of the money” options. The estimation of the

Fourier transforms are done by the Gauss quadrature method. After estimating the option

values, we estimate their Black-Scholes implied volatility. Subsequently the loss function

is calculated and the parameters are updated. The procedure is repeated until we reach a

minimum.

Additionally, variance targeting pins down values for the parameters ω1 and ω2. That

is,

ωi =
(
1− βi − αiγ2

i

)
h̄0 − αi

where i = 1, 2. Under this setup, λ = 0. We also estimate a stationary GARCH model,

therefore the following conditions are imposed for the estimation

0 < βi < 1

|γ1| <
√

1− β1

α1n

|γ2| <

√(
1− β2

1− β1

)(
1− β1 − α1γ2

1n

α2 (1− n)

)

Since these conditions imply a constrained minimization problem, we employ parameter

transformations to transform the problem into an unconstrained one and facilitate the esti-

mation procedure. Specifically, for the parameters 0 < βi < 1, we can can use the transfor-

mation tβ (x) = (1 + e−x)
−1 for which we know that t : R → (0, 1). For α1 we can use the

fact that ω1 =
(
1− β1 − α1γ

2
1

)
h̄0−α1 > 0, therefore 0 < α1 < (1− β1) h̄0. This implies the

transformation tα (x) = (1− β1) h̄0 (1 + e−x)
−1. For γ1 we use the following transformation

tγ (x) =

(√
1− α1

β1
− 1

h̄0

)(
−1− 2

(
1 + e−x

)−1
)

The constrains for (α2, β2, γ2) are calculated in a similar manner.

Another important remark is that our estimation procedure does not provide a way to
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compute standard errors of our estimates. The way we overcome this issue is to assume a

distribution function for the observed option prices. By doing so, we can then evaluate the

distribution at the optimum (derived by minimizing the RMSE), and subsequently, compute

an estimate of the standard errors numerically. We can achieve that by inverting the Fisher

information, computed by the outer product of the gradient of the assumed distribution at

the optimum. The distribution we assume is (log-likelihood)

logL = −N
2

log (2π)−
N∑
i=1

log (V gi)−
1

2

N∑
i=1

(
CDatai − C

(
θ̂
)Model

i

)2

V gi

where CDatai are the observed option prices, C
(
θ̂
)Model

i
are the model implied option prices

when θ̂ is the IVRMSE estimate and V g is the vega of the observed option prices.

4.5.3 Results

The estimation results are reported in table 4.2. The stationarity requirements as well

as the equations for variance and equity premium targeting which are used to pin down

estimates of and as functions of the other parameters are given in the appendix. Based on

the IVRMSE metric conclude that the model that uses the RK-Parzen realized volatility

estimator outperforms all other models, in the sense that it reduces the option pricing errors

the most. The model utilizing the RK-Parzen estimator has IVRMSE equal to 2.94%,

whereas the benchmark model (RV-5min) 3.13%. For the rest of the estimators, the PAV is

the second best with IVRMSE equal to 2.99% and the QMLE and the RK-TH2 follow with

IVRMSEs equal to 3.01% and 3.02% respectively. The MSRV is marginally better than the

RV5-min and TSRV underperforms.

The first important conclusion we draw from this application is that the estimators that

are robust in the presence of dependence noise perform better, with the only exception the

TSRV. We attribute that to the fact that the TSRV has the lower convergence rate 1
6 . Given

that all these estimators are robust in the presence of microstructure noise we conclude that

microstructure noise has to be taken into account into this type of applications. Moreover,

since financial data do exhibit jumps, the jump robust volatility estimators perform better.
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NLS Estimates for the GARV model.
Parms RV5min TSRV MSRV QMLE RK-Parzen RK-Th2 PAV

α1 2.59E-07 3.16E-07 2.41E-07 2.87E-07 1.87E-07 1.90E-07 1.98E-07

(5.41E-09) (3.26E-09) (4.62E-09) (8.12E-09) (6.94E-09) (7.89E-09) (2.99E-09)

β1 0.95 0.91 0.98 0.98 0.97 0.97 0.97

(3.22E-03) (4.72E-03) (3.91E-03) (4.55E-03) (8.22E-03) (6.15E-03) (6.77E-03)

γ1 415.5 509.6 267.6 264.9 392.7 350.7 364.1

(75.1) (95.4) (53.4) (64.8) (36.9) (44.4) (81.3)

ω1 4.80E-12 8.81E-12 1.85E-12 2.16E-12 3.10E-12 2.50E-12 2.82E-12

α2 4.48E-06 4.07E-07 3.98E-07 3.88E-07 1.11E-06 5.15E-07 7.64E-07

(9.56E-09) (7.24E-09) 2.97E-09) (4.72E-09) (8.51E-09) (6.73E-09) (4.29E-09)

β2 4.86E-09 4.86E-09 4.86E-09 4.86E-09 4.86E-09 4.86E-09 4.86E-09

(4.78E-10) (4.77E-10) (4.80E-10) (4.79E-10) (4.80E-10) (4.81E-10) (4.79E-10)

γ2 460.2 1564.1 1582.2 1601.9 944.4 1389.4 1139.3

(62.1) (95.0) (79.2) (102.1) (91.7) (100.7) (101.2)

ω2 1.03E-10 1.08E-10 1.08E-10 1.08E-10 1.07E-10 1.08E-10 1.07E-10

ρ -0.996 -0.995 -0.996 -0.995 -0.995 -0.995 -0.995

(3.14E-03) (2.64E-03) (2.22E-03) (4.13E-03) (1.33E-03) (2.41E-03) (4.77E-03)

n 0.67 0.94 0.38 0.39 0.42 0.34 0.39

(9.86E-03) (1.72E-02) (4.41E-03) (3.66E-03) (5.25E-03) (3.57E-03) (7.13E-03)

Vol Persistence

Returns 0.997 0.996 0.997 0.997 0.998 0.998 0.998

RV 0.950 0.995 0.996 0.996 0.988 0.994 0.991

IVRMSE% 3.13% 3.27% 3.11% 3.01% 2.94% 3.02% 2.99%

Table 4.2: NLS Estimates for the GARV model. We estimate the GARV model for the
six different realized volatility estimators using daily close-to-close returns for the S&P 500
index, for the period February 9, 2000 to December 26, 2007. Standard errors are indicated
in parentheses. To estimate parameters we impose variance targeting to 7.3% per year and
equity premium targeting to 5% per year, when risk-free rate is assumed to be 3%.
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However, we believe that a model that incorporates a jump component together with realized

volatility that is robust in both microstructure noise and jumps might reduce the option

pricing errors even further.
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APPENDIX A

Simulation Results for Chapter 2
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APPENDIX B

Simulation Results for Chapter 3
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APPENDIX C

Data Cleaning Filters

The following gives an outline of the data cleaning filters found in Barndorff-Nielsen et al.

(2009). First, entries with a time stamp outside the 9:30 am–4 pm window are deleted.

Entries with a bid, ask or transaction price equal to zero are deleted. We retain entries

originating from a single exchange (NYSE in our application). Quotes data only: When

multiple quotes have the same time stamp, we replace all these with a single entry with

the median bid and median ask price. We delete entries for which the spread is negative.

We delete entries for which the spread is more that 50 times the median spread on that

day. We delete entries for which the mid-quote deviated by more than 5 mean absolute

deviations from a rolling centered median (excluding the observation under consideration)

of 50 observations (25 observations before and 25 after). Transactions data only: Delete

entries with corrected trades. (Trades with a Correction Indicator, CORR 6= 0). Delete

entries with abnormal Sale Condition. (Trades where COND has a letter code, except for

‘E’ and ‘F’). If multiple transactions have the same time stamp, use the median price. Delete

entries with prices that are above the ‘ask’ plus the bid–ask spread. Similar for entries with

prices below the ‘bid’ minus the bid–ask spread.



APPENDIX D

Moment generating functions for the GARV model

The one-period conditional moment generating function is

EPt [exp (u1rt+1 + u2ht+1 + u3RVt+1)] = exp (A1 (u1, u2, u3) +A2 (u1, u2, u3) +B (u1, u2, u3))

where

A1 (u1, u2, u3) = u1

(
λ− 1

2

)
n+ u2β1 + na (u1, u2, u3)

A2 (u1, u2, u3) = u1

(
λ− 1

2

)
(1− n) + u3β2 + (1− n) a (u1, u2, u3)

B (u1, u2, u3) = u1rf + u2ω1 + u3ω2 + b (u1, u2, u3)− 1
2 log

(
1− 2u3α2

(
1− ρ2

))
So the multi-period physical conditional characteristic function, using the above results, has

the following form

ΨP
t,T (u) = EPt

exp

u T∑
j=1

rt+j

 = exp (C1 (u, T )ht + C2 (u, T )RVt +D (u, T ))

where
C1 (u, T + 1) = A1 (u,C1 (u, T ) , C2 (u, T ))

C2 (u, T + 1) = A2 (u,C1 (u, T ) , C2 (u, T ))

D (u, T + 1) = B (u,C1 (u, T ) , C2 (u, T )) +D (u, T )

and initial conditionsC1 (u, 1) = A1 (u, 0, 0), C2 (u, 1) = A2 (u, 0, 0) and D (u, 1) =

B (u, 0, 0).
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