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Abstract

DOMINIK REINHOLD: Asymptotic Behavior of Near Critical Branching Processes
and Modeling of Cell Growth Data.

(Under the direction of Amarjit Budhiraja and M. Ross Leadbetter.)

This dissertation is composed of two parts, a theoretical part, in which certain asymp-

totic properties of near critical branching processes are studied, and an applied part,

consisting of statistical analysis of cell growth data.

First, near critical single type Bienaymé-Galton-Watson (BGW) processes are con-

sidered. It is shown that, under appropriate conditions, Yaglom distributions of suitably

scaled BGW processes converge to that of the corresponding diffusion approximation.

Convergences of stationary distributions for Q-processes and models with immigration

to the corresponding distributions of the associated diffusion approximations are estab-

lished as well. Moreover, convergence of Yaglom distributions of suitably scaled multitype

subcritical BGW processes to that of the associated diffusion model is established.

Next, near critical catalyst-reactant branching processes with controlled immigration

are considered. The catalyst population evolves according to a classical continuous time

branching process, while the reactant population evolves according to a branching process

whose branching rate is proportional to the total mass of the catalyst. Immigration takes

place exactly when the catalyst population falls below a certain threshold, in which case

the population is instantaneously replenished to the threshold. A diffusion limit theorem

for the scaled processes is established, in which the catalyst limit is a reflected diffusion

and the reactant limit is a diffusion with coefficients depending on the reactant.

Stochastic averaging under fast catalyst dynamics are considered next. In the set-

ting where both catalyst and reactant evolve according to the above described (reflected)
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diffusions, but where the evolution of the catalyst is accelerated by a factor of n, we es-

tablish a scaling limit theorem, in which the reactant process is asymptotically described

through a one dimensional SDE with coefficients depending on the invariant distribution

of the catalyst reflected diffusion. Convergence of the stationary distribution of the scaled

catalyst branching process (with immigration) to that of the limit reflected diffusion is

established as well.

Finally, results from a collaborative proof-of-principle study, relating cell growth to

the stiffness of the surrounding environment, are presented.
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Chapter 1

Introduction

This dissertation is composed of two parts, a theoretical part, in which we study

certain asymptotic properties of near critical branching processes, and an applied part,

consisting of statistical analysis of cell growth data as part of the EFRI-CBE 1 project

Emerging Frontiers in 3-D Breast Cancer Tissue Test Systems.

Branching processes have been studied extensively (see [1]) and have proved to be

useful for modeling population dynamics in a variety of fields (see [15]). We study here the

so-called Bienaymé-Galton-Watson (BGW) processes, their multidimensional analogues,

and continuous time catalyst-reactant branching processes. Roughly speaking, a BGW

process is a Markov chain {Zn}n∈N0 with state space N0 with the following behavior.

The process starts with Z0 particles ; each of the Zn particles alive at time n lives for

one unit of time and then dies, giving rise to l offspring particles with probability pl,

l ∈ N0, where {pl}l∈N0 is a probability distribution, the so-called offspring distribution.

In the multitype setting of k-BGW processes (k ∈ N), Zn is a k-dimensional vector

representing the number of k different types of particles, each of which can give birth

to particles of k different types according to an offspring distribution that is specific

to the parent type. In particular, the particles modeled by k-BGW processes evolve

independently of each other. Catalyst-reactant branching processes, on the other hand,

1Emerging Frontiers in Research and Innovation - Cellular and Biomolecular Engineering



model populations with a certain kind of interaction (see [14] and references therein).

More precisely, they describe dynamics where the catalyst population directly affects

the activity level of an associated reactant population. In our model, roughly speaking,

we consider a population of catalyst particles, which evolves according to a classical

continuous time branching process with constant branching rate (the life time of each

particle is exponentially distributed, instead of being constant as in the setting of BGW

processes) with a specific form of immigration, and a reactant population whose branching

rate is proportional to the total mass of the catalyst population.

We first describe our main results for BGW processes in the single and multitype

setting. This work has appeared as “Some asymptotic results for near critical branching

processes” in Communications on Stochastic Analysis in 2010 ([5]). Next, we describe

our results for catalyst-reactant branching processes, and finally give a description of

a proof-of-principle study from the EFRI-CBE project ([2]). This project involves re-

searchers from multiple departments and universities, and the work presented here has

been conducted jointly with multiple collaborators.

Consider first the single type setting (i.e. k = 1) of BGW processes. Depending on

the mean m of the offspring distribution, the BGW process is referred to as subcritical,

critical, or supercritical, according to whether m < 1, m = 1, or m > 1, respectively.

We are concerned with the scaled processes Ẑ
(n)
t = 1

n
Z

(n)
bntc, where {Z(n)}n∈N is a

sequence of BGW processes, with offspring means mn tending to 1, as n → ∞. Our

primary interest is in the steady state behavior of Ẑ
(n)
t as t → ∞. However, in order to

obtain a meaningful asymptotic limit (as t→∞), one needs to suitably reformulate this

question since, as is well known, for mn > 1, Ẑ
(n)
t tends to infinity on the set of non-

extinction as t→∞, and for mn ≤ 1, Ẑ
(n)
t eventually becomes extinct (see [1]). There are

two common approaches to address the problem of certain extinction of Ẑ(n) in the (sub-)

critical case. The first is to condition the process Ẑ(n) on non-extinction, where, loosely
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speaking, the conditioning can either be on non-extinction at the present time or in the

distant future. The state process Ẑ(n) under these two conditionings leads to different

limiting distributions as t → ∞. The first is the so-called quasi-stationary distribution

of Ẑ(n), while the second is the stationary distribution of the Q-process associated with

Ẑ(n) (see Section I.14 of [1]).

The second approach to deal with eventual extinction (in the (sub-) critical setting) is

to introduce an immigration component, namely, in each generation a (random) number

of particles that are indistinguishable from the original set of particles is added to the

population. The immigration component in particular ensures that the resulting scaled

state process Ẑ(n) has a non-degenerate stationary probability distribution.

In the supercritical case, in order to obtain a nontrivial limiting behavior, one typically

conditions on the intersection of the event of non-extinction at the present time and the

event of eventual extinction. It turns out that a supercritical BGW process with this

conditioning has the same distribution as a certain subcritical process. This observation

enables us to transfer the results for subcritical processes to supercritical processes.

It is well known (see [10], [20]) that, under suitable conditions, Ẑ(n) converges weakly

to a diffusion ξ. Such a result implies convergence of finite time statistics of Ẑ(n) to those

of ξ, but does not provide any information on the relationship between the time asymp-

totic behaviors of Ẑ(n) and ξ. The main goal of this work is to make such relationships

mathematically precise. In particular, we show that the time asymptotic distribution of

Ẑ
(n)
t under suitable conditioning converges to that of ξt under a similar conditioning, as

n → ∞. An analogous result for subcritical models with immigration (where no condi-

tioning is required) is also established. The results say that the long time behavior of a

BGW process suitably conditioned (or with an immigration component) is well approxi-

mated by the long time behavior of the diffusion limit ξ under a similar conditioning (or

with an immigration term).
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In addition to the results in the single type setting, we have results in a multitype

setting as well. Here, the mean offspring matrix M plays an analogous role to the mean

m in the single type case. The (i, j)th component of M is the expected number of type

j offspring from a single particle of type i in one generation. The Perron-Frobenius

theorem shows that, under suitable conditions, there exists an eigenvalue ρ ∈ R+ of M,

such that the absolute value of any other eigenvalue is strictly smaller than ρ. Similar

to the single type case, the process is referred to as subcritical, critical, or supercritical,

according to whether ρ < 1, ρ = 1, or ρ > 1, respectively. We establish a convergence

result for quasi-stationary distributions analogous to that in the single type setting.

We next study catalyst-reactant branching processes. As in the BGW setting, we

consider sequences of catalyst and reactant processes, which are denoted by {X(n)}n∈N

and {Y (n)}n∈N, respectively. Both X(n) and Y (n) are subcritical, with offspring means

tending to 1, as n → ∞, and both processes start with n particles. In typical settings

(see e.g. [14]), the catalyst evolution is modeled through a classical continuous time

branching process, and consequently population dynamics are described until the time

the catalyst becomes extinct. In contrast, our work considers a setting where the catalyst

population is maintained above a positive threshold through a specific form of controlled

immigration. More precisely, when the catalyst population X(n) drops below n, it is

instantaneously restored to level n.

There are many settings where controlled immigration models of the above form arise

naturally. For example, immunotherapy in which the natural immune response is stim-

ulated has been successful in treating cancer. Instillation of bacteria (bacillus Calmette-

Guérin), for instance, has been shown to reduce recurrence of bladder carcinoma (see [19]

and references therein). Many aspects of such treatments remain poorly understood, and

it is of interest to develop minimally invasive plans of treatment that intervene only when

the level of certain substances drop below a some threshold. Another class of examples
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arise from predator-prey models in ecology, where one may be concerned with the restora-

tion of populations that are close to extinction by reintroducing species when they fall

below a certain threshold. In our work, the motivation for the study of such controlled

immigration models comes from problems in chemical kinetics where one wants to keep

the level of a catalyst above a certain threshold in order to maintain a desirable level of

reaction activity.

We will establish a diffusion limit theorem for the scaled processes (X̂
(n)
t , Ŷ

(n)
t ) :=

( 1
n
X

(n)
nt ,

1
n
Y

(n)
nt ). The limit process (X, Y ) will be such that X is a reflected diffusion

with reflection at 1, and Y is a diffusion with coefficients depending on X. The driving

Brownian motions in the two diffusions will be independent.

The catalyst and reactant populations considered in the results described above evolve

on a comparable time scale in the sense that the branching rates of both X(n) and Y (n)

converge to positive (possibly different) constants, as n → ∞. In situations in which

the catalyst evolves “much faster” than the reactant, it is of interest to find simplified

diffusion models that capture the parts of the dynamics one is interested in economically.

Such model reductions (see [21] and references therein for the related setting of chemical

reaction networks) not only help in better understanding the dynamics of the system,

but also help to reduce computational costs in simulations. In our work we consider

a simplified setting of catalyst and reactant populations that evolve according to the

above described (reflected) diffusions X and Y , but where the evolution of the catalyst is

accelerated by a factor of n (i.e. drift and diffusion coefficients depend on n). We establish

a scaling limit theorem, as n → ∞, in which the reactant process is asymptotically

described through a one dimensional SDE with coefficients depending on the invariant

distribution of X. Averaging results of a similar form in the more realistic setting where

the catalyst and reactant populations are described through branching processes will be a

topic for future research. In this dissertation, we take a key step towards such a research
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program, which is to establish the convergence of the stationary distribution of the scaled

catalyst process X̂(n) to that of the limit reflecting diffusion X.

The second part of this dissertation is concerned with the statistical analysis of cell

growth, metabolic activity, viability, and morphology data from a proof-of-principle study

as part of the aforementioned EFRI-CBE project. The overall goals of the project are

twofold. We aim to enhance the knowledge of the relationships between normal and

breast cancer cellular behavior and impact on cell growth behavior of factors such as

tissue stiffness and oxygen level. The longterm goal of the project is to develop bioengi-

neering tools to build tissues (or their in vitro representatives, hydrogels) and to assess

experimentally and analytically the above relationships. The study presented here ([2])

is concerned with the relationships between cell characteristics (cell growth, metabolic

activity, and aggregation) and environment (tissue stiffness), and our contribution is pri-

marily in the modeling of these relationships. The results suggest that not only stiffness,

but also other characteristics of the experimental setup influence cell behavior. In a first

Metabolic Activity and Viability experiment, cells were suspended in a hydrogel, and the

cells’ metabolic activity and viability were measured. In a second Morphology experi-

ment, cells were seeded in a monolayer on top of a hydrogel, and the morphology of cell

aggregates was observed. The first experiment is in a 3-dimensional setting, whereas

the second experiment is in a “2.5D” setting (the hydrogel is 3D, while the cell layer is

approximately 2D). Moreover, the constitution of the hydrogels in the two experiments

differed. One difference between the two experiments was in cell aggregation, which

was more pronounced in weaker gels in the Metabolic Activity and Viability experiment,

whereas it appeared to be more pronounced in stiffer gels in the Morphology experiment.

While substrate stiffness alone in a 2D substrate would often dictate greater cell pro-

liferation, this study indicates the importance of considering additional factors which

influence cell behavior in a 3D system, such as proteolysis susceptibility and pore size.
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The enormous potential of a 3D test system is in the ability to construct cells in a

biomaterial substrate in a spatially meaningful manner that allows cellular behavior that

is more indicative of behavior in native tissue than a 2D system, thus allowing rapid

discoveries of therapies and preventatives for an array of diseases. This proof-of-principle

work demonstrates the possibility of using image processing and statistical modeling to

describe pseudo-3D cancer systems in a non-destructive and spatio-temporal manner.

The chapters are organized as follows. At the end of this section we list notation that

will be used throughout the dissertation.

In Chapter 2 we study asymptotic behavior of single and multitype BGW processes.

Chapter 3 is concerned with the weak convergence of suitably scaled catalyst-reactant

branching processes to (reflected) diffusions.

In Chapter 4 we establish an averaging principle under fast catalyst dynamics and

also study convergence of invariant distributions of the catalyst processes.

In Chapter 5, we summarize results from a proof-of-principle study from the EFRI-

CBE project.

Chapter 6 is an appendix in which we provide proofs of some auxiliary lemmas that

are used in preceding chapters.

1.1 Notation

N := {1, 2, . . .}

N0 := {0, 1, 2, . . .}

Nk := {i ≡ (i1, . . . , ik)
′|iα ∈ N, 1 ≤ α ≤ k}

Nk
0 := {i ≡ (i1, . . . , ik)

′|iα ∈ N0, 1 ≤ α ≤ k}

Nk
>0 := Nk

0\{0}

7



Rk
+ := {i ≡ (i1, . . . , ik)

′|iα ∈ [0,∞), 1 ≤ α ≤ k}

R≥1 := [1,∞)

Z := {. . . ,−2,−1, 0, 1, 2, . . .}

0 := (0, 0, . . . , 0)′

1 := (1, 1, . . . , 1)′

δij :=

 1 if i = j

0 otherwise

1A(x) :=

 1 if x ∈ A

0 otherwise

eα := (δ1α, . . . , δkα)′

si :=
∏k

α=1 s
iα
α , for i = (i1, . . . , ik)

′ ∈ Nk
0 and s = (s1, . . . , sk)

′ ∈ Rk
+.

C l(S): The set of l-times continuously differentiable, real-valued functions on S.

C l
c(S): The set of l-times continuously differentiable, real-valued functions on S that

have compact support.

C(R+ : S): the space of continuous functions from R+ to S.

D(R+ : S): the space of càdlàg (or RCLL – right continuous with left limits) functions

from R+ to S.

P(Ω): The set of probability measures on a fixed measurable space (Ω,F).

Sn := { l
n
|l ∈ N0}

S(n)
X := { l

n
|l ∈ N0} ∩ [1,∞)

8



S(n)
Y := { l

n
|l ∈ N0}

S(n)
Z := { l

n
|l ∈ Z}

W(n) := S(n)
X × S(n)

Y × S(n)
Z

W := R≥1 × R+ × R

|| · ||: the Euclidean norm on Rk.

|X|∗,t := sup
0≤s≤t

|Xs|

9



Chapter 2

Asymptotic Behavior of Near Critical Branching

Processes

The following results appeared as “Some asymptotic results for near critical branching

processes” in Communications on Stochastic analysis in 2010 ([5]).

2.1 Introduction and Main Results

Consider a population consisting of k types of particles whose evolution is described in

terms of a discrete time multitype (k-type) Bienaymé-Galton-Watson (k-BGW) process

– such a process is a Markov chain {Zp}p∈N0 on Nk
0, with the vector Zp representing

the number of particles of each type in generation p. We are interested in the long

time behavior of the scaled process 1
p
Zbptc, t ≥ 0, when the k-BGW process is close to

criticality. More precisely, we consider a sequence of BGW processes {Z(n)
p , p ∈ N0}n∈N

such that, as n becomes large, the processes approach criticality. It is well known (see

[10], [20]) that, under suitable conditions, the process X
(n)
t = 1

n
Z

(n)
bntc, t ≥ 0, converges

weakly to a diffusion ξ. (We note here that in Chapter 1 the scaled process 1
n
Z

(n)
bntc was

denoted by Ẑ
(n)
t . However, throughout this chapter we will use X

(n)
t to denote this scaled

process.) Such a result implies convergence of finite time statistics of X(n) to those of

ξ, but does not provide any information on relationships between the time asymptotic

behaviors of X(n) and ξ. The main goal of this work is to make such relationships

mathematically precise. In particular, we show that, under appropriate assumptions, the



time asymptotic distribution of X
(n)
t with suitable conditioning converges to that of ξt

with a similar conditioning, as n → ∞ (see Theorems 2.1.4 and 2.1.7). An analogous

result for models with immigration (where no conditioning is required) is also established

(Theorem 2.1.10). The results say that the long time behavior of a BGW process is well

approximated by that of the corresponding diffusion limit ξ. Most of the results in this

work are for single type BGW processes, namely for the case k = 1. Similar results can

be obtained in multitype settings and we consider one such result in Theorem 2.1.18.

When k = 1, the transition probabilities of a BGW process {Zp} can be written as

p(i, j) = P (Zp+1 = j|Zp = i) =

 p∗ij if i ≥ 1, j ≥ 0,

δ0j if i = 0, j ≥ 0,
(2.1.1)

where {pl}l∈N0 is a given probability function – the offspring distribution of each particle

– and {p∗il }l∈N0 is the i-fold convolution of {pl}l∈N0 . The process starts with Z0 particles;

each of the Zn particles alive at time n lives for one unit of time and then dies, giving rise

to l offspring particles with probability pl, l ∈ N0. The particles behave independently

of each other and of the past.

Depending on the meanm of the offspring distribution, BGW processes can be divided

into three cases: subcritical, critical, and supercritical, according to whether m < 1,

m = 1, or m > 1, respectively.

Consider a sequence of processes Z(n) described as follows. If Z
(n)
0 = 1, then Z

(n)
1 has

the probability generating function (pgf)

F (n)(s) =
∞∑
l=0

p
(n)
l sl, s ∈ [0, 1], (2.1.2)

with mean mn and variance σ2
n, where {p(n)

l }l∈N0 is the offspring distribution of Z(n). We
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denote the pth iterate of F (n) by F
(n)
p , i.e. for s ∈ [0, 1] and p ≥ 0

F
(n)
0 (s) = s, F

(n)
p+1(s) = F (n)(F (n)

p (s)).

Let qn be the extinction probability of Z(n) starting from a single particle, i.e. qn =

P (Z
(n)
p = 0 for some p ∈ N|Z(n)

0 = 1). Let

X
(n)
t :=

1

n
Z

(n)
bntc, t ∈ R+; (2.1.3)

then {X(n)
t }t∈R+ is an Sn := { l

n
|l ∈ N0} valued (time inhomogeneous) Markov process

with sample paths in D(R+ : Sn), the space of càdlàg functions from R+ := [0,∞) to

Sn. Throughout, Sn is endowed with the discrete topology and, given a metric space S,

D(R+ : S) is endowed with the usual Skorohod topology. Space of probability measures

on a metric space S will be denoted by P(S).

Condition 2.1.1. (i) For each n, p
(n)
0 > 0, p

(n)
0 + p

(n)
1 < qn, mn = 1 + cn

n
, cn ∈ (−n,∞) \

{0}, and σ2
n < ∞. (ii) As n → ∞, cn → c ∈ R \ {0} and σ2

n → σ2 ∈ (0,∞). (iii)

The family of functions {F (n)′′}n∈N is equicontinuous at 1. (iv) As n→∞,
∑

l:l>ε
√
n(l−

mn)2p
(n)
l → 0, and X

(n)
0 converges in distribution to some µ ∈ P(R+).

Condition 2.1.1 (i) ensures that, as n → ∞, mn → 1, and thus the processes ap-

proach criticality without being critical. The case where c < 0 will be referred to as the

subcritical case while c > 0 corresponds to the supercritical case. Condition 2.1.1 (iii)

will be used in the study of the supercritical case in Theorem 2.1.4. Condition 2.1.1 (iv)

is needed for the diffusion approximation result in Theorem 2.1.2.

We now recall a well known weak convergence result for X(n) (see [12], [20, Theorem

4.2.2]), which describes the asymptotic behavior of X(n), as n → ∞, over any fixed

finite time horizon. Here we only give the result in a one dimensional setting. The

multidimensional result will be presented later in this section.
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Theorem 2.1.2. [12, 20] Assume Condition 2.1.1. Then X(n) converges weakly in

D(R+ : R+) to the unique (in law) diffusion process ξ with generator

(Lf)(x) = xcf ′(x) +
1

2
xσ2f ′′(x), f ∈ C2(R+), x ∈ R+, (2.1.4)

and initial distribution (i.e. probability law of ξ0) equal to µ.

We are concerned with the study of relationships between the steady state behavior

of X(n) and that of ξ. However, one needs to suitably interpret the term “steady state”

since, as is well known, as t → ∞, for mn > 1, X
(n)
t tends to infinity on the set of non-

extinction, and for mn ≤ 1, X
(n)
t eventually becomes extinct (see [1]). There are two well

studied approaches for formulating time asymptotic questions in the subcritical case. The

first is to condition the processes X(n) on non-extinction, where, loosely speaking, the

conditioning can either be on non-extinction at the present time or in the distant future.

The state process X(n) under these two conditionings has different limiting distributions

as t → ∞. The first is called the Yaglom distribution of X(n), while the second is

the stationary distribution of the Q-process associated with X(n) (see Section I.14 of

[1]). The second approach for obtaining a nontrivial time asymptotic behavior is to

introduce an immigration component. Namely, in each generation a (random) number

of particles that are indistinguishable from the original set of particles is added to the

population. The immigration component in particular ensures that the resulting scaled

state process, denoted by V (n), has a non-degenerate stationary distribution. For the

supercritical case, a common approach is to reduce the problem to that of a subcritical

setting by conditioning on the event of eventual extinction. The so conditioned state

process X(n) has the same law as the state process corresponding to a certain subcritical

BGW process. In this work we will show that the time asymptotic distribution of X
(n)
t

(in both subcritical and supercritical settings), under suitable conditioning, converges to

that of ξt under a similar conditioning, as n→∞. For models with immigration we will

13



prove convergence of stationary distributions.

We begin by describing results for models without immigration. For a Markov process

{Yt}t∈R+ with initial value Y0 = y, we write P (Yt ∈ ·) as Py(Yt ∈ ·). Similarly, when

the distribution of Y0 is µ, we write P (Yt ∈ ·) as Pµ(Yt ∈ ·). Similar notations will be

used for conditional expectations. Let S be a subset of Rk
+, for some k ∈ N. When S is

endowed with a topology, we will denote by B(S) the σ-field generated by the open sets

of S. Let Y ≡ {Yt}t∈R+ be an S-valued Markov process such that 0 ∈ S is an absorbing

state.

Definition 2.1.1. (i) A quasi-stationary distribution (qsd) for Y is a probability distri-

bution µ on (S,B(S)) such that Pµ(Yt ∈ B|t < TY < ∞) = µ(B) for all B ∈ B(S) and

t ≥ 0, where TY := inf{t|Yt = 0}.

(ii) If for all y ∈ S \ {0}, as t → ∞, Py(Yt ∈ ·|t < TY < ∞) converges weakly to some

probability measure µ on (S,B(S)), then µ is called the Yaglom distribution of Y .

The following result follows from [23] and Proposition 2.3.2.1 of [24].

Theorem 2.1.3. [23, 24] The Yaglom distribution of ξ exists and is Exponential with

density

f(x) =
2|c|
σ2

exp

(
−2|c|
σ2

x

)
, x ≥ 0. (2.1.5)

Our first result, Theorem 2.1.4 below, says that the Yaglom distribution of X(n)

approaches that of ξ, as n → ∞. Note that the existence of the Yaglom distribution of

X(n) in the subcritical case is a direct consequence of Theorem V.4.2 of [1].

Theorem 2.1.4. Assume Condition 2.1.1. For each n, X(n) has a Yaglom distribution

ν(n). This distribution is also a qsd, and it converges weakly to the Yaglom distribution

ν of ξ.

We now consider the second form of conditioning where one conditions the process on
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not being extinct in the “distant future”. We will see that in this case a somewhat differ-

ent asymptotic behavior emerges. For this result we restrict ourselves to the subcritical

case (i.e. cn < 0). We begin with the definition of a Q-process (see [1], [23]).

Let Ω̂ = D(R+ : R+) and F̂ be the corresponding Borel σ-field (with the usual

Skorohod topology). Denote by {Ft}t∈R+ the canonical filtration on (Ω̂, F̂), i.e. Ft =

σ(πs : s ≤ t), where πs(x) = xs for x ∈ Ω̂. We denote by P̂
(n)
µ the measure induced by

X(n) on (Ω̂, F̂) when Z
(n)
0 has distribution µ (supported on N). Let T := inf{t|πt = 0}.

By Lemma 6.0.3 in the appendix, there is a probability measure P
(n)↑
µ on (Ω̂, F̂) such

that, as s → ∞, P̂
(n)
µ (Θ|T > s) → P

(n)↑
µ (Θ), for all Θ ∈ Ft, t ∈ R+. Furthermore if

{Z(n)↑
k }k∈N0 is a Markov chain with state space N, l-step transition function

p
(n)↑
l (i, j) = P (Z

(n)
l = j|Z(n)

0 = i)
j

i
m−ln , i, j ∈ N,

and initial distribution µ, then P
(n)↑
µ is the law of {X(n)↑

t }t∈R+ , where X
(n)↑
t := 1

n
Z

(n)↑
bntc ,

t ∈ R+. The process Z(n)↑ [respectively X(n)↑] is called the Q-process associated with Z(n)

[respectively X(n)]. Q-processes associated with branching processes can be interpreted

as branching processes conditioned on being never extinct.

Next, we introduce the Q-process associated with the diffusion ξ from Theorem 2.1.2.

Denote by Pξ,x the measure induced by ξ on (Ω̂, F̂), where ξ(0) = x > 0. The following

theorem is contained in [23].

Theorem 2.1.5. [23] There is a probability measure P ↑ξ,x on (Ω̂, F̂), such that for all

t ∈ R+ and Θ ∈ Ft, Pξ,x(Θ|T > s) converges to P ↑ξ,x(Θ), as s→∞. Let ξ↑ be the unique

weak solution of the SDE

dξ↑t = cξ↑t dt+

√
σ2ξ↑t dBt + σ2dt, ξ↑0 = x,

where B is a standard Brownian motion. Then P ↑ξ,x equals the measure induced by ξ↑ on
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(Ω̂, F̂).

The process ξ↑ is referred to as the Q-process associated with ξ. The following result

(see [23], Section 5.2) says that the process ξ↑ has a unique stationary distribution, ν↑,

which is given as the convolution of two copies of the exponential distribution ν with

density as in (2.1.5).

Theorem 2.1.6. [23] Assume c < 0. As t → ∞, for every initial condition x, ξ↑t

converges in distribution to a random variable ξ↑∞, whose distribution, denoted by ν↑, is

the convolution of two copies of the Yaglom distribution ν. In particular, ν↑ has density

f(x) =

(
2c

σ2

)2

x exp

(
2c

σ2
x

)
, x ≥ 0. (2.1.6)

Our next result shows that the time asymptotic behavior of the Q-process associated

with X(n) can be well approximated by that of the Q-process associated with the diffusion

approximation of X(n). Note that the existence of the stationary distribution of the Q-

process X(n)↑ is immediate from Theorem I.14.2 in [1].

Theorem 2.1.7. Assume Condition 2.1.1 and that cn < 0 for all n ∈ N. For each n,

X
(n)↑
t converges in distribution, as t→∞, to a random variable X

(n)↑
∞ . The distribution

ν(n)↑ of X
(n)↑
∞ is the unique stationary distribution of the Sn valued Markov process X(n)↑.

As n→∞, ν(n)↑ converges weakly to ν↑.

We now describe the results for BGW processes with immigration. Let F and G be

pgf’s of N0 valued random variables. A Bienaymé-Galton-Watson branching process with

immigration corresponding to (F ,G) (referred to as a DBI(F,G) process), is a Markov

chain {Yn} with state-space N0 and transition probability function described in terms of

the corresponding pgf: Given Y0 = i ∈ N, the pgf H(i, ·) of Y1 is H(i, s) =
∑∞

j=0 P (Y1 =

j|Y0 = i)sj = F (s)iG(s), s ∈ [0, 1].
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Let G(n) be a sequence of pgf’s, and consider a sequence of DBI(F (n), G(n)) processes

Y (n).

Condition 2.1.8. (i) There are ι0, κ0 ∈ (0,∞) such that, for all n ∈ N, G(n)′(1) = ιn ≥

ι0 and G(n)′′(1) = κn ≤ κ0. (ii) As n → ∞, ιn → ι. (iii) There is a τ0 ∈ [0,∞) such

that, for all n ∈ N, F (n)′′′(1) = τn < τ0.

Let V
(n)
t := 1

n
Y

(n)
bntc, t ∈ R+. The proof of the following theorem is easy to establish

using [23] and [25, Theorem 2.1].

Theorem 2.1.9. Assume Conditions 2.1.1 and 2.1.8 and that c < 0. Suppose that V
(n)

0

converges in distribution to some µ ∈ P(R+). Then V (n) converges weakly in D(R+ : R+)

to the process ζ which is the unique weak solution of

dζt = cζtdt+
√
σ2ζtdBt + ιdt, t ≥ 0,

where ζ0 has distribution µ. The Markov process ζ has a unique stationary distribution

η, which is a gamma distribution with parameters 2ι/σ2 and σ2/(2|c|), i.e., η has density

g given as

g(x) = x
2ι
σ2
−1

exp
(
−x2|c|

σ2

)
(
σ2

2|c|

) 2ι
σ2

Γ
(

2ι
σ2

) , x > 0.

We are interested in the long time behavior of the scaled processes V (n) as they

approach criticality. Our main result is the following. Note that the existence of the

stationary distribution of V (n) is immediate from [34], p. 414.

Theorem 2.1.10. Assume Conditions 2.1.1 and 2.1.8 and that cn < 0 for all n ∈ N.

For each n ∈ N, V (n) has a unique stationary distribution η(n), and as n → ∞, η(n)

converges weakly to η.
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As noted earlier in the introduction, results similar to Theorems 2.1.4, 2.1.6, and

2.1.10 can be established for multitype settings as well. To illustrate the key ideas

involved, we only discuss one case in detail, namely the convergence of the Yaglom

distribution in the setting of a subcritical multitype process. We begin with some notation

and definitions. Let {Z(n)
j , j ∈ N0}n∈N be a sequence of k-BGW processes with transition

mechanism described below. Let C := [0, 1]k, eα := (δ1α, . . . , δkα)′ be the αth canonical

basis vector, and si :=
∏k

α=1 s
iα
α , for i = (i1, . . . , ik)

′ ∈ Nk
0 and s = (s1, . . . , sk)

′ ∈ Rk
+.

Similar to the single type case, the evolution of Z
(n)
j = (Z

(n)
j,1 , · · ·Z

(n)
j,k )′ is described as

follows. For any α = 1, . . . , k, each of the Z
(n)
j,α type α particles alive at time j (if any)

lives for one unit of time and then dies, giving rise to a number of offspring particles,

represented by l = (l1, . . . , lk), lβ being the number of type β offspring, with probability

p(n)(eα, l). The particles behave independently of each other and of the past. The

probability law of Z(n) is given in terms of the pgf F (n)(s) := (F
(n)
(1) (s), . . . , F

(n)
(k) (s)),

s ∈ C, where F
(n)
(α) (s) :=

∑
j∈Nk0

p(n)(eα, j)s
j, 1 ≤ α ≤ k, s ∈ C. Let m

(n)
αβ = EeαZ

(n)
1,β be

the expected number of type β offspring from a single particle of type α in one generation.

Then the k×k matrix M(n) = (m
(n)
αβ )α,β=1,...,k is called the mean matrix of Z(n). Note that

m
(n)
αβ =

∂F
(n)
(α)

∂sβ
(1), where the partial derivative is understood to be the left hand derivative.

The processes Z(n) will be assumed to have a uniformly strictly positive mean matrix

M(n), by which we mean that there exist U ∈ N and a ∈ (0,∞) such that for every

n ≥ 1 ((M(n))U)α,β ≥ a for all 1 ≤ α, β ≤ k. From the Perron-Frobenius Theorem it

then follows that M(n) has a real, positive maximal eigenvalue ρn with associated positive

left and right eigenvectors v(n) and u(n), respectively, which, without loss of generality,

are normalized so that u(n)′v(n) = 1 and u(n)′1 = 1 (see [1]). The maximal eigenvalue

ρn plays a similar role in the classification of the k-BGW process as the mean played

in classifying the (single type) BGW process. The k-BGW process is called subcritical,

critical, or supercritical, according to whether ρn < 1, ρn = 1, or ρn > 1, respectively. We
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will consider the subcritical case, namely for all n ≥ 1 ρn ∈ (0, 1), and study the behavior

of quasi-stationary and Yaglom distributions of the scaled process X(n)(t) =
Z

(n)
bntc
n

, t ≥ 0,

as ρn → 1.

Condition 2.1.11. For each n ≥ 1, E1(||Z(n)
1 || log ||Z(n)

1 ||) <∞.

The existence of the Yaglom distribution of X(n) is assured by the following result,

which is a consequence of Theorem V.4.1 of [1] (see also Theorem V.4.2 therein). We

give a proof in Section 2.3.

Theorem 2.1.12. Assume Condition 2.1.11. For each n ∈ N, X(n) has a Yaglom

distribution ν(n). This distribution is also a qsd.

Condition 2.1.13. There exist b, d ∈ (0,∞) such that for all n ∈ N (i)∑
αβγ ∂

2F
(n)
(α) (1)/∂sβ∂sγ ≥ b, and (ii)

∑
α,β,γ,δ ∂

3F
(n)
(α) (1)/∂sβ∂sγ∂sδ ≤ d, where α, β, γ, δ

in the above sums vary over {1, . . . , k}.

Part (i) of the assumption can be interpreted as a non-degeneracy condition, and part

(ii) says that the third moments of the offspring distributions are uniformly bounded in

n.

The assumption on convergence of means translates into the following requirement in

the multitype setting.

Condition 2.1.14. For some strictly positive matrix M and each n ∈ N, M(n) = M +

C(n)

n
, and limn→∞C(n) = C. The maximal eigenvalues ρn of M(n) are of the form ρn =

1 + cn
n

, with cn ∈ (−n, 0) and limn→∞ cn = c ∈ (−∞, 0). Moreover, M has maximal

eigenvalue 1 with corresponding eigenvectors v = lim v(n) and u = lim u(n). Finally,

v′Cu = c.

Example 2.1.1. Let C(n) = cnI, where I is the identity matrix and cn ∈ (−n, 0) such

that cn → c ∈ (0,∞). Let M be a strictly positive matrix with maximal eigenvalue equal

to 1. Then M(n) = M− C(n)

n
satisfies Condition 2.1.14.
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Let

σ
(n)
i,j (l) =

∑
r∈Nk0

(ri −m(n)
li )(rj −m(n)

lj )p(n)(el, r).

The following condition is analogous to the assumption on convergence of variances in

the single type case.

Condition 2.1.15. As n → ∞, σ
(n)
i,j (l) → σi,j(l) for all 1 ≤ i, j, l ≤ k and Q :=

1
2

∑k
l=1 vlu

′σ(l)u > 0, where σ(l) is the matrix with (i, j)th entry σi,j(l).

The following diffusion approximation result can be established along the lines of

Theorem 4.3.1 of [20] and Theorem 9.2.1 of [10]. We provide a sketch in Section 2.3.

Theorem 2.1.16. Assume Conditions 2.1.13, 2.1.14, and 2.1.15. Suppose that the dis-

tribution of X(n)(0) converges to some µ ∈ P(Rk
+). Let µ1 ∈ P(R+) be given as

µ1(A) = µ{x ∈ Rk
+|x′u ∈ A}, A ∈ B(R+). (2.1.7)

Let ζ(n) = X(n)′u(n). Then ζ(n) converges weakly in D(R+ : R+) to the unique (in law)

diffusion ζ with initial distribution µ1 and generator L̃ given as

(L̃f)(x) = cxf ′(x) +Qxf ′′(x), f ∈ C∞c (R+), x ∈ R+. (2.1.8)

Furthermore, for any t0 ∈ (0,∞), the process X(n,0), defined by X(n,0)(t) = X(n)(t0 + t),

t ≥ 0, converges weakly to X(0) = vζ(0), where ζ(0)(t) = ζ(t0 + t), t ≥ 0.

The process X(0) is a Markov process with state space Sv = {θv|θ ≥ 0} and can

be formally regarded as the limit of X(n). Indeed, if the support of µ is contained in

Sv, then, noting that u′v = 1, we see that the law of vζ(0) equals µ, and that in fact

X(n) converges weakly to vζ, where ζ is as in Theorem 2.1.16. We will be concerned
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with the Yaglom distribution of the Sv valued Markov process X(0) and its relation to

the Yaglom distribution of X(n). For that it will be convenient to regard a probability

measure on Sv as one on Rk
+. Denote by ν̃ the Exponential distribution with density

f(x) = |c|Q−1 exp(−|c|Q−1x), x ≥ 0. Theorem 2.1.3 says that the Yaglom distribution of

ζ(0) is given by ν̃. Since X(0) = vζ(0), the Yaglom distribution of X(0) exists as well and

equals the distribution of vY , where Y has distribution ν̃. Thus, we have the following:

Theorem 2.1.17. Assume Conditions 2.1.13, 2.1.14, and 2.1.15. The Yaglom distribu-

tion of ζ(0) exists and equals ν̃. Furthermore, the Yaglom distribution of X(0), denoted

by ν̄, exists and equals the distribution of vY , where Y has distribution ν̃.

The following is our main result that relates the qsd’s and Yaglom distributions of

X(n) to that of its “diffusion limit” X(0). Probability distributions similar to ν̄ have

previously been noted in the study of qsd’s of multitype BGW processes. In [1] (p. 191),

a single critical BGW process Z (rather than a sequence of near critical BGW processes)

is considered and it is shown that Zn/n conditioned on non-extinction converges to a

random variable that is concentrated on the ray {xvZ |x ≥ 0}, where vZ is the left eigen-

vector of the mean matrix of Z corresponding to the eigenvalue 1. In [35] (see Theorem

3 therein) the case where Z is near critical and a somewhat differently (component wise)

scaled process Z∗ is considered. The asymptotic behavior of Z∗n conditioned on non-

extinction, as n→∞, and the offspring distribution approaches criticality, is related to

the limiting distributions considered here. We remark that none of these results concern

the setting of diffusion approximation, where time and space are scaled and one starts

with a large number of particles.

Theorem 2.1.18. Assume Conditions 2.1.13, 2.1.14, and 2.1.15. The Yaglom distribu-

tion ν(n) of X(n) converges weakly to the Yaglom distribution ν̄ of X(0).
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2.2 Proofs: Single Type Case.

In this section we give proofs of Theorems 2.1.4, 2.1.7, and 2.1.10. We begin with

Theorem 2.1.4.

Proof of Theorem 2.1.4. In the subcritical case, it is immediate from Theorem V.4.2

of [1] that X(n) has a Yaglom distribution ν(n). A representation of the Laplace transform

of ν(n) in the subcritical or supercritical case is given in Lemma 2.2.1, below. Moreover,

by Lemma 6.0.1 and (2.2.7), ν(n) is a qsd.

We now show that ν(n) converges weakly to ν. The first step is to establish the

representation for the Laplace transform of ν(n) given in Lemma 2.2.1 below. In the

subcritical case, define

Q
(n)
k (s) := m−kn (F

(n)
k (s)− 1), s ∈ [0, 1]. (2.2.1)

Then Q
(n)
k converges pointwise over [0, 1], as k →∞, to a continuous function Q(n) that

is positive on [0, 1) (see [1], p. 40, Corollary I.11.1), i.e.

lim
k→∞

Q
(n)
k (s) =: Q(n)(s), s ∈ [0, 1], (2.2.2)

where Q(n)(s) > 0 for s ∈ [0, 1). The function Q(n) will determine the Laplace transform

of ν(n) in the subcritical case. In the supercritical case, we proceed as follows. Note that,

since p
(n)
0 > 0, we have that qn > 0. Also since mn > 1, we have qn ∈ (0, 1) and that qn is

the smallest root of F (n)(t) = t (see [1], Theorem I.5.1). Define F̃ (n)(s) := q−1
n F (n)(qns),

s ∈ [0, 1]. Since F (n)(qn) = qn, each F̃ (n) is again a pgf and thus has a representation

F̃ (n)(s) =
∑∞

l=0 p̃
(n)
l sl, s ∈ [0, 1], with

∑∞
l=0 p̃

(n)
l = 1. In fact, p̃

(n)
l = p

(n)
l ql−1

n , l ∈ N0.

The probability distribution {p̃(n)
l } has mean m̃n = q−1

n F (n)′(qn)qn = F (n)′(qn) < 1 and

variance σ̃2
n = F̃ (n)′′(1) − m̃2

n + m̃n = qnF
(n)′′(qn) − m̃2

n + m̃n. That F (n)′(qn) < 1 is a

consequence of F (n)′(1) > 1, F (n)(qn) = qn, and the strict convexity of F (n) on [0, 1]. The
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latter follows from the assumption that p
(n)
0 +p

(n)
1 < qn. Let Q̃

(n)
k (s) := m̃−kn (F̃

(n)
k (s)−1),

s ∈ [0, 1]. Then

lim
k→∞

Q̃
(n)
k (s) =: Q̃(n)(s), s ∈ [0, 1], (2.2.3)

and Q̃(n) has the same properties as those of Q(n) in the subcritical case noted earlier.

Lemma 2.2.1. The Laplace transform of ν(n),
∫

[0,∞)
e−αxν(n)(dx), in the subcritical case,

is given as [Q(n)(0) − Q(n)(e−α/n)]/(Q(n)(0)) and, in the supercritical case as [Q̃(n)(0) −

Q̃(n)(e−α/n)]/(Q̃(n)(0)).

Proof. Consider first the subcritical case. Since TX(n) <∞ a.s., it suffices to show that,

for each α ≥ 0,

lim
t→∞

E i
n

(
e−αX

(n)
t |X(n)

t > 0
)

=
Q(n)(0)−Q(n)(e−α/n)

Q(n)(0)
. (2.2.4)

Elementary calculations give

E i
n

(
e−αX

(n)
t |X(n)

t > 0
)

= 1− An,t(e
−α/n)

An,t(0)
, (2.2.5)

where, for θ ∈ [0, 1], An,t(θ) = m
−bntc
n

(
1−

[
F

(n)
bntc(θ)

]i)
. Next,

lim
t→∞

An,t(e
−α/n) = lim

t→∞
m−bntcn

(
1−

i∑
k=0

(
i

k

)(
F

(n)
bntc(e

−α/n)− 1
)k)

= −i lim
t→∞

m−bntcn

(
F

(n)
bntc(e

−α/n)− 1
)

= −iQ(n)(e−α/n),

(2.2.6)

where the second and third equalities follow from (2.2.2). In exactly the same way one

sees that limt→∞An,t(0) = −iQ(n)(0). Combining the above observations we have (2.2.4),

which proves the lemma for the subcritical case.
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Consider now the supercritical case. Similar to the subcritical case

E i
n
(e−αX

(n)
t |t < TX(n) <∞) =

[
F

(n)
bntc(qne

−α/n)
]i
−
[
F

(n)
bntc(0)

]i
[
F

(n)
bntc(qn)

]i
−
[
F

(n)
bntc(0)

]i ≡ 1− Ãn,t(e
−α
n )

Ãn,t(0)

where, for θ ∈ [0, 1], Ãn,t(θ) = m̃
−bntc
n

(
1−

[
F̃

(n)
bntc(θ)

]i)
. This says in particular that

E i
n
(e−αX

(n)
t |t < TX(n) <∞) = E i

n
(e−αX̃

(n)
t |X̃(n)

t > 0), (2.2.7)

where X̃
(n)
t := 1

n
Z̃

(n)
bntc, t ∈ R+, and Z̃(n) is a BGW process with pgf F̃ (n). Now making

use of (2.2.3) instead of (2.2.2), the proof for the supercritical case is completed exactly

as for the subcritical case.

We continue with the proof of Theorem 2.1.4, which is based on the fact that the

Laplace transform of ν is G(α) = (1 + ασ2

2|c| )
−1, α ≥ 0. First, we show that ν(n) converges

to ν for a special subcritical model where the pgf is of the so-called linear fractional form

(see [1], pp. 6-7, [16], pp. 9-10). We then establish a comparison lemma which allows us

to prove the general subcritical result by an approximation argument.

Lemma 2.2.2. Assume Condition 2.1.1 and that cn < 0 for all n. Let, for each n, F (n)

be of the linear fractional form:

F (n)(s) = 1− b(n)

1− p(n)
+

b(n)s

1− p(n)s
, s ∈ [0, 1], (2.2.8)

where b(n), p(n) ∈ (0, 1) and b(n) < 1− p(n). Then ν(n) converges weakly to ν.

We note that Condition 2.1.1 imposes certain restrictions on b(n) and p(n) which are not

made explicit in the statement of the lemma. See Lemma 6.0.2 for a precise relationship

between the parameters b(n), p(n), and the mean and variance of Z
(n)
1 .
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Proof. With An,t as in the proof of Lemma 2.2.1, we have

E i
n

(
e−αX

(n)
t |X(n)

t > 0
)

= 1− An,t(e
−α/n)

An,t(0)
.

In order to prove the lemma it suffices to show that

lim
n→∞

lim
t→∞

n

i
An,t(0) = −2c

σ2
and lim

n→∞
lim
t→∞

n

i
An,t(e

−α/n) =
2cα

2c− ασ2
. (2.2.9)

Since mn < 1 for each n, we get (see [1], p. 7) for each l ≥ 1

F
(n)
l (s) = 1−ml

n

(
1− sn,0
ml
n − sn,0

)
+
ml
n

(
1−sn,0
mln−sn,0

)2

s

1−
(

mln−1
mln−sn,0

)
s

= 1−ml
nan,l +

ml
na

2
n,ls

1− bn,ls
, (2.2.10)

where an,l = 1−sn,0
mln−sn,0

, bn,l = mln−1
mln−sn,0

, and sn,0 is the unique root of F (n)(s) = s that is

strictly greater than 1. Note that both an,l and bn,l converge as l→∞. We get, by using

(2.2.10) in the definition of An,t, limt→∞
n
i
An,t(0) = n sn,0−1

sn,0
. From the explicit form of

F (n) (see [1], p. 6) we have 1−p(n)
1−p(n)sn,0

= 1
mn
, and thus sn,0 = 1−mn(1−p(n))

p(n)
. As a consequence

of Condition 2.1.1, we have that

sn,0 → 1, p(n) → p, and σ2 =
2p

1− p
. (2.2.11)

Combining these observations we obtain

lim
n→∞

lim
t→∞

n

i
An,t(0) = lim

n→∞
n
sn,0 − 1

sn,0
= lim

n→∞
n

(1− p(n))(1−mn)

p(n)sn,0
= −2c

σ2
,
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which proves the first equality in (2.2.9). Similarly one can show that

lim
t→∞

n

i
An,t(e

−α/n) = n
sn,0 − 1

sn,0
− n (sn,0 − 1)2e−α/n

(sn,0 − e−α/n)sn,0
.

Using (2.2.11) and the above display, we now have

lim
n→∞

lim
t→∞

n

i
An,t(e

−α/n) = −2c

σ2
+

2c

σ2
lim
n→∞

sn,0 − 1

sn,0 − e−α/n
= −2c

σ2

(
1− 1

1− ασ2

2c

)
,

which proves the second identity in (2.2.9).

We will next treat the general case and begin with the following comparison lemma,

which extends a result due to Spitzer (see [1], p. 22). The latter is concerned with pgf’s

with mean 1. The lemma given below extends Spitzer’s result to a setting where the two

pgf’s have the same mean m which may be strictly less than 1.

Lemma 2.2.3. Let f (1) and f (2) be pgf ’s of two N0 valued random variables having the

same mean m ∈ (0, 1] and variances σ2
1 < σ2

2 ≤ ∞. Then there exist integers ni, i = 1, 2,

such that for all n ≥ 0

f
(1)
n+n1

(t) ≤ f
(2)
n+n2

(t), for t ∈ [0, 1]. (2.2.12)

Proof. The proof is adapted from [1]. Using L’Hospital’s rule, we get for f = f (1), f (2)

and σ2 = σ2
1, σ

2
2

lim
t→1

f(t)−mt− (1−m)

(1− t)2
= lim

t→1

f ′(t)−m
2(t− 1)

=
σ2 +m2 −m

2
=: a. (2.2.13)

Note that a ∈ (0,∞]. Define ε(t) := f(t)−mt−(1−m)
(1−t)2 . We are interested in ε′(t) for t close

to 1, t ∈ (0, 1]. Once more by L’Hospital’s rule, limt→1 ε
′(t) = limt→1

f ′′′(t)
6
∈ [0,∞]. Thus

ε(t) is non-decreasing in a (left) neighborhood of 1 and it converges to a. We define for

26



f (i), i = 1, 2, ai and εi analogous to a, ε, by replacing f by f (i) and σ2 by σ2
i . Since σ2

1 < σ2
2

and the means of f (1) and f (2) are equal, we have that a1 < a2. Thus, from (2.2.13) and

the monotonicity of εi near 1, there exists a δ ∈ (0, 1], such that f (1)(t) ≤ f (2)(t) for all

t ∈ [1− δ, 1]. Using the monotonicity of f (i) we now have, for all n ≥ 0 and n1 ≤ n2,

f
(1)
n+n1

(t) ≤ f
(2)
n+n2

(t) for t ∈ [1− δ, 1]. (2.2.14)

To show that (2.2.12) holds, it remains to consider t ∈ [0, 1− δ]. We can choose n1 and

n2 > n1, such that f
(1)
n1 (0) ∈ [1− δ, 1] and f

(1)
n1 (1− δ) ≤ f

(2)
n2 (0), and thus

1− δ ≤ f (1)
n1

(0) ≤ f (1)
n1

(t) ≤ f (1)
n1

(1− δ) ≤ f (2)
n2

(0) ≤ f (2)
n2

(t) < 1.

Since 1 − δ ≤ f
(1)
n1 (t) ≤ f

(2)
n2 (t), we get, using the monotonicity of f (i), that for n ≥ 0,

f
(1)
n+n1

(t) ≤ f
(2)
n+n2

(t), for t ∈ [0, 1− δ]. Combining this with (2.2.14) we have (2.2.12).

Continuing the proof of Theorem 2.1.4, we now establish the convergence of the

Yaglom distribution of X(n) to that of ξ in the general setting.

Consider first the subcritical case. From Lemma 6.0.2 in the appendix, it follows

that for all ε > 0 and n ∈ N we can find pgf’s of the linear fractional form, f (n,1) and

f (n,2), such that their means are mn and variances are σ2
n,1 = σ2

n − ε and σ2
n,2 = σ2

n + ε,

respectively.

By Lemma 2.2.3, for all n, i ∈ N, there exist an ln and a t0 := t0(n), such that for all

t ≥ t0 and all r ∈ [0, 1]

[f
(n,1)
bntc−ln(r)]i ≤ [F

(n)
bntc(r)]

i ≤ [f
(n,2)
bntc+ln(r)]i,
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where f
(n,j)
l denotes the lth iterate of f (n,j). Thus, with An,t as before, for all t ≥ t0,

m−bntcn

(
1−

[
f

(n,2)
bntc+ln(0)

]i)
≤ An,t(0) ≤ m−bntcn

(
1−

[
f

(n,1)
bntc−ln(0)

]i)
. (2.2.15)

Denote by s
(n,j)
0 the root of f (n,j)(r) = r that is greater 1. Then, for all n ≥ 1,

n(s
(n,1)
0 − 1)

s
(n,1)
0

≥ lim
t→∞

n

i
An,t(0) ≥ n(s

(n,2)
0 − 1)

s
(n,2)
0

.

Similar to the calculation below (2.2.11), we now have, on letting n → ∞ in the above

display,

− 2c

σ2 − ε
≥ lim sup

n→∞
lim
t→∞

n

i
An,t(0) ≥ lim inf

n→∞
lim
t→∞

n

i
An,t(0) ≥ − 2c

σ2 + ε
.

Letting ε→ 0, we have limn→∞ limt→∞
n
i
An,t(0) = − 2c

σ2 . Similarly, it is seen that

lim
n→∞

lim
t→∞

n

i
An,t(e

−α/n) = −2c

σ2

(
1− 1

1− ασ2

2c

)
. (2.2.16)

Combining the above observations, we have

lim
n→∞

lim
t→∞

E i
n

(
e−αX

(n)
t |X(n)

t > 0
)

=
2c

2c− ασ2
=

(
1 +

ασ2

2|c|

)−1

,

and this proves Theorem 2.1.4 for the subcritical case.

We now consider the supercritical case. From (2.2.7) it follows that the Yaglom

distribution ν(n) of X(n) is the same as the Yaglom distribution ν̃(n) of X̃(n). Thus it

suffices, in view of the result for the subcritical case, to show that limn→∞ n(m̃n−1) = −c

and limn→∞ σ̃
2
n = σ2.

We begin by showing that qn → 1 as n → ∞. We argue via contradiction. Suppose

lim infn→∞ qn = q < 1. Let ε ∈ (0, σ2/2). By the equicontinuity assumption in Condition
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2.1.1, there exist a δ ∈ (0, 1− q) and an nδ such that for n ≥ nδ

|F (n)′′(1− δ)− σ2| ≤ |F (n)′′(1− δ)− F (n)′′(1)|+ |F (n)′′(1)− σ2| ≤ 2ε < σ2.

Since F (n)′′ is nondecreasing, we have

F (n)(1− δ) ≥ F (n)(1)− δF (n)′(1) +
δ2

2
F (n)′′(1− δ) ≥ 1− δ − δ cn

n
+
δ2

2
(σ2 − 2ε).

Choose n large enough so that qn < 1−δ and δ2

2
(σ2−2ε) > δ cn

n
. Then F (n)(1−δ) > 1−δ.

Since qn < 1− δ, we arrive at a contradiction because F (n)(x) < x for all x ∈ (qn, 1). The

convergence of qn to 1 and equicontinuity of F (n)′′ now immediately yield the convergence

of σ̃2
n to σ2.

We next establish the convergence of n(m̃n−1). Observe that m̃n−mn = F (n)′(qn)−

F (n)′(1) = −
∫ 1

qn
F (n)′′(u)du and thus

n(m̃n − 1) = n(mn − 1)− n(1− qn)

(∫ 1

qn

F (n)′′(u)
1

1− qn
du

)
. (2.2.17)

Moreover,

1− qn = 1− F (n)(qn) =

∫ 1

qn

(F (n)′(u)− F (n)′(1))du+ (1− qn)mn

= −
∫ 1

qn

∫ 1

u

F (n)′′(v)dvdu+ (1− qn)mn.

Rearranging terms gives

(1− qn)(mn − 1) =
(1− qn)2

2

(∫ 1

qn

F (n)′′(v)
v − qn

(1− qn)2/2
dv

)
.
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Thus

n(1− qn) = 2n(mn − 1)

(∫ 1

qn

F (n)′′(v)
v − qn

(1− qn)2/2
dv

)−1

. (2.2.18)

Combining equations (2.2.17) and (2.2.18), we get

n(m̃n − 1) = n(mn − 1)

(
1− 2

∫ 1

qn
F (n)′′(u)gn,1(u)du∫ 1

qn
F (n)′′(v)gn,2(v)dv

)
,

where gn,1(u) = 1
1−qn and gn,2(v) = v−qn

(1−qn)2/2
. To complete the proof, we will now show

that the ratio of integrals in the last display converges to 1, as n → ∞. In fact, we will

show that each integral converges to σ2. Observing that
∫ 1

qn
gn,i(u)du = 1, i = 1, 2, and

using the monotinicity of F (n)′′ , we get, for i = 1, 2,

lim sup
n→∞

∫ 1

qn

F (n)′′(u)gn,i(u)du ≤ lim sup
n→∞

∫ 1

qn

F (n)′′(1)gn,i(u)du

= lim sup
n→∞

(σ2
n +m2

n −mn) = σ2. (2.2.19)

Similarly,

lim inf
n→∞

∫ 1

qn

F (n)′′(u)gn,i(u)du ≥ lim inf
n→∞

∫ 1

qn

F (n)′′(qn)gn,i(u)du

= lim inf
n→∞

F (n)′′(qn) = σ2. (2.2.20)

This proves n(m̃n − 1) → −c and as argued earlier this proves Theorem 2.1.4 for the

supercritical case.

Proof of Theorem 2.1.7. Note that the existence of the stationary distribution of the

Q-process X(n)↑ is immediate from Theorem I.14.2 in [1]. We will show that for all i ∈ N

lim
t→∞

E i
n

(
e−αX

(n)↑
t

)
= Q(n)′(e−α/n)e−α/n, α ≥ 0. (2.2.21)
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Since Q(n)′ is continuous at 1 (see [1], p. 40), this will show that hn(α) defined by the right

side of (2.2.21) is a Laplace transform of some random variable X
(n)↑
∞ with probability

law ν(n)↑. Similar to the calculation in [1], pp. 59-60, we have for α > 0

E i
n

exp
(
−αX(n)↑

t

)
=

∂

∂α

(
n

i

[
m−bntcn

(
1−

[
F

(n)
bntc(e

−α/n)
]i)])

.

Taking the limit, as t→∞, we get

lim
t→∞

E i
n

exp
(
−αX(n)↑

t

)
= lim

t→∞

([
F

(n)
bntc(e

−α/n)
]i−1

Q
(n)′

bntc(e
−α/n)e−α/n

)
= Q(n)′(e−α/n)e−α/n. (2.2.22)

This proves (2.2.21) and thus X
(n)↑
t converges in distribution, as t → ∞, to X

(n)↑
∞ . It is

easily checked that ν(n)↑ is a stationary distribution.

We now show that, as n → ∞, ν(n)↑ converges weakly to ν↑. For this it suffices to

show that

lim
n→∞

lim
t→∞

E i
n

exp
(
−αX(n)↑

t

)
=

(
1

1− ασ2

2c

)2

, α ∈ (0,∞). (2.2.23)

From (2.2.22) we have

lim
n→∞

lim
t→∞

E i
n

exp
(
−αX(n)↑

t

)
= lim

n→∞

∂

∂α

(
−nQ(n)(e−α/n)

)
.

We next show that for α ∈ (0,∞)

lim
n→∞

∂

∂α

(
−nQ(n)(e−α/n)

)
=

∂

∂α
lim
n→∞

(
−nQ(n)(e−α/n)

)
. (2.2.24)

Define gn(α) := −nQ(n)(e−α/n). Note that Q(n)(s) =
∑∞

j=0 v
(n)
j sj, 0 ≤ s < 1, for some

{v(n)
j }j∈N0 with v

(n)
0 < 0 and v

(n)
j > 0, for j ≥ 1, and lims↗1Q

(n)′(s) = 1 (see [1], pp.
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40-41); in particular, Q(n) is convex. Next note that |g′n(α)| ≤ sups∈(0,1)

{
|Q(n)′(s)s|

}
= 1,

which implies that {gn}n∈N is equicontinuous on [0,∞). From (2.2.6) and (2.2.16) we have

that gn converges pointwise to g, where g(α) = 2cα
2c−ασ2 , α ≥ 0. Thus, by equicontinuity

and uniform boundedness on compacts of {gn}, we have that for every interval [a, b], 0 <

a < b <∞, there exists a subsequence {gnk} which convergences to g uniformly on [a, b].

Thus, by [9], (9.12.1), p. 229, g is analytic on (0,∞) and limk→∞
∂
∂α
gnk(α) = ∂

∂α
g(α),

for α ∈ (0,∞). This proves equation (2.2.24). Equation (2.2.23) is now immediate on

combining the above two displays.

Proof of Theorem 2.1.10. Let H
(n)
l (i, ·) be the lth iterate of the pgf H(n)(i, ·) of Y

(n)
1

given Y
(n)

0 = i. Then, for all n and s ∈ [0, 1], H
(n)
l (i, s) = [F

(n)
l (s)]i

∏l−1
r=0G

(n)(F
(n)
r (s))

and H
(n)
l (i, ·) converges, as l→∞, to the pgf Π̃(n) given as Π̃(n)(s) =

∏∞
r=0G

(n)(F
(n)
r (s))

(see [34]). This shows that, for each n ∈ N, V (n) has a unique stationary distribution

η(n), which is characterized through its pgf Π(n)(s) =
∏∞

r=0 G
(n)(F

(n)
r (s1/n)). We now show

that, as n→∞, η(n) converges weakly to η. Let α(n, l) = (mln−1)F (n)′′ (1)
2(mn−1)mn

. Then V (n)(t) =

W
(n)
bntc

α(n,bntc)
n

, where W
(n)
l =

Y
(n)
l

α(n,l)
. Theorem 3 of [11] gives the weak convergence, as

t → ∞ and n → ∞, of W
(n)
bntc to W , where W has a Γ

(
2ι
σ2 , 1

)
distribution. The result

now follows on observing that

lim
n→∞

lim
t→∞

α(mn, bntc)
n

= lim
n→∞

−F (n)′′(1)

2n(mn − 1)mn

= −σ
2

2c
.

2.3 Proofs: Multitype Case.

In this section we prove Theorems 2.1.12, 2.1.16 and 2.1.18.

Proof of Theorem 2.1.12. Denote by F
(n)
p = (F

(n)
p,(1), . . . , F

(n)
p,(k)) the pth iterate of

F (n), i.e. for s ∈ C and p ∈ N0, F
(n)
p+1(s) = F (n)(F

(n)
p (s)), where F

(n)
0 (s) = s. Let

γ(n)(s) := limp→∞
v(n)′ [1−F (n)

p (s)]

ρpn
, s ∈ C. The latter limit exists and defines a positive

function on C \ {1} that is continuous at 1 (see [1, Theorems V.4.1]). We will next show
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that, for each s ∈ C,

lim
t→∞

E i
n
(e−s

′X
(n)
t |X(n)

t 6= 0) =
γ(n)(0)− γ(n)(rn)

γ(n)(0)
, (2.3.1)

where rn = (e−s1/n, · · · , e−sk/n)′ and s = (s1, · · · sk)′. Denoting by ν(n) the probability

law corresponding to the Laplace transform on the right hand side of the above display,

we will then have that ν(n) is the Yaglom distribution of X(n). The fact that ν(n) is also

a qsd is a consequence of Lemma 6.0.1 in the appendix. We now prove (2.3.1).

Elementary calculations give

E i
n
(e−s

′X
(n)
t |X(n)

t 6= 0) = E(e−
s′
n
Z

(n)
bntc|Z(n)

0 = i, Z
(n)
bntc 6= 0) = 1− An,t(rn)

An,t(0)
,

where, for θ ∈ C, An,t(θ) = ρ
−bntc
n

(
1− (F

(n)
bntc(θ))

i
)
. Next note that

(F
(n)
bntc(rn))i =

k∏
α=1
iα 6=0

iα∑
r=1

(
iα
r

)
1iα−r

(
F

(n)
bntc,(α)(rn)− 1

)r
= 1− i′

(
1− F (n)

bntc(rn)
)

+ R̃n,t, (2.3.2)

where the term R̃n,t is a linear combination of terms of the form
(
1− F (n)

bntc(rn)
)d

, where

d = (d1, . . . , dk) and
∑k

j=1 dj > 1. Since E1(||Z(n)
1 || log ||Z(n)

1 ||) <∞, we have

lim
t→∞

ρ−bntcn (1− F (n)
bntc(rn)) = γ(n)(rn)u(n) (2.3.3)

(see [1, Theorems V.4.1]), and thus

lim
t→∞

ρ−bntcn R̃n,t = 0. (2.3.4)

This implies limt→∞An,t(rn) = γ(n)(rn)i′u(n). In exactly the same way, we see that
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limt→∞An,t(0) = γ(n)(0)i′u(n). Combining the above observations, we now have (2.3.1)

and the result follows.

Proof of Theorem 2.1.16. The proof is similar to that of Theorem 4.3.1 of [20] and

thus only a sketch is provided. Let

Y (n)(t) := y(n) + n

∫ t

0

(M′ − I)X(n)(τ−)dAn(τ),

where An(τ) = bnτc
n

, τ ≥ 0. Define a Markov chain {(X̌(n)(k), Y̌ (n)(k))}k∈N0 as

(X̌(n)(k), Y̌ (n)(k)) = (X(n)(k/n), Y (n)(k/n)), k ∈ N0.

This chain has transition probabilities given by

P̌ (n)(x,y, x̃, ỹ) = Q̌(n)(x, x̃)1ỹ=y+(M′−I)x,

where Q̌(n)(·, ·) is the transition probability of the process X̌(n). Let

(Ľ(n)f)(x,y) =
∑
x̃,ỹ

P̌ (n)(x,y, x̃, ỹ)[f(x̃, ỹ)− f(x,y)]

and L(n) = nĽ(n). Then we have that for each smooth test function f

f(X(n)(t), Y (n)(t))−
∫ t

0

(L(n)f)(X(n)(τ−), Y (n)(τ−))dA(n)(τ)

is a martingale (with respect to the filtration generated by (X(n), Y (n)) ). Let f(x,y) =

φ(x− y) with φ ∈ C∞c (Rk). Taking y(n) = 0 and using a Taylor series expansion about
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(X(n)(0), Y (n)(0)), we have that

φ(X(n)(t)− Y (n)(t))− φ(X(n)(0)) + En(t)

−
∫ t

0

k∑
i=1

(C(n)′X(n)(τ−))i
∂φ

∂si
(X(n)(τ−)− Y (n)(τ−))dA(n)(τ)

− 1

2

∫ t

0

k∑
i,j,l=1

(X(n)(τ−))lσ
(n)
i,j (l)

∂2φ

∂si∂sj
(X(n)(τ−)− Y (n)(τ−))dA(n)(τ)

is a martingale, where the remainder En(t) is such that sup0≤t≤T |En(t)| → 0, in prob-

ability for all T ∈ R+. From Condition 2.1.14 and the Perron-Frobenius Theorem it

follows (see Remark 4.3.2 in [20]) that with P = uv′

(I− P ′)X(n,0) converges to 0 in probability, uniformly on compacts, for all t0 > 0.

(2.3.5)

Also, using the fact that P ′(M ′ − I) = 0, we have P ′Y (n)(t) = 0 for all t ≥ 0. Using

these observations, it can be shown that, for all t ∈ R+,

lim
n→∞

∫ t

0

E|(L̂(n)φ)(X(n)(τ−), ξ(n)(τ−))− (Lφ)(ξ(n)(τ−))|dA(n)
τ = 0, (2.3.6)

where ξ(n) = X(n) − Y (n), and for (x, z) ∈ Rk
+ × Rk,

(L̂(n)φ)(x, z) =
k∑
i=1

((C(n))′x)i
∂φ

∂si
(z) +

1

2

k∑
l=1

k∑
i,j=1

xlσi,j(l)
∂2φ

∂si∂sj
(z).

and

(Lφ)(z) =
k∑
i=1

(C′P′z)i
∂φ

∂si
(z) +

1

2

k∑
l=1

k∑
i,j=1

(P′z)lσi,j(l)
∂2φ

∂si∂sj
(z).

Following [20], one can show that ξ(n) is a tight sequence in D(R+ : Rk), and, using
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(2.3.6), it follows that if ξ is any weak limit of ξ(n), then

φ(ξ(t))− φ(ξ(0))−
∫ t

0

(Lφ)(ξ(s))ds

is an F ξt := σ(ξ(s) : s ≤ t) martingale. Thus ξ(n) converges weakly to the diffusion ξ

with generator L and initial condition µ. Next note that ζ(n) = X(n)′u(n) = ξ(n)′u(n).

The weak convergence of ξ(n) to ξ shows that ζ(n) converges in distribution to ξ′u ≡ ζ.

Let g ∈ C∞c (R+) and define φ ∈ C∞c (Rk
+) as φ(z) = g(z′u), z ∈ Rk

+. Then

(Lg)(z′u) =
k∑
i=1

(z′PC)′ig
′(z′u)ui +

1

2

k∑
l=1

k∑
i,j=1

(z′P)′lg
′′(z′u)uiujσ

(n)
i,j (l)

= (z′uv′Cu)g′(z′u) +
1

2

k∑
l=1

(z′uv′)′lu
′σ(l)ug′′(z′u).

Since v′Cu = c, we see that ζ is a Markov process with generator

(L̃g)(x) = cxg′(x) +Qxg′′(x), x ∈ R+.

This proves the first part of the theorem.

Next noting that P ′X(n) = P ′ξ(n) and recalling (2.3.5) we see that X(n,0) converges

weakly to P ′ξ(0), where ξ(0)(t) = ξ(t + t0), t ≥ 0. Finally, since P = uv′ and ζ = ξ′u we

have that P ′ξ(0) = vζ(0) = X(0) and the result follows.

Proof of Theorem 2.1.18. We begin with some preliminary results. For each n ∈

N, s ∈ C, and α = 1, . . . , k, define q
(n)
α [s] = 1

2

∑
βγ

∂2F
(n)
(α)

(1)

∂sβ∂sγ
sβsγ, Qn[s] =

∑
α v

(n)
α q

(n)
α [s],

Qn = Qn[u(n)]. Let

πn,p =


∑p

r=1 ρ
r−2
n for p = 1, 2, . . .

0 for p = 0
(2.3.7)
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and

hn,p(s) = ρpnv
(n)′s/(1 + πn,pQnv

(n)′s), s ∈ C. (2.3.8)

In what follows, {o(p, n)|p, n ∈ N} will denote a collection of functions from C to Rk

satisfying the property that for every ε > 0, there exist N,P ∈ N, such that for n ≥ N

and p ≥ P we have sups∈C ||o(p, n)(s)|| < ε.

Proposition 2.3.1. Assume Conditions 2.1.13, 2.1.14, and 2.1.15. For each n, p ∈ N

and s ∈ C

1− F (n)
p (s) = hn,p(1− s){u(n) + o(p, n)(s)}. (2.3.9)

The proof of the proposition is immediate from Theorem 1 of [35] (see equation (2.3)

therein) and is therefore omitted. The following corollary facilitates the proof of the main

result.

Corollary 2.3.1. Assume Conditions 2.1.13, 2.1.14, and 2.1.15. For any convergent

sequence {rn} ⊂ C,

lim
n→∞

lim
t→∞

ρ−bntcn

(
1− F (n)

bntc(rn)
)

= lim
n→∞

lim
t→∞

ρ−bntcn hn,bntc(1− rn)u(n). (2.3.10)

Proof. Let a(n, t) = ρ
−bntc
n hn,bntc(1− rn)u(n) and with o(p, n) as in Proposition 2.3.1, let

b(n, t) = ρ
−bntc
n hn,bntc(1 − rn)o(bntc, n)(rn). Note that for each n we have from (2.3.3)

and (2.3.9)

lim
t→∞

ρ−bntcn

(
1− F (n)

bntc(rn)
)

= lim
t→∞

(a(n, t) + b(n, t)) = γ(n)(rn)u(n).

Moreover, limt→∞ a(n, t) and limt→∞ o(bntc, n)(rn) exist. Denoting the latter limit by

o(∞, n)(rn), we have

lim
t→∞

b(n, t) =
v(n)′(1− rn)o(∞, n)(rn)

1 + πn,∞Qnv(n)′(1− rn)
=: d(n),
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where πn,∞ := ρ−1
n

1−ρn . Since limn→∞ o(∞, n)(rn) = 0, we get that limn→∞ d(n) = 0, and

thus lim supn→∞ || limt→∞ b(n, t)|| = lim supn→∞ ||d(n)|| = 0. The result follows.

We now prove Theorem 2.1.18. In view of Theorem 2.1.12, it suffices to show that,

for s ∈ C,

lim
n→∞

lim
t→∞

E i
n
(e−s

′X
(n)
t |X(n)

t 6= 0) =
1

1− Q
c
v′s

. (2.3.11)

With An,t and rn as in the proof of Theorem 2.1.12, we have

E i
n
(e−s

′X
(n)
t |X(n)

t 6= 0) = 1− An,t(rn)

An,t(0)
.

Using Proposition 2.3.1, Corollary 2.3.1, and equations (2.3.2) and (2.3.4), we get

lim
n→∞

lim
t→∞

nAn,t(rn) = lim
n→∞

ni′u(n)

(
v(n)′(1− rn)

1 + πn,∞Qnv(n)′(1− rn)

)
=

i′u

(v′s)−1 − Q
c

,

where the last equality follows on noting that nv(n)′(1 − rn) → v′s, πn,∞
n
→ −1

c
, and

using Lemma 6.0.4. Setting rn = 0 in the above display, we have

lim
n→∞

lim
t→∞

nAn,t(0) = −ci
′u

Q
.

Combining the above observations we have (2.3.11) and the result follows.
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Chapter 3

Catalyst-Reactant Branching Processes

3.1 Introduction and Main Results

The particles in the (multitype) Bienaymé-Galton-Watson processes considered in the

last chapter evolved independently of each other. In this chapter, we consider catalytic

branching processes that model the dynamics of a catalyst population which affects the

activity level of an associated reactant population. Roughly speaking, we consider a

population of catalyst particles, which evolve according to a continuous time branching

process, and a reactant population whose branching rate is proportional to the total

mass of the catalyst population. Such interacting branching process models have a long

history (see [14] and references therein). Typical settings describe the catalyst evolu-

tion through a classical continuous time branching process, which in particular implies

that population dynamics are modeled until the time the catalyst becomes extinct. In

this chapter, we consider a setting where the catalyst population is maintained above a

positive threshold through a specific form of controlled immigration. Branching process

models with immigration have also been well studied in literature ([1]). However, typical

mechanisms that have been considered correspond to adding a random i.i.d. immigration

component to each generation. Here, instead, we consider a model where immigration is

allowed only when the population drops below a certain threshold. Roughly speaking, we



consider a sequence {X(n)}n∈N of continuous time branching processes, where X(n) starts

with n particles. When the population drops below n, it is instantaneously restored to

the level n.

There are many settings where controlled immigration models of the above form arise

naturally. For example, immunotherapy in which the natural immune response is stim-

ulated has been successful in treating cancer. Instillation of bacteria (bacillus Calmette-

Guérin), for instance, has been shown to reduce recurrence of bladder carcinoma (see [19]

and references therein). Many aspects of such treatments remain poorly understood, and

it is of interest to develop minimally invasive plans of treatment that intervene only when

the level of certain substances drop below a some threshold. Another class of examples

arise from predator-prey models in ecology, where one may be concerned with the restora-

tion of populations that are close to extinction by reintroducing species when they fall

below a certain threshold. In our work, the motivation for the study of such controlled

immigration models comes from problems in chemical kinetics where one wants to keep

the level of a catalyst above a certain threshold in order to maintain a desirable level of

reaction activity.

We now describe the precise mathematical setting. Consider a sequence of pairs

of continuous time, discrete space Markov branching processes (X(n), Y (n)), where X(n)

and Y (n) represent the number of catalyst and reactant particles, respectively. The

mass of each particle in the nth process will be scaled down by a factor of 1/n, and

(X(n)/n, Y (n)/n) is referred to as the joint total mass process. Throughout, we will use

the subscript 1 and 2 for parameters describing, the catalyst and reactant population,

respectively. Each of the X
(n)
t particles alive at time t has an exponentially distributed

life time with parameter λ
(n)
1 (mean life time 1/λ

(n)
1 ). When it dies, it gives rise to a

number of offspring, according to the offspring distribution µ
(n)
1 (·). In particular, the

catalyst population evolves independently from the reactant population. Additionally, if
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the catalyst population drops below n, it is instantaneously replenished back to the level n

(controlled immigration). The branching rate of the reactant process Y (n) is proportional

to the total mass of the catalyst process, and we denote the offspring distribution of Y (n)

by µ
(n)
2 (·). To facilitate some weak convergence arguments, we will consider an auxiliary

sequence of processes Z(n) that “shadow” X(n) in a suitable manner. The process Z(n)

will be a Z valued pure jump process whose jump instances and sizes are the same as

that of X(n) away from the boundary {n}, whereas when X(n) is at the boundary, Z(n)

has a negative jump of size 1 whenever there is immigration of a catalyst particle into the

system. This description is made precise through the definition of the generator given in

(3.1.1).

We are interested in establishing a suitable scaling limit theorem for (X(n), Y (n)) as

n → ∞. For that purpose, we not only scale mass, but also time, and consider the

processes

Ŵ
(n)
t :=

(
X̂

(n)
t , Ŷ

(n)
t , Ẑ

(n)
t

)
:=

(
X

(n)
nt

n
,
Y

(n)
nt

n
,
Z

(n)
nt

n

)
, t ∈ R+.

For sake of simplicity of the presentation, throughout this chapter, the processes are

assumed to start with total mass 1, i.e. (X̂
(n)
0 , Ŷ

(n)
0 , Ẑ

(n)
0 ) = (1, 1, 1). However, analogous

results can be established for more general initial configurations.

Let S(n)
X := { l

n
|l ∈ N0} ∩ [1,∞), S(n)

Y := { l
n
|l ∈ N0}, S(n)

Z := { l
n
|l ∈ Z}, and W(n) :=

S(n)
X ×S(n)

Y ×S(n)
Z . Then {Ŵ (n)

t }t∈R+ is a W(n) valued Markov process with sample paths in

D(R+ : W(n)). When considering an initial condition w := (x, y, z) for Ŵ (n) or describing

its generator, w will always be in W(n), although this will frequently be suppressed in

the notation, and we will write w ∈W := R≥1 × R+ × R instead.
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The process Ŵ (n) has infinitesimal generator Â(n) given as

Â(n)φ(w) = λ
(n)
1 n2x

∞∑
k=0

[
φ
((
x+

k − 1

n
− 1
)+

+ 1, y, z +
k − 1

n

)
− φ(w)

]
µ

(n)
1 (k)

+ λ
(n)
2 n2xy

∞∑
k=0

[
φ
(
x, y +

k − 1

n
, z
)
− φ(w)

]
µ

(n)
2 (k), (3.1.1)

where w = (x, y, z) ∈W(n) and φ ∈ C∞c (W). For i = 1, 2, let m
(n)
i :=

∑∞
k=0 kµ

(n)
i (k) and

α
(n)
i =

∑∞
k=0(k− 1)2µ

(n)
i (k). Note that α

(n)
i is not that variance of µ

(n)
i , which we denote

by κ
(n)
i , however, under Condition 3.1.1, introduced below, limn→∞ α

(n)
i /κ

(n)
i = 1.

In this chapter, we will establish a diffusion limit theorem for (X̂(n), Ŷ (n)) as n→∞.

The limit process (X, Y ) will be such that X is a reflected diffusion with reflection at 1,

and Y is a diffusion with coefficients depending on X. The driving Brownian motions in

the two diffusions will be independent.

We make the following basic assumptions on the parameters of the branching rates and

offspring distributions and initial configurations of the catalyst and reactant populations.

Condition 3.1.1. (i) For each n ∈ N and i = 1, 2, m
(n)
i = 1 +

c
(n)
i

n
, c

(n)
i ∈ (−n, 0),

and α
(n)
i ∈ (0,∞). (ii) For i = 1, 2, limn→∞ c

(n)
i =: ci ∈ (−∞, 0), limn→∞ α

(n)
i =:

αi ∈ (0,∞), and limn→∞ λ
(n)
i =: λi ∈ (0,∞). (iii) For every ε ∈ (0,∞), and i = 1, 2,

limn→∞
∑

l:l>ε
√
n(l −m(n)

i )2µ
(n)
i (l) = 0, and for all n ∈ N, (X̂

(n)
0 , Ŷ

(n)
0 , Ẑ

(n)
0 ) = (1, 1, 1).

Condition 3.1.1 will hold throughout this chapter, without further mentioning in the

statements of the results.

In order to present our main weak convergence result for (X̂(n), Ŷ (n)), we begin by

recalling the definition and some properties of the one dimensional Skorohod map. Let

Γ : D(R+ : R)→ D(R+ : R≥1) be defined as

Γ(ψ)(t) = (ψ(t) + 1)− inf
0≤s≤t

{ψ(s) ∧ 1}, for ψ ∈ D(R+ : R).

42



We refer to Γ as the Skorohod map, which can be characterized as follows: If ψ, φ, η∗ ∈

D(R+ : R) are such that (i) ψ(0) ≥ 1, (ii) φ = ψ+η∗, (iii) φ ≥ 1, (iv) η∗ is non-decreasing,∫∞
0

1{φ(s) 6=1}dη
∗(s) = 0, and η∗(0) = 0, then φ = Γ(ψ) and η∗ = φ−ψ. The process η∗ can

be regarded as the reflection term that is applied to the original trajectory ψ to produce

a trajectory φ that is constrained to [1,∞). We will make use of the following Lipschitz

continuity of the Skorohod map: For ψ, ψ̃ ∈ D(R+ : R), with ψ(0), ψ̃(0) ∈ [1,∞),

sup
s≤t
|Γ(ψ)(s)− Γ(ψ̃)(s)| ≤ 2 sup

s≤t
|ψ(s)− ψ̃(s)|. (3.1.2)

Let

η̂
(n)
t := λ

(n)
1 nµ

(n)
1 (0)

∫ t

0

1{X̂(n)
s =1}ds. (3.1.3)

This process will play the role of the reflection term in the dynamics of the catalyst

process due to the controlled immigration. The diffusion limit of (X̂(n), Ŷ (n)) will be the

process (X, Y ) which is characterized in the following proposition through a system of

SDEs.

Proposition 3.1.1. Let (Ω̄, F̄ , P̄ , {F̄t}) be a filtered probability space on which are given

independent standard {F̄t} Brownian motions BX and BY . Then the following system

of SDEs has a unique strong solution:

Xt = Γ

(
X0 +

∫ ·
0

c1λ1Xsds+

∫ ·
0

√
α1λ1XsdB

X
s

)
(t), (3.1.4)

Yt = Y0 +

∫ t

0

c2λ2XsYsds+

∫ t

0

√
α2λ2XsYsdB

Y
s , (3.1.5)

ηt = Xt −X0 −
∫ t

0

c1λ1Xsds−
∫ t

0

√
α1λ1XsdB

X
s , (3.1.6)

where X0 = Y0 = 1 and Γ is the Skorohod map described above.
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The following is the main result of this chapter.

Theorem 3.1.2. The process (X̂(n), Ŷ (n)) converges weakly in D(R+ : R≥1 ×R+) to the

process (X, Y ) given in Proposition 3.1.1.

In Section 3.2 we will prove Proposition 3.1.1, while Theorem 3.1.2 will be proved in

Section 3.3.

3.2 Proof of Proposition 3.1.1

We first observe that the unique solvability of (3.1.4) is an immediate consequence of

the Lipschitz property of the Skorohod map, Lipschitz coefficients (note that f(x) =
√
x

is a Lipschitz function on [1,∞)), and a standard Picard iteration scheme.

We next show the unique solvability of (3.1.5). For n ∈ N, let σ(n) := inf{t > 0|Xt ≥

n}, X̌(n)
t := Xt∧σ(n) , and f (n)(y) := y ∨ 1

n
. Consider the equation

Y̌
(n)
t = Y0 + c2λ2

∫ t

0

X̌(n)
s f (n)(Y̌ (n)

s )ds+
√
α2λ2

∫ t

0

√
X̌

(n)
s f (n)(Y̌

(n)
s )dBY

s . (3.2.1)

From the Lipschitz property of f (n) and
√
f (n) it follows that, for each n, the above

equation has a unique pathwise solution. Let τ (n) := inf{t > 0|Y̌ (n)
t = 1

n
} and θ(n) :=

τ (n)∧σ(n). Note that Y̌ (n) solves (3.1.5) on [0, θ(n)]. Also, by unique solvability of (3.2.1),

we have for all n ∈ N, Y̌ (n+1)(·∧θ(n)) = Y̌ (n)(·∧θ(n)). Finally, letting θ(∞) := limn→∞ θ
(n),

the unique solution of (3.1.5) is given by the following:

Yt(ω) =


Y̌

(n)
t (ω), if 0 ≤ t ≤ θ(n)(ω) for some n ∈ N

0, if t ≥ θ∞(ω).
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3.3 Proof of Theorem 3.1.2

We will first show tightness of the family {(X̂(n), Ŷ (n), η̂(n))}n∈N.

Lemma 3.3.1. The family {(X̂(n), Ŷ (n), η̂(n))}n∈N is tight in D(R+ : R≥1 × R+ × R+).

Before we begin the proof, we recall here the definitions of quadratic covariation and

predictable (or conditional) quadratic covariation for semimartingales (see e.g. [32]). Let

X, Y be semimartingales. The quadratic covariation (or bracket process) of X, Y is the

process {[X, Y ]t}t∈R+ defined by

[X, Y ]t := XtYt −
∫ t

0

Xs−dYs −
∫ t

0

Ys−dXs, t ≥ 0,

where X0− := 0, Y0− := 0. The predictable quadratic covariation of X and Y is the unique

predictable process {〈X, Y 〉t}t∈R+ such that {[X, Y ]t−〈X, Y 〉t}t∈R+ is a local martingale.

If X = Y , then [X] ≡ [X,X] and 〈X〉 ≡ 〈X,X〉 are, respectively, the quadratic and

predictable quadratic variation processes of X.

Proof of Lemma 3.3.1. The proof is split into the following steps: Finding representa-

tions for the processes X̂(n), Ŷ (n), Ẑ(n), X̂(n) − Ẑ(n), and η̂(n) in terms of their generators

and corresponding martingales (step 1). Establishing bounds for the expected values

of the squared suprema of the catalyst and reactant processes over finite time horizons

and analogous bounds for martingales associated with the catalyst, reactant, and shadow

processes (step 2). Using these bounds to prove the tightness of X̂(n), Ŷ (n), and η̂(n)

(step 3).

Step 1: Recall that Ŵ (n) = (X̂(n), Ŷ (n), Ẑ(n)) andw = (x, y, z). For x = (x1, x2, x3) ∈

W, let φi(x) = xi, i = 1, 2, 3 and h := φ1 − φ3. Then

Ẑ
(n)
t = φ3(Ŵ

(n)
t ) = Ẑ

(n)
0 +

∫ t

0

Â(n)φ3(Ŵ (n)
s )ds+M

(n)
t (φ3), (3.3.1)
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where M (n)(φ3) is a local martingale. Using (3.1.1), we get

Â(n)φ3(Ŵ
(n)
t ) = λ

(n)
1 nX̂

(n)
t

∞∑
k=0

(k − 1)µ
(n)
1 (k) = c

(n)
1 λ

(n)
1 X̂

(n)
t (3.3.2)

and

Â(n)φ2
3(Ŵ

(n)
t ) = λ

(n)
1 n2X̂

(n)
t

∞∑
k=0

[(
Ẑ

(n)
t +

k − 1

n

)2

−
(
Ẑ

(n)
t

)2
]
µ

(n)
1 (k)

= λ
(n)
1 n2X̂

(n)
t

∞∑
k=0

[
k − 1

n

(
2Ẑ

(n)
t +

k − 1

n

)]
µ

(n)
1 (k) = 2λ

(n)
1 X̂

(n)
t Ẑ

(n)
t c

(n)
1 + λ

(n)
1 X̂

(n)
t α

(n)
1 .

Define maps b
(n)
3 and a

(n)
3,3 from W to R as

b
(n)
3 (w) := Â(n)φ3(w) = c

(n)
1 λ

(n)
1 x, a

(n)
3,3 (w) := Â(n)φ2

3(w)− 2zb
(n)
3 (w) = λ

(n)
1 xα

(n)
1 ,

w = (x, y, z) ∈W. A routine calculation then shows (see [20], Lemma 3.1.3) that

〈M (n)(φ3)〉t =

∫ t

0

a
(n)
3,3 (Ŵ (n)

s )ds = λ
(n)
1 α

(n)
1

∫ t

0

X̂(n)
s ds. (3.3.3)

Next, since X̂
(n)
0 = Ẑ

(n)
0 , we have

X̂
(n)
t − Ẑ

(n)
t = h(Ŵ

(n)
t ) =

∫ t

0

Â(n)h(Ŵ (n)
s )ds+M

(n)
t (h),

where M (n)(h) is a local martingale, and, once more using (3.1.1),

Â(n)h(w) = λ
(n)
1 nµ

(n)
1 (0)1{x=1}.

Thus with η̂(n) as in (3.1.3) we get

X̂
(n)
t − Ẑ

(n)
t = h(Ŵ

(n)
t ) = η̂

(n)
t +M

(n)
t (h). (3.3.4)
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Let Û (n) := X̂(n) − Ẑ(n). Then

(
Û

(n)
t

)2

= 2

∫ t

0

Û
(n)
s− dÛ

(n)
s + [Û (n)]t = 2

∫ t

0

Û (n)
s dη̂(n)

s + 2

∫ t

0

Û
(n)
s− dM

(n)
s (h) + [Û (n)]t

≡ 2

∫ t

0

Û (n)
s dη̂(n)

s + L
(n)
t + [Û (n)]t,

where L(n) is again a local martingale. On the other hand, using the generator Â(n), we

find

(
Û

(n)
t

)2

= h2(Ŵ
(n)
t ) =

∫ t

0

Â(n)h2(Ŵ (n)
s )ds+M

(n)
t (h2),

where M (n)(h2) is a local martingale. The last two representations of
(
Û

(n)
t

)2

imply that

〈Û (n)〉t =

∫ t

0

Â(n)h2(Ŵ (n)
s )ds− 2

∫ t

0

Û (n)
s dη̂(n)

s . (3.3.5)

Now, with w = (x, y, z),

Â(n)h2(w) = λ
(n)
1 n2µ

(n)
1 (0)

((
1− z +

1

n

)2

− (1− z)2

)
1{x=1}

= λ
(n)
1 nµ

(n)
1 (0)

(
1

n
+ 2(1− z)

)
1{x=1}.

Thus, with Ŵ (n) = (X̂(n), Ŷ (n), Ẑ(n)),

∫ t

0

Â(n)h2(Ŵ (n)
s )ds =

∫ t

0

(
1

n
+ 2(1− Ẑ(n)

s )

)
dη̂(n)

s .

Moreover, recalling that Û (n) = X̂(n) − Ẑ(n) and that η̂(n) increases only when X̂(n) = 1,

we have

2

∫ t

0

Û (n)
s dη̂(n)

s = 2

∫ t

0

(1− Ẑ(n)
s )dη̂(n)

s .
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Combining the last two equations with (3.3.5), we get

〈Û (n)〉t =

∫ t

0

(
1

n
+ 2(1− Ẑ(n)

s )

)
dη̂(n)

s − 2

∫ t

0

(1− Ẑ(n)
s )dη̂(n)

s

=
1

n
η̂

(n)
t = λ

(n)
1 µ

(n)
1 (0)

∫ t

0

X̂(n)
s 1{X̂(n)

s =1}ds.

Also, since η̂(n) is a continuous process with bounded variation, [η̂(n)] = [η̂(n),M (n)(h)] =

0, and consequently

〈M (n)(h)〉t = 〈Û (n)〉t = λ
(n)
1 µ

(n)
1 (0)

∫ t

0

X̂(n)
s 1{X̂(n)

s =1}ds. (3.3.6)

Next, by (3.3.1), (3.3.2), and (3.3.4), we have

X̂
(n)
t = X̂

(n)
0 + c

(n)
1 λ

(n)
1

∫ t

0

X̂(n)
s ds+M

(n)
t (φ3) +M

(n)
t (h) + η̂

(n)
t . (3.3.7)

Since η̂(n) is non-decreasing and
∫∞

0
1{X̂(n)

s 6=1}dη̂
(n)
s = 0, we have from the characterization

given above (3.1.2) that

X̂
(n)
t = Γ

(
X̂

(n)
0 + c

(n)
1 λ

(n)
1

∫ ·
0

X̂(n)
s ds+M (n)

· (φ3) +M (n)
· (h)

)
(t). (3.3.8)

We next consider the reactant population. With similar calculations as for Â(n)φ3(Ŵ
(n)
t ),

we get

Ŷ
(n)
t = Ŷ

(n)
0 +

∫ t

0

b
(n)
2 (Ŵ (n)

s )ds+M
(n)
t (φ2), (3.3.9)

where

b
(n)
2 (Ŵ

(n)
t ) := Â(n)φ2(Ŵ

(n)
t ) = c

(n)
2 λ

(n)
2 X̂

(n)
t Ŷ

(n)
t (3.3.10)
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and

〈M (n)(φ2)〉t = λ
(n)
2 α

(n)
2

∫ t

0

X̂(n)
s Ŷ (n)

s ds. (3.3.11)

Let H(n) := M (n)(φ3) + M (n)(h). Using (3.3.3), (3.3.6), and the Kunita-Watanabe

inequality (see e.g. [32]), we have a bound for its predictable quadratic variation:

〈H(n)〉t ≤
(√
〈M (n)(φ3)〉t +

√
〈M (n)(h)〉t

)2

≤ λ
(n)
1 (α

(n)
1 + µ

(n)
1 (0))

∫ t

0

X̂(n)
s ds. (3.3.12)

Let

N̂
(n)
t := X̂

(n)
0 + c

(n)
1 λ

(n)
1

∫ t

0

X̂(n)
s ds+H

(n)
t . (3.3.13)

Then, from (3.3.8), X̂
(n)
t = Γ(N̂

(n)
· )(t). The Lipschitz continuity of the Skorohod map

implies

sup
t≤T
|X̂(n)

t − 1| ≤ 2 sup
t≤T
|N̂ (n)

t |. (3.3.14)

Step 2 We will establish the following bounds, the proofs of which are adapted from

Lemma 3.2.2 of [20]. For each T ≥ 0 there is a KT ∈ (0,∞) such that

sup
n∈N

E

(
sup
t≤T
|X̂(n)

t |2
)
≤ KT , (3.3.15)

sup
n∈N

E

(
sup
t≤T
|H(n)

t |2
)
≤ KT , (3.3.16)

sup
n∈N

E

(
sup
t≤T
|N̂ (n)

t |2
)
≤ KT , (3.3.17)
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sup
n∈N

E

(
sup
t≤T
|η̂(n)
t |2

)
≤ KT , (3.3.18)

and

sup
n∈N

E

(
sup
t≤T

∣∣∣∣Ŷ (n)

σ
(n)
k ∧t

∣∣∣∣2
)
≤ exp(KTk

2). (3.3.19)

We first consider (3.3.15). Using Doob’s inequality, we get

E sup
t≤T
|H(n)

t |2 ≤ 4E|H(n)
T |

2 = 4E[H(n)]T = 4E〈H(n)〉T .

Combining this with (3.3.12), we have

E sup
t≤T
|H(n)

t |2 ≤ 4λ
(n)
1 (α

(n)
1 + µ

(n)
1 (0))E

(∫ T

0

X̂(n)
s ds

)
. (3.3.20)

Using (3.3.14), we get

sup
t≤T
|X(n)

t |2 ≡ |X̂(n)|2∗,T =
(
|X̂(n) − 1|∗,T + 1

)2 ≤ 2|X̂(n) − 1|2∗,T + 2 ≤ 8|N̂ (n)|2∗,T + 2.

Combining this with (3.3.13) and (3.3.20), we obtain

E
(
|X̂(n)|2∗,T

)
≤ 2 + 8E

(
|N̂ (n)|2∗,T

)
≤ 2 + 24

[
1 +

(
T
(
c

(n)
1 λ

(n)
1

)2
+ 4λ

(n)
1 (α

(n)
1 + µ

(n)
1 (0))

)∫ T

0

E
∣∣X̂(n)|2∗,s

)
ds

]
.

Using Gronwall’s inequality, we get

E
(
|X̂(n)|2∗,T

)
≤ 26 exp

(
K

(n)
1,T

)
,
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where K
(n)
1,T := 24T

(
T
(
c

(n)
1 λ

(n)
1

)2

+ 4λ
(n)
1 (α

(n)
1 + µ

(n)
1 (0))

)
. Since c

(n)
1 , λ

(n)
1 , and α(n) con-

verge as n→∞, we have (3.3.15).

The estimate in (3.3.16) is now an immediate consequence of (3.3.15) and (3.3.20).

Using the estimates in (3.3.15) and (3.3.16), the estimate in (3.3.17) follows immediately

from (3.3.13), and that in (3.3.18) follows from (3.3.7).

We next establish (3.3.19). Using Doob’s inequality once more, we have

E

(
sup
t≤T
|M (n)

σ
(n)
k ∧t

(φ2)|2
)
≤ 4E

(
〈M (n)(φ2)〉

σ
(n)
k ∧T

)
.

Combining this with (3.3.11), we obtain

E

(
sup
t≤T
|M (n)

σ
(n)
k ∧t

(φ2)|2
)
≤ 4λ

(n)
2 α

(n)
2 E

(∫ σ
(n)
k ∧T

0

X̂(n)
s Ŷ (n)

s ds

)
.

Using (3.3.9) and (3.3.10), we now get

E
(
|Ŷ (n)|2

∗,T∧σ(n)
k

)
≤ 3

(
1 +

[
T
(
c

(n)
2 λ

(n)
2 k
)2

+ 4λ
(n)
2 α

(n)
2 k

] ∫ T

0

E
(
|Ŷ (n)|2

∗,s∧σ(n)
k

)
ds

)
.

Using Gronwall’s inequality, we have

E

(
sup
t≤T
|Ŷ (n)

σ
(n)
k ∧t
|2
)
≤ 3 exp(K

(n)
2,Tk

2),

where K
(n)
2,T = T

(
T
(
c

(n)
2 λ

(n)
2

)2

+ 4λ
(n)
2 α

(n)
2

)
, and thus (3.3.19) follows.

Step 3 In order to show tightness of {X̂(n)} and {η̂(n)}, it suffices, due to the Lipschitz

continuity of the Skorohod map, to show that {N̂ (n)} is tight. For this, in view of

(3.3.17), it suffices to show that the following condition (Aldous’ criterion) holds: For

each N > 0, ε > 0, and γ > 0 there are δ > 0 and n0 such that for all stopping times
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{τn}n∈N with τn ≤ N , we have

sup
n≥n0

sup
θ≤δ

P (|N̂ (n)
τn+θ − N̂

(n)
τn | ≥ γ) ≤ ε. (3.3.21)

Let N, ε, γ ∈ (0,∞) be given. Note that

P (|N̂ (n)
τn+θ − N̂

(n)
τn | ≥ γ) ≤ P

(
|c(n)

1 λ
(n)
1

∫ τn+θ

τn

X̂(n)
s ds| ≥ γ

2

)
+ P

(
|H(n)

τn+θ −H
(n)
τn | ≥

γ

2

)
,

By (3.3.15), we have supn∈N supθ≤δ P
(
|c(n)

1 λ
(n)
1

∫ τn+θ

τn
X̂

(n)
s ds| ≥ γ

2

)
< ε

2
for δ sufficiently

small. It remains to prove that, for some δ > 0,

sup
n∈N

sup
θ≤δ

P
(
|H(n)

τn+θ −H
(n)
τn | ≥

γ

2

)
<
ε

2
. (3.3.22)

Note that

P
(
|H(n)

τn+θ −H
(n)
τn | ≥

γ

2

)
≤
E(|H(n)

τn+θ −H
(n)
τn |2)

(γ/2)2
=
E((H

(n)
τn+θ)

2)− E((H
(n)
τn )2)

(γ/2)2

=
E〈H(n)〉τn+θ − E〈H(n)〉τn

(γ/2)2
.

Recalling that H(n) = M (n)(φ3) + M (n)(h), and using properties of the predictable

quadratic variation process, we get

E〈H(n)〉τn+θ − E〈H(n)〉τn

≤ 3E
(
〈M (n)(φ3)〉τn+θ − 〈M (n)(φ3)〉τn + 〈M (n)(h)〉τn+θ − 〈M (n)(h)〉τn

)
= 3E

(
λ

(n)
1 α

(n)
1

∫ τn+θ

τn

X̂(n)
s ds+ λ

(n)
1 µ

(n)
1 (0)

∫ τn+θ

τn

X̂(n)
s 1{X̂(n)

s =1}ds

)
.

Using (3.3.15) once more, we can choose δ > 0 such that (3.3.22) holds. This proves

tightness of {N̂ (n)} and consequently that of {X̂(n)} and {η̂(n)}.
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We next show tightness of {Ŷ (n)}. The calculations are similar to those for {X̂(n)}

and thus only a sketch is provided. Fix ε > 0. Using (3.3.19), we get, for K ∈ (0,∞),

P
(

sup
t≤T
|Ŷ (n)
t | > K

)
≤ P

(
sup
t≤T
|Ŷ (n)

σ
(n)
k ∧t
| > K and σ

(n)
k > T

)
+ P

(
σ

(n)
k ≤ T

)

≤
E
(

supt≤T |Ŷ
(n)

σ
(n)
k ∧t
|2
)

K2
+ P

(
sup
t≤T
|X̂(n)

t | ≥ k
)
≤ exp(KTk

2)

K2
+
E supt≤T |X̂

(n)
t |2

k2
.

Using (3.3.15), we can choose k such that

sup
n∈N

E supt≤T |X̂
(n)
t |2

k2
<
ε

2
. (3.3.23)

Now choose K such that

exp(KTk
2)

K2
<
ε

2
.

The last two displays imply supn∈N P (supt≤T |Ŷ
(n)
t | > K) < ε, and since ε > 0 is arbitrary,

the tightness of the random variables {Ŷ (n)
t }n∈N, for each t ≥ 0, follows. To establish the

tightness of the processes {Ŷ n)}n∈N, we need, as for the family of catalyst processes, a

bound for the fluctuations of the processes. It suffices to show that for each N > 0, ε > 0,

and γ > 0 there are δ > 0 and n0 such that for all stopping times {τn}n∈N with τn ≤ N ,

we have

sup
n≥n0

sup
θ≤δ

P
(
|Ŷ (n)
τn+θ − Ŷ

(n)
τn | ≥ γ

)
≤ ε. (3.3.24)

Fix N, ε, γ ∈ (0,∞). Then, for any θ ∈ (0, 1),

P
(
|Ŷ (n)
τn+θ − Ŷ

(n)
τn | ≥ γ

)
≤ P

(
|Ŷ (n)

(τn+θ)∧σ(n)
k

− Ŷ (n)

τn∧σ(n)
k

| ≥ γ
)

+ P
(
σ

(n)
k ≤ N + 1

)
.
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Let T = N + 1 and k as in (3.3.23), then P (σ
(n)
k < N + 1) < ε/2 for all n ∈ N. For

the first term on the right hand side of the last display, we get, using (3.3.9) and that

sup
t≤T∧σ(n)

k
X̂

(n)
t ≤ k,

P

(
|Ŷ (n)

(τn+θ)∧σ(n)
k

− Ŷ (n)

τn∧σ(n)
k

| ≥ γ

)
(3.3.25)

≤ P
(
|c(n)

2 λ
(n)
2

∫ (τn+θ)∧σ(n)
k

τn∧σ(n)
k

Ŷ (n)
s ds| ≥ γ

2k

)
+ P

(
|M (n)

(τn+θ)∧σ(n)
k

(φ2)−M (n)

τn∧σ(n)
k

(φ2)| ≥ γ

2

)
.

The first term on the right hand side can be bounded as follows:

P

(∣∣∣∣c(n)
2 λ

(n)
2

∫ (τn+θ)∧σ(n)
k

τn∧σ(n)
k

Ŷ (n)
s ds

∣∣∣∣ ≥ γ

2k

)
≤
(

2kc
(n)
2 λ

(n)
2

γ

)2

E

((∫ (τn+θ)∧σ(n)
k

τn∧σ(n)
k

Ŷ (n)
s ds

)2)
≤ θ

(
2kc

(n)
2 λ

(n)
2

γ

)2

exp
(
KN+1k

2
)
,

where KN+1 is the constant from (3.3.19). Thus, for δ sufficiently small, we get

sup
n∈N

sup
θ≤δ

P

(∣∣∣∣∣c(n)
2 λ

(n)
2

∫ (τn+θ)∧σ(n)
k

τn∧σ(n)
k

Ŷ (n)
s ds

∣∣∣∣∣ ≥ γ

2k

)
< ε/4.

The second term on the right hand side of (3.3.25) can be bounded as follows:

P

(∣∣∣∣M (n)

(τn+θ)∧σ(n)
k

(φ2)−M (n)

τn∧σ(n)
k

(φ2)

∣∣∣∣ ≥ γ

2

)

≤
E
(〈
M (n)(φ2)

〉
(τn+θ)∧σ(n)

k

−
〈
M (n)(φ2)

〉
τn∧σ(n)

k

)
(γ/2)2

≤ 4

γ2
λ

(n)
2 α

(n)
2 E

∫ (τn+θ)∧σ(n)
k

τn∧σ(n)
k

X̂(n)
s Ŷ (n)

s ds ≤ 4

γ2
λ

(n)
2 α

(n)
2 kθE

(
sup

0≤s≤N+1
Y

(n)

s∧σ(n)
k

)
.

Using (3.3.19) once more, we have that, for δ sufficiently small, the second term in (3.3.25)

is bounded by ε
4
. Combining the above estimates, we now see that (3.3.24) holds, and

thus that {Ŷ (n)}n∈N is tight.
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The following martingale characterization result will be useful in the proof of Theorem

3.1.2. The proof of the characterization is standard and is omitted (see Theorem 4.5.2

in [39]).

For φ ∈ C∞c (R≥1 × R+), let

Lφ(x, y) := c1λ1x
∂

∂x
φ(x, y) +

1

2
α1λ1x

∂2

∂x2
φ(x, y)

+ c2λ2xy
∂

∂y
φ(x, y) +

1

2
α2λ2xy

∂2

∂y2
φ(x, y).

Let Ω̃ := D(R+ : R≥1 × R2
+) and F̃ be the corresponding Borel σ-field (with respect

to the Skorohod topology). Denote by {Ft}t∈R+ the canonical filtration on (Ω̃, F̃), i.e.

Ft = σ(πs|s ≤ t), where πs(ω̃) = ω̃s = ω̃(s) for ω̃ ∈ Ω̃. Finally, let π(i), i = 1, 2, 3, be the

coordinate processes, i.e. (π(1)(ω̃), π(2)(ω̃), π(3)(ω̃)) = π(ω̃).

Theorem 3.3.1. Let P̃ be a probability measure on (Ω̃, F̃) under which the following

hold a.s.:

(i) π(3) is a non-decreasing, continuous process, and π
(3)
0 = 0,

(ii) (π(1), π(2)) is an (R≥1 × R+) valued continuous process,

(iii)
∫∞

0
1(1,∞)(π

(1)
s )dπ

(3)
s = 0,

(iv) for all φ ∈ C∞c (R≥1 × R+)

φ(π
(1)
t , π

(2)
t )−

∫ t

0

Lφ(π(1)
s , π(2)

s )ds−
∫ t

0

∂φ

∂x
(1, π(2)

s )dπ(3)
s

is an {Ft} martingale, and

(v) (π
(1)
0 , π

(2)
0 ) = (1, 1).

Then P̃ ◦ (π(1), π(2))−1 = P̄ ◦ (X, Y )−1, where X, Y, and P̄ are as in Proposition 3.1.1.

55



Proof of Theorem 3.1.2. Recall that for φ ∈ C∞c (R≥1 × R+), we have

φ(X̂
(n)
t , Ŷ

(n)
t ) = φ(X̂

(n)
0 , Ŷ

(n)
0 ) +

∫ t

0

Â(n)φ(X̂(n)
s , Ŷ (n)

s )ds+M
(n)
t (φ), (3.3.26)

where M
(n)
t (φ) is a local martingale, and Â(n), defined in (3.1.1), can be rewritten as

Â(n)φ(x, y) = L(n)φ(x, y) +D(n)φ(y)nλ
(n)
1 µ

(n)
1 (0)1{x=1},

where

L(n)φ(x, y) := λ
(n)
1 n2x

∞∑
k=0

[
φ

(
x+

k − 1

n
, y

)
− φ(x, y)

]
µ

(n)
1 (k)

+ λ
(n)
2 n2xy

∞∑
k=0

[
φ

(
x, y +

k − 1

n

)
− φ(x, y)

]
µ

(n)
2 (k)

and

D(n)φ(y) := n

(
φ(1, y)− φ

(
1− 1

n
, y

))
.

Thus, (3.3.26) can be rewritten as

φ(X̂
(n)
t , Ŷ

(n)
t ) = φ(X̂

(n)
0 , Ŷ

(n)
0 ) +

∫ t

0

L(n)φ(X̂(n)
s , Ŷ (n)

s )ds

+

∫ t

0

D(n)φ(Ŷ (n)
s )dη̂(n)

s +M
(n)
t (φ).

Recall the path space (Ω̃, F̃) introduced above Theorem 3.3.1. We denote by P̃ (n) the

measure induced by (X̂(n), Ŷ (n), η̂(n)) on (Ω̃, F̃) and by Ẽ(n) the corresponding expecta-

tion.

From Lemma 3.3.1, P̃ (n) is tight. Let P̃ be a limit point of {P̃ (n)} along some subse-

quence {nk}. In order to complete the proof, it suffices to show that under P̃ properties
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(i)-(v) in Theorem 3.3.1 hold almost surely. Property (i) is immediate from the fact that

η̂(n) is non-decreasing and continuous with initial value 0 for each n. Also, property (v)

is immediate from the fact that (X̂
(n)
0 , Ŷ

(n)
0 ) = (1, 1), a.s., for each n. Next, consider

property (ii). In order to establish continuity of π(1), it suffices (see [18], Proposition

VI.3.26, p. 315) to show that

lim
n→∞

P

(
sup

0≤t≤T
|∆X̂(n)

t | ≥ ε

)
= 0, (3.3.27)

where ∆X̂
(n)
t := X̂

(n)
t − X̂

(n)
t− and ∆X̂

(n)
0 := 0. Let N

(n)
T be the number of deaths of

particles of the (unscaled) process X(n) in the time interval [0, T ]. Fix ε, δ > 0. Then

P
(

sup
0≤t≤T

|∆X̂(n)
t | ≥ ε

)
≤ P

(
sup

0≤t≤T
|∆X̂(n)

t | ≥ ε; sup
0≤t≤T

X
(n)
t ≤ nL

)
+ P

(
sup

0≤t≤T
X

(n)
t > nL

)
.

By (3.3.15), we can choose L ∈ (0,∞) such that P
(

sup0≤t≤T X
(n)
t > nL

)
< δ

3
, for n ∈ N.

Next, consider

P
(

sup
0≤t≤T

|∆X̂(n)
t | ≥ ε; sup

0≤t≤T
X

(n)
t ≤ nL

)
≤ P

(
sup

0≤t≤T
|∆X̂(n)

t | ≥ ε;N
(n)
T < nCL

)
+ P

(
sup

0≤t≤T
X

(n)
t ≤ nL;N

(n)
T ≥ nCL

)
.

Note that on the set {sup0≤t≤T X
(n)
t ≤ nL} the branching rates of X(n) are bounded

during the time interval [0, T ], uniformly in n, and thus we can choose a C ∈ (0,∞) such

that

P
(

sup
0≤t≤T

X
(n)
t ≤ nL;N

(n)
T ≥ nCL

)
<
δ

3
.
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Finally, let, for n ∈ N, {ξ(n)
i }i∈N be i.i.d. random variables distributed as µ

(n)
1 . Then

P

(
sup

0≤t≤T
|∆X̂(n)

t | ≥ ε;N
(n)
T < nCL

)
≤ P

(
max

1≤i<nCL

|ξ(n)
i − 1|
n

≥ ε

)

≤
nCL−1∑
i=1

P
(
|ξ(n)
i − 1| ≥ nε

)
≤

nCL−1∑
i=1

E
(
|ξ(n)
i − 1|2

)
(nε)2

<
δ

3
,

for n ≥ n0(δ), since the variance of the offspring distribution converges. Combining the

above estimates, (3.3.27) follows. The continuity of π(2) is established similarly.

To see (iii), consider, for δ > 0, continuous bounded test functions fδ : [1,∞) −→ R+

such that

fδ(x) =


1, if x ≥ 1 + 2δ

0, if x ≤ 1 + δ.

Note that, for each n ∈ N,
∫∞

0
fδ(X̂

(n)
s )dη̂

(n)
s = 0 and thus, for each δ > 0,

0 = lim
k→∞

Ẽ(nk)

(∫ ∞
0

fδ(π
(1)
s )dπ(3)

s ∧ 1

)
= Ẽ

(∫ ∞
0

fδ(π
(1)
s )dπ(3)

s ∧ 1

)
.

Consequently, for each δ > 0,
∫∞

0
1[1+2δ,∞)(π

(1)
s )dπ

(3)
s = 0, almost surely w.r.t. P̃ . The

property in (iii) now follows on sending δ → 0. Finally, we consider part (iv). It suffices

to show that for every 0 ≤ s ≤ t <∞

Ẽ

(
ψ(·)

(
φ(π

(1)
t , π

(2)
t )− φ(π(1)

s , π(2)
s )−

∫ t

s

Lφ(π(1)
u , π(2)

u )du−
∫ t

s

∂φ

∂x
(1, π(2)

u )dπ(3)
u

))
= 0,

where ψ : Ω̃→ R is an arbitrary bounded, continuous, Fs measurable map. Now fix such
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s, t, and ψ. Then by weak convergence of P̃ (nk) to P̃ ,

lim
k→∞

Ẽ(nk)
(
ψ(·)

(
φ(π

(1)
t , π

(2)
t )− φ(π(1)

s , π(2)
s )−

∫ t

s

Lφ(π(1)
u , π(2)

u )du−
∫ t

s

∂φ

∂x
(1, π(2)

u )dπ(3)
u

))
= Ẽ

(
ψ(·)

(
φ(π

(1)
t , π

(2)
t )− φ(π(1)

s , π(2)
s )−

∫ t

s

Lφ(π(1)
u , π(2)

u )du−
∫ t

s

∂φ

∂x
(1, π(2)

u )dπ(3)
u

))
.

To complete the proof, it suffices to show that the limit on the left side above is 0. In

view of the martingale property in (3.3.26), to show this, it suffices to prove that for

φ ∈ C∞c (R≥1 × R+)

lim
n→∞

E

∣∣∣∣∫ t

0

(
L(n)φ(X̂(n)

s , Ŷ (n)
s )− Lφ(X̂(n)

s , Ŷ (n)
s )

)
ds

∣∣∣∣ = 0 (3.3.28)

and

lim
n→∞

E

∣∣∣∣∫ t

0

(
D(n)φ(Ŷ (n)

s )− ∂φ

∂x
(1, Ŷ (n)

s )

)
dη̂(n)

s

∣∣∣∣ = 0.

The latter is immediate upon using the smoothness of φ and (3.3.18). For (3.3.28), we

rewrite L(n)φ using a Taylor expansion as follows:

L(n)φ(x, y)

= λ
(n)
1 n2x

∞∑
k=0

[
k − 1

n

∂

∂x
φ(x, y) +

1

2

(
k − 1

n

)2
∂2

∂x2
φ(x, y)

]
µ

(n)
1 (k)

+ λ
(n)
2 n2xy

∞∑
k=0

[
k − 1

n

∂

∂y
φ(x, y) +

1

2

(
k − 1

n

)2
∂2

∂y2
φ(x, y)

]
µ

(n)
2 (k) +R(n)(x, y)

= c
(n)
1 λ

(n)
1 x

∂

∂x
φ(x, y) +

1

2
α

(n)
1 λ

(n)
1 x

∂2

∂x2
φ(x, y)

+ c
(n)
2 λ

(n)
2 xy

∂

∂y
φ(x, y) +

1

2
α

(n)
2 λ

(n)
2 xy

∂2

∂y2
φ(x, y) +R(n)(x, y),

where the term R(n)(x, y) is a remainder term, which, using part (iii) of Condition 3.1.1,

is seen to converge to 0, as n → ∞. Furthermore, using the compact support property
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of φ, it follows that limn→∞E
∫ t

0
|R(n)(X̂

(n)
s , Ŷ

(n)
s )|ds = 0. Next note that

L(n)φ(x, y)−R(n)(x, y)− Lφ(x, y)

= (λ
(n)
1 c

(n)
1 − λ1c1)x

∂

∂x
φ(x, y) +

1

2
(λ

(n)
1 α

(n)
1 − λ1α1)x

∂2

∂x2
φ(x, y)

+ (λ
(n)
2 c

(n)
2 − λ2c2)xy

∂

∂y
φ(x, y) +

1

2
(λ

(n)
2 α

(n)
2 − λ2α2)xy

∂2

∂y2
φ(x, y),

which, in view of Condition 3.1.1, converges to 0, as n → ∞. Once more using the

compact support property of φ, it follows that

lim
n→∞

E

∫ t

0

∣∣∣L(n)φ(X̂(n)
s , Ŷ (n)

s )−R(n)(X̂(n)
s , Ŷ (n)

s )− Lφ(X̂(n)
s , Ŷ (n)

s )
∣∣∣ ds = 0.

Combining the above estimates, we have (3.3.28), and the result follows.
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Chapter 4

Stochastic Averaging Under Fast Catalyst Dynamics

The catalyst and reactant populations considered in the last chapter evolve on a com-

parable time scale in the sense that the branching rates of both X(n) and Y (n) converge

to positive (possibly different) constants, as n → ∞. In situations in which the cat-

alyst evolves “much faster” than the reactant, in a sense made precise below, it is of

interest to find simplified diffusion models that capture the parts of the dynamics one

is interested in economically. Such model reductions (see [21] and references therein for

the setting of chemical reaction networks) not only help in better understanding the dy-

namics of the system but also help to reduce computational costs in simulations. When

the catalyst population evolves much faster than the reactant population, we expect to

obtain a reduced diffusion model, in which the influence of the catalyst on the reactant

is only through the catalyst’s stationary distribution. In our work, we consider a simpli-

fied setting of catalyst and reactant populations that evolve according to the (reflected)

diffusions X and Y from Proposition 3.1.1, but where the evolution of the catalyst is

accelerated by a factor of n (i.e. drift and diffusion coefficients depend on n). In Sec-

tion 4.1, we establish a scaling limit theorem, as n → ∞, in which the reactant process

is asymptotically described through the solution of the one dimensional SDE given in

(4.0.2). This result shows that the reactant evolution, which is given through a coupled



two dimensional system, can be well approximated by a one dimensional SDE with co-

efficients depending on the stationary distribution of the catalyst. Averaging results of

a similar form in the more realistic setting where the catalyst and reactant populations

are described through branching processes will be a topic for future research. In Section

4.2 we take one key step towards such a research program, which is to establish the

convergence of the stationary distribution of the scaled catalyst process X̂(n) to that of

the limit reflecting diffusion X.

We begin by describing the unique stationary distribution of X, where X is the

reflected diffusion from Proposition 3.1.1, approximating the catalyst dynamics (Theorem

3.1.2).

Proposition 4.0.1. The process X introduced in Proposition 3.1.1 has a unique station-

ary distribution, ν1, which has density

p(x) :=


θ
x

exp(2 c1
α1
x), if x ≥ 1

0, if x < 1,

(4.0.1)

where θ :=
(∫∞

1
( 1
x

exp(2 c1
α1
x))dx

)−1

is some normalizing constant.

Proposition 4.0.1 will be proved in Section 4.3. Let mX =
∫∞

1
xν1(dx) and Y̌ be the

solution of

Y̌t = Y̌0 +

∫ t

0

c2λ2mX Y̌sds+

∫ t

0

√
α2λ2mX Y̌sdBs, (4.0.2)

where Y̌0 = 1. The above equation will approximate the dynamics of the reactant popu-

lation under appropriate conditions, as described in Section 4.1.
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4.1 Fast Catalyst Diffusion

Consider a system of catalyst and reactant populations that can be represented by a

system of SDEs similar to that in Proposition 3.1.1, but with a faster evolving catalyst

population. More precisely, consider catalyst and reactant populations X̌(n) and Y̌ (n) of

the form

X̌
(n)
t = Γ

(
X̌

(n)
0 +

∫ ·
0

nc1λ1X̌
(n)
s ds+

∫ ·
0

√
nα1λ1X̌

(n)
s dBX

s

)
(t)

Y̌
(n)
t = Y̌

(n)
0 +

∫ t

0

c2λ2X̌
(n)
s Y̌ (n)

s ds+

∫ t

0

√
α2λ2X̌

(n)
s Y̌

(n)
s dBY

s ,

where X̌
(n)
0 = Y̌

(n)
0 = 1, ci ∈ (−∞, 0), αi, λi ∈ (0,∞), BX and BY are independent

standard Brownian motions, and Γ is the Skorohod map described above Proposition

3.1.1.

The following result shows that the reactant population process Y̌ (n) can be well

approximated by the one dimensional diffusion Y̌ in (4.0.2).

Theorem 4.1.1. The process Y̌ (n) converges weakly in C(R+ : R+) to the process Y̌ .

Theorem 4.1.1 will be proved in Section 4.4.

4.2 Convergence of Invariant Distributions

Towards a more accurate catalyst-reactant dynamical model, we next consider a set-

ting in which the catalyst and reactant populations evolve according to branching pro-

cesses of the form described in Section 3.1. In particular the catalyst evolution is given by

the branching process X(n) introduced in Section 3.1. As a first step towards developing

a general averaging theory, we present a result in this section which shows that under

suitable conditions the stationary distribution of the scaled branching process X̂(n) con-

verges weakly to the unique stationary distribution ν1 of X characterized in Proposition
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4.0.1. In future work, we will combine this limit theorem with averaging techniques of

the form used in the proof of Theorem 4.1.1 to establish weak convergence of suitably

scaled reactant branching processes to the solution of the one dimensional SDE given in

(4.0.2).

Our main assumption, in addition to Condition 3.1.1, will be that

sup
n∈N

∞∑
k=0

eδ̄kµ
(n)
1 (k) <∞ (4.2.1)

for some δ̄ > 0.

Theorem 4.2.1. Suppose Condition 3.1.1 and (4.2.1) hold. Then, for each n ∈ N, the

process X̂(n) has a unique stationary distribution ν
(n)
1 , and the family {ν(n)

1 }n∈N is tight.

Recall from Proposition 4.0.1 that the reflected diffusion X from Proposition 3.1.1

has a unique stationary distribution ν1.

Theorem 4.2.2. As n→∞, ν
(n)
1 converges weakly to ν1.

Proof of Theorem 4.2.2. Theorem 4.2.1 implies that every subsequence of ν
(n)
1 has a con-

vergent subsequence. Call such a limit ν∗1 . The weak convergence of X̂(n) to X (Theorem

3.1.2) and the stationarity of ν
(n)
1 imply that ν∗1 is a stationary distribution ofX. Since the

stationary distribution of X is unique, we have ν∗1 = ν1, which completes the proof.

4.3 Proof of Proposition 4.0.1

Uniqueness of the invariant measure of X is an immediate consequence of the non-

degeneracy of the diffusion coefficient (note that α2λ2x ≥ α2λ2 > 0). For existence, we

will apply the Echeverria-Weiss-Kurtz criterion ([3, 22, 41]). This criterion, in the current

context, says that in order to establish that a probability measure ν̄1 is an invariant
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measure for X, it suffices to verify that for some C ≥ 0 and all φ ∈ C∞c (R≥1)

∫
[1,∞)

Lφ(x)ν̄1(dx) + Cα1λ1φ
′(1) = 0, (4.3.1)

where Lφ(x) = c1λ1xφ
′(x) + 1

2
α1λ1xφ

′′(x). We will check that (4.3.1) holds with ν̄1 = ν1

and C = p(1)
2

. Note that for φ ∈ C∞c (R≥1) and p as in (4.0.1)

∫ ∞
1

(
c1λ1xφ

′(x) +
1

2
α1λ1xφ

′′(x)

)
p(x)dx

= c1λ1θe
2
c1
α1
x
φ(x)

∣∣∣∞
1
−
∫ ∞

1

2c1λ1θ
c1

α1

e
2
c1
α1
x
φ(x)dx

+
1

2
α1λ1θe

2
c1
α1
x
φ′(x)

∣∣∣∞
1
−
∫ ∞

1

α1λ1θ
c1

α1

e
2
c1
α1
x
φ′(x)dx

= −1

2
α1λ1θe

2
c1
α1 φ′(1) = −p(1)

2
α1λ1φ

′(1),

where the second to last equality can be seen on noting that

∫ ∞
1

α1λ1θ
c1

α1

e
2
c1
α1
x
φ′(x)dx = c1λ1θe

2
c1
α1
x
φ(x)

∣∣∣∞
1
− 2

∫ ∞
0

λ1θ
c2

1

α1

e
2
c1
α1
x
φ(x)dx.

Thus, (4.3.1) holds with C = p(1)
2

and ν̄1 = ν1. The result follows.

4.4 Proof of Theorem 4.1.1

In order to prove the result, we will verify that the assumptions of Theorem II.1 (more

precisely, those in the remark following Theorem II.1) in [38], pp. 78-79, hold. For this,

it suffices to show that for any k ∈ N, Φ ∈ C2
c (Rk

+), φ ∈ C2
c (R+), 0 ≤ t1 < t2 < · · · <

tk+1 < T <∞, and for some sequence hn with limn→∞ hn = 0,

sup
t∈[tk+1,T ]

E
∣∣∣Φ(Y̌ (n)

t1 , . . . , Y̌
(n)
tk

)(
φ
(
Y̌

(n)
t+hn

)
− φ

(
Y̌

(n)
t

)
− hnĽφ

(
Y̌

(n)
t

))∣∣∣ = o(hn),
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where Ľ is given as

Ľφ(y) := c2λ2mXyφ
′(y) +

1

2
α2λ2mXyφ

′′(y), φ ∈ C∞c (R+).

Letting X◦t := X̌
(n)
t/n, t ≥ 0, we see, using scaling properties of the Skorohod map

and elementary martingale characterization properties, that X◦ has the same probability

law as the process X that was introduced in Proposition 3.1.1. The following uniform

moment bound will be used in the proof of Theorem 4.1.1.

Lemma 4.4.1. Let X be as in Proposition 3.1.1. Then for some δ0 ∈ (0,∞)

sup
0≤t<∞

E
(
eδ0Xt

)
=: d(δ0) <∞.

Proof of Lemma 4.4.1. Throughout Chapter 3 and until now in this chapter, we took

the initial value of X to be 1. Here, it will be convenient to allow the initial random

variable X0 to have an arbitrary distribution on R≥1. When X0 has distribution µ on R≥1,

we will denote the corresponding probability and expectation operator by Pµ and Eµ,

respectively. If µ = δx for some x ∈ R≥1, we will instead write Px and Ex, respectively.

We begin by establishing exponential moment estimates for the increase of X over

time intervals of length lρ when the process is away from the boundary 1, where ρ > 0

and l ≥ 1. Fix ρ ∈ (0,∞). Let a := c1λ1, b := α1λ1, and δ ∈ (0,−a
b
∧ 1). Define

σr := inf{t ∈ [0,∞)|
∫ t

0
Xsds > r} and ρl,r := lρ ∧ σr. Then

Ex

(
exp

(
δa

∫ ρl,r

0

Xsds+ δ
√
b

∫ ρl,r

0

√
XsdB

X
s

))
= Ex

(
exp

(
(δa+ δ2b)

∫ ρl,r

0

Xsds+ δ
√
b

∫ ρl,r

0

√
XsdB

X
s − δ2b

∫ ρl,r

0

Xsds

))
≤
(
Exe

2ρl,r(δa+δ2b)
) 1

2

(
Ex exp

(
2δ
√
b

∫ ρl,r

0

√
XsdB

X
s −

(2δ
√
b)2

2

∫ ρl,r

0

Xsds

)) 1
2

,
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where the inequality follows on noting that ρl,r ≤
∫ ρl,r

0
Xsds and δ ∈ (0,−a

b
). Using the

martingale property of the stochastic exponential (see e.g. [32], Theorem III.45, p. 141),

we have that the second term on the right hand side of the last display equals 1. Thus,

sending r →∞, we have, with −θ := δa+ δ2b < 0,

Ex

(
exp

(
δa

∫ lρ

0

Xsds+ δ
√
b

∫ lρ

0

√
XsdB

X
s

))
≤ elρ(δa+δ2b) = e−θlρ. (4.4.1)

Next, for x ∈ (1,∞), we have by application of Itô’s formula that for t ≤ ρ and δ̃ ≤ δ

Ex

(
eδ̃Xt

)
≤ eδ̃x + δ̃eδ̃Exηρ ≡ eδ̃x + xC1(ρ), (4.4.2)

where C1(ρ) ∈ (0,∞) and the last equivalence can be checked by an application of

Gronwall’s inequality and the Lipschitz property of the Skorohod map.

Using the above estimates, we will now establish certain uniform estimates on the tail

behavior of Xkρ, which will lead to exponential moment estimates at these time points.

Let

τj := inf{t ≥ (j − 1)ρ|Xt ≤ L} ∧ jρ, j ≥ 1,

and

ej := Xjρ −Xτj , j ≥ 1,

e0 = 0. Fix k ∈ N and L > 1, and let

M := max
{
j = 1, . . . , k

∣∣∣ inf
(j−1)ρ≤s≤jρ

Xs ≤ L
}
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if there is an s ∈ [0, kρ] such that Xs ≤ L and 0 otherwise. Let

vj :=

∫ jρ

(j−1)ρ

aXsds+

∫ jρ

(j−1)ρ

√
bXsdB

X
s , j ≥ 1.

If M = 0 then Xkρ = X0 +
∑k

j=1 vj, and if M > 0 then Xkρ = XMρ +
∑k

j=M+1 vj. In

both cases, we have, using (4.4.1) and with ζi := ei +
∑k

j=i+1 vj,

Px(Xkρ > K) ≤ Px

(
XMρ +

k∑
j=M+1

vj > K − x

)
≤ Px

(
max
0≤i≤k

ζi > K − L− x
)

≤
k∑
i=0

Px(ζi > K − L− x) ≤
k∑
i=0

Ex

(
e
δ
2
ζi
)
e−

δ
2

(K−L−x)

≤
k∑
i=0

(
Exe

δei
) 1

2

(
Exe

δ
∑k
j=i+1 vj

) 1
2
e−

δ
2

(K−L−x) ≤
k∑
i=0

(
Exe

δei
) 1

2 e−
1
2

(k−i)θρe−
δ
2

(K−L−x).

Next note that

Exe
δei ≤ Ex

(
eδ[Xiρ−Xτi ]1τi<iρ

)
+ 1 = Ex

(
e−δXτi1τi<iρEXτi

(
eδXiρ

))
+ 1

≤ Ex
(
eδXτi +XτiC1(ρ)

)
+ 1 ≡ C2(L, ρ) + 1.

Hence,

Px(Xkρ > K) ≤ (C2(L, ρ) + 1)
1
2 e−

δ
2

(K−L−x)

k∑
l=0

e−
1
2
lρθ ≤ (C2(L, ρ) + 1)

1
2
e−

δ
2

(K−L−x)

1− e− 1
2
ρθ
.

The last estimate yields

sup
k∈N0

Ex(e
δ
4
Xkρ) ≤ Ce

δ
2
x, (4.4.3)
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for some C ∈ (0,∞). Let δ0 := δ
4
. Finally, for t ∈ ((k − 1)ρ, kρ], k ≥ 1,

Ex
(
eδ0Xt

)
= Ex

(
EX(k−1)ρ

(
eδ0Xt

))
≤ Ex

(
eδ0X(k−1)ρ +X(k−1)ρC1(ρ)

)
≤ Ce

δ
2
x

(
1 +

1

δ0

C1(ρ)

)
.

The result follows.

Remark 4.4.1. Note that Lemma 4.4.1 and the scaling property noted above that lemma

say that supn∈N sup0≤t<∞E
(
eδ0X̌

(n)
t

)
<∞.

Let, for φ ∈ C∞c (R+)

Lxφ(y) := c2λ2xyφ
′(y) +

1

2
α2λ2xyφ

′′(y), (x, y) ∈ R≥1 × R+.

Then

E
[
Φ
(
Y̌

(n)
t1 , . . . , Y̌

(n)
tk

)(
φ(Y̌

(n)
t+hn

)− φ(Y̌
(n)
t )

)]
= E

[
Φ
(
Y̌

(n)
t1 , . . . , Y̌

(n)
tk

)∫ t+hn

t

L
X̌

(n)
s
φ(Y̌

(n)
t )ds

]
+ E

[
Φ
(
Y̌

(n)
t1 , . . . , Y̌

(n)
tk

)∫ t+hn

t

[
c2λ2X̌

(n)
s

(
Y̌ (n)
s φ′(Y̌ (n)

s )− Y̌ (n)
t φ′(Y̌

(n)
t )

)
+

1

2
α2λ2X̌

(n)
s

(
Y̌ (n)
s φ′′(Y̌ (n)

s )− Y̌ (n)
t φ′′(Y̌

(n)
t )

) ]
ds

]
. (4.4.4)

For the second term, we have

sup
t∈[tk+1,T ]

E

∣∣∣∣∣Φ(Y̌ (n)
t1 , . . . , Y̌

(n)
tk

)∫ t+hn

t

(
c2λ2X̌

(n)
s

(
Y̌ (n)
s φ′(Y̌ (n)

s )− Y̌ (n)
t φ′(Y̌

(n)
t )

)
+

1

2
α2λ2X̌

(n)
s

(
Y̌ (n)
s φ′′(Y̌ (n)

s )− Y̌ (n)
t φ′′(Y̌

(n)
t )

))
ds

∣∣∣∣∣ = o(hn) (4.4.5)
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since the functions Φ, φ, and the derivatives of φ are continuous with bounded support

and, by Remark 4.4.1, supn∈N sups≥0E(X̌
(n)
s ) <∞. Recalling the definition of X◦ above

Lemma 4.4.1, the first expected value on the right hand side in (4.4.4) equals

hnE

[
Φ
(
Y̌

(n)
t1 , . . . , Y̌

(n)
tk

) 1

hnn

∫ tn+hnn

tn

LX◦sφ(Y̌
(n)
t )ds

]
.

Thus

E
[
Φ
(
Y̌

(n)
t1 , . . . , Y̌

(n)
tk

)(
φ(Y̌

(n)
t+hn

)− φ(Y̌
(n)
t )− hnĽφ(Y̌

(n)
t )

)]
= E

[
Φ

(
Y̌

(n)
t1 , . . . , Y̌

(n)
tk

)
hn

(
1

hnn

∫ tn+hnn

tn

LX◦sφ(Y̌
(n)
t )ds− Ľφ(Y̌

(n)
t )

)]
+ o(hn)

= E

[
Φ

(
Y̌

(n)
t1 , . . . , Y̌

(n)
tk

)
hn

(
c2λ2Y̌

(n)
t φ′(Y̌

(n)
t ) +

1

2
α2λ2Y̌

(n)
t φ′′(Y̌

(n)
t )

)
(

1

hnn

∫ tn+hnn

tn

X◦sds−mX

)]
+ o(hn).

To complete the proof, it thus remains to show that for some sequence {hn} with

limn→∞ hn = 0

lim
n→∞

E

∣∣∣∣ 1

hnn

∫ tn+hnn

tn

X◦sds−mX

∣∣∣∣ = E

∣∣∣∣ 1

hnn

∫ tn+hnn

tn

Xsds−mX

∣∣∣∣ = 0, (4.4.6)

uniformly in t ∈ [tk+1, T ]. Note that the first equality is due to the fact that X and

X◦ have the same distribution. Next, the law of large numbers (see e.g. [28], Theorem

17.0.1) yields, for any t ∈ [tk+1, T ],

E

∣∣∣∣ 1

tn

∫ tn

0

Xsds−mX

∣∣∣∣→ 0, as n→∞. (4.4.7)

The above result, along with Lemma 4.4.2, below, implies that there is a sequence {hn}

such that limn→∞ hn = 0 and (4.4.6) holds, uniformly in t ∈ [tk+1, T ]. This completes
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the proof.

The proof of the following lemma is adapted from Lemma II.9, p. 137, in [38].

Lemma 4.4.2. Fix tk+1, T ∈ (0,∞). If for all t ∈ [tk+1, T ]

E

∣∣∣∣ 1

tn

∫ tn

0

Xsds−mX

∣∣∣∣→ 0, as n→∞,

then there is a sequence {hn} such that hn → 0 as n→∞, and

sup
t∈[tk+1,T ]

E

∣∣∣∣ 1

hnn

∫ tn+hnn

tn

Xsds−mX

∣∣∣∣→ 0, as n→∞.

Proof. Let α(τ) := supu>τ E
∣∣ 1
u

∫ u
0
Xsds−mX

∣∣ . For t ∈ [tk+1, T ] we have

E

∣∣∣∣ 1

hnn

∫ tn+hnn

tn

Xsds−mX

∣∣∣∣
= E

∣∣∣∣tn+ hnn

hnn

1

tn+ hnn

∫ tn+hnn

0

Xsds−
tn

hnn

1

tn

∫ tn

0

Xsds−mX

∣∣∣∣
≤ tn+ hnn

hnn
α(tn+ hnn) +

tn

hnn
α(tn) ≤ 3T

hn
α(tk+1n)

for all n such that hn ≤ T . Note that the right hand side of the last display is independent

of t ∈ [tk+1, T ]. Choosing hn =
√
α(tk+1n), the lemma follows.

4.5 Proof of Theorem 4.2.1

Throughout this section we assume that Condition 3.1.1 and (4.2.1) hold. This will

not be explicitly noted in the statements of the results.

Existence of a stationary distribution ν
(n)
1 of the S(n)

X = { l
n
|l ∈ {n, n+ 1, . . .}} valued

Markov process X̂(n) follows from the tightness of X̂(n), which is a consequence of (4.5.3),

below. The uniqueness of the stationary distribution follows from the irreducibility of

X̂(n).
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In order to establish the tightness of the sequence {ν(n)
1 }n∈N, we will use the following

uniform in n moment stability estimate for X̂(n).

In order to study tightness and convergence of invariant measures, it will be conve-

nient, as in the proof of Lemma 4.4.1, to allow the initial random variable X̂
(n)
0 to have an

arbitrary distribution on S(n)
X . When X

(n)
0 has distribution µ on R≥1, we will denote the

corresponding probability and expectation operator by Pµ and Eµ, respectively. If µ = δx

for some x ∈ R≥1, we will instead write Px and Ex, respectively. When considering an

initial condition x for X̂(n), then x will always be in S(n)
X , although this will frequently

be suppressed in the notation.

Theorem 4.5.1. There is a t0 ∈ R+ such that for all t ≥ t0 and p > 0

lim
x→∞

sup
n∈N

1

xp
Ex

((
X̂

(n)
tx

)p)
= 0. (4.5.1)

The proof is based on the following lemmas.

Lemma 4.5.1. There exist δ, ρ ∈ (0,∞) such that for every M > 0

sup
n∈N,x≤M

Ex

(
sup

0≤t≤ρ
eδX̂

(n)
t

)
=: d(δ, ρ,M) <∞. (4.5.2)

Lemma 4.5.2. There exist δ, d̃(δ) ∈ (0,∞) such that for every x ∈ S(n)
X , n ∈ N, and

t ≥ 0

Ex(e
δX̂

(n)
t ) ≤ d̃(δ)eδx. (4.5.3)

Proof of Lemma 4.5.1. Condition 3.1.1 and the assumption in (4.2.1) imply, using a Tay-

lor series expansion, that there are δ0, d1, d2 ∈ (0,∞) such that for all δ ∈ [0, δ0] and
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n ∈ N

−δd2 ≤
∞∑
k=0

n2
[
e

(k−1)δ
n − 1

]
µ

(n)
1 (k) ≤ −δd1. (4.5.4)

Recall that

η̂
(n)
t = nλ

(n)
1 µ

(n)
1 (0)

∫ t

0

1{X̂(n)
s =1}ds.

Calculations similar to those leading to (3.3.18) give

sup
x≤M

sup
n∈N

Ex
(
(η̂(n)
ρ )2

)
= d3(ρ,M) <∞ (4.5.5)

for any ρ,M > 0.

For δ0 as above and δ ≤ δ0, let

α
(n)
δ := neδ

∞∑
k=1

(
e

(k−1)δ
n − 1

) µ(n)
1 (k)

µ
(n)
1 (0)

and

β
(n),δ
t := n2λ

(n)
1

∫ t

0

X̂(n)
s

∞∑
k=0

([
e

(k−1)δ
n − 1

]
µ

(n)
1 (k)

)
1{X̂(n)

s >1}ds.

Note that, for any t ≥ 0,

−δd2λ
(n)
1

∫ t

0

X̂(n)
s 1{X̂(n)

s >1}ds ≤ β
(n),δ
t ≤ −δd1λ

(n)
1

∫ t

0

X̂(n)
s 1{X̂(n)

s >1}ds (4.5.6)

and

0 ≤ α
(n)
δ ≤ eδδ. (4.5.7)
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We will now show that

M
(n),δ
t := exp

(
δX̂

(n)
t − β

(n),δ
t

)
− α(n)

δ η̂
(n)
t

is a martingale. Let

q(x) :=
L̂(n)f(x)

f(x)
1{x>1}, where f(x) = eδx,

and L̂(n) is the generator of X̂(n), that is

L̂(n)f(x) = λ
(n)
1 n2x

∞∑
k=0

[
f

((
x+

k − 1

n
− 1

)+

+ 1

)
− f(x)

]
µ

(n)
1 (k).

Moreover, let

V
(n)
t :=

(
X̂

(n)
t , exp

(
−
∫ t

0

q(X̂(n)
s )ds

))
.

Then for functions of the form f(x)g(y) with g(y) = y, the generator L(n) of V (n) is of

the form

L(n)(f(x)g(y)) = L̂(n)f(x)− q(x)f(x) = L̂(n)f(x)1{x=1}.

Thus

M
(n),δ
t = (fg)(V

(n)
t )−

∫ t

0

L̂(n)(fg)(V (n)
s )ds

= eδX̂
(n)
t exp

(
−
∫ t

0

L̂(n)f(X̂
(n)
s )

f(X̂
(n)
s )

1{X̂(n)
s >1}ds

)
−
∫ t

0

L̂(n)f(1)1{X̂(n)
s =1}ds

= eδX̂
(n)
t −β

(n),δ
t − α(n)

δ η̂
(n)
t

is a local martingale ([37], pp. 65-66).
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We next show that for every δ ≤ δ0

d4(δ, ρ,M) := sup
x≤M

sup
n∈N

Ex

(
eδX̂

(n)
ρ

)
<∞. (4.5.8)

From (4.5.6), β
(n),δ
ρ ≤ 0 and consequently

eδX̂
(n)
ρ =

(
eδX̂

(n)
ρ −β

(n),δ
ρ − α(n)

δ η̂(n)
ρ + α

(n)
δ η̂(n)

ρ

)
eβ

(n),δ
ρ

=
(
M (n),δ

ρ + α
(n)
δ η̂(n)

ρ

)
eβ

(n),δ
ρ ≤M (n),δ

ρ + α
(n)
δ η̂(n)

ρ .

Thus, using (4.5.5), (4.5.7), and that M (n),δ is a local martingale, we get

Ex

(
eδX̂

(n)
ρ

)
≤ eδx + eδδ[d3(ρ,M)]

1
2 .

This proves (4.5.8).

Next, using (4.5.5) once more, for x ≤M and δ ≤ δ0
4

,

Ex

(
sup

0≤t≤ρ
eδX̂

(n)
t

)
≤ Ex

(
sup

0≤t≤ρ

(
M

(n),δ
t + α

(n)
δ η̂

(n)
t

))
≤ Ex

(
sup

0≤t≤ρ
M

(n),δ
t

)
+ eδδ

√
d3(ρ,M) ≤ 2

(
Ex

((
M (n),δ

ρ

)2
)) 1

2
+ eδδ

√
d3(ρ,M).

Moreover,

Ex
(
(M (n),δ

ρ )2
)
≤ 2Ex

(
e2δX̂

(n)
ρ −2β

(n),δ
ρ

)
+ 2

(
eδδ
)2
d3(ρ,M),

and from (4.5.6) and (4.5.8), we have for x ≤M

Ex

(
e2δX̂

(n)
ρ −2β

(n),δ
ρ

)
≤
(
Ex

(
e4δX̂

(n)
ρ

)) 1
2
(
Ex

(
e−4β

(n),δ
ρ

)) 1
2

≤ (d4(4δ, ρ,M))
1
2 Ex

(
exp

(
4δd2λ

(n)
1 ρ sup

0≤t≤ρ
X̂

(n)
t

))
.
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Choose ρ <
(

8d2 supn∈N λ
(n)
1

)−1

, then there is a d(δ, ρ,M) such that for x ≤M

Ex

(
sup

0≤t≤ρ
eδX̂

(n)
t

)
≤ d5(δ, ρ,M)Ex

(
exp

(
4δd2λ

(n)
1 ρ sup

0≤t≤ρ
X̂

(n)
t

))
≤ d5(δ, ρ,M)Ex

(
exp

(δ
2

sup
0≤t≤ρ

X̂
(n)
t

))
≤ d5(δ, ρ,M)

[
Ex

(
sup

0≤t≤ρ
eδX̂

(n)
t

)] 1
2

.

Dividing both sides by
[
Ex

(
sup0≤t≤ρ e

δX̂
(n)
t

)] 1
2

yields

[
Ex

(
sup

0≤t≤ρ
eδX̂

(n)
t

)] 1
2

≤ d5(δ, ρ,M)

for any x ≤M and n ∈ N. The result follows.

Proof of Lemma 4.5.2. For δ ∈ (0, 1), n ∈ N, define

b
(n),1
δ (x) := λ

(n)
1 n2x

∞∑
k=0

(
eδ

k−1
n − 1

)
µ

(n)
1 (k),

b
(n),2
δ (x) := λ

(n)
1 n2x

∞∑
k=1

(
eδ

k−1
n − 1

)
µ

(n)
1 (k), and

b
(n)
δ (x) := b

(n),1
δ (x)1{x>1} + b

(n),2
δ (x)1{x=1}.

From (4.5.4), we have, for some κ ∈ (0,∞),

sup
n∈N

b
(n),1
δ (x) ≤ −δd1x inf

n∈N
λ(n) ≤ −δκx ≤ −δκ

for all δ ≤ δ0 (with δ0 as in (4.5.4)) and n ∈ N. We note that

U
(n)
t := eδX̂

(n)
t −

∫ t
0 b

(n)
δ (X̂

(n)
s )ds, t ≥ 0, (4.5.9)

is a martingale ([37]). Fix δ and ρ as in the statement of Lemma 4.5.1. Without loss of
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generality, we can assume that δ ≤ δ0. Note that on the set

{ω : X̂(n)
s (ω) > 1 for all s ∈ [(j − 1)ρ, jρ)},

we have

δ[X̂
(n)
jρ − X̂

(n)
(j−1)ρ] ≤ δ[X̂

(n)
jρ − X̂

(n)
(j−1)ρ]−

∫ jρ

(j−1)ρ

b
(n)
δ (X̂(n)

s )ds− δκρ ≡ v
(n)
j − δκρ.

Fix t > 0 and let N ∈ N be such that (N − 1)ρ ≤ t < Nρ. Then on the set

{ω : X̂
(n)
t (ω) > 1 for all s ∈ [(N − 1)ρ, t)},

δ[X̂
(n)
t − X̂

(n)
(N−1)ρ] ≤ v

(n)
N (t), where

v
(n)
j (t) := δ[X̂

(n)
t − X̂

(n)
(j−1)ρ]−

∫ t

(j−1)ρ

b
(n)
δ (X̂(n)

s )ds.

Now, for a fixed ω, let m ≡ m(ω) be such that [(m−1)ρ,mρ) is the last interval in which

X̂(n) visits 1 before time Nρ. We distinguish between the cases m < N , m = N , and

m = 0, where the latter corresponds to the case where 1 is not visited before time Nρ.

Case 1: m < N .

In this case

δX̂
(n)
t ≤ δX̂(n)

mρ +
N−1∑
j=m+1

(v
(n)
j − δκρ) + v

(n)
N (t).

For j ∈ N, let

γ
(n)
j := inf{t ≥ (j − 1)ρ|X̂(n)

t = 1} ∧ jρ

and

θ
(n)
j := sup

0≤t≤ρ
[X̂

(n)

(t+γ
(n)
j )∧jρ

− X̂(n)

γ
(n)
j

]. (4.5.10)
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Then

δX̂(n)
mρ ≤ δθ(n)

m + δ.

Combining the above estimates, we have

δX̂
(n)
t ≤ δθ(n)

m + δ +
N−1∑
j=m+1

(v
(n)
j − δκρ) + v

(n)
N (t). (4.5.11)

Case 2: m = N .

In this case X̂
(n)
s = 1 for some s ∈ [(N − 1)ρ,Nρ). Suppose first that there is no such

s ∈ [(N − 1)ρ, t). In that case, we see, exactly as in Case 1, that (4.5.11) holds. Now

consider the case where there is an s ∈ [(N − 1)ρ, t] such that X̂
(n)
s = 1. It then follows

that δX̂
(n)
t ≤ δθ

(n)
m + δ.

Case 3: m = 0.

In this case, 1 is not visited before time Nρ and thus

δX̂
(n)
t = δX̂

(n)
0 +

N−1∑
j=m+1

(v
(n)
j − δκρ) + v

(n)
N (t).

Combining the three cases, we have

δX̂
(n)
t ≤ v

(n)
N (t) +

N−1∑
j=m+1

(v
(n)
j − δκρ) + δθ(n)

m + δ + δX̂
(n)
0

≤ v
(n)
N (t) + max

1≤l≤N

{
N−1∑
j=l

(v
(n)
j − δκρ) + δθ

(n)
l

}
+ δ + δX̂

(n)
0 .

Thus, for any M0 > 0,

Px(δX̂
(n)
t ≥M0) ≤

N∑
l=1

Px

(
v

(n)
N (t) +

N∑
j=l

(v
(n)
j − δκρ) + δθ

(n)
l + δ + δX̂

(n)
0 ≥M0

)

≤ e−M0

N∑
l=1

[
eδ(1+x)Ex

(
exp

[
δθ

(n)
l +

N−1∑
j=l

v
(n)
j + v

(n)
N (t)

])
e−δκρ(N−l+1)

]
.
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Recalling U (n) from (4.5.9) and using its martingale property, we get

Px(δX̂
(n)
t ≥M0) ≤ e−M0eδ(1+x)

N∑
l=1

e−δκρ(N−l+1)Ex

(
eδθ

(n)
l

)
≤ d(δ, ρ, 1)e−M0

e(1+x)δ

1− e−δκρ
, (4.5.12)

where the last inequality follows from Lemma 4.5.1 and the observation that

sup
n∈N

Ex(e
δθ

(n)
l ) ≤ sup

n∈N
E1

(
sup

0≤t≤ρ
eδX̂

(n)
t

)
≤ d(δ, ρ, 1) <∞, (4.5.13)

where θ
(n)
l is as in (4.5.10). Since the constant d(δ, ρ, 1) in (4.5.13) is independent of

n ∈ N, t ≥ 0, and N , we get from (4.5.12) for all t ≥ 0 and n ∈ N

Ex(e
δX̂

(n)
t ) =

∫ ∞
0

Px(δX̂
(n)
t > y)dy ≤ d(δ, ρ, 1)

e(1+x)δ

1− e−δκρ

∫ ∞
0

e−ydy = d̃(δ)eδx,

where d̃(δ) = d(δ, ρ, 1) eδ

1−e−δκρ . The result follows.

Proof of Theorem 4.5.1. Fix an L > 1, and let τ (n) := inf{t : X̂
(n)
t ≤ L}. Observe that if

t ∈ [(N − 1)ρ,Nρ) for some N ∈ N, then, following arguments as in the proof of Lemma

4.5.2,

Px(τ
(n) > t) ≤ Px

(
N−1∑
j=1

(v
(n)
j − δκρ) > δ(L− x)

)
≤ eδ(x−L−δκρ(N−1)).

Thus we have that

sup
n∈N

Px(τ
(n) > t) ≤ γ1e

δxe−γ2t,

where γi ∈ (0,∞), i = 1, 2. The above estimate, along with Lemma 4.5.2, implies, for
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n ∈ N,

Exe
δ
2
X̂

(n)
t = Ex

(
1{τ (n)≤t}e

δ
2
X̂

(n)
t

)
+ Ex

(
1{τ (n)>t}e
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)
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) 1

2

(
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t

)) 1
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(
γ1e

δxe−γ2t
) 1

2 (d̃(δ)eδx)
1
2

≤ d1(1 + eδxe−
γ2
2
t),

where d̃(δ) is as in (4.5.3) and d1 ∈ (0,∞) is some constant, independent of n. Fix p > 0.

Then, for some d2 ∈ (0,∞), we have

sup
n∈N

Ex(X̂
(n)
tx )p

xp
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n∈N

d2Exe
δ
2
X̂

(n)
tx

xp
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2
tx)

xp
.

Choose t0 large enough such that γ2
2
t0 > δ. Then for t ≥ t0

lim
x→∞

sup
n∈N

Ex

(
(X̂

(n)
tx )p

)
xp

= 0.

The result follows

As a consequence of Theorem 4.5.1, we have the following result. The proof is adapted

from that of Theorem 3.4 in [4] (see also references therein). For δ ∈ (0,∞), define the

return time to a compact set C ⊂ R≥1 by τ
(n)
C (δ) := inf{t ≥ δ|X̂(n)

t ∈ C}.

Theorem 4.5.2. There are c̃, δ ∈ (0,∞) and a compact set C ∈ R≥1 such that

sup
n
Ex

(∫ τ
(n)
C (δ)

0

(X̂
(n)
t )2dt

)
≤ c̃x3, x ≥ 1.

Proof. Applying Theorem 4.5.1 with p = 3, we have that there is an L ∈ (1,∞) such
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that with C := {x ∈ R+|x ≤ L}, for all x ∈ Cc,

sup
n
Ex

((
X̂

(n)
t0x

)3
)
≤ 1

2
x3, (4.5.14)

where t0 is as in Theorem 4.5.1. Let δ := t0L and τ (n) := τ
(n)
C (δ) := inf{t ≥ δ|X̂(n)

t ≤ L}.

Define stopping times as follows:

σ
(n)
0 := 0, σ(n)

m := σ
(n)
m−1 + t0

(
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(n)
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(n)
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Let F (n)
t := σ{X̂(n)

s |0 ≤ s ≤ t}, then we claim that there is a c0 ∈ (0,∞) such that for

all n, k ∈ N, x ≥ 1
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. (4.5.15)

To prove the claim it suffices to show, by the strong Markov property, that there is a

c0 ∈ (0,∞) such that for all n ∈ N, x ≥ 1

Ex

(∫ σ
(n)
1

0

(X̂
(n)
t )2dt

)
≤ c0x

3.

Note that σ
(n)
1 = t0(x ∨ L) ≤ c̃0x, for some c̃0 ∈ (0,∞). Using this bound along with
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arguments similar to those leading to (3.3.15) (see also Lemma 3.2.2 of [20]), we get, for

some ĉ0 ∈ (0,∞),

sup
n∈N

Ex

(
sup
t≤σ(n)

1

(X̂
(n)
t )2

)
≤ ĉ0x

2.

The claim follows.

From the estimate (4.5.15), we now have

sup
n
V̂ (n)(x) ≤ c0 sup

n
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. (4.5.16)

Note that
{
X̂

(n)

σ
(n)
k

}
k∈N0

is a Markov chain with transition probability kernel

P̌ (n)(x,A) := P
(n)
t0(x∨L)(x,A), x ∈ R≥1, A ∈ B(R≥1),

where P
(n)
t is the transition probability kernel for X̂(n). Using (4.5.14), we get, for all

x ∈ [1,∞),

sup
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where b̃ := b̃(L) ∈ (0,∞). The above inequality along with Theorem 14.2.2 of [28] yields
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where the equality in the last display follows from the fact that X̂
(n)

σ
(n)
k

> L for 1 ≤ k <

m
(n)
0 . Using the last estimate together with (4.5.16), the result follows.
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The following theorem is proved exactly as Proposition 5.4 of [8] (see also Theorem

3.5 of [4]). The proof is omitted.

Theorem 4.5.3. Let f : R≥1 → R+ be a measurable function. Define for δ̂ ∈ (0,∞) and

a compact set C ⊂ R≥1

V (n)(x) := Ex

(∫ τ
(n)
C (δ̂)

0

f(X̂
(n)
t )dt

)
, x ∈ R≥1.
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We now complete the proof of Theorem 4.2.1, which is adapted from that of Theorem

3.2 in [4]. Recall that it only remains to establish the tightness of {ν(n)
1 }n∈N. We will

apply Theorem 4.5.3 with f(x) := x2, and δ̂, C as in Theorem 4.5.2. We will show that

for all n ∈ N and κ̂ as in Theorem 4.5.3

〈ν(n)
1 , f〉 :=

∫
R≥1

f(x)ν
(n)
1 (dx) ≤ κ̂,

from which tightness is immediate. Since ν
(n)
1 is an invariant measure for X̂(n), we have

for non-negative, real valued, measurable functions Φ on R≥1
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By (4.5.18), we have that
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where the last inequality follows from Theorem 4.5.3. If V (n)(x) ≥ k
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Thus Ψ
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k (x) ≥ −κ̂ for all x ≥ 1. By Fatou’s lemma, we have
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ds− κ̂. Combining this with the

last display, we have
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Using the invariance property of ν
(n)
1 once more, we have 〈ν(n)

1 , f〉 ≤ κ̂, which completes

the proof of tightness and thus of Theorem 4.2.1.
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Chapter 5

Modeling Cancer Cell Behavior as a Function of

Substrate Stiffness

5.1 Introduction

The final topic of this dissertation is concerned with the statistical analysis of cell

growth, metabolic activity, viability, and morphology data as part of the EFRI-CBE 1

project Emerging Frontiers in 3-D Breast Cancer Tissue Test Systems. This is an NSF

project that involves researchers from multiple universities and departments: the Bio-

engineering, Chemistry, Electrical and Computer Engineering, Animal and Veterinary

Science, and Biological Sciences Departments at Clemson University, the Biology Depart-

ment at the University of North Carolina at Charlotte, and the Department of Statistics

and Operations Research at the University of North Carolina at Chapel Hill. The Clem-

son University Bioengineering Department is taking the lead and coordinating role.

The overall aims of the project are twofold: (i) to enhance the knowledge of the

relationships between normal and breast cancer cellular behavior, and (ii) to study the

impact on cell growth behavior of factors such as tissue stiffness and oxygen level. The

goal is to develop bioengineering tools to build tissues (or their in vitro representatives,

hydrogels) and to assess experimentally and analytically the aforementioned relationships.

1Emerging Frontiers in Research and Innovation - Cellular and Biomolecular Engineering



The research is multidisciplinary in nature with a large component concerned with

engineering and experimentation efforts. The above mentioned goals can be divided into

the following specific tasks:

1. To build a tissue fabricator which can produce 3-D cellular breast tissues of different

(controlled) stiffness and oxygen levels. Moreover, the fabricator should be able to

produce tissues that have a stiffness gradient.

2. To develop nanoparticle oxygen sensors to measure site specific oxygen levels.

3. To develop a closed-loop control mechanism for oxygen regulation within an in vitro

tissue sample.

4. To develop cellular assays to measure cell state.

5. Modeling the relationships between cells (cell growth, metabolic activity, and mi-

gration) and environment (tissue stiffness and oxygen levels). Analyzing the data

obtained from experiments and providing suggestions for improvements of the de-

signs of future experiments.

Our role in this project is in the last item on this list.

The proof-of-principle study presented here is based on a working paper ([2]) involving

multiple collaborators. This study will lead to further experiments addressing the above

mentioned questions. Large parts of the following are as in [2]. However, any imprecision

resulting from adapting the material is the authors responsibility.

It is well known that 3D culture systems are more complex and therefore evoke very

different cellular behavior or interactions than those found in 2D systems; hence, carefully

crafted 3D systems have the potential to unlock more mysteries of disease processes.

The objectives of this proof-of-principle study were to build a simple 3D breast cancer

tissue test system, using cells and a biomaterial substrate, and to correlate substrate
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stiffness to cancer cell behavior. The latter was part of the aim to show the potential for

the development of mathematical models to better define substrate-cell interactions in a

breast cancer tissue test system (and thus show the potential for mathematical models to

improve the design of the test system). Determining the microenvironmental differences

between cancer and non-cancerous tissues may yield vital information for diagnosing and

treating cancer. It has been observed that tumor cells and nearby tissues have greater

stiffness than healthy tissue; however, the cause and effect of these stiffness differences are

not fully understood ([29, 31], see also [2] for a more detailed description of the biological

background and further references).

Two-dimensional cultures have been shown to be poor indicators of cell behavior in

vivo, where three-dimensional models (also termed test systems) often more accurately

simulate natural conditions [6, 17, 42, 43]. Three-dimensional models afford replica-

ble testing of tumorigenesis while avoiding many of the inaccuracies of two-dimensional

models. Tumor invasiveness has been strongly tied to the migration of cancer cells

into healthy tissue [33]. In two-dimensional cell cultures, migration rates of cells have

been widely studied and have been found to be dependent on both culture substrate

mechanical properties and cell-adhesion ligand densities. Migration rates are greatest

at intermediate cell-adhesion ligand densities as compared to high densities (which op-

pose cell detachment, inhibiting movement) and low densities (which discourage the cell

attachment necessary for movement), and at higher levels of substrate stiffness. In three-

dimensional matrices, however, the relationship between ligand concentration and matrix

stiffness, and cell migration, is not as clearly understood [43]. Additionally, it has been

suggested that substrate pore size [36] and sensitivity to matrix proteolysis [43] also

influence migration and proliferation rates of cells in 3D matrices.

In this study, two experimental systems were developed by investigators at Clem-

son University to address the physiological inadequacies of two-dimensional systems. A
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3D hydrogel system was used to examine the effects of substrate stiffness on tumorige-

nesis. However, due to the numerous parameters which may affect cell migration and

proliferation in true 3D systems (e.g. stiffness, ligand density, pore size, and proteolysis

susceptibility [36, 43]), a simplified hydrogel system was also used. In the latter system,

termed “2.5-dimensional” (2.5D), cells are cultured on top of a soft hydrogel. This may

reduce restrictions to cell migration and proliferation based on substrate pore size and

proteolysis while simultaneously providing a physiologically soft and compliant matrix

absent in true two-dimensional culture. The 2.5D hydrogel test system was developed to

control substrate stiffness. Microscope image processing techniques were used to obtain

morphological information about the population of cultured tumor cells. Both in vitro

systems allow control of ligand density and substrate stiffness, which are both impor-

tant in regulating tumorigenesis and cancer invasiveness [33]. Using the morphological

data obtained from image processing, regression models were developed to correlate char-

acteristics such as tumor size, perimeter, and number of tumors to substrate stiffness.

Previous work has employed measurements of tumor size for assessment of tumor pro-

gression [7, 30]. The imaging-based measurements of tumor morphological parameters

were developed to serve here as a non-destructive, spatially-sensitive alternative to direct

tests of cell proliferation or migration.

5.2 Metabolic Activity and Viability

5.2.1 Preparation and Measurements

Cancer cells (MCF-7) were suspended in “strong” and “weak” hydrogels (containing

2% and 1.1% agarose, respectively). The gels also contained collagen as compared to

gelatin in the Morphology experiment, below. The latter might be a reason for contrasting

results as discussed below, and should be kept in mind. The sample size was n = 6 for
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each of the weak and strong gel groups.

The cells were tested daily for metabolic activity by measuring glucose consumption,

lactic acid production, and Alamar Blue uptake. Higher values in these measurements

indicate higher metabolic activity. After 14 days in culture, two samples from each of the

two experimental groups (strong gel and weak gel) were used for qualitative Live/Dead

cell viability assays and imaged via a fluorescent microscope (see Figure 5.3).

For a more detailed description of the experimental setup, measurements, materials,

and instruments used, see [2].

5.2.2 Lactic Acid Production and Glucose Consumption

Lactic acid production and glucose consumption were measured over 24 hour intervals

in g/L. The measurements were normalized by subtracting the average measurement of

the acellular controls, as described below.

Since weak gels were mechanically unstable, they were continually destroyed by rou-

tine handling (media change, etc.), and no weak gel metabolic samples remained by day

11. Note that for the control group for the weak hydrogel only one sample per day

(up to day 6) was available. As a result, the averaged measurements from the strong

gel (acellular) control group were used to normalize the measurements of the weak and

strong gel groups. A justification for this normalization was a comparison (paired t-test)

between the six measurements from the weak gels and the six averaged measurements

from the strong gels (based on days 1 through 6), which showed no significant difference

between the averaged measurements from the strong gel and the measurements for the

weak gel (p = 0.51 and p = 0.89 for the difference in lactic acid production and glucose

consumption, respectively).

Lactic acid production by cells in strong gels was nearly constant and approximately

the same as that in acellular controls from day 4 on, whereas production in the weak
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cellular gels increased over time and was, based on t-tests, significantly greater (p < 0.05)

than that measured in control samples by day 3 (Figure 5.1). Cells in weak gels consumed

significantly more glucose than cells in strong gels on days 7 and 8 (p < 0.05). Even

though the difference is statistically significant on these days, the overall difference in

glucose consumption between weak and strong gels appears to be small. Note that all

t-tests were performed on a day-by-day basis.
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Figure 5.1: Sample means and standard deviations of the normalized lactic acid produc-
tion and glucose consumption measured over 24 hour intervals (from day i − 1 to day
i).

5.2.3 Alamar Blue Assay

All Alamar Blue absorbance measurements were normalized by subtracting the aver-

age absorbance of the acellular controls (Figure 5.2). Note that we again used, as for the

glucose and lactic acid data, the average values of the strong control group to normalize

the weak and strong experimental groups. This time, the difference between the strong

and weak control groups appeared to be different. However, on average (for the first 6

days), the measurements for the strong control group are only 0.05 g/L larger than those

for the weak control group. This is very small compared to the difference between the

experimental groups (see Figure 5.2).
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The absorbance values resulting from weak gels are statistically significantly larger

(at significance level α = 0.05) than those of both strong gels and control gels at all

time points. Absorbance values from strong gels are, based on day-by-day t-tests, not

significantly different (α = 0.05) from those of control gels at all time points excluding

days 7, 9, and 11. Note that while the sample size was initially 6, the sample size in the

weak gel group declined over time due to gel fracture and was as follows: 5 on days 1-3,

4 on day 4, 3 on days 5-8, 2 on day 9, 1 on day 10, and 0 by day 11. The sample size

was 6 on all days in the strong gel group.

0 
1 
2 
3 
4 
5 
6 
7 

0 2 4 6 8 10 12 14 N
or

m
al

iz
ed

  A
bs

or
ba

nc
e 

Day 

Alamar Blue 

strong gel weak gel 

Figure 5.2: Alamar Blue assay results, showing the increase in metabolic activity over
time of cells in weak gels and the absence of metabolic activity of cells in strong gels.
Sample means and standard deviations of the normalized absorbance levels of the weak
and strong gel groups are given.

5.2.4 Live/Dead Cell Viability Assay

Live/Dead cell staining on day 14 showed the presence of live MCF-7 aggregates (on

the order of 100-200 µm diameter) as well as live, single cells (non-aggregated) in weak

gels (Figure 5.3). No aggregates formed in strong gels, which only had single cells.

5.3 Morphology Imaging

In this experiment, MCF-7 cells were seeded in a “2.5D” hydrogel system, that is, cells

were seeded in monolayers on hydrogels. The agarose content in the different groups was,

91



Figure 5.3: Live/Dead assay. On the left: strong gels showed no MCF-7 aggregate
formation over 14 days. On the right: weak gels developed many large cell aggregates.

respectively, 0.75%, 1%, 1.25%, 1.5%, 2%, 2.25%, 2.5%, and 3%. The gels also contained

gelatin as compared to collagen in the Metabolic Activity and Viability experiment, above.

As mentioned before, this might be a reason for contrasting results as discussed below,

and should be kept in mind. A sample size of three for each group was used for this

experiment.

Medium was added following imaging on days 1, 2, and 3. Additionally, medium was

completely replaced following imaging on days 5, 8, and 12. The time points of medium

replenishment and change are noted since these procedures may have caused aggregate

displacements and disturbances.

ImageJ software was used to convert images to black and white format and for data

collection from the binary processed images. In this analysis, each isolated cellular region

is referred to as an aggregate. An aggregate could be composed of a single cell, several

cells clustered together, or even multiple touching cell aggregates. The large connected

black area in Figure 5.4 is thus counted as one rather than several aggregates. Processed

images qualitatively showed a high fidelity, that is few acellular regions were incorrectly

marked as cells (black), and all aggregates were appropriately marked as cells. However,

late time point images are an exception to this rule (approximately days 10-14), when
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aggregates were noted to cluster. In this event, due to the image processing procedures,

intra-cluster spaces (areas enclosed by aggregates) were erroneously counted as part of

the surrounding aggregates (Figure 5.4).

For each image, the following data were collected: size / coverage area of each aggre-

gate, perimeter of each aggregate, and total number of aggregates.

For a more detailed description of the setup and instruments used, see [2].

Figure 5.4: Example of errors introduced by the image processing protocol at late time
points when multi-aggregate MCF-7 clusters were present. The image displayed is from
the 3% agarose group on day 10. Note that intra-cluster spaces are erroneously repre-
sented as part of the surrounding aggregate.

5.3.1 Statistical Modeling

Regression analyses were performed to assess the feasibility of modeling aggregate

measurements as a function of substrate stiffness (i.e. agarose content) and time. The

measurements examined were coverage area over threshold (cumulative area of aggre-

gates that are larger than a threshold), number of aggregates, average coverage area of

aggregates, and aggregate perimeter. In the following analyses, the experimental groups

with 0.75%, 1%, and 1.5% agarose were excluded. The gels of the two former groups

were too weak and fell apart; moreover cells sank through the gels. In most groups, cells

sank through the gels and were not consistently in focus for image processing. However,

only in the group with 1.5% agarose this effect seemed to be strong enough to warrant

exclusion of the group.
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Throughout the following discussion, S denotes the stiffness of the gel as measured

by % agarose used, and D denotes the day of the measurement. The interaction effect

between stiffness and day is denoted by S · D. Other interaction terms are denoted

analogously. Length and area are both measured in pixels, with 1 pixel corresponding to

2.635 µm and 6.925 µm2, respectively.

Coverage Area over Threshold Coverage area was measured over a size threshold

of 15,000 pixels, both to reduce noise and eliminate metabolically inactive single (non-

aggregated) cells. Generally, coverage area over the size threshold (referred to as Coverage

over Threshold, COT) increased over time more on gels with higher agarose content. This

result was especially prominent over days 6-8 (see Figure 5.5), during which time culture

media were not exchanged. The latter time period is of special importance since it

was noted that handling, including medium exchange, could displace weakly-attached

aggregates, so that they were not consistently in the microscope’s focus, thus increasing

day-to-day variability of measurements.

Although culture medium exchange introduces variables such as rapidly changing

biomolecule concentrations and cell displacement via handling and fluid shear, a model

describing COT as a function of agarose content is still promising over days 1-10, with

multiple R2 = 0.79. The fitted model is as follows (see also Table 5.1):

COT = −111695.1 + 67944.8 S− 2362 D2 + 4659.5 S · D2.

The errors, which are omitted from this equation, are assumed to be independent and

identically normally distributed. Note that the assumption of equal variance appears

to be violated. On the other hand, the errors appear to be approximately normally

distributed. Transformations of the data were considered with the aim of obtaining a

variance that is closer to being constant. However, after transforming the data, the errors

appeared to be less normally distributed. In the trade off between normality and equal
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Figure 5.5: Quadratic model demonstrating the increase in COT as a function of agarose
content from day 6 - 8, during which time culture medium was not exchanged. Multiple
R2 = 0.83.

variance of the errors, the unequal variance is of lesser concern in the present context;

if the variance is not constant, the estimators are still unbiased, and we use this model

only for data description rather than for inference. The coefficient of the interaction

S · D2 is the only one that is statistically significant (p < 0.05). To understand the model

equation, and in particular the interaction term, we give the following example. For day

4 and a gel with 3% agarose, the model for COT predicts that

COT = −111695.1 + 67944.8 · 3− 2362 · 42 + 4659.5 · 3 · 42 = 278003.3.

The COT increases over time faster on stiffer gels, which indicates that on stiffer gels cells

aggregate more and/or that there is greater cell growth than on weaker gels.

Number of Aggregates The natural logarithm of the number of aggregates, ln(N), was

modeled as a function of agarose content (S) and time (D), with the result that ln(N)

decreased over time, and faster so on stiffer gels. The logarithm was taken to linearize
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Table 5.1: Estimates of the coefficients of the model for COT are shown, along with the
corresponding standard errors, t-statistics, and p-values.

Estimate Std Error t-statistic p-value
Intercept -111695.1 111790 -0.999 0.319
Stiffness 67944.8 49141.4 1.383 0.169

Day2 2362 2221.1 1.063 0.289
Stiffness · Day2 4659.5 976.3 4.772 4.38e-06

data.

A weighted least squares regression model was fitted, with weights 1/D, which means

that in this model, the errors are assumed to be independent and normally distributed,

with mean 0 and variance proportional to D. The model equation is as follows (see also

Figure 5.6 and Table 5.2):

ln(N) = 7.217− 0.256 S− 0.518 D + 0.022 D2 − 0.035 S · D.

This simple model fits the data quite well (R2 = 0.93), and the statistically significant

(p = 0.031) interaction term suggests that the logarithm of the number of aggregates

decreases over time faster on stiffer gels. The residuals are larger in absolute value for

smaller fitted values, indicating a possible violation of the model assumption. Note that,

some potential outliers were removed before fitting the model. Although this model

suggests an influence of stiffness on the change of the number of aggregates, the effect

seems to be small.

Table 5.2: Estimates of the coefficients of the model for ln(N) are shown, along with the
corresponding standard errors, t-statistics, and p-values.

Estimate Std Error t-statistic p-value
Intercept 7.21743 0.16479 43.798 < 2× 10−16

Stiffness -0.25644 0.06891 -3.721 0.000285
Day -0.51821 0.05134 -10.094 < 2× 10−16

Day2 0.02180 0.00375 5.813 3.89× 10−08

Stiffness · Day -0.03540 0.01627 -2.176 0.031192
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Figure 5.6: The stiffness groups are referred to by their agarose content (ag). Left
panel: the natural logarithm (ln) of the number of aggregates as a function of time for
each sample for days 1 - 10. Middle panel: averages were taken in each stiffness group (3
samples per group). Right panel: the fitted curves from the model for each of the groups.

Average Coverage Area The average coverage area of aggregates per sample (AC)

increased over time, and faster so on stiffer gels. The natural logarithm of AC was taken

to linearize the data. The following least squares regression model was fitted over days

1-8 (see also Figure 5.7 and Table 5.3):

ln(AC) = 7.061 + 0.269 D + 0.023 S2 · D.

The errors are assumed to be independent and identically normally distributed. Note

that again the assumption of equal variance appears to be violated. On the other hand,

the errors appear to be approximately normally distributed. Overall, the model describes

the data quite well, with R2 = 0.81. The significant interaction term (S2 · D) indicates,

as mentioned above, that the average coverage area per aggregate increases over time in

a manner significantly different for different stiffness cases.

We also considered the increase of ln(AC) from day 6-8 (Figure 5.8). As discussed ear-

lier, when considering the COT data, this is an important time period since the aggregates
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are not disturbed by media changes. The plot shows a faster increase of the average cov-

erage area, giving evidence that aggregate formation might be more prominent in stiffer

gels when not disturbed by media changes.

Table 5.3: Estimates of the coefficients of the model for ln(AC) are shown, along with the
corresponding standard errors, t-statistics, and p-values.

Estimate Std Error t-statistic p-value
Intercept 7.061 0.09093 77.654 < 2× 10−16

Day 0.269 0.02490 10.787 < 2× 10−16

Stiffness2 · Day 0.023 0.00332 6.958 2.13× 10−10

Figure 5.7: The stiffness groups are referred to by their agarose content (ag). Left
panel: the natural logarithm of the average coverage area of aggregates (aggregate size)
as a function of time for each sample for days 1 to 8. Middle panel: averages of the
logarithms were taken in each stiffness group. Right panel: the fitted curves from the
model for each of the groups.

Aggregate Perimeter For each sample, the mean aggregate perimeter (MP) was calcu-

lated. The MP was shown to increase over time, and quicker so on stiffer gels. In Figure 5.9

the natural logarithms of the mean perimeters are plotted. The following least squares
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Figure 5.8: Quadratic model demonstrating the increase in ln(AC) as a function of agarose
content from day 6 to 8, during which time culture medium was not exchanged. Multiple
R2 = 0.67.

regression model was fitted over days 1-8 (see also Table 5.4):

ln(MP) = 4.963 + 0.121 D + 0.032 S · D.

Figure 5.9: The stiffness groups are referred to by their agarose content (ag). Left panel:
the natural logarithm of the mean aggregate perimeter, ln(MP), as a function of time for
each sample for days 1-8. Middle panel: averages of the logarithms were taken in each
stiffness group. Right panel: the fitted curves from the model for each of the groups.
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Table 5.4: Estimates of the coefficients of the model for ln(MP) are shown, along with the
corresponding standard errors, t-statistics, and p-values.

Estimate Std Error t-statistic p-value
Intercept 4.963 0.04442 111.720 < 2× 10−16

Day 0.121 0.01754 6.914 2.65×10−10

Stiffness · Day 0.032 0.00690 4.632 9.45×10−06

5.4 Discussion

A primary objective of this work was to develop statistical models correlating the

behavior and development of cancer cells in response to culture substrate stiffness, with

the long-term goal of developing tunable in vitro breast cancer test systems. Previous

work has shown that in two-dimensional cultures, surface stiffness influences cell mor-

phology (“round” cells on compliant surfaces and “spread” cells on stiff surfaces) [13],

migration direction (towards a higher surface stiffness [26]), migration speed [40], and

cancer development [27]. However, this influence of hydrogel stiffness on cell behavior

does not fully translate to 3D substrates. In our 3D metabolic activity studies, MCF-7

cells cultured within weak hydrogels formed aggregates whereas those in strong hydrogels

remained round and in single cell distribution over 14 days of culture. Furthermore, cell

metabolic activity tests (glucose and lactic acid measurements and Alamar Blue assay)

indicated that cells in strong gels were nearly or completely metabolically inactive (not

statistically significantly different from acellular controls), even though Live/Dead assay

results demonstrated that cells were alive. Since the agarose component of the hydrogel

composite is not degradable by matrix metalloproteinases, it is possible that pore size

and proteolysis susceptibility was sufficiently small to limit cell motility, effectively lock-

ing cells in place in the stronger gel. Note that, work by Rolli and coworkers [36] suggests

that pore sizes of less than roughly 10 µm will inhibit cell migration.

While the hydrogel system employed in the morphology experiment was not a true 3D

model, as cells were seeded in a monolayer on top of a hydrogel, the hydrogel substrate
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selected permits independent control of surface rigidity and cell-adhesion ligand density.

Furthermore, while the aqueous hydrogel substrate mimics the natural ECM more closely

than does a rigid, flat, anhydrous surface, the system also allows free cell migration and

proliferation, independent of substrate pore size and proteolysis susceptibility, similar

to that of a two-dimensional system. To assess the feasibility of modeling cancer cell

position and morphological parameters in a 3D system, a simplified 2.5D system was

used instead. This approach improved the ability to characterize the system while still

maintaining biomimetic properties such as the gel-like, fibrillar nature of natural ECM.

The regression models in the morphology study suggest that the coverage area (over

threshold) increases over time, and faster so on stiffer gels. This was particularly true for

the model of the increase in coverage area over threshold from day 6-8. Moreover, the

number of aggregates decreased over time, and there was some evidence that the decrease

was faster on stiffer gels. These models (for coverage area and number of aggregates)

suggest that cell aggregate formation is more pronounced on stiffer gels. Further evidence

for this was obtained from a regression model that showed that the average aggregate size

increased over time faster on stiffer gels. Note that this is in contrast to the metabolic ac-

tivity and viability study, in which aggregate formation appeared to be stronger in weak

gels. Evidence for this can be seen in Figure 5.3, where aggregates formed only in weak

gels. Additionally, higher metabolic activity (higher lactate production and higher ab-

sorbance values for the Alamar Blue assay) were observed for cells in the weak gels. This

higher metabolic activity is usually seen in aggregated cells rather than single cells. The

contrasting evidence of the effect of stiffness on aggregate formation might be due to the

different experimental setups, indicating that not only stiffness is an important factor for

the degree of aggregate formation, but also the composition of the gel (agarose/collagen

in the metabolic activity experiment versus agarose/gelatin in the morphology experi-

ment) and the configuration of cells within the gel (three dimensional distribution of cells
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in the metabolic activity experiment versus a monolayer in the morphology experiment).

The model for the average aggregate perimeter suggests that the average perimeters

increase over time, and faster so on stiffer gels. A larger aggregate perimeter could mean

that the aggregate is larger and/or that it is more irregularly shaped. Since the coverage

area is increasing faster on stiffer gels (in the Cell Morphology Analysis experiment), a

future question is whether it is possible to separate the effects of larger aggregates and

more irregularly shaped aggregates on the perimeter.

The enormous potential of a 3D test system is in the ability to construct cells in

a biomaterial substrate in a spatially meaningful manner that allows cellular behavior

that is more indicative of behavior in native tissue than a 2D system, thus allowing

rapid discoveries of therapies and preventatives for an array of diseases. This proof-of-

principle work has demonstrated the possibility of using image processing and statistical

modeling to describe pseudo-3D cancer systems in a non-destructive and spatio-temporal

manner. While substrate stiffness alone in a 2D substrate would often dictate greater

cell proliferation, cancer cells were found to form colonies only in “weak” hydrogels in

the 3D metabolic activity and viability experiment – this indicates the importance of

considering additional factors which influence cell behavior in a 3D system, such as

proteolysis susceptibility and pore size.

102



Chapter 6

Appendix

Here we collect some results used in Chapter 2.

Lemma 6.0.1. Let Skn = {x ∈ Rk
+|nx ∈ Nk

0} and {Xt}t∈R+ be an Skn valued Markov

process with 0 as an absorbing state, such that Xt = Xbntc/n, t ≥ 0. Suppose for some

ν ∈ P(Skn), Py(Xt ∈ ·|Xt 6= 0) converges weakly, as t→∞, to ν for all y ∈ Skn. Then ν

is a qsd for {Xt}t∈R+.

Proof. We need to show that for each A ⊆ Skn and t ≥ 0

Pν(Xt ∈ A|Xt 6= 0) = ν(A). (6.0.1)

The left hand side of (6.0.1) equals

Pν(Xt ∈ A,Xt 6= 0)

Pν(Xt 6= 0)
. (6.0.2)



Letting A◦ := A \ {0}, and denoting the measure Py(Xt ∈ ·|Xt 6= 0) by νyt ,

Pν(Xt ∈ A,Xt 6= 0) =

∫
P (Xt ∈ A◦|X0 = x)ν(dx)

= lim
s→∞
s∈Sn

∫
P (Xt ∈ A◦|X0 = x)νys (dx) = lim

s→∞
s∈Sn

∫
P (Xt+s ∈ A◦|Xs = x)νys (dx)

= lim
s→∞
s∈Sn

1

Py(Xs 6= 0)
Py(Xt+s ∈ A,Xt+s 6= 0),

where Sn = { j
n
|j ∈ N0}, the second equality follows from the assumption in the lemma

while the third and fourth use the Markov property of X and the observation that

P (Xt+s ∈ A◦|Xs = 0) = 0.

Setting A = Sn, we have

Pν(Xt 6= 0) = lim
s→∞
s∈Sn

1

Py(Xs 6= 0)
Py(Xt+s 6= 0).

Combining the above, we have

Pν(Xt ∈ A|Xt 6= 0) = lim
s→∞
s∈Sn

Py(Xt+s ∈ A,Xt+s 6= 0)

Py(Xt+s 6= 0)

= lim
s→∞
s∈Sn

Py(Xt+s ∈ A|Xt+s 6= 0) = ν(A),

from which the result follows.

Lemma 6.0.2. Let m ∈ (0, 1) and σ2 ∈ (0,∞). Then there exists a pgf f of linear

fractional form,

f(s) = 1− b

1− p
+

bs

1− ps
, s ∈ [0, 1], (6.0.3)

with b, p ∈ (0, 1), b < 1− p, such that the corresponding probability distribution has mean
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m and variance σ2. Specifically,

p =
σ2/m+m− 1

2 + σ2/m+m− 1
and b = m

(
1− σ2/m+m− 1

2 + σ2/m+m− 1

)2

. (6.0.4)

Proof. Fix b, p ∈ (0, 1), b < 1− p. Define f by (6.0.3). Then f ′(s) = b
(1−ps)2 and f ′′(s) =

2bp
(1−ps)3 . The mean m̄ and the variance σ̄2 of the probability distribution corresponding

to f is given as m̄ = f ′(1) = b
(1−p)2 and

σ̄2 = f ′′(1)− [f ′(1)]2 + [f ′(1)] =
2bp(1− p)− b2 + b(1− p)2

(1− p)4

= m̄

(
2

p

(1− p)
− m̄+ 1

)
.

Solving the last two equations for p and b, we get (6.0.4) with m = m̄ and σ2 = σ̄2.

Recall the notation introduced below Theorem 2.1.4.

Lemma 6.0.3. Assume that Z
(n)
0 has distribution µ (supported on N). Then there exist

a probability measure P
(n)↑
µ on (Ω̂, F̂) such that as s→∞

P̂ (n)
µ (Θ|T > s)→ P (n)↑

µ (Θ), for all Θ ∈ Ft, t ∈ R+.

Furthermore if {Z(n)↑
k }k∈N0 is a Markov chain with state space N, l-step transition func-

tion

p
(n)↑
l (i, j) = P (Z

(n)
l = j|Z(n)

0 = i)
j

i
m−ln , (6.0.5)

and initial distribution µ, then P
(n)↑
µ is the law of {X(n)↑

t }t∈R+, where

X
(n)↑
t :=

1

n
Z

(n)↑
bntc , t ∈ R+.
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Proof. The proof is along the lines of [1], p. 58. Fix α ∈ N and 0 ≤ t1 < · · · < tα < tα+s.

Let kl = bntlc, l = 1, . . . , α, and k̃ = bn(tα + s)c. First assume Z0 = i. Then

Pi/n

(
X

(n)
t1 =

i1
n
, . . . , X

(n)
tα =

iα
n
|tα + s < TX(n) <∞

)
= Pi(Z

(n)
k1

= i1, . . . , Z
(n)
kα

= iα|k̃ < TZ(n) <∞)

= Pi(Z
(n)
k1

= i1, . . . , Z
(n)
kα

= iα)

∑∞
j=1 Pk̃−kα(iα, j)∑∞

j=1 Pk̃(i, j)

= Pi(Z
(n)
k1

= i1, . . . , Z
(n)
kα

= iα)
Pk̃−kα(1, 1)

Pk̃(1, 1)

∑∞
j=1

Pk̃−kα (iα,j)

Pk̃−kα (1,1)∑∞
j=1

Pk̃(i,j)

Pk̃(1,1)

. (6.0.6)

Using Theorem I.7.4 of [1], we get that the right hand side of (6.0.6) converges, as k̃ →∞,

to

Pi/n

(
X

(n)
t1 =

i1
n
, . . . , X

(n)
tα =

iα
n

)
m−kα

iα
i

=: P
(n)↑
i/n

(
πt1 =

i1
n
, . . . , πtα =

iα
n

)
,

where πt(x) = xt for x ∈ Ω̂ and t ∈ R+. The right hand side of the last display determines

a probability measure P
(n)↑
i on

⋃
t>0 σ{πt}, which extends uniquely to a measure P

(n)↑
i

on F̂ . The measure P
(n)↑
µ on (Ω̂, F̂) for a general initial distribution µ of Z

(n)
0 is defined

as
∑∞

i=1 µ(i)P
(n)↑
i . Let Z(n)↑ be a Markov chain on a probability space (Ω̃(n), F̃ (n), P̃ (n))

as in the statement of the lemma. Then

P̃ (n)

(
X

(n)↑
t1 =

i1
n
, . . . , X

(n)↑
tα =

iα
n

)
=
∞∑
i=1

P
(n)↑
i/n

(
πt1 =

i1
n
, . . . , πtα =

iα
n

)
µ(i),

which implies that P
(n)↑
µ is the law of X(n)↑.

Lemma 6.0.4. Assume Conditions 2.1.13, 2.1.14, 2.1.15. Let Qn be as introduced above

(2.3.7). Then Qn → Q.

Proof. For l = 1, . . . , k and n ∈ N, let {γ(n)
l,j }1≤j≤k denote a random variable representing
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the offspring count (in a single generation) of a particle of type l for the n-th BGW

process. Then, since u(n) = (u
(n)
1 , . . . , u

(n)
k )′ and v(n) = (v

(n)
1 , . . . , v

(n)
k )′ are the right and

left eigenvectors of M(n), and m
(n)
l,j = E(γ

(n)
l,j ), we get

k∑
l=1

v
(n)
l u(n)′σ(n)(l)u(n) − 2Qn =

k∑
l=1

v
(n)
l u(n)′σ(n)(l)u(n) −

k∑
l=1

v
(n)
l qn,i[u

(n)]

=
k∑
l=1

v
(n)
l

(
k∑

i,j=1

u
(n)
i E(γ

(n)
l,i γ

(n)
l,j )u

(n)
j −

k∑
i,j=1

u
(n)
i E(γ

(n)
l,i )E(γ

(n)
l,j )u

(n)
j

)

−
k∑
l=1

v
(n)
l

(
k∑

i,j=1

u
(n)
i E(γ

(n)
l,i γ

(n)
l,j )u

(n)
j −

k∑
i=1

(
u

(n)
i

)2

E(γ
(n)
l,i )

)

=
k∑
i=1

(
u

(n)
i

)2 (
1 +

cn
n

)
v

(n)
i −

k∑
l=1

v
(n)
l

(
1 +

cn
n

)2 (
u

(n)
l

)2

= −cn
n

(
1 +

cn
n

) k∑
i=1

(
u

(n)
i

)2

v
(n)
i .

The result follows on sending n→∞ in the above display.
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