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Recurrent microdeletions and microduplications of a 600-kb 
genomic region of chromosome 16p11.2 have been implicated 
in childhood-onset developmental disorders1–3. We report the 
association of 16p11.2 microduplications with schizophrenia 
in two large cohorts. The microduplication was detected in 
12/1,906 (0.63%) cases and 1/3,971 (0.03%) controls  
(P = 1.2 × 10−5, OR = 25.8) from the initial cohort, and in 
9/2,645 (0.34%) cases and 1/2,420 (0.04%) controls  
(P = 0.022, OR = 8.3) of the replication cohort. The 16p11.2 
microduplication was associated with a 14.5-fold increased  
risk of schizophrenia (95% CI (3.3, 62)) in the combined 
sample. A meta-analysis of datasets for multiple psychiatric 
disorders showed a significant association of the 
microduplication with schizophrenia (P = 4.8 × 10−7),  
bipolar disorder (P = 0.017) and autism (P = 1.9 × 10−7).  
In contrast, the reciprocal microdeletion was associated only 
with autism and developmental disorders (P = 2.3 × 10−13).  
Head circumference was larger in patients with the microdeletion 
than in patients with the microduplication (P = 0.0007).

Rare structural mutations play an important role in schizophrenia. 
Recent studies have shown that the genome-wide burden of rare 
copy number variants (CNVs) is significantly greater in individuals 
with schizophrenia than in healthy controls4–6. In addition, multiple 
structural variants have been implicated in schizophrenia. Seminal 
examples include the recurrent microdeletion of 22q11.2 (ref. 7) and 

a balanced translocation disrupting the gene DISC1 (ref. 8). More 
recently, recurrent microdeletions at 1q21.1, 15q13.3 (refs. 5,9) and 
15q11.2 (refs. 6,9) and copy number mutations at other genomic 
loci10–12 have been associated with schizophrenia in large cohorts.

We previously reported two individuals with childhood-onset 
schizophrenia who carry a 600-kb microduplication of 16p11.2  
(ref. 4). This region is a well-documented hot spot for recurrent  
rearrangements that are associated with autism-spectrum disorders 
and mental retardation1–3,13,14. Genomic hot spots such as this are 
important candidate loci in genetic studies of schizophrenia.

We tested the hypothesis that microduplications of 16p11.2 are 
associated with schizophrenia by analysis of microarray intensity data 
in an initial cohort that included 1,906 affected individuals (cases) 
and 3,971 controls from several different sources. Sample collection 
is described in the Supplementary Note and Supplementary Table 1.  
Samples were analyzed with one of four microarray platforms 
(NimbleGen HD2, Affymetrix 6.0, Affymetrix 500K and ROMA 85K). 
Only the 16p11.2 region was examined. Thirteen microduplications 
and four microdeletions were detected in our primary sample using 
standard segmentation algorithms (Fig. 1a, Supplementary Fig. 1a). 
Microduplications at 16p11.2 were detected in 12/1,906 cases (0.63%) 
and 1/3,971 controls (0.03%), demonstrating a statistically significant 
association (Table 1, P = 1.2 × 10–5, OR = 25.8 (3.3, 199)).

In a subset of individuals evaluated at Cold Spring Harbor 
Laboratory (CSHL, Cold Spring Harbor, NY) consisting of 1,352 cases 
and 1,179 controls, CNV calls were verified by median z-score outlier 
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detection (MeZOD), an independent CNV genotyping algorithm that 
identifies outliers in the sample based on the median probe z-score of 
the target region. These results are illustrated as cluster plots (Fig. 1).  
All microduplications and microdeletions detected in the combined 
sample were experimentally validated using an independent micro-
array platform (Supplementary Table 2).

To replicate this association, we evaluated the 16p11.2 region using 
microarray data (Affymetrix 6.0 platform) from an independent 
sample of 2,645 individuals with schizophrenia and 2,420 controls. 
These data were collected as part of a case-control study of schizo-
phrenia supported by the Genetic Association Information Network 
(GAIN, phs000021.v2.p1). We detected ten duplications and one 
deletion using standard hidden Markov model (HMM) calling algo-
rithms (Fig. 1a). The same events were also detected using MeZOD  
(Fig. 1e). All 16p11.2 rearrangements were validated by an independent 
microarray platform (Supplementary Table 2). The microduplication 

was detected in 9/2,645 cases and 1/2,420 controls, demonstrating a 
significant association (P = 0.022, OR = 8.3 (1.3, 50.5)).

The odds ratios in our primary and replication datasets were not 
significantly different (Breslow-Day-Tarone test P = 0.46). Thus, our 
initial result was replicated in an independent sample. For the com-
bined sample, the association of schizophrenia with microduplication 
at 16p11.2 was highly significant (P = 4.3 × 10−7, OR = 14.5 (3.3,62)). 
Sex of the subject did not have a significant effect on the association 
(Supplementary Note).

Our present findings and those from previous studies1–3,13,14 
 suggest that mutations at 16p11.2 confer high risk for schizophrenia 
and for other neuropsychiatric disorders. Clinical variability 
 associated with the 16p11.2 microduplication is evident from the 
heterogeneity of psychiatric diagnoses among microduplication 
 carriers in five families in our series (Supplementary Fig. 2). In 
these families, ten relatives carried the microduplication found in 

the proband. The diagnoses of these relatives 
were schizophrenia (n = 3), bipolar disorder  
(n = 1), depression (n = 2), psychosis signs 
not otherwise specified (n = 1) and no men-
tal illness (n = 3). We were able to determine 
the parent of origin for the microduplication 
in four families, and in all cases the micro-
duplications were inherited from a non-
 schizophrenic parent. The observations in 
these few families suggest that penetrance 
of the duplication is incomplete, though  
substantial (perhaps 30–50%), and that 
expression is highly variable.

In order to more precisely define the  
spectrum of psychiatric phenotypes asso-
ciated with rearrangements of 16p11.2,  
we performed a meta-analysis of data on 

Figure 1 Microduplications and microdeletions at 16p11.2 in persons with schizophrenia and controls. (a–e) 16p11.2 rearrangements were 
detected in a primary sample of 1,906 cases and 3,971 controls (a–d) and a replication sample of 2,645 cases and 2,420 controls (a,e). The single 
microduplication and three microdeletions detected in the primary control set are presented based on the Affymetrix 500K coordinates (hg18). All other 
CNVs were validated in the NimbleGen HD2 platform and are illustrated based on the validation coordinates. In b–e, the median z-score for the 535-kb 
16p11.2 target region is plotted on the x axis and the median z-score of flanking invariant probes is plotted on the y axis. Data are presented separately 
for the ROMA (b), Affymetrix500K (c), NimbleGen HD2 (d) and Affymetrix 6.0 (e) platforms. CNVs were called using thresholds of >2 s.d. for ROMA 
and >1 s.d. for all other platforms (red dots). MeZOD and the HMM algorithms detected the same deletions and duplications at 16p11.2.
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table 1 Duplications and deletions at 16p11.2 among persons with schizophrenia  
and controls

Subjects Deletions Duplications

Series Diagnosis n n % n % OR (95% CI) P value

Primary Schizophrenia 1,906 1 0.05 12 0.63 25.8 (3.3,199) 1.2 × 10−5

Controls 3,971 3 0.08 1 0.03

Replication Schizophrenia 2,645 0 0.00 9 0.34 8.3 (1.3, 50.5) 0.022

Controls 2,420 1 0.04 1 0.04

Combined Schizophrenia 4,551 1 0.02 21 0.46 14.5 (3.3, 62.0) 4.3 × 10−5

Controls 6,391 4 0.06 2 0.03

In the primary sample, which consisted of patients and controls genotyped using one of three microarray platforms, 
association was calculated using the Cochran-Mantel-Haenszel exact test using array type as a stratifying variable. 
Combined odds ratio estimates and 95% confidence intervals were calculated using a logistic regression with disease 
group and array-type as factors. In the replication sample, which consisted of affected individuals and controls  
assessed on a single microarray platform, association was calculated using a Fisher’s exact test. Deletions did not 
show a significant association with schizophrenia or in controls.
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 schizophrenia, bipolar disorder and childhood developmental 
 disorders (combining autism and global developmental delays). We 
integrated data from this study with four publicly available data-
sets1,3,5,15 to generate a combined sample of 8,590 individuals with 
schizophrenia, 2,172 with developmental delay or autism, 4,822 
with bipolar disorder and 30,492 controls (Supplementary Note, 
Supplementary Table 3). In this combined sample, the microdupli-
cation of 16p11.2 was strongly associated with schizophrenia (Table 2, 
OR = 8.4 (2.8, 25.4), P = 4.8 × 10−7) and autism (OR = 20.7 (6.9, 61.7), 
P = 1.9 × 10−7). The association with bipolar disorder was also signifi-
cant (OR = 4.3 (1.3, 14.5), P = 0.017). The reciprocal microdeletion of 
16p11.2 was strongly associated with developmental delay or autism 
(OR = 38.7 (13.4, 111.8), P = 2.3 × 10−13), as reported previously1–3.  
However, the deletion was not associated with schizophrenia or  
bipolar disorder (Supplementary Note). These results suggest that the 
microduplication is associated with multiple psychiatric phenotypes, 
whereas the reciprocal microdeletion is more specifically associated 
with developmental delay and autism.

We explored the association of 16p11.2 microduplications and 
microdeletions with two clinical measures: head circumference 
and height. Available data were compiled from 32 patients with 
16p11.2 mutations who had a diagnosis of schizophrenia, autism-
spectrum disorder or developmental delay (Supplementary Note, 
Supplementary Table 4 and refs. 13,16). Z scores for head circumfer-
ence and height were calculated using standard growth charts from 
the Centers for Disease Control. Head circumference was greater 
among 23 individuals with microdeletions than among 9 individuals 
with microduplications (Supplementary Table 5). The mean orbital 
frontal circumference (OFC) values of patients with microdeletions 
and microduplications were 1.25 and −0.28, respectively (two-tailed 
Wilcoxon rank sum test P = 0.0007). In addition, mean head cir-
cumference of the microdeletion group was significantly greater than 
the population mean (P = 0.0001), whereas the mean head circum-
ference of the microduplication group was not significantly differ-
ent from the population mean (P = 0.29). The association between  
the 16p11.2 microdeletion and larger head circumference was 
observed in multiple diagnostic categories and was not specifically 
attributable to patients with autism (Supplementary Table 5).  
The microduplication and microdeletion groups did not significantly 
differ from each other in height.

We report here that microduplication of 16p11.2 is associated with an 
8–24-fold increased risk of schizophrenia. This region joins a growing 
list of genomic hot spots that confer high risk for the disorder. The odds 
ratios in our series for the 16p11.2 microduplication and schizophrenia 

are comparable to odds ratios for deletions at other schizophrenia-
 associated genes and regions. Deletions of 1q21.1, 15q13.3 and NRXN1 
have reported odds ratios ranging from 7 to 18 (refs. 5,9,10).

Previous genome-wide studies of copy number variation did not 
find a significant association with the microduplication of 16p11.2 
and schizophrenia. This microduplication event is rare, and its 
detection in a cohort may be influenced by several factors, includ-
ing resolution of the platform, methods of analysis and chance. In 
the International Schizophrenia Consortium (ISC) study5, micro-
duplications spanning >50% of the 16p11.2 region were detected in 
5/3,391 cases and 1/3,181 controls. These results are consistent with 
our findings, but the association did not meet the criteria for genome-
wide significance in that study. In the Schizophrenia Gene (SGENE) 
consortium study of schizophrenia9, the 16p11.2 microduplication 
was not selected as a candidate because the event was not observed 
in the initial phase of that study as a de novo mutation, which was the 
key criterion for inclusion in the association analyses.

Microduplication at 16p11.2 is associated with multiple neuropsy-
chiatric phenotypes. Phenotypic heterogeneity has been observed 
for virtually all structural variants associated with schizophrenia. 
For example, in a large Scottish pedigree harboring a translocation 
 disrupting DISC1, translocation carriers had diagnoses of schizophrenia, 
bipolar disorder, major depressive disorder or no mental illness8. 
Similarly, microdeletions of 1q21.1 (refs. 17,18), 15q13.3 (ref. 19),  
22q11.2 (ref. 20) and NRXN1 (refs. 10,12,21,22) are associated with 
adult psychiatric disorders and with autism and other pediatric  
neurodevelopmental disorders.

The association between the 16p11.2 microdeletion and increased 
head circumference is notable given that the microdeletion appears 
to be specific to autism and developmental delay. Several studies have 
found increased head circumference in patients with autism23–30,  
leading to the suggestion that early brain overgrowth may be a key 
neurobiological mechanism in the disorder31. A recent study has 
shown that microdeletions and microduplications of 1q21.1 are 
associated with microcephaly and macrocephaly, respectively18. 
Taken together, these studies suggest that some mutations under-
lying neurodevelopmental disorders may also lead to changes  
in brain volume.

The 16p11.2 microduplication spans a region of approximately  
600 kb containing 28 genes (Supplementary Fig. 1b), including 
numerous genes with potential roles in neurodevelopment. At least 
17 of the 28 genes in this region are expressed in the mammalian brain 
(Supplementary Table 6). Behavioral features have been reported 
in mouse Mapk3−/− Doc2a−/− and Sez6l2−/− knockout models32–34.  

table 2 Meta-analysis of 16p11.2 rearrangements in schizophrenia, autism and developmental delay, and bipolar disorder
Subjects Deletions Duplications

Diagnosis n n % OR (95% CI) P value n % OR (95% CI) P value

Schizophrenia 8,590 3 0.03 NCa 26 0.30 8.4 (2.8, 25.4) 4.8 × 10−7

Controls 28,406 9 0.03 8 0.03

Autism or developmental delay 2,172 17 0.78 38.7 

(13.4,111.8)

2.3 × 10−13 10 0.46 20.7 (6.9,61.7) 1.9 × 10−7

Controls 24,891 5 0.02 6 0.02

Bipolar disorder 4,822 4 0.08 NCa 6 0.12 4.3 (1.3, 14.5) 0.017

Controls 25,225 6 0.02 7 0.03

Data from four studies reporting microduplications and microdeletions of 16p11.2 in individuals with schizophrenia, autism and/or bipolar disorder were combined with data  
from the primary sample to assess the relative strength of the association of each variant with each disorder. Associations were calculated using the Cochran-Mantel-Haenszel 
exact test, using source as a stratifying variable. Combined odds ratio estimates and confidence intervals were calculated using logistic regression with disease group and source 
(study) as factors.
aNot calculated (NC) because significant heterogeneity among studies was detected by the Breslow-Day-Tarone test. The partial odds ratios (95%CI) for the deletion in schizophrenia were 0.69 
(0.1, 4.9), 0.3 (0.05, 2.2), 14.6 (1.9, 111.2) and 0.3 (0.03, 3.7), and those for the deletion in bipolar disorder were 0.3(0.03,3.3), 0.55(0.05,6.7) and 25(5.4,117) in this study, the GAIN 
study and the Weiss et al. studies, respectively.
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Further studies are needed in order to identify the specific gene or 
genes in this region for which dosage effects contribute to increased 
risk for psychiatric and neurodevelopmental disorders.

Our findings further strengthen the evidence demonstrating a role 
for rare mutations in schizophrenia4–6,9. Collectively, these studies 
demonstrate that schizophrenia is characterized by marked genetic 
heterogeneity. Although the 16p11.2 locus by itself may account for 
only a small proportion of cases, the duplication of this region confers 
substantial risk to the individuals who carry it. In addition, although 
this single mutation is rare, the collective effect of rare mutations 
at many different loci may account for a substantial proportion of 
schizophrenia-affected individuals4,5 and will likely influence over-
lapping neurobiological pathways. Characterizing these pathways 
will contribute substantially to our understanding of the origins of 
schizophrenia and suggest targets for treatment development.

MeTHOds
Methods and any associated references are available in the online 
 version of the paper at http://www.nature.com/naturegenetics/.

Accession code.  dbGaP (genotype data): GAIN study of schizophrenia 
(phs000021.v2.p1) and GAIN study of bipolar disorder (phs000017.
v2.p1).

Note: Supplementary information is available on the Nature Genetics website.
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ONLINe MeTHOds
Cohort description. For this study, data were collected on 8,800 individuals 
with schizophrenia, bipolar disorder and autism (cases), and 6,391 controls 
analyzed on one of four microarray platforms (ROMA, NimbleGen HD2, 
Affymetrix500K or Affymetrix 6.0). Ascertainment of samples in the primary 
(1,906 schizophrenia cases and 3,971 controls), replication (2,645 cases and 
2,420 controls), autism (934 cases) and bipolar disorder (3,315 cases) datasets 
is provided in the Supplementary Note. A breakdown of samples by array is 
provided in the Supplementary Table 1.

Intensity data processing. Processing of microarray data was performed at 
three different sites. Affymetrix 500 K data from the National Institute of 
Mental Health (NIMH) (83 cases) were processed at NIMH using published 
described methods4. Affymetrix 500 K data from Cardiff University and the 
Wellcome Trust Case Control Consortium (WTCCC) (471 schizophrenia cases, 
1,697 bipolar disorder cases and 2,792 controls) were processed at Cardiff 
University using the same software and initial quality control parameters for 
CNV calls and arrays as published previously6; however, for these analyses, we 
did not remove CNVs that were detected by <10 probes on both the Affymetrix 
Nsp and Sty arrays.

All other data were processed at Cold Spring Harbor Laboratory (Cold 
Spring Harbor, NY) using different methods for dual-color intensity data 
(array–comparative genomic hybridization (array-CGH) platforms: ROMA 
85K and NimbleGen HD2) and single-color intensity data (SNP genotyp-
ing arrays: Affymetrix 500K, Affymetrix 5.0 and Affymetrix 6.0). Processing 
of dual- and single-color intensity data is described in more detail in the 
Supplementary Note.

Array-CGH intensity data. Normalization of ROMA intensity data by locally 
weighted scatterplot smoothing (LOWESS), and geometric mean estimation 
of log2 ratios has been described previously35.

NimbleGen HD2 dual-color intensity data were normalized in a two-step proc-
ess: first, a ‘spatial’ normalization of probes was performed to adjust for regional 
differences in intensities across the surface of the array, and second, the Cy5 and 
Cy3 intensities were adjusted to a fitting curve by invariant set normalization, 
preserving the variability in the data. The log2 ratio for each probe was then 
estimated using the geometric mean of normalized and raw intensity data.

SNP genotyping data—Affymetrix 500K, Affymetrix 5.0 and Affymetrix 6.0. 
To analyze Affymetrix SNP array single-color intensity data, we developed a 
two-step process that (i) normalizes all arrays by invariant set normalization 
to a single reference array and (ii) calculates the ratio of intensities for each 
experiment in comparison to a sex-matched virtual reference genome.

GC correction of log2 ratios. The final step of data processing involved the cor-
rection of the effects of genomic waves in log2 ratios due to regional correla-
tions with GC content based on the fitted linear regression model proposed 
by Diskin et al.36

Chr. 16p11.2 detection by HMM segmentation. To detect 16p11.2 rearrange-
ments in our ROMA and GC-corrected Affymetrix log2 ratio data, we imple-
mented the seven-state HMM algorithm described previously35. We used a 
modified version of this HMM algorithm to identify CNVs in our higher 
resolution Affymetrix 5.0, 6.0 and NimbleGen HD2 GC-corrected datasets37. 
The results of segmentation were examined for the presence of CNVs overlap-
ping at least 50% of the 16p11.2 region (Chr. 16: 29,557,498–30,107,355 of the 
UCSC human genome version HG18 (NCBI Build 36.1)).

16p11.2 genotyping: rare CNV detection by outlier clustering. Principles. As 
an alternative method for genotyping rare CNVs, we developed an algorithm 
called median z-score outlier detection (MeZOD) to detect rare variants based 
on the probe intensity data across the population of experiments. The prin-
ciples of this method are similar to other approaches that genotype common 
CNVs by probe intensity clustering38,39; however, in most cases very few indi-
viduals carry the rare genotype. Therefore, rather than using cluster analysis 
to identify variants in the population, our method detects rare outliers in the 
standardized probe intensity distribution.

Selection of target probes and flanking probes. The 16p11.2 rearrangements 
were genotyped using probes selected from within the target region (Chr. 16:  
29,564,890–30,100,063). Two unique sequences, one proximal (Chr. 16: 
27,388,307–28,952,358) and one distal (Chr. 16: 30,304,580–31,870,683) to 
the 16p11.2 target region, were combined into a single set of invariant probes. 
The results are displayed as a scatterplot. Median z-scores of target probes are 
shown on the x axis, and median z-scores of the invariant probes are shown 
on the y axis.

To avoid patterns of common copy number polymorphism, probes were 
excluded if the positive or negative Pearson correlations with neighboring 
probes exceeded conservative maximum or minimum thresholds, respec-
tively. Probes not exceeding these thresholds were used for genotyping. 
Supplementary Table 7 contains all platform-specific probes within the tar-
get and invariant regions. The selected genotyping probes in the target and 
invariant regions are represented in red and green, respectively, in the UCSC 
human genome browser.

Median z-score calculation and outlier detection. Calculation of the median 
z-scores was a three-stage process involving (i) experiment-wise log2 ratio 
standardization, (ii) probe-wise standardization of the genotyping probe  
z-scores and (iii), median z-score determination for the target and invariant 
region. For each probe m of experiment n, the standardized log2 ratio z-score  
z is simply calculated by: 

z m
m

n
n n

n
( )= − m

s

where mn and sn are the mean and s.d. of probe ratios for experiment n, 
respectively. The z-score for each genotyping probe g in experiment n was then 
standardized probe-wise within the population of experiments for a given 
platform by: 

Z G
G

n
n g

g
( )=

− m
s

where mg is the mean and sg is s.d. of genotyping probe g. Finally, the median 
for experiment n was calculated for the target genotyping probes and the 
combined proximal and distal invariant genotyping probes.

To detect rearrangements of 16p11.2, outliers of the target median z-score 
distribution were analyzed. Thresholds were set for microduplications at target 
median z-scores >2 for the ROMA array and >1 for Affymetrix500K, Affymetrix 
6.0 and NimbleGen HD2 arrays, whereas the outlier threshold for microdu-
plications on all platforms was below a target median z-score of −2. As noted  
earlier, with the exception of Affymetrix 500K data analyzed locally by the NIMH, 
Cardiff University and the WTCCC, all intensity data was analyzed using MeZOD 
at CSHL. Further assessment of 16p11.2 HMM and MeZOD genotyping is  
provided in the Supplementary Note and Supplementary Figure 3.

Validations of 16p11.2 rearrangements. All rearrangements of 16p11.2 
detected in the primary and replication samples were validated using an addi-
tional microarray platform. Microduplications detected on the NimbleGen 
HD2 platform were confirmed using the Agilent 244K array. CNVs detected 
on other platforms, including the Cardiff schizophrenia cases, were validated 
on the NimbleGen HD2 array. Rearrangements detected in the WTCCC were 
detected independently on both Affymetrix Nsp and Sty arrays (Supplementary 
Table 2). Additional DNA was not available for WTCCC controls to perform 
additional fine-mapping of events detected in these samples. Of the 15 CNVs 
detected in additional cohorts of autism and bipolar disorder, genomic DNA 
was available for 12 (Supplementary Table 2), and all CNVs in 12 genomic 
DNA samples were validated.

Meta-analysis and strength of 16p11.2 associations in multiple psychiatric 
disorders. Data from this study were combined with data from three independ-
ent published studies1,3,5 to obtain a combined sample of 8,590 schizophrenia, 
4,822 bipolar disorder and 2,172 autism or developmental delay cases and a 
combined sample of 30,492 controls. Controlling for study, the control samples 
used for a particular disorder were derived only from those studies contributing 
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cases of the same disorder. Thus, the control samples for schizophrenia, bipolar 
disorder and autism or developmental delay consisted of 28,406, 25,225 and 
24,891 individuals, respectively. Additional information on each study included 
in the meta-analysis is provided in the in the Supplementary Note.

Statistical analysis. Association of 16p11.2 microduplication with schizophrenia. 
The primary sample consisted of data from multiple microarray platforms 
that varied in probe density. All had good sensitivity to detect CNVs that are  
500 kb in size. However, subtle differences in sensitivity could have influenced the  
overall frequency of 16p11.2 microduplications when all platforms were com-
bined into a single dataset. Therefore, we used array type as a stratifying vari-
able when testing for association using the Cochran-Mantel-Haenszel (CMH) 
exact test. Logistic regression was used to estimate the combined ORs and the 
95% confidence intervals and to measure the effect of array type based on the 
deviance in the P value. The Fisher’s exact test was used to test the associa-
tion of the 16p11.2 microduplications in the replication dataset (single array 
platform). The Breslow-Day-Tarone test was used to assess the homogeneity 
of the ORs between the primary and replication datasets. We also examined 
whether sex had an effect on the association by using sex as a covariate. Results 
of these analyses are discussed further in the Supplementary Note.

Meta-analysis of duplications and deletions of 16p11.2 in multiple psychiatric dis-
orders. The association of the microduplication and microdeletion was examined 
independently in each disorder using the CMH exact test with source as a stratify-
ing variable. The Breslow-Day-Tarone test was used to assess the homogeneity 
of the partial OR between the studies of each disorder used in the meta-analysis.  
A common P value and OR were reported from the CMH exact test and from the 
logistic regression, respectively, only if there was homogeneity in the ORs between 
the studies in the meta-analysis. Given the very small number of deletion observa-
tions in the GAIN schizophrenia study and in each of the BD studies, approximate 
ORs were calculated by replacing the number of deletions n with n + 0.5. Results 
of these analyses are discussed further in the Supplementary Note.

Analysis of quantitative clinical features with 16p11.2 rearrangements. 
Quantitative clinical data on height, weight and head circumference (occipital- 
frontal circumference, OFC) was collected from records on individuals  
carrying 16p11.2 in this study, in previously published studies (Weiss et al. 
and Ghebranious et al.1,13) and from unpublished data on individuals carry-
ing 16p11.2 rearrangements ascertained by referral for global developmental 
delay (T. Shaikh, The Children’s Hospital of Philadelphia, Philadelphia, PA, 
personal communication). We excluded from our analysis subjects with known 
Hispanic, Polynesian and African American ethnicity and any subjects with 
documented cytogenetic abnormalities.

OFC and height measurements were converted to percentile rankings, 
conditioned on age and gender, using clinical growth charts from the Center 
for Disease Control’s National Center for Health Statistics (see URLs). OFC 
percentile rankings were further verified using the online tool developed by 
SimulConsult, which is based on the same reference database (see URLs). 
Height and OFC percentiles were converted to z scores using online resources 
(see URLs). Z-scores were contrasted among 16p11.2 microdeletions versus 
microduplications carriers using the Wilcoxon two-sample rank sum test. 
We repeated the analysis using the craniofacial normative database from  
Farkas et al.40,41 (in individuals of European ancestry). The above analysis was 
also performed within subsets of samples defined by diagnoses of schizophrenia,  
developmental delay or autism spectrum disorders to further examine if the 
observed effect was present within each individual group. The results of these 
analyses are discussed further in the Supplementary Note.

Due to limited availability of data on the IQ of subject participants, we 
did not examine intellectual disability in microdeletion and microduplication 
cases. Because of the known influences of antipsychotic medication on body 
weight, differences in weight between individuals with microdeletions and 
duplications were not examined.

A description of the psychiatric symptoms in 16p11.2 carriers is provided 
in the Supplementary Note and Supplementary Table 7.

URLs. CDC Growth Charts, http://www.cdc.gov/growthcharts/; SimulConsult 
microcephaly calculator, http://www.simulconsult.com/resources/ftemp20.
html; HyperStat Online normal distribution calculators, http://davidmlane.
com/hyperstat/z_table.html; dbGaP, http://www.ncbi.nlm.nih.gov/dbgap; 
GAIN, http://www.genome.gov/19518664.

35. Sebat, J. et al. Large-scale copy number polymorphism in the human genome. 
Science 305, 525–528 (2004).

36. Diskin, S.J. et al. Adjustment of genomic waves in signal intensities from whole-
genome SNP genotyping platforms. Nucleic Acids Res. 36, e126 (2008).

37. Grubor, V. et al. Novel genomic alterations and clonal evolution in chronic 
lymphocytic leukemia revealed by representational oligonucleotide microarray 
analysis (ROMA). Blood 113, 1294–1303 (2009).

38. McCarroll, S.A. et al. Integrated detection and population-genetic analysis of SNPs 
and copy number variation. Nat. Genet. 40, 1166–1174 (2008).

39. Cooper, G.M., Zerr, T., Kidd, J.M., Eichler, E.E. & Nickerson, D.A. Systematic 
assessment of copy number variant detection via genome-wide SNP genotyping. 
Nat. Genet. 40, 1199–1203 (2008).

40. Deutsch, C.K. Head Circumference in autism. in The Autism Encyclopedia (eds. 
Neisworth, J. & Wolfe, P.) 96–97 (Brookes, Baltimore, MD, 2004).

41. Deutsch, C.K. & Farkas, L.G. Quantitative methods of dysmorphology diagnosis. in 
Anthropometry of the Head and Face (ed. Farkas, L.G.) 151–158 (Raven,  
New York, 1994).
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