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Abstract
The timing of lake ice breakup and freezeup are important indicators of climate change in Arctic
and boreal regions because they respond rapidly and directly to variations in climate conditions.
Despite its importance, lake ice phenology remains poorly documented in most lakes of Alaska. To
fill this data gap, we constructed a remote sensing-derived lake ice phenology database covering all
lakes in Alaska larger than 1 km2 (n= 4241) over the period 2000–2019. This dataset, which
includes lake ice on/off dates and lake ice duration, was based on an automatic method using daily
moderate resolution imaging spectroradiomenter (MODIS) imagery to measure lake ice fraction.
This method extracts lake ice pixels from MODIS images using a dynamic threshold that was
calibrated against Landsat Fmask. Different filters that account for clouds, polar night, and other
sources of error were applied to increase the accuracy of lake ice phenology estimation. Trend
analysis shows earlier breakup (−5.5 d decade−1) for 440 lakes and later breakup (7.5 d decade−1)
for four lakes (p < 0.05). A total of 289 lakes had significant trends toward later freezeup
(2.9 d decade−1) and 11 lakes towards earlier freezeup (−3.3 d decade−1). Most lakes with
significant trends are north of the Brooks Range. This dataset can contribute to increased
understanding of interactions between lake processes and climate change, and it supports the study
of biogeochemical, limnological and ecological regimes in Alaska and pan-Arctic regions.

1. Introduction

Lakes cover approximately 2% of the Earth’s land sur-
face globally (Adrian et al 2009), and as much as 8%
in Arctic and boreal regions (Watts et al 2012). Lake
properties such as area variation, water temperature,
dissolved organic carbon and plankton composition,
which respond rapidly and directly to environmental
and climate conditions, can serve as important indic-
ators of climate and environmental changes (Adrian
et al 2009). This is particularly true in Arctic and
boreal regions, where climate is changing rapidly
(Vincent et al 2013). Among these properties, lake
ice phenology is a particularly robust proxy for cli-
mate variability. Climate and environmental changes
(e.g. air temperature) contribute to the variability
of lake ice formation and decay (Palecki and Barry
1986, Robertson et al 1992). Since temperature is
the primary driver of lake ice variations (Šmejkalová
et al 2016), earlier breakup and later freezeup would

be expected under a warming climate (Sharma et al
2020). In addition to its use as a proxy for climate
variability, the development and loss of ice is import-
ant because of its substantial impact on lakes them-
selves and nearby terrestrial systems. Many processes
happening in or near lakes are affected by the phen-
ology of lake ice. For example, an increased ice-off
period would result in a larger direct heat transfer
between lakes and the atmosphere, export of more
greenhouse gases due to chemical and biological pro-
cesses, and increased annual evaporation from the
lake surface (Latifovic and Pouliot 2007, Adrian et al
2009). The presence of ice in lakes also alters the spe-
cific light condition and the turbulence in the water
column, both critical to lacustrine plankton com-
munities (Adrian et al 1999).

Studies focusing on the role of lake ice pheno-
logy in climatology and ecology suggest that lake ice
conditions, especially as measured by freezeup and
breakup dates, reflected changes to climate (Sharma
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et al 2019, 2020).Magnuson et al (2000), for example,
found significant trends towards an earlier breakup
and later freezeup. From 1846 to 1995 the mean
shift in freezeup dates was 0.58 d decade−1 later and
changes in breakup dates averaged 0.65 d decade−1

earlier based on the historical groundobservations for
39 lakes and rivers in the northern hemisphere. Lati-
fovic and Pouliot (2007) analyzed 54 year trends of
breakup and freezeup dates in 42 large Canadian lakes
and found that the majority showed earlier breakup
and later freezeup dates. The most significant trend
was detected for lakes in the far north for the last
decade of the study period, with an earlier breakup
trend of 9.9 d decade−1 and later freezeup trend of
7.5 d decade−1. Šmejkalová et al (2016) established
a lake ice breakup phenology dataset for ∼13300
Arctic lakes via remote sensing. The changes in
breakupdates ranged from−1.0 to−10.5 d decade−1,
depending on the region. All these studies agree well
with the common expectation that there would be a
shift towards earlier breakup and later freezeup dates
in the context of global warming, which indicates that
timing of lake ice can be used to infer environmental
and climate changes.

Over the past century, an increase of 1.4 ◦C
(compared to 0.8 ◦C worldwide) was detected for
Interior Alaska by analyzing a 100 year climate record
from Fairbanks (Wendler and Shulski 2009). Because
boreal ecosystems are highly sensitive to temperature,
this significantwarming trendhas important implica-
tions for both biological and physical processes in the
region (Stone et al 2002). There has been considerable
work on understanding lake ice conditions and vari-
ability in Alaska. For example, modeling approaches
based on energy budget have been used to simulate
the growth and decay of lake ice in Alaska (Jeffries
et al 1996, Zhang and Jeffries 2000,Morris et al 2005).
However, lake ice models usually simplify the phys-
ical processes governing lake ice formation and melt,
and large uncertainty may exist in climate reanalysis
and outputs of climate models that are used to force
the lake ice model (Xue et al 2017). Therefore, in situ
data is still important for calibrating and validating
such models (Zhang and Jeffries 2000, MacKay et al
2017, Xue et al 2017). Even though in situ observa-
tions are critical for monitoring the impacts and spa-
tial patterns of climate change, they remain sparse in
remote Arctic and boreal regions.

Remote sensing offers an alternative for directly
observing lake ice phenology in Alaska. Commonly
used remote sensing approaches for detecting lake
ice breakup and freezeup can be divided into cat-
egories of passive microwave, active microwave and
optical, based on the sensors used. Passive microwave
sensors, which are not susceptible to cloud cover,
can be used for mapping ice extent or measuring
ice phenology over large rivers or lakes (Brakenridge
et al 2007, Che et al 2009). However, the coarse spa-
tial resolution of derived ice products (∼5–75 km)

limits their use to the largest water bodies (Beitsch
et al 2014, Zhang and Gao 2016). Active sensors such
as synthetic-aperture radar (SAR) can also be used
to monitor lake ice dynamics such as breakup and
freezeup (Floyd et al 2014) at high spatial resolution
(1–30 m) (Zhu and Bamler 2010). But the low tem-
poral resolution (5–6 d) of SAR sensors can result in
a large uncertainty, which limits its application for cli-
mate studies. Additionally, the intensity of backscat-
ter in SAR imagery, which is used for differentiating
ice fromwater, can be affected by the roughness of the
surface. Therefore, it may be difficult for SAR to dis-
tinguish between ice and open water when the ice is
wet and smooth (Wakabayashi et al 1993, Lundhaug
2000). Optical satellite imagery is also commonly
used for detecting lake ice extent. Landsat images
(30 m spatial resolution) can be used for monitor-
ing ice effectively based on the different reflectivity
characteristics of ice and water (Nolan et al 2002,
Duguay et al 2003, Korzeniowska and Korup 2017).
Despite the advantage of Landsat’s high spatial resol-
ution, the low effective temporal resolution, especially
in cloudy regions, limits its monitoring capability.
Moderate spatial resolution sensors such as moderate
resolution imaging spectroradiometer (MODIS) have
been broadly applied to detecting lake ice phenology
because of their high temporal resolution (e.g. twice
daily for MODIS). Arp et al (2013) examined lake
ice breakup timing over 55 large lakes in Alaska from
2007 to 2012 using satellite imagery and in situmeas-
urements. Reed et al (2009) developed remote sens-
ing based metrics for assessing the variability of snow
and lake ice in southwest Alaska. Šmejkalová et al
(2016) established a detailed lake ice breakup timing
map of arctic lakes, by using daily surface-reflectance
of MODIS at 250 m spatial resolution from 2000 to
2013. In Alaska, the dataset developed by Šmejkalová
et al (2016) only included lakes on Arctic Coastal
Plain and only included the breakup dates.

To date, remotely sensed observations of lake ice
phenology have either focused on a relatively small
number of lakes (Duguay et al 2003, Jeffries et al
2005, Latifovic and Pouliot 2007, Arp et al 2013)
or have exclusively examined ice breakup timing
(Šmejkalová et al 2016), rather than the full spatiote-
moporal dynamics of ice extent. To our best know-
ledge, no comprehensive lake ice phenology dataset
which includes all the lake ice phenology timing (i.e.
breakup, freezeup, ice duration) covers the entirety
of Alaska. To fill the gap, we develop an approach to
estimate lake ice phenology in Alaska that contains
all Alaskan lakes larger than 1 km2. By applying a
polar-night-correction operation, outliers caused by
low solar radiation are removed, which results in an
enhanced accuracy for the estimates. This database,
which includes lake ice breakup date, freezeup date
and ice duration, is validated against independent
lake ice phenology data. Using our lake ice dataset,
we analyze spatial pattern of lake ice phenology and
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quantify corresponding temporal trends. We also
seek to robustly quantify the uncertainty associated
with these trends by propagating error regarding
the impact of clouds on remotely sensed breakup/
freezeup detection into the trend analysis.

2. Material andmethods

The first aim of this study is to develop a remotely
sensed lake ice phenology dataset covering nearly
all lakes in Alaska larger than 1 km2. For this pur-
pose, we applied a method developed by Zhang
and Pavelsky 2019 to calculate lake ice fraction.
This method classifies ice pixels based on the red
reflectance band of MODIS imagery, with an ice
detection threshold calibrated against ice fraction
from Landsat Fmask (Zhu and Woodcock 2012)
over each lake. The time series of lake ice frac-
tion is then used to identify lake ice breakup and
freezeup dates. Multiple filters that account for
clouds, polar night, and other sources of error were
applied to increase the accuracy of lake ice phenology
estimation.

2.1. Selected lakes
We obtained the boundaries of all lakes in Alaska
from the Alaskan Lake Database Mapped from Land-
sat Imagery (Wang 2011). This Landsat-based data-
set contains lakes in Alaska larger than 0.1 km2. Con-
sidering the moderate spatial resolution of MODIS
imagery (250 m), only lakes with surface area >1 km2

were selected in this study to increase the accuracy of
the lake ice phenology detection. Smaller lakes, which
are more likely to be primarily covered by mixed
pixels, were not considered. In total, 4241 of 294 274
lakes were chosen, accounting for 61% of lake surface
area in Alaska. Figure 1 shows the geographical loca-
tions of the lakes analyzed.

2.2. Satellite data
2.2.1. MODIS reflectance data
In this study, red reflectance data (620–670 nm, band
1) from the MODIS/Terra Surface Reflectance Daily
product (MOD09GQ, collection 6) (Vermote and
Wolfe 2015) collected between 2000 and 2019 was
used to distinguish ice pixels from water over the
study lakes. MOD09GQ provides two bands (red and
near infrared) at a 250 m resolution in the Sinus-
oidal projection. It is a daily estimate of the surface
spectral reflectance after atmospheric corrections.We
used MOD09GQ band 1 (red) for two reasons. First,
it has the finest spatial resolution among all MODIS
products (along with band 2). Also, as vegetation has
a lower reflectivity in the red band than theNIR band,
using the red band to detect lake ice status can better
remove the impact of changing vegetation. Second,
the high temporal resolution of MOD09GQ makes it
suitable for identifying lake ice breakup or freezeup
events at a daily timescale.

Figure 1. The location of 4241 selected lakes (with surface
area larger than 1 km2) in Alaska.

2.2.2. MODIS cloud mask
To identify and remove clouds, MODIS cloud flags
were extracted from the MOD09GA data product.
MOD09GA contains several data quality control
measurements that can be used in masking pixels
with quality issues or assessing the uncertainties.
Among these quality indicators, the state_1km_1
band provides the standard cloud mask, which
includes cloud shadows, aerosol quantity, and cirrus
detection at 1 km spatial resolution. The state_1km_1
is stored in an efficient bit-encoded manner with
16 bits. Each bit indicates a differentmeaning of cloud
related status, such as cloud cover or cloud shadow.
The cloud flags were applied to filter out MOD09GQ
redimages with heavy cloud cover.

2.2.3. Landsat fmask
We use Landsat Fmask (Zhu and Woodcock 2012) to
calibrate the reflectance threshold of MODIS images
for ice classifications. The Fmask algorithm was ori-
ginally developed for masking cloud, cloud shadow,
and snow for Landsat TM and ETM+. Fmask clas-
sifies pixels into different groups for each indi-
vidual image using Landsat top of atmosphere reflect-
ance and brightness temperature as inputs based on
an object-based cloud and cloud shadow matching
algorithm. It has two advantages as reference data
to calibrate the reflectance threshold for classify-
ing MODIS images. First, compared with MODIS
imagery, Landsat has much higher spatial resolution
(30 m), which allows it to provide monitoring res-
ults with higher confidence under cloud free con-
ditions. Second, the reliability of Fmask has been
verified in multiple studies (Shao et al 2014, Foga
et al 2017, Yang et al 2020). Because of its high
accuracy for identifying cloud and snow, Fmask has
been integrated into the Landsat surface reflectance
Climate Data Record provided by U.S. Geological
Survey (USGS) Earth Resources Observation and Sci-
ence Center (Maiersperger et al 2013, Zhu et al 2015).
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Table 1. Information about the in situ lake ice phenology.

Data source Region/lake name Number of lakes Period References

USGS and UAF North Slope 33 2011–2016 (Arp et al 2016)
USGS and UAF Interior and North Slope 6 2006–2008 (Arp et al 2010)
USGS and UAF Interior and Western Alaska 12 2011–2012 (Arp et al 2013)
National Park Service, Southwest
Alaska Inventory and
Monitoring Network

Telaquana Lake 1 2003–2018

Note that multi-source remote sensing and reanalysis data with different spatial resolutions were used in this study. For processes that

combine different spatial resolutions, we downscaled images with lower resolutions to higher resolutions, by assigning the same value to

each subpixel.

We identify all Landsat images overlapping with the
study period and compared lake ice fraction val-
ues based on Landsat to same-day values based on
MODIS.

2.2.4. Surface air temperature
To inspect the relation between surface air temper-
ature and lake ice phenology, we used temperat-
ure data from the NCEP/NCAR Reanalysis Project,
which is a joint project between the National Cen-
ters for Environmental Prediction (NCEP, formerly
‘NMC’) and the National Center for Atmospheric
Research (NCAR). The NCEP/NCAR Reanalysis pro-
ject is using a state-of-the-art analysis/forecast sys-
tem to perform data assimilation using past data from
1948 to the present. The data have 6 h temporal res-
olution and 2.5 degree spatial resolution.

2.2.5. Multi-error-removed improved-terrain
(MERIT) DEM
The surface elevations of lakes were extracted from
MERIT DEM, which is a high-accuracy global DEM
at 3 arc second resolution (∼90m at the equator) pro-
duced by eliminating major error components from
existing DEMs. MERIT DEM separates absolute bias,
stripe noise, speckle noise and tree height bias using
multiple satellite datasets and filtering techniques.
After the error removal, land areas mapped with 2 m
or better vertical accuracy were increased from 39%
to 58%.

2.3. In situ lake ice phenology data
Most of the in situ lake ice phenology data were
obtained from studies led by the USGS and the Uni-
versity of Alaska Fairbanks (UAF). Surface and bed
temperature data collected from autonomous ther-
mistors typically moored near lakes centers were used
to indicate timing of ice-cover formation (freezeup)
and ice-cover loss (breakup) as described by (Arp
et al 2013, 2016). In situ sensor freezeup and breakup
data used for validation in this study are reported
to the nearest day and the exact sensor model and
configuration vary among separate studies (table 1).
The in situ lake ice phenology data for Telaquana
Lake (60.94512 N, 153.84496 W), including lake
ice breakup and freezeup dates from 2003 to 2018,

were obtained fromNational Park Service, Southwest
Alaska Inventory and Monitoring Network. More
descriptions of in situ data collection can be found in
table 1 and the supplemental.

2.4. Methodology
2.4.1. Lake ice phenology calculation
The method for identifying lake ice breakup and
freezeup timing generally contains five major steps
(figure 2). At the very beginning, because cloud
obscuration is the main limitation that hampers the
use of optical sensors for ice cover detection andmap-
ping,we removed cloudy pixels inMOD09GQreflect-
ance images using the cloudmask band ‘state_1km_1’
of MOD09GA.

Second, we applied the method developed by
Zhang and Pavelsky (Zhang and Pavelsky 2019) to
classify lake ice pixels. Pixels with red band reflectance
values greater than the dynamic threshold were classi-
fied as ice covered. The threshold for classifying ice vs.
water was selected by calibrating the lake ice fraction
against that from Landsat Fmask because we assumed
that Landsat Fmask more accurately classifies lake ice
cover due to its finer spatial resolution (figures S1 and
S2 (available online at stacks.iop.org/ERL/16/064007/
mmedia)). After extracting lake ice pixels, ice fraction
over lake surface was calculated in the third step.

Fourth, we applied a polar-night-effect correc-
tion operation to reduce the influence from lower
solar radiation during fall/winter over lakes in high-
latitude regions. Lower solar radiation during the
polar night period is likely to be associated with
lower reflectance values in red band satellite imagery.
This reduced reflectance results in a misclassifica-
tion between ice and water because the calculation of
reflectance from radiance is less accurate when solar
radiation is low. For a given location at the high latit-
udes, images incorporated into the daily MOD09GQ
compositemight be assigned from the observations of
different orbit passes, which means not all images are
acquired at the same time of day. This inconsistency
can result in different illumination conditions from
one daily composite to the next. An example of mis-
classification caused by polar night effect is presented
in figure 3. At point 2, the remotely sensed ice fraction
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Figure 2. Flow chart of the method for identifying lake ice breakup date, freezeup date and duration.

Figure 3. Example of the impact from polar night effect (a) time series of lake ice fraction (b) corresponding MODIS false color
images which are highlighted by red arrows in (a).

dropped from 100% to 0% due to weak illumination
conditions. To address this problem, we assume that
lakes ice fraction does not decrease during winter
when radiation is low. We adjust the ice fraction of
cases like that shown in figure 3(b) to 100% if two
criteria are met. First, the time span from sun rise
to sun set is smaller than 7 h. Second, the previous
ice fraction observation was larger than 80%, indic-
ating an already frozen lake. Note that even though
freezeup and breakup happen during days with suf-
ficient daylight, correcting the low lake ice fraction
during polar night is still necessary. This is because

erroneous breakup and freezeup dates are sometimes
detected by remote sensing algorithms when there is
insufficient solar radiation (like polar night or influ-
ence by shadow), or the reflectance is extremely high
due to clouds that are not detected by the cloud fil-
ter. The outlier control method in this study aims to
select the longest ice period, which means the falsely
detected breakup and freezeup dates can affect the
performance of quality control operations. Figure S3
shows the comparison of lake ice fraction over differ-
ent lakes after applying each filter, from which we can
see the outliers present in the initial time series have
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been substantially reduced after applying the quality
control and polar night effect corrections.

Last, we used the time-series of lake ice frac-
tion to identify the timing of freezeup and breakup.
We applied a threshold of 20% lake ice fraction to
identify the lake freezeup and breakup dates. When
the lake ice fraction first reached 20% each fall, we
identified the freezeup date. The breakup date was
defined as the day each spring when the lake ice frac-
tion dropped below 20%. The definition of lake ice
breakup and freezeup varies in different studies. For
instance, Duguay et al (2006) used the mean reflect-
ance value over lake surface to identify lake breakup/
freezeup dates. For Spencer et al (2008), freezeup was
defined aswhen the lake ice fraction first reaches 90%.
In this study, we chose 20% as the threshold because
for most of the lake ice classifications (99.2%), the
errors in ice detection, mainly caused by misclassi-
fication of cloud as ice, range from 0% to 20%. Lake
ice fraction larger than 20% is more likely to be asso-
ciated with real ice events. We calculate the lake ice
duration for each year using the time span between
the freezeup date and its following breakup date. Note
that though the MODIS Cloud Mask product can be
used effectively to remove cloud-affected pixels, in
some cases clouds are misclassified as ice, which can
result in ice detection in the middle of summer. We
used additional two-step quality control operation to
address this cloud residual problem (supplemental).

2.4.2. Estimation of freezeup and breakup date
uncertainty
Breakup/freezeup uncertainties here were the meas-
urement of missing data caused by clouds. In many
cases, breakup or freezeup occured during a cloudy
period, and we were not certain of the exact date. We
only knew the general range, bounded by the dates
of clear-sky images, when the breakup/freezeup pro-
cesses have already occurred. In these cases, we con-
sidered the ice breakup or freezeup event to have
happened on the middle day of the cloudy period
between these two images. The uncertainty in each
breakup or freezeup date was then the number of days
between this middle day and the first day of this miss-
ing data period.

2.4.3. Trend analysis
Breakup and freezeup dates with uncertainties (calcu-
lated in section 3.4.2) larger than 10 d were removed
when performing trend analysis. When calculating
the trends, lake ice breakup/freezeup dates in cer-
tain years were also ignored if multiple breakup/
freezeup occurred. A lake having more than 2 years
of such multiple breakup/freezeup are removed for
trend analysis. In total, 343 lakes are ignored for
the trend analysis. Trends of freezeup and breakup
dates for the lakes are calculated using the remote
sensing observations for the period 2000–2019. The
magnitude of slope is estimated using Sen’s slope

(1968), which is a non-parametric test. By pairing
all the ordered lake ice breakup or freezeup dates
within the study period, multiple slopes can be cal-
culated. Sen’s slope is defined as the median value of
all possible slopes. The significance of each trend is
examined using the Mann–Kendall test (p < 0.05),
a rank-based non-parametric test for trend (Mann
1945, Kendall 1975).

3. Results

3.1. Validation of remotely sensed lake ice
phenology
The comparison of breakup dates with in-situ data
(figure 4) shows that the breakup dates were detected
with relatively high accuracy. The overall mean abso-
lute error (MAE), root mean squared error (RMSE),
correlation coefficient (r) and bias were 5.0 d, 7.49 d,
0.84 and −1.13 d, respectively for the proposed
algorithm. The negative biases indicate that the
breakup dates detected by remote sensing methods
were slightly earlier than the in-situobservations. This
might be caused by different definitions of breakup
dates between the remote sensing algorithm and
ground-based observer. In addition, thin ice or ice
with low albedo due to melt season processes might
be detected as water by MODIS during the breakup
period, leading to a negative bias of breakup estim-
ation. When detecting freezeup, the overall MAE,
RMSE, r and bias of the algorithm used in the study
were 10.72 d, 13.74 d, 0.59 and −0.04 d, respectively
(figure 4). Compared to breakup, freezeup detection
resulted in a larger MAE and RMSE. This may be
caused by heaver cloud coverage during the freezeup
period. An outlier in our validation was found in
breakup for Lake Minchumina. The breakup date
from remote sensing in 2007 was the 177th day while
the in-situ breakup date was the 140th day. This
large difference was because the cloud filter failed
to remove cloudy pixels during the ice melt period.
Therefore, the remote sensing algorithm mistook the
date when the cloud disappeared as the breakup date.
In addition, we found that the bias was more negative
for lakes in southwest Alaskawith later freezeup dates.
This was because the in-situ data in southwest lakes
were collected from a different source. The inconsist-
ent approaches of obtaining in-situ data might be a
source of apparent differences in performance when
evaluating the algorithm. To better understand the
robustness of the results, such as how cloud cover
influences the calculation of breakup/freezeup dates
and the corresponding trends, visual inspection and
uncertainty analysis are provided in supplemental
materials (figures S4–S7). Shown as figure S4, the
algorithm performs even better for smaller lakes than
large lakes in terms of MAE and NRSME. This is
because the threshold for ice classification in this
algorithm was calibrated with Landsat Fmask which
constrained the effect of mixed pixels. Furthermore,
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Figure 4. Validation results for breakup and freezeup dates.

the in situ data of large lakes may be biased due to
limitations of sensor detection area relative to much
larger lake surface area. For example, the portion rep-
resented by the in situ sensor of a lake may be ice free
even if centrally located, while more distant portions
may be still ice-covered. This situationwould bemore
common in large lakes with slower icemelt, which are
also subject to wind redistribution of ice pans to the
wind-ward shoreline.

3.2. Spatial pattern of lake ice phenology
Examination of patterns in lake ice breakup and
freezeup timing across Alaska clearly shows indi-
vidual and regional differences, with breakup and
freezeup dates gradually changing from south to
north (figure 5). The average value of lake ice breakup
dates for all lakes was 28 May (day 148). To measure
the variability of breakup/freezeup over each lake, we
used the 5th and 95th percentiles instead of the earli-
est and latest breakup/freezeup. This is because some
of the earliest/latest lake ice phenology was probably
caused by outliers due to pervasive cloud effects. To
identify the 5th and 95th percentiles, we sort themean
breakup dates of all lakes in ascending order. The 5th
percentile mean lake ice breakup date was 14 April
(day 104) in the southwest coastal region and the
95th percentile was 24 June (day 175) in the north—
a 71 d period separating lake breakup dates. Similar
spatial patterns were detected for lake freezeup dates
and ice durations. Lakes located in southern Alaska
were more likely to be associated with later freezeup
dates and short ice durations. The 5th and 95th per-
centile mean freezeup dates were 26 September and
23 November (day 269 to day 327). For lake ice dur-
ations, the 5th and 95th percentiles were 155 and
271 d. An uncertainty analysis to quantify the influ-
ence of missing data caused by cloud cover showed
that the average uncertainties of lake ice breakup
and freezeup dates were 1.9 and 3.0 d, respectively
(figure S6).

To illustrate what drivers might affect lake ice
phenology, we compared different factors with mean
lake ice breakup/freezeup dates. As expected, mean
observed lake ice phenology was strongly correlated
with latitude (figure 6). The coefficient of determin-
ation (R2) values between latitude and lake freezeup
timing variation was 0.88. The R2 value was 0.75
between latitude and breakup timing. The mean
annualNCEP temperaturewere also highly correlated
with lake ice phenology, with R2 values of 0.67 and
0.82 for breakup and freezeup. However, we hardly
found any significant relationship with altitude and
lake surface area. The R2 for altitude and lake surface
area ranged from 0.001 to 0.014, indicating that the
latitude and mean air temperature are more domin-
ant on controlling lake ice phenology at large spatial
scale in Alaska.

3.3. Trend analysis
3.3.1. Spatial pattern of lake ice phenology trends
The average rate of change in breakup timing was
−2.2 d decade−1. A total of 440 lakes (10.37% of
all lakes) had a statistically significant earlier trend
(−5.5 d decade−1 on average) at the p value of 0.05
(figure 7). Only four lakes show a statistically signific-
ant later breakup trend. If we only inspect the direc-
tion of the trends (both significant and insignificant),
88.78% lakes show earlier breakup trends. In terms
of trend magnitude and trend significance, there
was substantial region-to-region variability within
Alaska. The significant earlier breakup trend was
more evident in northern Alaska. A few lakes with
significantly later breakup were also detected in the
north-central region. Results reported by Šmejkalová
et al (2016) for 2000–2013 using remote sensing
observations also show a strong trend towards earlier
breakup in far northern Alaska (∼−9 d decade−1).
Analysis of trend against spatial domain revealed
different trend behaviors. From the central to the
north part of Alaska, trends generally increased, but
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Figure 5. Spatial patterns of the mean breakup, freezeup dates and lake ice duration from 2000 to 2019.

Figure 6. The correlation between mean lake breakup/frezeup dates and factors that may affect lake ice phenology, including
latitude, mean annual temperature, altitude and lake surface area.

trends are most apparent for lakes north of the
Brooks Range. On average, trends in Northern Alaska
(−3.8 d decade−1) were 4.1 times larger than in the
Yukon River Basin (−0.93 d decade−1), where little
change was found. A total of 289 lakes had signific-
ant trends toward later freezeup (2.9 d decade−1) and
11 lakes towards earlier freezeup (3.3 d decade−1).
Ignoring statistical significance, 79.8% lakes exhibit
later freezeup trends. The smaller number of lakes
with statistically significant trends in freezeup com-
pared to breakupmay reflect the fact that our data are
noisier during the freezeup period. The average dura-
tion trend of all lakes was−0.8 d decade−1 (figure 6).
A total of 195 lakes had significant trends (p < 0.05),
with 189 lakes exhibiting negative trends (average
−2.1 d decade−1) and six lakes showed positive trends
(1.5 d decade−1). The uncertainties of breakup and
freezeup trends for all lakes caused by clouds were
1.5 and 1.2 d decade−1 (figure S7).

3.3.2. Trend analysis by ecoregion
We examined the percentage of lakes that have sig-
nificant lake ice timing trend at the scale of the

ecoregion. An ecoregion is defined as an area of land
and water containing vegetation communities that
have the same ecological characteristics, such as spe-
cies and ecological dynamics, environmental con-
ditions, and interactions (Adrian et al 1999, Surdu
et al 2014). These ecological features are critical for
the long-term persistence of vegetation communit-
ies. Climate change is expected to affect variation in
the seasonality of lake ice which has import and wide
physical and biological ecosystem effects in the region
(Reed et al 2009). Analyzing the variation in lake ice
phenology across multiple lakes within an ecoregion
can provide broader insights into the linkage between
lake ice phenology and local ecology. For instance,
the variations of lake ice would alter light availabil-
ity in the water column at high latitudes, which has
important consequences in the carbon balance and
ecosystem behavior (Cory et al 2014). Knowing lake
ice variability by ecoregions would be beneficial to
understand the changes of ecosystems in the region
and identify the ecoregions which are most vulner-
able to climate change. Twenty ecoregions have previ-
ously been identified by synthesizing information on
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Figure 7. Spatial representation of lake ice timing trends for the period 2000–2019. The lakes are with p < 0.05 (Mann–Kendall
test).

Figure 8. Spatial pattern of lake ice timing trend by ecoregion. The percentage values stand for the percent number of lakes having
statistically significant trend in each ecoregion.

the geographic distribution of environmental factors
such as climate, physiography, geology, permafrost,
soils, and vegetation (Gallant 1995).

The percentage of lakes with significant breakup
trends across ecoregions suggest wide regional differ-
ences (figure 8). The maximum percentage value of
lakes with significant breakup trends was detected in
the interior highlands region (28%, n = 6/21). The
interior highlands ecoregion is composed of rounded,
low mountains, often surmounted by rugged peaks.
The minimum percentage was detected in the Bris-
tol Bay-Nushagak Lowlands, located in southwest-
ern Alaska off Bristol Bay, and the Wrangell Moun-
tains, which had no lakes with significant trends. The
highest percentage of lakes with significant freezeup
trends was detected in the Cook Inlet region. Out of
53 lakes in Cook Inlet, 18 lakes had significant trends
towards later freezeup.

4. Discussion and conclusion

Variations of lake ice phenology can serve as a robust
climate change indicator and are essential to under-
stand interactions between lake ice and regional
climate, environmental conditions and ecosystems
(Rouse et al 2005, Adrian et al 2009). The changes
of lake ice phenology may reflect the magnitude of
climate change occurring in Alaska and be used for
analyzing the effect of lake ice phenology on local

ecosystems. Earlier breakup dates could increase the
absorption of solar radiation and therefore accelerate
the release of carbon from water to the atmosphere
(Cory et al 2014). A comprehensive ice phenology
dataset covering lakes in all sizes would be beneficial
to better understand the fate of carbon in the Arc-
tic. In addition, changes in ice duration may impact
lake evaporation in high-latitude regions (Adrian et al
2009, Zhao and Gao 2019).

In this study, we developed a first lake ice phen-
ology dataset covering all lakes larger than 1 km2 in
Alaska. This dataset includes lake ice cover fraction
and lake ice breakup and freezeup dates over 2000–
2019. We explored spatial patterns in lake ice phen-
ology, along with corresponding temporal trends.
Unlike previous studies of lake ice phenology that
examined only a few lakes (Duguay et al 2003, 2006,
Arp et al 2013, Cai et al 2017, 2019) or focused only
on ice breakup timing (Šmejkalová et al 2016), we
used awell-validatedmethod tomeasure breakup and
freezeup timing, as well as ice duration, over thou-
sands of lakes. As such, we provide a more complete
picture of Alaskan ice phenology than do previous
studies.

The spatial pattern of lake ice phenology in Alaska
suggests that the mean lake freezeup timing, breakup
timing and ice duration were highly correlated with
latitude and temperature. The timing of lake ice phen-
ology is governed by the surplus or deficit in the
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energy balance of the ice cover. The amount of solar
radiation received at the land surface varies by latit-
ude, the timing of ice phenology therefore depends
on the latitudinal location of the lake (Morris et al
2005, Adrian et al 2009, Brown and Duguay 2010).
For every degree rise in latitude, the average breakup
date during the study period increased by about 4.1 d.
The relationships with temperature are not surpris-
ing, though the fact that mean annual temperature
explains such a large fraction of variability in freezeup
timing (82%) shows its very strong importance. It is
possible that amore detailed analysis of fall and spring
temperatures would explain slightly more variability
in freezeup and breakup dates, respectively. Mean-
while, there was a large variability over the entire
domain in the spatial pattern of ice phenology tim-
ing. The difference of lake ice breakup timing between
the 5th and 95th percentiles was more than 2 months
over lakes in southwest and northern coastal regions,
consistent with study by Arp et al (2013) that also
found a 2 month lag in ice breakup timing across
Alaskan lakes. The variability was primarily driven
by temperatures, and might also be caused by some
other factors such as elevation, lake surface area, and
watershed area of individual lakes (Arp et al 2013).
However, in this study, we found no strong relation-
ship between lake ice phenology and lake elevation or
lake surface area. Analysis of trends in lake ice timing
shows that though ice breakup was occurring earlier
and freezeup later for most lakes in Alaska, only a
relatively small fraction of trends for individual lakes
were significant. There were 440 lakes having signific-
antly earlier breakup trends and 289 lakes having sig-
nificant trends toward later freezeup. The correlation
analysis shown in figure 6, and consideration of all
the lakes, may limit detection of important patterns
because lakes are not evenly distributed in Alaska.
For example, while most lakes experiencing earlier
breakup are located north of the Brooks Range, the
region with the largest fraction of such lakes is the
interior highlands, which only has 21 lakes (figure 8).
It is also interesting to note the patterns suggesting
that central Alaska may be experiencing the most
robust trends in freezeup based on regional analysis,
a pattern not as apparent in analysis of the unaggreg-
ated dataset.

This dataset still has some limitations. First, for
regions with heavy clouds (e.g. the southern coast of
Alaska), remotely sensed lake ice phenology have high
uncertainties and may be biased due to the missing
data. Besides this, due to the high reflectance of tur-
bid water, the estimation of lake icemay be biased due
to high turbidity (Yang et al 2020). Second, the length
of the data record is only 19 years, which is relatively
short for examining trends. The short time series may
be one of the reasons that only a small number of
lakes have significant trends (Šmejkalová et al 2016).
The fact that a large majority of lakes exhibit trends
towards earlier breakup (∼88% of lakes) and later

freezeup (∼79%), whether significant or not, suggests
that a longer time series may, in the future, show sig-
nificant trends for more lakes.

The dataset developed here can be used to sup-
port the study of biogeochemical, limnological and
ecological regimes over large spatial scales. Given the
high performance computing capabilities of Google
Earth Engine (Gorelick et al 2017), an extended data-
set including all lakes in the boreal region can be
developed. In addition to direct scientific studies,
such a dataset would also be useful for identifying ice
covered lakes in other satellite datasets. For example,
the Surface Water Ocean Topography (SWOT) mis-
sion will measure variations in area and water sur-
face elevation of lakes as small as 0.0625 km2 globally
(Biancamaria et al 2016). As automated detection of
ice with SWOT’s Ka-band radar may be impossible,
development of a global ice cover dataset from optical
sources would help ensure the consistency of SWOT
datasets.
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