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ABSTRACT

SUDIPTA N. SINHA: Silhouettes for Calibration and Reconstruction from
Multiple Views.

(Under the direction of Marc Pollefeys)

In this thesis, we study how silhouettes extracted from images and video can help with two

fundamental problems of 3D computer vision - namely multi-view camera calibration and 3D

surface reconstruction from multiple images.

First, we present an automatic method for calibrating a network of cameras that works by

analyzing only the motion of silhouettes in the multiple video streams. This is particularly

useful for automatic reconstruction of a dynamic event using a camera network in a situation

where pre-calibration of the cameras is impractical or evenimpossible. Our key contribution

is a novel RANSAC-based algorithm that simultaneously computes the epipolar geometry and

synchronization of a pair of cameras, only from the motion ofsilhouettes in video. The ap-

proach proceeds by first independently computing the epipolar geometry and synchronization

for pairs of cameras in the network. In the next stage, the calibration and synchronization for

the complete network is recovered.

The fundamental matrices from the first stage are used to determine a projective recon-

struction, which is then upgraded to a metric reconstruction using self-calibration. Finally, a

visual-hull algorithm is used to reconstruct the shape of the dynamic object from its silhouettes

in video. For unsynchronized video streams with sub-frame temporal offsets, we interpolate

silhouettes between successive frames to get more accuratevisual hulls.

In the second part of the thesis, we address some short-comings of existing volumetric

multi-view stereo approaches. First we propose a novel formulation for multi-view stereo that
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allows for robust and accurate fusion of the silhouette and stereo cues. We show that it is

possible to enforce exact silhouette constraints within the graph-cut optimization step in the

volumetric multi-view stereo algorithm. This guarantees that the reconstructed surface will

be exactly consistent with the original silhouettes. Contrary to previous work on silhouette

and stereo fusion, the silhouette consistency is guaranteed by construction through hard con-

straints in the graph-cut problem – the silhouette consistency terms are not part of the energy

minimization problem which aims to find a surface with maximal photo-consistency.

Finally, we have also developed an adaptive graph construction approach for graph-cut

based multi-view stereo to address the inherent high memoryand computational overhead of

the basic algorithm. The approach does not need any initialization and is not restricted to a

specific surface topology which is a limitation with existing methods that use a base surface

for initialization. Using this method, we have been able to efficiently reconstruct accurate and

detailed 3D models of objects from high-resolution images for a number of different datasets.
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CHAPTER 1
3D modeling from images and video

1.1 Introduction

Recovering 3D models of the real world from images and video is an important research area

in computer vision with applications in computer graphics,virtual reality and robotics. Man-

ually modeling photo-realistic scenes for such applications is tedious and requires a lot of

effort. The goal in computer vision is to generate such models automatically by processing

visual imagery from the real world captured by cameras in theform of images and video or

by other specialized sensors and recovering the 3D shape andstructure of the scene. In re-

cent years the explosion of digital photography, rapid improvements in cameras and growth

in visual surveillance systems coupled with the advances incomputer graphics and increasing

demand for 3D content in various visual applications has created a growing demand for prac-

tical vision-based 3D modeling systems that can reliably capture models from the real world

in various different scenarios.

The first area we explore in this dissertation is reconstructing in 3D a dynamic scene that

was captured on multiple video streams. The goal is to digitize in 3D a time-varying event

involving either rigid or non rigid moving objects such as human beings, for e.g. a dance

performance that was recorded by video cameras from multiple viewpoints. Researchers in

computer vision have been interested in solving this problem for over a decade now. In 1997,

Kanade et. al. [69] coined the termvirtualized realityand demonstrated the technology by

reconstructing real life scenes involving humans using a large cluster of cameras in an indoor

environment (various camera setups that were used is shown in Figure1.1(a–c)). Since then



(a) (b)

(c)

(d)

(e)

Figure 1.1: Various indoor camera networks at CMU Robotics Labs [69, 70] - (a) 3D dome
consisting of 51 cameras, (b,c) 3D room: cameras setup to capture an event from multiple
views. (d) 4 out of a 8 view sequence captured at the CMU 3D room(c). (e) Another multiple
view sequence of a dancer (courtesy PERCEPTION Group, INRIARhone-Alpes).

.
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various systems have been developed which can digitize human subjects performing various

actions [20, 22, 24, 41, 42, 96, 114] – these systems use an indoor room-sized camera setup

that typically consists of 8–15 synchronized cameras recording at 15–30fps. We will refer

to such an arbitrary configuration of cameras as acamera network. With the popularity of

digital cameras and growth of video surveillance systems, nowadays both indoor and outdoor

camera networksare becoming commonplace. However modeling dynamic scenesoutdoors

is a much more challenging problem and many assumptions thatoften hold true in a controlled

indoor setup now need to be relaxed. One of the fundamental requirements for reconstructing

3D events observed by camera networks irrespective of the reconstruction method itself is

accurate geometric calibration and synchronization of allthe cameras in the network.

Currently in all multi-camera systems [20, 22, 24, 41, 42, 96, 114] calibration and syn-

chronization must be done during an offline calibration phase before the actual video capture

is done. Someone must be physically present in the scene witha specialized calibration ob-

ject. This process makes the process of camera deployment and acquisition fairly tedious.

Multiple calibration sessions are often required as there is no easy way to maintain the cali-

bration over a longer duration. In this thesis we explore possibilities of making this part of the

whole process more flexible by developing methods that recover all the necessary information

from the recorded video streams – thus eliminating the need for an explicit offline calibration

phase before the video capture. Figure1.1shows some examples of camera networks record-

ing a dynamic scene involving a human subject from multiple viewpoints. 3D digitizing such

time varying events would enable the user viewing the event to be completely immersed in a

virtual world allowing him to observe the event from any arbitrary viewpoint – this is called

viewpoint-free 3D videoand has promising applications in 3D tele-immersion, and indigitiz-

ing rare cultural performances, important sports events and generating content for 3D video

based realistic training and demonstrations for surgery, medicine or other technical fields.

We also look into the problem of capturing a high quality 3D model of a static object such
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Figure 1.2: A 3D model of a statue reconstructed from 36 images. The object was placed on
a turn-table and imaged under fairly controlled conditions.

as a statue from ordinary images taken from multiple viewpoints – an example is shown in

Figure1.2. This is also a problem that has been extensively studied in the computer vision

community and over the last decade, remarkable progress hasbeen made in terms of qual-

ity and accuracy of the recovered 3D models and robustness ofthe reconstruction approach.

More sophisticated and specialized technologies such as laser range scanning have also been

succesfully used to scan objects or 3D scenes [87]. However, those require expensive hard-

ware, active lighting in the scene, and are limited to low capture rates and finite depth ranges.

In some cases, both structured and unstructured active lighting have been used with ordinary

cameras for 3D shape acquisition [160], but performing accurate and robust 3D reconstruction

from ordinary images is still a major research goal in the computer vision community because

it will make the technology more practical and easily applicable.

In this dissertation, we improve upon the state of the art techniques for the two scenarios

described above, namely - (a) modeling dynamic events in 3D from multiple archived video

streams and (b) acquisition of high quality 3d models of static objects in the real world.

Our primary goal is to increase the overall flexibility of camera network calibration and

synchronization for 3D event reconstruction. We have developed a method for calibrating and
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synchronizing a network of cameras observing an event from multiple viewpoints. Through

this method, we aim to ease the deployment of cameras for reconstructing dynamic scenes as

all the necessary information in our method is recovered by analyzing only the silhouettes of

moving objects in video. The silhouettes can then be used to recover the 3D shape using a

well knowshape-from-silhouettetechnique.

For reconstructing accurate 3D models with detailed geometry from images, multi-view

stereo approaches have shown promising results in recent years. Although quite sophisticated

stereo algorithms have been proposed, the underlyingdense correspondence problemis highly

ill-posed. Therefore all robust method must employ some type of regularization to enforce

local surface smoothness. On the other hand, silhouettes ofobjects observed in multiple

views provides a strong constraint on its shape and forms thebasis ofshape-from-silhouette

methods. However, silhouette based methods cannot recoverany concavities on the surface

of the object. Combining stereo and silhouette cues can improve the accuracy of the 3D

modeling process. The methods to integrate the two cues thathave been proposed [45, 57, 66]

do not combine the complementary information provided by silhouettes and stereo in the best

possible way. In this thesis, we will investigate this direction further. We will present a new

graph-cut based multi-view stereo formulation in which silhouette constraints can be exactly

enforced. While the benefit of the graph-cut approach for the3D reconstruction problem

has been reported [13, 85, 148], we show that it is possible to also incorporate the powerful

silhouette constraint within the graph-cut framework. Theoverall goal of this approach is to

guarantee robust and accurate fusion of multi-view stereo with silhouette cues.

Finally, we also address the high memory and computational overhead of the volumet-

ric graph-cut based multi-view stereo approach. We proposea formulation that involves an

adaptive graph construction. This makes it possible to achieve the fine voxel resolution that

is required for reconstructing surfaces with high geometric detail without overshooting the

memory bottleneck during the graph-cut optimization. The adaptive construction also avoids
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evaluating the photo-consistency measure densely in regions which are unlikely to contain

any surface elements. This reduces the overall computationtime by an order of magnitude.

1.2 Background

This section provides some background into the state of the art methods used for camera

calibration and multi-view 3D reconstruction, and some of the limitations and weaknesses

that we plan to address in this dissertation.

1.2.1 Camera Calibration

(a) (b)

(c) (d)

Figure 1.3: (a) Camera Calibration using a planar checkerboard [162]. (b) Calibration using
a single LED [137]. (c) Synchronization using motion capture markers [114]. (d) VICON
motion capture system and its own calibration wand.

In traditional camera calibration, images of a calibrationtarget (an object whose geome-

try is known) are first acquired. Correspondences between 3Dpoints on the target and their

imaged pixels are then recovered (the target is built in a wayto make this step easy). After

this, thecamera-resectioningproblem is solved. This involves estimating the intrinsic and ex-

trinsic parameters of the camera (see AppendixA-1.1 for the specific camera model used) by
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minimizing the reprojection error of the 3D points on the calibration object. The Tsai camera

calibration technique was popular in the past, but requireda nonplanar calibration object with

known 3D coordinates [143]. The resulting calibration object often had two or three orthogo-

nal planes. This was difficult to construct and made the overall process of camera deployment

and calibration quite cumbersome. Zhang et. al.[162] proposed a more flexible planar cali-

bration grid based method in which either the planar grid or the camera can be freely moved.

The calibration object is easily created by pasting a checkerboard pattern on a planar board

that can be waved around in the scene. An implementation of this calibration method is pro-

vided by [10], and has become very popular among computer vision researchers. Figure1.3(a)

shows the result of this calibration procedure in the cameracoordinate system. Another simi-

lar plane-based camera calibration technique was also proposed around this time [135].

While this method produces fairly accurate calibration in realistic scenarios, obtaining the

calibration data for large multi-camera systems can still be quite tedious. Often, with cameras

placed all around a scene, the checkerboard can only be seen by a small group of cameras at

one time. Hence, only a subset of cameras in the network can becalibrated in one session. By

ensuring that these subsets overlap, it is possible to mergethe results from multiple calibration

sessions and obtain the calibration of the full camera network. However, this requires extra

work and makes the overall procedure quite error prone. There is a new method for multi-

camera calibration [137] – one that uses a single-point calibration object in the form of a

bright LED that is waved around the scene. The advantage it provides is that the LED can

be simultaneously observed in all images irrespective of their configuration. In a fairly dark

room, detecting it in the images and establishing correspondence are easy and reliable. By

moving the LED around, one can calibrate a larger volume thanwould be possible with a

checkerboard, and the arbitrary path taken by the LED duringthe calibration session can be

thought of as a flexible virtual calibration object (see Figure1.3(b)).

Motion capture systems such as VICON [146] provide their own calibration devices con-
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taining retro-reflective sensors (see Figure1.3(d) or other special markers to establish 2D–3D

correspondence. Although the basic idea is similar to LED–based calibration, calibrating large

spaces or those in broad daylight is still considered to be a challenge as the LED or the mark-

ers become harder to detect when the cameras observe a largeror a brighter scene. Such mo-

tion capture sensors are often also used for multi-camera synchronization (see Figure1.3(c)).

Often in controlled scenes, a hardware trigger is used to synchronize all the video cameras

together to ensure higher accuracy. A simple alternative isto use a clap sound to manually

synchronize the videos, but this can be error prone for videos containing fast-moving subjects

or in outdoor, noisy environments.

Although all these traditional methods can produce accurate results, they require physical

access to the observed space and involves an offline precalibration stage that precludes re-

configuration of cameras during operation (at least, without an additional calibration session).

This is often impractical and costly for surveillance applications and can be impossible for

remote camera networks or sensors deployed in hazardous environments.

On the other hand, significant progress has been made in the last decade, in automatic

feature detection and feature matching across images. Also, robust structure from motion

methods, that allow the recovery of 3D structure from uncalibrated image sequences have

been developed. Such structure from motion algorithms werefirst developed in the context

of video [106], but were also extended to handle large unstructured imagecollections [19,

128]. Although in theory, such techniques could be used for multi-camera calibration, they

require more overlap between camera pairs than is often available in camera networks. This

is why automatic point correspondence based methods often do not work for camera network

calibration and manual calibration is required.
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1.2.2 Multi-view 3D Reconstruction

The techniques for 3D reconstruction from images (often called3D photography) involves us-

ing cameras (and optionally illumination) to acquire the shape and appearance of real objects.

Flexible techniques for acquiring the 3D shape and appearance of a variety of real objects

under different imaging conditions have been studied. All these methods can be divided into

two categories –activeandpassivemethods. Whileactivemethods employ some form of ar-

tifical lighting in the scene,passivemethods recover all the information only from the images

without making any prior assumptions on illumination information.

Active vision methods such as laser range scanning [87], active stereo with structured or

unstructured projected light [160], active depth from defocus [49] typically require expensive

hardware or need to deploy specialized equipment. Althoughthey have been shown to produce

good results in controlled scenes, there is less flexibilityin using them in the real world. This

is why there is still a strong interest in the computer visioncommunity to develop robust

algorithms for accurate 3D reconstruction usingpassivemethods.

In passivemethods, a wide variety of visual cues can be exploited – these are used to

classify the methods into the following categories (not an exhaustive list) – stereo, shape

from shading (photometric stereo), shape from silhouettes, shape from focus (and defocus),

shape from texture, etc. It has been shown that human vision and perceptual systems rely on

these different cues to perceive 3D shape, and this has motivated these variousshape-from-X

approaches. Amongst these, the stereo and silhouette cues dominate and these can be applied

in a wide variety of scenes involving various types of objects. In this thesis, we will limit our

discussion to 3D reconstruction methods that use only the stereo and silhouette cues.

A single image of an unknown scene does not provide enough information to reconstruct

a 3D scene as the associated depth information is lost duringimage formation. Please refer

to AppendixA-1.1 for the mathematics of image formation and the commonly usedcamera

models. Although researchers have been studying the problem of inferring the 3D scene struc-
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ture from a single image [29, 62, 115], these methods typically require additional information,

require the scene to be structured in a certain way, and produce 3D estimates which are coarse

shape and fairly inaccurate.

By extracting dense pixel to pixel correspondences betweenmultiple calibrated images of

the same scene, it becomes possible to recover the 3D structure using geometric techniques

such as multi-view triangulation. This is the basic idea behind many binocular stereo (two-

view) or multi-baseline stereo algorithms. However the dense correspondence problem (or

the 3D reconstruction problem in general) is a highly ill-posed inverse problem; the presence

of image noise, specularities or other complex illumination effects, presence of texture-less

regions on the surface and finally occlusions makes the general 3D reconstruction problem

quite challenging. The estimation problem has multiple solution and must employ some form

of regularizationthat biases the solution towards smoother shapes. This often boils down

to solving a computationally expensive optimization problem involving many unknown vari-

ables.

Various mathematical formulations for the optimization problem exist in the literature [38,

13, 14] and are based on different criteria. All the methods can be broadly classified into

local andglobal methods. While global methods usually ensure higher accuracy and utilize

better forms of regularization and shape priors, their computational complexity is usually

much higher than the local methods.

Existing multi-view stereo methods can also be classified onthe basis of scene represen-

tation, photo-consistency measure, shape priors used and the various ways of dealing with the

visibility problem (see [117] for a detailed survey of existing methods). We will review some

of the relevant stereo andshape-from-silhouettemethods in Chapters4 and5 respectively.

Many successful global methods often adopt a variational approach to the problem that aims

to recover a weighted minimal surface inside a given bounding volume. One popular strategy

is to cast the reconstruction problem into the level-set framework, and represent the surface as
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the zero level set of a time-evolving implicit function. Theenergy functional is solved by us-

ing a partial differential equation which drives the evolution of the level set function. The final

surface recovered is often quite smooth, but this strongly depends on the initialization because

the underlying method can only compute a local minima of the energy functional. Another

class of discrete combinatorialgraph-cutmethods have recently been used to minimize sim-

ilar energy functionals with better guarantees on finding global minimas under some special

cases. It was shown that graph-cuts could efficiently compute the weighted minimal surface

by solving a mincut problem on a suitable flow graph (see Appendix B-3 for the preliminaries)

for which polynomial time algorithms are well known. However, the graph-cut approach for

3D reconstruction has some other weaknesses. These will be analyzed in Chapter5, and we

will explore new methods in this dissertation to address them.

1.3 Our Contributions

The primary contributions discussed in this disseration are two-fold. These are summarized

below. See AppendixB-3.1 for the list of relevant publications.

Camera Network Calibration and Synchronization

As surveillance camera networks or video cameras become common, it will be possible to

record live video of a dynamic scene involving moving objects, often human subjects from

multiple viewpoints. First, we show that it is possible to automatically recover the calibra-

tion and synchronization of such a network of cameras using only the input videos. Next,

we show how to obtain the 3D reconstruction of the dynamic event as well. The proposed

technique can recover all the necessary information by analyzing the silhouettes of moving

objects in multiple video streams. This allows us to model dynamic scenes or events in 3D

from archived video, and it precludes the need for an offline calibration phase or physical ac-

cess into the scene for collecting explicit calibration data. This increases the overall ease for

11



camera deployment and acquisition for digitizing 3D events. We demonstrate the benefit of

our approach by remotely calibrating several visual hull datasets that were acquired by other

researchers in their own labs. Differents parts of this research have been published in the

following papers – [125, 122, 123, 121].

The specific contributions are:

• We propose a novel algorithm for recovering the epipolar geometry of a camera pair and

the synchronization that recovers the necessary information by analyzing the silhouettes

of moving objects in video.

• We use RANSAC [9] in a new way – to explore a low dimensional parameter space

within the epipolar geometry estimation problem, rather than using it only for robust

estimation which is common in the computer vision literature.

• We show how to incrementally construct a fully calibrated camera network starting from

pairwise epipolar geometry estimates. The technique can beapplied to other camera

network calibration scenarios.

• Finally, the proposed algorithms have been combined withinan end-to-end system for

calibrating and synchronizing a network of cameras from archived video sequences

of a dynamic scene or event. The recovered calibration and synchronization makes it

possible to subsequently reconstruct the dynamic scene in 3D.

Improvements in Multi-view Stereo

In the second part of the thesis, we improve upon different aspects of existing multi-view

stereo techniques. First, we propose a novel formulation for multi-view stereo that allows for

robust and accurate fusion of the silhouette and stereo cues. We show that it is possible to

enforce exact silhouette constraints within the graph-cutoptimization step in the volumetric

multi-view stereo algorithm. This guarantees that the reconstructed surface will be exactly
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consistent with the original silhouettes. A preliminary version of this approach was published

in [124]. Finally, we have also developed an adaptive graph construction approach for graph-

cut based multi-view stereo to address the inherent high memory and computational overhead

of the basic algorithm. Using this method, we have been able to efficiently reconstruct accurate

and detailed 3D models of objects from high-resolution images for a number of different

datasets. This method was published in [108].

The specific contributions are:

• We propose a graph-cut formulation for volumetric multi-view stereo that strictly en-

forces silhouette constraints. This implies that in addition to being photo-consistent,

the final reconstructed surface computed by the graph-cut step will be fully consistent

with the original silhouettes. Contrary to previous work onsilhouette and stereo fu-

sion, the silhouette consistency in our method is guaranteed by construction (through

hard constraints) in the graph-cut problem – the silhouetteconsistency terms are not

part of the energy minimization problem which aims to find a surface with maximal

photo-consistency.

• We also propose an alternate formulation that addresses thehigh memory and compu-

tational requirements of the basic volumetric graph-cut stereo algorithm. Our proposed

method recovers surfaces with geometric detail by performing a graph-cut on the dual

of an adaptive tetrahedral mesh (a CW-complex) created by photo-consistency driven

recursive mesh subdivision. The approach does not need any initialization and is not

restricted to a specific surface topology, which is a limitation with existing methods that

use a base surface for initialization.
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1.4 Thesis Outline

This thesis is organized into two parts. Part I deals with theproblem of camera network cal-

ibration, synchronization and reconstruction of dynamic scenes from multiple video streams.

Part II deals with acquisition of 3D models from multiple calibrated images of static objects.

In Chapter 2, we discuss a novel method for recovering the epipolar geometry from silhou-

ettes in video. The method is extended to simulateneously recover the epipolar geometry and

the temporal offset. In Chapter 3, we describe how the full camera network calibration can

be recovered from pairwise epipolar geometries. In Chapter4, we review exact visual hulls,

shape-from-silhouettealgorithms and present dynamic scene reconstruction results on various

datasets. In Chapter 5, we survey the start-of-the-art multi-view stereo methods and those that

combine stereo and silhouette cues. Chapter 6 contains our novel graph-cut based multi-view

stereo formulation that makes it possible to exactly enforce silhouette constraints. In Chap-

ter 7, we present the efficient graph-cut method that involves an adaptive graph construction.

Finally, we present our conclusions in Chapter 8, and point out directions for future work.

Miscellaneous topics and relevant background material is reviewed in the Appendices that

follow.
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Part I

Camera Network Calibration and

Synchronization for Modeling Dynamic

Scenes
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CHAPTER 2
Epipolar Geometry from Silhouettes

2.1 Introduction

The epipolar geometry captures the projective geometry between two views of the same scene,

and it depends only on the camera intrinsics and the relativepose of the two cameras. Tech-

niques for computing the epipolar geometry from multiple 2Dpoint correspondences in the

two images have been well studied. Estimation of epipolar geometry and other multi-view

geometric relations from 2D point correspondences forms the basis for many structure from

motion pipelines. However, when dealing with camera networks observing an event, such

methods cannot be used to reliably recover the epipolar geometry in several scenarios. This is

because these methods depend on the presence of sufficient interest point matches (2D point

correspondences) in the two views. Live video of events recorded by a camera network of-

ten lacks such point correspondences due to extremely wide baselines of camera pairs, and a

low overlap of the static background observed in the two views (an example is shown in Fig-

ure2.1). However, since these cameras are setup to observe dynamicevents, the silhouettes

of moving foreground objects is often a prominent feature.

This chapter studies how silhouettes of such moving objectsobserved in two video streams

can be used to recover the epipolar geometry of the corresponding camera pair. In fact, the

method that we develop can be used to simultaneously recoverboth the epipolar geometry and

the synchronization of the two cameras, as we show later.



Figure 2.1: A moving person was observed and recorded from four different viewpoints.
Here four corresponding frames are shown along with the silhouettes that were automatically
extracted. Note that the silhouettes are noisy and the sequences are not synchronized.

2.2 Background

The recovery of camera pose from silhouettes was studied by [68, 100, 147, 152], and recently

there has been some renewed interest in the problem [11, 47, 58]. However, most of these

techniques can be applied only in specific settings and have requirements that render them

impractical for general camera networks observing an unknown dynamic scene. These include

that the observed object be static [68, 47], the use of a specific camera configuration (at least

partially circular) [58, 152], the use of an orthographic projection model [47, 147], and a good

initialization [11, 156].

In our method, we take advantage of the fact that a camera network observing a dynamic

object records many different silhouettes, yielding a large number of epipolar constraints that

need to be satisfied by every camera pair. At the core of our approach is a robust RANSAC-

based algorithm [9], that computes the epipolar geometry by analyzing the silhouettes of a

moving object in a video. In every RANSAC iteration, the epipole positions in the two im-

ages are randomly guessed and a hypothesis for the epipolar geometry is formed and effi-

ciently verified using all the silhouettes available from the video. Random sampling is used

for exploring the 4D space of possible epipole positions as well as for dealing with outliers in
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the silhouette data. This algorithm is based on the constraint arising from the correspondence

of frontier points and epipolar tangents for silhouettes intwo views. This constraint was also

used in [47, 100, 111, 152] but for specific camera motion, or camera models, or in a situation

where a good initialization was available.

Frontier points were used by [111] to refine an existing estimate of the epipolar geometry.

They were used by [100, 152] for the specific case of circular motion, where turntable se-

quences of static objects were calibrated. Furukawa et. al.[47] directly searched for frontier

points on silhouettes in each viewpoint. To recover the epipolar geometry, they require an

orthographic camera model. Their method also requires highquality silhouettes and works

better with small camera baselines. Many common shapes can have very few frontier point

correspondences in two views and the epipolar geometry estimate could be unstable or impos-

sible to compute using this method.

Hernandez et. al. [58] generalized the idea of epipolar tangencies to the conceptof silhou-

ette coherence, which numerically measures how well a solid 3D shape corresponds to a given

set of its silhouettes in multiple views. They performed camera calibration from silhouettes

by solving an optimization problem wheresilhouette coherenceis maximized. However, they

only dealt with circular turntable sequences, which have fewer unknown parameters, so their

optimization technique does not generalize to an arbitrarycamera network. Boyer et. al. [11]

also proposed a criterion back-projected silhouette conesmust satisfy such that the true object

is enclosed within all of the cones. They use it for refining the calibration parameters of a

camera network, but this requires good initial estimates ofthe camera parameters.

In this chapter, we first study the recovery of epipolar geometry in the case where the

two cameras are synchronized. We then show how to extend the algorithm to simultaneously

recover the epipolar geometry as well as the temporal offsetbetween a pair of unsynchronized

cameras recording at the same frame rate. As our calibrationapproach relies on silhouettes, it

requires a robust background segmentation approach (see AppendixB-1 for the approach used
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for silhouette extraction). Moreover, our RANSAC [9]-based algorithm is robust to errors in

silhouette extraction. For stable estimates of the epipolar geometry, it is important to sample

the 3D space densely, which requires sufficient motion of theforeground object covering a

large part of the 3D volume observed by the cameras. This is not a problem, as our method

can efficiently handle long video sequences with thousands of silhouettes.

2.2.1 Geometry of Silhouette Formation

When a scene containing an object (or objects) is observed bya pinhole camera (mathematical

model described in AppendixA-1.1), it produces a silhouetteS on the image plane. This is

shown in Figure2.2(a). The boundary curve of the silhouette is called theapparent contour.

It divides the image plane into two regions - the interior of the silhouette and its exterior.

The generalized cone inR3 formed by the set of all rays passing through the interior of the

silhouette and the camera centerC is called theviewing coneor silhouette cone. The viewing

cone is tangent to the object’s surface along a continuous curve called thecontour generator

or rim. Note that for a non-convex solid shape, the rim curve can occlude itself giving rise to

a T-junctionon the silhouette. As shown in Figure2.2(b), in general points that belong to the

apparent contour in two different views and lie on matching epipolar lines such asm andm′

are not corresponding points.

The only true point correspondences on the apparent contourin two views occur at special

locations calledfrontier points. In Figure2.2(c), one pair of frontier points is denoted by

x1 andx2, respectively. Note that the viewing rays that correspond to a matching pair of

frontier points such asx1 andx2 must intersect at a true surface point in the tangent plane of

the surface. The contour generators or rims must also intersect at such a surface point. This

point, along with the camera baseline defines an epipolar plane that must be tangent to the

surface, giving rise to corresponding epipolar lines such as l1 andl2, which are tangent to the

silhouettes at the frontier points. Frontier point correspondence does not extend to more than
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(a) (b)

(c)

Figure 2.2: (a) Apparent contour and contour generator (rim). (b) In general, any two contour
points on matching epipolar lines do not correspond. (c) Frontier points and epipolar tangents
for two views.

two views in general. In a three-view case, the frontier points in the first two views do not

correspond to those in the last two views.

A convex shape, fully visible in two views, has exactly two pairs of frontier points. For

a nonconvex shape such as a human figure, there can be several potential frontier points, but

many of them could be occluded. If the location of the epipolein the image plane is known,

matching frontier points can be detected by drawing tangents to the silhouettes. However,
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Figure 2.3: If the location of the epipoles in the two images were known, then some cor-
responding frontier points could be extracted. Note that some of the frontier points corre-
sponding to the elbows, chin of the person are occluded. But the extremal frontier points
corresponding to the head or toe will never be self-occluded.

when the epipole location is unknown, it is very difficult to reliably detect the frontier points.

In [152] Wong et. al searched for outer-most epipolar tangents for circular motion. In their

case, the existence of fixed entities in the images, such as the horizon and the image of the rota-

tion axis, simplified the search for epipoles. We too use onlytheextremalfrontier points and

outermost epipolar tangents because, for fully visible silhouettes, these are never occluded.

An important point to note is that the extremal frontier points must lie on the convex hull of

the silhouette in the two views.

2.3 Epipolar Geometry from Dynamic Silhouettes

Given nontrivial silhouettes of a human (see Figure2.3), if we can detect matching frontier

points, we can use the 7-point algorithm to estimate the epipolar geometry by computing the

fundamental matrix. However, it is difficult to directly findmatching frontier points without

knowing the epipoles. The method proposed by Furukawa et. al. [47] assumes an orthographic

camera model and small baselines between camera pairs. Their approach requires accurate

silhouettes and wouldn’t work unless there are at least fourunoccluded frontier point matches

in general position.
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Given an approximate solution, it is possible to refine the epipolar geometry using an

optimization approach [5, 111]. However, since we use only silhouettes, an initial solution is

not available to us. Therefore, we need to explore the full space of possible solutions. While

a fundamental matrix has 7 degrees of freedom (dofs), our method only randomly samples

in a 4D space because once the position of the epipoles are fixed, potential frontier point

matches can be determined, and from them the remaining degrees of freedom of the epipolar

geometry can be computed via an epipolar line homography. Here we propose a RANSAC-

based approach that in a single step, allows us to efficientlyexplore this 4D space as well as

robustly deal with inaccurate silhouettes in the sequence.

2.3.1 Silhouette Representation

Figure 2.4: (a) The Convex Hull of the silhouette in a video frame. (b) The Tangent Table
representation (c) The space of all tangents to the convex hull parameterized byθ.

For every frame in each sequence, a binary foreground mask ofthe object is computed us-

ing background segmentation techniques (see AppendixB-1 for details). Instead of explicitly

storing the complete silhouetteS, we compute and store only the convex hullHS and its dual

representation, as shown in Figure2.4 for every video frame. This is a very compact repre-

sentation as it allows us to efficiently compute outer tangents to silhouettes in long sequences

containing potentially thousands of different silhouettes. The convex hullHS is represented

by an ordered list ofk 2D points in the image (v1 . . . vk in counter-clockwise order (CCW)).

The 2D lines tangent toHS are parameterized by the angleθ = 0 . . . 2π (in radians) that the
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line subtends with respect to the horizontal direction in the image. For each vertexvk, an

angular interval [θ1
k, θ2

k] is computed. This set represents all lines that are tangenttoHS at the

vertexvk. These tangent lines are directed, that is they are consistently oriented with respect

to the convex hull. Thus, for a directionθ, there is always a unique directed tangentlθ, which

keeps tangency computations in our algorithm quite simple.

Computing the Convex Hull

The convex hullHS for a silhouetteS, can be computed in linear time using Melkman’s on-

line convex hull algorithm [99]. This algorithm requires a simple path traversing all then

input points, which in the general case takesO(n log n) time to compute. In our case, a top-

down scan of the bounding box ofS in the image generates two simple paths in linear time –

a left boundaryLS and a right boundaryRS. Then in a single pass, Melkman’s algorithm is

used to compute the left hull in CCW order fromLS and the right hull in CW order fromRS .

A union of the left and right hulls produces the convex hull ina consistent CCW order.

When the silhouettes are clipped at the frame boundaries, instead of ignoring the frame

completely, we try to use the partial silhouettes in our approach. This is because often partially

clipped silhouettes contain 1 or 2 valid extremal frontier points in the parts of the silhouette

which are unclipped. We store the convex hull as a single ordered list instead of multiple

connected segments. We introduce new vertices where the silhouettes are clipped and use a

special bit to indicate the fact that some segments lie outside the image boundary. Also in the

scenario where multiple foreground objects have been detected in the image, we compute the

unique convex hull of the whole ensemble.

The computational time for the tangent table is linear in thesize of the convex hull poly-

gon. Computing the outer tangents to the silhouettes from any external point in the worst

case takesO(log k) time. However, by exploiting high temporal coherence in video, on an

average this can be done much faster. In all our experiments,the convex hulls of the silhou-
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ettes typically had 20-40 vertices. A single video frame therefore contributes≤ 500 bytes of

storage and the information from thousands of silhouettes in video can easily fits into memory

allowing us to efficiently handle long sequences. By handling only outer epipolar tangents,

we keep tangency computations efficient and also do not need to worry about occlusions.

2.3.2 Main Idea

In AppendixA-1.2we discuss the parameterization ofFij in terms ofeij, eji, the position of the

epipoles in the images andHij, the epipolar line homography. The basic idea in our approach

is the following – to generate a hypothesis for the epipolar geometry, we randomly guess the

position ofeij andeji in the two views. This fixes four dofs of the unknown epipolar geometry

and the remaining three dofs can be determined by estimatingHij for the chosen epipole pair.

To compute the homography, we need to obtain three pairs of corresponding epipolar lines

(epipolar tangents in our case) in the two views. Every homographyHij satisfying the system

of equations[lkj ]× Hij l
k
i = 0 where k = 1 . . . 3 is a valid solution. Note that these

equations are linear inHij and allows it to be estimated efficiently. In a RANSAC [9] like

fashion, we then evaluate this hypothesis using all the silhouettes present in the sequences.

(a) (b)

Figure 2.5: (a) Having randomly picked two corresponding frames, two random directions
are sampled in each image. The intersection of the corresponding epipolar tangents generates
the epipole hypothesis. (b) Outermost epipolar tangents tothe new silhouette, computed in
another pair of randomly selected corresponding frames. The three pairs of lines can be used
to estimate the epipolar line homography.
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2.3.3 Hypothesis Generation

At every RANSAC iteration, we randomly choose a pair of corresponding frames from the two

sequences. In each of the two frames, we randomly sample two directions each and obtain

outer tangents to the silhouettes with these directions. The first directionθ1 is sampled from

the uniform distributionU(0, 2π), while the second directionθ2 is chosen asθ2 = θ1 − x,

wherex is drawn from the normal distributionN(π, π
2
). For each of these directions, the

convex hull of the silhouette contains a unique directed tangent. The two tangent lines in the

first view are denoted byl1i and l
2
i while those in the second view are denoted byl

1
j and l

2
j

respectively (these are shown in red in Figure2.5(a)) 1. The intersections of the tangent pairs

produces the hypothesized epipoleseij andeji in the two views.

An alternative approach for generating the epipoles involves sampling both epipole di-

rections randomly on a sphere [84], which in the uncalibrated case is equivalent to random

sampling on some ellipsoid and yields comparable results toour method. We next randomly

select another pair of frames and compute outer tangents from the epipoleseij andeji to the

silhouettes (actually their convex hulls) in both views. Ifthere are two pairs of outer tangents,

we randomly select one. This third pair of lines is denoted byl
3
i andl

3
j , respectively. (these

are shown in blue in Figure2.5(b)).

Now, Hij, the epipolar line homography, is computed from the three corresponding lines

2 {lki ↔ l
k
j} where k = 1 . . . 3. The quantities (eij, eji, Hij) form the model hypothesis for

every iteration of our algorithm.

2.3.4 Model Verification

Each randomly generated model for the epipolar geometry is evaluated using all the data avail-

able. This is done by computing outer tangents from the hypothesized epipoles to the whole

1If silhouettes are clipped in this frame, the second pair of tangents could be chosen from another frame.
2There are two ways to pair{l1i , l2i } with {l1j , l2j} and we generate a hypothesis for each of the two cases.
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Figure 2.6: The model for epipolar geometry is used to compute the epipolar transfer error
for all the silhouettes in video. When the model is completely inaccurate, an early rejection
scheme [93] is used.

sequence of silhouettes in each of the two views. For unclipped silhouettes, we obtain two

tangents per frame, whereas for clipped silhouettes, theremay be one or even zero tangents.

Every epipolar tangent in the first view is transferred through Hij to the second view (see

Figure2.6) and the reprojected epipolar transfer errore is computed based on the shortest

distance from the original point of tangency to the transferred line:

e = d(xi, l
t
i) + d(xj, l

t
j) (2.1)

whered(x, l) represents the shortest distance from a 2D pointx to a 2D linel andxi andxj

represent the point of tangencies in the two images which when transferred to the other view,

gives rise to epipolar linesltj andl
t
i respectively.

Figure2.7 shows the distribution ofe for a typical pair of sequences. We use an outlier

threshold denoted byτo to classify a certain hypothesis as a good or bad. The method for

automatically computingτo is described in the next section and varies with image size and

the amount of motion in the sequence.τo typically to be somewhere in the range of 4–12

pixels (the value 12 pixels was chosen when the image size was2000× 1000 approximately).

TheK
th–quantile denoted byeK is computed (in all our experiments, K = 0.75, or 75%). If

eK ≤ τo, then the epipolar geometry model is considered a promisingcandidate and it is
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recorded.

Note that the approach will only work as long as we can deal with slightly wrong guesses

for the two epipoles and as long as we sample within the convergence region or attraction

basin of the correct epipoles. The size of the attraction basin tends to vary but this can be

estimated from how frequently promising candidates are found during the thousands of trials

of the algorithm. This is analyzed later.

The RANSAC-based algorithm looks fornS promising candidates after which these can-

didates are ranked based on the inlier count and the best onesamongst these are further refined

using non-linear optimization. A stricter thresholdτin which is set to 1 pixel in all our exper-

iments, is used to determine the subset of inliers. Frontierpoint pairs often remain stationary

in video and give rise to duplicates, therefore these need tobe removed. This is done using a

binning approach while computing the error distribution.

(a) (b)

Figure 2.7: (a) Error distribution for a good hypothesis. Note that theKth–quantileeK is
much smaller thanτo. (b) Error distribution for a bad hypothesis. Note that it ismuch more
spread out and theKth–quantileeK is greater thanτo.

While evaluating a hypothesis, we count how many tangents exceed the outlier thresh-

old τo and reject a hypothesis when a partial outlier count indicates that the total expected

outlier count is likely to be exceeded (i.e. with high probability). This allows us to abort

early whenever the model hypothesis is completely inaccurate (a similar optimization was
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suggested by [93]), avoiding the redundancy of computing outer tangents from epipoles to all

the silhouettes for most random hypotheses which are completely wrong.

The best 25% of the promising candidates are then refined using iterative nonlinear min-

imization (Levenberg Marquardt method) followed by guidedmatching. The cost function

minimized here, is the symmetric epipolar distance measurein both images. During guided

matching, frontier points are recomputed from scratch using the current epipole estimates. In

each iteration, the number of inliers steadily increases and the approach terminates when the

inlier count stabilizes. Note that as long as the convergence region is large, an inaccurate

candidate solution can lead to the true solution as the frontier points are recomputed as the

solution gets more and more refined.

In practice, many of the promising candidates from the RANSAC step, when iteratively

refined, produce the same solution for the epipolar geometry. Therefore, we stop when three

promising candidates converge to the same solution. Otherwise we refine all the candidates.

The refined solution with the highest inlier count is reported as the final one. Note that com-

paring the Frobenius norm of the difference of two normalized fundamental matrices is not a

suitable measure, and Zhang et.al. [161] proposes a meaningful measure for deciding whether

two fundamental matrices are similar enough. We use this measure to compare two estimates

of the epipolar geometry, and decide if they are close enough.

Our algorithm uses a few parameters that tend to vary with datasets: the total number of

RANSAC iterationsN, the number of promising candidatesnS, and the outlier thresholdτo.

We automatically determine these parameters from the data,making the epipolar geometry

estimation completely automatic and convenient to use.

2.3.5 Automatic Parameter Tuning

The number of RANSAC iterationsN depends on the number of promising candidates to

search for denoted bynS. ThusN is chosen asmin (n, NI), wheren is the number of it-
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erations required to findnS candidates andNI is a large number set to 1 million in all our

experiments. The choice ofnS is determined by the outlier thresholdτo. A tighter (i.e. lower)

outlier threshold can be used to select very promising candidates but such occurrences are

rare. If the threshold is set higher, promising candidates are obtained more frequently but at

the cost of finding a few ambiguous ones as well. When this happens, a larger set of promising

candidates must be analyzed. Thus,nS is set tomax (2τo, 10). The critical parameterτo tends

(a) (b)

Figure 2.8: For three different test runs from various datasets, the value ofτo is plotted against
the number of RANSAC iterations required.

to vary between datasets. It depends on the image size, amount of motion in the sequence.

Therefore we automatically compute it from the data during some preliminary RANSAC itera-

tions. During this preliminary stage, the hypothesis and verification iterations proceed exactly

as described in the previous sections, but these are only used to computeτo, and the promising

candidates found at this stage are not used later.

We start with a large value ofτo (= 50 pixels in our implementation) and iteratively lower

it based on the error distribution as shown in Figure2.7. We compareeK, theK
th–quantile

(K = 75) with the current value ofτo.

If eK < τo, we simply resetτo to the smaller valueeK. If τo ≤ eK ≤ (τo + 1), then we

increment a counterCτo .
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If eK > (τo + 1), then the value ofτo is not changed. We resetCτo to zero whenever the

threshold is lowered.

If eitherτo falls belowτmin, orCτo becomes equal toτmin, we accept the current estimate

of τo as final.τmin is calculated as0.005× (w + h), wherew × h is the image dimension.

Figure2.8shows how the value ofτo converged for three different sequence-pairs, taken

from different datasets.

2.4 Complete Algorithm

The complete method is summarized in Algorithm1.

Input : Pair of Sequences{Si} and{Sj} of silhouettes
Output : Fundamental MatrixFij

{HS i} ← Compute Convex Hull And Tangent-Tables({Si});
{HS j} ← Compute Convex Hull And Tangent-Tables({Sj});
τo ← Compute Outlier Threshold (see Section 2.3.5);
nS ← max(2τo, 10);
candidates = { } ;

repeat
(F, model)← Make Hypothesis (see Section 2.3.3) ;
Evaluate (F) (see Section 2.3.4) ;
if Promising Solution ;

candidates ← candidates ∪ (F, model) ;
until ( |candidates| == nS || maximum iterations exceeded)
Ck ← Rank And Find Best (k, candidates) using inlier count ;

NonLinear Minimization And Iterative Refinement({Ck});

return Rank And Find Best (1, Ck) using inlier count ;

Algorithm 1 : Computing the epipolar geometry from dynamic silhouettes.
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2.4.1 Results

Datasets

Table2.1 summarizes information about the various camera network datasets that we have

collected and processed. These multi-view video streams were all acquired indoors by various

researchers in fairly controlled settings, and the traditional off-line camera calibration was

done using the calibration grid, LEDs etc. Most of the subjects were humans as these multi-

camera networks were geared towards capturing virtual models of actors using vision-based

markerless motion capture [7, 22].

Silhouettes had been extracted for all these sequences using state of the art methods (except

for the MIT dataset for which the simple approach described in AppendixB-1 was good

enough). Although silhouette extraction in the general case is a hard problem, fairly robust

and accurate methods are now know for dealing with static backgrounds. For all the datasets

described in Table2.1, reasonably good silhouettes could be extracted, and were used for

modeling dynamic scenes using a variant of shape from silhouette techniques. Using our

method, these same silhouettes could be used to also recoverthe camera calibration.

In this section we will present the results from computing epipolar geometry using our

method for these datasets. The recovered information will be used for full network calibra-

tion later on and the complete calibration and reconstruction results will be presented later in

Chapters3 and4.

MIT Sequence

This dataset was recorded by Sand et.al. [114] for their work on capturing deformable 3D

human shapes from silhouettes. He used a co-located motion capture system for the calibration

and synchronized the video upto a single frame. The 4-view video footage was approximately

4 minutes long and captured at 30 frames per second. The humansubject is moving around

in the scene; occasionally his silhouette gets clipped in the field of view, esp. near the feet.
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Name Resolution Cameras Frames Pairs

MIT (Sand
et. al [114]) 720× 480 4 7000 5 out of 6 pairs

DANCER

(IN-
RIA [42]) 780× 582 8 200 20out of 28pairs

MAN (IN-
RIA [42]) 390× 291 5 1000 10out of 10pairs

KUNG-FU

(MPI [22]) 320× 240 25 200 268out of 300pairs

BALLET

(MPI [22]) 320× 240 8 468 24out of 28pairs

HAND

(Brostow et.
al [18]) 640× 480 9 200 25out of 36pairs

CMU (Che-
ung [24]) 640× 480 8 900 22out of 28pairs

BOXER

(Ballan [7]) 1032× 778 4 1000 6 out of 6 pairs

BREAK-
DANCER

(Stark [131]) 1920× 1080 6 250 11out of 15pairs

Table 2.1: These datasets were acquired by various researchers in computer vision. We sum-
marize the relevant information about the sequences used inour experiments. The last column
reports the number of camera pairs for which the epipolar geometry was accurately recovered.
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Figure 2.9: The estimated epipolar geometry for 2 of the 6 pairs in the 4-view MIT dataset.

However, this is handled robustly in our implementation.

Using the proposed approach, we computed the epipolar geometry for all pairs. The results

from two pairs is shown in Figure2.9. The epipolar geometry for one of the six pairs was

unstable because in both views, the feet of the person was consistently clipped in most of the

video. Since the person walks around the frontier points near the head of the person are almost

planar which is a degenerate configuration for epipolar geometry estimation. Instead of using

all 7000 frames that were available we chose every 5th frame and worked with about 1400

frames from video. Estimating the epipolar geometry took between about 150 seconds on

an average for the six pairs. On an average, the RANSAC-basedalgorithm produced a good

solution in about 25000 iterations but for higher reliability, multiple solutions were recovered

and checked for consensus.
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(a)

(b)

Figure 2.10: (a) The estimated epipolar geometry for one of the pairs in the 25-view KUNG-
FU sequence. The extracted frontier points are also shown here(b) The estimated epipolar
geometry between the first camera and all other 24 cameras.
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Kung-Fu Sequence

It is rare to find a real dataset involving a large number of video cameras. However, we tested

our method on a 25-view synthetic KUNG-FU dataset which was created by the researchers at

MPI–Saarbrucken [22]. The results for a particular pair is shown in Figure2.10(a). The top

row shows the corresponding epipolar lines based on the estimated fundamental matrix while

in the bottom half of the image, all the frontier point matches are displayed. The pairwise

epipolar geometry for all images with respect to the first view is shown in Figure2.10(b) and

out of the 300 pairs, the epipolar geometry for 268 pairs was estimated accurately. Note that

our method often fails when the cameras face each other resulting in epipoles somewhere close

to the center of the image. As in this case, if the epipoles fall inside the silhouette’s convex

hull in most of the video frames, neither frontier points northe epipolar tangent constraint

exist. The algorithm either fails to find a solution or finds anambiguous one which is detected

and rejected. See Section3.2.3for the criteria that is used.

CMU 3D Room Sequence

The results from the CMU 3D-ROOM sequence in shown in Figure2.11. Note that, the

epipoles for some of the pairs coincide with the image of the camera in the respective views.

This shows the accuracy of the epipole estimation for these pairs. Also, note that, the cameras

are placed in a way that causes the silhouettes to often get clipped in some of the views.

Finally, more results are shown in Figure2.11- the 8-view DANCER dataset, from the Percep-

tion Group at INRIA and the 9-view HAND dataset captured by Brostow et. al. [18] at Georgia

Tech. More results from the BOXER and BREAK-DANCER sequences will be presented in the

subsequent chapters.
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(a)

(b) (c)

Figure 2.11: Recovered epipolar geometry for the (a) CMU (b)HAND and (c) DANCER

datasets. Points are clicked in the image with a red border and epipolar lines are displayed on
the other views.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.12: (a–b) Epipolar geometry recovered for a particular camera pair in the BOXER

dataset. (c–d) Checkerboard image pair used for evaluationonly. Ground truth epipolar lines
are shown in black. Epipolar lines for our fundamental matrix estimate are shown in red and
yellow. The image resolution is1000×800 pixels. (e–f) For another camera pair, hand clicked
points were used to verify the accuracy of the epipolar geometry estimate. The histogram
shows the epipolar symmetric transfer error distribution for these points.
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Evaluation

The mean residual error given by1
N

∑

e
2
, wheree is defined in Equation2.1is reported for all

estimates of the fundamental matrix. The synthetic KUNG-FU sequence reported a residual

error of 0.12 pixels on average, while estimates for real datasets had a residual error of 0.25

pixels on an average with a range of 0.2 – 0.31 pixels.

Our algorithm for epipolar geometry estimation was evaluated in two cases. First, one of

the camera pair from the BOXER dataset was tested. Figure2.12(a–b) shows the estimated

epipolar geometry using about 1000 frames of video. Subsequently, a checkerboard image

pair (not used in our estimation process) was used for evaluation (shown in Figure2.12(c–d)).

The user manually clicked 50 corresponding points and the mean symmetric residual error for

these points was calculated. Our fundamental matrix estimate had an rms error of 1.21 pixels,

while the error for the ground truth (derived from the checkerboard based calibration [10])

was 0.78 pixels. The relatively high residuals, in both cases, seems to be due to the error

introduced by the user while clicking points.

The evaluation was done for another sequence (see Figure2.12 (e–f)). This time, the

mean symmetric residual error was 1.38 pixels. A distribution of the error is shown for the

manually specified points (corresponding corner features on both the foreground as well as the

background were used). Further accuracy analysis is presented in Chapter 3 after performing

a full camera network calibration.

Our proposed algorithm applies RANSAC [9] in an unconventional way. Rather than us-

ing it only for robust estimation and handling outliers, we use it to explore a low dimensional

bounded parameter space as well i.e. the 4D space of epipoles. This allows us to automati-

cally adjust the random sampling budget towards detecting outliers and that for exploring the

parameter space. An alternative strategy would have been toperform a deterministic, brute-

force search in the 4D space of epipoles while using RANSAC only to sample the data to only

deal with outliers. However, this would have the following disadvantages.
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• Deterministic search for epipoles would require prior knowledge of the size of the attrac-

tion basin (i.e. convergence region), especially when the search is performed at a coarse

level. This is not needed in our approach. For synthetic uncorrupted data (KUNG-FU se-

quence), we found a promising candidate in 1 in 6000 trials onan average. This seems

to indicate that selecting the first direction in each image in approximately
√

6000 = 77

random directions allows us to sample within the attractionbasin of the true solution

at least once. For higher reliability, we recover multiple solutions and then look for

consensus amongst at least three. This approach was used forall the datasets in our

experiments.

• If the epipoles were sampled using a deterministic strategyand RANSAC was used

only to deal with erroneous silhouettes, then the number of iterations required would

be significantly higher as we now show. Suppose,w is the probability that a random

epipolar tangent is incident to a silhouette at a true silhouette point unaffected by sil-

houette noise. Note that the fraction of perfectly accuratesilhouettes can be much lower

thanw, as an epipolar tangent to a noisy silhouette can still be an inlier as long as the

noise does not corrupt the silhouette near the point of tangency. We found the range

of w to be approximately 0.4 – 0.8 in our experiments. For a fixed pair of epipoles, let

us find the required number of RANSAC iterations. To compute acorrect epipolar line

homography, we must randomly pick three pairs of correct epipolar tangents – this has

a probability ofw6. Thus, to ensure withp% confidence that the correct solution will

be computed, we require the number of iterationsk to be log(1−p)
log(1−w6)

. For p = 0.95 and

w = 0.75 (75% inliers),k = 15. Now suppose epipoles were sampled deterministically

on a sphere (appropriate in the calibrated case). Sampling with an angular interval of

4o between successive epipolar tangents should be sufficient.The total solid angle of a

sphere is4π steradians, which is approximately40000 square degrees. Since each sam-

ple occupies 16 square degrees, we get 2500 samples on a sphere, andN=6.25 million
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unique epipole pairs. Thus, the total number of iterations would be approximately equal

to kN = 93 million.

2.5 The unsynchronized case

When the video sequences acquired by the camera network is unsynchronized, the epipolar

tangent constraints which form the basis of the pairwise epipolar geometry estimation still

exists up to an unknown parameter – the temporal offset∆t. We assume that the cameras

are operating at a constant and known frame-rate. This is often the case with popular video

cameras and is a reasonable assumption to make.

In this section we describe how the proposed algorithm can beextended to simultaneously

recover both the temporal offset as well as the epipolar geometry. The main idea is to generate

a random hypothesis by sampling an extra dimension – a possible range of temporal offsets in

addition to the 4D space of epipoles. This algorithm typically requires more hypotheses than

the synchronized case before a stable solution can be found,but a multi-resolution approach

for computing the temporal offset speeds it up considerably.

2.5.1 Keyframe Selection

Directly finding the true temporal offset within a large search range will require many more

hypotheses because the probability of selecting the correct temporal offset is quite low. We

therefore adopt a coarse-to-fine strategy for this search. In video containing human subjects,

the frontier points and epipolar tangents tend to remain stationary over a succession of frames.

Although such frames are not suitable for accurate synchronization, they could be used for an

initial coarse alignment of the two sequences. We will referto these asslowframes. Similarly,

frames in which the frontier points exhibit strong motion will be useful for accurate alignment

and will be referred to asfastframes.
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Without knowing the epipolar geometry, it is impossible to select theslowor fastkeyframes

accurately. Therefore, the list of keyframes are computed heuristically. We consider epipoles

at infinity in four canonical directions (E, NE, N and NW) at45o separation to each other in the

image. Based on such hypothetical epipoles, we analyze the potential motion of frontier points

in each sequence independently. This is used to build up listof slowandfastkeyframes from

the original sequences. As the RANSAC-based algorithm can search for promising epipoles

locations, this information could be used to choose the hypothetical epipoles, and generate

more accurate keyframes but at the cost of an extra prior stepfor the algorithm.

The algorithm proceeds in multiple stages. In the first stage, only theslow keyframes

are used. A 5D random hypothesis is generated. The epipoles are sampled in the manner

described earlier. For the random guess for the temporal offset, a large search range is coarsely

sampled at this stage. The model verification step analyzes the error distribution in the same

way as described in Section2.3.4. It is possible that this stage estimates the epipolar geometry

quite poorly, however, it helps to narrow down the search forthe temporal offset. For every

40 promising candidates, a 99% confidence interval for the sample offset mean is computed,

and this becomes the new sampling interval for the temporal offset. The process is continued

until the search range becomes smaller than 20 frames.

In the second stage, thefastkeyframes are used and the RANSAC-based algorithm sam-

ples from the smaller search range recovered in the first stage. Once 40 promising candidates

have been found, the median of their temporal offsets is extracted.

In the final stage, all the frames are used to estimate the synchronization and epipolar

geometry simultaneously. The offset is now sampled from a small interval of +/-5 frames

from the estimated offset obtained from the previous stage.The distribution of promising

epipoles obtained from the previous stage is used to bias therandom sampling in the 4D

space of epipoles. This allows us to find an accurate solutionmuch more quickly. Although

this version of the algorithm requires many more RANSAC iterations, the first two stages
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are much faster as they work with smaller sets of keyframes. The stratified approach also

allows us to sample epipoles from a more accurate distribution, which helps us find promising

candidates more quickly in the final stage.

2.5.2 Results

We applied our techniques to the 4-view MIT sequence (courtesy Sand et.al. [114]) as the

original video streams were synchronized using mocap sensors (see Figure1.3(c) in Chap-

ter1). For this dataset, we extracted about 200slowandfastkeyframes from each of the four

sequences. For a particular pair of cameras, we ran the basicalgorithm (i.e. without using

keyframes) for 5 million iterations and sampled the offset from a uniform interval (+/-125

frames) from the true offset. Figure2.13(a) shows the distribution of promising solutions

for the temporal offset. A consistent strong peak is observed near the true offset. Smaller

peaks in the distribution indicate the presence of some periodicity of motion in the sequence.

Figure2.13(b) shows a typical distribution of offsets obtained in the first two stages of the

algorithm. The sample median is plotted and the convergenceof the search interval is also

shown. We independently synchronized all six pairs, each time searching in a range of 500

frames, which was equivalent to a duration of 16.6 seconds. The recovered synchronization

offsets are listed in Table2.5.2. These individual measurements were independently estimated

and can be further refined during joint synchronization of all the cameras in the network. This

will be described in Chapter3.

2.6 Conclusion

In this chapter a method to estimate the epipolar geometry from silhouettes in two video

streams was described. The approach based on RANSAC [9] and robustly recover frontier

point correspondence from video. First the case of synchronized video was presented. Next
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(a)

(b)

Figure 2.13: Experiment done on chosen pair from the MIT sequence. (a) A strong peak is
observed in an interval that contains the real temporal offset. (b) Sample solutions for the
temporal offset and the search intervals are shown plotted against the number of RANSAC
trials. The median is used to estimate the temporal offset.

the algorithm was extended to simultaneously recover the epipolar geometry and the tempo-

ral synchronization of the camera pair from unsynchronizedvideo. The pairwise information

recovered here will be useful for calibration and synchronization of a full network which
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(a)

Pair Range tij σij True (t̂ij)
e01 [-13,-3] -8.7 0.80 -8.32
e02 [-11,-1] -8.1 1.96 -8.60
e03 [-12,-2] -7.7 1.57 -7.85
e12 [-5,5] -0.93 1.65 -0.28
e13 [-5,5] 0.54 0.72 0.47
e23 [-6,4] 1.20 1.27 0.75

(b)

Figure 2.14: (a) The pairwise synchronization offsets computed for the 6 camera pairs in the
MIT sequence are shown here. (b) The table lists the computedsearch interval, and the mean
and variance of the estimate of the temporal offset. These are fairly close to the ground truth
measurements.

is described in Chapter3. The method is particularly useful for shape-from-silhouette sys-

tems [20, 81, 96] as visual-hulls can now be reconstructed directly from uncalibrated and

unsynchronized video of an event recorded from multiple viewpoints.
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CHAPTER 3
Full Calibration and Synchronization from Pairwise

Information

3.1 Introduction

In this chapter, we describe how to recover the full calibration and synchronization of a camera

network from estimates of the epipolar geometry and the temporal offset of various pairs of

cameras within the network. We first describe how we recover the full camera calibration

from the epipolar geometries, and then discuss our method tosolve the problem of network

synchronization.

3.2 Camera Network Calibration

We first consider the problem of recovering full camera calibration from pairwise epipolar

geometries. Given a sufficient number of links in a graph (similar to the one shown in Fig-

ure3.1except that the links now represent estimates of fundamental matrices), our goal is to

recover the Euclidean camera matrices for all cameras in thenetwork. An overview of our

approach is described in Figure3.2. An important step in this approach is to compute an accu-

rate projective reconstruction of the camera network from epipolar geometries and two view

matches. We start by first recovering a triplet of projectivecameras from the fundamental

matrices between the three views. Using an incremental approach, we add a new camera to

the calibrated network by resolving a different triplet of cameras each time. Each time a new

camera is added, all the parameters corresponding to the cameras and 3D points are refined



Figure 3.1: The camera network graph is shown. The edges represent pairwise epipolar
geometry estimates and attributes such as an accuracy measure and set of two view corre-
spondences (inliers).

usingprojective bundle adjustment. Finally, when a full projective reconstruction is available,

standard techniques for self-calibration and Euclidean (metric) bundle adjustment are used to

compute the final metric camera calibration.

3.2.1 Background

Most structure from motion techniques for uncalibrated sequences start by estimating the fun-

damental matrix or the trifocal tensor from two or three viewcorrespondences. The trifocal

tensor in the three-view case plays the same role that the fundamental matrix plays in the two

view case. If the trifocal tensor is known, a triplet of consistent projective camera matrices

for the images can be directly computed from the tensor and subsequently a projective recon-

struction of the scene may be linearly computed. This is alsotrue for the fundamental matrix

in the two view case. See [55] for details.

Various approaches exist for computing projective reconstructions of the cameras and the

scene simultaneously. On one hand, there exists direct factorization-based approaches for

structure from motion that can compute the projective reconstruction in one step, without

favoring any particular camera [134, 141]. However they typically require all the 3D points to

be visible in all the cameras. Thus, most practical approaches for large-scale structure from

motion incrementally computes the projective reconstruction of the cameras and the scene and

our method also belongs to this category.

46



Figure 3.2: Overview of our incremental camera network calibration approach from epipolar
geometries estimates. The fundamental step involves computing the projective reconstruction
of a triplet of cameras. Bundle Adjustment for the projective and metric reconstructions are
performed to globally refine all the parameters.

In the structure from motion pipeline developed by [106], first an initial reconstruction

is done from two views. Then, one by one, the projective calibration of the other cameras

is recovered within the initial reconstruction frame and the projective reconstruction of the

entire sequence is incrementally computed. The camera matrices and 3D point estimates ob-

tained in this way are used to initialize aprojective bundle adjustment, which simultaneously

refines all the camera parameters as well as the coordinates of the 3D points, by minimizing

the overall reprojection error. This is a large non-linear minimization problem with potentially

many parameters. However, the existence of sparse and efficient solvers makes the step com-

putationally feasible. Self-calibration [106] is followed by Euclidean bundle adjustmentto

determine the optimal camera parameters. The Euclidean bundle adjustment is similar to the

projective case, except that in the Euclidean case, the cameras are parameterized by the intrin-

sic and extrinsic parameters, while the 3D points are parameterized using non-homogeneous

coordinates.

In our silhouette-based calibration method, frontier point correspondences do not general-

ize to more than two views. In a three-view case, the frontierpoints in the first two views do

not correspond to those in the last two views. Although threeview correspondences, called

triple points, do exist on the silhouette as reported by [41, 82], they are hard to extract from
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uncalibrated images. Thus, we are restricted to only two-view correspondences over different

pairs in our camera network. We incrementally compute a fullprojective reconstruction of

a camera network from these two-view correspondences and the corresponding fundamental

matrices. Martinec et. al. [91, 92] also addressed this problem but in a different context, and

proposed some solutions in parallel to our work.

Levi and Werman [86] studied the following problem: Given only a subset of all possible

fundamental matrices in a camera network, when is it possible to recover all the missing fun-

damental matrices? They were mainly concerned with theoretical analysis, and their proposed

algorithm is not suited for the practical implementation ofcomputing projective reconstruc-

tions from sets of two-view matches in the presence of noise.

We now discuss the fundamental step in our approach, which involves recovering three

consistent projective cameras, given a triplet of fundamental matrices corresponding to three

views in general position.

3.2.2 Resolving Camera Triplets

Given any two fundamental matrices between three views, it is not possible to compute three

consistent projective cameras. The two fundamental matrices can be used to generate canon-

ical projective camera pairs{P1,P2} and {P1,P3}, respectively. However, these do not

correspond to the same projective frame.P3 must be chosen in the same projective frame as

P2, and the third fundamental matrix is required to enforce this.

These independently estimated fundamental matrices are denoted byF12, F13, andF23,

while the unknown projective cameras are denoted byP1, P2, andP3, respectively (see Fig-

ure 3.3). The three fundamental matrices are said to be compatible when they satisfy the

following constraint:

e
T
23F21e13 = e

T
31F32e21 = e

T
32F31e12 = 0 (3.1)

The three fundamental matrices available in our case are notcompatible because they were
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(a) (b)

(c)

Figure 3.3: (a) Three nondegenerate views for which all the fundamental matrices have been
estimated independently. (b) Family of solutions for the third fundamental matrix (F23), com-
patible with the other two (F12 andF13). We look for a compatible solution closest to the
measuredF23. (c) New camerak is incrementally linked to a calibrated network by resolving
a suitable triplet involving two cameras withinGk−1.

independently estimated from two-view correspondences. One linear approach for computing

P1, P2, andP3 from three compatible fundamental matrices is described in[55]. However, it

is not suitable when the fundamental matrices are not compatible, as in our case.

We now describe our linear approach to compute a consistent triplet of projective cameras.

As described in [55], givenF12 andF13, canonical projective cameras,P1 andP2 as well as

P3 can be chosen as follows:

P1 = [I|0] P2 = [[e21]×F12|e21]

P3 = [[e31]×F13|0] + e31v
T

(3.2)

Here,P3 has been defined up to an unknown 4-vectorv in Equation3.2. By expressingF23

49



as a function ofP2 andP3, we obtain the following relation.

F23 = [e32]×P3P
+
2 (3.3)

The expression forF23 is linear inv. Hence, all possible solutions forF23 span a 4D

subspace ofP8 [86]. We solve forv, which produces the solution closest to the measuredF23

in the 4D subspace (in Frobenius norm sense).P3 can now be computed by substituting this

value ofv into Equation3.2. The resultingP1, P2, andP3 are fully consistent withF12, F13,

and the matrixF23 computed above.

In order to chooseF12, F13, andF23 for this approach, we rank the three fundamental

matrices based on an accuracy measure; the least accurate one is assigned to beF23, while the

choice of the other two does not matter. This accuracy measure is described next.

The method described here works only when the camera centersfor the three cameras are

not collinear. This degenerate configuration can be detected by analyzing the location of the

six epipoles (when all three camera centers are collinear,eij = eik for various permutations

of the three views). In our method, when a degenerate tripletis detected, we reject it and look

for the next best possibility. For most camera networks (allthe datasets we tried), cameras

were deployed around the subject, and collinearity of camera centers was never a problem.

3.2.3 Ranking the Fundamental Matrices

In order to build up the projective reconstruction of the network from epipolar geometries,

we need an automatic way to use the best fundamental matricesamongst the ones that are

available. To rank the fundamental matrices based on the accuracy of their estimates, their

inlier spread scoresij is computed as follows:

sij =
∑

(u,v)∈Pi

|u− v|2 +
∑

(u,v)∈Pj

|u− v|2
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HerePi andPj represent the set of 2D point correspondences in viewsi andj that forms the set

of inliers for the corresponding fundamental matrixFij . A higher inlier spread score indicates

that Fij is stable and accurate. The score is proportional to the inlier count, but captures

the spatial distribution of 2D points that form the inlier set. Ideally, we should triangulate

and analyze the spatial distribution of the 3D point cloud, however the epipolar geometry

only allows a projective reconstruction where distances between points cannot be computed.

However, the 2D spatial spread of the inliers in the two images is often a good indicator of

how spread out the 3D points would be. Although this ranking scheme is not perfect, it is

good enough for detecting the unstable and inaccurate estimates of the fundamental matrix

from the first stage.

3.2.4 Incremental Construction

Our incremental approach to projective reconstruction starts by greedily choosing a set of three

views for which the fundamental matrices are, relatively, the most accurate. As described in

the previous section, this triplet is resolved, resulting in a partial projective reconstruction of

three cameras. Next, cameras are added one at a time using theapproach described next. The

process stops when either all cameras have been added, or when no more cameras can be

added to the network because of insufficient links (fundamental matrices).

GivenGk−1, a projectively calibrated camera network with(k− 1) cameras, we first need

to choose the new camera that will be added next to this calibrated network. For this, we

inspect the links (epipolar geometries) between cameras that belong toGk−1 and those that

have not been reconstructed yet. The camera chosen for reconstruction is denoted byk, and

the two cameras inGk−1 corresponding to the two links are denoted byp andq, respectively.

Thus for camerasp andq in Gk−1 andk, the new view, we now reconstruct a triplet of

consistent projective cameras fromFpk, Fqk, andFpq (herePk plays the role ofP3). The

choice ofp andq is irrelevant, since the fundamental matrix correspondingto any pair within
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Gk−1 can be computed, because all projective cameras within it, are exactly known. Finally,

the computed projective cameraPk is transformed into the projective frame ofGk−1, and

added to the network. This produces a complete projective reconstruction ofGk, the camera

network which includes the added new view.

For a network withN cameras in general position, this method will work if a sufficient

number of links are present in the camera network graph. The various solvable cases are

discussed in [86]. In our case, resolving the initial triplet requires threelinks; every subsequent

view that is added requires at least two links. Thus, the minimum number of unique links that

must be present in the graph is3 + 2(N − 3) = 2N − 3. When more links are available in the

graph, our ranking procedure chooses the best ones and the less accurate links may never be

used.

3.2.5 Computing the Metric Reconstruction

Every time a new camera is added, a projective bundle adjustment is done to refine the cal-

ibration of all cameras in the partial network. This prevents error accumulation during the

incremental construction. Camera networks are typically small, containing 8 to 12 cameras;

therefore, running the projective bundle adjustment multiple times is not an issue. Once a full

projective reconstruction of the camera network has been computed, a linear self-calibration

algorithm [106] is used to upgrade from a projective to a metric reconstruction.

Finally, an Euclidean bundle adjustment is done by parameterizing the cameras in terms

of the intrinsic and extrinsic parameters. In all cases, we constrain the cameraskewto be zero

but impose no other parameter constraints. Depending on theexact scenario, other constraints

could be enforced at this step for higher accuracy – for example, enforcing a fixed aspect

ratio of pixels and enforcing the principal point to be at thecenter of the image. For higher

accuracy, radial distortion in the images should also be modeled in the Euclidean bundle

adjustment, which typically further reduces the final reprojection error. However, estimation
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of radial distortion was not done in our current work, and is one way in which the calibration

accuracy can be improved further.

Name Cameras Frames Pairs Reprojection
Error (final)

MIT [114] 4 7000 5 out of 6 pairs 0.26 pixels

DANCER

(INRIA ) 8 200
20 out of 28
pairs 0.25 pixels

MAN

(INRIA ) 5 1000
10 out of 10
pairs 0.22 pixels

KUNG-FU

[22] 25 200
268 out of 300
pairs 0.11 pixels

BALLET

[22] 8 468
24 out of 28
pairs 0.19 pixels

BREAK-
DANCER

[131] 6 250
11 out of 15
pairs 0.23 pixels

BOXER [7] 4 1000 6 out of 6 pairs 0.22 pixels

Table 3.1: The camera network calibration was done on these datasets. The second-last col-
umn in the table, shows the number of links that were present in the camera network graph.
The reprojection error obtained after the Euclidean bundleadjustment is listed in the final
column.
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3.2.6 Results

The full camera network calibration was performed on each one of the datasets described in

the previous chapter, in Table2.1. In each case, only a few links were missing in the camera

network graph, and there were a sufficient number of accuratelinks (good estimates of the

epipolar geometry), that allowed an accurate projective, and subsequently metric reconstruc-

tion to be computed. These results are summarized in Table3.1. Figure3.4 shows, for two

different datasets, how the epipolar geometry estimates are more accurate after the projective

reconstruction stage. All triplets of fundamental matrices at this stage are compatible, i.e. they

satisfy the constraints listed in Equation3.1.

Evaluation

We evaluated our method by comparing our calibration with ground truth data for the synthetic

KUNG-FU sequence. The results are shown in Figure3.6. Since the metric reconstruction of

the camera network obtained by our method is in an arbitrary coordinate system, it first needs

to be scaled and robustly aligned to the ground truth coordinate frame. The final average

reprojection error in all 25 images, after the Euclidean bundle adjustment, is 0.11 pixels and

the reconstructed visual hull of the Kungfu character visually looks as accurate as the visual

hull computed from ground truth. The details of how these 3D models were computed is

provided in Chapter4. In Figure3.6(c), the two models have been overlaid upon each other.

Figure3.6(d) shows the camera network along with the reconstructed frontier points from

the complete sequence. Figure3.6(e) shows the relative error in the focal length estimates of

the 25 cameras in the network, and Figure3.6(f) shows the deviation of the principal point

from the center of the image (the principal point in the ground truth data). Note that, the focal

length estimation could have been more accurate if all the cameras in the bundle adjustment

step were parameterized to share the same intrinsic parameters. However, in realistic scenar-

ios, each camera will have a different set of intrinsic parameters, and therefore, we allow the
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(a)

(b)

Figure 3.4: After the incremental projective reconstruction of the whole camera network,
some errors in the epipolar geometry of the individual pairwise links can be corrected. The
estimates for views with a red border were incorrect but havenow been fixed. The dotted
epipolar lines shown the incorrect epipolar geometry whilethe correct estimate derived from
the projective calibration is shown with solid lines.

intrinsics to be different from camera to camera during the evaluation.

For the BOXER sequence with 4 cameras, the reprojection error after Euclidean bundle ad-
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Figure 3.5: The final metric reconstruction of the camera network and 4953 reconstructed
frontier points from the BOXER sequence.

(a) (b) (c) (d)

(e) (f)

Figure 3.6: (Best seen in color) For the KUNG-FU sequence, ground truth is available. Models
computed using (a) ground truth calibration and (b) the calibration recovered by our method.
(c) The registered 3d models. (d) The camera network registered to the coordinate frame of
the ground truth data.

justment was 0.22 pixels. The 2D feature points and reconstructed frontier points are shown

in Figure3.5along with the metric reconstruction of the camera network.A visual hull recon-
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struction of the human subject in this dataset was performedand results were visually quite

accurate. See Section4.3for results for the BOXER and on other datasets.

The camera network calibration approach was inaccurate forthe HAND sequence, al-

though many of the epipolar geometry estimates (see Figure2.11(b)) were fairly accurate.

This was due to the lack of sufficient motion in the sequence. In this video, the hand position

does not change and the motion is mostly limited to the fingers. Therefore many of the fron-

tier points end up near the finger-tips. When the frontier points correspond to 3D points on a

plane, the estimated fundamental matrix is inaccurate as this is one of the degenerate configu-

rations for epipolar geometry estimation. When frontier point correspondences are close to a

degenerate configuration, a technique such as QDEGSAC [40] could potentially alleviate the

problem.

Although the pairwise epipolar geometry estimates for the HAND sequence had small

residuals, the associated uncertainty of the fundamental matrix estimates were higher, and

thus, an accurate projective reconstruction could not be computed. The reprojection error

after the projective bundle, in this case, was greater than 0.5 pixels, and the camera intrinsics

estimated through self-calibration were not good enough for initializing the Euclidean bundle

adjustment. Therefore, the final calibration was inaccurate, and the reprojection error was

quite high, showing that the algorithm was stuck in a local minima.

It is possible to apply our method to recover the relative pose parameters of cameras in a

network, when all the intrinsics (especially the focal length) are approximately known. Ar-

guably, this calibrated case is easier to handle than the fully uncalibrated case, and it may be

possible to robustly estimate the camera extrinsics even when the pairwise epipolar geome-

try estimates are less accurate. In this case, the essentialmatrices can be computed from the

fundamental matrices, and the relative camera pose for every pair can be directly recovered

without an intermediate projective reconstruction. Once again, the final metric reconstruction

is obtained after doing a full Euclidean bundle adjustment.
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Figure 3.7: The camera network graph is shown. The edges represent pairwise measurements.
When the edges represent sequence alignment offsets, they should sum to zero for all cycles
such asC.

3.3 Camera Network Synchronization

The camera network synchronization problem is an instance of the general sensor synchro-

nization problem in a network. In our case, every camera can be thought to have an inde-

pendent timer, and the time differences can be measured in frame alignment offsets, since we

assume that all cameras are operating at a constant and knownframerate. One method for

recovering such offsets was described in Chapter2.

We represent the sensor network by a directed graphG(V, E) as shown in Figure3.7.

There areN sensors, and each nodevi ∈ V , has a timer denoted byxi. A directed edge in

this network,eij ∈ E, represents an independent measurement of the time differencexj −xi,

between the two timers. Each estimatetij has an associated uncertainty represented by the

standard deviationσij , that is inversely proportional to the uncertainty.

WhenG represents a tree, that is, it is fully connected and hasN − 1 edges, it is possible

to synchronize the whole network. When additional edges areavailable, each provides a

further constraint, which leads to an overdetermined system of linear equations. Each edge

contributes a linear constraint of the formxi − xj = tij . Stacking these equations produces

a |E| × N system of linear equations. Assuming that each measurementis corrupted by

independent Gaussian noise, the maximum likelihood estimate of theN timers is obtained by

computing the weighted least squares solution of the linearsystem (each equation is multiplied
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by the factor 1
σij

). The timer estimates (the first camera is fixed at zero) are optimal, provided

no outliers are present in the edges being considered.

However, it is fairly easy to detect outlier edges in the network. A consistent network

should satisfy the constraint(
∑

e ∈ C e) = 0 ∀ cyclesC ∈ G. For every edgee ∈ E, we check

the sum of edges for cycles of length three that also containsthe edgee. An outlier edge will

have a significantly large number of nonzero sums, and could be easily detected and removed.

This method will produce very robust estimates for completegraphs becauseN ·(N−1)
2

linear

constraints are available forN unknowns. In the minimal case, a fully connected graph with

at leastN−1 edges is still sufficient to synchronize the whole network, although the estimates

in this case, will be less reliable.

3.3.1 Results

Full network synchronization was performed on the MIT sequence. The sub-frame synchro-

nization offsets from the first to the other three sequences were found to be 8.50, 8.98, and

7.89 frames, respectively, while the corresponding groundtruth offsets were 8.32, 8.60, and

7.85 frames, respectively. The results are summarized in Table3.3.1. The temporal offsetstij

(and the uncertaintiesσij) for the six pairs were estimated using the silhouette basedapproach

described earlier (see Section2.5.1for details on how these were obtained).

3.4 Conclusions

In this chapter, a method to recover the full calibration andsynchronization of the camera net-

work was proposed. The input to the algorithm consists of estimated epipolar geometry and

temporal synchronization, between many different camera pairs in the network. The calibra-

tion approach is a stratified one – first a projective reconstruction is computed, which is next

upgraded to a metric one using self-calibration, and a final bundle adjustment is performed to
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(a)

Pair tij σij tij True (t̂ij)
e01 -8.7 0.80 -8.50 -8.32
e02 -8.1 1.96 -8.98 -8.60
e03 -7.7 1.57 -7.89 -7.85
e12 -0.93 1.65 -0.48 -0.28
e13 0.54 0.72 0.61 0.47
e23 1.20 1.27 1.09 0.75

(b)

Figure 3.8: (a) The pairwise synchronization offsets computed for the 6 camera pairs in the
MIT sequence are shown here. (b) The table lists the initial estimates (tij andσij). The final
estimates obtained after full network synchronization is performed is shown in column (tij).
These are within1

3
of a frame i.e. 1

100

th
of a second within the ground truth offsets.

obtain the optimal camera parameters. The recovered calibration and synchronization is used

to reconstruct dynamic scenes involving humans. The 3D reconstruction methodology and

results are presented in Chapter4.
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CHAPTER 4
Dynamic Scene Reconstruction

4.1 Introduction

Once the camera network is fully calibrated and synchronized, it becomes possible to combine

information from multiple views, for the purpose of 3D reconstruction of the observed time-

varying event. Various approaches for this task have been investigated in the past. One of

the earliest successful systems [69, 70] coined the termvirtualized reality, and used dense

stero to reconstruct a dynamic scene from synchronized video streams. A special dome (see

Figure1.1(a)) comprising about 50 cameras mounted on a 5-meter diameter geodesic dome

was used. The cameras recorded at a constant 30 frames per second and were synchronized

using a hardware trigger. The system captured humans performing a variety of tasks on video,

in real-time, and the stereo-based 3D reconstruction was subsequently computed offline.

Since then, systems such as [2, 95, 41, 96, 114] have also used silhouettes of the fore-

ground subjects or combined silhouettes and stereo cues [22, 53, 60, 104, 131] to reconstruct

time-varying events within a small area. One advantage of using silhouette based approaches

is that a good reconstruction can be obtained with fewer cameras (often 8–12), provided they

are suitably deployed. However, it is quite difficult to automatically extract foreground silhou-

ettes from video in a general, uncontrolled scene due to various factors, such as image noise,

complex lighting and similar appearance of the foreground and background. Nevertheless, in

controlled scenes with simple background models, silhouettes can be recovered robustly and

can lead to fairly convincing reconstructions.

Some of these 3D reconstruction systems were designed for real-time capture, transmis-



sion and reconstruction, while others were built for offlinedigitization, and could produce

results of better quality and accuracy. Digitizing human actors has been of great interest, and

many of these earlier systems had been designed specificallyfor reconstructing human actors

using camera networks in well controlled environments. At abroad level, the methods for dig-

itizing events in 3D can be classified into two categories depending on whether they employ

model-based or model-free reconstruction approaches.

Model-based approaches have been particularly popular formodeling humans. They of-

ten use a parameterized human body model consisting of a skeleton, appropriate joint struc-

ture and some surface representation like a tesselated mesh. Model-based methods such

as [22, 60, 131] utilize a priori knowledge about the observed scene, and formulate the re-

construction problem in terms of fitting a model to the multiple images using a suitable op-

timization scheme. Computing the optimal model parametersfor every frame of the video

allows the 3D pose of the foreground subject to be recovered in a robust fashion. Model-based

methods are ideal for reconstructing human actors, as they can exploit temporal coherence,

and traditionally, such methods have been preferred for capturing motion data for animations.

This is often referred to as the problem ofmarkerless motion capture.

On the other hand, model-free approaches are more general, and reconstruct the 3D scene

without assuming any knowledge about its structure. The methods applied involve shape-from

silhouette-like approaches, such as image-based visual hull [ 96], polyhedral visual hulls [95,

20] or stereo-based approaches [70]. Shape-from-silhouette approaches are popular because

of the relative simplicity, higher robustness and computational efficiency compared to dense

stereo methods. Algorithms for computing exact visual hulls were recently proposed [41,

83]. Another method [42], also based on shape from silhouette, recently proposed computing

silhouette consistent shapes which had better geometric properties than the visual hull, such

as local smoothness and curvature. They also allowed betterviewpoint free rendering of the

texture mapped 3D models that were captured. Silhouette-based approaches are also relevant
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for model-based methods, as silhouettes can restrict the search for parameters of the 3D human

skeleton such as joint angles, and provide strong constraints for performing model fitting.

These model parameters can be estimated by maximizing the overlap between the projected

human template and the original silhouettes in the multipleimages, in addition to using other

appearance cues.

4.2 Visual Hulls

Techniques for reconstructing shapes from silhouettes wasfirst proposed by Baumgart [8] in

1974. Most silhouette based methods attempt to compute an approximation of the visual hull,

a term that was coined by [81]. Since then a large number of visual hull algorithms have been

proposed and at a high level they can be classified based on theunderlying geometric repre-

sentations – namely volumetric approaches such as [24, 25, 138] that compute a volumetric

representation of the visual hull, and more recently, surface based approaches that directly

compute tesselated meshes of the visual hull [41, 83, 95]. The surface based approaches are

computationally efficient, more robust, have been shown to give higher quality results and can

be used for real-time 3D reconstruction. In this section, wewill briefly review recent work on

exact visual hulls [41, 82, 83], and discuss the exact polyhedral visual hull (EPVH) algorithm

that we build upon in Chapter6.

The visual hull of an object is defined as the maximal shape that produces the same set

of silhouettes in multiple calibrated views. The intersection of viewing cones, back-projected

from silhouettes in a finite number of views, produces the visual hull of the object. The visual

hull can provide a good approximation of the shape of the object when sufficient viewpoints

are available. Typically 8–12 cameras, widely spaced out, can provide a reasonable recon-

struction of a human. The visual hull is guaranteed to contain the true object inside of it.

This is a property that is used by many multi-view reconstruction approaches. The visual hull

is a projective topological polyhedron with curved edges and faces. When the contours in
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(a)

(b)

Figure 4.1: (a) The visual hull of a pear-shaped object was computed from 8 calibrated sil-
houette images shown here. On the right, the visual hull is shown in 3D along with the camera
poses. (b) Anatomy of the Exact Visual Hull mesh. see the textand [41, 82] for more details.

64



the silhouette images are represented using polygons, the visual hull becomes a polyhedron.

An algorithm to compute this exact visual hull was proposed first by [84], and subsequently

by [41], for polygonal silhouettes. The polyhedral visual hull, computed by [41], exactly

projects onto the silhouette polygons and can be computed both efficiently and robustly.

The back-projection of 2D points on the apparent contour gives rise toviewing rays, each

of which may contribute a finite segment to the visual hull. This is called aview edge. At least

one point on a viewing ray must touch the surface at a point on the rim or contour-generator.

All view edges from a particular view-point form a ruled surface, which is called acone-

strip. The intersection of silhouette or viewing cones gives riseto additional vertices called

triple pointsandcone intersection edges. The cone-intersection edges and the triple points

always lie outside the true surface. The EPVH algorithm [41] which we use to reconstruct the

dynamic objects in our scenes, proceeds by first recovering all view edges corresponding to

all the silhouettes. Next, the cone-intersection edges andthe triple points are estimated using

numerically stable and efficient schemes. The results are exact and the overall method is quite

robust and fast. The topological structure of the visual hull polyhedra captures key information

about the unknown rims or contour generators. This will be studied in detail in Chapter6, in

the context of enforcing silhouette constraints within a multi-view stereo approach for 3D

shape reconstruction.

4.2.1 Silhouette Interpolation

Visual hull methods typically treat the temporal offset between multiple video streams as an

integer, and ignore sub-frame synchronization. Given a specific frame from one video stream,

the closest frame in other 30 Hz video streams could be as far off as 1
60

seconds in time. While

this might seem small at first, it can be significant for a fast-moving person. This problem

will be illustrated in Figure4.5(d), where the visual hull was reconstructed from the closest

original frames in the sequence. The gray area in the figure represents what is inside the
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visual hull reconstruction, and the white area correspondsto the reprojection error (points

inside the silhouette in one view, carved away from other views). Sub-frame offsets need to

be considered to perfectly synchronize the motion of the arms and the legs in this case.

To deal with this problem, we propose temporal silhouette interpolation. Given two ad-

jacent framesi and i + 1 from a video stream, we compute the signed distance map in

each image, such that the boundary of the silhouette represents the zero level set in each

case. Let us denote these distance maps bydi(x) and di+1(x), respectively. Then, for a

sub-frame temporal offset∆ ∈ [0, 1], we compute an interpolated distance map denoted

S(x) = (1 − ∆)di(x) − ∆di+1(x). Computing the zero level set ofS(x) produces the in-

terpolated silhouette. This simple scheme, motivated by [32], robustly implements linear

interpolation between two silhouettes without explicit point-to-point correspondence. How-

ever, it is approximate and does not preserve shape. Thus, itrequires the inter-frame motion

in the video to be relatively small.

4.3 Results

We now show the results of our camera network calibration andvisual hull reconstruction

on a number of different multi-view video datasets (see Table 3.1 for relevant details about

these datasets). Although most of the experiments involvedvideo streams of human subjects,

both our calibration and reconstruction approaches are completely general, and can be used

for reconstructing time-varying events involving any solid non-rigid shape which can be reli-

ably segmented from the background. We tested our method on one synthetic sequence that

contains 25 cameras and 8 real datasets, independently acquired by various computer vision

researchers in their own laboratories, using different configuration of video cameras. We were

able to recover the full calibration of the camera network inall these cases, without prior

knowledge of or control over the input data. We thus show thatit is possible to remotely

calibrate a camera network, and reconstruct time-varying events from archived video footage
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with no prior information about the cameras or the scene.

The reconstruction of the synthetic KUNG-FU dataset is shown in Figure4.2 followed by

the 8-view BALLET dataset. The original BALLET sequence was reconstructed using a model-

view approach [22], but for simplicity, we only compute the visual hull from 8 views, which

gives a reasonable approximation of the human shape. However, other methods proposed

recently such as [7, 42, 131], could also be used for more accurate 3D reconstruction of the

same event. Figures4.3and4.4show the reconstructions from the BOXER, BREAK-DANCER,

DANCER and MAN sequences respectively. Some corresponding frames from the input video

are shown along with the visual hull computed for that instant in time. The geometry of the

camera network is also shown in 3D along with the visual hull reconstruction. Detailed results

regarding the accuracy of the recovered camera calibration, are presented in Section3.2.6.

In Figure4.5(a), the metric 3D reconstruction for the 4-view MIT sequence is shown. The

calibration and synchronization were recovered using the methods described in prior chapters

of this thesis. This shows that we are able to reconstruct visual hulls from uncalibrated and

unsynchronized footage. To test the accuracy of the calibration that was computed, we pro-

jected the visual hull back into the images (see Figure4.5(b)). In the perfect scenario, the

silhouettes would be completely filled in. Inaccurate calibration, poor segmentation or lack

of perfect synchronization could give rise to empty regions(white pixels) in the silhouettes.

Our tests gave consistent results, and the silhouettes weremostly filled, except for fast moving

parts, where the re-projected visual hull is a few pixels smaller on one side of a silhouette (see

the close-up in Figure4.5(c)). This arises mostly when sub-frame synchronization offsets are

ignored, or due to incorrect segmentation in the case of motion blur or shadows.

For higher accuracy, we computed visual hulls from interpolated silhouettes. The silhou-

ette interpolation was performed using the sub-frame synchronization offsets that were com-

puted earlier on for this sequence (see Table3.3.1). In Figure4.5(d), an example is shown.

Given three consecutive frames, we generated the middle frame by interpolating between the
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Figure 4.2: Metric 3D reconstruction of the KUNG-FU and BALLET sequence.
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Figure 4.3: Metric 3D reconstructions of the BOXER and BREAK-DANCER sequences.
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Figure 4.4: Metric 3D reconstructions of the MAN and the DANCER sequences.
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(a) (b)

(c) (d)

Figure 4.5: Metric 3D reconstructions of the MIT sequences.(a) The visual hull projected
over the original silhouettes. (b) A close-up showing the re-projection errors. (c, d) Silhouette
interpolation using the sub-frame synchronization reduces such re-projection errors.
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first and the third and compared it to the true second frame. Our approximate interpolation

approach works quite accurately for small motion, as would be expected in video captured at

30 frames per second. In Figure4.5(e), the visual hull reprojection error is shown, with and

without sub-frame silhouette interpolation. In the two cases, the reprojection error decreased

from 10.5% to 3.4%, and from 2.9% to 1.3% of the pixels inside the silhouettes in the four

views. In the future, more sophisticated shape-preservinginterpolation schemes such the ones

proposed by [1] will be investigated for higher accuracy.

4.4 Conclusions

This chapter concludes the first part of the thesis. We have presented a complete approach

to determine the time varying 3D visual-hull of a dynamic event, from silhouettes extracted

in multiple videos recorded using an uncalibrated and unsynchronized network of cameras.

The key element of our approach, is a robust algorithm that efficiently computes the temporal

offset between two video sequences and the corresponding epipolar geometry. The proposed

method is robust and accurate and allows calibration of camera networks without the need for

acquiring specific calibration data. This can be very usefulfor applications where sending in

technical personnel with calibration targets for calibration or re-calibration is either infeasible

or impractical. We have also shown that for visual-hull reconstructions from unsynchronized

video streams, sub-frame silhouette interpolation can improve the quality and accuracy of the

reconstructed 3D shape.
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Part II

Multi-view Reconstruction of Static

Objects
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CHAPTER 5
Multi-view Stereo Reconstruction

5.1 Introduction

Recovering the 3D shape of a static object from multiple images has been a classical prob-

lem addressed in the computer vision literature. Given multiple images of the same scene

from different viewpoints and the calibration of the corresponding cameras, the goal is to

reconstruct a 3D model of the scene as accurately as possible. A specific case of the 3D re-

construction problem that has been investigated in detail is the problem of recovering a 3D

model of a closed, compact object. In practice, the object isoften placed on a rotating turn-

table and a single camera captures images at roughly uniformintervals. This simulates a ring

of cameras surrounding the object. As discussed in Section1.2.2, it is possible to exploit a

variety of visual cues to design a 3D reconstruction algorithm. Amongst these, the stereo and

silhouette cues are the most widely applicable and powerfulfor modeling solid objects. The

class of shape from silhouette methods were reviewed earlier in Section4.2and a robust and

efficient algorithm for computing exact polyhedral visual hulls [41] was described. In this

chapter, multi-view stereo methods will be described as well as some recent techniques that

try to fuse stereo and silhouette information together for 3D reconstruction. In this setting, the

motivation and scope of the approach proposed in the second part of this thesis will be laid

out.



5.2 Multi-view Stereo

The basic idea in multi-view stereo is to use image appearance (i.e. color or texture) to estab-

lish dense correspondence between pixels in different calibrated views. Dense binocular or

multi-baseline stereo involves recovering matching pixels (pixels corresponding to the same

3D point) in two or more views. The depth of the 3D scene can then be recovered by triangu-

lating corresponding pixels (i.e. intersecting back-projected rays) in different views. Often it

is difficult to find accurate and robust correspondences for all pixels because of ambiguities in

matching for textureless surfaces or the matching fails dueto occlusions or non-Lambertian

properties of the surface.

Stereo algorithms represent the scene structure or object’s shape using disparity maps (or

depth maps). Every pixelp1(i, j) in the first image has a particular disparityd with respect

to the matching pixelp2(i + d, j) once the images have been rectified (i.e. they have been

transformed to ensure that corresponding pixels are alwayson identical scanlines). In the

multi-view case, adepth-mapis commonly used to represent the correspondence or the depth

from a particular viewpoint. The problem of robustly computing an accurate disparity map

can be formulated as a pixel labeling problem. Some of the best stereo methods solve the

pixel labeling problem by energy minimization which make use of recently proposed discrete

optimization algorithms such as graph cuts [16, 14] and loopy belief propagation [155]. Later

in this chapter, we will review graph-cut based energy minimization on which our 3D recon-

struction method is based.

5.2.1 Photo-consistency

While stereo approaches that compute depth-maps are well suited for reconstructing general

scenes, volumetric or surface based methods are more popular when it comes to reconstructing

objects. Irrespective of the underlying geometric representation, all these methods use the

fundamental idea ofphoto-consistencyfirst proposed by [118] in the context of a volumetric
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approach calledvoxel coloring.

Photo-consistency is a function that how measures the likelihood of a 3D point of being on

a opaque surface in the scene. This likelihood is computed based on the images in which this

3D point is potentially visible. Suppose a 3D pointM, visible in camerasc ∈ VM projects

to pixels in these images with colorsCc
M respectively, then the photo-consistency ofM can

be estimated by evaluating the color variance of the pixels in {Cc
M}. An ideal Lambertian

surface point will appear to have the same color in all the images and will thus have a color

variance of zero in the absence of noise.

The color variance measure is an over simplificaton and not anadequate measure for real

scenes. Thus instead of a single pixel, the appearance of a small neighbourhood around the

projected point is often considered. Patch-based similarity measure such as normalized cross

correlation (NCC), described in AppendixA-2 can be used to compare the appearance of these

patches. Various ways of computing photo-consistency havebeen reported [17, 64, 127] and

approaches for non-Lambertian surfaces such as [154] have been investigated as well.

Photo-consistency can be measured in image space or object space. Image space compu-

tations compare image patches centered at the pixels where the 3D point projects. This im-

plicitly assumes that the images are approximately rectified or the corresponding camera pair

has a small baseline. Object space computations are more general – a patch centered at the 3D

point is projected into the images and the appearance of the projected patches (recovered by

bilinear interpolation) are compared. Approximate knowledge of the surface orientation can

be used to choose a suitable orientation for this patch. Photo-consistency cannot be computed

exactly because it requires knowledge about the visibilityand this in turn requires knowledge

of the 3D shape. Most approaches either approximate the visibility [ 85, 148] or compute

robust versions of the photo-consistency function that treats occlusions as outliers [149].

Volumetric 3D reconstruction methods that maximize photo-consistency roughly fall into

two groups – (a) greedy carving approaches which try to recover maximal photo-consistent
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shapes such as thephoto-hull[78] or (b) energy-based global methods that first evaluate photo-

consistency within a volume and then search for a surface with the highest overall photocon-

sistency. The greedy carving methods [78, 118] make binary hard decisions locally and cannot

enforce regularization or spatial coherence. The results depend on a critical threshold param-

eter which is used to classify voxels as being photo-consistent or not. This is problematic

because the image data is almost always ambiguous and incorrect decisions made at individ-

ual voxels cannot be corrected later.

5.2.2 Global methods

Global methods which employs energy minimization imposes regularization or spatial co-

herence as a soft constraint and are better suited for solving the ill-posed 3D reconstruc-

tion problem [13, 14, 38, 77, 85, 148]. These methods formulate scene reconstruction as a

variational problem in which a suitable photo-consistencybased energy functional is opti-

mized. Various ways of solving the variational problem has been investigated – deformable

meshes [31, 57, 66], level-sets [38] and graph-cuts [13, 77, 148].

Level-sets [119] are a popular method to minimize functionals such as
∫

S

ρ(s)ds that

can be represented as a weighted minimal surfaceS. An implicit function φ(s, t) is con-

structed such that the time-evolving surfaceS(t) is represented by the zero level-set ofφ(s, t)

i.e.φ(S(t), t) = 0. The surface evolves in a way to minimize the weighted surface functional.

Using the Euler-Lagrange formula for this variational problem, a partial differential equation

is constructed which drives the evolution ofφ(s, t). Although this method minimizes a global

objective function, the PDE is based on local differential operators. This technique was used

by Faugeras et. al. [38] to solve the 3D reconstruction problem where theρ(s) function was

based on patch-based photo-consistency.

While level-sets and deformable meshes can enforce smoothness, they are iterative and

only guarantee a local minima and thus they require good initialization. On the other hand,
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graph cut optimization is attractive because it can computethe global minima of the energy

functional in many scenarios. However, the reconstructionresults from graph-cuts often suffer

from metrication errors due to the underlying discretization. This was addressed in [13] but in

practice, graph cut results are never completely free of metrication errors. Although graph-cut

optimization is reasonably fast, they typically require evaluating the photo-consistency over

the whole volume, due to which the computational and memory requirements of this method

are quite high.

5.2.3 Combining Stereo and Silhouette Cues

While the photo-consistency or stereo cue provides strong constraints on surface locations for

near fronto-parallel surface patches, shape from silhouette techniques provide constraints for

surface patches that are tangential to the viewing rays. Hence methods that combine the two

cues show benefits from combining the complementary information.

Some of the earliest methods that combined silhouette and stereo constraints were [31,

94]. Both started by carving away voxels using silhouette information followed by carving

based on photo-consistency. This is possible because the visual hull is guaranteed to contain

the real surface within itself. A mesh deformation approachwas proposed by [66]. It de-

forms the visual hull towards a photo-consistent solution by moving mesh vertices via a series

of random searches along epipolar lines. Hernandez et.al. [57] too created an initial mesh

from the visual hull which was then deformed to satisfy photoconsistency constraints under

the effect of gradient flow forces [153]. Their mesh deformation approach models silhouette

constraints as well but tends to produce a bias near the visual hull boundary. A level-set based

approach that fused silhouette and photo-consistency constraints was proposed by [110]. Al-

though these approaches show accurate results, they are susceptible to local minima and may

require good initialization in the form of a visual hull thatwell approximates the true shape.

Our work is most similar to Carved Visual Hulls [45] which also enforces some silhouette
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constraints exactly and this is reviewed later in Section5.4.2.

5.3 Energy Minimization

A large number of computer vision problems try to assign a finite set of labels to pixels based

on noisy measurements. The labels could be intensity values, disparities or segmentation la-

bels depending on the target problem. Under an optimal labeling, the assigned labels often

tend to vary smoothly within the image, except at the boundaries where discontinuities typ-

ically occur. As a particular pixel label depends on the labels of its neighbours, the Markov

Random Field (MRF) is a natural representation. In the MRF framework, each pixel becomes

a node of the MRF and a regular grid structure is imposed on thepixels based on either a

4-connected or a 8-connected neighborhood system. In the presence of uncertainties, finding

the best pixel labeling becomes an optimization problem over a MRF.

Pixel labeling problems can be posed in terms of energy minimization, where the energy

function (or functional) contains two terms: a data term that penalizes solutions that are in-

consistent with the observed data, and an interaction term that enforces spatial coherence over

the whole solution. Thus the data energy is simplyEd =
∑

p Dp(lp) which is a sum of per-

pixel data costs (the penalty associated with assiging label lp to pixel p). The interaction (or

smoothness) energy term isEs =
∑

{p,q}∈N Vpq(lp, lq). HereN denotes the set of all un-

ordered pairs of neighboring pixels andVpq(lp, lq) denotes the penalty of assigning labelslp

andlq to neighboring pixelsp andq respectively. Thus the energy functional that is minimized

is as follows:

E(L) =
∑

p

Dp(lp) +
∑

{p,q}∈N

Vpq(lp, lq) (5.1)

These energy minimization approaches are well justified, asthey produce the maximum a

posteriori estimate of an appropriate MRF [16]. In fact the data energy is proportional to the

log likelihood of the measurement noise whereas the interaction energy is proportional to the
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log-likelihood of the prior as pointed out by [139].

The interaction energy is typically of the formEs =
∑

{p,q}∈N wpq.V (|lp − lq|) where

V () represents a monotonically increasing function of label difference. The Potts model is

commonly used as it allows discontinuity preserving smoothlabel assignments but penalizes

any pair of dissimilar labels equally. HereEs =
∑

{p,q}∈N wpq.I(|lp 6= lq|) whereI() is the

indicator function. The choice of the interaction term is critical and under some common

choices the energy minimization becomes intractable. Minimizing the Pott energy model or

any other energy with discontinuity preserving smoothnessterms under more than two labels

is NP-Hard. However, fast approximation algorithms such asα-expansions [16] can compute

a provably good approximate solution by iteratively running max-flow algorithms over the

range of labels. In this thesis, we will only be concerned with binary energy functionals

which can be efficiently minimized irrespective of the choice of the interaction term. Although

many different approaches for energy minimization exist inthe literature, we will concentrate

on graph-cuts, as they guarantee finding the global minima for the class of binary energies we

will be concerned with.

5.3.1 Graph-cuts based Energy Minimization

For solving the 3D reconstruction problem, we will be interested in energy minimization over

a MRF where every vertex in the graph corresponds to a voxel ina bounding volume of the

shape. We will be interested in binary energy functionals – i.e. we seek to label each voxel

as interior or exterior. Each partition of the set of voxels corresponds to some surface and

we will be interested in optimizing such a labeling under a set of constraints derived from the

silhouette and stereo cues. There is a natural correspondence between such a particular pixel

labeling and a cut on a flow graphG. It can be proved that the minimum cut onG produces the

partition or labeling that is the global minimum of the energy function. Computing the mini-

mum cut is equivalent to finding the maximum flow on the flow graph which can be computed
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(a) (b) (c) (d)

Figure 5.1: (a) a 3× 3 image wherep andq refer to neighboring pixels. (b) Graph construction
showing the n-links, t-links and the two terminalss and t respectively. (c) Every s-t cut
produces a certain labeling and (d) the minimum cost cut produces the optimal solution to the
pixel labeling problem.

in polynomial time. Thus in the two labels, the global minimaof the energy function can be

obtained in polynomial time directly (see AppendixB-3 for an overview on max-flow/min-

cut algorithms). We will now describe the construction of the graphG for an arbitrary binary

energy function. The graph G will contain two kinds of vertices:p-vertices(these correspond

to the pixels or voxels which are the nodes in the associated MRF) andl-vertices(these are

the terminal vertices). This is illustrated in Figure5.1. In the two label case, there will be

two such l-vertices. In Figure5.1(b) these are denoted bys andt respectively (s andt stands

for source and sink respectively). All the edges present in the neighborhood systemN of

the MRF become edges inG. These edges are calledn-links. Edges also exist between thep-

verticesand the terminall-vertices. These are calledt-links. t-links are assigned weights based

on the data terms of the energy functional, while n-links areassigned weights based on the

interaction or smoothness term. To be more specific, the weight of the t-link connecting node

p to s is Dp(lp = t) while the weight of the t-link betweenp andt gets the weightDp(lp = s)

respectively. All n-links typically get a constant weightλ which decides a trade-off between

the data-penalty and smoothness penalty. The minimum cut severs some of the t-links as well
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as some of the n-links. This leaves some of the p-vertices connected to the source, while the

rest remain connected to the sink. This partition induced bythe minimum-cut produces the

most optimal binary labeling that has the minimum energy.

Graph-cut based energy minimization was initially done on 2D regular grid where the

optimal labeling was often spatially coherent. However, the label boundaries were not ge-

ometrically smooth contours or surfaces. In the context of segmentation, it was found that

graph-cut techniques produced largemetrication errorsbecause the underlying energy that

was being minimized by graph-cuts did not enforce geometricsmoothness of the boundaries

between labels.

Boykov et. al. [13] studied cut metrics associated with graph-cuts. They showed how that

the minimum cut cost can approximate any non-Euclidian metric (in Rn) using a specific type

of graph construction. They proposed thegeo-cutalgorithm [13] to address the problem of

metrication errorsand showed how to use graph cuts to compute geodesic contoursin 2D or

minimal surfaces in 3D metric spaces in the context of objectsegmentation in 2D or 3D. The

main advantage of geo-cut (graph-cut method) over other segmentation techniques (snakes or

level-sets) lies in their ability to compute globally optimal solutions for energy functionals

defined on N-D grids. Finding geodesics and minimal surfacesvia level-set methods is a

common approach that was popular in the past. The geo-cut algorithm can find globally

optimal solutions which avoids problems with local minima.This is an important result as it

shows that graph-cuts are indeed a good choice to solve the kind of variational problems we

are interested in.

Although the 3D multi-view reconstruction problem is similar to 3D segmentation i.e. it

involves labeling the voxels in the grid into interior and exterior ones, there are some differ-

ences. In segmentation, typically region-based information is used to associate data penalties

with every voxel in the grid. In 3D reconstruction, the data-cost is derived from the photo-

consistency function which gives a likelihood of the location of the surface i.e. the interface
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(a) (b)

Figure 5.2: (a) A 2D slice of the volume showing the visual hull (base surface) and the inner
offset surface between which the surface is assumed to lie. (b) The offset surfaces are con-
nected to the source and the sink respectively and the minimum cost cut produces the most
photo-consistent surface.

between the interior and the exterior. In the absence of region based terms, the t-links do

not have any associated weights, rather the photo-consistency costs are incorporated into the

weights of the n-links. In order to force the cut to go throughspecific parts of the volumes,

hard constraints can be incorporated by including t-links with very large weights. Having a

t-link with an infinitely large weight ensures that this edgeis never severed by the minimum-

cut. This is equivalent to saying that certain nodes in the graph or MRF have pre-determined

labels i.e. they are connected to either the source or the sink.

5.4 Closely Related Work

We now review some recent multi-view stereo methods [45, 148] and analyze them in some

detail as our proposed method is closely related to these.

5.4.1 Volumetric Graph Cut Stereo

The work of [148] extends the Riemannian minimal surface idea of [13] for multi-view vol-

umetric stereo. The method uses an approximate base surfacein the form of the visual hull

of the scene by assuming that the true surface will be betweenthe base surface and a parallel
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inner boundary surface. In their graph-cut formulation, the nodes of these two base surfaces

are connected to the source and sink respectively using veryhigh edge-weights. This is illus-

trated in Figure5.2. For computing the photo-consistency of every voxel that lies between the

two base surfaces, each voxel is assumed to have the same visibility as the nearest point on

the visual hull. The minimum cost cut on this graph that separates the source from the sinks

corresponds to the most photo-consistent surface S which lies between the two base surfaces.

This surface minimizes the energy functionalE(S) =
∫

S
ρ(x)dS, whereρ(x) is defined as

ρ(x) = 1− exp(−tan(
π

4
(c(x)− 1))2/σ2)

andc(x) ∈ [−1, 1] is a measure of photo-consistency. Theρ(x) function is a sigmoid which

maps a photo-consistency score to an individual term in the energy function (c(x) = 1 means

high photo-consistency produces an energy termρ(x) = 0). Surface smoothness is implicitly

enforced since minimisingE(S) corresponds to finding the minimal surface with respect to

a Riemannian metric. Larger values ofσ produces surfaces that are less smooth but which

passes through more photo-consistent points.

While the visual hull is used to generate the base surfaces for this method, the silhouette

constraints are not enforced during the graph-cut optimization and thus there is no guarantee

that the final solution will strictly satisfy the silhouetteconstraints. In fact, in most cases it

won’t. The approach also suffers from aminimal surface bias, a common problem with most

global methods. Since these methods attempt to minimize a surface integral, they implicitly

prefer solutions which have smaller areas. For the 3D reconstruction problem, this amounts

to reconstructed surfaces that have shrunk and occupy less volume than they actually should.

Also sharp protrusions or deep concavities will be missing because the imposed regularization

tends to flatten the minimal surface. A ballooning term (region based term) was used by [148]

in their energy functional to address this problem. The ballooning term gives a preference for

larger shapes. See Figure5.3 for an illustration. The corresponding energy functional that
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(a) (b)

Figure 5.3: (a) Volumetric graph cuts suffer from a minimal surface bias. A slice through the
photo-consistency volume is shown. (b) The problem is solved by using a ballooning term
in the energy functional which is a prior for larger volumes.This illustration is taken from
Vogiatzis et.al. [148].

is minimized isE(S) =
∫

S
ρ(x)dS −

∫

V
λdV whereV is the volume enclosed by the sur-

face. The new energy functional has an additional volumetric (also referred to as ballooning)

term which favors larger shapes. However this naive regularization reduces the overall accu-

racy of the reconstruction because in order to recover thin protrusions, the deep concavities

must be filled out as well. In our approach, silhouette constraints will be used to recover thin

protrusions whereas additional visibility based information will be used to recover the con-

cavities accurately. While silhouette constraints were used in the deformable mesh as well as

level-sets based approaches, it is not obvious how to enforce them within the graph-cut based

technique. This is the motivation of our work but first, the closely related work on Carved

Visual Hulls [45] is reviewed next.

5.4.2 Carved Visual Hulls

The algorithm proposed by Furukawa and Ponce [45] starts by computing the exact visual hull

mesh using the approach of [83]. First dynamic programming is performed on the cone-strips

of the visual hull to recover segments of the rim curve. Then with the points along the rim

curves held fixed, the visual hull is carved using graph-cuts(similar to [13, 148]) to globally

maximize the photo-consistency of the surface. At this stage a watertight triangulated mesh
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is reconstructed and this mesh is optimized further using local mesh deformation to recover

more finer surface detail.

Excellent results have been reported although in all these cases the visual hull already

approximates the true shape quite well. One weakness which we try to address in our work

is the early commitment to rims which are identified in the first step after which they are

held fixed while computing the surface during optimizing photo-consistency. In this method,

when rim points are incorrectly identified, they cannot be corrected later during the graph-

cut step and this early commitment can be dangerous in ambiguous situations. In contrast

to this multi stage approach, our graph-cut formulation with exact silhouette constraints is

designed to directly extract the rims as well as the full surface in one optimization step. Similar

to [45, 57], we too perform a subsequent local refinement of our mesh using a combination of

texture, silhouette and smoothness forces to recover greater degree of surface detail in our 3D

models.

Both volumetric graph-cut stereo and carved visual hulls successfully use the graph-cut

optimization technique but both of them require pre-computing photo-consistency on a very

finely divided regular lattice grid. The cost of evaluating photo-consistency at all these nodes

dominates the running time of the graph-cut optimization step. In our work, we propose

an adaptive graph construction which addresses this problem. We propose a way to adap-

tively sample the volume that avoids computing photo-consistency where its not needed. The

proposed approach allows us to reconstruct detailed geometric models from high resolution

images which would have been impossible with the existing approaches because of a memory

bottleneck. This adaptive framework can utilize soft silhouette constraints (when approxi-

mate silhouettes are available) but enforces them in a more general way without enforcing

exactness.
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5.4.3 Surface Growing Approach to Multi-view Stereo

While the two approaches described above perform some form of global optimization us-

ing a volumetric representation, recently a different approach to multi-view stereo has been

explored by [44, 51, 54]. These methods first generate sparse correspondences between the

multiple images. Next, a local region growing or surface growing strategy is used to iteratively

build up a dense surface. Surface growing approaches use a patch-based representation of the

surface. Patches orsurfelsare planar disks that are independently estimated such thattheir

projections in the images where they are visible, match withone another. Instead of optimiz-

ing a global energy functional to enforce smoothness duringreconstruction, the smoothness

prior is used to make a local planarity assumption about the surface during the surface grow-

ing stage. A dense reconstruction may be obtained by multiple iterations of expandingsurfels

in the tangent plane of an existingsurfeland refining the newly created patches.

To produce a compact watertight surface, these approaches must be combined with a

surface-fitting approach such as [72]. Visibility constraints are used by [44] to perform filter-

ing during the iterative surface growing stage. Currently,it is the best performer amongst the

various multi-view stereo approaches in the Middlebury multi-view stereo benchmark [117].

5.5 Conclusions

In this chapter, we reviewed the state of the art in multi-view stereo and background in graph-

cut based energy minimization and how it can help with solving the multi-view stereo prob-

lem. We discussed some of the limitations of the existing methods and motivated how silhou-

ettes can be used to address these issues. Chapter 6 will describe our work on a graph-cut

formulation for multi-view stereo that incorporates silhouette constraints exactly while Chap-

ter 7 describes an adaptive graph construction that addresses the memory and computational

bottleneck of the volumetric graph-cut algorithms.
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CHAPTER 6
Multi-view Stereo with Exact Silhouette Constraints

6.1 Introduction

In this chapter, we describe a graph-cut formulation for volumetric multi-view stereo that

strictly enforces silhouette constraints. This implies that in addition to being photo-consistent,

the final reconstructed surface is constrained to exactly project into the original silhouettes.

Existing techniques that fuse silhouettes and photo-consistency, treat these cues as soft con-

straints within a global optimization framework – these methods cannot ensure that the re-

constructed shape be fully consistent with the original silhouettes. In our formulation, a

special flow graph is constructed such that any cut that separates source and sink nodes in

the flow graph, corresponds to a surface that exactly satisfies silhouette constraints. Thus

silhouette consistency is guaranteed by construction and is not part of the optimization prob-

lem. Amongst the multiple cut surface candidates, the minimum cost cut corresponds to the

optimal solution (the surface with minimum energy) that maximizes photo-consistency and

smoothness.

Our graph-cut formulation is based on the topology of exact visual hulls [41, 83], which

is based on a combinatorial mesh of cone-strips obtained by the cone-cone intersections of

back-projected viewing cones from all the silhouettes. We proposed a preliminary version of

this approach in [124], which was based on the concept of the rim mesh proposed earlier by

Lazebnik et. al. [82] in the context of exact visual hulls. The rim mesh (similar to the idea

of epipolar netsproposed by [31]) captures information about the combinatorial arrangement

of rim curves (i.e. contour generators) on the actual surface. The location of the rim curves



is also recovered by this method. However the proposed approach is complicated and cannot

handle complex geometric shapes. This is because the rim mesh for complex geometric shapes

is unstable or difficult to compute. The approach described in this chapter is an extension

of our previous work [124], but can handle more complex shapes. The approach presented

here does not need the rim mesh, but recovers all the related information directly from the

topological information encoded in the visual hull mesh. Wehave tested it on various real

datasets involving complex shapes.

In this chapter, we start by explaining the main idea using a simple 2D example. Our

formulation is based on a 2-coloring property of the visual hull which is explained next. An

algorithm for 2-coloring the visual hull is then described.The 2-coloring is the primary mech-

anism for incorporating silhouette constraints within thegraph cut step in our proposed for-

mulation. The formulation is first presented in a form that correctly deals with only convex

objects observed by multiple cameras in general position. Finally, we show how to deal with

non-convex shapes which requires correctly handling T-junctions on silhouettes.

6.2 Main Idea

The basic idea behind our approach is that the visual hull polyhedron which is formed by a

union of cone strips, captures important information aboutthe geometry of the visible parts

of the rim curves on the true surface. The rim curves partition the surface into patches, each

of which is constrained to lie within the visual hull. Furukawa et. al. [45] first recover the

geometry of the rims and then reconstructs the patches whileholding the rims fixed. In con-

trast, the surface and the rims are recovered in a single stepin our approach. We construct a

new topological space (a 3-manifold) by taking subsets of the volume inside the visual hull

and gluing them along certain faces of the visual hull polyhedra. The exact topology of this

3-manifold is derived from the geometry of the visual hull polyhedron. We then construct a

geometric graph embedded within a discretized version of this 3-manifold. Hard silhouette
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(a)

(b)

Figure 6.1: The main idea of our formulation is illustrated here (best seen in color). (a) A
2D visual hull is shown – V denotes its interior. Vertices 1–6represent the vertices of the
visual hull. A new topological space (a 2-manifold in the 2D case) can be created as follows.
Multiple copies of the underlying 2D space are glued together (topologically identified) along
certain edges of the visual hull polygon as shown. The small horizontal edges represent the
topological identification. Note that the space wraps-around. (b) A discrete geometric graph
embedding within this space is then constructed. A graph-cut problem is setup with source
vertices (shown in red) and sinks vertices (shown in blue). Any s-t cut on this graph must cut
through the edges (1–2, 2–3. . . ) as shown. Thus, it will map back to a surface in the original
space that is guaranteed to satisfy silhouette constraints.

constraints are imposed by connecting specific vertices in the flow graph to the source and the

sink on the basis of a 2-coloring scheme that is described later. Computing the minimum cut

on this special flow graph will produce a 2-manifold embeddedwithin the 3-manifold we have

constructed. This minimum cost cut surface uniquely maps back to a surface embedded in the

original space. We show that by construction, this surface will exactly satisfy all silhouette

constraints. This idea is illustrated in Figure6.1using an example in 2D (flatland).

In order to describe the graph construction, we will first review relevant concepts related
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(a) (b)

Figure 6.2: (a) Geometry of silhouettes in two views. (b) Thevisual hull obtained by intersec-
tion of two cones. Frontier points, rims, cone-strips and cone intersection curves are shown
(best seen in color).

to the the geometry of exact visual hulls. For more details, please refer to [41, 83].

6.3 Exact Polyhedral Visual Hull

The visual hull is the maximal shape that projects consistently into a set of silhouettes, and

is obtained by intersecting silhouette cones from the corresponding calibrated viewpoints.

Visual rays from a camera which grazes the true surface tangentially give rise to a smooth

continuous curve on the true surface called therim or thecontour generator. Its projection in

the image gives rise to the apparent contour. For non-convexshapes, depending on the camera

viewpoint, therim can occlude itself. This gives rise to singularities on the apparent contour.

Thus silhouettes of opaque, non-convex solid shapes are likely to contain T-junctions.

Rims from different cameras intersect on the surface at points called frontier points (these

were discussed earlier, in the context of silhouette-basedcamera calibration, in Section2.2.1).

Discretization of the apparent contour or calibration error gives rise to missing frontier points

on the visual hull polyhedra, due to the problem oflost tangency– i.e. the perfect cone tan-

gency is lost and one cone ends up clipping the other one. Thisis illustrated in Figure6.3.

The contribution from a single viewing cone to the visual hull mesh can be parameterized
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(a) (b)

Figure 6.3: (a) Close-up of a frontier point and the problem of lost-tangency (b) An ideal
cone-strip for perfect data compared to a cone-strip from the exact polyhedral visual hull in
the presence of silhouette discretization and calibrationnoise (best seen in color).

as a ruled surface, and is called acone-strip. The geometric shape of the cone-strip provides

an interval constraint on the position of the associated rimcurve. Intuitively, the shorter the

view edge in the cone-strip, the closer the visual hull is to the true surface, locally. While

the rim curve mostly lies on the cone-strip, it detaches fromthe cone-strip at a point on the

viewing ray that corresponds to a point on the T-junction of asilhouette. The detached portion

of the rim lies inside the visual hull volume, not on its surface. This portion of the rim curve

is occluded by the object shape from the particular viewpoint.

When points sampled on the apparent contour are back-projected in 3D, they give rise to

viewing rays, each of which may contribute a view edge segment or multiple segments to the

visual hull polyhedron. At least one point on the view edge segments generated by a single

viewing ray must lie on the true surface. In fact, this point lies exactly on the rim curve. When

viewing cones intersect, they give rise tocone intersection curves. For the polyhedral visual

hull [41], the cone-intersection curves are approximated by a series ofcone-intersection edges.

In fact, there are special vertices on the visual hull mesh which corresponds to the intersection

of three viewing cones – these are calledtriple points. All points on the cone-intersection

edges lie completely outside the true surface, although they may get infinitesimally closer to

the true surface. All edges in the visual hull polyhedron areeither viewing edges or cone

intersection edges. Similarly, all the vertices of the visual hull polyhedra must be either triple

points or vertices that form the end-points of viewing edges. Note that, all vertices of the
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visual hull also lie outside the true surface, even though they may get infinitesimally close to

it.

6.4 Silhouette Formation and 2-Coloring

Consider a closed manifold surface which is seen ink views. The apparent contour observed

in each of these views corresponds to a continuous rim curve which is topologically a closed

loop. In case of shapes with non-zero genus, the apparent contours may contain holes in

which case thejth rim curve will have multiple loops. The arrangement of the closed curves

that correspond to thek sets of rim curves on the surface partitions the surface intoconnected

regions. This will be referred to as asurface map. See Figure6.4 for an example. We

now prove an important property of surface maps – a result that will be used in the graph

construction, described later in this chapter.

Figure 6.4: Two-coloring the surface (best seen in color). (Left) The 2-colorable surface map
induced byk-rims. The color of the surface changes everytime you cross any of the rim
curves. (Right) A new surface map is created after adding the(k + 1)(th) rim (shown by a
dotted line). The color of patches on one side of the new rim have been swapped and patches
on the other side remain untouched. The new surface map is also 2-colorable (see proof).

Lemma 6.4.1.A surface mapMk, induced by the rims from k views can always be 2-colored.

Proof: We prove this by induction. The rim curve or curves (when holes are present in

the silhouette) divides the surface into two parts: front and back with respect to the camera.
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Let us label them with two different colors. Thus,M1 can be2-colored. AssumingMk has

been2-colored, we must prove thatMk+1 can also be2-colored. After adding the(k + 1)th

rim to Mk, we swap the colors of its front faces in the new map,Mk+1, but leave the back

faces untouched. This will produce a 2-coloring of the newlycreated faces inMk+1, which

is consistent with that of the old faces, unchanged fromMk. Thus indeed,Mk+1 can also be

2-colored.

The 2-colorable surface map that we described could be transferred to the visual hull

surface by a projection as shown in Figure6.5. However, when the shape of the surface and

the position of the rims are unknown, the exact mapping cannot be determined. In spite of this,

it is possible to generate a 2-coloring of only the visual hull vertices and the cone intersection

edges, that is consistent with the surface map. This is because a view-edge provides a finite

interval for the rim curve. Therefore, the two vertices at its extremities can be consistently

two colored even when the exact rim point is unknown. In the next section, we will propose

an algorithm for 2-coloring only the vertices of the visual hull.

Even when the surface (and the rim curves) are unknown, the geometry of the exact visual

hull mesh allows us to recover the topology of the unknown 2-colorable surface map. This fact

is key to the proposed approach. Later in the chapter, we showhow to use the two-coloring of

the visual hull vertices to setup silhouette constraints inthe graph-cut optimization.

In case of a convex object, the rim curves are never occluded and lie completely on the

visual hull surface (actually on the corresponding cone-strip). For non-convex objects, parts

of the rim curve may detach from the visual hull and lie insideits volume. We will refer to

these as theinvisibleparts of the rim. Note that, the coloring of the surface map will change

across the invisible portion of the rim curves as well. However, as these invisible rims do not

actually touch the visual hull surface, the location on the visual hull surface where the coloring

switches, can be chosen somewhat arbitrarily. An extensionto the basic approach (for convex

objects) is required and is described later in Section6.7.
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(a) (b) (c)

Figure 6.5: (a) 2-coloring of the surface S (best seen in color). The visual hull is denoted by
V. (b) The 2-coloring can be transferred to the surface of thevisual hull V. (c) When S (shown
as dotted curve) and the position of the rims are unknown, only the vertices of the visual hull
can be colored. The coloring of points on the viewing edges cannot be determined unless the
position of the rims are known, because the coloring changesexactly at the rim point.

6.5 2-Coloring the Visual Hull

We now describe the algorithm for 2-coloring the vertices ofthe visual hull. It consists of the

following four sequential steps, which will be described inthis section.

1. Identify thetruesegments on each cone-strip.

2. Repair each individual cone strip.

3. Generate per-view orientation labels for all visual hullvertices.

4. Derive the final 2-coloring for all the visual hull vertices.

Identifying the true segments on each cone-strip

Consider the silhouette or viewing cone from a single view that contributes a cone-strip

to the visual hull. Each viewing ray in this silhouette cone,contributes one or more view

edges to the visual hull mesh. When a viewing ray gives rise tomultiple view edge segments,

only one of them contains the true rim point. This view edge segment will be referred to as

the true segment, while the remaining ones will be referred to asfalsesegments. Thetrue

segments can be detected by inspecting photo-consistency at points sampled on the view edge

segments. The existence of photo-consistent points on a viewing edge segment indicates that

95



Figure 6.6: Silhouettes of an object seen in two views. A slice of the visual hull computed
from two views is shown on the right (the slice in the epipolarplane corresponding to the red
epipolar lines in the images). Notice how the viewing ray gives rise to multiple view edges,
only one of which contains the true surface point. Such a viewedge is called atrue segment,
while the other view edge generated from the same viewing rayis called afalsesegment.

the corresponding edge is likely to be atrue segment, whereasfalsesegments are unlikely

to contain photo-consistent points. Although, the view edges for each viewing ray could be

selected one by one, for greater robustness we globally extract thetruesegments for the whole

cone-strip, using a dynamic programming approach. Specifically, we compute a shortest path

on a graph that we will refer to as therim graph. When multiple segments arise from a viewing

ray, this optimization approach will classify exactly one of them as atruesegment.

Furukawa et. al. [47] also used dynamic programming on the cone strip to recover the

position of the rim curve. In doing so, they made an early commitment to the position of

the rim curve which was held fixed during their subsequent graph-cut optimization which

computes the final surface. In comparison, our approach makes little commitment at an early

stage. Amongst the multiple segments, we select the one thatis likely to contain the rim

point. In fact, this is the only early commitment in our approach. In a generic situation, this

has almost no impact on the final solution, as we get fewer false segments with more input

silhouettes. This is because the additional silhouettes carve away major parts of the visual hull

that contains the false segments. An early commitment to this choice of thetrue segment is
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(a) (b)

(c) (d)

Figure 6.7: (a) A Cone Strip illustrated with photo-consistency along the view edge segments
(white indicates surface points with high photo-consistency while black indicates low photo-
consistency). (b) The corresponding Rim Graph. (c) The shortest path between two virtual
terminals in the rim graph is computed. (d) This correspondsto the set oftrue segments on
the cone-strip.

less dangerous than committing to the location of the rim curve (i.e. the position of the rim

point on thetrue segment) [47]. Rather, in our approach, the rim points are recovered at the

same time as the whole surface, via a single, global graph cutoptimization.

The construction of therim graphis now described. Each node in therim graphrepresents

a view edge segment. In addition to these nodes, two virtual terminal nodes are also created

(see Figure6.7(a,b)). Each nodeu is assigned a weightw(u) equal to1 − ρ(x) whereρ(x)

denotes the photo-consistency of the most photo-consistent pointx on the corresponding view

edge segment. To compute the photo-consistencyρ(x) (−1 ≤ ρ(x) ≤ 1), we first project a

µ×µ patch placed atx, whose normal is orthogonal to the viewing ray, into at mostk images

(the normal vector is used to select cameras with small viewing angles (≤ 60o). Next, the

average pairwise normalized cross correlation (NCC) scores of the projected image patches

is computed. In all our experiments,µ = 7 andk = 4. Note that the underlying cone-
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strip can be oriented, and this produces a cyclic ordering ofthe viewing rays. The edges

in the rim graph are created by connecting nodes that correspond to view edgesegments

belonging to successive viewing rays. Each edge(u, v) in the rim graph is then assigned an

edge weight,w(u, v) = w(u) + w(v) when the view edge segmentsu andv are shared by a

common face in the cone-strip surface. However, whenu andv do not have a face in common,

w(u, v) = K (K = 50 in our experiments). The shortest path between the terminalnodes in

therim graphproduces a set oftruesegments. Note that a larger value ofK will produce a set

of truesegments, that correspond to a more continuous rim curve. The rim curve illustrated in

Figure6.7(c,d) has one discontinuity. Such a discontinuity occurs ata viewing ray, obtained

by back-projecting a pixel at a T-junction on the silhouette.

Repairing each individual cone strip

Oncetruesegments have been detected on the pieces of a cone-strip, the next step involves

re-connecting patches of the cone-strip along a sequence ofconnected edges of the visual hull

mesh to form arepairedcone strip. Figure6.3 and Figure6.8(a) illustrates these connecting

curves using dotted lines. The edges lying on these connecting curves will be calledrim

edges, and vertices shared by them will be calledrim vertices. Figure6.8(b) shows somerim

edgesfor four different cone-strips. First, the true segments (view edges) corresponding to the

extremities of adjacent cone-strip patches are identified (such as 1–4 in Figure6.8(a)). Next,

a geodesic path is computed on the visual hull mesh between these terminal edges, for e.g.

between the edges 1-2 and 3-4 respectively in the illustration.

The repaired cone-strip acts as an approximation of the truecone-strip, which when pro-

jected back into the image it was generated from, will produce the exact outline of the original

silhouette. The projection of the repaired cone strip into the image, will produce the outline

of the silhouette of the visual hull polyhedron (up to discretization error in the images).

We now describe how the connecting curves are computed for each cone stripC (obtained

from silhouetteS in imageI), one by one. First, a graphG is instantiated from the visual hull
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(a)

(b)

(c)

Figure 6.8: (a) Repairing a Cone Strip. Connections betweendisconnected cone-strip patches
are computed (these are shown as dotted lines). These give rise torim edges. (b) Four different
examples of repaired cone-strips. Therim edgesare shown in red. (c) The repaired cone-strips
are shown projected into the images – here they are virtuallyidentical to the original silhouette.

mesh. The nodes inG correspond to all the vertices of the visual hull mesh. The edges in

G correspond to all the edges in the visual hull mesh, except for all the view edges and cone

intersection edges that belong to the current cone stripC. The best way to think of this graph,

is to picture the visual hull mesh itself, with all the facetsof the current cone-strip removed.

The connecting curves on the surface of the visual hull, thattogether would form the repaired

cone-strip, are recovered one by one, by computing the shortest weighted path onG between

extremities of adjacent cone-strip patches inC.
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An edge(u, v) in G, is assigned a weightw(u, v), given by:

w(u, v) =

1
∑

t=0

F(x(t), S) + ǫ, with (6.1)

x(t) = tP(u) + (1− t)P(v) (6.2)

where the squared distance function of a 2D pointx in the image, with respect to the silhouette

boundaryS, is denoted byF(x, S), andx lies on the line segment joining the 2D points where

u andv project in the image, which are denoted byP(u) andP(v) respectively. Note thatx

never lies outside the silhouetteS. The value ofǫ is set to a small positive constant, to ensure

that all edge weights inG are non-zero. The edge-weights are made to be proportional to the

proximity of the particular edge in the visual hull mesh, from a viewing ray from the silhouette

S. Therefore, the shortest weighted path between adjacent cone-strip patches yields a non-

intersecting connecting curve on the visual hull mesh, thatlies close to the viewing rays of

the silhouette cone. When the connection curves are relatively shorter, or when they lie on a

convex patch of the visual hull surface, the approximation to the true rim curve is almost exact

(see Figure6.8(c)).

Generating per-view orientation labels

A fully repaired cone-strip partitions the visual hull surface into a front and back part w.r.t

the corresponding camera. After the cone strips have been repaired, the next step involves as-

sociating two signature bitcodesSa andSb with every vertex in the visual hull. Each signature

code containsn bits wheren equals the number of cameras. For a vertexv, thekth bit of Sa

is set to 0 whenv is back-facing w.r.t thekth camera and set to 1 if its front-facing w.r.t the

camera. However, ifv was marked as a rim vertex earlier on for thekth cone-strip, thekth

bit of Sb is set. The signatures for all vertices of the visual hull areassigned by repeating the

following step for each one of the cameras.
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Consider thekth camera and the corresponding cone-strip. First, the two incident vertices

for each of thetrue segments of thekth cone-strip are labeledfront or backdepending on

which one is closer to the camera center. This is shown in Figure6.9(b). These labels are then

flooded over the complete visual hull mesh, until thekth field of the signature codeSa for all

vertices have been filled in. The flooding stops at a rim vertex, i.e. a vertex which lie on the

rim edges of thekth cone-strip. Orientation labels stored in the bitcodeSa for various cameras

are illustrated in Figure6.9(c–e).

Deriving the final 2-coloring

Once signature codesSa andSb have been computed for every single vertex of the visual

hull mesh, the per vertex coloring can be derived from them. This is computed by testing

the parity of bits in the bitcodeSa. All vertices that have an even number of bits set (front-

label) are assigned to the set ofred vertices. The vertices with an odd number of bits set, are

assigned to the set ofbluevertices. Vertices for which at least one bit in bitcodeSb are set,

are assigned to the set ofgreenvertices – these correspond torim vertices(see Figure6.9(f)).

The significance of theserim verticeswill be discussed later in Section6.7.

(a) (b) (c) (d) (e) (f)

Figure 6.9: (a) An individual cone-strip is shown, thetrue segments are colored blue. (b)
The repaired oriented cone-strip. Front-facing vertices are colored white while back-facing
ones are colored blue. The location of the rim is unknown (therim point shown, is chosen
for the sake of illustration only). (c) The orientation labels are then flooded to all the vertices
on the visual hull mesh. (d,e) Orientation labels for two other views are shown. (f) The two
coloring obtained from the orientation labels is shown. Thetwo coloring pertains to the visual
hull vertices only. The rim locations (red/blue transitions) are shown only for the sake of
illustration.
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(a) (b)

Figure 6.10: (a) In Flatland, the visual hull of objectO from 2-views is denoted by polygon
ABCD respectively. (b) The inner offset layer is denoted byI. The space of exact silhouette
consistent solutions comprise of all curves that lie between polygonsV andI but also touch
the four edgesAB, BC, CD andDA at least once. The visual hull vertices are 2-colored (red
and blue) and an underlying geometric graph embeddingG is created (see Section6.6).

6.6 Graph Construction – Formulation I

We will now describe Formulation I and the related graph construction. The various steps are

illustrated in Figure6.10using a 2D analogy, but described for the 3D scenario.

Prior to the graph construction, the vertices of the visual hull polyhedraV are 2-colored as

described in Section6.5. As in our illustrations, we will refer to them asred andbluevertices

respectively. Next an inner offset surface inside the visual hull is computed. The true surface

is assumed to lie between the visual hull and this inner offset surface. The same assumption

was made in [63, 148]. In our approach, this is implemented by first voxelizing the interior of

the visual hull and then computing the signed distance transform using the approach of [97].

The maximum distancedmax, in this distance field is recovered and then the distance field is

thresholded to detect pockets inside the volume (test ifd > T.dmax) (whereT = 0.4 was used

in most of our experiments). The thresholdT can be set conservatively, depending on how

deep the true surface is expected to be with respect to the visual hull.

The surfaces bounding the pockets will form the inner offsetsurfaces – these will be
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Figure 6.11: Two identical copies ofG, denoted byG1 andG2 are created. Their inner offset
nodes are labeled differently with the two colors (red and blue) as shown. FinallyG1 and
G2 are connected (glued together) by joining duplicate copiesof surface nodes onG1 andG2

using additional edges. This gluing (topological identification) is depicted using arrows on all
four edges of the polygon.

denoted collectively asI. Points are sampled on the visual hull surfaceO and the inner

offset surfacesI. A node is then created for each of these sampled 3D points. The two

surfaces are then tesselated (i.e. edges are connected between the nodes created earlier on)

– the corresponding surface meshes are treated as graph embeddings denoted byGO andGI

respectively. The graph nodes inGO andGI will be referred to assurface nodesand inner

offset nodesrespectively.

A 3D regular latticeGv representing the interior of the visual hull (excluding thepockets)

is then explicitly instantiated, and the photo-consistency of voxels on the lattice grid are eval-

uated (see Section6.8.1for the details). The graph nodes inGv, will be referred to asinterior

nodes. Finally, additional edges must be created to connect the lattice grid Gv to GI and

GO respectively. The connections are created by adding an edgebetween asurface nodeand

the closestinterior node(and similarly between aninner offset nodewith the closestinterior

node). The resulting graph is a union ofGv, GI , GO and these new connections or edges. The
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(a)

(b)

Figure 6.12: (a) A graph-cut problem is setup by connecting all red nodes to the source and all
blue nodes to the sink. The resulting s-t cut is a manifold as shown. It must traverse across the
four edges. Part of the cut surface is embedded inG1 (shown in blue) and the rest of it inG2

(shown in red). (b) Together they map back to a surface that satisfies silhouette constraints.
The grey arrows indicate the direction of flow from source (red) to sink (blue).
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embedding of this graph inR3 will be denoted byG1.

The graphG1 is duplicated, to form an identical copyG2. Next,G1 andG2 are connected

as follows. Additional edges are created between everysurface nodev1 ∈ G1 with its du-

plicate nodev2 ∈ G2. We will refer to these assilhouette-consistency edges. The final flow

graph denoted byG, is a union ofG1, G2. Two terminal nodes{s,t} and the set ofsilhouette-

consistency edgesare added toG. See Figure6.13for an illustration. We are now ready to

describe how the various edge capacities inG are assigned.

Figure 6.13: The various types of nodes in our graph embedding are shown –interior nodes
with a 6-connected neighborhood,inner offset nodes, surface nodes. Graph embeddingsG1

andG2 are connected viasilhouette consistency edgesshown in green.

First, all theinner offset nodesin G1 are labeledred and theinner offset nodesin G2 are

labeledblue. Remember that the subset ofsurface nodesin G1 andG2 which are true vertices

of the visual hull mesh have already been labeledred andblue, respectively. Next, all graph

nodes labeledred are connected to the source terminals, while all nodes labeledblue are

connected to the sink terminalt. Edge capacities for all edges (u,v) ∈ G, except forsilhouette

consistency edgesare derived from the photo-consistency of the 3D point corresponding to

the mid-point of the two nodesu andv respectively (these nodes have explicit 3D positions).

Now a minimum cut is computed onG – let us denote this set of cut edges asC. For every

edge (u,v) ∈ C, a corresponding 3D pointp is created and an outward-facing normal vector is

associated with it. This is done by computing the unit normaln̂ pointing from the 3D location
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of u to v or v to u depending on whether the edge came fromG1 or G2. The exact location of

p on the edge (u,v) is improved using sub-voxel refinement by computing a localparabolic fit

to the photo-consistency scores. The surface normals are smoothed by performing a weighted

average over the immediate neighbors on the grid. Finally, atriangulated manifold surface is

fitted to these oriented points using the Poisson surface reconstruction approach of Kazhdan

et. al. [72].

Lemma 6.6.1.Any connected s-t cut onG must correspond to a surface that exactly satisfies

silhouette constraints in all the views.

Proof: Seeking a contradiction, let us suppose that a connected s-tcut C, on the flow

graphG, produces a surfaceS that does not satisfy silhouette constraints in alln views. By

connected, we mean that the graph defined by the nodes and edges constituting the cutC has

only one connected component. LetV denote the corresponding visual hull computed from

then silhouettes. Unless all silhouette constraints are satisfied, one of the following must be

true – (1) part ofS must lie outsideV or (2) S is too small and does not tightly fit insideV .

We now show that for both these cases, our assumption leads toa contradiction i.e.C cannot

be a connected s-t cut in the flow graphG.

Figure 6.14: Unless silhouette constraints are satisfied byS, its inverse image embedded in
G, will not be a valid cut surface as there will exist in the volume at least one edge through
which more flow can pass from the source to the sink.

Case 1:It follows from the graph construction described above thatno point of the cutC
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can ever lie outside the visual hull. This is because all vertices inG map to 3D point either in

the interior or on the surface ofV . Thus this case is ruled out by construction.

Case 2: If S does not touch the visual hull tightly, there must exist at least one viewing

ray for which the corresponding view edges inV do not touch the surfaceS anywhere. This is

shown in Figure6.14. S has an inverse imageC which is a manifold embedded withinG. C

must then contain a discontinuity somewhere in the vicinityof that viewing ray. Hence, some

flow can pass from the source to the sink inG through the discontinuity or gap as shown in

Figure6.14. Therefore,C is not a fully connected, valid s-t cut inG.

(a) (b)

Figure 6.15: (a) desired solution. (b) degenerate solutionunder a minimal surface bias.

Cut surface with multiple connected components:The proof considers the case where

the s-t cut is fully connected. However, the cut surface is not always guaranteed to be fully

connected. It can have multiple connected components, unless the pockets detected within the

interior of the visual hull are fairly large. When this is notthe case, an undesirable degenerate

solution may be produced. This is illustrated in Figure6.15(b). Instead of the desired solu-

tion shown in Figure6.15(a), the red cut surface inG2 denoted byC1 collapses around the

interior pocket. The resulting cut, which has multiple components, does not satisfy silhouette

constraints. This is once again due to the problem of the minimal surface bias which plagued

the earlier volumetric energy minimization approaches. The solution we desire, is of the type

shown in Figure6.15(a). Such a solution will be obtained as long as the total costof the cut
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(C1 ∪C2 ∪C3) is more than the cost of the cut (C4 ∪C5 ∪C6 ∪C7) as illustrated in the figure.

Input : Color Images{Ii}, Binary silhouette images{Si}, Camera Calibration{Pi}
Output : Triangulated 3D mesh modelM

U ← Compute EPVH Polyhedron ({Si}, {Pi}) (see [41])

2-Color Visual Hull vertices ( U , {Pi} ) (see Section 6.5)

{GI , GO} ← Create Offset Surfaces (U) // inner, outer layers

Gv ← Create Voxel Grid (GI , GO) // regular grid in R
3

Compute Edge Costs (Gv, {Ii}, {Pi}) // photo-consistency

G1 ← Connect (Gv, GI , GO) // connect grid with offset layers

G2 ← Duplicate Graph (G1)

G ← Connect (G1, G2) (see Section 6.6)

Setup Sources & Sinks (G) (see Section 6.6)

S2 ← Find Minimum Cut (G)

M← Create Mesh (S2) // inverse image of cut surface in R
3

return M

Algorithm 2 : A summary of Formulation I for graph-cut based volumetric stereo with
exact silhouette constraints.

Note that an earlier version of our approach [124] did not suffer from this problem. How-

ever, that graph construction [124] used the rim mesh, which is instable and difficult to com-

pute in the presence of noise and discrete silhouettes. There, each individual surface patch

was reconstructed as a cut surface embedded in a subgraph representing a fraction of the vi-

sual hull volume. In the approach proposed here, these subgraphs are effectively merged into

a single graph. Although this makes the construction simpleand robust, the minimal surface

bias cannot be completely ruled out anymore.

This minimal surface bias occurs when the inner pockets are small such that surrounding
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them by a relatively low-area surface such asC1 incurs a fairly small penalty. This problem

rarely occurs when the inner pockets are relatively large. We describe a better approach to

compute the inner pockets in the next chapter which avoids the minimal surface bias problem

described above. Similar ideas based on thevisibility basedballooning term have also been

recently proposed by Hernandez et. al. [59] to address the same problem.

The complete graph construction approach for Formulation Iis summarized in Algo-

rithm 2. Some short-comings of this formulation will be discussed next. We will address

this is Formulation II, which will extend Formulation I.

6.6.1 The Problem with T-junctions

(a) (b)

Figure 6.16: Enforcing the 2-coloring across rim-edges (best seen in color). (a) A close-up
of the 2-colored visual hull. Cone intersection curves are shown in bold (red and blue). Rim
edges are shown in green. Dotted curves indicate possible position of rims. (b) T-junctions
give rise to self-occlusions on the rim – the part that detaches from the visual hull surface and
lies within its volume – we show the surface by its intersection with thesheet, a swept surface
dropped down from the rim edges into the volume.

Formulation I correctly handles convex objects with cameras in general position. However,

it does not correctly deal with non-convex objects, for which T-junctions may occur on the
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silhouettes. A T-junction arises on the silhouette, when the corresponding rim curve on the

surface is occluded by the surface itself. The occluded section of the rim curve, which we will

refer to as theinvisiblepart of the rim does not lie on the surface of the visual hull, rather it

lies within its volume. This is illustrated in Figure6.16using an imaginarysheetsurface patch

within the visual hull volume, which meets the visual hull surface at the set of rim edges. The

sheet surfacecan be chosen arbitrarily as long as the true surface intersects it as shown by the

dotted curve in the illustration.

Formulation I allows the coloring of the reconstructed surface to switch only at a silhouette

consistency edge – however, that can only happen at a point onthe visual hull surface, not in

its interior. This causes silhouette constraints to be enforced at places where they should not

be enforced such as along the rim edges shown in Figure6.16.

Consider the region on the visual hull surface around a sequence of rim edges. When

these rim edges are shared by an even number of repaired cone-strips, the vertex colors on

either side of the rim edges are identical to each other. Formulation I deals with this situation

correctly, because the vertex coloring across a rim edge of even multiplicity, will be identical.

However, a problem arises when a sequence of rim edges are shared by an odd number of

repaired cone-strips i.e. they have odd multiplicty. In this case, the vertex colors on either side

of the rim edges are opposite of each other and silhouette constraints get enforced. Such a rim

edge is shown in Figure6.16. Since, the coloring of the surface needs to switch here, thecut

surface is locally pushed outwards i.e. theinvisiblepart of the rim curve is constrained to lie

on the visual hull surface. This problem is not catastrophic– it happens only at a few places

and may cause two types of artifacts.

• The reconstructed surface juts out in the form of a thin sheet(see Figure6.17(b)).

• Portions of the cut surface detaches from the reconstructedsurface, which is recovered

in the correct position and is artifact free.

In both cases, the subsequent Poisson surface reconstruction algorithm considerably reduces
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these artifacts. It treats the points on the thin sheets and detached surfaces as outliers during

the final surface reconstruction step and enables us to reconstruct some complex shapes with

occasional artifacts as described above. We now look into handling the problem of theinvisible

rim in our formulation.

(a) (b)

Figure 6.17: (a) Sheet surface patches are first constructedfrom the rim edges with odd mul-
tiplicity. The lattice edges lying on the rim sheet are removed to create a discontinuity in the
volume. (b) A cross-section is shown here. Without the discontinuity, the cut surface may jut
out. With the discontinuity, the cut surface can terminate on the sheet surface. The cut surface
is now a manifold with a boundary.

One possible approach is to detect the problematic rim edges(the ones with odd multi-

plicity), and construct imaginarysheet surfacesfrom them, within the volume. The edges

in the graph embeddingGv, that straddle the sheet surface patches will be removed, thereby

introducing discontinuities in the interior of the latticevolume (see Figure6.17). As a result,

the minimum cut surface will become a 2-manifold with boundary. Its boundaries will lie

along the sheet surfaces, and will not be constrained to lie on the visual hull surface. The

inverse image of this new cut surface, will be a surface with open seams (or cracks) on it. The

Poisson surface reconstruction step will typically merge these open seams. However, it will

not be possible to guarantee that the two sides of the surfacebe geometrically aligned with

each other along the seam – this could still result in noticeable artifacts on the reconstructed
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surface.

Computing the Sheet Surface Patches:Our approach for generating thesheet surfaces,

involves constructing local offset surfaces in the interior of the visual hull volume and project-

ing the sequence of rim edges on to this offset surface. The offset surfaces can be computed

approximately using the 3D signed distance transformD(O) of the visual hull surfaceO and

the gradient of this distance transform∇D(O), respectively. Note that the distance transform

is computed to determine the extent of the graph embeddingGv anyway, as described in Sec-

tion 6.6 – hence, this is not an extra computational burden. We densely sample pointsp on

the rim edges, and for each one of them, we take a small step along∇D(p,O) to generate an

offset curve and repeat the step a few times. The gradient field∇D(O) can however vanish at

points within the volume [140], and therefore we resort to a linear combination of∇D(O) and

−∇D(I) whereI denotes the inner offset surface of the visual hull. The sheet surfaces are

made to proceed only to a small depth relative to the visual hull surface. Finally, we recover

the subset of voxels that contain all the points samples generated on the sheet surfaces. The

relevant edges in these voxels are deleted, to create the discontinuities described earlier and

this is also illustrated in Figure6.17.

6.7 Graph Construction: Formulation II

We will now describe a more principled way to handle theinvisible rims, but this will require

computing the minimum cut on a graph which is twice as large asthe one used in Formalation

I. Although the memory footprint of the graph will be larger,this extension will allow handling

the invisiblerims in a more elegant fashion, and will thereby allow us to reconstruct any non-

convex shape.

The main difficulty with Formulation I was that, it allows thecoloring of the reconstructed

surface to switch only at asilhouette consistency edge– this can only happen at a point on the

visual hull surface. Thus, silhouette constraint are enforced at places where they should not

112



(a)

(b)

Figure 6.18: (a) In Formulation II, we duplicateG further creating two copies primary and
secondary where the red/blue labels are reversed. The primary and secondary graphs are glued
across the sheet surfaces as shown. (b) The cut surface now switches color at a point on the
sheet surface (i.e. within the visual hull volume). The finalsolution is a double manifold. By
symmetry the solution in the primary and the secondary map toa single surface inR3.

be enforced i.e. along viewing rays corresponding to T-junctions on the silhouettes. Our first

solution, was to introduce discontinuities in the graph embedding in a way that would relax

the silhouette constraint at the problematic rim edges.

In Formulation II, the graphG is first duplicated to create two identical copies, theprimary

and thesecondarygraphs. The red/blue vertex labels in the secondary graph are then reversed.

Next, the volumes corresponding to the primary and secondary are glued together across the
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sheet surfaces.

(a) (b) (c)

Figure 6.19: (a) 2D illustration of the visual hull and the 2-coloring it induces on the surface.
(b) In Formulation II, the graph embedding is duplicated into the primary and secondary;
the cut-surface is a double manifold partially embedded in the two graphs. The primary and
secondary are connected through thesheet surfacesinside the visual hull. (c) Inverse image
of the double manifold (the two copies coincide by symmetry).

The gluing or topological identification is done by creatingthe following edges between

vertices in the primary and secondary graphs respectively.We denote the set of edges that

straddle the sheet surfaces inG by S. Let (u1,v1) denote an edge inS that belongs to the

primary graph and let (u2,v2) denote its copy in the secondary. First, the two edges – (u1,v1)

and (u2,v2) are removed from the respective graphs. Next, two new edgesare added – (u1,v2)

and (u2,v1). Note that these new edges connect vertices in the primary graph with vertices in

the secondary (see Figure6.18(a)). This effectively glues together volumes in the primary and

secondary along the sheet surfaces in the same way thatG1 andG2 were glued together along

the visual hull surface in Formulation I.

The cut surface on this graph has the structure of what is known as adouble manifoldin

manifold theory [34] – a manifold obtained by gluing two copies of a ’manifold with bound-

ary’ along their common boundary. In our case, one copy of thecut surface lies embedded in

the primary graph while another copy lies embedded in the secondary (see Figure6.19). Their

boundaries are glued together along the cross connections across the sheet surfaces while re-

specting the surface map of the underlying surface i.e. the red part of the cut surface in the
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primary connects to the red part in the secondary and vice versa for blue . If the mincut

is unique, then the two copies are geometricaly identical, by virtue of the symmetry in the

graph construction described in Formulation II. However, the surface map coloring in the two

copies is reversed, because the red/blue labels in the primary and secondary are opposite of

each other. In general, the cross connections across the sheet surfaces (which correspond to

the invisible rims) will occur in the interior of the visual hull. Note that, in practice, there may

be multiple mincuts, each of which is a slight perturbation of one another and therefore the

primary and the secondary cuts may not be exact copies of eachother. However, the cut cost

of these two surfaces will be equal.

The inverse image of this double manifold is a surface without discontinuities unlike in

the extension of Formulation I (with discontinuities). More over, the invisible rims now occur

in the interior of the visual hull unlike in Formulation I. For a convex shape, Formulation II

will produce a double manifold with two disconnected copiesof the surface that are identical

in shape and superimposed on each other in 3D.

6.8 Implementation Details

In this section, we describe the photo-consistency measurethat is used in the graph-cut based

energy minimization approach introduced earlier in Chapter 5. While this chapter focusses on

the graph construction, the actual algorithm to compute theminimum cut on the flow graph is

described in AppendixB-3.

6.8.1 Computing Photo-consistency

Given color images{Ii} and the corresponding camera calibration matrices{Pi}, we now de-

scribe our method to compute the photo-consistency of a 3D point M. Our photo-consistency

measure is computed in image space and treats occlusions (i.e. lack of visibility) as out-
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Figure 6.20: Computing multiple hypotheses for 2-view matches. These 2-view matches
are triangulated and the generated 3D points are used to accumulate votes within a 3D vol-
ume. The photo-consistency measure is derived from these votes. A slice through the photo-
consistency volume (interior of visual hull) is shown. Hereblack indicates regions of high
photo-consistency.

liers during the underlying matching process. Instead of computing an absolute measure of

photo-consistency by combining scores such as color-variance or normalized cross correla-

tion (NCC) (see AppendixA-2), we compute photo-consistency through a depth-map fusion

and subsequent 3D voting approach. One of the key advantagesof doing this is that the

photo-consistency measure is more sensitive, and shows a stronger peak near the true sur-

face location. Similar to [149], our photo-consistency measure is robust to occlusions and

non-Lambertian effects.

In standard binocular stereo, dense correspondence between two calibrated views is com-

puted by attempting to find the best match for every pixel in both views. The search for the

best match is done along the epipolar line in the second view (see Figure6.20). Our approach

for computing photo-consistency in a volume starts off similarly. However, instead of trying

to find the best match for every pixel, we detect all the local maximas along the epipolar lines

(one of which is most likely to be the true correspondence). The matching is evaluated us-

ing the normalized cross correlation of twoµ × µ sub-windows (µ is typically set to 9 or 11
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pixels) centered at the candidate pixels in the two views. For invariance to scale and orienta-

tion, object space patches could have been considered; however, this was not required in our

experiments which mostly dealt with turntable sequences.

For each of the local maximas (potential matches) we performsub-pixel refinement and

then perform 2-view triangulation to estimate a 3D point corresponding to the hypothesized

match. Each 3D point contributes a vote to the cell it falls in, within a finely divided lattice of

cubical cells. Figure6.20shows a situation for a pixel in the first view, where there arethree

likely matches in the second view. Each of the three 3D pointscould potentially be a surface

point and contributes a vote.

The photo-consistency computation proceeds as follows. For each imageIi, we find a

subset ofk proximal images and compute hypothesized correspondencesas described above

for k pairs whereIi is always the first image. This is repeated for every single image in

the dataset. Then the photo-consistency measure of a 3D cellM is set toe−λ∗V(M) where

V denotes the votes accumulated within the cellM andλ is a parameter that controls the

trade-off between smoothness and photo-consistency.

When computing dense correspondences over multiple image pairs, multiple votes accu-

mulate in the cells that are near the true surface. Multiple votes for the same 3D location,

coming from different image pairs reinforce each other. Although this is similar to depth-

map fusion, one key difference exists. In a traditional depth map, only the best match for

every pixel in the other view is stored while all other potential candidates are ignored. In

our approach we generate a hypothesis for each local maxima and hence this is equivalent to

generating a depth-map with multiple depth hypotheses per pixel. Thus our photo-consistency

computation essentially involves fusing multiple multi-hypothesis depth-maps.

Sub-pixel refinement during the pairwise matching process is important as this increases

the sharpness or accuracy of the photo-consistency bands inthe volume. Without sub-pixel

refinement, the photo-consistency bands are blurred and theresulting reconstruction from the
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graph-cut step is less accurate. The sub-pixel match is identified by fitting a parabola to the

matched pixel (a local maxima) and its two neighboring pixels.

6.9 Results

We first describe some experiments on synthetic datasets – onthePEARand theBEAN datasets.

The PEAR dataset had 8 silhouettes and 31 color images – these silhouettes had very few T-

junctions even though the object shape is non-convex. TheBEAN dataset comprised of 4 sil-

houettes and 28 color images, and contains T-junctions on two of its silhouettes. Screen-shots

from various stages of our reconstruction approach are shown in Figure6.21and Figure6.22

respectively. The results shown in these two figures were obtained using an implementation

of Formulation I (with discontinuities at sheet surfaces).Some artifacts are seen on the recon-

structed bean (Figure6.22(h)), where the surface juts out abruptly near the saddle point.
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(a)

(b)

Figure 6.21: PEAR dataset reconstructed using Formulation I: (a) The two-coloring of the
visual hull [Top] and the reconstructed surface [Bottom] for the pear shape. (b) [Top row] The
reconstructed mesh of the pear obtained using our method. [Bottom row] The ground truth
3D shape.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.22: BEAN dataset reconstructed using Formulation I: (a),(b) 4 silhouettes and 28
color images (not shown). (c) The corresponding visual hullfrom four views. (d) Two-colored
visual hull vertices. (e) A candidate surface map projectedon the visual hull. (f) Recontructed
surface displayed within the visual hull. (g) The two-colored surface map induced by the
reconstruction. (h) The reconstructed surface mesh (i) Theground truth surface.
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(a) (b) (c) (d)

Figure 6.23: Comparison between Formulations I and II:: Thetwo-colored surface map and
the final reconstructed surface mesh is shown for (a) Formulation I (with discontinuities), and
(b) Formulation II (double manifold). The artifact which appears near the saddle point on the
surface, disappears in Formulation II and the invisible rim(highlighted in green) lies in the
interior of the visual hull. Otherwise, the two reconstructions are almost similar. Note that
only the embedding in the primary graph of the double manifold is shown here.

(a) (b) (c)

Figure 6.24: (a) one of 36 input photographs of the STATUE1 dataset and the reconstructed 3D
model. (b),(c) The reconstructed model rendered from two different viewpoints shown along
with the induced two coloring of the surface (surface map).
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Figure6.23shows a comparison between Formulation I (with discontinuities), and For-

mulation II, which reconstructs adouble manifoldcut surface. The only visible difference in

the two reconstructions, is near the invisible rim, close tothe saddle point which is artifact

free in the second formulation. The invisible rim is shown ingreen forms a smooth curve and

lies within the visual hull. Although it is not shown here, the cut surface embedded in the

primary and secondary graphs are virtually identical.

We have reconstructed various real multi-view datasets of statues that were captured using

a turntable with the purpose of digitizing their 3D shape. Datasets STATUE1, STATUE2 and

STATUE3 contains 33–36 high resolution images each. The images in these datasets were

typically 3-4 MPixels each. The process of recovering the camera calibration and foreground

silhouettes from the images for these datasets, is described in [57]. The silhouette extrac-

tion for the DINOSAUR dataset [3] was done using techniques described in AppendixB-1.

Figures6.24and6.25show the reconstructed 3D models for the STATUE1 andDINOSAUR

datasets along with the two-coloring induced by the surfacemap. More experimental results

are shown in Figures6.26, 6.27and6.28.

The running time in our implementations is dominated by the photo-consistency compu-

tation and computing the minimum cut on the graph, each of which takes approximately 60 -

80 minutes. While the basic shape of our reconstructed objects in accurate, these 3D models

lack geometric detail. The resolution of the underlying volumetric grid influences the amount

of detail that can be recovered. Our volumetric grids typically require between 2 to 15 million

voxels (the voxel dimension is derived from the image resolution) and total running time are

typically 2-3 hours for the turntable datasets. All the reconstructions were done on a 3 GHz

processor with 2 GB RAM. The memory footprint of the graph in Formulation II was often too

large to fit into RAM and hence most of the experiments were performed using Formulation I

(with discontinuities).
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(a) (b) (c)

Figure 6.25: (a) one of 30 input photographs of the DINOSAUR dataset and the reconstructed
3D model. (b),(c) The reconstructed model rendered from a different viewpoints shown along
with the induced two coloring of the surface (surface map).

(a) (b) (c)

Figure 6.26: (a) Two of the 36 input photographs of the STATUE2 dataset. (b),(c) The recon-
structed 3D model shown from two novel viewpoints.

123



(a) (b) (c)

Figure 6.27: (a) Two of the 36 input photographs of the STATUE3 dataset. (b),(c) The recon-
structed 3D model shown from two novel viewpoints.

(a) (b) (c)

Figure 6.28: (a) Two of the 36 input photographs of the TORSO. (b),(c) The reconstructed 3D
model shown from two novel viewpoints.
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6.10 Conclusions

We have presented a multi-view reconstruction method that fuses the stereo cue with silhou-

ette constraints while reconstructing static objects fromimage sequences. The main novelty

in our approach lies in reconstructing the surface using volumetric graph cuts while enforc-

ing exact silhouette constraints during the optimization.The special graph construction we

propose, takes advantage of a two coloring property of the visual hull. As a result, the final re-

constructed surface is always consistent with all the inputsilhouettes. We have demonstrated

the approach on real and synthetic datasets using two formulations. The first formulation is

only guaranteed to handle convex objects correctly but in practice is able to reconstruct non-

convex shapes as well. The second formulation solves a graph-cut problem which is twice

as large, but is able to correctly handle the case of T-junctions on silhouettes by computing a

double manifold cut surface.

One of the weaknesses in our current approach is the method for computing the sheet

surfaces within the visual hull volume, which are required by both the formulations. The

current approach for computing the sheet surface is based onthe discretization of the signed

3D distance function on a uniform volumetric grid. The approximations involved in this step

cause a problem in computing the sheet surfaces for rim edgesat sharp or thin protrusions on

the visual hull surface. A better implementation of this step will be explored in the future.

The next chapter will focus on the high computational and memory overhead of the un-

derlying volumetric graph-cut algorithm. Unfortunately the first formulation creates a graph

twice as large as the graph in the original domain while the second formulation creates a graph

that is four times as large. However, the second formulationcontains two identical subgraphs,

only one of which needs to be solved by virtue of the symmetry in the construction. The dy-

namic graph-cut algorithm from Kohli et. al. [74] could be used to compute the final solution

once the partial solutions are available. This will be explored in the future.
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CHAPTER 7
Adaptive Volumetric Graph-cut Stereo

7.1 Introduction

In this chapter, we propose an alternate formulation for multi-view 3D shape reconstruction.

Here the 3D reconstruction problem is formulated as computing a minimum cut on the dual

graph of a semi-regular, multi-resolution, tetrahedral mesh. This method addresses the high

memory and computational requirements of the volumetric graph-cut stereo approach. The

key idea is to sample the photo-consistency volume adaptively and avoid evaluating it in re-

gions unlikely to contain any surface elements.

Contrary to the approach presented earlier, this method does not assume that the surface

lies within a finite band around the visual hull or any other base surface. Instead, it uses

photo-consistency to guide the adaptive subdivision of a coarse mesh of the bounding vol-

ume. This generates a multi-resolution volumetric mesh that is densely tesselated in the parts

likely to contain the unknown surface. The graph-cut on the dual graph of this tetrahedral

mesh produces a minimum cut corresponding to a triangulatedsurface that minimizes a global

surface cost functional. Our method makes no assumptions about topology and can recover

deep concavities when enough cameras observe them. Our formulation also allows silhouette

constraints to be enforced during the graph-cut step (when they are available), to counter its

inherent bias for producing minimal surfaces. Local shape refinement via surface deforma-

tion is used to recover details in the reconstructed surface. Reconstructions of the Multi-View

Stereo Evaluation benchmark datasets and other real datasets show the effectiveness of our

method.



Figure 7.1: (STATUE1 dataset) (a) One of 36 input images. (b) A slice through the adaptive
tetrahedral mesh showing the photo-consistent region in red (dark). (c) Quasi-dense patches
produced during mesh refinement. (d) The 3D model obtained from graph-cut optimization.
(e) The final refined 3D mesh.

7.2 Graph-cut on CW-complex

Let us assume that we are given a volumetric meshM of the bounding volume with its set of

cells and faces denoted byC andF respectively and that some of its cells have been labeled as

interior and exterior to the unknown surface. The surface reconstruction problem can then be

formulated as finding the most photo-consistent surface embedded withinM , which separates

the set of interior cellsCin from the exterior ones denoted byCout. This can be achieved by

minimizing a surface cost functional
∫

S
φ(s) ds, whereφ(s) represents the image discrepancy

of an infinitesimal areads of the unknown surface. In the discrete case, the energy functional

becomes
∑

S φ(s) whereS is a set of polygonal faces constituting a candidate surface.

The discrete optimization can be formulated as a binary graph-cut problem [85] on the

dual graph ofM denoted byG(V, E). See Figure7.2for a 2D illustration. The vertices inV

are dual to the cells ofM while the directed edges inE are dual to the oriented cell boundaries

127



Figure 7.2: 2D illustration of the graph-cut formulation onthe dual graphG of a volumetric
meshM (Cin andCout are interior and exterior cells respectively). The value ofa cut onG is
equal to the cost of a surfaceS embedded withinM .

(faces) ofM . The capacity of an edge inE can be derived from the photo-consistency cost of

its dual polygonal face. The main difference from the approach presented in Chapter6 is that

in this method, the photo-consistency is evaluated directly on tiny surface elements (cell faces)

which are embedded within the volumetric mesh. The verticesin V representing cells inCin

andCout are connected to the source and sink vertices in the flow graphusing edges with

infinite capacities. The minimum cut onG can be computed in low-order polynomial time

and corresponds to a surface which gives a global minimum of the surface cost functional.

We chooseM to be a tetrahedral mesh, motivated by their popularity in the mesh gen-

eration literature [103] and the fact that a minimum cut on its dual graph directly produces

a triangulated surface. The rest of the chapter first describes how to build a suitable adap-

tive, tetrahedral meshM using recursive subdivision. Later, we describe how additional cues

such as visibility of photo-consistent patches and silhouette constraints (when available) can
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be incorporated into the optimization framework leading tomore efficient and accurate 3D

reconstruction.

7.2.1 Limitations

Graph cuts on CW-complexes (duals of volumetric meshes) were first used by [73] for opti-

mizing surface functionals. Later such methods for volumetric stereo were proposed [15, 85]

with the advantage over [148] that these did not require initialization via the visual hull. How-

ever, to achieve a high quality reconstruction, this methodmust uniformly tessellate the vol-

ume into millions of tiny tetrahedra. Hence the computational and memory requirements of

this algorithm is extremely high and it is not practical for reconstructing detailed 3D models

which becomes possible when high-resolution images are available. The use of a uniform

CW-complex creates this prohibitive memory bottleneck, thus limiting them to complexes

with coarser resolutions.

Hornung and Kobbelt [63] proposed a multi-resolution approach also based on complexes

(dual graph embedding of a uniform voxel grid). Although they propose a multi-resolution

approach to address the memory bottleneck, their method relies on a good visual hull for

initialization. A limitation of their coarse to fine approach is that it can result in sub-optimal

solutions and thus the main advantage of the graph-cut basedenergy minimization framework

is lost. Running the graph-cut at multiple resolutions in a coarse to fine manner involves

making an early commitment at each of those stages. If the solution of the coarse graph-cut

problem misses any fine structures on the surface, it may be impossible to recover them in

subsequent iterations.

Both these formulations suffer from the inherent minimal surface bias which in the past

has been addressed by introducing a naive ballooning term inthe energy function. However,

this introduces its own problems (see Section5.4.1). These method do not try to use additional

information that could be used – namely multi-view visibility information and silhouette cues.

129



These limitations will be addressed in our work.

7.3 Key Ideas

Existing graph-cut based reconstruction methods [85, 148] first densely sample voxels on

uniform grids to build a graph embedding and then evaluate photo-consistency at all these

voxels. The photo-consistency evaluation step is much moreexpensive than solving the actual

graph-cut optimization, particularly when using robust patch-based similarity measures such

as NCC. The key idea in our approach is that we adaptively sample the photo-consistency vol-

ume and construct a CW-complex whose resolution adapts according to the photo-consistency

– thus the cells are finer at places where surfaces are more likely to exist (as indicated by high

photo-consistency) and coarser elsewhere.

To construct such an adaptive CW-complex, we start with a coarse, uniform tetrahedral

mesh. A novel photo-consistency driven mesh refinement strategy is then used to decide

which elements of the coarse mesh need refinement. The strategy avoids subdividing and

evaluating photo-consistency in those parts of the volume where surface elements are unlikely

to exist. The mesh refinement is done using a recursive subdivision scheme on a coarse,

regular, tetrahedral mesh and adaptively refining the most photo-consistent regions until the

desired level of tessellation is reached in the photo-consistent parts.

For textured surfaces, this provides huge memory savings asbands of photo-consistency

in the volume are usually extremely thin. Textureless surfaces however, tend to create wider

bands of photo-consistency; such regions need to be finely sampled in our mesh and the sav-

ings are somewhat reduced there. High resolution is critical for accurate 3D reconstruction

and our method aims at maximizing sampling density whereverneeded. Along the lines of

[63, 85], the presence of 12 different oriented faces in the mesh (asopposed to 6 in a uniform

grid) reduces the discretization or metrication error in the cut surface. This photo-consistency

driven mesh refinement strategy is now described.
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7.3.1 Photo-consistency driven tetrahedral mesh refinement

Our base mesh denoted byM0 is a body-centered cubic (BCC) lattice which comprises the

nodes of a 3D grid along with the centers of all the cubic cells(see Fig.7.3(a)). It can be

thought of as two interlaced cubic lattices. Edges are addedbetween every node in the first

grid and its eight diagonal neighbors in the second grid.

Figure 7.3: (a) Tetrahedral cell in a BCC lattice (two interlaced grids with diagonal edges
added). (b) (Top-left) Red-Refinement (1:8) subdivision. (Rest) Green Refinement (1:2, 1:4)
subdivision).

We choose a simple red-green mesh refinement strategy [103] to obtain a semi-regular

mesh fromM0. The mesh obtained afteri subdivision steps will be denoted byMi and its

tetrahedral cells and triangular faces byCi andFi respectively. A subset of cells inCi which

lie in the photo-consistent region, referred to as theactive region will be denoted byAi.

The refined meshMi+1 is obtained by applying red-refinement to the cells inAi and green-

refinement to the cells inCi − Ai.

A tetrahedron is red-refined into eight tetrahedra as shown in Figure7.3(b) by bisecting

its six edges. The shortest of the three possible diagonal edges internal to the tetrahedron

must be chosen to make the eight new tetrahedra geometrically similar to the original cell.

Green tetrahedra which share faces with red tetrahedra require between one to five edge-

splits. Similar to [103], we reduce the various cases of green refinement to the threeshown in
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Figure7.3(b). Green tetrahedra are not geometrically similar to the original BCC tetrahedra

and are never subdivided any further.

A photo-consistency measureg(X) : R3 → R which computes the likelihood of the 3D

point X of being a true surface point is used to find theactivesetAi+1 ⊂ Ci+1, excluding

cells created by green refinement. When the unknown surface passes through a tetrahedral

cell, some of its four faces must contain points with a high measure of photo-consistency. We

refer to these ascrossingfaces.

If none of the faces of a cell contain any photo-consistent points, that cell cannot contain a

piece of the surface. We assume that the surface is larger than the smallest tetrahedral cell and

thus cannot be fully contained within any of the cells. We do not refine such cells any further

and avoid sampling in their interior.

Assuming that the unknown object is large enough not to be completely contained inside a

single tetrahedron, a cell must have at least onecrossingface in order to be labeledactive. To

determineAi+1, we evaluateg(X) on the faces of cells created by red-refinement ofAi and

determine the subset ofcrossingfaces. Then eachcrossingface labels its two neighboring

tetrahedral cells asactive. This is illustrated in Figure7.4.

(a) (b) (c) (d)

Figure 7.4: A 2D illustration of the tetrahedral refinement scheme. (a) Unknown surface
embedded within coarse tetrahedral grid (each triangle represents a tetrahedral cell). (b) Check
for photo-consistency on the cell faces. (c) Crossing facesare shown in blue, rest are in red.
(d) The set of active cells are shown in blue – these will be subdivided in the next iteration.
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7.3.2 Computing Photo-consistency

To determine whether a facef is acrossingface, we sample a triangular lattice on it as shown

in Figure7.3(c). The spacing between samples in the lattice is selected to prevent aliasing

by ensuring that no pixels are skipped when the lattice is projected onto the images. At each

lattice positionX, we use the normalized cross correlation (NCC) of the image projections

of patches placed atX to measure its likelihood of being on the surface. Since the mesh

is initially coarse, its faces may not be parallel to true surfaces. In this case, it would be

undesirable to compute NCC on the faces themselves. To overcome this, we place multiple

patches with different orientations at each pointX. The patches and the set of images used

for the computation are determined as follows.

At X, we place patches at multiple orientations, each denoted byunit vectornX . For all

points,nX is chosen from 14 canonical orientations sampled along the corners and faces of

a unit cube. For a given orientationnX , we choose the bestk cameras such that the angle

betweennX and the direction vector fromX towards the camera is at most60◦. Let us denote

this subset of cameras byP (X). If X is a true surface point andnX is a fair approximation

of the surface normal on the unknown surface, then the projection of that patch should have a

high matching score for the subset of visible cameras⊂ P (X).

Since we are only interested in determining whether a point could potentially belong on a

surface or not, we use a simple computation for the photo-consistency to reduce computational

complexity. We simply place a 1D1 × µ grid along the intersection line of the patch and the

underlying facef (see Figure7.5). This direction is given bynX×nf , wherenf is the normal

of the face. This1D grid is now projected into each of the cameras inP (X) and pairwise

NCC scores are computed for all such pairs.

The photo-consistency score for each camera inP (X) is computed by averaging the best

k′ NCC scores with the other (k-1) cameras (k′ = max{k/2, 3}) allowing for matching to

succeed despite some occlusion. The score of the best overall camera is retained as the score
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Figure 7.5: (a) Testing if face ABC with face normalnf is acrossingface; Test patch atP
with unit normalnX for photo-consistency. (b) Computation performed on a triangular lattice
(photo-consistent points are blue (dark)) with the resultsstored in a quad-tree associated with
face ABC. Nodes corresponding tocrossingfaces are black in the quad-tree.

for the patch atX with orientationnX . Points with score larger than a global thresholdT are

labeled photo-consistent. Finally, if a face contains at least20% photo-consistent points, or at

least20 points if20% corresponds to a number below20, we declare it to be acrossingface.

This computation could be repeated for every face at every subdivision level during mesh

refinement. However, this would be highly redundant since during each subdivision level, a

large facef splits into four new facesf1, f2, f3 andf4 whose photoconsistency measures have

already been computed to decide whetherf was acrossingface.

The solution then is to perform the computation recursivelyfor facef only once and store

the results in a quad-tree associated withf (see Figure7.3(b)). Concretely, the root node of the

quad-tree corresponds tof while the four children correspond to the faces{ fi | 1 ≤ i ≤ 4}

obtained by bisecting the three edges off and connecting the mid-points. At each tree node

we store: (1) the number of photo-consistent samples (thosewith matching score> T ) on the

triangle lattice, (2) the total sample-count and (3) the best oriented point forf along-with the

set of cameras it correlated on.
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All such oriented points form aquasi-densereconstruction of the scene (see Figure7.1(c))

and is next used to detect interior and exterior cells. Whenf is split during subdivision, the

four new faces inherit the children off ’s quad tree and can be immediately tested for being

crossingfaces.

7.3.3 Computing Cell Costs

Multiple iterations of mesh refinement produces a set of highly tesselatedactivecells. We

will now try to classify some of the remaining cells into setsCin andCout. Since the visual

hull contains the true shape, any cell which falls outside the visual hull can be automatically

labeled as exterior. However, green tetrahedra contained within the visual hull i.e. the ones

which were not fully subdivided could potentially belong toregions either interior or exterior

to the surface (eg. a deep concavity).

The set of quasi-dense oriented surface points recovered during the photo-consistency

driven mesh refinement (Section7.3.1) allows us to determine which green tetrahedra are part

of the true interior. An oriented pointp that was photo-consistent ink′ views must have been

visible from each of those cameras. Hence we path-trace raysfrom p to all of the camera

centers and vote for each cell that the ray intersects along the way. This can be done ef-

ficiently by walking along the ray within the tetrahedral mesh and performing ray-triangle

intersections. Finally amongst all the green tetrahedra contained within the visual hull, the

ones which received votes lower than the10th percentile are labeled interior, while the ones

with votes above the75th percentile are labeled exterior. Since labeling cells as interior and

exterior imposes hard constraints in the reconstruction, we apply the labels conservatively and

leave ambiguous cells undecided ie. we re-label themactive.
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7.4 Approach

Our complete approach summarized in Algorithm3 begins with tetrahedral mesh generation

described in Section7.3, followed by the first graph-cut on its dual. This is followedby a

second graph cut after interior and exterior sets are augmented by enforcing silhouette con-

straints and a final local refinement. The graph constructionand approach for incorporating

silhouette constraints are described next. Finally the method for local shape refinement is

briefly described.

Input : images{I}, cameras{P}, bounding-boxB
Output : polygonal mesh modelH

M0 ← BuildBCCMesh(B);
Q = { };
for i← 0 to m-1 do

patches← ComputeMatchingCost(Fi);
Ai ← FindActiveCells(Mi, Fi);
Mi+1 ← MeshRefine(Mi);
Q← Q ∪ patches ;

end
Cin, Cout ← MarkInteriorExterior(Mm, Q) ;
G← SetupGraphCut(Mm, Cin, Cout) ;
[S1, C

1
in, C

1
out]← FindMinCut(G) ;

foreach cameraj in {P} do
Kj ← RenderSilhouettes(S1, Pj) ;

end
Ca

in = C1
in; Ca

out = Cout;
foreach cameraj in {P} do

Ca
in, C

a
out ← EnforceSilhouettes(Ij , Kj) ;

end
G

′ ← SetupGraphCut(Mm, Ca
in, Cout) ;

S2 ← FindMinCut (G
′

) ;
H ← RefineShape (S2);

Algorithm 3 : The Complete Algorithm.
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7.4.1 Graph Construction

Having generated a tetrahedral meshM and sets of voxels,Cin andCout we then construct

G, the dual graph ofM . Vertices inG dual to cells inCin andCout are connected to the

sourceandsinkrespectively for the graph-cut. Edge capacities inG are derived from the dual

oriented faces inM . Unlike in Section7.3.1where 1D patches were used for speed, the goal

here is to minimize a true surface cost functional. To this end, a 2Dµ × µ grid, placed on

each facef , is projected into the images and their pairwise NCC scores are combined. We

pick the bestk cameras at an angle of at most60◦ from the surface normal off . Each of these

is chosen as a reference view (as in Sec.7.3.1) and correlated with the otherk-1 views; the

bestk′ (k′ = max{k
2
, 3}) scores out of these truncated to [0,1] are averaged. The best average

score is assigned as the final scoreωf of f . Eq 7.1 shows howωf maps to the edge weight

φ(f) whereaf is the area of facef .

φ(f) =

(

1− exp
(

− tan
(π

2
(ωf − 1

))2
/σ2

)

)

.|af |+ λ.|af | (7.1)

As explained in [148], minimizing the surface functional
∑

S φ(s) over surfacesS embed-

ded in the volume is equivalent to finding the minimal surfacewith respect to a Riemannian

metric [13] where higher values ofσ and lower values ofλ produce a more photo-consistent

but less smooth surface and vice-versa.

7.4.2 Enforcing Silhouette Constraints

Variational surface reconstruction approaches have a biasfor smaller shapes, as surfaces with

a lower total cost are preferred over a more accurate surfacewhich has lower cost per unit area

but higher total cost. The energy can be regularized by including aballooningterm [85, 148]

which acts as a prior for larger shapes. While this can recover protrusions, it also pushes the

concave parts outwards thereby significantly reducing the accuracy of the final result. While
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[58] proposes visibility-basedintelligentballooning to address this issue, it only reduces the

graph cut bias and preserves concavities better but does notguarantee consistency with the

silhouettes. We address this in a different way by enforcinghard constraints in the graph-cut

derived from both visibility as well as silhouettes constraints.

Figure 7.6: Top: the original silhouetteS and re-projected silhouetteSr (O is the camera cen-
ter). x1 andx2 indicate re-projection errors (see text for details). Bottom: for x1, we inspect
photo-consistency costs on front and back-faces for all triangles inM which are intersected
by the ray back-projected fromx1.

Figure.7.6showsSr the re-projected silhouette overlaid on the original silhouetteS. The

re-projection errors are in pixels such asx1 which fall insideS but outsideSr andx2 which

fall insideSr but outsideS. Consider the raysr1 andr2 backprojected fromx1 andx2 and the

cells they intersect. The rayr2 should not meet surface becausex2 is outside the silhouetteS,

therefore all cells intersected byr2 can be safely labeled added toCout. On the other hand,r1

must intersect the surface at least twice. Thus at least one of the cells thatr1 passes through
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must be an interior cell. For such rays in every view, we intend to mark at least one such cell

as interior and add it to our set of interior voxels.

We adopt a two-step approach. First, by computing the minimum cut onG as described

above, we obtain (a) a triangulated surface (b) a partition of all tetrahedral cells intoC1
in

(interior cells) andC1
out (exterior cells). The triangulated surface is then re-projected into all

the images and the sets of erroneous pixels (such asx1 andx2) are determined. Pixels such

asx2 add cells to the setCout. Pixels such asx1 are processed to mark some additional cells

in M as interior; these are added toCa
in, the augmented set of interior cells. The candidate

cell is chosen as follows. We first find the sequence of tetrahedral cells inM that rayr1 cuts

through and sort them by distance from the reference camera.Cells in this sequence that fall

outside the visual hull are excluded, leaving groups of contiguous tetrahedral cells each of

which we will refer to as asegment. For eachsegment, we orient the triangles (faces of the

cells) consistently with respect to the ray.

Let us first consider the simpler case whenr1 intersects the surface twice (see Fig.7.6).

This ray must meet a triangleff whosefront-faceis photo-consistent before it meets a triangle

fb whoseback-faceis photo-consistent. A few tetrahedral cells within such a depth-interval

can be chosen as interior. More specifically, we look for the maxima of front-face photo-

consistency and find the next significant peak in back-face photo-consistency (within 0.8 of

the global maximum) for faces alongr1 in the samesegmentto determine a conservative depth

interval for the interior. We then pick the center-most cellin this depth interval and add it to

Ca
in. This step is highly redundant and we pick candidates (a hardconstraint) only when we

are sure about a cell being interior. We skip pixels with multiple segments per ray and let a

more favorable view enforce silhouette constraints there.In our experiments processing only

a few pixels was sufficient to recover all the protrusions. Itis better to enforce a minimal

number of additional hard constraints for silhouette consistency since performing this step

exhaustively increases the likelihood of including incorrect constraints.
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A second minimum-cut is now computed on the same graphG but with the augmented

interior setCa
in assourceand augmented exterior setCa

out assink. This new triangulated sur-

face satisfies silhouette constraints upto a few pixels (theactual value depends on the cell

resolution ofM and is typically in the range of 1-5 pixels in the images. An analogy can be

drawn between our approach and the graph-cut based Grab-cut[112] segmentation method,

where iterative graph-cut optimization is performed whilethe user interactively provides ad-

ditional hard constraints. In a similar fashion, we use silhouettes for generating reliable hard

constraints (automatically in our case) as described aboveand perform a second graph-cut

iteration to correct the shortcomings of the first one.

7.4.3 Local Surface Refinement

Finally, local optimization is used to refine the shape locally to remove discretization errors

introduced by the graph cut reconstruction. The triangulated minimum-cut surface mesh is

iteratively deformed and remeshed during local refinement.This is similar to the approaches

of Furukawa et. al. [47] and Hernandez et. al. [57]. Vertices of the mesh are displaced by

a combination of smoothness, silhouette and texture forces. The smoothness force is com-

puted by the approach of [150] which prevents the surface from shrinking while silhouette

forces are computed as described in [47]. To compute the texture force, we use the normal

vector at a vertex to determine a set ofk cameras and compute a photo-consistency score (see

Section7.4.1) at multiple offsets from the current vertex location alongits surface normal.

A red-green 2D mesh subdivision scheme [103] is used to remesh the model after bisecting

edges which project to more than 2 pixels in the best reference view.
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Figure 7.7: (Top)STATUE3 dataset: Three of the input images. The reconstructed surface
from the graph-cut step is shown on the top row while the final 3D model after refinement is
displayed in the middle row. (Bottom)SKULL dataset: Two views of the final model.
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(a) (b)

Figure 7.8: (a) Middlebury Multi-view Stereo Evaluation benchmarks: (left)DINORING,
(right) TEMPLERING. (b) HEAD dataset reconstructed from a set of 21 images lacking perfect
color calibration.

Figure 7.9:STATUE2 dataset: (a) One of the input images (note that in our experiments we
leave this image out). (b) Visual Hull from all 36 images. (c)Our result using all 36 images.
(d) Visual Hull from 26 images (10 out of 14 views which see thegap between arm and body
are left out) has genus 3. (e) Our model using these 26 images has the correct topology (genus
1). (f) Zoomed-in rear view of (top) visual hull (bottom) ourresult using these 26 views.

7.5 Results

We have reconstructed several real multi-view datasets using our approach as shown in Fig-

ures7.1, 7.7– 7.9. DatasetsSTATUE1, STATUE2 andSTATUE3 contain 36 images (6 Mpixels)

each, captured using a turntable. TheHEAD dataset contains 21640 × 480 images without

good color calibration while theSKULL dataset contains 242000× 2000 images.

We have evaluated our approach using the Multi-View Stereo Evaluation (the reconstruc-

tions are shown in7.8(a)). This evaluation provides metrics on the accuracy and completeness

of the reconstruction. The accuracy metric is the distanced such that90% of the reconstructed

is within d from the ground truth surface. Completeness is defined as thepercentage of the
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Middlebury TEMPLE RING (47 views) DINORING (48 views)
Evaluation Accuracy (mm) Completeness (%) Accuracy (mm) Completeness (%)

Furukawa [45] 0.58 98.5 0.42 98.8

Furukawa2 [44] 0.55 99.1 0.33 99.6

Gargallo [48] 0.88 84.3 0.60 92.9

Goesele [50] 0.61 86.2 0.46 57.8

Goesele2 [51] 0.42 98.2 0.46 96.7

Habbecke [54] 0.66 98.0 0.43 99.7

Hornung [63] 0.58 98.7 0.79 95.1

Kolev [76] 0.79 96.0 0.53 96.9

Kolmogorov [77] 1.86 90.4 2.81 86.0

Merrell [101] 0.83 88.0 0.84 83.1

Merrell2 [101] 0.76 85.2 0.73 73.1

Pons [110] 0.60 99.5 0.55 99.0

Sinha [108] 0.79 94.9 0.69 97.2

Sormann [130] 0.69 97.2 0.81 95.2

Strecha [133] 0.86 97.6 1.21 92.4

Tran [140] 1.12 92.3 1.12 92.0

Vogiatzis [148] 0.76 96.2 0.49 96.7

Zach [158] 0.58 99.0 0.67 98.0

Table 7.1: Table lists the accuracy and completeness scoresof various multi-view stereo meth-
ods on the Middlebury benchmark. The accuracy and completeness were computed using
thresholds of 95% and 1.25mm, respectively. See text for details.

Figure 7.10: (a) Middlebury Multi-view stereo evaluation benchmarks: (left)DINORING,
(right) TEMPLERING. The 3D models obtained by our method in comparison to groundtruth.
calibration.

ground truth surface within1.25mm of the model. The accuracy and completeness of our

reconstruction for the 47-viewtempleRingdataset were0.79mm and94.9% respectively. The

same metrics for the 48-viewDINORING dataset were0.69mm and97.2%. See Table7.1for
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a comparison with other methods.

Fig. 7.9illustrates the results of an experiment performed to demonstrate that our method

is not limited by the topology of the base surface. While the visual hull built from all 36

images has the correct topology, the visual hull built afteromitting 10 images (the separation

between the arm and body is observed in these) has genus three. Our method still recovers a

model with the correct topology (see Fig.7.9(e,f)). The critical parameters of our algorithm

are as follows. The patch sizeµ is typically11 pixels while the photo-consistency thresholdT

is chosen in the range of 0.4-0.7 (a fraction between 0 and 1).A lower T is more conservative

and retains more cells asactive. The surface functional parameters ofσ is set to 0.1 in all

our experiments andλ is varied between 1 to 10. The stopping criterion for recursive mesh

refinement is based on the size of the finest cells in the images; we typically stop when this

is in the range of 1 to 3 pixels. Our method requires a smaller fraction of graph vertices

compared to approaches which construct uniform grid graphsin the interior of the visual hull.

Our mesh typically has between 2-10 million cells and total running time are typically 1 to 2

hours for each reconstruction.

7.6 Conclusions

We have presented a multi-view reconstruction method that addresses the high memory and

computational requirements of volumetric graph-cut stereo, by performing a graph-cut on the

dual of an adaptive volumetric mesh (a CW-complex) created by photo-consistency driven re-

cursive mesh subdivision. It does not need any initialization, and is not restricted to a specific

surface topology which is a limitation with methods that usea base surface for initialization.

Our graph-cut formulation also incorporates visibility and silhouette constraints to counter the

bias for minimal surfaces, and recovers highly detailed 3D model.
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CHAPTER 8
Conclusion

8.1 Summary

In this dissertation, I have studied how silhouettes extracted from images and video can help

with two fundamental problems of computer vision - namely, multi-view camera calibration

and 3D surface reconstruction from multiple images.

First, I presented an automatic method for calibrating a network of cameras that works

by analyzing only the motion of silhouettes in the multiple video streams. This is partic-

ularly useful for automatic reconstruction of a dynamic event using a camera network in a

situation where pre-calibration of the cameras is impractical or even impossible. Our key

contribution is a novel RANSAC-based algorithm that simultaneously computes the epipolar

geometry and synchronization of a camera pair from only the silhouettes of moving objects.

The approach starts by independently computing the epipolar geometry and synchronization

for various camera pairs in the network. In the next stage, the calibration and synchroniza-

tion of the complete network is recovered. We remotely calibrated about ten different camera

networks that researchers have setup in their own labs for acquiring models of human actors

and other applications in computer vision and graphics. We did this only from the archived

multi-view video streams that were previously captured by these camera networks. No addi-

tional data capture was required in order to run our calibration approach. This demonstrates

the effectiveness of the proposed method.

In the second part of the dissertation, I addressed some shortcomings of existing volumet-

ric multi-view stereo approaches. First, I proposed an improved multi-view stereo formulation



that allows for robust and accurate fusion of the silhouetteand stereo cues. I showed that it

is possible to enforce exact silhouette constraints withinthe graph-cut optimization step of

the volumetric graph-cut stereo algorithm. Hence the reconstructed surface can be guaranteed

to be consistent with the original silhouettes. I also described an alternate multi-view stereo

formulation involving an adaptive graph construction, which addresses the high memory and

computational overhead of the underlying approach. The proposed method does not need any

initialization and is not restricted to a specific surface topology. Using the method, accurate

and detailed 3D models have been reconstructed from high-resolution images.

8.2 Directions for Future Work

I conclude this dissertation with some discussions on directions for future research.

8.2.1 Camera Network Calibration

The approach that was developed in the first part of this dissertation made it possible to re-

construct dynamic scenes and events from uncalibrated and unsynchronized archived video.

All the necessary information was recovered from the silhouettes of moving objects. In our

work, both camera intrinsics as well as extrinsics were assumed to be unknown. However, in

some scenarios it is reasonable to assume that the intrinsics are known ahead of time. Then

instead of estimating the epipolar geometry, one could directly estimate the relative pose. The

approach to recover relative pose using only silhouettes should be further investigated, as this

scenario may frequently occur in the context of camera network calibration.

We used a visual hull approach to reconstruct the dynamic scene from the archived video

streams. However, much work remains to be done in the area of dynamic scene reconstruc-

tion. Some progress in this direction has already been made by Ballan et. al. [7], Furukawa

et.al. [46], Stark et. al. [131] etc. Although we show the benefit of accurately synchroniz-
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ing the video streams up to sub-frame accuracy, our silhouette interpolation scheme is simple

and introduces errors when the inter-frame motion is quite large. In such scenarios, shape

preserving silhouette interpolation such as [1] should be used.

Arguably silhouette extraction (i.e. background segmentation) is a difficult problem to

solve in a general setting. Although our method is robust to outliers in silhouette extraction, it

still requires a reasonably high percentage of accurate silhouettes which is harder to guarantee

in realistic outdoor scenes. Future work should address this weakness, to make the technique

less reliant on high quality silhouettes. To deal with real world scenarios, the technique needs

to be extended to deal with silhouettes that are occluded by other static objects in the scene.

An interesting direction to pursue for camera network calibration in the outdoor world

is to establish correspondence between high level objects in the images instead of trying to

recover accurate point correspondences between them. A wide range of object detectors for

specific object classes such as faces, pedestrians, cars etc. have been recently developed. This

gives rise to the question – can the correspondences betweenimage regions (without exact

pixel to pixel correspondence) generated by running trained detectors on multi-view sequences

produce enough constraints to recover the calibration of the camera network ? Given sufficient

data, to what degree of accuracy can the calibration be computed ?

A related strategy for camera network calibration that would be interesting to investigate

is whether model-based methods can be used. Both monocular and multi-view model-based

techniques for motion capture and pose estimation of a classof objects (most research has been

focussed on humans) have gradually improved over the last decade. The multi-view methods,

such as [7, 22] require pre-calibrated cameras. An interesting questionthat comes up here is

– can the camera network calibration and the pose of the humanbe recovered simultaneously

? This would be a significant step towards making such multi-camera systems easy to deploy

and use in the real world.
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8.2.2 Multi-view reconstruction

Although we have proposed two alternate formulations of multi-view stereo that address dif-

ferent issues in existing approaches, ideally they should be combined together. As our formu-

lation that enforced exact silhouette constraints doublesthe size of the graph problem, it can

benefit from our alternate formulation that creates a sparser graph embedding. Although we

only show how to enforce silhouette constraints within the graph-cut based energy minimiza-

tion framework, it should also be possible to enforce the same silhouette constraints during

mesh refinement, which is used for local shape refinement in the final stage of the reconstruc-

tion pipeline.

One of the important limitations of our work on multi-view stereo is that only closed

objects are handled. However, there is also immense interest in the vision community in ac-

quiring detailed models of open scenes. The proposed methods do not directly extend to such

scenarios, and this is an important direction for future work. Some techniques for addressing

this problem have been explored in recent work by Furukawa et. al. [46]. As segmentation

techniques get better, it may be worth investigating whether silhouette constraints can be ex-

ploited for reconstructing surfaces in open scenes as well.The key difference there is that the

surface cannot be assumed to be a closed one that partitions the 3D volume into an interior

and exterior region.

Although volumetric energy minimization based approaches, such as the ones we pro-

posed give high quality results, they do not scale well to large scenes. Combining sparse

3D reconstruction and structure from motion techniques with the advantages of energy mini-

mization is an interesting direction of future work. Some promising results have been shown

by [79]. Techniques similar to our adaptive graph construction, could possibly be used for

energy minimization based depth map fusion.
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Appendix A: Camera Models and Multi-view Geometry

This appendix briefly covers the theory of camera models, multi-view geometry, and image

similarity metrics.

A-1 Camera Models and Multi-view Geometry

A-1.1 Pinhole Camera Model

The pin-hole or perspective camera model (shown in Figure8.1) is commonly used to explain

the geometry of image formation. Given a fixed center of projection C (the pin-hole or the

Figure 8.1:

camera center) and an image plane, every 3D pointM (X,Y ,Z) other than thecamera center

itself, maps to a 2D pointm (x,y) on the image plane, which is assumed to be at a distancef

from C. They are related as follows:

x = f
X

Z
y = f

Y

Z
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Using homogeneous coordinates for 2D and 3D points, this canbe written in matrix form.
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(A-1)

The line throughC, perpendicular to the image plane is calledoptical axisand it meets the

image plane at theprincipal point. Often, 3D points are represented in a different world

coordinate system. The coordinates of the 3D point in the camera coordinate systemMc, can

be obtained from the world coordinatesMw, as follows:

Mc = RMw + t

HereR represents a3× 3 rotation matrix andt represents a translation vector for 3D points.

This can be written in matrix form.

Mc =







R t

0
T

1






Mw i.e. Mc = Tw Mw (A-2)

In images, the image coordinate system is typically not centered at the principal point and

the scaling along each image axes can vary. So the coordinates of the 2D image point under-

goes a similarity transformation, represented byTc. Substituting these into the perspective

projection equation, we obtain:
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(A-3)
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or simply,

m = PM

whereP is a3×4 non-singular matrix called thecamera projection matrix. This matrixP can

be decomposed as shown in Eq.A-4, whereK is called thecamera intrinsics matrix, whileR

andt together represents thecamera extrinsicsi.e. the relative pose of the camera in the 3D

world.

P = K[R | t] where K =













fx s px

0 fy py

0 0 1













(A-4)

The intrinsicsK is often parameterized byfx, fy, s, px andpy (Eq.A-4), wherefx andfy are

the focal lengthf measured in pixels in thex andy directions respectively,s is the skew and

(px,py) is the principal point in the image.

Thus, in the general case, an Euclidean perspective camera can modeled in matrix form

with five intrinsic and six extrinsic parameters (three for the rotation and three for the trans-

lation) which defines the transformation from the world coordinate system, to the coordinate

system in the image. Real cameras deviate from the pin-hole model due to various optical ef-

fects, amongst which, the most pronounced is the effect of radial distortion. Radial distortion

is often corrected by warping the image with a non-linear transformation. Thus, the undis-

torted image coordinates (x̃,ỹ) can be obtained from the distorted image coordinatese (x,y) as

follows:

x̃ = xc + (x− xc)L(r) (A-5)

ỹ = yc + (y − yc)L(r) (A-6)

L(r) = (1 + κ1r + κ2r
2 + . . .) (A-7)

Hereκ1, κ2 etc. are the coefficients of radial distortion, (xc,yc) is the center of radial distortion
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in the image andr is the radial distance from the center of distortion.

A-1.2 Epipolar Geometry

Figure 8.2: For every pixelm, the corresponding pixel in the second imagem
′ must lie

somewhere along a linel′. This property is referred to as theepipolar constraint. See text for
details.

The epipolar geometry captures the geometric relation between two images of the same

scene. When a 3D pointM projects to pixelsm andm
′ in the two images,m andm

′ are

said to be in correspondence. For every point in the first image, the corresponding point in

the second image is constrained to lie along a specific line called theepipolar line. Every

plane such asπ that contains thebaselinei.e. the line joining the two camera centers, must

intersect the two image planes in corresponding epipolar lines, such asl andl
′, respectively.

All epipolar lines within an image, intersect at a special point called theepipole. Algebraically,

m
′T

Fm = 0 (A-8)

whereF is called thefundamental matrixand has rank two. Pointsm andm
′ can be trans-

ferred to the corresponding epipolar lines in the other image, using the following relations.

l = F
T
m

′
l
′ = Fm
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The epipoles are also the left and right null-vector of the fundamental matrix:

Fe = 0 F
T
e
′ = 0 (A-9)

SinceF is a3 × 3 matrix unique up to scale, it can be linearly computed from 8 pair of

corresponding points in the two views using EquationA-8, which is often called theepipolar

constraint. This is known as the8-point algorithm. However, when the rank constraint is

enforced,F can be computed from 7 pairs of correspondences using the non-linear 7-point

algorithm. Refer to [55] for the details.

Any pair of cameras denoted by camera matricesP andP′, results in a unique fundamental

matrix. Given a fundamental matrixF, the camera pairs are determined up to a projective am-

biguity (a projective transformationf of 3 space). Thus, givenF, there exists a four parameter

family of canonical camera pairs corresponding toF. These are given by:

P = [I | 0] P
′ = [[e′]×F + e

′
v

T | λe
′] (A-10)

Epipolar Line Homography

Figure 8.3: The pencil of epipolar lines forms a 1D projective space.

There exists a 1D homography that relates the pencil of epipolar lines in one view (a 1D
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projective space) with the pencil of epipolar lines in the other view (see Figure8.3. This

homography has three degrees of freedom. Two degrees of freedom for each of the epipoles

account for the total seven degrees of freedom of the fundamental matrix. The epipolar line

homography can be used to transfer epipolar lines as follows:

l′ = F[e]×l l = F
T [e′]×l′

A-1.3 Projective Reconstruction and Self-Calibration

Without special knowledge about the contents of the scene, it is impossible to recover the

position, orientation, and scale of a 3D scene reconstructed from images. When the camera

intrinsics are unknown, there is a higher degree of ambiguity in the reconstruction – it can

only be determined up to a projective transformation of 3 space. By recovering the whole

projective structure starting from only point correspondences in multiple views, one is able

to compute aprojective reconstructionof the cameras and the scene. Note that this can be

done without any knowledge of the camera intrinsics, and makes it possible to reconstruct 3D

scenes from uncalibrated sequences.

This projective cameras and scene differs from the actual cameras and scene (often re-

ferred to as a Euclidean ormetric reconstruction) by a projective transformation – a4 × 4

homography. There exists classical techniques to transform a projective reconstruction to a

metric one by computing this unknown homography – this is called auto-calibrationor self-

calibration. Please refer to [55, 106] for more details.

A-2 Similarity Measures

Thecorrespondence problemin computer vision involves finding, for every pixel in one im-

age, the corresponding pixel in the other image. As individual pixel values are not distinctive
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Figure 8.4: Many computer vision algorithms require a similarity metric between image
patches that evaluate the similarity of their appearance. Wdenotes an image patch (k × k
pixels) in the two images at locations (x1,y1) and (x2,y2) respectively.

enough, similarity is often computed using a patch (typically a k×k square window) around a

pixel. Different patch-based similarity functions based on difference and correlation measures

are used for this task. Depending on the degree of invariancerequired, level of image noise

and computational requirements, one of the following similarity measures are typically used.

The Sum of Absolute Differences (SAD) is given by the expression:

∑

(u,v)∈W

|I1(x1 + u, y1 + v)− I2(x2 + u, y2 + v)| (A-11)

The Sum of Squared Differences (SSD) is given by the expression:

∑

(u,v)∈W

(I1(x1 + u, y1 + v)− I2(x2 + u, y2 + v))2 (A-12)

The Normalized Cross Correlation (NCC) is given by the expression:

∑

(u,v)∈W I1(x1 + u, y1 + v).I2(x2 + u, y2 + v)
√

∑

(u,v)∈W I21(x1 + u, y1 + v).
∑

(u,v)∈W I22(x2 + u, y2 + v)
(A-13)

The Zero-mean Normalized Cross Correlation (ZNCC) is givenby the expression:

∑

(u,v)∈W(I1(x1 + u, y1 + v)− I1).(I2(x2 + u, y2 + v)− I2)
√

∑

(u,v)∈W(I1(x1 + u, y1 + v)− I1)2.
∑

(u,v)∈W(I2(x2 + u, y2 + v)− I2)2
(A-14)
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SAD and SSD produce a value of zero for identical patches, butare not normalized as the

scores depend on the patch size and the appearance in the images. NCC and ZNCC produces

values in the range [-1,+1] with +1 for identical patches. Contrary to SAD, SSD and NCC,

ZNCC is invariant to intensity offsets and should be used when brightness change is expected

in the images, although it is the most expensive to compute. Note that in the presence of noise,

similar texturelesspatches will have high similarity under SAD and SSD, while ZNCC will in

general produce a low similarity score as it factors out the average and tries to correlate two

random signals. For more details, and other non-parametricsimilarity measures discussed in

the context of stereo matching, please refer to [61].
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Appendix B: Miscellaneous Topics

This appendix provides a brief introduction to multiple unrelated topics that are relevant to

this thesis. First, the problem of silhouette extraction inimages and video is covered. Next,

a brief description ofsparse bundle adjustmentis included. Finally, network flow algorithms

are introduced, as they form the basis of the graph cut optimization technique used throughout

this thesis.

B-1 Silhouette Extraction

The methods developed in this thesis assume that silhouettes of objects can be automatically

extracted from images and video. This is called theforegroundor background segmentation

problem. It is quite a challenging problem in the general setting and continues to be an area

of ongoing research [30, 56, 65, 112, 132]. First, we briefly describe our method for auto-

matically extracting silhouettes of dynamic foreground objects from video. These silhouettes

are used for both camera calibration and modeling the dynamic scene. Next, we briefly cover

methods for recovering high quality silhouettes of static objects in multiple calibrated images.

Such silhouettes are then used for enforcing silhouette constraints for reconstructing more

accurate 3D models.

B-1.1 Silhouette Extraction in Video

The simplest and fastestbackground segmentationmethods assume that a background image

from the viewpoint of a static camera is available. When a background image is not explicitly

available, it can be generated by computing a median image (the median from the sequence
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of intensity values at each pixel is computed). When the video sequence is sufficiently long

and foreground objects move constantly, the generated median image contains little trace of

the foreground.

Each pixel in the target image is then classified as foreground or background based on the

intensity difference with the corresponding pixel in the background image. Simple thresh-

olding does not work well because the background image is seldom static. The intensities of

background pixels vary due to image noise, presence of shadows cast by the foreground object

and time varying illumination. More over, the appearance and color of the foreground may

be similar to the background resulting in mis-classification. However, in controlled scenes (a

blue-screenis sometimes used), such a simple background subtraction approaches can pro-

duce silhouettes of acceptable quality. Some post-processing is required to clean up the noisy

silhouettes. This is done via local morphological operations on the image such asdilation and

erosion[67], and connected component analysis of foreground blobs in the segmented image.

A more flexible approach involves using a per-pixel intensity distribution to model the

appearance of the dynamic background. The per-pixel distribution is modeled as a mixture of

Gaussians, whose parameters must be estimated using a priortraining sequence, where only

the background is observed. Statistical modeling for suchadaptive background segmentation

techniques are described in detail in [56, 132]. Methods such as [65, 151] explicitly model

intensity variation in the background due to cast shadows and can thereby compute more

accurate silhouettes.

Per-pixel classification methods are fast but fail to guarantee spatially coherent foreground

segments. Image morphology only addresses this partially –the silhouette boundaries can

get considerably eroded by successiveerosionand dilation operations. A more powerful

technique for solving the background segmentation problemuses a global approach based on

energy minimization in a Markov Random Field (MRF) framework. The MRF framework

was introduced in Chapter5.3, and has been widely used for low level pixel labeling problems
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such as stereo, segmentation and image restoration. The framework encourages smoothness

(spatial coherence) in the labeling. In our case, the binarylabels represent foreground and

background respectively. Such binary energies can be efficiently minimized using graph cuts.

The per pixel data term in the energy is derived from its likelihood of being foreground (or

background), whereas the commonly used Pott model is used for the smoothness energy.

To summarize, the silhouettes used in our experiments were obtained by a variety of tech-

niques. For recovering silhouettes from video in controlled scenes, we used simple back-

ground subtraction with morphological operations. For some data sets, graph-cut based back-

ground segmentation was used. Note that the data sets used inour experiments were captured

by other researchers in fairly controlled interior scenes with relatively simple backgrounds.

The simple background segmentation approaches described here were sufficient for our pur-

pose. As more powerful automatic segmentation techniques are developed [36, 74, 112], it

will become possible to use the techniques proposed in this thesis on more complex outdoor

scenes with dynamic backgrounds.

B-1.2 Silhouette Extraction in Images

The multi-view stereo method proposed in this thesis assumes that calibrated images of an

object captured from multiple viewpoints were available along with their silhouettes. The

data sets used in our experiments were acquired in a special manner. The object was placed

on a turn-table and a static camera was used to capture imagesas the turntable was rotated. In

some cases, the silhouettes were extracted manually [45]. While this is a tedious step, many

semi-interactive techniques for silhouette extraction ofobjects exist in the literature. Many of

the earlier techniques, based on snakes [71], required good initialization and were susceptible

to the problem of local minima. Recently, some practical, interactive image segmentation

methods [30, 112] have been developed. These techniques are in general easier to use and

provides more control to the user, as compared to snake-based methods.
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In the system developed by [57], a simple background (screen) of relatively constant color

was used during the turntable acquisition process. The silhouettes were then automatically ex-

tracted using a variety of segmentation techniques – a) a color histogram approach which per-

forms a binary classification of pixels based on appearance (similar to the techniques described

in the previous section), b) a level set algorithm using the Mumford Shah model [33, 145] and

c) the JSEG algorithm [36]. The details of each of these techniques are described in [57]. An

interesting approach that combines silhouette extractionwith volumetric 3d reconstruction

was proposed by [21].

B-2 Sparse Bundle Adjustment

An indispensable part of any structure from motion pipelineis bundle adjustment– a method

to refine the complete scene structure (3D point set) and camera parameters simultaneously, by

minimizing the reprojection error of the structure in all the images, given a set of correspon-

dences in multiple views. It involves solving a large globaloptimization problem, where all

camera parameters and structure parameters are refined simultaneously. This is typically the

final step of a 3D reconstruction pipeline and involves nonlinear minimization of an objective

function of the following form:
∑

i,j

d(PiXj ,x
i
j)

2

Hered(m,m′) is the reprojection error between the 2D homogeneous pointsm andm
′ in the

image, Pi denotes theith projection matrix in the sequence,Xj denotes thejth 3D homoge-

neous point that is observed in theith image at pixelxi
j. Although thousands of parameters

need to be simultaneously optimized in a typical problem instance, the Jacobian has a sparse

structure, since the parameters of different cameras do notinteract with each other. A similar

form of bundle adjustmentis used to refine the Euclidean (metric) structure and calibration

and this is sometimes referred to asEuclidean bundle adjustment.
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In practice,bundle adjustmentrequires good initialization and assumes that the measure-

ments are free of outliers. The minimization of the nonlinear objective function is done using

the iterative Levenberg-Marquardt method [90]. In fact, a sparse version of the Levenberg

Marquardt method is used in bundle adjustment. It exploits the sparse structure of the Jaco-

bian and every iteration of the algorithm involves solving asparse linear system. A detailed

description of the algorithm is provided in [55], and forms the basis of the implementation

used in this thesis.

B-3 The Min-cut/Max-flow problem

A flow networkG(V, E), is defined as a fully connected directed graph where each edge(u, v)

ǫ E has a positive capacityc(u, v) ≥ 0. Two special vertices in a flow network are designated

thesources, and thesinkt, respectively. Aflow in G is a real-valued functionf : V ×V → R

that satisfies the following properties:

• Capacity Constraint: ∀ u,v ǫ V , f(u, v) ≤ c(u, v).

• Skew Symmetry: ∀ u,v ǫ V , f(u, v) = −f(v, u).

• Flow Conservation: ∀ u ǫ (V -{s, t}), ∑

vǫV f(u, v) = 0.

The value of a flow is defined as|f | = ∑

vǫV f(s, v) ie. the total flow out of the source inG.

The max-flow problem is to find the flow of maximum value onG.

A s-t cutor simplycut of G, is a partition ofV into S andT = V − S, such thats ǫ S

and t ǫ T . For a given flowf , the net flowacross the cut(S, T ) is defined asf(S, T ) =
∑

xǫS

∑

yǫT f(x, y). Using a similar notation, the capacity of a cut(S, T ) is defined as

c(S, T ) =
∑

xǫS

∑

yǫT c(x, y). A minimum cutof a flow network is a cut whose capacity

is the least over all the s-t cuts of the network. An example ofa flow network is shown in

Figure8.5.
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Figure 8.5: (a) The figure (taken from Cormen et. al. [28] shows a flow networkG(V, E) with
a valid flowf . The values on the edges aref(u, v)/c(u, v). The current flow has value 19.
Note that this is not a maximum flow.

Theorem 1. The max-flow min-cut theorem : Iff is a flow in a flow networkG = (V, E) with

sources and sinkt then the value of the maximum flow is equal to the capacity of a minimum

cut. Refer to Cormen et. al. [28] for the proof.

The intuition behind the proof is as follows. The maximum flowmust saturate edges in

the flow network such that no further flow can be pushed. These saturated edges must lie on

one of the min-cuts. This result allows one to compute the minimum cut of a flow network by

first solving for the max-flow, for which polynomial time algorithms exist.

The single-source single-sink max-flow problem described above is a specific case of the

more general multiway cut problem, where there arek terminals and a multiway cut is a

minimum set of edges which separates each terminal from all the others. It has been shown

that if k ≥ 3, the problem is NP-Hard. However, in this thesis, we will only be concerned

with the case (k = 2), which can be exactly solved in polynomial time. A brief description of

these algorithms is now presented.

B-3.1 Algorithms for Computing Max-flow

The polynomial algorithms for the single-source single-sink max-flow problem can be divided

into two classes, algorithms based on the Ford Fulkerson method [39] and those based on the

push-relabelmethod [52]. The two contrasting approaches are described below.

The intuitive idea behind the Ford-Fulkerson method is thatstarting with zero flow ie.
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f(u, v) = 0 for all u, v ǫ V , the flow can be gradually increased by finding a path froms to t,

along which more flow can be sent. Such a path is called anaugmenting path, and once it has

been found, the flow can be augmented along this path. The process if repeated, must end after

a finite number of iterations, after which noaugmenting pathsbetweens andt exist anymore.

A typical algorithm of this type maintains for a given flowf , theresidual graphof G, called

Gf whose topology is identical toG but whose edge capacities stores the residual capacity of

all the edges, given that there is already some flow in them. The search for anaugmenting

pathat theith iteration is done on the currentresidual graphGfi
. Once anaugmenting pathis

found, the maximum amount of flow that can be sent down it,fincr must saturate at least one

of the edges of this path. The new flow at the end of the iteration will be fi + fincr.

The running time complexity of different algorithms will ingeneral vary depending on

how theaugmenting pathis chosen. Dinic algorithm [37] that uses breadth-first search to find

the shortest paths froms to t on theresidual graph, has an overall worst case running time of

O(n2m), n being the number of nodes and m being the number of edges.

In contrast to the Ford-Fulkerson method where augmenting the flow operates on the com-

pleteresidual graph, thepush-relabelalgorithms operate locally on a vertex at a time, inspect-

ing only its neighbours. Unlike the Ford-Fulkerson method,the flow conservation property is

not satisfied during the algorithm’s execution. The intuitive idea here is to associate a notion

of height along with all the nodes in the network. The height of the source and sink are fixed

at |V | and0 respectively, and at the beginning, all other vertices are at height0. The algorithm

starts by sending flow down from the source and the amount of flow sent, saturates all the

outgoing edges. All intermediate nodes have a buffer or a reservoir that can store excess flow.

Nodes with positive excess flow are said to be overflowing nodes. Overflowing nodes try to

push the excess flow downhill. However, when an overflowing node finds the edges to its

neighbours at the same height as itself saturated, it increments its own height, a process which

is called “relabeling”. This allows it to get rid of the excess flow. The algorithm terminates
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when none of the nodes inV are overflowing. Often, excess flow accumulated in the interior

nodes is sent back to the source by relabeling these nodes with height beyond|V |.

The genericpush-relabel algorithmsthus have two basic operations –pushflow andre-

label an overflowing node, and Cormen et. al. [28] proves that a genericpush-relabelstyle

algorithm has aO(n2m) worst case running time, and there are certainO(n3) algorithms in

this class. Refer to [39, 52] for the details of the algorithms, relevant data structures and

practical trade-offs in implementations.

The max-flow implementation used in various parts of this thesis uses a variant of the

augmenting pathbased method that was experimentally shown to be efficient for grid graphs

that are common in computer vision [14]. Grid graphs are sparse, have uniform connectivity

at all vertices and a large number of connections to the source and sink nodes. The main

difference in [14], lies in the method for computing theaugmenting paths. Generally, these

paths are recomputed on theresidual graphfrom scratch, but this is a costly operation on large

grid graphs as the breadth first search visits all vertices. The main improvement proposed

by [14], was to reuse search trees in a way, such that subsequentaugmenting pathscould

be computed efficiently. This algorithm has a worst case timecomplexity of O(n2m|C|)

where|C| is the maximum capacity, but has been shown to be faster thanpush-relabelbased

implementations, on a variety of problem instances.
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[53] Markus Gross, Stephan Würmlin, Martin Naef, Edouard Lamboray, Christian Spagno,
Andreas Kunz, Esther Koller-Meier, Tomas Svoboda, Luc Van Gool, Silke Lang, Kai
Strehlke, Andrew Vande Moere, and Oliver Staadt. blue-c: a spatially immersive dis-
play and 3d video portal for telepresence.ACM Trans. Graph., 22(3):819–827, 2003.

[54] M. Habbecke and L. Kobbelt. A surface-growing approachto multi-view stereo re-
construction. InComputer Vision and Pattern Recognition, 2007. CVPR ’07. IEEE
Conference on, pages 1–8, 2007.

[55] Richard Hartley and Andrew Zisserman.Multiple View Geometry in Computer Vision,
volume 23. Cambridge University Press, New York, NY, USA, 2005.

[56] Eric Hayman and Jan-Olof Eklundh. Statistical background subtraction for a mobile
observer.Computer Vision, IEEE International Conference on, 1:67, 2003.

[57] Carlos Hernández.Stereo and Silhouette Fusion for 3D Object Modeling from Un-
calibrated Images Under Circular Motion. PhD thesis, Ecole Nationale Supŕieure des
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