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ABSTRACT 
 

Yejee Han: Spectroscopic Investigations of Electron Transfer Processes at Dye-sensitized 
Photoelectrodes 

(Under the direction of Jillian L. Dempsey) 
 

      Over the last century, energy demands have grown quickly due to an increasing global 

population. To limit our dependence on fossil fuels, it is desirable to seek environmentally 

clean, alternative energy resources. Solar energy is expected to be a good, renewable 

energy candidate because of environmental protection. Crystalline silicon-based 

photovoltaic devices used most frequently, with solar to electricity conversion efficiencies 

of approximately 25%. However, high cost and complicated fabrication processes excluded 

conventional silicon-based solar cells from  domestic and other commercial applications. 

Dye sensitized solar cells (DSSCs) provide a promising low-cost technology for capturing 

solar energy. Until recently, researchers have been focused on n-type DSSCs that use a 

wide-band-gap n-type semiconductor oxide such as TiO2 or ZnO. Even though comparably 

fewer studies have examined p-type semiconductors, scientific interest has quickly grown 

to understand the factors that control the rate of hole photoinjection and to design more 

efficient systems. 

Core-shell nanoporous electrode has been used in dye-sensitized solar cells (DSSCs) and 

dye-sensitized photoelectrosynthesis cells (DSPECs) as one of the most effective strategies 

providing energy barrier of recombination process. We have used a core/shell consisting of 

an inner core of a SnO2 and a thin outer shell of TiO2 prepared by use of atomic layer 

deposition (ALD), where the band potential of the shell is more negative than that of the 
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core. Transient absorption spectroscopy was used to investigate the interfacial charge 

recombination dynamics to elucidate the dominated mechanism between tunneling and 

shell-localized BET in different shell thickness architecture.  This study will enable us to 

use as a quantitative guide for ideal core/shell electrodes in optimizing the most efficient 

solar cells. 
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CHAPTER 1. Enhancing Charge Separation in Dye-Sensitized NiO Photocathodes 
through Ligand Electronics of Ruthenium Chromophores 

 

Introduction 

Dye-sensitized solar cells (DSSCs) and dye-sensitized photoelectrosynthesis cells 

(DSPECs) provide a promising low-cost technology for capturing and converting solar 

energy to electricity and fuels, respectively. The vast majority of research in this field has 

focused on n-type semiconductor materials such as TiO2.1 However, the dye-sensitization 

of p-type semiconductor materials such as NiO has garnered attention as both a new 

approach to converting solar energy and as a necessary component for tandem 

configuration devices.2  

Unfortunately, NiO-based p-type DSSCs typically perform poorly in comparison to 

TiO2-based n-type devices.2 Low power conversion efficiencies of NiO-based systems 

stem from fast charge recombination kinetics. These high rates of charge recombination 

have been attributed to the intrinsic electronic properties of NiO, including its low hole 

mobility, low permittivity and high defect density.2 In response, scientific interest has 

quickly grown to understand how materials engineering and chromophore development 

can be utilized to overcome these issues inherent to NiO and access efficient 

photocathodes. From a materials perspective, efforts have focused on both improving the 

preparation of nanostructured, mesoporous NiO electrodes3,4 and tuning the electronic 

structure of NiO through morphology control5 and defect passivation.6–10 In a 
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complementary approach, researchers have examined how chromophores can be designed 

to retard charge recombination.11–21 For example, “push-pull,”20,22,23 “donor-sensitizer,” 

and “acceptor-sensitizer” chromophores17–19,21,24,25 have been designed to localize 

electrons distal to the surface anchoring moieties in order to enhance charge separation 

times, which can be quantified by transient absorption measurements. Through these 

improvements,17,26 photon conversion efficiencies of 2.51% have been achieved for a p-

type DSSC.27  

While many of the best-performing NiO sensitizers are organic chromophores,18–

20,22,23,25,28–31 ruthenium polypyridyl complexes have also been reported. However, in 

comparison to the extensive number of ruthenium-based dyes investigated for TiO2-based 

photoanodes1,32–35, the number explored for NiO is few.12–14,36 Ruthenium-based 

dyes11,12,14,37,38 have many properties beneficial to both photoanode and photocathode 

applications including their long-lived photoexcited state, their chemical stability, and 

their easy synthetic modification to modulate photophysical and electrochemical 

properties.39 Recognizing the utility of ruthenium-based chromophores for the 

sensitization of NiO, we are interested in better understanding how the ligand electronics 

of basic ruthenium polypyridyl chromophores influence interfacial charge separation. In 

the chromophore [Ru(bpy)2(dcb)]2+ (1, Scheme 1, bpy = 2,2'-bipyridine, dcb = 4,4'-

dicarboxy-2,2'-bipyridine), the carboxylic acid groups of the dcb ligand anchor the dye to 

the NiO surface.40 However, the electron-withdrawing nature of the carboxylic acid 

groups lowers the ligand π* orbitals of the dcb ligand. In the metal-to-ligand charge 

transfer (MLCT) excited state, an electron localizes on this dcb ligand. Upon hole 

injection to NiO, this electron remains localized on the ligand proximal to the metal oxide 
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surface.40 As such, this positioning may facilitate rapid interfacial charge recombination 

in the charge separated state. We recognized that by incorporating electron-withdrawing 

groups on the ancillary bipyridine ligands, the MLCT excited state and the electron in the 

reduced dye is localized distal to the NiO-chromophore interface and have sought to 

further examine how charge separation timescales are influenced in simple ruthenium 

polypyridyl complexes (without ancillary acceptor moieties).11,13,15,40  

In this work, we examine [Ru(flpy)2(dcb)]2+ (2, Scheme 1, flpy = 4,4'-

bis(trifluoromethyl)-2,2'-bipyridine) in order to understand how simply positioning the 

ligand with the lowest-energy π* orbital proximal versus distal to the NiO surface affects 

both charge recombination dynamics and DSSC performance. Through ultrafast transient 

absorption studies, we find that indeed the charge separated state can be transiently 

observed for 2 but not for 1. In addition, performance of these chromophores in p-type 

DSSCs reveals improved efficiencies for 2 as compared to 1, suggesting correlation 

between elongated recombination time and device efficiency.  

Scheme 1.1. Ruthenium complexes investigated in this work. 

  

 

1.1. Experimental methods 

1.1.1.General Considerations.  



 4 

2-Chloro-4-(trifluoromethyl)pyridine, ruthenium trichloride trihydrate (RuCl3·3H2O), 

2,2’-bipyridine-4,4’-dicarboxylic acid (dcb) were purchased from Aldrich and used as 

received. Tetrabutylammonium hexafluorophosphate (TCI, >98%) was recrystallized 

from hot ethanol, filtered, washed with cold ethanol, and dried under vacuum for 19 h at 

room temperature before use. All other reagents were ACS grade and used without 

additional purification. Ru(bpy)2Cl2 was synthesized as previously reported.41 

1.1.2. Synethesis   

4,4'-bis(trifluoromethyl)-2,2'-bipyridine (flpy).  

The synthesis of 4,4'-bis(trifluoromethyl)-2,2'-bipyridine (flpy)  was accomplished by 

the nickel catalyzed homo-coupling reaction of 2-chloro-4-(trifluoromethyl)pyridine 

following a modified literature procedure.42 Briefly, 2-chloro-4-(trifluoromethyl)pyridine 

(2 g, 11 mmol), was reacted with NiBr2(PPh3)2 (2.45 g, 3.3 mmol), Zn (1.08 g, 16.5 

mmol), and Et4NI (2.83 g, 11 mmol) were refluxed in THF at 60 °C under   an inert N2 

atmosphere. After the solution was cooled, the mixture was poured into the 10% 

ammonium hydroxide (100 mL) and extracted with dichloromethane (150 mL x 3 times). 

The organic layer was dried over MgSO4 and the crude product was purified on silica gel 

column (10-30% DCM / hexane). White solid was collected. Yield (0.72 g, 22%). 1H 

NMR (400 MHz, CDCl3): δ 7.57 (2H, d, J=4.8 Hz), 8.72 (2H, s), 8.87 (2H, d, J=4.8 Hz). 

19F NMR (377 MHz, CDCl3): δ 64.81. 

4,4’-Dimethyl ester-2,2’-bipyridine.  
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4,4’-Dimethyl ester-2,2’-bipyridine (dmeb) was synthesized by a modified literature 

precedure43. 4,4’-Dicarboxy-2,2’-bipyridine (0.13 g, 0.55 mmol), 30 mL of MeOH, and 3 

mL of H2SO4 were refluxed for 24 hours under N2. After the solution was cooled, water 

was added (60 mL) and the solution was basified to pH 8 with a NaOH solution. The 

product was then extracted with CH2Cl2 and the organic layer was dried over MgSO4 and 

evaporated to yield a white solid.43 Yield (0.10 g; 67%) 1H NMR (400 MHz, CDCl3): δ 

4.03 (6H, s), 7.93 (2H, dd, J=4, 8 Hz), 8.90 (2H, d, J=4Hz), 8.99 (2H, s). 

Ru(flpy)2Cl2.  

This compound was prepared via modification of the method utilized for Ru(bpy)2Cl2 

synthesis.41 RuCl3·3H2O (0.14 g, 0.7 mmol), flpy (0.40 g, 1.4 mmol), and LiCl (0.17 g, 

4.1 mmol) were refluxed in DMF (4 mL) for 8 h under N2. The reaction mixture was 

cooled to room temperature, and acetone (32 mL) was added. The reaction mixture was 

then cooled to 0 °C and vigorously stirred for 1 hour. The solution was then stirred 

overnight as it warmed to room temperature. The mixture was then filtered over a glass 

frit, yielding a red-violet filtrate and a black crystalline substance. The solid was washed 

three times with 10 mL portions of water followed by three 10 mL portions of diethyl 

ether, and was subsequently dried under vacuum (Yield: 0.18 g; 35%). 1H NMR (400 

MHz, DMSO-d6): δ 7.45 (2H, d, J=6.4 Hz), 7.95 (2H, d, J=8 Hz), 8.21 (2H, d, J=6.8 Hz), 

9.27 (2H, s), 9.43 (2H, s), 10.19 (2H, d, J=6 Hz) 

[Ru(bpy)2(dcb)](PF6)2 (1).  

[Ru(bpy)2(dcb)](PF6)2 was prepared with modified literature procedure.43 Ru(bpy)2Cl2 

(0.60 g, 1.2 mmol) and 4,4’-dicarboxy-2,2’-bipyridine (0.30 g, 1.2 mmol) were combined 
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and heated to refluxed in 1:1 (v/v) EtOH:H2O (50 mL) under N2 condition for 12 hours. 

After the mixture was cooled to the room temperature, excess NH4PF6 was added, and the 

solvent was removed by rotary evaporation. The crude solid was washed with distilled 

water and ether to yield 0.91 g of orange solid powder. (Yield: 78%) 1H NMR (400 MHz, 

DMSO-d6): δ 7.53 (4H, dt, J=6, 22 Hz), 7.73 (4H, dd, J=4.8, 16 Hz), 7.90 (4H, dd, J=5.6, 

26 Hz), 8.19 (4H, m), 8.85 (4H, m), 9.24 (2H, s). 

[Ru(bpy)2(dmeb)](PF6)2 (1′).  

This compound was prepared through a method similar to that employed for 1, using 

dmeb ligand as an auxiliary ligand. A mixture of Ru(bpy)2Cl2 (0.12 g, 0.26 mmol) and 

dmeb (0.07 g, 0.26 mmol) in 1:1 (v/v) EtOH:H2O (20 mL) was heated to reflux under N2 

for 12 hours. After the solution was cooled to the room temperature, excess NH4PF6 was 

added and the solvent was removed by rotary evaporation. The crude solid was washed 

with distilled water and ether and filtrated to yield 0.02 g of orange solid powder was 

collected.43 (Yield: 85%) 1H NMR (400 MHz, DMSO-d6): δ 3.42 (6H, s), 6.94 (2H, t, J=4 

Hz), 7.01 (2H, t, J=4 Hz), 7.16 (4H, m), 7.34 (2H, dd, J=4, 8 Hz), 7.43 (2H, d, J=4 Hz), 

7.64 (4H, m), 8.30 (4H, m), 8.78 (2H, s) 

[Ru(flpy)2(dcb)](PF6)2 (2).  

This compound was synthesized by a modified literature procedure.43 Ru(flpy)2Cl2 

(0.15 g, 0.21 mmol) and 2,2’-bipyridine-4,4’-dicarboxylic acid (0.05 g, 0.21 mmol) were 

combined and heated to reflux in 1:1 (v/v) EtOH:H2O (20 mL) under a N2  atmosphere 

for three days. The reaction mixture was cooled to room temperature and excess NH4PF6 

was added to precipitate the product. Subsequently, solvent was removed with rotary 
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evaporation. The crude solid was washed with distilled water and ether and filtered. 0.02 

g orange-red solid powder was collected. (Yield: 82%) 1H NMR (400 MHz, DMSO-d6): 

δ 7.80 (2H, d, J=4.8 Hz), 7.85 (4H, m), 7.89(2H, d, 5.2 Hz), 7.99 (2H, d, J=6Hz), 8.09 

(2H, d, J=5.6 Hz), 9.17 (2H, s), 9.56 (4H, s). 19F NMR (377 MHz, CDCl3): δ -71.1 (s, 

6F), -69.2 (s, 6F). 

1.1.3. Absorbance and Steady-State Emission.  

Absorbance measurements were acquired with an Agilent Cary 60 UV-Vis absorption 

spectrometer (for solution measurements) and a Cary 5000 UV-Vis Spectrometer with 

integrating sphere attachment (for the film samples). Room temperature emission spectra 

were collected with a QuantaMaster QM4SE emission spectrometer from Photon 

Technology International. Low temperature emission spectra were collected with an 

Edinburgh Instruments FLS920 spectrometer, with excitation by an Edinburgh EPL-445 

ps pulsed laser diode (444.2 nm, pulse width = 95 ps, 2 MHz). All spectra were corrected 

for fluctuations in lamp intensity and the spectral response of the monochromator and 

photomultiplier tube.  

For film measurements, films were inserted diagonally into a 10 mm path length quartz 

cuvette whose top had been adapted with a no. 15 O-ring sealing joint, side arm, and 

Kontes valve. The cuvette was filled with a 0.1 M LiClO4 CH3CN solution and the 

sample was sparged with N2 for 40 min prior to recording absorbance or emission data. 

All solution samples were prepared under an inert atmosphere and recorded in 10 mm 

pathlength, air-tight quartz cuvettes. 
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1.1.4. Electrochemical Measurements.  

Cyclic voltammograms were collected in a nitrogen-filled glovebox with a Pine 

Instruments WaveDriver potentiostat using glassy carbon working electrodes, a platinum 

counter electrode, and a Ag/AgNO3 (10 mM AgNO3) reference electrode. All scans were 

performed in acetonitrile solutions with 200 mM [Bu4N][PF6] and referenced to the 

ferrocene/ferrocenium couple (Fc+/0). Glassy carbon working electrodes (CH Instruments, 

3 mm diameter) were polished with 0.3 micron alumina powder and 0.05 micron alumina 

powder (CH Instruments, contained no agglomerating agents), rinsed and ultrasonicated 

for one minute in HPLC grade water to remove residual polishing powder.  

1.1.5. Metal Oxide Film Fabrication.  

FTO glass substrates (fluorine doped SnO2, Hartford Glass,  Inc., TEC 15) were cut to 

size and then cleaned in an ultrasonic bath first in acetone and finally in ethanol, for 30 

minutes each. Nanocrystalline ZrO2 films were prepared on FTO-coated glass according 

to a previously reported procedure.44 Thin films were prepared using the doctor blade 

method with tape-casting and sintered at 450 °C for 120 min. All films were 

approximately 1.4 µM thick. Nanocrystalline NiO films were prepared using a sol-gel 

method. A 1 wt%  suspension of hydroxypropyl cellulose (HPC) in ethanol was prepared 

by adding 1.3 g HPC to 15 mL ethanol followed by stirring overnight. 0.5g Ni-Nanoxide 

N/SP nanoparticle paste (Solaronix) was transferred to 5 ml ethanol and sonicated for 20 

minutes followed by ultrasonication for 5 minutes with a sonicating horn. To this freshly 

mixed NiO dispersion, 5mL of the 10 wt% HPC suspension were added and the final 

mixture stirred overnight. NiO films  were deposited onto conducting glass substrates by 

the doctor blade technique. Film thickness was controlled by the numbered layers of 
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scotch tape used for define the exposed area. For thermal annealing, the NiO films were 

placed in a Thermo Scientific TM box furnace. The temperature was ramped to 400 °C in 

30 min, held for 1 hour at 400 °C; and lowered back to room temperature for 1 hour in 

air. The obtained film thickness after annealing was approximately 1.2 µm, when one 

layer of scotch tape was used. A Dektak Bruker profilometer was used to determine film 

thickness. Preparation of mesoporous electrodes with NiO nanoplatelets are described 

below in the DSSC Preparation section. 

1.1.6. Surface Loading of Dyes on NiO and ZrO2 Films.  

For optical characterization (absorbance, transient absorption, spectroelectrochemistry), 

nanocrystalline films were loaded with chromophores to produce chromophore-

derivatized films. Sensitizers were anchored to the NiO and ZrO2 nanocrystalline films 

by immersing the sintered slides overnight in methanol solutions containing compound 1 

or 2 (1×10-5 - 2×10-5 M). The slides were then soaked in methanol solution to remove 

excess unanchored complexes. Surface loading was quantified via UV-Vis absorption 

spectroscopy per previously reported methods,45,46 where Γ (mol cm-2) = A(λ)/ε(λ)/1000, 

using the molar extinction coefficients (ε) in solution. The extent of surface loading 

coverage of the nanocrystalline films is estimated as Γ = 4.9×10–9 mol cm-2 and Γ = 

6.13×10–9 mol cm-2 respectively for 1 and 2. 

1.1.7. Nanosecond Transient Absorption Spectroscopy.  

 All samples utilized in transient absorption measurements were were prepared in 0.1 M 

LiClO4 CH3CN solution under an inert atmosphere and recorded in 10 mm pathlength, 

air-tight quartz cuvettes. Samples were purged with N2 for at least 40 min prior to 
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experimentation. Transient absorption experiments were performed using a custom-built 

laser flash photolysis system. Laser excitation (5-7 ns FWHM, 10 Hz, Q-switched) was 

provided by the third harmonic of a Nd:YAG laser (Spectra-Physics, Inc., model Quanta-

Ray LAB-170-10) that pumped an OPO (basiScan, GWU Lasertechnik) to access tunable 

excitation (415–800 nm). Laser power at the sample cuvette was attenuated by the use of 

a half waveplate (WPMH10M-355, ThorLabs) and polarizer (GL10-A, ThorLabs). A 

glass window was used to deflect a small portion of excitation beam to a Si diode 

detector (DET10A, ThorLabs), triggering the oscilloscope to start data collection. Timing 

of the laser was controlled by a digital delay generator (9514+ Pulse Generator, Quantum 

Composers). 

A 75 watt Xe Arc Lamp (PowerArc, Optical Building Blocks) was used in continuous 

wave mode as a white light source. The probe beam was passed through a 375 nm long 

pass filter before passing through the sample collinear with the pump beam. Probe light 

was then attenuated using a neutral density filter, and scatted excitation light is filtered 

with a color filter wheel containing various long pass and short pass filters. Single 

wavelength kinetics were obtained using a double slit monochomator (Spectral Products 

CM112) outfitted with a Hamamatsu R928 photomultiplier tube (PMT). The signal was 

amplified by a 200 MHz wideband voltage amplifier (DHPVA-200, Electro Optical 

Components), and processed using a digitizer (CompuScope 12502, GaGeScope) 

controlled by custom software (MATLAB). The data were converted to units of ΔOD 

(ΔOD = -log(I/I0), where I is the time-resolved probe light intensity with laser excitation, 

and I0 is the intensity without excitation). Data was further analyzed in Igor Pro 6.22 

(Wavemetrics). 



 11 

1.1.8. Ultrafast Transient Absorption Spectroscopy.  

Ultrafast transient absorption was performed using a 1 kHz regeneratively amplified 

Ti:Sapphire laser system, Clark-MXR CPA2210. A portion of the 775 nm laser 

fundamental was converted to 1834 nm via optical parametric amplification. This beam 

was then frequency doubled to 917 nm with a BBO crystal, and then combined with 

residual 775 nm in another BBO crystal to yield the 420 nm pump. The white light 

continuum probe was generated by pumping a translating CaF2 plate with another portion 

of the 775 nm laser fundamental. The polarization of the pump was set to the magic 

angle, 54.7°, relative to the white light continuum probe with a waveplate. Timing of the 

pump and probe was achieved with a computer controlled delay stage. Low pass filters 

were employed on the pump and probe to eliminate residual 775 nm fundamental. The 

per-pulse fluence was 450 µJ/cm2 or less. Data collection and analysis was performed 

with custom made LabView software. Optical chirp was corrected according to the 

frequency resolved optical gating of a glass slide. 

1.1.9. DSSC Preparation.  

p-type dye-sensitized solar cells were fabricated as previously described.5,6 Mesoporous 

electrodes (~1.6 µm in thickness ) of NiO nanoplatelets were obtained by spincasting 

(Laurell WS-650MZ-23NPP ) a viscous nanoparticle paste onto fluorine-doped tin oxide 

(FTO glass; Hartford Glass, TEC15).47 The films were then annealed (450 °C, 40 min; 

<20% Humidity). The active area of the electrodes was defined by mechanically 

removing excess material. The electrodes were then immersed in dye solution (0.1 mM in 

EtOH) overnight, rinsed with IPA, and dried with N2. Thermal decomposition (380 °C, 
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30 min) of chloroplatinic acid (5 mM in IPA) was performed on FTO glass with a pre-

drilled hole to fabricate the counter electrode. The electrodes were then sandwiched using 

a 25 µm Surlyn gasket in a custom-made heat press (150 °C; 10 s). The hole was sealed 

with Surlyn (150 °C; 5 s). Z960-like electrolyte (1.0 M 1,3-dimethylimidazolium iodide, 

iodide (0.03 M), tert-butylpyridine (0.5 M), and guanidium thiocynanate (0.1 M) in 85/15 

(v/v) acetonitrile/valeronitrile) was vacuum backfilled. The cell was then sealed (150 °C; 

5 s) with a Surlyn film and a microscope coverslip.  

1.1.10. DSSC Characterization.  

Light harvesting efficiencies (LHE) were calculated by subtracting the absorbance of 

the undyed films from the dyed films with a systematic offset at 700 nm to account for 

small variability in background absorption. The difference spectra was then converted to 

absorptance. The LHE values presented here thus represent dye only. 

J-V curves were obtained using a Newport Oriel 150W class ABB AM1.5G solar 

simulator calibrated to 1-sun intensity with a certified reference solar cell (Newport 

91150V) using a Keithley 2636A sourcemeter. Incident photon to current efficiency 

(IPCE) measurements were obtained by illuminating devices with a tungsten lamp 

(Newport Instruments) coupled to a spectrometer (Princeton Instruments SP-2300). 

Device carrier lifetimes were obtained from Voc decays (sampling rate, 1 kHz) with a 

starting illumination of 1-sun and a shutter response of <1 s. The decay was fit to a tri-

exponential decay with an adjusted-R2>0.98. The derivative of the decay, !"!"
!"

, was 

input into Equation 1: 
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𝐿𝑖𝑓𝑒𝑡𝑖𝑚𝑒 =  !"
!
· !"!"

!"

!!
  Eq. 1 

where k is the Boltzmann constant, T is temperature, and q is the elementary charge. 

1.2. Results and Discussions 

1.2.1. Synthesis and Characterization of Chromophores.  

1 and 2 were synthesized following modified literature procedures (Scheme 2). Briefly, 

the flpy ligand was synthesized via a Negishi coupling of 2-chloro-4-

trifluoromethyl)pyridine.42 Ru(flpy)2Cl2 and Ru(bpy)2Cl2 were prepared by refluxing 

RuCl3·H2O with two equivalents of the corresponding bipyridine in N,N-

dimethylformamide in the presence of LiCl.48 The heteroleptic ruthenium complexes 1 

and 2 were obtained via reaction of Ru(bpy)2Cl2 and Ru(flpy)2Cl2 with 4,4’-dicarboxy-

2,2’-bipyridine, followed by anion exchange with NH4PF6. 

 

Scheme 1.2. Synthesis of 1 and 2. 
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Both 1 and 2 exhibit similar absorbance features in acetonitrile (Figure 1). In the UV 

region, intense ligand-localized π→π* charge transfer transitions are observed below 300 

nm. Broad metal-to-ligand (MLCT) absorption bands39 are observed centered at 468 (1) 

and 460 (2) nm, with molar extinction coefficients measured as 13,750 (1) and 12,630 (2) 

M-1cm-1, consistent with previous reports.49 Upon excitation, both complexes display 

structureless luminescence centered at 642 (1) and 674 (2) nm at room temperature 

(Figure 1). The free energy stored in the excited state (Δ𝐺!") was estimated from a 

tangent line drawn on the high-energy vibronic progression in corrected PL spectrum at 

low temperature, following a previously reported procedure (Table 1)50 

 

Table 1.1. Photophysical and electrochemical data of compound 1 and 2 

Dye λabs (nm) λem (nm) 𝑬°′ox
§ 𝑬°′red

§ ΔGes (eV) 𝑬°!∗§ 

1 468 642 1.00 -1.70, -1.92, -2.23 2.11 0.41 

2 460 674 1.28 -1.24, -1.43, -2.05 2.16 0.92 

§ V vs. Fc+/0 

 

 

Figure 1.1. Normalized absorption and photoluminescence spectra of 1 and 2 in 

acetonitrile solutions. 
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Nanosecond transient absorption (TA) spectroscopy was carried out to investigate the 

excited state of ruthenium dyes in acetonitrile (Figure 2). Upon excitation, the TA spectra 

of both sensitizers display a ground-state bleach centered around 450 nm, which roughly 

mirrors the ground-state absorption peak. A positive absorption band at 385 nm is 

assigned to a π→π* transient feature. The decay of these excited-state features (Figure 3) 

were fit to single exponential functions (τ(1) = 0.88 µs, τ(2) = 1.12 µs); the excited state 

lifetimes are in good agreement with the time-resolved photoluminescence lifetimes (τ(1) 

= 0.89 µs, τ(2) = 1.19 µs). 

 

Figure 1.2. Transient absorption spectra of (A) 1 and (B) 2 in 0.1 M LiClO4 CH3CN 

solution at various time delays. λex = 480 nm, 3.8 mJ/pulse. 
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Figure 1.3. Transient absorption kinetics traces and time-resolved emission decay of 1 

and 2 in degassed CH3CN solutions. Transient absorption: λex = 480 nm, λobs = 445 nm, 

τ(1) = 0.88 µs, τ(2) = 1.12 µs. .  Emission: λex = 480 nm, λobs = 650 nm, τ(1) = 0.89 µs, 

τ(2) = 1.19 µs. 

 

Cyclic voltammograms of 1 and 2 in acetonitrile solution both show a reversible 

oxidation feature (1.00 and 1.28 V vs Fc0/+, respectively), assigned to the Ru(III/II) 

couple (Figure 4). The 280 mV difference in these potentials is consistent with the 

electron-withdrawing nature of the flpy ligands, which makes the ruthenium center of 2 

harder to oxidize. Three ligand-based reductions are observed in the cathodic scans. Two 

quasi-reversible peaks at –1.24 and –1.43 V vs. Fc+/0 and an irreversible peak at –2.05 V 

vs Fc+/0 are observed for 2. For comparison, [Ru(flpy)2(bpy)]2+ exhibits ligand based 

reductions at –1.21, –1.40 and –1.89 V vs. Fc+/0 which correspond to the reduction of two 

flpy ligands, followed by reduction of the bpy ligand.51 The similarity between the first 

two reduction potentials of 2 and [Ru(flpy)2(bpy)]2+ supports assignment of the flpy 
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ligands as the most readily reduced ligands on 2, and suggests the lowest-lying MLCT 

excited state will indeed localize the electron in the π* orbital of a flpy ligand. 1 has an 

irreversible reduction peak at –1.70 V, assigned to the dcb ligand, and quasi-reversible 

peaks at –1.92 and –2.23 V, assigned two bpy ligands, respectively. Other ruthenium 

complexes featuring dicarboxylic acid bipyridine ligands have also been reported to have 

quasi and irreversible ligand-based reductions, attributed to hydrogen gas generation by 

electrochemically induced deprotonation of the linkage.52,53 These ligand based reduction 

assignments indicate that, in contrast to 2, the lowest-lying MLCT excited state of 1 will 

localize the electron in the π* orbital of the dcb ligand. 

 

Figure 1.4. Cyclic voltammograms of compound 1 and 2 recorded at 100 mV/s in a 200 

mM [Bu4N][PF6] CH3CN solution. 

The excited-state reduction potentials of 1 and 2 were estimated from the ground state 

reduction potentials and the free energy stored in the excited state, per Eq. 2.54 

𝐸°′ 𝑅𝑢!!∗/𝑅𝑢!!𝐿●! = 𝐸°′ 𝑅𝑢!!/𝑅𝑢!!𝐿●! − Δ𝐺!" Eq. 2 

2 is a stronger excited-state oxidant (Eº′(2*/–) = 0.92 V vs. Fc+/0) in comparison to 1 

(Eº′(1*/–) = 0.41 V vs. Fc+/0), but both species are capable of hole injection to the valence 

band of NiO (0.54 V vs. NHE at pH 7, approximately 0.16 V vs Fc+/0).55 
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In order to determine the spectroscopic signatures of the reduced chromophores, 1 and 

2 were irradiated with a blue LED (λ = 460 nm) in the presence of a sacrificial reductant, 

triethylamine (TEA, Eº′(TEA+/0) = 0.40 V vs. Fc+/0).22 Upon irradiation of 2 under these 

conditions, the absorbance red-shifted (λmax = 522 nm), consistent with the reduction to 

the corresponding reduced species, 2– (Figure 5A).58 By contrast, photolysis of 1 simply 

led to a bleach, and slight blue shift, of the MLCT absorbance feature (Figure 5B).  

However, stability of 1 was improved upon esterification of the carboxylic acid groups to 

form 1′. Photolysis of 1′ in the presence of TEA generated the reduced ruthenium species 

1′– (λmax = 492 nm, Figure 5C), consistent with previous reports.58 Because of the similar 

optical properties of 1 and 1′, the absorbance spectrum of 1– is assumed to be nearly 

identical to that obtained for 1′–. 

 

Figure 1.5. Absorption spectra of (left) 2, (center) 1 and (right) 1′ in CH3CN in the 

presence of 0.1 M TEA, before irradiation (black lines); after irradiation with blue LED 

(red lines); and after exposure to air to reoxidize the reduced species (dotted lines) 
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1.2.2. Sensitization of NiO.  

Nanocrystalline NiO films were sensitized with solutions of 1 and 2 in ethanol. To 

quantify dye loading on NiO films, absorbance spectra of dye-sensitized NiO film were 

recorded using an integrating sphere (Figure 6); coverages were estimated at 4.9 

nmol/cm2 and 6.13 nmol/cm2 respectively for 1 and 2, which indicates loading of the 

nanocrystalline is more effective based than the monolayer coverage value for a flat 

surface (ca. 1×10-10 mol/cm2).46  The absorbance of 1 and 2 adsorbed on the NiO surface 

was determined by taking the difference between the sensitized and un-sensitized films. 

The spectral profiles of 1-NiO and 2-NiO were very similar to solutions of 1 and 2, 

indicating surface anchoring does not lead to ground-state dye aggregation.  

 

Figure 1.6. Normalized absorbance spectra of 1 and 2 in CH3CN solution (solid) and on 

NiO (dashed). The NiO sample was measured with an integrating sphere attachment and 

the NiO background was subtracted.  

Photoluminescence spectra were obtained for 1-NiO and 2-NiO, along with 1-ZrO2 

and 2-ZrO2. The valence band of of ZrO2 is approximately 4.0 V (vs. NHE at pH 0, 
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approximately 3.37 V vs Fc0/+), which is more positive than the excited state reduction 

potential of ruthenium dyes; therefore, hole injection from excited dye is 

thermodynamically unfavorable.59 For the ZrO2-anchored chromophores, 

photoluminescence spectra similar to the solution samples of 1 and 2 are obtained (λmax
 = 

650 and 665 nm, respectively). By contrast, the photoluminescence intensity of the NiO-

anchored chromophores is quenched (Figure 7). This significant emission quenching is 

attributed to ultrafast hole injection into NiO for both 1 and 2, though non-radiative decay 

processes could also be contributing.  

 

Figure 1.7. Photoluminescence spectra of (A) 1 and (B) 2 anchored on ZrO2(blue) and 

NiO (red) mesoporous thin films in N2 purged acetonitrile (λex = 420 nm). 

	
1.2.3. Interfacial Charge Separation.  

Ultrafast TA experiments were performed on sensitized NiO and ZrO2 films. Upon 

excitation (λex = 420 nm), the transient difference spectra of 2-ZrO2 (Figure 8) is 

dominated by a bleach of the 3MLCT absorption centered at 460 nm and a π→π* 

absorbance centered at 376 nm, consistent with the excited-state transient spectra 
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recorded for 2 in solution (see above) and the 3MLCT excited state of other polypyridyl 

ruthenium complexes.60 For 1-NiO and 2-NiO, the transient difference spectra recorded 

at 3 ps both exhibit similar features to the ZrO2-sensitized film (Figure 9), consistent with 

initial formation of the 3MLCT excited states of 1 and 2. For 1-NiO and 2-NiO, the 

excited state transient features decay rapidly on the sub-nanosecond timescale. The 

kinetics for the recovery of the ground state bleach at 464 nm are shown in Figure 10; 

traces for biexponential decays (dashed lines) consisting of fast 10's of ps decay and a 2 

ns slow decay are included to guide the reader. These data are consistent with hole 

injection to form the charge separated state (Ru2+L●––NiO(h+)) followed by rapid charge 

recombination, as has been observed for similar chromophores on NiO.21,23,61  
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Figure 1.8. Transient absorption spectra for 2-ZrO2 in 0.1 M LiClO4 containing CH3CN. 

λex = 420 nm, 140 nJ/pulse.  

For 2-NiO, a small but distinct absorbance feature centered at 525 nm grows in over 

the first hundred picoseconds (Figure 9), consistent with the transient formation of 2– (see 

above). The small quantity of 2– formed does not decay on the picosecond timescale. The 

observed slow decay at 525 nm in the kinetics traces is observed across the whole 
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spectrum (and in 1-NiO) and is likely due to the NiO becoming less reflective or more 

transparent following heating the laser pulse. For kinetics at 525 nm for 1-NiO (Figure 

10), a single exponential 350 ps decay with an offset is used to describe the increased 

transmittance from sample heating. Since the magnitude of the heating artifact appears to 

be similar for both samples, the 525 nm kinetics for 2-NiO are described with a 

biexponential guide line consisting of a 37 ps growth corresponding to the production of 

reduced dye, and the 350 ps decay observed for heating in 1-NiO.  

The observation of the Ru2+L●––NiO(h+) charge separated state for 2-NiO but not 1-

NiO indicates that the electronic structure of the ruthenium chromophore can enhance 

charge separation timescales. Specifically, these data suggest that the electron-

withdrawing flpy ligand of 2 promotes localization of the electron in the charge separated 

state on the bipyridine distal to the NiO surface as opposed to the proximal dcb ligand. 

This increased charge separation distance attenuates recombination kinetics. 
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Figure 1.9. Transient absorption spectra for 1-NiO (top) and 2-NiO (bottom) in 0.1 M 

LiClO4 CH3CN solution. λex = 420 nm, 140 nJ/pulse. 
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Figure 1.10. Single wavelength kinetics for  of 1-NiO and 2-NiO at 464 nm (top) and 

525 nm (bottom). Dashed lines are provided as a guide to the eye. λex = 420 nm, 140 

nJ/pulse. 

 

Table 1.2. Parameters for kinetics modeling in Figure 10. 
 A1 (mOD) t1 (ps) A2 (mOD) t2 (ps) y0 (mOD) 
464 nm 
1-NiO -0.79 25 -0.62 2470 0 
2-NiO -0.37 47 -0.51 1930 0 
525 nm 
1-NiO 0.153 350 - - -0.183 
2-NiO -0.389 37.4 0.193 350 0.110 
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1.2.4. Device Performance.  

NiO nanoplatelets5 were utilized for the investigation of photovoltaic performances of 

compounds 1 and 2 as well as a commonly utilized chromophore Coumarin 343 (C343). 

For DSSC devices, this material has shown advantageous properties such as high surface 

area and 10-fold higher electrical mobilities over conventional nanoparticle NiO thin 

film.5 As such, we utilized this material, as opposed to the sol-gel NiO films utilized for 

spectroscopic studies, when analyzing the device performance. The J-V curves (Figure 

11A, Table 3) for the devices show the open-circuit voltages of the devices appear to be 

nearly identical for the three dyes but a significantly enhanced (57% relative increase) 

photocurrent density is observed for 2 (Table 3). Differences in charge-carrier lifetimes in 

devices (Figure 11B, Table 3) were also explored by open-circuit voltage decays, and 

showed a negligible change between 1 and 2. The overall device efficiency of 2 increased 

by 73% relative to 1, which is primarily due to the large increase in Jsc. The origin of the 

photocurrent was confirmed to primarily come from the chromophore absorption by 

incident photon-to-current conversion efficiencies (Figure 9C, Table 3). Additionally, 

there is a large difference in the amount of light absorbed by each chromophore. The dye-

only light-harvesting efficiencies at the λmax are ~91, 38, 22 % for C343, 1, and 2 

respectively. From these data, the large increase in current for the chromophore 2 (which 

has the lowest LHE) represents a significant increase in the internal quantum efficiency 

either through an increase in injection efficiency or the charge collection efficiency.  
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Figure 1.11. Photovoltaic performance of p-type DSSC devices with 1 and 2. (A) Current 

density – voltage curves under simulated 1-sun illumination (colored lines) and in the 

dark (dashed lines) for p-DSSC devices utilizing dyes 1 and 2. (B) Device carrier 

lifetimes as determined from open-circuit voltage decay experiments for dyes 1 and 2 

decaying from simulating 1-sun illumination to dark with a sampling rate of 1kHz. (C) 

External quantum efficiency – wavelength curves for dyes 1 and 2. Data for the C343 

dyes included in Panel C for comparison; additional C343 data for comparison is 

included in Table 3. 
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Table 1.3. Photovoltaic metrics (n≥4) for NiO DSSC devices using the C343, 1, and 2 

chromophores 

 VOC   
(mV) 

JSC   
(mA/cm2) FF (%) η (%) λmax 

(nm) 

LHE 
λmax (%) 

EQE 
λmax (%) 

IQE 
λmax (%) 

C343 105 ± 3 0.49 ± 
0.06 32.4 ± 0.7 0.017 ± 

0.002 410 91.3 5.0 5.5 

1 101 ± 2 0.47 ± 
0.08 32.0 ± 1 0.015 ± 

0.003 460 38.2 5.8 15.2 

2 104 ± 3 0.74 ± 
0.04 33.9 ± 0.3 0.0260 ± 

0.0009 460 21.6 8.0 36.9 

 

1.3. Conclusions 

We have demonstrated that the interfacial charge separation dynamics of ruthenium 

polypyridyl-sensitized NiO are influenced by the electronic structure of the chromophore. 

Ultrafast transient absorption experiments reveal distinctly different excited-state 

dynamics for 1-NiO and 2-NiO. For 1-NiO, no charge separated state is observed, but 

rather the transient features associated with the chromophore excited-state decay rapidly, 

consistent with rapid charge recombination upon hole injection. By contrast, a charge 

separated state is observed for 2-NiO, as evidenced by a transient feature (λmax = 525 nm) 

consistent with the reduced chromophore 2–. The differences observed between the two 

chromophores are attributed to electron withdrawing –CF3 functional groups on the 

ancillary ligands of 2. This lowers the π* orbital of the ancillary ligand below that of the 

surface-anchoring dcb ligand, positioning the bipyridine radical distal from the surface in 

the charge-separated state of 2-NiO. By contrast, in 1– the electron is localized on the dcb 

ligand, proximal to the NiO surface. The observation of elongated charge separation for 
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2-NiO vs. 1-NiO correlates with an enhanced photovoltaic performance observed for 

NiO DSSC devices prepared with 2 vs. 1. These data provide a simple yet promising 

molecular design strategy for enhancing efficiency in NiO DSSCs. 
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Chapter 2. Charge Recombination Dynamics in Dye-Sensitized SnO2/TiO2 
Core/Shell Architectures 

 
Introduction 

In the search for successful strategies for dye-sensitized solar cells (DSSCs) and 

dye-sensitized photoelectrosynthesis cells (DSPECs), one approach to achieving 

structural control of electron transfer dynamics at the oxide interface in devices is 

implementation of core/shell metal oxide electrode structures. 62,63 Enhanced efficiencies 

in core/shell architecture come from the staggered band energy position (Scheme 1-a), 

where the conduction band potential of the shell is more negative than that of the core. 

Such unique structure comes to a key to inhibit detrimental back electron transfer as the 

shell acts as a significant barrier for BET from electron localized in core conduction band. 

Thus, application of the core/shell structure has led to a greatly enhanced efficiencies for 

visible-light-driven water oxidation in many systems.62–66 Although it has been provided 

a viable approach to improve device performance, the interfacial electron transfer 

dynamics of the core/shell design have not been investigated extensively. Recently in 

Dempsey group, two competitive recombination mechanisms have been elucidated as the 

first quantified investigation on back electron transfer kinetics in SnO2/TiO2 core/shell 

material.67 Transient absorption spectroscopy was utilized to explore the effect of shell 

thickness on interfacial BET dynamics.  

The flatband potential of metal oxide semiconductors is determined by the proton 

concentration at the semiconductor-electrolye interface in aqueous environment. The 
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effect of protonation/deprotonation equilibrium at the semiconductor surface attributes 

flatband potential shifting, following Nernstian dependency of -59 mV/pH unit. 68,69 The 

pH-dependent flatband potential movement changes the degree of overlap between the 

donor sensitizer excited state distribution function and semiconductor acceptor state, 

resulting in sensitized photocurrent efficiency. 70 Regarding pH dependency in 

recombination dynamics, it has been explored in ruthenium dye sensitized 

nanocrystalline SnO2 and TiO2 using transient absorption spectroscopy and 

complementary electrochemical measurements to provide the insight into the energetic 

distribution of sub-band-gap trap states. Both papers suggested that the observed faster 

back electron transfer rates for RuP-SnO2 and RuP-TiO2 at lower pH are due to increased 

occupation of shallow trap sites.71,72 

The goal of this study is to investigate pH dependency on interfacial back electron 

transfer dynamics in SnO2/TiO2 core/shell structure. Transient absorption spectroscopy 

along with electrochemical tools will allow us to provide valuable insights on core/shell 

energy band structure in different pH environment. 

 

 

 

 

 

 

 

Scheme 2.1. Schematics of conduction band energies of the core/shell structure. 
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2.1. Experimental Methods 

2.1.1. Nanocrystalline SnO2 and ZrO2 film fabrication 

To prepare SnO2 colloidal paste, 1 mL acetic acid was added to 30 mL of 15 wt 

% SnO2 colloidal dispersion in water (Alfa Aesar) and the mixture was stirred overnight 

at room temperature. This solution underwent hydrothermal treatment using a Parr 

Instruments pressure vessel at 240 °C for 60 h. The resulting solution was then sonicated 

and 2.5 wt % of both polyethylene oxide (mol wt 100,000) and polyethylene glycol (mol 

wt 12,000) was added. Stirring for 12 h yielded a homogeneous colloidal paste. 

Transparent thin-film electrodes were prepared by depositing the sol–gel paste onto 

conductive FTO glass substrates 4 cm × 2.2 cm using the doctor blade method with tape 

casting and sintered at 450 °C for 30 min under air.71 Nanocryatalline ZrO2 films were 

prepared using a previously reported procedure. 73 

 

2.1.2. Atomic layer deposition of TiO2 shells 

TDMAT precursor in UNC 

Atomic layer deposition (ALD) was performed in a commercial reactor (Savannah 

S200, Cambridge Nanotech). Titanium dioxide (TiO2) was deposited using Tetrakis 

(dimethylamido) titanium, Ti(NMe2)4 (TDMAT, 99.999%, Sigma-Aldrich), and water. 

The reactor temperature was 130 °C. The TDMAT reservoir was kept at 75 °C. The 

TDMAT was pulsed into the reactor for 0.3 s and then held for 10 s before opening the 

pump valve and purging for 10 s. Deposit conditions were 130 °C and 20 torr of N2 

carrier gas with a sequence of 0.3-s metal precursor dose, 10-s hold, 20-s N2 purge, 0.02-
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s H2O dose, 10-s hold, 20-s N2 purge.  

TiCl4 precursor in NCSU67 

Atomic layer deposition was conducted in a custom-built, hot walled, flow tube 

reactor described previously. Reactant precursor gases, including TiCl4 (99%, Strem 

Chemicals) and reagent grade water (Ricca Chemicals), were delivered to the reactor 

though heated gas lines using nitrogen carrier flow (99.999% purity, National Welders) 

further purified (Entegris Gate-Keeper) to reduce water contamination. The reactor was 

configured with gate valves to isolate the deposition zone, allowing the deposition 

substrate to receive extended exposure or “hold” steps to promote precursor diffusion 

throughout the inorganic oxide nanoparticle films. Deposition was performed at 120 °C. 

Precursor gas flow timing was controlled electronically by a LabVIEW sequencer to 

achieve dose/hold/purge steps of 0.3/ 60/180 s, respectively, for the TiCl4 and water 

reactants. 

 

2.1.3. Surface loading of SnO2/TiO2-RuP and ZrO2/TiO2-RuP films 

All films were fully loaded by soaking 6 hours in 0.1 M HClO4 aqueous solutions 

containing RuP (1 × 10−5−2 × 10−4 M). Slides were then soaked for 1 h in aqueous 0.1 M 

HClO4 solution to remove excess unanchored chromophores. Absorbance measurements 

of the films were performed using a Cary 60 absorbance spectrophotometer. 

 

2.1.4. Transient absorption spectroscopy 

All samples utilized in transient absorption measurements were prepared in 0.1 M 

LiClO4 aqueous HClO4 solution in 10 mm pathlength, air-tight quartz cuvettes. The 
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loaded slides were placed in a cuvette at a 45 angle to the beam direction and samples 

were purged with N2 for at least 40 min prior to experimentation. Transient absorption 

experiments were performed using a custom-built laser flash photolysis system. Laser 

excitation (5-7 ns FWHM, 10 Hz, Q-switched) was provided by the third harmonic of a 

Nd:YAG laser (Spectra-Physics, Inc., model Quanta-Ray LAB-170-10) that pumped an 

OPO (basiScan, GWU Lasertechnik) to access tunable excitation (415–800 nm). Laser 

power at the sample cuvette was attenuated by the use of a half waveplate (WPMH10M-

355, ThorLabs) and polarizer (GL10-A, ThorLabs). A glass window was used to deflect a 

small portion of excitation beam to a Si diode detector (DET10A, ThorLabs), triggering 

the oscilloscope to start data collection. Timing of the laser was controlled by a digital 

delay generator (9514+ Pulse Generator, Quantum Composers). 

A 75 watt Xe Arc Lamp (PowerArc, Optical Building Blocks) was used in continuous 

wave mode as a white light source. The probe beam was passed through a 375 nm long 

pass filter before passing through the sample collinear with the pump beam. Probe light 

was then attenuated using a neutral density filter, and scatted excitation light is filtered 

with a color filter wheel containing various long pass and short pass filters. Single 

wavelength kinetics were obtained using a double slit monochomator (Spectral Products 

CM112) outfitted with a Hamamatsu R928 photomultiplier tube (PMT). The signal was 

amplified by a 200 MHz wideband voltage amplifier (DHPVA-200, Electro Optical 

Components), and processed using a digitizer (CompuScope 12502, GaGeScope) 

controlled by custom software (MATLAB). The data were converted to units of ΔOD 

(ΔOD = -log(I/I0), where I is the time-resolved probe light intensity with laser excitation, 
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and I0 is the intensity without excitation). Data was further analyzed in Igor Pro 6.22 

(Wavemetrics). 

 

2.2. Results 

2.2.1. Atomic layer deposition and characterization of RuP-SnO2/TiO2 films 

We have prepared core/shell materials from two different facilities in UNC and 

NCSU, where utilizing two different TiO2 precursors. One is TDMAT, 

tetrakis(dimethylamido) titanium, in UNC CHANL lab, and the other is TiCl4 in NCSU. 

All of data conducted in this study (except for Figure 1 data) were the samples fabricated 

using TiCl4 reactant precursor.  

Conformal shells of TiO2 were deposited on nanocrystalline SnO2 and ZrO2 slides 

using atomic layer deposition. TiO2 shell thicknesses were controlled by altering the 

number of ALD cycles and further confirmed using ellipsometry on the witness silicon 

substrates. The growth rate per cycle was measured by spectroscopic ellipsometry on 

silicon wafers and the liner plot of thickness vs. cycle number gave 0.71 Å /cycle. (Figure 

1-a) Then the prepared SnO2/TiO2 and ZrO2/TiO2 films were loaded with phosphonate-

functionalized ruthenium chromophore [Ru(bpy)2(4,4’-(PO3H2)bpy)]2+ (RuP). As seen in 

Figure 1-b, MLCT band of RuP dye appears distinctively, although the background 

absorbance increase with TiO2 thickness from scattering and background TiO2 

absorbance. However, the extent of loaded dye decreases with increasing the shell 

thickness in thicker shell passing over 5 nm, consistent with a reduction in surface area 

upon atomic layer deposition.  
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Figure 2.1. (a) Thickness of the TiO2 deposited on SiO2 substrates against the number of 

ALD cycles. Linearity was verified, yielding 0.71 Å per cycle growth rate. (b) 

Absorption spectra of RuP-sensitized SnO2/TiO2 core/shell films. 

 

 

2.2.2. Interfacial charge recombination dynamics 

Absorption-time traces monitored at 400 nm following 480 nm excitation of SnO2/TiO2-

RuP in HClO4 at pH 1, 3, and 5 are shown in Figure 2. Importantly, excitation pulse 

energies were varied in order to achieve equivalent injection yields between samples by 

conducting the same magnitude of bleach. 
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Figure 2.2. Transient absorption kinetics of RuP sensitized SnO2/TiO2 at 400 nm in pH 1 

(left), pH 3 (middle), and pH 5 (right) HClO4 solutions at various amorphous TiO2 

thicknesses. Pulse energies are varied to obtain the same bleach at the first observation 

point. (λex = 480 nm) 

 

Figure 3 is the compiled data in Figure 2, showing the dependence of τ1/2 on TiO2 

shell thickness for SnO2/TiO2 core/shell films at equal injection yields at pH 1, pH 3, and 

pH 5 solutions. As the shell thickness is increased from 0 to 2.5 nm, recombination time 

increases by 1 to 2 orders of magnitudes, depending on proton concentration in the 

solution. Increased τ1/2 values obtained as a function of pH were: 359 ns to 18.8 us (pH 1), 

382 ns to 8.7 us (pH 3), and 580 ns to 6.2 us (pH 5). However, recombination begins to 

accelerate as the amorphous TiO2 shells thickness exceeds 2.5 nm, and then τ1/2 levels at 

thicker shell samples.  

In case of bare SnO2 samples (no TiO2 shell), the rate of recombination is 

attenuated as the pH is increased from pH 1 to pH 5. Such pH dependence trend has been 

observed in previous studies of RuP-SnO2 and RuP-TiO2 systems. 71,72 Interestingly, as 
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the TiO2 shell thickness reaches to 2.5 nm, pH dependence reveals completely opposite 

tendency. A clear dependence appears in Figure 4, with faster back electron transfer as 

the pH is increasing. For thicker TiO2 shells examined, the recombination dynamics 

become pH independent.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3. Plot of ln(1/ τ1/2) vs TiO2 thickness for SnO2/TiO2 films at equal injection 

yields in pH 1 (red), pH 3 (green) and pH 5 (blue) solutions. Collected data were 

averaged from three sets of measurement. 
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Figure 2.4. Transient absorption kinetics traces of RuP-SnO2/TiO2 (2.5 nm TiO2 shell) 

films at 400 nm in pH 1 (red), pH 3 (green) and pH 5 (blue) solutions. (λex = 480 nm) 

 

Kinetics of recombination were also measured for ZrO2/TiO2-RuP films, which 

served as control samples. The conduction band potential of ZrO2 is 0.9 V more negative 

than the conduction band of TiO2.59 These control experiments allow us to isolate the 

BET localized in the TiO2 shell as the electrons inject into the TiO2 shell but cannot 

localize in the ZrO2 core. (Scheme 1) Figures 5 show TiO2 shell thickness dependence of 

recombination kinetics in pH 1, 3, and 5 at equal injection yield in ZrO2/TiO2-RuP 

samples. As the TiO2 shell increases from 0.9 to 4 nm, τ1/2 increases 1 fold of magnitude. 

As shell thickness is increased further 3.2 and 4 nm, τ1/2 plateaus. A higher density of 

shell acceptor states is expected to attenuate the rate of BET if recombination of injected 

electrons occur via a site-to-site hopping or trapping/detrapping mechanism.71,74 The 
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similarity of BET converge between SnO2/TiO2 and ZrO2/TiO2 films suggests the 

recombination proceeds by a parallel mechanism in thicker shell samples. 

 

2.3. Discussions 

Based on the staggered band energetics of SnO2 and TiO2, an injected electron 

will localize in the core SnO2 conduction band and recombine with oxidized dye through 

tunneling mechanism (Scheme 1). The rate of electron tunneling through a barrier 

depends on barrier thickness (d) and the barrier height (ΔE). The rate constant kET will 

attenuate exponentially with increasing tunneling distance and thickness following 

equation (1). 

kET = k°ET e-βd                       (1) 

The tunneling decay constant β describes the steepness of the exponential decrease and 

reflects the square barrier height.75,76 Compared to the donor-bridge-acceptor molecular 

systems in a well-defined matrix, tunneling mechanism in core/shell materials has been 

less extensively studied. For core/shell systems, BET dynamics must be considered both 

recombination processes of electron localized in the core and that of trapped electron in 

the shell.  

Before analyzing pH dependent behavior of recombination kinetics in SnO2/TiO2 

samples, the plots of Figure 3 must be deconvoluted with ZrO2/TiO2 control samples to 

differentiate the BET from electrons localized in the trap state in the TiO2 shell.  

In order to determine the contribution of tunneling and shell recombination processes as 

the function of shell thickness, we adopted the modeling method presented in the 

previous paper by Knauf.67 Equation 2 describes the linear relationship between ln(1/τ1/2) 
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and TiO2 shell thickness for recombination via electron tunneling kinetics, where k°ET is 

BET rate in no TiO2 structure. The recombination from the electrons localized in TiO2 

shell is expressed with equation 3, which was plotted with empirical sigmoidal fit of ln(1/ 

τ1/2) vs TiO2 thickness from the ZrO2/TiO2 data in pH 1, 3, and 5 solutions (Figures 5). 

These two mechanisms are then plotted with weighting functions that varied from 0 to 1 

to obtain the analytical insight into the contribution of each mechanism to the overall 

observed recombination kinetics at each shell thickness sample, expressed in equation 4. 

 

ftunnel (x) = -βx + ln(k°ET)                                                                               (2) 

 

fshell, pH1 (x) = 14. 768+  !!.!"!
!!!"# !.!"# (!.!"#!!)

                                               (3) 

fshell, pH3 (x) =14. 192+  !!.!"#
!!!"# !.!"! (!.!"!!!)

 

fshell, pH5 (x) = 14. 096+  !!.!"#
!!!"# !.!"# (!.!"#!!)

 

 

fobs (x) = ftunnel(x) !
!!!"# (! !!!! )

 + fshell(x) !
!!!"# (!! !!!! )

                 (4) 
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!!!"# !.!"! (!.!"!!!)
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Figure 2.5. Plot of ln(1/ τ1/2) vs TiO2 thickness for ZrO2/TiO2 films at equal injection 

yields in pH 1 (top), pH 3 (middle) and pH 5 (bottom) solutions. The fit empirically 

models the back electron transfer from localized shell with sigmoid functions. 
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β values (tunneling component) and Xh (intersection of two sigmoid) have been 

determined after fitting the SnO2/TiO2 data of Figure 5, using the equation 4 in each pH 

solution. Spectra in Figure 6 contain the obtained fitting spectra as black lines and the 

values of β and Xh in the inset box; β = 0.20 Å-1 and Xh = 2.61 nm in pH 1, β = 0.22 Å-1 

and Xh = 2.33 nm in pH 3, and β = 0.19 Å-1 and Xh = 2.28 nm in pH 5. Even though there 

were not enough data points to yield reliable results, those seem reasonable values, 

compared to β = 0.25 Å-1 and Xh =3.2 nm in previous study. 67 

A decreasing sigmoid at the weighting function shows tunneling component from 

SnO2 core because at small TiO2 thicknesses, tunneling is the dominant process for BET; 

thus, its contribution would decrease with increased TiO2 thickness. The complementary 

sigmoid is used as a shell recombination mechanism in weighting function, which 

exhibited as the primary process at thick shells. The intersection of these two sigmoidal 

functions is defined with parameter Xh, where the dominant mechanism switches from 

tunneling to the shell localized recombination. The sigmoidal weight functions from the 

analysis of the equal injection yield data in pH 1, 3, and 5 were collected in Figure 7.  

Since the β value is proportional to the energy barrier for electron tunneling, different β 

will likely reveal different conduction band edge energies of TiO2 shell. Regarding β 

parameters obtained in different pH aqueous HClO4 solutions, β = 0.20 Å-1 in pH 1, 0.22 

Å-1 in pH 3, and 0.19 Å-1 in pH 5, it is hard to say their values are in the range of 

experimental error or they are exhibiting the independent behavior on various pH 

environment. In comparison, there is a discernible trend in Xh values, where the major 

recombination process switches from core tunneling to the shell BET. Based on the Xh 

yielded from the empirical fitting, 2.61 nm in pH 1, 2.33 nm in pH 3, and 2.28 nm in pH 
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5, it has a smaller Xh at higher pH. It is hard to interpret this result relevantly to the 

density of states in different pH by using the transient absorption spectroscopy as the only 

tool. Further investigation such as electrochemical measurements of SnO2/TiO2 core/shell 

material in different pH should be accompanied to understand this preliminary 

examination. 

 

 

Figure 2.6. Plot of ln(1/ τ1/2) vs TiO2 

thickness for SnO2/TiO2 films at equal 

injection yields in pH 1 (red), pH 3 (green) 

and pH 5 (blue) solutions. The fit models 

the back electron transfer dynamics with 

contributions from both tunneling and 

localized shell recombination 
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Figure 2.7. Sigmoidal weighting functions from the fitting of equal injection data of pH 1 

(red), pH 3 (green) and pH 5 (blue) samples. 

  

 

Table 2.1. β values (tunneling component) and Xh (intersection of two sigmoid) 

determined in pH 1, 3, and 5. 
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β 0.20 Å-1 0.22 Å-1 0.19 Å-1 

Xh 2.61 nm 2.33 nm 2.28 nm 
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2.4. Conclusions and Future Directions 

Interfacial charge recombination dynamics in amorphous SnO2/TiO2 core/shell 

system were investigated using transient absorption spectroscopy in pH 1, 3, and 5. We 

revisited the effect of shell thickness on BET processes; two competitive mechanisms of 

core tunneling electron transfer and shell-localized recombination become predominant 

depending on the shell thickness. After isolating shell recombination process, we were 

able to obtain tunneling parameters and Xh as a function of pH. Together with 

spectroscopic data, electrochemical analysis must be accompanied in near future to fully 

understand pH effects on interfacial dynamics in core/shell structure. Additionally, it 

would be worth to explore the interfacial dynamics at TDMAT precursor-deposited 

core/shell samples and annealed samples as well.  
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