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Abstract

fidelity of the self-sorting pathways.

We describe the stepwise construction of an 8-component self-sorted system (1 - 8) by the sequential addition of
components. This process occurs via a large number of states (2° = 256) and even a larger number of pathways
(8! = 40320). A pathway (5, 6, 7, 8, 4, 3, 2, then 1) that is self-sorted at every step along the way has been demon-
strated experimentally. Another pathway (1, 8, 3, 5, 4, 7, 2, then 6) resembles a game of musical chairs and exhi-
bits interesting shuttling of guest molecules among hosts. The majority of pathways - unlike the special ones
described above - proceed through several non self-sorted states. We characterized the remainder of the 40320
pathways by simulation using Gepasi and describe the influence of concentration and binding constants on the

Background

Chemical events that transform a complex system from
one well defined state into a different well defined state
are of critical importance in both biotic and abiotic sys-
tems [1-3]. For example, inside the cellular environment,
signal transduction proceeds through a sequence of
steps that transforms the system from one state to a
completely different state. In single cell and multi-cellu-
lar organisms these signal transduction pathways are
typically guided by various protein-protein interactions
that are in turn controlled by genetic regulatory net-
works. A recent study revealed that the transcription
regulatory networks in yeast Saccharomyces cerevisiae
involve 4549 physical interactions between 3278 yeast
proteins where as genetic regulatory network is formed
1289 directed positive or negative direct transcriptional
regulations within a set of 68 proteins [4,5]. Such pro-
tein-protein interaction networks define pathways for
the propagation of various signals such as phosphoryla-
tion and allosteric regulation of proteins. Another study
on Escherichia coli was able to identify 1079 regulatory
interactions out of which 741 interactions are involved
in the network that regulate of amino acid biosynthesis,
flagella biosynthesis, osmotic stress response, antibiotic
resistance, and iron regulation [6]. The complex
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network of interactions that characterizes biological sys-
tems results in remarkable emergent properties that ulti-
mately give rise to life itself.

The success of systems biology [1,7-11] in the recon-
struction of complex functional systems based on a fun-
damental understanding of the behavior of a series of
biological components has served as a stimulus for che-
mists to begin to develop systems chemistry with the
goal of creating functional systems by combining the
behaviors of well characterized chemical building blocks
[12-14]. For example, the Ghadiri group has explored
the behavior of complex systems comprising peptides,
enzyme, and/or DNA toward the construction of sys-
tems that display self-replication, Boolean logic, and that
even are subject to evolutionary pressures [15-20]. In
another line of inquiry, the development of supramole-
cular aggregates (e.g. rotaxanes and related structures)
that undergo well defined structural changes (e.g. shut-
tling) in response to suitable stimuli (e.g. electrochemis-
try, pH, photochemistry, chemical) has been shown
to form the basis for molecular machines [21-23].
Although much work has been done to create individual
functional components of future molecular machines,
less work has been directed toward developing methods
to integrate multiple components into a larger system
and to allow efficient communication between different
components as described above for Saccharomyces cere-
visiae and Escherichia coli.
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As first steps toward complex functional chemical sys-
tems, we have been developing multi-component systems
that form a well-defined state consisting of a single set of
supramolecular aggregates. We, and others [24-35], refer
to such systems as self-sorting systems. For example, we
selected 10 compounds from the literature well known to
form supramolecular aggregates driven by H-bonding
interactions and showed that this collection of aggregates
forms even when all 10 components are mixed [36]. Sub-
sequent work by our group has shown that thermody-
namic self-sorting processes can be designed to occur in
water using cucurbit[n]uril (CB[n]) molecular containers
as hosts and can even be engineered to create systems
that slowly transform from kinetic self-sorted to thermo-
dynamic self-sorted states [37,38]. Most recently, we have
begun to study the ability of such systems to respond to
suitable chemical stimuli (guest addition) which resulted
in artificial chaperones for folding of non-natural oligo-
mers, pH controlled inter-aggregate molecular shuttles,
metal-ion triggered folding and assembly of a hetero-
chiral double helical structure, and as a method to con-
trol enzymatic catalytic processes [39-42].

In this paper we describe a new eight component
thermodynamic self-sorted mixture comprising 1 - 8
(Figure 1) and the stepwise preparation of this eight-
component mixture in eight steps. The fact that this
eight-component mixture comprises a thermodynamic
self-sorted state does not ensure that the precursor mix-
tures containing one, two, three, four, five, six or seven
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of the eight components also constitute self-sorted
states. The identities of the host-guest pairs present
within smaller mixtures can and do in many cases differ
dramatically from those present in the n-component
mixture. In this paper we study all of the 40320 path-
ways by a combination of experiment and simulation.
We describe an interesting experimental pathway that is
self-sorted at every step along the way that we refer to
as a self-sorted pathway. We use the results obtained
from simulations of the system to obtain further insights
into the behavior of self-sorting systems.

Results and Discussion

This results and discussion section is organized as fol-
lows. First, we discuss the construction of an 8-compo-
nent self-sorting system comprising hosts 1 - 4 and
guests 5 - 8 in water. Next, we describe three experimen-
tal pathways that involve the stepwise construction of the
8-component self-sorted mixture. Subsequently, we dis-
cuss some of the theoretical considerations involved in
the stepwise construction of an n-component mixture
and use simulations to investigate the remainder of the
40320 pathways. Finally, we discuss the implications of
these results toward the use of self-sorting processes as
the basis for the creation of complex functional systems.

Selection of the Chemical Components Used in this Study
To design an 8-component social self-sorting mixture
[37], we selected three members of the CB[n] family

5 (p-CD)

Figure 1 Compounds Used in this Study.

6 CB[6] (n = 1)
7 CB[7] (n = 2)
8 CB[8] (n = 3)
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(6 - 8, CB[6] - CB[8]) because it is well-known that CB
[n] compounds bind cationic guests with high affinity
and selectivity in water [43]. We choose B-cyclodextrin
(B-CD) 5 as the fourth host in our study because it is
commercially available and binds to a wide range of
guests with low selectivity [44]. After some experimenta-
tion we selected compounds 1 - 4 as our guests. Of cri-
tical importance in the selection of 1 - 4 were: 1) their
host-guest complexes undergo slow exchange on the
chemical shift time scale and 2) exhibit distinct changes
in chemical shift upon complexation such that the com-
position of the mixture can be conveniently monitored
by 'H NMR spectroscopy.

The System Comprising 1 - 8 Undergoes High Fidelity
Self-Sorting

As a first step toward the build up of an n-component
self-sorted mixture in n-steps by way of n self-sorted
states we prepared a mixture comprising 1 - 8 and veri-
fied that the final eight component mixture was self-
sorted [Additional file 1]. Figure 2 shows the 'H NMR
spectra of 6¢1, 5¢2, 73, and 8¢4, and a mixture of 1 -
8. The '"H NMR spectrum of the mixture (Figure 2e) is
simply equal to the sum of the '"H NMR spectra of its
components (Figure 2a - 2d). This spectroscopic ear-
mark confirms that the eight-component system com-
prising guests 1 - 4 and hosts 5 - 8 undergoes a high
fidelity self-sorting process delivering a mixture of 61,
5¢2, 743, and 8e4.
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Figure 2 TH NMR spectra (400 MHz, D,0, pD 7.4, 298 K, 1 mM)
recorded for: A) 6-1, B) 5.2, C) 73, D) 84, and E) 61, 5.2, 7.3,
and 8+4. (CD5)5SiCD,CD,CO,D (A) is used as internal standard.
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Stepwise Construction of the Eight-Component
Self-Sorted Mixture

We were gratified that a mixture comprising 1 - 8
underwent high fidelity self-sorting process and decided
to explore the stepwise construction of the final eight-
component self-sorted state.

Pathway 1: Molecular Musical Chairs. A particularly
interesting pathway for the construction of the 8-com-
ponent self-sorting system comprising 6¢1, 5¢2, 7¢3,
and 84 involves the stepwise addition of 1, 8, 3, 5, 4, 7,
2, and then 6. The 'H NMR spectra recorded after each
of the eight steps are shown in Figure 3. Remarkably, at
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Figure 3 "H NMR spectra (400 MHz, D,0, pD 7.4, 298 K, 1 mM)
recorded for an equimolar mixture after addition of 1 eq. of:
A)1,B)8,C) 3,D) 5 E) 4, F) 7, G) 2, H) 6. (CD5);SiCD,CD,CO,D
(4) is used as internal standard. Prime indicates that the guest is
complexed with host.
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each of the seven intermediate steps a single well-
defined set of resonances is observed by '"H NMR and
each of the intermediate states is therefore self-sorted.
This self-sorted pathway is particularly interesting since
it proceeds by alternate addition of guest and hosts and
resembles the reverse of the game of musical chairs. We
whimsically refer to this as a molecular musical chair
pathway. In (molecular) musical chairs, n children
(guests) march to music around n-1 chairs (hosts); when
the music stops n children compete for n-1 chairs. One
of the children (guests) does not find a chair (hosts).
The construction of complex self-sorting mixture
resembles the microscopic reverse of this system. During
this molecular musical chair pathway shuttling of guests
between hosts is common. For example, in the pathway
1,8, 3,5, 4,7, 2, 6 the addition of 4 to the mixture of
8+3 and 5.1 triggers the movement of 3 from 8 to 5
with a concomitant dissociation 1 from 5 (Figure 3e).
Another example of guest shuttling is the behavior of
compound 1 which initially forms a complex with 8 at
the beginning of the pathway whereas in the final mix-
ture it is bound to 6 and it finds its way to its final des-
tination via 5 (Figure 3f). Similarly, guest 3 initially
complexes with host 8, then takes up residence inside 5
and finally complexes with 7 in the 8-component mix-
ture. Host B-cyclodextrin 5 plays an important role in
this process because it can bind to a wide range of posi-
tively charged and neutral guests with modest affinity
and low selectivity [44]. As such, 5 serves as a binding
depot for guests during the shuttling between high affi-
nity binding sites in response to the addition of guests.

Statistical Considerations

This section presents some of the statistical considera-
tions involved in the stepwise build-up of a multi-com-
ponent mixture. Figure 4 depicts the stepwise
construction of two-, three-, and four-component
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Figure 4 Schematic representation of the network in the
stepwise formation of a self-sorted mixture comprising: a) two,
b) three, and c) four components.
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systems. For example, a two-component system can be
made by the addition of either one of the two compo-
nents in the first step followed by the addition of the
other in the second step (A then B, denoted as AB; B
then A, denoted as BA). We refer to these possibilities
as pathways, which can be represented by a square (Fig-
ure 4a) where the vertices represent four states and
arrows along the edges indicate the direction of increas-
ing number of components. In this stepwise build-up of
the two-component mixture, 2 states are conceivable
(e.g. 0, A, B, and AB) and are connected by 2! pathways.
Similarly a three-component mixture can be built up in
6 (3!) ways (ABC, ACB, BAC, BCA, CAB, and CBA)
involving eight (2°) states. For a three-component mix-
ture the various paths and states can be represented by
the edges and vertices of a cube (Figure 4b). By analogy,
a four-component mixture can be built up by way of 16
(2%) states by adding components by 24 (4!) different
pathways. This process can be depicted as a four-dimen-
sional hypercube (Figure 4c). In general, the construc-
tion of an n-component mixture in # steps involves 2”
states and there are n/ different pathways to reach the
final state. Such an n-component system can be repre-
sented as an # dimensional hypercube containing 2" ver-
tices and 2" 'n edges. As the number of components is
increased the corresponding hypercube graph reflects
the enormous complexity of larger systems (Figure 5).
We thank a reviewer for pointing out that a major dif-
ference between this hypercube graph model and actual
protein signaling networks is that the latter are known
to be scale-free whereas each state in Figure 4 is con-
nected to exactly four other states.

Computational Approach Towards a Global
Understanding of the Stepwise Construction of a Four
Component System

Given that the experimental systems described in this
paper are at thermodynamic equilibrium, a detailed
knowledge of all the initial concentrations and values of
K, is sufficient for the complete description of the sys-
tem. These systems are, therefore, quite amenable to
computational approaches. We use the program Gepasi
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Number of Components

Figure 5 Schematic representation of 2, 3, 4, 6, and
8-dimensional hypercubes.
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[45-47] to simulate the steady state concentrations of a
multi-component system by providing an interaction
model, initial concentrations, and K, values as inputs. In
this section we present the simulation of a hypothetical
4-component system that sets the stage for the complete
deconvolution of the 40320 pathways to the 8-compo-
nent mixture (1 - 8) described above.

Figure 6 shows a hypothetical system comprising two
hosts (A and B) and two guests (M and N) subject to
the constraints on concentration and values of K, given
(Figure 6b and 6c). This system is hypothetical and the
chosen values of K, are not intended to correspond to
any of the experimental systems described in this paper.
In processing the output of the Gepasi simulations
[Additional files 2 and 3], we define a non-self-sorted
state as one where one or more components or com-
plexes have mole fractions 0.1 < % < 0.9. Conversely, all
components and complexes of self-sorted states have
mole fractions either less than 0.1 or more than 0.9.
This definition corresponds roughly to our ability to
detect minor species by 'H NMR.

A plot of AG® versus number of components for each
of the 2* (16) states of the system is shown in Figure 6d.
Using a Matlab code [Additional file 1] we have colored
self-sorted states with green dots and non-self-sorted
states with red dots. Furthermore, pathways that con-
nect two self-sorted states have been colored green;
paths that connect a non-self-sorted state with a self-
sorted state or two non-self-sorted states have been
colored red. Of the 16 states of this system 14 are self-
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Figure 6 Stepwise construction of a four component self-
sorting mixture: (a) equilibria considered, (b) concentrations of
the components, (c) association constants of the various
complexes, and (d) a plot of free energy versus number of
components.
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sorted and even more interesting is the fact that of the
24 pathways for the construction of the four-component
mixture, 12 consist entirely of self-sorted states. We
refer to them as self-sorted pathways. Several other fea-
tures of this system deserve comment. First, although
the stepwise formation of a multi-component complex
mixture is a function of path, all paths must by defini-
tion lead to an identical final state under thermody-
namic control. However, changing the sequence of
addition of components leads to completely different
sets of complexes along the way. Second, some pathways
may be trivial. For example, addition of hosts (e.g. A)
followed by their most tight binding guests (e.g. M)
does not lead to interesting stimuli responsive changes
in composition. Third, stimuli responsive movement of
guest is common. For example, the state of the system
comprising A and N gives complex AN after the second
step despite the fact that BN is formed after step 4. The
controlled movement of N from host A to host B - dri-
ven by the free energy inherent in the 1000-fold differ-
ence in equilibrium constant between K,y (10° M)
and Kgy (10° M) - signals the presence of guest M.
These observations made in the simulation of this four-
component system are conceptually related to the
experimental observations made for the 8-component
system comprising 1 - 8 described above.

Experimental Investigation of Other Pathways that Lead
to the Eight Component Self-Sorted System

Given the successful demonstration of a molecular
musical chair pathway and stimulated by the computa-
tional results on the four-component system described
above, we decided to experimentally investigate some
alternative pathways that might prove instructional. One
such pathway involves addition of the hosts 5 - 8 in the
first four steps followed by the addition of the guests 1 -
4 in the next four steps is depicted in Figure 7 (See Sup-
porting Information for NMR spectra). Although this
pathway apparently seems straightforward, there are a
few things about it that are noteworthy. Although it is
not important to maintain any particular order of addi-
tion of hosts (5, 6, 7, and 8) in the first four steps since
they do not associate with one another, it is critical to
maintain a specific sequence (4 then 3 then 2 then 1) in
the addition of guests for the remaining states to be
self-sorted. If compound 1 was added prior to the addi-
tion of 3 that would result in a non-self-sorted mixture
because the 6¢1 complex is only 10-fold tighter than the
7+1 complex [48,49]. Although 3 has 1000-fold higher
affinity towards 7 than 8 [49], a six-component state
containing 2, 3, and 5 - 8 is a non self-sorted mixture
because 2 also binds tightly to 7. In the absence of 4 -
which has high selectivity toward 8 (K, = 1.11 x 10"
M™) relative to 7 (K, = 6.42 x 10* M™") - compound 3
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CBJl6]1 CB[7]-3 p-CD-2 CB[8]-4

followed by the guests (4, 3, 2, then 1) in the next four steps.

Figure 7 A pathway that proceeds through eight self-sorted states created by adding all the hosts (5 - 8) in the first four steps

CB[7]-3

=

B-CD CB[8]-4

/

CBJ6g] CB[7]-3 p-CD-2

CB[8]-4

will be partially complexed with CB [8] (K, = 2.00 x 10°
M), forcing the formation of 7+2 (K, = 3.23 x 108 M)
in the mixture [49].

In contrast to the examples discussed so far, the
majority of the pathways are non self-sorted. For exam-
ple: a pathway involving the alternate addition of host
and guest - 1, 7, 2, 8, 3, 5, 4 then 6 - proceeds through
several non-self-sorted states (Figure 8, see Supporting
Information for NMR spectra). For example, addition of
2 in the third step leads to a non self-sorted mixture
because both guests (1 and 2) have substantial affinities
towards 7. Addition of compound 8 in the fourth step
restores the state of the system from non self-sorted to
self-sorted by selectively sequestering 1 to form 81 and
7+2. Addition of 3 in the fifth step leads to a non self-
sorted mixture and the system retains its non self-sorted
state even after the addition of 5 in the sixth step.

Addition of 4 resumes self-sorted state of the system in
the seventh step. The comparable affinities of guests
towards hosts lead to non self-sorted mixtures in the
fifth and sixth steps driven by the minimization of the
overall free energy of the system. The large free energy
release upon formation of 84 drives 3 to choose 7,
which in turn drives 2 to choose 5. A complete NMR
study of three additional pathways: A) 1, 3, 2, 4, 8, 5, 7,
and 6B) 6,1,5,2,7,3,8and4and C) 7, 3,6, 1, 5, 2,
8, and 4 are reported in an additional material file
[Additional file 1].

Computational Approach Towards Global Understanding
of the Experimental System Comprising 1 - 8
Examination of the experimental pathways described
above and in the additional material provided insights
into the formation of multi-component mixtures that

52
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Figure 8 A pathway created by the alternate addition of hosts and guests that proceeds through some self-sorted states.
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were not apparent at the outset of our experiments.
Rather than undertaking the unappealing prospect of
investigating all 40320 (8!) pathways by experiment - we
performed simulations of the system comprising 1 - 8
using the values of K, shown in Table 1 with Gepasi
[Additional files 4 and 5] [45-47]. The binding constants
for 6e1, 7¢2, 743, 843, 7¢4, and 8+4 were reported pre-
viously [49]. We estimated the binding constants of 1, 2,
3, and 4 for 5 based on literature precedents; the bind-
ing constants of 1 with 7 and 8 were estimated by extra-
polation of results from our laboratory and Mock and
co-workers [48].

Figure 9a shows the free energy of all 256 (2°) possible
states that may arise in the stepwise formation of an
eight-component mixture. As we observed experimen-
tally by 'H NMR, the final state of the simulation repre-
sents a self-sorted state. The simulation also provided
mole fraction values for each component in the remain-
ing 255 states, which were used to identify whether a
particular state was self-sorted or non-self-sorted. In
Figure 9a, self-sorted states are colored green and non
self-sorted states are colored red. Although the initial
and final states are the same, the intermediate states
have distinct sets of complexes populated. This compre-
hensive knowledge of the compositions of all 256 states
allowed us to predict the outcome of all 40320 path-
ways. Figure 9b represents the complete interaction net-
work - all 40320 pathways - that was previously
described by an eight dimensional hypercube.

Encouraged by the complete deconvolution of the
interaction network involved in the stepwise formation
of an eight-component self-sorted system, we decided to
examine the behavior of various subsets of the pathways.
There are four different kinds of transformations possi-
ble upon addition of a single component: a self-sorted
state to another self-sorted state, a non self-sorted state
to another non self-sorted state, a non self-sorted state
to a self-sorted state, and a self-sorted state to a non
self-sorted state (Figure 9c - f). Although the transfor-
mation from a self-sorted state to another self-sorted
state is observed throughout the graph (Figure 9c¢),
transformation from a non self-sorted state to another
non self-sorted state is spatially segregated (Figure 9d)
to the upper right hand corner. The formation of a
highly organized self-sorted state from a disordered non

Table 1 Values of K, (M) of Different Host-Guest
Complexes Used In the Simulation.

B-CD CBl6] CB[7] CBI8]
1 500 1% 107 1% 10° 1x10°
2 1% 10° 100 323 x 10 100
3 1% 10° 100 198 x 10'? 20 x 107
4 100 100 642 x 10 111 x 10"
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self-sorted state upon addition of a compound is asso-
ciated with a substantial decrease in overall free energy
of the system as indicated by the fact that the slope of
the lines in Figure 9e are larger than those those in Fig-
ure 9¢, d, and 9f. In contrast, some transformations
from a self-sorted state to a non self-sorted state are
associated with a decrease in free energy while others
are slightly uphill in energy due to statistical (e.g. entro-
pic) considerations (Figure 9f). For example, a six com-
ponent mixture 1, 2, 3, 5, 6, and 8 forms a self-sorted
state consist of 16 (y = 0.99), 2¢5 (y = 0.99), and 38
(x = 0.99) (AG® = -28.9 kcal mol ™). Addition of 4 results
in a non-self-sorted seven component mixture contain-
ing 146 (x = 0.99), 2 (3, = 0.47), 3 (3 = 0.43), 2¢5 (y =
0.52), 3¢5 (3 = 0.47), 3¢8 (1 = 0.85) and 48 (x = 0.91)
(AG® = -31.1 keal mol™) and the transformation is asso-
ciated with AAG® = -2.2 kcal mol™. The take home mes-
sage is that maintaining self-sorted pathways usually
requires the release of substantial amount of free energy
at each step along the way (e.g. Figure 9c exhibits con-
sistent stepwise decreases). Conversely, steps that do not
result in a lowering of free energy of the system gener-
ally result in non-self-sorted states (e.g. many of the
lines in Figure 9f are flat).

Effect of Number of Components on Self-Sorted States
We observed several hidden patterns as well as interest-
ing behaviors in the simulation. First, more non self-
sorted states emerge when there are an intermediate
number of components (e.g. four or five) due to the
increase of potentially competing interactions with the
increase in the number of components (Table 2). Those
states that are self-sorted generally consist of high affi-
nity and highly selective hosteguest pairs because the
differences in free energy due to selective binding is
what drives the formation of a single set of complexes
under thermodynamic control (Figure 9a).

Effect of Concentration of Components on Self-Sorted
States and Pathways

We were interested to quantify how concentration
affects the stepwise formation of the self-sorted system
since Nature uses concentration as the primary method
to control self-assembly processes. As the component
concentration is increased from 0.01 pM to 1 M, we
observed an initial decrease in the number of self-sorted
states followed by an increase above 1 uM (Table 2 and
Figure 10). This is due to the fact that at 0.01 uM -
much below their value of Ky - many complexes are
fully dissociated which is self-sorted according to our
definition. At concentrations comparable to K4 (e.g. 1
UM concentration) the complexes are partially formed
which represents a non-self-sorting situation according
to our definition which results in fewer self-sorted
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Figure 9 Stepwise construction of an 8-component self-sorting mixture (concentration of each component = 1 M): a) all 256 possible
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that transform a non self-sorted state to a self-sorted state, and f) steps that transform a self-sorted state to a non self-sorted state.

states. At higher concentrations of the components
those host-guest pairs are forced to complex, which
result in an increase in the number of self-sorted states.
We also observed a substantial effect of concentration
on the number of self-sorted pathways. As such comple-
tely self-sorted pathways are relatively uncommon. Only
5858 and 3376 pathways are completely self-sorted at 1
M and 1 mM concentration, respectively. The total
number of self-sorted pathways can be calculated from

Table 2. The total number of self-sorted pathways =
total number of pathways x probability of achieving a
self-sorted state at each step. When the concentration of
the components is 1 M, there are total 5858 pathways
that are self-sorted. (40320 x 45/56 x 49/70 x 36/56 x
15/28 x 6/8 = 5858). Total number of non self-sorted
pathways = 40320 - 5858 = 34462. Somewhat surpris-
ingly there is no self-sorted pathway at 1 uM concentra-
tion due to fact that the final state itself becomes non

Table 2 Total Number of Self-Sorted and Non Self-Sorted States at Different Concentration.

Number of Number of Conc. (1 M) Conc. (1 mM) Conc. (1 pM)
Components States
Self-sorted Non self-sorted  Self-sorted Non self-sorted  Self-sorted Non self-sorted
states states states states states states
0 1 1 0 1 0 1 0
1 8 8 0 8 0 8 0
2 28 28 0 25 3 25 3
3 56 45 11 39 17 41 15
4 70 49 21 44 26 35 35
5 56 36 20 32 24 16 40
6 28 15 13 14 14 6 22
7 8 6 2 6 2 0 8
8 1 1 0 1 0 0 1
Total 256 189 67 170 86 132 124
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Figure 10 A plot showing the change in number of self-sorted
states as a function of concentration.

self-sorted at that concentration (Table 3). These results
indicate that by changing the concentration - just as
Nature does - we can influence the behavior of the
interaction network in a complex multi-component
system.

Effect of Sequence of Addition of Components on
Pathways

Next, we decided to look at the effect of the order of
addition of components on the number of self-sorted
states and pathways. We conjectured that the outcome
of the pathways would be very different depending on
the order of addition of components (addition of all
hosts followed by all guests versus alternate addition of
hosts and guests). We investigated the following order
of additions by simulation: 1) 576 pathways (4 x 3 x 2 x
1 x4 x 3 x 2 x 1) for each of the following addition
sequences involving addition of all four hosts followed
by the addition of all four guests (HHHHGGGG) and
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vice versa (GGGGHHHH), 2) 576 pathways (4 x 4 x 3
x 3 x 2 x 2 x 1 x 1) for each of the two different alter-
nate addition sequence of hosts and guests
(GHGHGHGH and HGHGHGHG)[Additional files 6, 7,
8 and 9]. Interestingly, we observed that pathways origi-
nating from the different of addition sequences set
themselves apart from each other in the free energy
landscape (Figure 11 a - d). In the sequence
HHHHGGGG and GGGGHHHH, there is no change in
the free energy observed in the first four steps followed
by sharp decrease in free energy for the remaining four
steps. In contrast, the alternate host-guest addition
sequences (HGHGHGHG or GHGHGHGH) result in a
more uniform decrease in overall free energy.

The Effect of Equilibrium Constants

In the previous section we demonstrated that concentra-
tion and sequence of addition of components alter the
number of self-sorted states and pathways in the step-
wise construction of 8-component mixture. We next
used simulations to explore another key variable - equi-
librium constant - that Nature uses to control its assem-
bly processes. Table 4 shows a selection of the mean +
standard deviations of K, values for biomoleculesguest
interactions reported by Houk [50]. Table 4 shows the
values of log K, (mean +* standard deviation) that we
used as inputs for Gepasi simulations [Additional files
10 and 11] of hypothetical eight component systems
based on B-CD, CB [6], CB [7], CB [8], and guests. We
used the random number generator within Gepasi
(using log K, mean + standard deviation values) to
assign a random set of 16 (4 x 4) K, values. In a similar
manner to that described above, we used Gepasi to
simulate the behavior of the hypothetical eight-compo-
nent system; we used the repetition function in Gepasi
to simulate a total of 67 randomly generated systems.
Figure 12 shows a plot of AG® versus number of

Table 3 Effect of concentration of components and sequence of addition on the number of self-sorted pathways.

Total Number Conc. (1 M) Conc. (1 mM) Conc. (1 uM)
of pathways
Self-sorted Non self- Self-sorted Non self- Self-sorted Non self-
pathways  sorted pathways  sorted pathways  sorted
pathways pathways pathways
40320 5858 34462 3376 36944 0 40320
14.53% 85.47% 8.38% 91.62% 0% 100%

Sequence HHHHGGGG? Sequence GGGGHHHH?

Sequence GHGHGHGH?

Sequence HGHGHGHG? Random sequence®

Self-sorted Non self- Self-sorted Non self- Self-sorted Non self- Self-sorted Non self- Self- Non self-
paths sorted paths sorted paths sorted paths sorted sorted sorted
paths paths paths paths paths paths
162 414 108 468 68 508 86 490 5434 32582
28.1% 71.9% 18.8% 81.2% 11.8% 88.2% 14.9% 85.1% 14.2% 85.8%

@ Concentration of each component = 1 M



Ghosh et al. Journal of Systems Chemistry 2010, 1:6
http://www.jsystchem.com/content/1/1/6

Page 10 of 13

AG kcal mol”!

-50 : ; K ; [ ‘ "
0 1 2 3 4 5 6 7 8
Number of Components

AG kcal mol!

-50 T T T T T T T

Number of Components

HHHHGGGG, (c¢) GHGHGHGH, and (d) HGHGHGHG.
.

0 1 2 3 4 5 6 7 8

AG kcal mol!

-50 T T : T ; : )
0 1 2 3 4 5 6 7 8

AG kcal mol”!

'50 ) 1) T T T T
0 1 2 3 4 5 6 4 8
Number of Components

Figure 11 All 576 pathways for each of the following order of addition (concentration of each component = 1 M): (a) GGGGHHHH, (b)

components for the 67 randomly generated systems. Fig-
ure 12 shows a steady decrease in the overall free energy
of the system as the number of components increases;
similar behavior was noted above in Figure 9b during
the simulation using the experimentally derived K,
values of the eight component system comprising 1 - 8.
In Figure 12, the average decrease in free energy per
step is controlled by the mean value (log K,) of ran-
domly generated values of K, whereas the width of the
distribution at each step is controlled by the standard

Table 4 Assigned mean + standard deviation values of K,
for the synthetic hosts used in the simulation and
summary of binding constants for various interactions
observed experimentally in biological systems as
tabulated by Houk [50]

Host type Guest type Mean (log K,)
B-cyclodextrin Organic molecule 4+2

CB[6] Organic molecule 6+2

CB[7] Organic molecule 8+3

CB[8] Organic molecule 8+3
Catalytic antibody Transition state 6.6 + 2.0[50]
Receptor Drug 7.3 £ 1.5[50]
Antibody Antigen 8.1 + 2.0[50]
Enzyme Inhibitor 8.6 + 2.1[50]

deviation of the mean; both parameters control the pre-
valence of self-sorting states and self-sorting pathways.
Further analysis of the output of these 67 simulations
(10 systems are shown in Figure 13) showed that a full
20% of the final states and approximately 3% of the total
pathways are self-sorted. Given that the mean * stan-
dard deviation values that we employed in our simula-
tions for 3-CD and CB [6] - CB [8] are similar to those
reported for biomolecular interactions (Table 4) we

N
o
i
|
1
|
1
J

' '
N iy
o o o

&
S

AG kcal mol!

-40

Number of Components

Figure 12 A histogram showing a plot of free energy versus
number of components from 67 simulations (67 repetitions x
256 states per eight component system) of hypothetical eight
component systems.
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Figure 13 A stack of ten simulations from randomly generated
binding constants using the mean * standard deviation values
for B-CD, CB[6], CB[7], CB[8] and guests given in Table 4.

Each simulation shows whether each of the 256 states are
self-sorted or non-self-sorted. Color code: self-sorted states,
green dots; non self-sorted states, red dots.

believe that our simulations have some relevance to
related biological systems. For example, although it
seems that entirely self-sorted pathways are rare (3%) it
also suggests that self-sorted states are relatively com-
mon (20%) when tight binding and selective hosts are
present.

Conclusions

In summary, we showed that a mixture comprising 1 - 8
forms an eight-component self-sorting mixture consist-
ing of 6¢1, 5¢2, 73, and 8¢4. We investigated selected
pathways by "H NMR and the rest by simulations for
the formation of the eight-component mixture. The for-
mation of this eight-component self-sorted system can
occur by way of 256 (2%) states and 40320 (8!) pathways;
the self-sorting nature of the final state has no bearing
on whether the intermediate states are self-sorted or
non-self-sorted. A particularly interesting pathway that
resembles a game of musical chairs that is self-sorted at
every step along the way was demonstrated experimen-
tally. We performed simulations of the experimental sys-
tem using the program Gepasi to gain further insight
into the system (number of components, sequence of
host/guest addition, concentration, and binding constant
values). Of particular interest was the segregation of the
self-sorted (non-self-sorted) pathways to the lower left
(upper right) corner of plots of AG® versus number of
components (Figure 9b) which we trace to the need for
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a steady decrease in the overall value of AG® to maintain
self-sorted states. Finally, we used simulations of
hypothetical eight-component systems based on input
log K, values (mean + standard deviation) and observed
that self-sorting is rather common (20%) but that self-
sorted pathways are not. Given that the log K, mean *
standard deviation values for CB[n] hosts are similar to
those of biomolecular interactions bodes well for their
use in complex functional systems in the future.

Several aspects of this study may be of interest beyond
the system specific considerations described above. First,
similar to the molecular networks operating inside living
cells, our designed experimental system are based on an
intricate web of molecular recognition events. The fact
that both experiments and simulations show that self-
sorting is a relatively common behavior (20%) suggests
that the use of self-sorting systems - particularly ones
with segregated network topologies [51] - as the basis
for the further development of non-natural functional
complex systems is justified. One strategy that Nature
uses to control the connectivity of its networks is com-
partmentalization. Compartmentalization serves to seg-
regate incompatible chemical reactions and interactions
and thereby greatly simplifies the overall network topol-
ogy. The development of compartmentalized self-sorting
systems represents a further step toward their integra-
tion with biological systems. Finally, we have begun to
take steps toward using self-sorting systems to control
enzymatic catalytic processes [40] which will be very
important for the development of feedback loops and
adaptability that are so critical in biological systems.
When such approaches can be extended to more com-
plex biological media it may be possible to use self-sort-
ing system to interface with and exert control over
portions of the interaction network of the biological sys-
tem. Second, we have shown how the addition of a new
component can dramatically change the composition of
the multi-component mixture which suggests that self-
sorting systems will be useful in sensing applications
[52]. Lastly, this study highlights the power of combina-
tions of simulation and experiment in systems chemis-
try. For example, we were able to use Gepasi simulation
to fully explore 40320 pathways in a time comparable to
that needed to investigate six pathways experimentally.
These simulations highlighted that the successful gen-
eration of complex self-sorting systems relies on the
availability of synthetic or biomolecular hosts that dis-
play both high affinity and high selectivity toward their
guests.

Experimental

Materials

Compounds 1, 2, 3 and B-CD were obtained from com-
mercial sources. Compound 4 and CB [6] - CB [8] were
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synthesized according to the literature procedures
[49,53].

Sample Preparation

The mixtures described in this paper were prepared as
follows: 1) the calculated amounts of each component
were weighed out separately and transferred to a 5 mL
screw cap vial, 2) D,O (2 mL) was added, 3) the mixture
was sonicated or vortexed for several minutes, 4) the pD
was adjusted using conc. KOD or DCI solution, 5) the
solution was stirred at room temperature overnight, 6)
the solution was centrifuged, and 6) the solution was
transferred to an NMR tube for analysis.

NMR Experiments

'H NMR spectra were measured on spectrometers oper-
ating at 400 or 500 MHz. Temperature was controlled
to 298 + 0.5 K with a temperature control module that
had been calibrated using separation of resonances of
methanol. All spectra were measured in D,O unless
mentioned and referenced relative to external (CD3)
3SiCD,CD,CO,D.

Simulations

Simulations were performed using Gepasi 3.30 running
on a Windows XP workstation. The Gepasi output files
were processed using Microsoft Office Excel 2003 and
MatLab running on a Windows XP workstation. The
Gepasi model files and MatLab codes used in these
simulations are deposited in the Supporting Information.

Additional material

Additional file 1: Supporting Information. This file contains the 'H
NMR spectra for all guests 1 - 4, hosts 5 - 8, all host.guest complexes,
and selected pathways as well as the MatLab codes used for processing
the simulation output.

Additional file 2: Gepasi Model File. This file is the Gepasi model file
used to run the simulation reported in Figure 6.

Additional file 3: Excel Spreadsheet. This file is an Excel spreadsheet
that contains the data for Figure 6.

Additional file 4: Gepasi Model File. This file is the Gepasi model file
used to run the simulation reported in Figure 9.

Additional file 5: Excel Spreadsheet. This file is an Excel spreadsheet
that contains the data for Figure 9a.

Additional file 6: Excel Spreadsheet. This file is an Excel spreadsheet
that contains the data for Figure 11a.

Additional file 7: Excel Spreadsheet. This file is an Excel spreadsheet
that contains the data for Figure 11b.

Additional file 8: Excel Spreadsheet. This file is an Excel spreadsheet
that contains the data for Figure 11c.

Additional file 9: Excel Spreadsheet. This file is an Excel spreadsheet
that contains the data for Figure 11d.

Additional file 10: Gepasi Model File. This file is the Gepasi model file
used to run the simulations reported in Figure 12 and Figure 13.
Additional file 11: Excel Spreadsheet. This file is an Excel spreadsheet
that contains the data for Figure 12.
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