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ABSTRACT 

 

MICHAEL R. ACKERSON: Trace Element Partitioning Between Titanite and Groundmass 

in Silicic Volcanic Systems 

(Under the direction of Dr. Allen F. Glazner) 

 

Data for titanite and groundmass from seven Tertiary ignimbrites show a wide range 

of titanite trace-element concentrations and partitioning values. The range of partitioning 

values is due to lattice strain (with an ideal radius near Gd) and melt polymerization and is 

likely affected by the water content of the melt. The REEs, Y, Sc, Th and U are compatible in 

titanite whereas Rb, Sr, Ba and Pb are incompatible. Sector and growth zoning in titanite 

indicate disequilibrium crystal growth. Furthermore, differences in zoning, chemical 

composition and substitution mechanisms between volcanic and plutonic titanite suggest that 

volcanic titanite forms in systems characterized by down-T crystallization and high melt 

fractions whereas plutonic titanite forms at near-solidus conditions. Chemical similarities 

between titanite from the Fish Canyon magma system and plutonic titanite crystals provide 

evidence that the partitioning behavior of Fish Canyon titanite is the closest representation of 

titanite partitioning in plutonic systems. 
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I. INTRODUCTION 

 A primary goal of igneous petrology is to investigate the structural and chemical 

evolution of the continents. Fundamental to this goal is a need to understand how plutonic 

and volcanic rocks form, including the petrogenetic connections between them. Because 

mineral and melt trace-element compositions are sensitive to changes in temperature and 

pressure, they can yield information about the chemical and physical changes of a magma 

system that may not be reflected in the major element composition of the resultant rocks. In 

this way, trace-element analysis is a valuable tool that can provide insight toward 

understanding the processes that govern the formation of igneous rocks. 

 Accessory minerals provide insight into the trace-element composition of a rock and 

thereby help address questions about the formation of silicic plutonic and volcanic rocks and 

how they are related. Despite their low abundance, accessory minerals often contain a 

substantial portion of their host rock’s trace element budget. Titanite 

((Ca,REE
3+

,Y)(Ti,Al,Fe
3+

)(O,F,OH)SiO4) is an example of such an accessory mineral. It 

contains high concentrations of trace elements including yttrium, the rare earth elements 

(REEs) and the high field strength elements (HFSEs; Henderson 1980, Green and Pearson 

1986, Liferovich and Mitchell 2005, Marks et al. 2008). In many batholiths titanite, allanite 

and zircon may contain over 99% of the REEs (Gromet and Silver 1983). The presence of 

titanite significantly alters the trace element signatures of the melt phase and of the minerals 

that crystallize after titanite, thereby affecting a rock’s overall trace element signature. This 
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makes it useful when determining the connection between plutonic and volcanic rocks 

(Glazner et al., 2008). In addition, titanite contains high enough concentrations of uranium to 

make it a useful mineral in geochronology (Zhang and Scharer 1996, Frost et al. 2000).  

 In order to accurately predict the effect of titanite crystallization on the composition 

of the melt and other phases, it is necessary to understand the degree to which titanite 

partitions trace elements in silicic systems and the factors affecting this partitioning. The 

trace-element content of titanite (and other minerals) is affected by factors that include lattice 

strain, melt polymerization and the water content of the melt. Partitioning values (defined as 

the ratio of an element’s concentration in titanite compared to its concentration in the glass or 

groundmass) are a direct way to study the interaction between titanite and melt. Trace 

elements that fit most readily into a lattice site will impart the least amount of stress and 

strain on a crystal and will therefore be preferred in the crystal over more poorly fitting 

elements. This results in higher partitioning values for elements that have a better fit with the 

crystal lattice structure of titanite. Moreover, as the melt from which titanite is crystallizing 

becomes more polymerized, the compatibility of trace elements in the melt will change 

(Watson 1976, Watson 1977, Prowatke and Klemme 2005). Because the water content of a 

melt plays an important role in controlling melt polymerization, it too can affect trace-

element partitioning into titanite.  

 Titanite is common in granodiorites (e.g. Glazner et al. 2008); however, it is 

impossible to determine partition coefficients for mineral phases in plutonic rocks because 

they do not contain a remnant melt phase. Unfortunately, titanite is rare in volcanic rocks 

(Nakada 1991), which has led to limited research into its crystallization and element 

partitioning. Developing a better understanding of the partitioning behavior of titanite 
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crystals in volcanic rocks therefore can provide an important first step into understanding the 

partitioning behavior of trace elements in plutonic rocks.  

 In this study, I explore the titanite/glass equilibrium in samples collected from 

Tertiary ignimbrites from the western United States and compare them with data for 

associated plutonic rocks and plutonic rocks of the Mesozoic Sierra Nevada batholith. The 

data suggest that partitioning values for volcanic titanite crystals are controlled by lattice 

strain and melt polymerization, and are likely affected by the water content of the melt. In 

addition, plutonic and volcanic titanite crystals exhibit distinct differences in their trace-

element content, zoning and substitution mechanisms. This finding belies crystallization from 

similar systems and is consistent with the idea that most volcanic titanite forms through 

typical down-T crystallization of high melt-fraction systems whereas plutonic titanite forms 

at near- or sub-solidus conditions as is demonstrated for other phases in plutonic rocks. 

Geologic Background 

 Titanite is an orthosilicate mineral whose structure allows for several significant 

substitutions. Its mineral structure consists of chains of Ti octahedra bounded by Si 

tetrahedra along with a sevenfold Ca site within the chains’ (Fig. 1). Substitutions occur at 

the Ti and Ca sites, and at the underbonded O1 site that links the Ti octahedra, where F
-
 and 

OH
-
 can substitute for O

2-
. The sevenfold Ca site is the location of REE, U, Th, Pb and other 

large ion lithophile element (LILE) substitutions. Substitution of Al
3+

, Fe
3+

, Nb
3+

 and the 

high field strength elements occurs in the octahedral Ti site .Whereas many substitution 

mechanisms have been proposed for titanite (Ribbe 1989, Frost et al. 2000, Vourinen and 

Helanius 2005), the conditions of crystallization dictate which mechanisms dominate. For 

example, in metamorphic rocks titanite can have up to 50% CaAlSiO5(OH) or CaAlSiO5F 
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(Frost et al. 2000), whereas titanite with high concentrations of Na, Nb and Zr are reported 

from hydrothermal systems (Liferovich and Mitchell 2005).  
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 In many igneous rocks, titanite crystals contain most of the REEs (Gromet and Silver 

1983). Despite this, little work has been published on REE concentrations in titanite from 

silicic volcanic systems. Whereas determinations of trace element concentrations of titanite 

crystals in plutonic rocks are common (Simmons and Hedge 1978, Noyes et al. 1983, Broska 

et al. 2007), only a few studies have looked at volcanic titanite (Giannetti and Luhr 1983, 

Belkin et al. 1996, Della Ventura et al. 1999, Bachmann et al. 2005). Of partitioning studies 

in volcanic rocks, only one was performed using laser-ablation ICP-MS—the preferred 

modern method of trace-element data collection (Bachmann et al. 2005). Other studies 

collected data using electron microprobe analysis (Gianetti and Luhr 1983, Belkin et al. 

1996).  

 The paucity of REE data for volcanic titanite is mirrored by the limited research on 

the conditions of titanite crystallization in magmatic systems. Titanite commonly occurs in 

intermediate to felsic igneous rocks, and a range of metamorphic conditions from low-

pressure contact metamorphism of marls and limestones (Frost et al. 2000, Xirouchakis et al. 

2001) to eclogite facies metamorphism of mafic igneous rocks (Oberti et al. 1991). In 

igneous rocks, the timing of the first appearance of titanite during crystallization is under 

debate. Bateman and Chappell (1979) used the euhedral crystal shape of titanite crystals in 

the Tuolumne Intrusive Suite of Yosemite National Park, California to infer early 

crystallization, whereas Nakada (1991) argued that the relative paucity of titanite in volcanic 

rocks favors late crystallization.  

 Even though little data exist on the crystallization conditions of titanite, high oxygen 

fugacity (fO2) stabilizes titanite (Verhoogen 1962, Carmichael and Nicholls 1967, Lipman 
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1971, Whitney and Stormer 1985, Nakada 1991). The relationship between titanite stability 

and oxygen fugacity is displayed in figure 2, which shows the fO2-T relations of titanite-

bearing and titanite-absent dacitic and rhyolitic volcanic rocks from the western United 

States. Titanite-bearing rocks typically occur closer to the hematite-magnetite buffer curve, 

whereas titanite-absent rocks are found closer to the nickel-nickel oxide buffer curves. 

Wones (1989) attributes this to the reactions: 

 

titanite + magnetite + quartz = hedenbergite + ilmenite + O2  (1) 

3CaTiSiO5 + 2Fe3O4 + 3SiO2 = 3CaFeSi2O6 + 3FeTiO3 + O2 

 

where increasing oxidation favors the left side of the reaction.  

Frost et al. (2000) deemed reaction (1) to be a function of oxygen fugacity, bulk chemistry 

and melt phase chemistry. They also considered the reaction: 

 

titanite + annite = K-feldspar + ilmenite + quartz + CaO + H2O  (2) 

3CaTiSiO5 + KFe3AlSi3O10(OH)2 = KAlSi3O8 + 3FeTiO3 + 3SiO2 + 3CaO(l) + H2O(l) 

 

where CaO and H2O are components of the melt phase.  

 Other intensive parameters can also affect titanite partitioning. Xirouchakis et al. 

(2001a,b) inferred a strong experimental correlation between T, fO2, the activity of SiO2 

(aSiO2), the assemblage of mafic mineral phases (ilmenite and magnetite) and titanite stability 

in quartz-saturated versus quartz-undersaturated mafic rocks. Green and Pearson (1985) 

demonstrated an experimental dependence on pressure of titanite REE partition coefficients. 

They showed that for titanite in silicic systems from 900˚ to 1120˚C and 7.5 to 30 kbar the
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partition coefficients of REEs increase with increasing SiO2 in the melt phase, decreasing 

temperature and increasing pressure. 
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 Titanite crystals in both volcanic and plutonic rocks typically exhibit sector-zoned 

cores (Fig. 3) with growth (oscillatory) zoned rims, demonstrating disequilibrium crystal 

growth (Paterson and Stephens 1992, Shore and Fowler 1996). The formation of sector 

zoning is aided by factors including rapid crystal growth and anisotpopic incorporation of 

trace elements along the crystals surface (Watson and Liang, 1995). In igneous titanite, 

crystal growth is predominantly along the {111} crystal faces. When crystal growth is rapid, 

slow-growing faces dominate the crystal morphology. Coupled with differences in crystal 

face growth rates is the anisotropic preference for the REEs and Y to occur along the {100} 

sectors, whereas Al and Fe occur preferentially along the {111} sectors (Paterson and 

Stephens, 1992).   

 Because disequilibrium zoning in igneous titanite is commonplace (Paterson and 

Stephens 1992, Vuorinen and Halenius 2005, McLeod et al. 2011), mineral/groundmass 

partitioning values cannot be considered equilibrium partition coefficients. Disequilibrium 

partitioning values should be used with reserve when being applied to equilibrium 

fractionation models. The interpretation of zoning patterns in minerals (in particular 

oscillatory zoning) is dependent upon their formational environment. Elements with 

partitioning values greater than one (meaning the element is compatible in the mineral phase 

over the melt phase) that crystallize from silicic volcanic systems can have oscillatory zoning 

caused by crystal growth occurring more rapidly than the rate at which trace elements are 

transported to the crystal-melt interface (Paterson and Stephens, 1991).  Crystals forming in 

near-solidus systems where thermal cycling is likely (such as the K-spar megacryst formation  
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discussed by Johnson and Glazner, 2010) will exhibit oscillatory zoning that is a 

consequence of thermally induced periods of melt creation and subsequent crystal growth. 

Geology of Samples 

 Volcanic and plutonic samples collected for this study (Table 1) are part of the silicic 

ignimbrite flare-up that occurred in the western United States during the Cenozoic Era and 

range in age from Eocene to Miocene (36.7-11.3 Ma). Additionally, data are presented for 

plutonic rocks of the Mesozoic Sierra Nevada batholith (Gaschnig 2005, Davis et al. 2011). 

Volcanic rocks sampled range in composition from dacite to rhyolite and vary widely in 

crystallinity, temperature and water content. Plutonic rocks are quartz monzonites and 

granodiorites. 

 Two samples were analyzed from the Timber Mountain-Oasis Valley Caldera 

complex of southwestern Nevada—a pumice sample from the Ammonia Tanks Member of 

the Timber Mountain caldera and a whole-rock sample from the Tiva Canyon Member of the 

Oasis Valley caldera. Both units are rhyolitic ash-flow tuffs. The tuffs existed as relatively 

dry magmas (1-2 wt% H2O) and formed at temperatures ranging from 816 °C for the 

Ammonia Tanks to 838 °C for Tiva Canyon (Lipman 1966, Byers et al. 1976, Christiansen et 

al. 1977, Broxton et al. 1989, Mills et al. 1997, Bindeman et al. 2006). 

The Fish Canyon Tuff and Pagosa Peak dacite from the La Garita caldera system in 

the San Juan volcanic field of Colorado were also analyzed. The Fish Canyon magma system 

is thought to be a reactivated plutonic system that erupted nearly homogeneous crystal-rich 

dacitic magma in three stages. The Pagosa Peak dacite is a precursor to the main unit erupted 

from the caldera, the Fish Canyon Tuff. The Fish Canyon magma system existed at 

temperatures near 760 °C and contained 5 wt% H2O (Johnson and Rutherford 1989, Lipman  
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Table 1: Sample locations and mineral assemblages 

 

Unit Location Rock Type Mineral Assemblage† 

    

Ammonia Tanks Member* N36°59’50” Rhyolite Ap, Bt, Cpx, Hbl, Il, Kfs 

 W116°33’39”  Mag, Pl, Qtz, Ttn, Zrn 

    

Tiva Canyon Member* N36°53’48” Rhyolite Ap, Bt, Hbl, Il, Kfs 

 W116°27’30”  Mag, Pl, Qtz, Ttn, Zrn 

    

Pagosa Peak Dacite 
N37°32’34.5” Dacite Ap, Bt, Hbl, Il, Kfs, 

Mag 

 W106°47’53.2”  Pl, Po, Qtz, Ttn, Zrn 

    

Fish Canyon Tuff 
N37°36’43.0” Dacite Ap, Bt, Hbl, Il, Kfs, 

Mag 

 W106°42’13.2”  Pl, Po, Qtz, Ttn, Zrn 

    

Bonanza Rhyolite N38°09’16.2” Rhyolite Bt, Hbl, Kfs, Mag, Pl 

 W106°16’28.9”  Qtz, Ttn, Zrn 

    

Peach Springs Tuff N34°47’20.4” Rhyolite Bt, Hbl, Il, Kfs, Mag 

 W116°19’05.9”  Pl, Qtz, Ttn, Zrn 

    

Wall Mountain Tuff N38°50’32.8” Rhyolite Ap, Bt, Hbl, Il, Kfs 

 W105°59’00.4”  Mag, Pl, Qtz, Ttn, Zrn 

    

*Samples collected by Frost (1987), donated to project from the scientific collections at 

Michigan State University by Dr. Thomas Vogel. 

†Mineral abbreviations from Kretz (1983): Ap=apatite, Bt=biotite, Cpx=clinopyroxene, 

Hbl=hornblende, Il=ilmenite, Kfs=K-feldspar, Mag=magnetite, Pl=plagioclase, 

Po=pyrrhotite, Qtz=quartz, Ttn=titanite, Zrn=zircon  
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et al. 1997, Bachmann et al. 2002, Bachmann et al 2008, Lipman and McIntosh 2008). The 

Fish Canyon Tuff sample was collected from the type locality of the Ar-Ar sanidine standard 

FCs (Renne et al. 1998). 

 Three other samples were analyzed from the San Juan volcanic field. These include 

volcanic samples from the phenocryst-poor rhyolitic Bonanza Tuff (Varga and Smith 1984, 

Lipman and McIntosh 2008) and the low-silica rhyolite Wall Mountain Tuff (Chapin and 

Lowell 1979, McIntosh and Chapin 2004) and a plutonic sample from a quartz monzonite of 

the Mount Princeton Batholith (Lipman 2007, Lipman and McIntosh 2008).  

A final volcanic sample was analyzed from the high-K rhyolite Peach Springs Tuff of 

California (Glazner et al. 1986, Glazner 1988, Pamukcu 2010). Although the titanite grains in 

this sample were euhedral and unaltered, much of the groundmass was altered to either 

zeolite or clay (likely montmorillonite). This alteration is evident in the major-element 

analyses of the Peach Springs Tuff  “groundmass” (Table 2). Because the REEs are relatively 

immobile in groundmass during alteration (Zielinski 1982), they may not have moved when 

the groundmass was altered, and the REE analyses may be more or less the same as the initial 

groundmass concentration. Still, the partitioning values determined for the Peach Springs 

Tuff may not accurately represent the partitioning behavior between titanite crystals and 

melt. 

 To study the differences between plutonic and volcanic titanite crystals, samples were 

also analyzed from the Sierra Nevada Batholith. Two samples were analyzed from the John 

Muir Intrusive Suite of the Sierra Nevada Batholith–a sample of the Lake Edison 

Granodiorite (SNBa-1, SNBa-2) and a sample of the modally-layered Round Valley Peak 

Granodiorite (SNBb). SNBa titanite crystals came from sample Kle07-05 collected by Davis 
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(2010).  SNBb titanite crystals came from sample Rvp-2 collected by Gaschnig (2005) 

(Bateman 1992, Gaschnig 2005, Davis et al. 2011). Foley (2010) showed that layered 

granodiorite from this unit is locally exceptionally rich in titanite. 
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Table 2: Major-element compositions of volcanic groundmass* 

    

 Ammonia Tanks Tiva Canyon Pagosa Peak Dacite 

          

 Wt. % SD RSD Wt. % SD RSD Wt. % SD RSD 

          

SiO2 75.5 0.78 1.0 72.21 0.76 1.1 74.87 0.78 1.0 

TiO2 0.11 0.06 54.5 0.17 0.06 35.3 0.1 0.06 60.0 

Al2O3 12.3 0.22 1.8 13.16 0.22 1.7 12.45 0.22 1.8 

FeO 0.25 0.18 72.0 0.42 0.18 42.9 0.22 0.18 81.8 

MnO 0.01 - - 0.01 - - 0.01 - - 

MgO 0.02 0.04 200.0 0.08 0.16 200.0 0.07 0.12 171.4 

CaO 0.24 0.06 25.0 0.56 0.06 10.7 0.44 0.06 13.6 

Na2O 3.62 0.1 2.8 2.94 0.1 3.4 2.95 0.1 3.4 

K2O 4.94 0.14 2.8 5.61 0.14 2.5 4.45 0.12 2.7 

Total 97   95.15   95.53   

ASI 1.05   1.08   1.19   

NBO/T 0.15   0.16   0.13   

          

 Fish Canyon Tuff Bonanza Rhyolite Peach Springs Tuff 

          

 Wt. % SD RSD Wt. % SD RSD Wt. % SD RSD 

          

SiO2 75.05 0.78 1.0 76.02 0.8 1.1 61.32 0.64 1.0 

TiO2 0.14 0.06 42.9 0.09 0.06 66.7 0.12 0.06 50.0 

Al2O3 12.99 0.22 1.7 12.02 0.22 1.8 15.55 0.26 1.7 

FeO 0.17 0.16 94.1 0.39 0.18 46.2 0.65 0.2 30.8 

MnO 0 - - 0 - - 0 - - 

MgO 0.09 0.12 133.3 0.09 0.16 177.8 4.17 0.24 5.8 

CaO 0.89 0.06 6.7 0.45 0.06 13.3 1.14 0.06 5.3 

Na2O 3.35 0.1 3.0 3.18 0.1 3.1 0.14 0.06 42.9 

K2O 4.75 0.14 2.9 5.38 0.14 2.6 0.16 0.1 62.5 

Total 97.44   97.63   83.25   

ASI 1.05   1.01   2.45   

NBO/T 0.15   0.16   0.09   

          

* Standard deviation (2 ) is in ppm. RSD is reported in %. 
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Table 2 (cont’d): Major-element 

compositions of volcanic 

groundmass* 

  

 Wall Mountain Tuff 

    

 Wt. % SD RSD 

    

SiO2 73.53 0.76 1.0 

TiO2 0.27 0.06 22.2 

Al2O3 14.75 0.22 1.5 

FeO 0.32 0.18 56.3 

MnO 0.01 - - 

MgO 0.1 0.18 180.0 

CaO 0.47 0.06 12.8 

Na2O 3.71 0.1 2.7 

K2O 6.05 0.14 2.3 

Total 99.2   

ASI 1.09   

NBO/T 0.17   

    

* Standard deviation (2 ) is in ppm. 

RSD is reported in %. 



 

 

II. METHODS 

 Titanite crystals and groundmass were separated from bulk rock samples using 

standard techniques including steel-plate disc milling, water tabling, methylene iodide 

density separation and magnetic separation. Once separated from the other phases, titanite 

crystals were selected for analysis on the basis of euhedral crystal shape and lack of 

inclusions (to reduce trace-element contamination). Primary crystal and groundmass 

selection was performed using a non-polarized binocular microscope. Selected crystals and 

groundmass were scrutinized under cross-polarized light to identify any inclusions that may 

have been missed in ordinary light. 

 Inclusion-free titanite and groundmass samples were weighed and prepared for 

solution ICP-MS analysis. Titanite crystals were separated into replicate groups (6-18 

crystals/replicate) and weighed using a Sartorius 4504 MP8 Ultra Micro balance with an 

accuracy of ± 0.2 μg. Because volcanic groundmass can contain up to 300 times lower REE 

concentrations than titanite crystals (Bachmann et al. 2005), the mass of groundmass 

analyzed was approximately 250-300 times greater than the mass of titanite analyzed. Once 

weighed, the crystal and groundmass replicate groups were placed individually in 4:1 

mixtures of concentrated HF and HNO3 in a tightly sealed Teflon beaker and dissolved on a 

130
°
C hot plate for five days. After this interval, the beakers were placed in an ultrasonic 

cleaner for 30-90 minutes. The solutions were dried and re-dissolved in 5% HNO3 for 

analysis.  
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 Once dissolved in HNO3, titanite and groundmass trace-element compositions were 

analyzed using solution ICP-MS on a Varian 820 ICP-MS. Calibration curves were created 

using the Claritas PPT multi-element standard solutions CLMS-1 and CLMS-2 from SPEX 

CertiPrep. Analyte concentrations were recorded as concentrations (ppb) in the analyzed 

solution. Concentrations in titanite were calculated using:  

 (1) 

where Ct is the concentration in titanite (ppm), Cl is the concentration in the liquid analyte in 

ppm, and mt  and vl are the masses of the titanite crystals and the volume of the liquid, 

respectively. l is the density of the liquid, which is assumed to be 1 g/cm
3
. 

 Accurate solution ICP-MS analysis requires a constant flow of solution through the 

nebulizer into the analyzer. The nebulizer creates an aerosol out of the analyte solution to aid 

in ionizing the solution when it reaches the plasma. The opening of the nebulizer is small and 

can easily be clogged by particulate matter, impeding the flow of sample to the machine. 

Before running titanite and groundmass solutions through the ICP-MS, they were filtered to 

remove any particulates that could clog the nebulizer and impede flow into the ICP-MS. 

Flow of solution into the ICP-MS is monitored using 
115

In ratios. An internal standard of 

known 
115

In concentration is continuously pumped into the ICP-MS system while analyzing 

samples, blanks, and standards. The 
115

In ratio is a ratio of the 
115

In of the sample to the 
115

In 

of the blank. The count intensity of a sample is divided by the 
115

In ratio as a way to correct 

for changes in flow.  

 The major-element compositions of titanite and groundmass were analyzed using 

electron probe micro-analyzers. Titanite crystals were analyzed using the Cameca SX-100 at 

Rensselaer Polytechnic Institute, with a LaB6 electron beam. Data reduction and ZAF 
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corrections were performed using SX logger software. The beam was run at 15 keV and 20 

nA, with a spot size of 10 μm. Elements were standardized to a suite of silicate mineral 

standards. Groundmass samples were analyzed using a Cameca Camebax electron probe 

micro-analyzer (EPMA) at Duke University. Data correction was performed using ZAF 

correction in the Cameca PAP software. The beam spot size was typically 10-15 μm, with an 

accelerating voltage of 15 keV and a beam current of 15 nA. Volcanic groundmass was 

standardized using the 1921 Kilauea basalt and Cam 112 obsidian standards.  



 

 

III. RESULTS 

 Trace-element concentrations in plutonic and volcanic titanite crystals are in good 

agreement with laser ablation ICP-MS analyses of plutonic titanite (Marks et al., 2008) and 

volcanic titanite from the Fish Canyon Tuff and Pagosa Peak dacite (Bachmann et al., 2005). 

Overall, concentrations of individual elements range over an order of magnitude between 

samples (Table 3, Fig. 4). Titanite crystals of the Fish Canyon Tuff and Pagosa Peak dacite 

contain the lowest REE concentrations of the volcanic samples and are similar in trace-

element composition to the plutonic titanite crystals. REE concentrations in the Bonanza 

Rhyolite and Ammonia Tanks Member are greater than concentrations previously reported 

for any titanite. All titanite samples exhibit Eu anomalies. 

 Groundmass trace-element concentrations are highly variable, but also significantly 

lower than titanite concentrations (Table 4, Fig. 5). The Ammonia Tanks Member and Peach 

Springs Tuff have the lowest trace-element concentrations, whereas the Wall Mountain Tuff 

and Tiva Canyon Member have the highest concentrations. Groundmass Eu anomalies are all 

negative except for a small positive anomaly in Fish Canyon Tuff groundmass. 

 Major-element analyses of titanite crystals show that SiO2 content between samples 

remain relatively constant at around 29 wt% whereas most other major elements vary 

noticeably between samples (Table 5). Totals are lower than 100% (ranging from 93.26-

97.54%) because only one REE was measured (Ce2O3). With the exception of the altered 

Peach Springs Tuff, major-element analyses of volcanic groundmasses are typically high in 
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silica (around 75 wt% SiO2). Major-element analyses of the groundmass yields totals 

averaging above 95%.  

 Despite varying over an order of magnitude, trace-element partitioning values 

between titanite crystals and groundmass of the seven volcanic units display similar shapes 

(Fig. 6).  Although there is a general decrease in the REE content of titanite crystals from 

light (LREE) to heavy (HREE) (Fig. 4), partitioning values display a curve peaking near the 

middle (MREE), with the HREEs being slightly more enriched than the LREEs. Yttrium 

partitioning values (Table 6) are higher than the REE partitioning values and are closest to 

the light-middle REEs. Partitioning values for the REEs are lowest for the Wall Mountain 

Tuff, whereas the Peach Springs Tuff and Ammonia Tanks Member have the highest 

partitioning values. Partitioning values for Ba and Sr— which substitute into the Ca-site in 

titanite— fluctuate around 1. Whereas Sc Th and U are consistently compatible in titanite, Rb 

and Pb are typically incompatible. 
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Table 3: Trace-element concentrations of titanite crystals.* 

 

 Ammonia Tanks Member Tiva Canyon Member Pagosa Peak Dacite 

          

Element Ct SD RSD Ct SD RSD Ct SD RSD 

          

Sc 76.7 8.3 11 92 20 22 44 15 33 

Rb 47.6 4.4 9.2 37 15 40 13 4.1 32 

Sr 8.4 4.0 47 72 70 97 83 20 24 

Y 18400 2700 15 13300 1900 14 7100 1900 27 

Ba 62 87 140 156 91 58 104 66 64 

La 2070 350 17 2290 330 15 2940 620 21 

Ce 9000 1400 15 9500 1400 15 9800 2200 23 

Pr 1520 220 14 1730 340 20 1400 340 24 

Nd 6520 840 13 8300 1600 20 5500 1300 24 

Sm 1910 260 14 2160 480 22 1010 260 26 

Eu 45.6 9.4 21 267 72 27 155 31 20 

Gd 1770 240 14 1870 400 21 910 230 25 

Tb 681 88 13 630 130 20 272 73 27 

Dy 1880 250 13 1540 310 20 650 180 28 

Ho 343 46 13 265 49 19 123 34 28 

Er 920 130 14 680 110 16 374 97 26 

Tm 110 16 15 73.8 8.9 12 48 13 26 

Yb 585 89 15 383 44 11 305 79 26 

Lu 63 9.8 16 41.4 5.1 12 39.5 9.8 25 

Pb 9.2 2.0 22 12.1 9.8 81 6.6 2 30 

Th 233 29 12 153 12 7.8 280 54 19 

U 39.1 3.8 9.7 28.2 1.9 6.7 101 21 20 

          

*Concentrations and standard deviation (2 ) are in ppm. RSD is reported in %. 
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Table 3 (cont’d): Trace-element concentrations of titanite crystals.* 

 

 Fish Canyon Tuff Bonanza Rhyolite Peach Springs Tuff 

          

Element Ct SD RSD Ct SD RSD Ct SD RSD 

          

Sc 36.7 3.1 8.5 117.25 0.62 0.53 103 37 36 

Rb 6.3 2.2 34 7.5 9.1 120 4.1 1 25 

Sr 83.7 8 9.5 16.6 5.8 35 28 19 68 

Y 6410 680 11 13070 490 3.8 11300 3800 34 

Ba 65 14 22 86.1 9.4 11 45 13 29 

La 2790 240 8.7 3593 30 0.84 3000 1200 41 

Ce 9160 710 7.7 13740 180 1.3 11600 4600 40 

Pr 1280 91 7.1 2083 78 3.7 1830 690 38 

Nd 5060 450 8.9 8150 390 4.8 7600 2600 34 

Sm 941 89 9.4 1660 100 6.9 1700 540 32 

Eu 156 13 8 61 2.8 4.7 128 47 37 

Gd 853 82 9.6 1504 62 4.1 1500 470 32 

Tb 251 26 10 496 22 4.5 1480 140 30 

Dy 595 67 11 1273 78 6.1 1170 340 29 

Ho 111 12 11 236 11 4.7 211 69 33 

Er 338 35 10 664 21 3.1 580 200 34 

Tm 43.6 4.4 10 78.1 2.8 3.5 66 23 35 

Yb 277 25 8.9 429 9.8 2.3 350 130 36 

Lu 36.1 3.2 8.9 48.07 0.34 0.63 40 15 38 

Pb 4.82 0.29 6.1 8.55 0.97 11 6.6 2.7 41 

Th 278 22 7.8 429 23 5.3 240 100 45 

U 103.3 7.4 7.2 98.9 5.2 5.3 35 15 43 

          

*Concentrations and standard deviation (2 ) are in ppm. RSD is reported in %. 
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Table 3 (cont’d): Trace-element 

concentrations of titanite crystals.* 

 

 Wall Mountain Tuff† 

    

Element Ct SD RSD 

    

Sc 121 27 22 

Rb 3.5 1.9 52 

Sr 70 39 56 

Y 8300 1700 21 

Ba 77 50 65 

La 2070 430 21 

Ce 8100 1700 20 

Pr 1400 300 21 

Nd 6600 1400 21 

Sm 1460 320 22 

Eu 181 43 24 

Gd 1230 260 21 

Tb 380 80 21 

Dy 890 190 21 

Ho 159 34 22 

Er 437 90 21 

Tm 50 10 20 

Yb 284 56 20 

Lu 35.2 7.1 20 

Pb 35 13 38 

Th 264 51 19 

U 124 23 18 

    

*Concentrations and standard 

deviation (2 ) are in ppm. RSD is 

reported in %. 

† error reported for Wall Mountain 

Tuff crystals is calculated from the 

average relative standard deviation 

of the other six titanite samples 
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Table 3 (cont’d): Trace-element concentrations of titanite crystals.* 

 

 
Lake Edison Granodiorite Lake Edison Granodiorite 

Round Valley Peak 

Granodiorite 

          

Element Ct SD RSD Ct SD RSD Ct SD RSD 

          

Sc 6.9 0.44 6.4 7.92 0.31 3.9 22.1 5 23 
Rb - - - - - - 2.8 2 73 
Sr - - - - - - 107 18 16 
Y 1408 29 2.1 1390 360 26 3960 140 3.6 
Ba - - - - - - 69 64 92 
La 2340 14 0.58 1610 360 22 1310 76 5.8 
Ce 6086 21 0.35 4990 1200 24 5010 400 8 
Pr 719 24 3.3 710 240 34 797 86 11 
Nd 2850 210 7.3 2770 830 30 3360 350 11 
Sm 479 14 2.9 450 130 29 648 56 8.6 
Eu 113.1 2 1.8 111 21 19 126.3 5.6 4.4 
Gd 437 12 2.7 410 110 27 558 45 8.1 
Tb 59 1.8 3.1 57 16 28 165 14 8.5 
Dy 304 7.4 2.4 295 75 25 379 32 8.4 
Ho 58.5 2.2 3.8 56 15 26 68.3 4.8 7 
Er 178.2 6.9 3.9 169 42 24 201 11 5.5 
Tm 25.87 0.51 2 24.3 6.1 25 25.4 1.3 5.3 
Yb 177.9 2 1.1 166 38 23 162.4 4.1 2.5 
Lu 25.87 0.23 0.89 24.4 4.9 20 21.559 0.074 3.4 
Pb - - - - - - 9.33 0.79 8.4 
Th 922.3 1.7 0.18 710 150 22 314.4 8.9 2.8 
U - - - - - - 243 62 26 
          

*Concentrations and standard deviation (2 ) are in ppm. RSD is reported in %. 
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Table 3 (cont’d): Trace-element 

concentrations of titanite crystals.* 

 

 Mount Princeton Batholith 

    

Element Ct SD RSD 

    

Sc 15.6 3 19 
Rb - - - 
Sr - - - 
Y 1300 250 19 
Ba - - - 
La 1099 72 6.5 
Ce 3460 270 7.8 
Pr 578 41 7.1 
Nd 2350 96 4.1 
Sm 459 18 3.9 
Eu 40 11 28 
Gd 391 27 6.9 
Tb 55.2 7 13 
Dy 289 50 17 
Ho 55 10 19 
Er 162 33 20 
Tm 22.9 5 22 
Yb 148 30 20 
Lu 20.6 4.3 21 
Pb - - - 
Th 78.1 8.3 11 
U - - - 
    

*Concentrations and standard deviation (2 ) 

 are in ppm. RSD is reported in %. 
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Table 4: Trace-element concentrations in volcanic groundmass* 

 

 Ammonia Tanks Member Tiva Canyon Member† Pagosa Peak Dacite† 

          

Element Cg SD RSD Cg SD RSD Cg SD RSD 

          

Sc 3.03 0.37 12 7 4.9 70 2.5 1.7 70 

Rb 202 24 11 230 130 58 340 190 58 

Sr 6.45 0.29 9.1 166 93 56 168 94 56 

Y 9.6 2.8 30 17 14 83 8.8 7.3 83 

Ba 5.8 2.5 44 450 280 62 570 350 61 

La 5.5 6.7 120 16 17 106 16 17 106 

Ce 16 13 81 40 27 69 29 20 69 

Pr 1.6 1.8 117 4.3 3.7 86 2.2 1.9 86 

Nd 5 5.7 114 16 13 80 6.5 5.2 80 

Sm 1.1 1.2 106 2.8 2.1 76 0.91 0.69 76 

Eu 0.028 0.026 91 0.48 0.44 91 0.26 0.24 91 

Gd 1.2 1.2 104 2.8 2.2 78 1.07 0.84 78 

Tb 0.21 0.21 100 0.76 0.56 74 0.26 0.19 74 

Dy 1.3 1.3 98 1.7 1.1 67 0.63 0.42 67 

Ho 0.28 0.28 97 0.31 0.24 76 0.13 0.1 76 

Er 0.98 0.99 100 0.98 0.69 70 0.49 0.34 70 

Tm 0.16 0.16 99 0.12 0.1 82 0.078 0.064 82 

Yb 1.1 1.1 100 0.81 0.59 73 0.63 0.46 73 

Lu 0.17 0.17 99 0.119 0.1 84 0.115 0.097 84 

Pb 6.8 3.3 49 29 21 73 35 26 73 

Th 8.6 3.7 43 6.9 5 73 11 8.1 73 

U 4.4 3.2 74 4.1 3.9 94 11 11 94 

          

*Concentrations and standard deviation (2 ) are in ppm. RSD is reported in %. 

 

†Error calculated using the average relative standard deviations of the Ammonia Tanks, 

Bonanza Rhyolite and Peach Springs Tuff. See text for details. 
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Table 4 (cont’d): Trace-element concentrations in volcanic groundmass* 

 

 Fish Canyon Tuff† Bonanza Rhyolite Peach Springs Tuff 

          

Element Cg SD RSD Cg SD RSD Cg SD RSD 

         

Sc 6.7 4.7 70 7 7.5 107 3.3 3 91 

Rb 113 65 58 240 250 106 3.6 2 56 

Sr 540 300 56 58 54 93 150 95 65 

Y 8.7 7.2 83 14 18 130 1.11 1 90 

Ba 910 550 61 79 64 80 10.4 6.1 59 

La 9 10 106 15 17 118 2.8 2.2 78 

Ce 28 12 69 29 27 92 5.8 1.8 31 

Pr 1.9 1.6 87 3.4 2.9 85 0.66 0.37 55 

Nd 6.3 5.1 80 10.2 7.7 76 2 1 52 

Sm 1.08 0.82 76 1.6 1 62 0.3 0.16 51 

Eu 0.44 0.4 91 0.15 0.12 80 0.02 0.021 103 

Gd 1.16 0.91 78 1.8 1.3 70 0.32 0.19 59 

Tb 0.31 0.23 74 0.25 0.15 61 0.039 0.021 54 

Dy 0.72 0.48 67 1.29 0.73 57 0.172 0.07 41 

Ho 0.15 0.11 76 0.28 0.17 63 0.032 0.022 69 

Er 0.5 0.35 70 0.96 0.6 63 0.126 0.063 50 

Tm 0.074 0.061 82 0.145 0.096 66 0.023 0.018 78 

Yb 0.55 0.4 73 1.06 0.69 65 0.27 0.15 57 

Lu 0.091 0.076 84 0.16 0.12 75 0.05 0.04 79 

Pb 20 15 73 9.2 8.1 88 8.5 6.9 82 

Th 6.2 4.6 73 16 15 94 5.9 4.8 82 

U 3.5 3.3 94 3.6 4.4 122 1.07 0.93 87 

          

*Concentrations and standard deviation (2 ) are in ppm. RSD is reported in %. 

 

†Error calculated using the average relative standard deviations of the Ammonia Tanks, 

Bonanza Rhyolite and Peach Springs Tuff. See text for details. 
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Table 4 (cont’d): Trace-element 

concentrations in volcanic 

groundmass* 

 

 Wall Mountain Tuff† 

    

Element Cg SD RSD 

    

Sc 6.8 4.8 70 

Rb 250 150 58 

Sr 74 41 56 

Y 18 15 83 

Ba 370 230 61 

La 14 15 106 

Ce 48 33 69 

Pr 4.1 3.5 86 

Nd 15 12 80 

Sm 2.9 2.2 76 

Eu 0.46 0.42 91 

Gd 2.8 2.2 78 

Tb 0.79 0.58 74 

Dy 1.8 1.2 67 

Ho 0.35 0.26 76 

Er 1.07 0.75 70 

Tm 0.14 0.12 82 

Yb 0.91 0.67 73 

Lu 0.14 0.12 84 

Pb 30 22 73 

Th 12.8 9.4 73 

U 10.4 10 94 

    

*Concentrations and standard 

deviation (2 ) are in ppm. RSD is 

reported in %. 

†Error calculated using the average 

relative standard deviations of the 

Ammonia Tanks, Bonanza Rhyolite 

and Peach Springs Tuff. See text for 

details. 
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Table 5: Major-element compositions of selected titanite grains* 

 

 Ammonia Tanks Tiva Canyon Peach Springs Tuff 

          

 Wt. % SD RSD Wt. % SD RSD Wt. % SD RSD 

          

SiO2 28.64 1.06 3.7 28.30 0.86 3.04 29.10 0.58 2.0 

Ce2O3 1.24 0.28 22.6 1.61 0.30 18.6 1.60 0.12 7.5 

Al2O3 1.44 0.32 22.2 1.38 0.26 18.8 1.61 0.06 3.7 

CaO 23.64 1.06 4.5 23.76 0.60 2.52 24.46 0.66 2.7 

FeO 2.96 0.44 14.9 2.34 0.46 19.7 2.63 0.20 7.6 

TiO2 35.08 1.68 4.8 36.50 0.84 2.30 35.84 0.84 2.3 

Total 93.26   94.07   95.40   

          

 Wall Mountain Tuff Mount Princeton Batholith    

          

 Wt. % SD RSD Wt. % SD RSD    

          

SiO2 29.68 0.42 1.4 29.50 0.66 2.2    

Ce2O3 0.47 0.44 93.6 0.83 0.62 74.7    

Al2O3 3.35 0.46 13.7 0.66 0.36 54.5    

CaO 25.82 0.58 2.2 25.97 0.92 3.5    

FeO 1.95 0.20 10.3 1.57 0.50 31.8    

TiO2 34.11 0.52 1.5 38.98 1.06 2.7    

Total 95.41   97.54      

          

* Standard deviation (2 ) is in ppm. RSD is reported in %. 
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Table 6: Titanite/groundmass partitioning values for volcanic titanite crystals* 

 

 Ammonia Tanks Member Tiva Canyon Member† Pagosa Peak Dacite† 

          

Element Ct/Cg SD RSD Ct/Cg SD RSD Ct/Cg SD RSD 

          

Sc 25.3 4.1 16 14.2 9.5 67 18 14 77 

Rb 0.236 0.035 15 0.16 0.11 70 0.039 0.026 66 

Sr 1.31 0.62 48 0.43 0.49 112 0.5 0.3 61 

Y 1920 640 33 800 660 82 870 730 84 

Ba 11 16 147 0.35 0.29 84 0.18 0.16 88 

La 370 460 122 150 150 101 200 210 106 

Ce 570 480 83 240 170 69 370 270 73 

Pr 1000 1200 119 410 360 87 690 550 80 

Nd 1300 1500 115 540 420 78 920 750 82 

Sm 1700 1900 107 800 570 71 1230 940 76 

Eu 1600 1500 93 580 550 95 610 580 95 

Gd 1500 1600 105 710 540 76 810 710 78 

Tb 3200 3200 101 830 630 76 1130 830 73 

Dy 1400 1400 99 1000 620 63 1100 760 69 

Ho 1200 1200 99 900 630 70 1000 760 77 

Er 940 950 101 730 470 64 810 590 72 

Tm 700 700 100 640 510 80 670 560 83 

Yb 520 520 101 490 350 73 510 380 73 

Lu 370 370 100 350 580 79 340 320 94 

Pb 1.35 0.73 54 0.42 0.46 109 0.19 0.15 79 

Th 27 12 45 22 16 74 25 19 76 

U 9 6.7 74 6.9 6.5 95 9 8.7 96 

          

* Standard deviation (2 ) is in ppm. RSD is reported in %. 

†Partitioning values calculated using Monte Carlo simulation. See text for details. 
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Table 6 (cont’d): Titanite/groundmass partitioning values for volcanic titanite crystals* 

 

 Fish Canyon Tuff† Bonanza Rhyolite Peach Springs Tuff 

          

Element Ct/Cg SD RSD Ct/Cg SD RSD Ct/Cg SD RSD 

          

Sc 5.5 3.8 70 17 18 107 31 30 98 

Rb 0.056 0.038 67 0.032 0.051 160 1.13 0.69 61 

Sr 0.154 0.087 57 0.28 0.28 99 0.2 0.18 94 

Y 780 650 83 900 1200 129 10200 9800 96 

Ba 0.072 0.047 65 1.09 0.89 81 4.4 2.9 66 

La 320 360 110 240 290 118 1070 950 88 

Ce 580 390 66 470 430 92 2000 1000 50 

Pr 720 610 64 620 530 85 2800 1800 67 

Nd 850 670 79 800 610 76 3900 2400 63 

Sm 910 670 74 1010 640 63 5600 3400 60 

Eu 360 330 91 420 330 80 6300 6900 110 

Gd 790 610 77 840 590 70 4700 3100 67 

Tb 880 640 73 2000 1200 61 12000 7500 62 

Dy 900 570 64 1000 560 57 6800 3400 50 

Ho 820 600 73 860 540 63 6700 5100 76 

Er 730 520 71 690 430 63 4600 2800 61 

Tm 650 530 81 540 360 66 2800 2400 85 

Yb 550 390 71 400 260 65 1320 880 67 

Lu 430 370 85 290 220 75 790 690 88 

Pb 0.24 0.18 73 0.93 0.83 89 0.78 0.71 92 

Th 44 33 74 26 25 94 70 37 94 

U 30 28 95 27 33 122 33 32 97 

          

* Standard deviation (2 ) is in ppm. RSD is reported in %. 

†Partitioning values calculated using Monte Carlo simulation. See text for details. 
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Table 6 (cont’d): Titanite/groundmass 

partitioning values for volcanic titanite 

crystals* 

 

 Wall Mountain Tuff† 

    

Element Ct/Cg SD RSD 

    

Sc 18 13 73 

Rb 0.014 0.011 78 

Sr 0.95 0.75 79 

Y 490 400 82 

Ba 0.21 0.19 89 

La 160 160 103 

Ce 180 120 69 

Pr 350 320 91 

Nd 470 360 77 

Sm 540 420 77 

Eu 420 390 93 

Gd 470 360 77 

Tb 510 400 78 

Dy 530 380 71 

Ho 500 370 73 

Er 430 300 70 

Tm 390 340 88 

Yb 330 250 75 

Lu 270 230 85 

Pb 1.15 0.95 82 

Th 21 16 76 

U 12 11 96 

    

* Standard deviation (2 ) is in ppm. RSD is 

reported in %. 

†Partitioning values calculated using Monte 

Carlo simulation. See text for details. 
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Data Quality and Reproducibility of Results 

 Results of trace-element concentrations in titanite crystals between replicates were 

consistent. Each titanite sample (with the exception of the Wall Mountain Tuff) had 2-3 

replicates. Due to the low modal abundance of titanite crystals, the rarity of inclusion-free 

titanite crystals and the small size of the crystals (100 microns or less), only one replicate of 

Wall Mountain Tuff titanite was analyzed. Most samples had relative standard deviations 

(RSDs) below 20%. Because analyzed titanite crystals were inclusion-free, inter-sample 

variation was likely caused by error from weighing the crystals or incomplete dissolution 

during sample preparation. Analyzing multiple titanite crystals per replicate yielded an 

average crystal composition, most likely averaging the effect of zoning.  

 Due to the difficulty of accurately separating clean groundmass samples, three of the 

seven groundmass replicates were prepared and analyzed three times, whereas the remaining 

four were prepared and analyzed only once. The replicates that were analyzed three times 

were from the Ammonia Tanks Member, Bonanza Tuff, and Peach Springs Tuff (inset, Fig. 

5). Two of the replicates from each of the three samples were run during the same collection 

period, whereas another was analyzed separately. Standard deviations of the four groundmass 

samples that were analyzed only once were determined using a weighted average of the three 

replicates of the Ammonia Tanks Member, Bonanza Rhyolite and Peach Springs Tuff 

groundmasses. The two replicates run during the same collection period yielded similar 

concentrations and were weighted 0.25 each, whereas the other value was weighted 0.5.   

Analyses of trace elements in groundmasses had much greater standard deviations than the 

analyses of titanite crystals. Between the samples with three replicates, relative standard 
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deviations were typically greater than 50%. Despite the range in concentrations between 

replicates of the Ammonia Tanks Member, Bonanza Rhyolite and Peach Springs Tuff (inset, 

Fig. 5), the similarity of the shapes of the groundmass REE curves indicates that the shapes 

of the partitioning curves (Fig. 6) are robust.  

 Two main factors contribute to the large standard deviations of the groundmass 

samples. First, ICP-MS analyses are less accurate at lower concentrations. For example, 

analyses of the REEs in titanite had average relative standard deviations less than 20%. 

However, low-concentration elements like Sr and Ba had RSDs upwards of 80% for some 

samples. Despite dissolving large quantities of groundmass for analysis, after dilution for 

analysis, many of the elements were in the 1-10 ppb range, near the low end of ICP-MS 

detection. 

 The second source of variance in groundmass analyses was the lack of a constant 

flow through the nebulizer on the ICP-MS. Despite filtering the samples, some particulate 

matter made it through to the nebulizer since large volumes of groundmass were dissolved in 

small volumes of acid. This caused flow through the nebulizer to vary from replicate to 

replicate, skewing the results. Reduced flow on the ICP-MS is monitored using 
115

In ratios. 

During our analysis, the 
115

In ratios for the titanite samples and standards were all very near 

1. However, the 
115

In ratios for many of the groundmass analyses were much lower than 1 

(0.75-0.85) meaning less 
115

In
 
was getting through the system to the detector, indicating a 

clogged nebulizer. The count intensity of a sample is divided by the 
115

In ratio as a way to 

correct for changes in flow; however, this correction cannot account for all the error caused 

by changes in flow, which can result in a range of reported concentrations. 
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 Standard deviations of partitioning values for the multiple-groundmass replicate 

samples of the Ammonia Tanks Member, Bonanza Rhyolite and Peach Springs Tuff (Ct/Cg, 

see discussion below) were determined using the error propagation formula: 

 (2) 

where  is the standard deviation, and Ct and Cg represent the concentrations of an element in 

titanite and groundmass, so that Ct/Cg is the partitioning value of that element. This method 

of error propagation relies on two assumptions. First, it must be assumed that the two 

variables (Ct and Cg) are uncorrelated. This assumption is being made because the small 

sample size makes accurately determining a correlation coefficient implausible. The second 

assumption is that the variance is normally distributed around the mean values of the 

concentrations. Because of the small number of replicates, it is not possible to quantitatively 

determine whether the variance is normally distributed, so this assumption must be held as 

true.  

 A Monte Carlo simulation was used to estimate the partitioning values and standard 

deviations for those samples in which only one groundmass replicate was analyzed (Tiva 

Canyon Member, Pagosa Peak dacite, Fish Canyon Tuff and Wall Mountain tuff). For each 

element in a sample, a simulated set of titanite concentrations was created by generating a 

4000-value vector of random numbers with a mean and standard deviation equal to the values 

observed in the titanite. To attain the partitioning values and standard deviations, this vector 

was divided by a vector of equal length for the groundmass, using the individual 

concentration value measured as the mean for the simulation. Partitioning values that were 

negative (less than 0.5%) were omitted from the data set.  
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 The average partitioning values and their standard deviations were then calculated 

from the partitioning value vectors. Dividing the normally distributed vector of high titanite 

concentrations by the normally distributed vector of low concentration groundmass does not 

yield a normally distributed vector of partitioning values. Instead, the partitioning values are 

skewed to the right (high values; Fig. 7). Because of the skew, average partitioning values 

were about 10% higher than they would have been had the value been calculated by dividing 

the average titanite by the average groundmass concentrations used as inputs parameters for 

the Monte Carlo. Despite the skew, standard deviations are approximated to be normally 

distributed, and are useful in understanding the magnitude of possible variation in 

partitioning values. 



 

 

 

IV. DISCUSSION 

 Understanding 1) the range of trace-element partitioning values for titanite in silicic 

magma systems, 2) the factors affecting trace element partitioning, and 3) differences 

between trace element concentrations in titanite from varied petrologic settings are necessary 

for developing models for the formation of plutonic and volcanic rocks, and understanding 

the petrogenetic connections between plutonic and volcanic rocks. The following discussion 

aims to identify the factors that exert the greatest control on trace-element partitioning into 

titanite, and to provide explanations for the differences observed between plutonic and 

volcanic titanite. 

Integrity of the Groundmass Data 

 There are two concerns regarding the integrity of the groundmass data reported in this 

study. First, the Peach Springs Tuff groundmass is visibly altered which distinguishes it from 

the other samples in this study. Alteration resulted in a low totals and anomalously low SiO2, 

Na2O and K2O, and high Al2O3 for the Peach Springs Tuff. Consequently, the partitioning 

values determined for the Peach Springs Tuff are likely not accurate representations of 

titanite/groundmass partitioning behavior of the REEs. 

 A second concern about the trace element analyses of groundmass is that because the 

concentrations of trace elements in the groundmass are low, small amounts of trace minerals 

could have a large effect on groundmass analyses. Although careful attention was paid to 

select clean groundmass separates for analysis, it is possible that microlytic trace minerals or 
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contaminant phenocrysts could have been dissolved with the groundmass. The most obvious 

concern regarding contamination is with the Fish Canyon Tuff groundmass, which has a 

positive Eu anomaly (Fig. 5). Feldspars— which partition Eu
2+

 into their Ca site— are the 

most likely cause of contamination. Whereas SEM analysis of the Fish Canyon Tuff 

groundmass indicated <10% microlytic minerals, feldspar crystals were similar in color and 

texture to the groundmass and could have been unwittingly added to the groundmass 

separate. 

 A simple mass-balance model helps determine the amount of feldspar contamination 

needed to cause the Eu anomaly in the Fish Canyon Tuff groundmass and evaluate the 

possibility of significant contamination. Fish Canyon Tuff plagioclase REE concentrations 

from Bachmann (2005) were subtracted from the groundmass values in amounts ranging 

from 1-20 weight % (Fig. 8). The modeling indicates that approximately 15 weight % 

plagioclase could be responsible for the positive Eu anomaly. However, careful inspection of 

groundmass under cross-polarized microscope prior to dissolution makes it unlikely that 15% 

plagioclase as phenocrysts or microlites were present in the groundmass. Rather, it is more 

likely that the positive anomaly in the Fish Canyon Tuff groundmass is real. Consequently,  
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the range of partitioning values determined for the Fish Canyon Tuff and all other samples 

(except the Peach Springs Tuff) are interpreted to be reflective of differences between the 

magmatic systems. 

Trace Element Partitioning 

 Trace-element titanite/groundmass partitioning values in silicic volcanic systems 

measured in this study range over an order of magnitude and are likely affected by lattice 

strain, melt polymerization, the water content of the melt, temperature and pressure (Watson 

1976, Hart and Davis 1978, Takahashi 1978, Mahood and Hildreth 1983, Blundy and Wood 

1994, Prowatke and Klemme 2005). This study focuses on the impact of lattice strain and 

melt polymerization because water content was beyond the scope of the investigation, and 

temperature and pressure are demonstrated to have little impact on partitioning (Hart and 

Davis 1978, Takahashi 1978, Mahood and Hildreth 1983, Prowatke and Klemme 2005).  

 An increase in water content decreases melt polymerization, offers more ligands for 

trace metal complexing (Lipman 1971, Hildreth 1979, Mahood and Hildreth 1983) and 

decreases the temperature of crystallization. Although no quantitative data are available, the 

effects of varied water content might be recorded by the partitioning behavior of titanite. For 

example, the Fish Canyon Tuff magma system was wet (5 wt. % H2O), existed at relatively 

low temperatures near 760 ˚C (Johnson and Rutherford 1989, Lipman 2007, Bachmann et al. 

2008) and had low partitioning values. Conversely, the Ammonia Tanks Member was a 

relatively dry (1-2 wt% H2O) magma (Lipman 1966, Christiansen et al. 1977) that existed at 

temperatures around 820 ˚C (Flood et al. 1989, Bindeman et al. 2006) and had much higher 

partitioning values. Green and Pearson (1986) studied the effect of pressure on titanite’s 

partitioning behavior from 7.5 to 30 kbar and 900 to 1120˚C (Fig. 9). They determined that  
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increasing pressures increased the partitioning of REEs into titanite. However, pressure— as 

noticed by Prowatke and Klemme (2005)— is unlikely to affect titanite in cooler, more 

silicic systems that crystallized at lower pressures. 

Lattice Strain 

 The substitution of the smaller trivalent REEs into the divalent Ca site cannot occur at 

high concentrations without straining the titanite crystal lattice. The lattice strain model 

(LSM) proposed by Brice (1975) and Blundy and Wood (1994) can be used to evaluate the 

effect of lattice rigidity on the partitioning of elements into a specific crystallographic site. 

LSMs are displayed on graphs of ionic radius versus the log of partitioning values. The LSM 

fits a non-weighted non-linear least squares regression to the equation:  

 (3) 

where Do and ro are the ideal partition coefficient and ionic radius (least strained radius, peak 

of the curve), Di and ri are the partition coefficient and ionic radius of cation i, EM is the 

Young’s modulus of the cation site, NA is Avogadro’s number, R is the gas constant and T is 

temperature in Kelvin. When available, the Shannon (1976) ionic radii of the 3
+
 REEs in 

sevenfold coordination were used for the model. Not all REE’s have a known sevenfold 

coordinated ionic radius; however, a plot of ionic radius of isovalent REEs in sevenfold 

coordination is roughly linear with atomic number, allowing for interpolation between known 

ionic radii. The LSM only holds for isovalent cations. Because of this, the divalent element 

Eu was omitted from the model.  
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The LSM (Table 7, Figure 10) returned consistent results between samples. The ideal 

ionic radius for most samples was near 100 pm, the ionic radius of Gd
3+

 in sevenfold 

coordination. Several factors must be considered when determining the applicability of the 

LSM to the understanding of partitioning. If the supply of partitioning elements from the 

melt is limited (which is likely the case with titanite, where melt concentrations of REEs – as 

estimated from groundmass concentrations, are orders of magnitude lower than in titanite), 

diffusion is likely to play an important role in the transport of an element to the crystal-melt 

boundary. Also, the coupled substitution of the REEs with Al and Fe adds complexity to 

interpreting lattice strain effects, as differing proportions of Al and Fe into the crystal lattice 

will cause varying degrees of expansion and contraction of the Ca-site.  

 Ignoring Al and Fe substitution decreases the accuracy of estimating the Young’s 

modulus, which is done assuming that bond stress and strain are due only to the substitution 

of REEs into the Ca site. The magnitude of the Young’s modulus is an indication of the 

rigidity of the lattice site. The size of the Young’s moduli fitted to titanite in this study varied 

greatly from one sample to another (46.3-472.2 GPa), which may reflect the impact of 

ignoring the other substitutions. However, the average Young’s modulus suggests a rigid 

lattice site, and compares favorably to the modulus determined by Olin 2010 (approximately 

200 GPa).  

Melt Polymerization 

 Along with lattice strain, melt polymerization is a useful parameter when considering 

the effect of melt composition on partitioning between titanite and groundmass (Watson 

1976, Watson 1977, Mysen 1983, Prowatke and Klemme 2005, Prowatke and Klemme  
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Table 7: Results of Lattice Strain Modeling 

    

 Ammonia 

Tanks 

Member 

Tiva 

Canyon 

Member 

Pagosa 

Peak 

Dacite 

Fish 

Canyon 

Tuff 

Bonanza 

Rhyolite 

Peach 

Springs 

Tuff 

Wall 

Mountain 

Tuff 

        

T 

(°K)* 1093 1093 1033 1033 1067 1067 1033 

Do 3310 795 1010 853 763 4880 486 

ro 

(pm) 100.9 99.0 99.9 100.3 100.2 100.1 99.5 

EM 

(GPa) 46.3 287.3 187.6 76.8 244.8 472.2 115.0 

        

*Temperatures from Flood et al. (1989) for Ammonia Tanks Member and Tiva 

Canyon Member, Whitney and Stormer (1985) for Pagosa Peak Dacite, Fish 

Canyon Tuff, Bonanza Rhyolite and Wall Mountain Tuff, and Pamukcu (2010) 

for Peach Springs Tuff.   
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2006). Melt polymerization is a descriptor of the structure of a melt, as defined by the degree 

of connectivity between silicon tetrahedra. As the polymerization of melt increases, the 

activity of trace element cations increases which increases the likelihood of their 

incorporation into crystalline phases (Watson 1976).  

 The aluminum saturation index (ASI) is a simple and effective metric to describe melt 

polymerization (Prowatke and Klemme 2005). ASI is defined as the molar proportion: 

  (4) 

Aluminum acts to help link silica tetrahedra, whereas metal cations act as network modifiers 

to decrease polymerization (Watson 1976, Mahood and Hildreth 1983).  

 The NBO/T is another useful descriptor of melt polymerization (Mysen 1983, Mysen 

2004). NBO/T is a measure of the number of nonbridging oxygens compared to the number 

of tetrahedrally coordinated cations in a melt. NBO/T = 4 indicates a completely 

depolymerized melt, whereas NBO/T = 0 is a completely polymerized melt. The NBO/T 

value was calculated using an equation:

 

  (5) 

modified from Jaeger and Drake (2000). For these calculations, the amount of Fe2O3 in the 

melt is negligible at the oxygen fugacities of the systems of interest (Kress and Carmichael 

1991). 

 Increasing ASI values (and decreasing NBO/T) indicate increasing melt 

polymerization and consequent increases in the partitioning of REEs into titanite (Prowatke 

and Klemme 2005). The experiments of Prowatke and Klemme (2005) were performed in 

systems whose ASI values ranged from 0.115 to 0.768. The ASI values determined for the 

natural systems of our study were higher (1.01-1.19), implying a greater degree of melt  
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polymerization for our samples. There is no correlation between measures of melt 

polymerization and REE content (represented by plotting versus [Gd]; Fig. 11) for the 

samples in this study, probably because of the limited range of ASI. However, combining 

data from our study with the data from Prowatke and Klemme (2005) shows good agreement 

between the studies. Scatter in the data is likely due to differences in water pressure, volatile 

content, rates of cooling, melt composition, oxygen fugacity and temperature in the natural 

system that was not encountered in the controlled experimental studies of Prowatke and 

Klemme (2005). 

Volcanic Versus Plutonic Titanite 

 Titanite crystals from plutonic and volcanic systems differ in their zoning, trace-

element composition and trace-element substitution mechanisms. Understanding the 

differences between plutonic and volcanic titanite is useful in identifying the connections 

between plutonic and volcanic rocks.  

 Differences in growth zoning between plutonic and volcanic titanite suggest different 

environments of formation. Whereas growth zoning is distinct and finely banded in volcanic 

titanite, plutonic titanite typically exhibits thicker less pronounced growth zones (Fig. 12). 

Oscillations that might reflect diffusion controlled zoning can clearly be seen in the 

Ammonia Tanks member titanite (Fig. 12). Here, the initially high concentrations of REEs 

(bright regions) grade to lower concentrations (darker regions). Moving outward from the 

core of the crystal, the boundary between dark and light regions is sharp, indicating a period 

of no crystal growth allowing for re-equilibration of the melt-crystal interface. In plutonic 

titanite, the thicker and less distinct growth zoning is likely caused by thermal oscillations in  
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a near-solidus system. Dickinson (1996) and Johnson et al. (2010) describe a similar 

mechanism to explain Ba zoning in K-feldspar in plutonic rocks. 

 Plutonic and volcanic titanite crystals also display some clear differences in their 

trace element content—in particular the REEs (Fig. 13). With the exception of La, Ce, Eu, 

and Lu, plutonic titanite crystals generally have lower REE concentrations, and are most 

similar to Fish Canyon Tuff and Pagosa Peak dacite titanite crystals. The Fish Canyon Tuff 

and Pagosa Peak dacite are thought to be rejuvenated plutonic rocks (Bachmann et al., 2002), 

which may explain the similarity of their REE profiles to the plutonic titanite crystals, 

whereas the other volcanic rocks sampled are thought to have formed through down-

temperature crystallization from a largely liquid magma. Lower REE concentrations in 

plutonic, Fish Canyon Tuff, and Pagosa Peak dacite titanite crystals could also be explained 

by competition with other trace-element bearing phases such as zircon, allanite, and 

amphibole. The similarity of trace-element concentrations of plutonic titanite and titanite 

from the Fish Canyon Tuff and Pagosa Peak dacite indicates that partitioning values of trace 

elements in the Fish Canyon magma system could be used for accurate plutonic trace-

element fractionation modeling. 

 Trace-element substitutions into titanite involve a coupled substitution with major 

elements, and differences in the substitutions between plutonic and volcanic titanite 

strengthen the idea that they formed under different conditions. The mechanisms of 

substitution differ depending on the environment in which titanite is crystallizing. 

Mechanisms involving Al
3+

 and Fe
3+

 coupled substitutions into the Ti-octahedral site have 

been proposed for a range of magmatic and metamorphic systems (Ribbe 1982, Vuorinen and 

Halenius 2005). It is also possible to substitute Nb
3+

 and the other HFSEs into the Ti-site.  
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The titanite crystals studied here predominantly underwent the charge-balanced 

coupled substitution of Al
3+

 and Fe
3+

 for Ti
4+

, and REEs
3+

 and Y
3+

 for Ca
2+

, resulting in a 

negative correlation between molar Al + Fe versus molar Ti in titanite (Fig. 14). It is also 

evident from figure 14 that data for titanite from the Mount Princeton Batholith has a similar 

slope but lower Al+Fe relative to the volcanic titanite. This is most likely due to a greater 

concentration of Nb available during the crystallization of plutonic titanite. Niobium is a very 

incompatible element that fits well into the Ti site in titanite. In systems that contain titanite, 

it is the major Nb-bearing phase and may prefer Nb to Al and Fe (Frost et al. 2000, Vourinen 

and Halenius, 2005). Because Nb is incompatible in most mineral phases, late-stage 

magmatic fluids are also enriched in Nb. Therefore, titanite that crystallizes from plutonic 

rocks where the melt-phase is more enriched in Nb will have greater concentrations of Nb 

than titanite that crystallizes from typical volcanic systems, decreasing the amount of Al and 

Fe required to charge compensate REE substitution. 

 Another difference between plutonic and volcanic titanite is the relationship between 

Eu anomalies and concentrations of the other REEs in titanite. Europium anomalies in the 

bulk rock and melt phase are traditionally interpreted as evidence of feldspar fractionation 

(Graham and Ringwood 1971). Greater differences between the actual and expected values 

of Eu (decreasing Eu/Eu*) imply more plagioclase fractionation, and enrichment of the other, 

more incompatible REEs in the melt. Eu/Eu* was calculated using the equation:  

 (6) 
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where SmN, GdN and EuN are the chondrite-normalized values of titanite composition.  Both 

titanite and groundmass from this study exhibit negative europium anomalies. Eu/Eu*of 

titanite is expected to decrease with increased fractionation and incompatible element 

enrichment of the melt. Figure 15 shows this trend, plotted as Eu/Eu* versus Yb 

concentration in titanite. In general, volcanic titanite crystals with larger negative Eu 

anomalies have higher concentrations of other REEs (in particular the HREEs), suggesting 

crystallization from a more fractionated melt.  Conversely, there is no slope between Eu/Eu* 

and the REE content of plutonic titanite, despite differences in the formation of the Mount 

Princeton Batholith and Sierra Nevada Batholith titanite. This is likely due to the competition 

between titanite and other REE-bearing phases in plutonic rocks depleting the REEs in the 

melt phase. If plutonic titanite crystallized early from a high melt-fraction system as opposed 

to near-solidus conditions, a trend similar to that displayed by the volcanic titanite is 

expected. 



 

 

V. CONCLUSIONS 

 Titanite is confirmed as an important mineral in the trace-element evolution of felsic 

igneous systems. The principal new observations to come from this study include:  

(1) Titanite in dacitic and rhyolitic systems partitions the REEs and Y over a wide range 

(e.g., Ce titanite/groundmass ratios range from 180 in the Wall Mountain Tuff to 570 in the 

Ammonia Tanks). The range of partitioning values is controlled by lattice strain (with an 

ideal cation radius near Gd) and melt polymerization, and is likely influenced by the water 

content of the melt. REE partitioning values are in good agreement with previous studies in 

volcanic systems (Bachmann, 2005), but vary markedly from experimental studies of 

different melt compositions. Strontium, Rb, and Pb are generally incompatible in titanite 

compared to groundmass concentrations, whereas Sc, Th, and U are compatible.  

(2) Volcanic and plutonic titanite crystals exhibit distinct differences in their trace-element 

content, zoning and substitution mechanisms indicating formation from different magmatic 

environments. Volcanic titanite forms through down-T crystallization of high melt-fraction 

systems whereas plutonic titanite forms at near- or sub-solidus conditions.  

(3) Each volcanic rock unit studied has unique titanite/groundmass partitioning behavior, 

demonstrating the sensitivity of titanite trace-element partitioning to crystallization 

environment. Continued research on the thermodynamic stability of titanite, the link between 

plutonic and volcanic titanite crystals, and quantification of volatile contents in silicic 
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magmas will strengthen titanite-based research, and afford a better picture of the processes 

involved in creating batholiths and volcanic eruptions. 
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