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ABSTRACT 

 

Zhancheng Zhang: Molecular Dynamics Computer Simulations of Lipid Bilayers 

Containing Cholesterol 

(Under the direction of Professor Max L. Berkowitz)  

 

This thesis presents my research on molecular dynamics (MD) simulations of lipid 

bilayers. Some of the simulations were done on lipid bilayers containing one lipid 

component, while others were on lipid bilayers containing cholesterol and different 

species of lipids. The impetus behind these simulations is to use MD simulation 

technique to help understand the mechanism of “rafts” formation in model membranes, 

in which cholesterol molecules play an important role. Main results include: 

comparisons of structural properties of bilayers with and without cholesterol; 

hydrogen bonding network in bilayers containing cholesterol; saturated and 

unsaturated lipid tails’ distribution around cholesterol; interaction potential energy 

distributions of cholesterol molecules with neighboring lipids; free energy calculation 

of transfer cholesterol between different lipid bilayers. One of the chapters will be 

dedicated to the dynamics of water molecules in bilayers with different hydration 

levels. 
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CHAPTER 1: BACKGROUND 

1.1 Molecular Dynamics Simulations 

1.1.1 Basics Ideas 

It is generally impossible to analytically determine the structural and dynamical 

properties of a molecular system containing a large number of atoms. In principle, 

these properties can be calculated using quantum mechanics by numerically solving 

the time-dependent Schrödinger equation for all the electrons and nuclei in the system. 

However, the computer power needed to perform such calculations is not available 

today, despite the fast developments in computer hardware and software. Fortunately, 

for the study of many molecular systems, we do not have to rely on Quantum 

Mechanics. The movements of the atoms in a system, such as a protein molecule in a 

solution, can be well described by classical mechanics. The first molecular dynamics 

(MD) simulations were performed in the late 1950s1 by Alder & Wainwright to study 

a system of hard core spheres. In a MD simulation, Newton’s equations of motion for 

a system of N interacting atoms are solved: 

                ,
2

2

i
dt

d
m i

i F
r

=              i = 1…N                 (1.1) 

Where mi and ri are the mass and position of atom i, t is time, and Fi is the force on 

this atom, which is the negative gradient of the potential energy V (r1, r2, …rN) along 

ri: 

                ),...,( 21 Nri Vi rrrF −∇=                              (1.2) 
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After the forces on the atoms are calculated, the accelerations of the atoms can be 

determined. The velocities of the atoms can be updated after a very short time (usually 

on the order of 1fs) according to the accelerations. Subsequently, the positions of the 

atoms are updated according to the new velocities. After all the positions of the atoms 

are updated, the potential energy, and thus the forces on the atoms will change and be 

recalculated. Then the above-mentioned steps will be repeated for the duration of the 

simulation. This process is called integrating the equations of motion. The position, 

velocity and force on each atom will be saved with a certain time interval. The saved 

data are called a trajectory of the system. Assuming the potential energy function is a 

good approximation of the interactions between the atoms, a MD simulation can 

provide a very detailed picture of the system: both structural and dynamical properties 

can be described on an atomic level. The first macromolecular MD simulation was 

performed in 1977 by McCammon2 et al. on a system containing 500 atoms, the 

simulation time was 9.2 ps. Since this watershed simulation, the field has witnessed 

an explosive development. In 2006, the Theoretical and Computational Biophysics 

Group from University of Illinois at Urbana Champaign performed an MD simulation 

of the complete satellite tobacco mosaic virus3 to probe the mechanism of virus 

assembly. Their system contained 1 million atoms and was simulated for 50 ns. This 

simulation would take a single 2006 desktop computer around 35 years to complete, 

thus necessitating the use of many processors concurrently in parallel. The same year, 

a simulation of the folding of the Villin Headpiece in full atomic detail was performed 

by a group from Stanford University under the leadership of Vijay Panda4. The Villin 
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Headpiece consisted of 20,000 atoms, and it was simulated for 500 µs. This 

simulation was run on 200,000 CPU’s from around the world using a distributed 

computing architecture. These are just two of many great examples of what a 

powerful tool a MD simulation can be. They also demonstrate that a MD simulation 

can require a significant amount of computer resources and time. However, with 

better parallelization and further software development (like the development of the 

popular MD simulation package GROMACS5,6, with which all the work mentioned in 

this thesis was done), the time and length scale in MD simulations keep increasing. 

Today, MD simulations have become an indispensable tool for biologists, chemists 

and physicists for studying fundamental phenomenon at an atomic level not available 

to experimental techniques. 

 

1.1.2 Force Fields 

One of the crucial requirements for a MD simulation to be useful is a good choice 

of the potential energy function V(r1, r2, … rN). This function should provide a good 

description of the underlying interactions between the atoms in the system while can 

easily be evaluated on a computer. It is always the case that many approximations 

need to be made to achieve these requirements. The final formula of this function, 

together with the parameters used in it, is called a force field. The potential energy is 

usually divided into different contributions from bonded interactions and nonbonded 

ones. The bonded interactions include interactions due to bond length variations, bond 

angle bending and bond rotations, or dihedral angle variations. The potential energy 
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due to bond length variation between two atoms i and j is usually described by a 

harmonic potential: 

                20 )(
2

)( ijij

b

ij

ijbond rr
k

rV −=                              (1.3) 

where rij is the bond length between atoms i and j at the moment the potential is 

calculated, b

ijk  is the force constant representing the stiffness of the bond being 

described. 0
ijr  is the equilibrium bond length. A similar harmonic potential is usually 

adopted to describe the energy of an angle bending motion of three atoms i, j and k, 

with atom j at the vertex of the angle: 

               20 )()( ijkijkijkjkiangle kV θϑθ θ −=                            (1.4) 

where θijk is the value of the angle formed by atoms i, j and k at the moment the 

potential is calculated, ϑ
ijkk  is the force constant describing how difficult it is to 

distort the angle and 0
ijkθ  is the equilibrium value of the angle. The dihedral angle 

energy term is the energy due to the rotation around the middle bond in a sequence of 

four atoms as shown in Fig. 1.1 on the left. The dihedral potential is usually modeled 

with a periodic function: 

)]cos(1[)( 0ϕϕϕ ϕ −+= nkV jkjklidihedral                     (1.5) 

There are two different ways to define the zero point of the angle; here it is defined 

according to the IUPAC/IUB convention, with zero corresponding to the cis 

configuration (atom i and l on the same side of bond jk). Here, ϕ
jkk  determines how 

hard it is to rotate around bond jk, and n determines the number of minima during a 

full rotation of the bond while 0ϕ  their positions. The appearance of such a simple 

function is shown in Fig. 1.1 on the right. 
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Fig 1.1 Definition of a dihedral angle (left) and the dihedral angle potential (right). 

(Source: GROMACS manual-3.2) 

 

For alkanes, the Ryckaert-Bellemans dihedral potential7 of the following form is 

usually used: 

               ∑
=

=
5

0

))(cos()(
n

n

nijklrb CV φϕ                             (1.6) 

where °−= 180ϕφ . 

Fig. 1.2 shows the appearance of this function. 

 

Figure 1.2: Rychkaert-Bellemans dihedral potential. (Source: GROMACS 

manual-3.2) 
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This function takes into account that the two gauche states at °±= 60ϕ  are less 

favorable than the trans state at °= 180ϕ . Also the transition from a gauche state to 

the trans state without crossing the cis one should be much easier than a transition that 

crosses the cis state. These two features can be seen from Fig. 1.2. One should keep in 

mind that when the simple periodic dihedral potential (1.5) is used, the nonbonded 

interaction between atom i and l should be included, while if the Rychkaert-Bellemans 

potential is used to describe a dihedral angle, the nonbonded interaction between atom 

i and l should be excluded. These dihedral energy functions are used to describe the 

normal dihedral interaction or the proper dihedral interaction. Another form of 

dihedral potentials, improper dihedrals, is used to keep planar groups planar (e.g. 

aromatic rings) or to prevent molecules from flipping over to their mirror images. 

This potential only applies to certain groups in a molecule. Usually a harmonic 

potential function is employed for this purpose: 

2
0 )()( ξξξ ξ −= ijklijklid kV                              (1.7) 

where ξk is the force constant and 0ξ  is the equilibrium dihedral angle value. 

The bonded interactions discussed above are local interactions. The number of 

these interactions will be proportional to the number of atoms in the system. As a 

result, they are not very expensive to calculate in a MD simulation. However, the 

CPU time required for the calculation of nonbonded interactions is a totally different 

story.  

Nonbonded interactions include the van der Waals interaction between atoms as 

well as the electrostatic interaction between charged particles. The Lennard-Jones 
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potential function is often used to represent the van der Waals interaction: 

6

)6(

12

)12(

)(
ij

ij

ij

ij

ijLJ
r

C

r

C
rV −=                                (1.8) 

where ijr  is the distance between the pair of atoms and )6()12( , ijij CC  are interaction 

parameters which depend on the type of atoms between which the interaction being 

calculated. The first term represents the repulsive forces in short atomic distances due 

to the overlap of electronic wave functions. Sometimes 9
ijr  instead of 12

ijr  can be 

used in the denominator. The second term represents the attractive London dispersion 

forces, named after the German-American physicist Fritz London. These attractive 

forces are always present and arise from the interactions between temporary 

multipoles in molecules without permanent multipole moments. Fig 1.3 shows a 

Lennard-Jones interaction function: 

 

Fig 1.3 The Lennard-Jones interaction. (Source: GROMACS manual-3.2) 

 

This weak interaction approaches zero at relatively short distance, thus, to decrease 

computational load, these interactions are truncated at a cutoff distance at around 
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1nm. 

The electrostatic interactions between charged particles are given by: 

2
04

)(
ijr

ji

ijcoulomb
r

qq
rV

επε
=                               (1.9) 

where 
iq  and jq  are the charges, 0ε  is the permittivity of vacuum and rε  is the 

relative permittivity. These interactions decay much slower than the weak 

Lennard-Jones potential, which makes it one of the biggest challenges in MD 

simulations. A longer cutoff distance (2 nm, e.g.) can be used to truncate these 

interactions, but a simple truncation can still introduce significant errors. The reaction 

field method is another way to calculate the coulomb interactions for a homogeneous 

system. It assumes a constant electric environment beyond the cutoff distance. The 

interaction becomes: 

12

3

4
1

]
12

1
1[

4
1

)(
0

3

3

0 +
−

+

−
+=

rf

rf

c

ji

c

ij

rf

rf

ij

ji

ijcrf
r

qq

r

r

r

qq
rV

ε

ε

πεε

ε

πε
            (1.10) 

Here, cr  is the cutoff distance and rfε  is the dielectric constant of the environment 

beyond the cutoff distance. The constant term on the right makes the potential zero at 

the cutoff. Still yet another method to calculate the long range electrostatics in an MD 

simulation is the Ewald summation, which was first introduced to calculate the long 

range interactions of the periodic images in crystals8. The electrostatic energy of N 

particles and their periodic images is given by: 

∑∑∑∑∑=
x y z

n n n

N

i

N

j ij

ji

r

qq
V

*
,08

1

n
πε

                        (1.11) 

where n = (nx, ny, nz) is the box index vector. The star means when n = (0, 0, 0), the 

interaction between particles i = j should be excluded. The summation converges 
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conditionally and slowly. In Ewald summation, the sum in (1.11) is split into two 

quickly-converging terms and a constant term, as shown below: 

0VVVV recdir ++=                                   (1.12) 

∑∑∑∑=
N

ji n n n ij

ij

jidir

x y z
r

rerfc
qqV

, ,

,

0 *

)(

8
1

n

nβ

πε
                            (1.13) 

∑∑∑∑
−⋅+−

=
x y z

m m m

ji
N

ji

jirec

i
qq

V
V

*
2

2

,

0
))(2)/(exp(2

m

rrmm πβπε
           (1.14) 

∑−=
N

i

iqV
2

00 4 βεπ                                            (1.15) 

where β is a parameter that determines the relative weights of the direct and reciprocal 

sums and m=(mx, my, mz) is the reciprocal-space vector. V in equation (1.14) is the 

volume of the crystal, or the volume of the simulation box. A short cutoff can be used 

to truncate both the real space sum (on the order of 1nm) and the reciprocal space (10 

wave vectors in each direction). The computational time of the reciprocal sum 

increases as N
2, which makes the Ewald summation not suitable for simulations of 

large systems. The Particle-Mesh Ewald proposed by Tom Darden9,10 scales as Nlog(N) 

and is much faster than the original Ewald summation for large systems. Today, PME 

is the most popular scheme for calculating electrostatic interactions in MD 

simulations. As mentioned previously, the nonbonded interactions are not confined to 

atoms connected to each other and the total number of these interactions can be 

proportional to the square of the number of atoms in the system. Thus, the calculation 

of the nonbonded interaction in an MD simulation is the most time consuming part. 

There are other functional forms available to describe the energy terms mentioned 
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above, such as using the Morse potential11 for the bonding stretching, or a more 

flexible and realistic exponential term for the repulsive part in the nonbonded 

interaction between atoms, as in the Buckingham potential. However, the exponential 

terms in these functions make them more expensive to calculate. Different force fields 

may take different functional forms. One should realize that a potential form better 

representing the underlying physics is not necessarily a better potential function for a 

simulation. The simplicity of a function for evaluation by a computer is always an 

essential factor in choosing a particular function form. As the force field is always an 

approximation of the interactions between atoms and it is parameterized in such a way 

that the equilibrium properties of the system are reproduced as well as possible. Thus, 

a simple function that can be easily evaluated but bears more approximations may 

prove to be much more useful than a more complicated one that describes the 

underlying physics in more detail. It is also worth mentioning that the time step used 

in the integration of the equations of motion can be part of a force field and a force 

field has a temperature range within which it gives reasonable descriptions of the 

interactions in the system simulated.  

 

1.1.3 Update Configuration 

After the forces on all the atoms have been calculated, the positions and velocities 

of the atoms are updated according to the equations of motion (1.1) and (1.2). These 

equations are solved numerically and there are many algorithms available. Among 

these algorithms, the one developed by Verlet12 has proved to be the best for 



 11 

molecular dynamics. The idea behind this algorithm is the addition and subtraction of 

the Taylor expansion of an atom’s position at time tt ∆− and tt ∆+ : 
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The addition of these two expansions, together with equation (1.1) gives: 
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With a truncation error on the order of 4)( t∆ . The subtraction of equations (1.17) and 

(1.16) gives: 
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∆
≈= rrrv                             (1.19) 

With a truncation error on the order of 3)( t∆ . However, a practical problem with the 

calculation of velocities in this way is that the velocities are evaluated as the 

difference of two quantities of the same magnitude, thus the evaluation is very 

sensitive to numerical precision and round-off errors. The Leap-Frog scheme13 

circumvented this problem by updating the positions and velocities according to the 

following equations: 

)2/()()( tttttt iii ∆+∆+≈∆+ vrr                       (1.20) 
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It can be easily shown that equations (1.20) and (1.21) are equivalent to equations 

(1.16) and (1.17). One drawback of this scheme is that the positions and velocities are 

not calculated at the same time (offset by half a time step, thus the naming of this 
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algorithm). The velocities at whole time steps, however, can always be calculated as 

the average of the velocities at plus and minus half a time step of that whole step. 

There are other more advanced integrators available, like the Gear algorithm and other 

predictor-corrector schemes14-16. These algorithms can give more accurate positions 

and velocities if a small time step is used than the simple integrators can. When a 

large time step is used, these advanced schemes will give much bigger energy drift 

than the simple schemes do. Since one wants to use a time step that is as big as 

possible in a MD simulation to speed up the sampling, there is no point in using a 

very small time step. The reason behind this is the shadow trajectory
17 argument: 

since the equations of motion for all atoms are solved numerically, some numerical 

errors will always exit. And these errors grow exponentially as the simulation 

proceeds. Thus, in a simulation, it is impossible to reproduce the “exact trajectory” a 

particular atom will follow in a real system. This does not matter though. The 

equilibrium properties of the system are not sensitive to the details of an individual 

atom’s trajectory. One only needs to guarantee that a long enough part of the 

trajectory extracted from a simulation would statistically provide a fair description of 

a particle with the same initial conditions. This trajectory is called a shadow trajectory. 

In this sense, the Leap-Frog scheme does an excellent job. It has relatively large 

energy fluctuations in short time but gives very low energy drifts in the long run. 

Together with the efficiency it has in integrating the equations, the Leap-Frog scheme 

is by far the most popular integration scheme in MD simulations. 
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1.1.4 Limitations 

As any technology used in science, MD simulation has its own limitations and to 

know the limitations of a method is as necessary as to know its utilities. 

First, equation (1.1) and (1.2) tell that an MD simulation is completely classical. 

This is fine for many heavy atoms at normal temperature but for the motion of a light 

hydrogen atom, it is well known that many aspects of this motion are quantum 

mechanical in nature, like tunneling through an energy barrier in the course of transfer 

of a hydrogen bond. Also, electrons are supposed to be in their ground state and not 

described explicitly in a MD simulation. Instead, the Born-Oppenheimer 

approximation is used: the electrons will adjust their positions instantly as the 

positions of the atoms change. As a result, electron transfer cannot be explicitly 

modeled, like chemical reactions where bonds can form and break.  

Second, the force fields are approximate. From the form of the energy functions 

to the parameters used in them, many approximations are made. Most force fields are 

pair-additive, and non pair-additive interactions, like interactions through atomic 

polarizability are represented by effective pair-additive potentials. This can incur 

problems where parameterizations are not consistent amongst different systems under 

separate conditions. As a result, one should always be cautious when applying a force 

field to a system with different conditions. Results should be checked carefully and, 

sometimes, re-parameterization will be needed. Another approximation with the force 

fields is that long range interactions are truncated at a distance of 1-2 nm. The effect 

of using a cutoff may be minor for the Lennard-Jones interactions but it is certainly 
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not for the electrostatic interactions. Though there are other methods to handle this 

portion of energy calculations, like the PME9,10, they also have their own pitfalls (see 

below). 

Third, the boundary conditions are unnatural. Due to the limited computational 

capability, a simulated system contains much less particles compared to a 

macroscopic system (a system containing 100,000 particles is huge in a simulation). 

As a result, a large portion of the particles will be close to an unnatural boundary of 

vacuum and this can cause too many artifacts on the properties of the system. To 

reduce this edge effect, periodic boundary conditions (PBC) are used in simulations. 

The idea of PBC is that the simulation box is surrounded by translated copies of itself 

in all directions and atoms that cross one side of the box enter from the other side of it 

immediately. The Lennard-Jones interactions between atoms are only calculated 

between the closest images of the atoms. A PBC is desired if one simulates a crystal 

structure. However, liquids or solutions are not crystal and PBC itself causes errors. 

The application of PME to calculate the electrostatic interaction in a periodic system 

may introduce extra order to it. 

As the development of better parallelization, better algorithm and faster hardware 

proceeds, the length and time scales accessible to MD simulations will continue to 

increase. The boundary effect may be the first thing we can erase from our concerns. 

Also, there are methods (e.g. QM/MM18) developed to handle the electrons’ degrees 

of freedom in some parts of a simulated system, and chemical reactions can be 

simulated. The parameterization of the force field remains a big challenge, especially 
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for new systems. 

 

1.2 Free Energy Calculations in MD Simulations 

1.2.1 Statistical Background 

In a canonical ensemble with N particles, the Helmholtz free energy is given by:  

NVTQA ln
1

β
−=                                 (1.22) 

where β = 1/kBT. kB is the Boltzmann constant and T is the temperature of the system. 

QNVT is the partition function of the system: 
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β                    (1.23) 

where H(x,px) is the Hamiltonian of the system. x and px are 3N-dimentional vectors 

containing the atomic coordinates and momenta of the particles in the system. h is the 

Planck constant. The N! term is due to the fact that the N particles are 

indistinguishable. The probability to find the system in a particular microscopic 

configuration (x, px) is defined as: 
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From the definition of the free energy and partition function for a system, it is obvious 

that it is virtually impossible to calculate the free energy of a system from a finite MD 

simulation: a finite MD simulation won’t be able to sampling all the configurations in 

limited time. However, in practice, people are generally interested in a free energy 

difference between two systems, like a reference system and a mutated one, or the 

Potential of Mean Force (PMF) as a function of a reaction coordinate when a system 
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is transformed from state A to state B. These quantities are possible to obtain from a 

simulation. Two approaches: the Free Energy Perturbation (FEP) and Umbrella 

Sampling methods19-27, are usually used to solve these problems. 

 

1.2.2 Free Energy Perturbation 

Suppose one is interested in estimating the free energy difference between a 

reference system, a, and a target system, b. Assume that system a is described by 

Hamiltonian Ha(x, px) and system b by Hb(x, px), such that: 

),(),(),( xxaxb HHH pxpxpx ∆+=                          (1.25) 

Here, ∆H(x,px) is the difference between the two Hamiltonians, or the perturbation 

between the final and initial states. According to equation (1.22), the free energy 

difference between system b and system a can be written as: 
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Substituting equation (1.23) and (1.25) into equation (1.26), we get: 
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Using the definition of P(x, px) in equation (1.24), we get: 

∫ ∫ ∆−−=∆ → xxxba ddPHA pxpxpx ),()],(exp[ln
1

β
β

            (1.28) 

Or:        axba HA >∆−<−=∆ → )],(exp[ln
1

pxβ
β

                     (1.29) 

where <…>a means an ensemble average over configurations of the reference system. 
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In practice, equation (1.29) only holds when the two systems a and b are close enough, 

which means the configuration ensembles of a and b overlap appropriately, for 

numerical reasons. If this condition is not met, which is true in most practical cases, 

the transformation from a to b is usually divided into many small steps. In each small 

step, the overlap condition is met, and the free energy change from system a to system 

b is the sum of the free energy change in each step. For each step, an intermediate 

state is introduced. For a particular intermediate state k, the Hamiltonian reads: 

          ),(),()1(),( xbkxakxk HHH pxpxpx λλ +−=                   (1.30) 

λk is called the coupling parameter. For system a, λk = 0, and for system b, λk = 1. For 

a series of N systems, including a and b (H1=Ha, HN = Hb), the free energy change for 

the transformation from a to b can be expressed as a sum of N-1 free energy 

differences:  

∑
−
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k

kxkxkba HHA pxpxβ
β

      (1.31) 

Equation (1.31) is the basic FEP equation. 

 

1.2.3 Umbrella Sampling 

The umbrella sampling method is commonly used to calculate the free energy 

change when a system is transformed from state a to state b; for example, folded and 

unfold states of a protein. Suppose the reaction coordinate for that transition is q and 

the potential energy for the system U(R, q) is a function of the reaction coordinate and 

all other complementing coordinates designated by the vector R. The free energy as a 

function of q can be written: 
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∫ −−−= RR dqdqUqqqF )],(exp[)(ln
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)( 00 βδ
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              (1.32) 

Here, β = 1/kBT, kB is the Boltzmann constant and T is the temperature. The δ function 

is the Dirac’s delta function. We omitted the kinetic part of the Hamiltonian for the 

simplicity of our discussion. Included or not, the kinetic energy part will not make a 

difference in the final conclusion anyway (see below). 

We are usually interested in a free energy difference such as F(q0) - F(q1). For the 

calculation of free energy difference, we can add a constant to each free energy 

without changing the value of their difference. (It is also true when a constant is 

subtracted from each free energy; this is why we could omit the kinetic part, since the 

kinetic energy contributes equally to each free energy). Here, we add the total free 

energy of the system to the free energy at a particular reaction coordinate q0,  and 

F(q0) reads: 
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Equation (1.33) expresses the free energy as an average of a function, which can be 

calculated in a MD simulation. However, if some of the q configurations are high 

improbable, it will be very difficult to obtain reliable statistics for these q in a limited 

simulation. Also, a simulation can be stuck in some local minimum during a 

simulation. Figure 1.4 below shows such a case. The thick line in the plot is the 

potential energy and the thin line represents the positions sampled by the system 

during a simulation. In simulations, the configurations close to the energy barrier are 

not likely to be sampled due to their high energy. Thus, it is possible for the system to  
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       Fig 1.4 The projection of potential along the reaction coordinate q. 

 

get stuck in a local energy minimum, such as the minimum on the left side of the 

barrier in Figure 1.4, so that the configurations on the right side of the barrier are not 

sampled sufficiently.  

The umbrella sampling method modifies the original potential energy in such a 

way that configurations with desired reaction coordinates can be sampled significantly. 

The original potential is distorted by another potential term: 

)(),(),( qVqUqU +→ RR                              (1.34) 

where V(q) is independent of R and is chosen so that it is centered around a certain 

value of q(k)
. The potential V(q) is sometimes called a biasing potential. A commonly 

used biasing potential is a simple harmonic one: 

2)()( )()()( kk
qqkqVqV −==                            (1.35) 

q
(k) is a constant. It is clear that after the biasing potential is added, it is favorable for 

the simulation to sample configurations with reaction coordinate around q(k). By using 

different constant in the biasing potential, we can ideally obtain statistics of the 

configurations with any reaction coordinate value we are interested in. One obvious 

problem is that the modified potential is not the true potential and we must find a way 
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to convert sampling data with the biased potential to statistical data without the bias, if 

there is such a way at all. Fortunately, this can be done. Let’s start with the 

integrals:
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Both sides are equal because we just added and subtracted V(q) from the exponent and 

multiplied and divided by the same integral. Let’s look at the first one of the two 

ratios: 
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Notice that the average of the delta function is an average over the configurations 

sampled with the total potential U+V. The second ratio can also be written as an 

average: 
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Put (1.37) and (1.38) together, we have: 
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The numerator above can be calculated simply enough from a simulation. The 

denominator, however, cannot. The reason is that the configurations in a simulation 

are sampled with a weight of exp[-β(U+V)]=exp[-βU]exp[-βV]. So the weight is 

exponentially small in V while the function we try to average is exponential big in V. 

Thus, in the simulation, either the weight or the function will be close to zero and the 

sampling is problematic for the calculation of this average. We need to find a way to 

avoid the calculation of the denominator. 

Suppose we use two biasing potential V(k) and V(k+1)
 in two separate simulations, 

both with its minimum close to but not the same as q0 . Since both simulations 

potentially center around q0, the value <δ(q-q0)>U can be calculated using sampling 

data from either of the simulations, and we have:  
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So we have: 
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Take the log of both sides, we get: 
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The right hand side of (1.43) is independent of q0. For the above equation to hold for 

any q0, the right hand side of the equation must be equal to a constant. Equation (1.43) 
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is also true for q1, which is close to q0, so we have: 
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The free energy of the system at reaction coordinates q0 and q1 is: 
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These two equations are true if we use a biasing potential V(k+1) is close to V(k). 

If we are primarily interested in the free energy difference of the system at q0 and q1, 

we don’t need to calculate all three terms on the right hand side of equation (1.45) or 

(1.46), but instead, just calculate the first two terms. The third terms would cancel 

each other since they are the same. This is also true when biasing potential V(k+1) is 

applied in the simulation. If we plot the quantity 

)()(ln
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kkVU

i qVqq −>−<− +δ
β

for different q-s and also for different k-s, it will 

look something like: 

 

            Fig 1.5 Free energy as a function of reaction coordinate q 
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The two curves correspond to two different biasing potentials. At the overlap region 

of these two curves, the differences between them at different q-s are a constant. 

Further more, these two curves are related to the real free energy by a constant. 

Though for different biasing potentials, the constant is different. By sliding the biasing 

potential along different positions of the reaction coordinate, we may get the free 

energy profile over a range of reaction coordinates. This process may look pictorially 

something like: 

 

Fig 1.6 The process of constructing the free energy profile along the reaction 

coordinate. 

 

1.2.4 The Weighted Histogram Analysis Method (WHAM). 

From an umbrella sampling simulation with biasing potential Vbias(q), the biased 

probability to find the system at a particular configuration (characterized by reaction 

coordinate q) is P’(q) and the unbiased free energy could be evaluated as following: 
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ConstqVqPTkqF biasB +−−= )()('ln)(                    (1.47) 

The “Const” term is not known and it depends on the biasing potential. In practice, a 

number of simulations are run with the minimum of the biasing potential at a different 

q for each simulation. From each of these simulation, a biased probability P’(q) for a 

particular reaction coordinate value q could be estimated using a histogram method, in 

which the range of sampled reaction coordinate is discretized into a number of bins 

with equal width. Each P’(q) from an individual simulation will carry its own error. 

There is a need to combine the results from all simulations in an appropriate way to 

give a best estimation for the unbiased probabilities P(q). 

The Weighted Histogram Analysis Method (WHAM)28 is an extension of 

Ferrerberg and Swendsen’s Multiple Histogram Technique29. The basic idea of this 

method is to weight the estimations for the density of states from each simulation in 

such a way so that these estimations with smaller errors get more weight. However the 

error associated with each estimation is not known and it is related to the true density 

of states itself. The WHAM equations shown in (1.48) and (1.49) provide a method to 

best estimate the unbiased probability distribution of states: 
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where Nsims is the number of simulations, ni(q) is the number of counts in histogram 

bin associated with q, Fi is the free energy of the system in simulation i. and P(q) is 

the best estimation of unbiased probability distribution. Fi and P(q) are not known and 
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the above two equations are solved by iteration until self consistency is reached.  

 

1.3 Lipid Rafts in Cell and Model Membranes 

The concept of lipid rafts was formulated about twenty years ago from studies on 

lipid polarity and lipid sorting in epithelial cell30,31 . The main postulate was the 

existence of lipid domains, consisting of dynamic assemblies of cholesterol, 

sphingolipids and certain proteins, in the exoplasmic leaflet of the cell membrane. 

This concept was popularized in 199732 and since, the field has undergone wide 

acceptance and expansion. Lipid rafts have been believed to be involved in many 

cellular processes such as signaling33-35, protein and lipid sorting36, cellular entry by 

toxins and viruses and viral budding37,38 etc. A consensus definition of lipid rafts was 

given in the recent Keystone Symposium39 as “Membrane rafts are small (10-200 nm), 

heterogeneous, highly dynamic, sterol- and sphingolipid-enriched domains that 

compartmentalize cellular processes. Small rafts can sometimes be stabilized to form 

larger platforms through protein-protein and protein-lipid interactions”. 

The first lipid domains were detected in human and hamster fibroblasts as 

detergent-resistant membranes (DRMs) that were enriched of glycosphingolipids, 

cholesterol and glycoproteins40,41. The term “lipid raft” is defined operationally by the 

way in which they are extracted from cells using a non-ionic detergent Triton X-100 

at 4℃. These rafts float to a low density during a gradient centrifugation due to their 

high lipid content42,43. Proteins found to be associated with these 

sphingolipid-cholesterol rafts include glycosylphosphatidylinositol (GPI)-anchored 
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proteins and trans-membrane proteins, like the influenza virus proteins neuraminidase 

and haemagglutinin32. The operational definition of lipid rafts had led to some 

controversies on their existence in living cells as the small size of these rafts preclude 

the possibility of direct observation by light microscopy. However, many recent 

studies with improved methodologies, such as fluorescence resonance energy transfer 

measurements44, biochemical crosslinking of GPI-anchored proteins45, antibody 

crosslinking of raft proteins into patches segregating from non-raft proteins46, 

photonic force microscopy measurements47 and electron microscopy visualization48 

have provided more and more evidence on the existence of lipid rafts. Nevertheless, 

the size of different domains, the mechanisms behind the formation of domains and 

the dynamics and the structural properties of these domains are far from clear. Are 

proteins necessary for the formation of a domain, or they are just recruited after the 

domains have formed. Are there corresponding domains in the inner leaflet of a cell 

membrane, which are primarily enriched in phosphatidylethanolamines (PE) and 

unsaturated phosphatidylcholines (PC)? If yes, are they coupled with the domains in 

the exoplasmic leaflet? How?  

Since biological membranes are very complex entities consisting of different 

kinds of phospholipids, glycolipids, sterols and proteins, it is very difficult to study 

such a system and understand the role each component plays in the functioning of 

such an assembly. In practice, simple model membranes containing one species of 

lipid or well-controlled mixtures of two or three components are usually synthesized 

for study. Experimental observations have demonstrated that physical properties of 
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these model membranes are similar to the physical properties of natural membranes. 

In both natural and synthetic membranes, the lipid rafts domains are enriched in 

cholesterol and saturated lipids, like sphingolipids. Sphingolipids differ from many 

biological lipids in containing mostly saturated acyl tails. This allows for them to pack 

tightly together, which is one of the reasons why sphingolipids have a much higher 

melting temperature (Tm)32 than biological phospholipids (like phosphatidylcholine, or 

PC ), which usually carry kinked, unsaturated acyl chains. Researchers have shown 

that the ability for sphingolipids to pack their acyl tails tightly is a key feature in raft 

forming38,49,50. In fact, at physiological temperature, a model membrane made of pure 

saturated sphingolipids would be in a gel phase (usually abbreviated as so), while one 

made of unsaturated phospholipids would be in a disordered state (lc or ld). In the gel 

phase, tails of lipid molecules are highly ordered and lipid molecules have very low 

mobility. In the liquid disordered phase, the lipid tails are disordered and have a high 

degree of lateral mobility. 

In lipid rafts, the lipid tails are also highly ordered similar to a gel phase, however, 

due to the high concentration of cholesterol molecules, molecules in a lipid rafts have 

a lateral mobility close to those in a ld phase, and such a phase is usually termed a 

liquid ordered phase (lo). Lipid rafts are in a liquid ordered phase due to the special 

role cholesterol molecules play in forming such a phase. It is well known that 

cholesterol has important effects on the phase behavior of certain lipids. Different 

binary mixtures of cholesterol with lipids as well as ternary mixtures containing 

cholesterol have been studied, which brought up many interesting observations as 
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well as questions. In experiments, McConnell and collaborators51,52 observed that for 

monolayers containing a binary mixture of cholesterol/ di(10:0) PC or 

cholesterol/di(12:0)PC or cholesterol/di(14:0)PC at low surface pressures, two 

coexisting liquid phases were present. At higher surface pressures, the two phases 

merged into a single phase, displaying an upper miscibility critical point. When the 

mixture contained cholesterol and, for example, di(15:0) PC, two upper critical points 

appeared. The phase diagrams for monolayers of cholesterol/di(14:0) PC and 

cholesterol/di(15:0) PC mixtures are shown in Fig. 1.7: 

 

Fig 1.7 The phase diagrams for monolayers of 

chol/di(14:0)PC and chol/di(15:0)PC mixtures 

 

As can be seen from this figure, there are two 

regions which are two phase regions in the 

cholesterol/di(15:0) PC mixture. According to 

McConnell and his collaborators, the existence 

of two critical points in the phase diagram indicates the formation of a “condensed 

complex” between cholesterol (C) and phospholipid (P). This process can be 

described by the reaction 

nqC+ npP⇔ CnqPnp,                            (1.50) 

where q and p are stoichiometric integers and n is the measure of the size of the 

complex. n also shows the degree of cooperativity in the complex formation. 
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Using the notion of the condensed complex, we can assign one region of the 

phase diagram, region α, as due to immiscibility of pure phospholipid and complex 

and the other region, β, as due to immiscibility of cholesterol and complex. What is 

the molecular structure of the complex? It was emphasized in the work of 

McConnell’s group that no molecular picture of a cholesterol/phospholipid complex 

exists at the present time.  There is also no clear understanding what are the values of 

q, p and n, although some indications are that q=1 or 2 and p=2 or 3 and n~2-10. 

Micron-scale liquid domains and liquid-liquid phase separation in artificial 

membranes were observed in giant unilamellar vesicles (GUVs)53 and in black lipid 

membranes54 when these systems contained three lipid components. The two liquid 

phases in these systems were the liquid ordered (lo) phase that constitutes the domains 

(rafts) and the liquid disordered (ld) phase in the rest of the membrane. One of the 

ternary mixtures initially studied was a mixture containing a relatively saturated lipid 

such as sphingomyeline (SM), cholesterol and unsaturated lipid such as 

dioleoylphosphatidylcholine (DOPC) at ratio 1:1:1. The lipid raft domains were 

observed to be enriched by SM and cholesterol, while the liquid disordered phase 

outside the rafts was enriched in DOPC55. Later, the phase diagram for this mixture 

was mapped out and showed the existence for the region of liquid-liquid phase 

coexistence (see Fig. 1.8a for the diagram; the inserts are micrographs of vesicles. The 

diagram is from the review by Veatch and Keller56). The choice of SM molecule as a 

saturated lipid in a mixture perhaps was dictated by the observation that natural 

membranes contain a large proportion of SM. One can choose another saturated lipid, 



 30 

 

Fig 1.8 Phase diagrams of ternary mixtures containing cholesterol and phospholipids.  

 

such as the well studied dipamitoylphosphatidylcholine (DPPC) instead and still 

observe the liquid-liquid coexistence region in the phase diagram for a ternary 

mixture of DOPC/DPPC/CHOL (see Fig 1.8b). Liquid-liquid phase separation can 

also be observed in the phase diagram of the DPPC/DLPC/CHOL mixture. What kind 

of interactions between cholesterol and phospholipids are responsible of the 

liquid-liquid coexistence regions in the phase diagrams shown above? Are they very 

specific? What is the role of the phospholipid headgroup/cholesterol interaction or the 

phospholipid tail/cholesterol interaction? To answer these questions, one needs to look 

into molecular details of the interactions between these molecules and it is very hard 

to measure these data from experiments by using microscopy or calorimetric methods. 

Since molecular dynamics simulations can provide atomic level resolution pictures of 

the system under study, performing computer simulations of lipid mixtures containing 

cholesterol will help to shed some light on these questions. 

 



 

 

CHPATER 2: A SIMULATION OF ASYMMETRIC LIPID 

BILAYER 

2.1 Introduction 

Biological membranes are very complex entities containing many distinct lipid 

species57. The distribution of these lipids in cell membranes is not homogeneous. Thus, 

for example, lipids such as sphingomyelin (SM) and phosphatidylcholine (PC) can be 

often found in the outer leaflet of plasma membranes, while two other typical 

lipids-phosphatidylserine (PS) and phosphatidylethanolamine (PE)-are found in the 

inner leaflet of the membrane58,59. Another important lipid found in membranes is 

cholesterol (CHOL), but it is not known if it is distributed in the same amount in the 

two leaflets of the membrane58. In view of the inhomogeneous character of natural 

membranes, it was proposed that these membranes contain domains where lipid exist 

in a liquid ordered phase (lo) surrounded by assemblies of lipids in the 

liquid-disordered phase (ld)
32. The lo domains are rich in cholesterol and saturated 

lipids; these domains are also often called lipid rafts32,60. The issues related to our 

understanding of the composition, structure, dimensions, and properties of lipid rafts 

in natural biomembranes are very far from being clarified61. 

To study properties of lipid rafts, model membranes are intensely investigated. 

Numerous studies have been performed on bilayers containing binary mixtures of 

lipids with cholesterol as one of the components56,62. Specifically, in view of the 
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importance of the SM molecule for rafts, recent studies were done to understand the 

nature of interactions between SM and CHOL63-65. Also, studies were done on model 

bilayers containing ternary mixtures of cholesterol, SM, and unsaturated PC and phase 

diagrams for these mixtures were mapped out56,66. It was observed that in giant 

unilamellar vesicles containing the three components mentioned above, a phase 

separation occurs: the bilayers contain lo domains (rafts) where CHOL and SM can be 

found in an enriched amount. The composition of both leaflets in model systems was 

the same and it was observed that lo domains were created simultaneously in both 

leaflets and the domains were in the same location in the inner and outer leaflets. 

What is the situation with the domains in natural membranes containing asymmetric 

(different in lipid composition) leaflets? As of today, no clear understanding of this 

issue exists58.  

Computer simulations of bilayers containing PC lipids or mixtures of PC with 

cholesterol provided molecular level information on structural and dynamical 

properties of such bilayers67-72. Recently, results were reported on simulation studies 

done on SM bilayers73-76 as well as on bilayers containing a binary mixture of SM and 

CHOL77. Some preliminary, but thought-provoking simulation work was done on 

ternary mixtures containing dioleoylphosphatidylcholine, SM, and CHOL by Pandit et 

al78,79. 

Nearly all simulations on bilayers containing lipid mixtures that were reported in 

the literature were performed on symmetric bilayers containing the same composition 

in both leaflets. In this chapter, a molecular dynamics (MD) simulation performed on 
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an asymmetric bilayer containing a mixture of CHOL and (18:0) SM in one leaflet 

and stearoyl-oleoyl-phosphatidylserine (SOPS) and CHOL in the other leaflet is 

reported. For comparison purposes, two simulations on symmetric bilayers: first 

simulation was performed on a bilayer containing a binary mixture of SOPS and 

CHOL, with second containing a mixture of (18:0) SM and CHOL were also 

performed. We chose to simulate a mixture of PS with CHOL because PS molecules 

interact more favorably with CHOL compared to phophatidylethanolamine 

molecules60. SOPS molecule is chosen to represent PS molecules, which are found in 

the cytoplasmic leaflet of natural membranes80. The raft-forming concentration of 

cholesterol in the SM+CHOL bilayer was chosen for the study. Since the interaction 

between PS and CHOL is favorable and the PS molecules are condensed in the bilayer 

due to interlipid hydrogen bonding interactions and condensing effect due to 

conterions81,82, we expect that the phase of the SOPS and CHOL mixture will also be 

the lo phase. Therefore, we expect that in our simulation we represent a patch of and lo 

domain in an asymmetric bilayer. 

 

2.2 Computational Details 

We have performed MD simulations on two symmetric bilayers containing 

mixtures of phospholipid molecules with cholesterol and on simulation on an 

asymmetric bilayer containing different mixtures in each leaflet. The first bilayer 

contained 84 SOPS molecules, 44 cholesterol (CHOL) molecules, and 84 Na+ 

counterions. The second system had 84 (18:0) sphingomyelin (SM) molecules and 44 
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CHOL molecules. Both bilayers were hydrated with 3840 water molecules. The 

molecular structures of SOPS, (18:0) SM, and CHOL were generated using SYBYL, 

Ver 7.0 (Tripos, St. Louis, MO) and are shown in Fig. 2. 1. The initial structure of a 

bilayer leaflet was obtained by generating an 8 X 8 array of 64 lipids (SOPS or (18:0) 

SM) in the xy plane by random rotation of each lipid around the z direction. Then 22 

of these phospholipids were randomly chosen and replaced by CHOL molecules. The 

second leaflet was obtained by reflection and translation of this first layer. A water 

slab was added on both sides to solvate the headgroups. In the case of SOPS bilayer, 

this was followed by a random replacement of 42 water molecules on each side of the 

bilayer by Na+ ions. For both bilayers, the bilayer normal is directed along the z 

direction. 

Our simulations were performed using the GROMACS package5,6. The LINCS 

algorithm was used to constrain all bonds in the system83 allowing an integration time 

step of 2 fs. Periodic boundary conditions were applied in all three dimensions and 

long-range eletrostatics was handled using the SPME algorithm10 with real-space 

cutoff of 10 Å, fourth-order interpolation, and a tolerance of 10-5. A 12 Å cutoff was 

utilized for van der Waals’ interactions. The temperature in the simulations was 

maintained at 310 K using the Nosé-Hoover scheme84 with a thermostat relaxation 

time of 0.5 ps. The system was simulated in an NPT ensemble using the 

Parrinello-Rahman semi-siotropic pressure coupling scheme85 with a barostat time 

constant of 2.0 ps at a pressure of 1 atm. 
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Fig 2.1 Structure of the lipid molecules (a) cholesterol (CHOL). (b) (18:0) 

sphingomyelin (SM), and (c) SOPS.  

 

The SPC/E model of water86 was used in the simulations. Force field for the SOPS 

was based on the parameters of Berger et al.87 and GROMOS8788 parameters. The 
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carboxylate group charges were taken from the aspartic acid side chain. The partial 

charges for amine group were the same as used in 

palmytoyl-oleoyl-phosphatidylcholine89. The force field for the (18:0) was the same 

as used by Niemelä90 et al. The force field parameters of CHOL as used in the study 

by Pandit et al72. were also used in this study. 

The SOPS and (18:0) SM bilayers were simulated for 60 ns and 64 ns 

respectively. The positions and velocities of the system were saved every 1 ps. To 

construct the asymmetric bilayer we combined configurations of two lipid leaflets, 

each from the simulation with the symmetric SM+CHOL and SOPS+CHOL bilayers. 

A snapshot of the asymmetric bilayer is shown in Fig 2.2. 

 

Fig 2.2 The asymmetric bilayer: SOPS (solid-stick representation), CHOL (open 

spheres), Na+ (solid spheres) in the lower leaflet, SM (shaded-stick representation), 

and CHOL (open spheres) in the upper leaflet. The solvent water molecules are not 
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shown. 

 

The configurations were obtained from the end of 50 ns and 60 ns MD runs, 

respectively. Both leaflets contained 42 phospholipid and 22 CHOL molecules. In 

addition, the SOPS+CHOL leaflet contained 42 Na+ counterions. A water slab of 1920 

water molecules was generated using GROMACS utility genbox and added to each 

leaflet of the bilayer. The asymmetric bilayer structure was initially energy-minimized 

and then an MD simulation was carried out for 50 ns in an NPT ensemble at 1 atm 

pressure and at 310 K with the three-dimensional periodic boundary conditions. For 

the asymmetric bilayer, the force field parameters and the simulation parameters were 

the same as described above for the symmetric bilayers. The trajectory data were 

saved every 1ps. 

The analyses of saved data were performed using the utilities available in 

GROMACS as well as programs written by us. The analyses have been carried out 

over the last 45 ns and 38 ns of the trajectory for symmetric SOPS and (18:0) SM 

bilayers, respectively. For the asymmetric bilayer, the analyses were carried out over 

the last 45 ns of the trajectory. Henceforth, we refer to (18:0) sphingomyelin as SM, 

unless mentioned otherwise. 

 

2.3 Results and Discussion 

  2.3.1 Structural properties 

Fig. 2.3 (a) shows the values for the areas per lipid from the two simulations 
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performed on the symmetric bilayers. 

 

Fig 2.3 The area per molecule for (a) symmetric SOPS+CHOL and SM+CHOL 

bilayers and (b) asymmetric bilayer. 

 

The values for the average area per lipid are 40.7±0.3 and 38.6±0.3 Å2 for the bilayers 

containing SOPS and SM phospholipids, respectively. These numbers seem to be 

somewhat small, when compared to areas per lipid of ～50-70 Å2 measured in 

monolayers or bilayers containing only one lipid component91. Since we have 

cholesterol in our bilayers, the area condenses. That the numbers given above are 

reasonable can be understood from the following argument. Let us assume that 

cholesterol is shielded from water by phospholipids, as it is suggested in the umbrella 
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model92. In this case one gets that the area per phospholipid is aPL = A/NPL, where aPL 

is the area per headgroup of the phospholipid (SOPS or SM), A is the xy area of the 

simulation box, and NPL is the number of phospholipids. From the umbrella model 

one gets for phospholipids area values of 62 Å2 for SOPS and 58.8 Å2 for SM. The 

value fro SOPS is close to the measured value of ≈ 64 Å2 obtained for 

dioleoyl-phosphatidylserine (DOPS)93. It is expected that the area per SOPS should be 

substantially smaller than the one for DOPS, because SOPS only has one unsaturated 

acyl tail. The area per SM as estimated above is also larger than the area per SM 

of ～ 51 Å2 obtained from simulations on pure SM bilayer90. These considerations 

indicate that the umbrella model is probably not accurate for area estimation. Getting 

the values for area per lipid in simulations with lipid mixtures is not a simple issue94. 

Here we have used the methodology developed by Hofsäβ et al.71 to compare our data 

with some of the data published in the literature for the 

cholesterol/dipamitoylphosphatidylcholine (DPPC) mixture. According to Hofsäβ et 

al., the areas per phospholipid and cholesterol can be determined using equation (2.1): 
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Where Nlipid is the total number of lipids (NPL + NCHOL = 128), x is the concentration 

of CHOL: NCHOL/Nlipid, V is the volume of the simulation box, Nw is the total number 

of water molecules in the system, Vw is the volume occupied per water molecule 

(0.0305 nm3), and Vchol is the volume per cholesterol molecule taken to be 0.593 

nm3.71 The area per cholesterol molecule can be calculated from the expression: 
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The calculated values of area per lipid using the above equations are aSOPS = 48.8 Å2 

and aSM = 46.3 Å2. The area per cholesterol is 25 Å2 in both systems. For comparison, 

notice that in the DPPC+CHOL bilayer containing 40% cholesterol71, the DPPC area 

is ～55 Å2, while the CHOL area is ～27 Å2. So when 40% of cholesterol is added to 

DPPC, its area in simulations shrinks from 64 Å2 to ～55 Å2, while the area of SM 

shrinks from ～51 Å2 to ～46 Å2 when we add 33% of cholesterol. This indicates 

that in membranes containing PC a substantial condensation occurs with addition of 

cholesterol. Some condensation also occurs in membranes containing SM, but this 

condensation is not as substantial. The bilayer of pure SM is already condensed due to 

the presence of a strong interlipid hydrogen-bonding network. The same can be also 

argued about the bilayers containing PS. 

Fig. 2.3 (b) shows the time evolution of the area per lipid in the asymmetric 

bilayer. The average area per lipid molecule is 39.5±0.2 Å2 in this case. To find the 

area per lipid in case of the asymmetric bilayer we observed that the xy area of the 

simulation box for the asymmetric bilayer is the same for the two leaflets and that 

both leaflets have the same number of phospholipid and cholesterol molecules. 

Therefore, from the above-described procedure for calculating area, if one assumes 

that the area/cholesterol is the same in two leaflets, one obtains that the 

area/phospholipid is also the same for the two types of phospholipids. The 

area/phospholipid is found to be 47.4 Å2 and the area/cholesterol is ～25Å2. Thus, the 

area/phospholipid in the asymmetric bilayer is intermediate to the values of the 
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area/SOPS and the area/SM as found above. 

Fig 2.4 (a) and (b) show the electron density plots for the SOPS+CHOL system. 

 

Fig 2.4 The electron density profile of the SOPS+CHOL bilayer plotted as a function 

of the distance long the bilayer normal. 

 

The peak-to-peak distance, as estimated from Fig 2.4 (a), is found to be 48.2 Å. When 

compared to the experimental measurement of bilayer thickness of pure SOPS, which 

is about 42 Å95, the SOPS+CHOL bilayer in the present work appears to be more 

extended. From Fig 2.4 (b), it can be seen that Na+ ions are delocalized over the 

bilayer water interface. The ions are located in the region stretching from the 

carboxylate group to the ester-carbonyl groups denoted as (O-CO)1 for the sn-1 chain 

and (O-CO)2 for the sn-2 chain. No significant overlap of densities in the z direction 

is observed between hydroxyl groups of cholesterol and the Na+ ions. However, the 

hydroxyl groups of cholesterol are seen to be in the proximity of ester-carbonyl 



 42 

groups of SOPS. The electron density of the tail CH3 group of cholesterol shows very 

little overlap across the bilayer. This can be seen as a consequence of the presence of 

an 18-carbon tails in the SOPS molecules. 

Fig 2.5 (a) and (b) are the electron density plots of the SM+CHOL system. The 

peak-to-peak distance in Fig. 2.5 (a) is found to be 47.6 Å. Khelasvili and Scott77 also 

performed simulation of an 18:0 SM with cholesterol in a proportion which was 

roughly 2:1. Their areas per lipid were ～10% larger than what we found here and 

correspondingly their peak-to-peak distance was significantly shorter (42 Å). Note 

that the force field and the simulation temperatures were different in the simulations 

of Khelashvili and Scott. As in the case of SOPS bilayer, we did not observe any 

significant overlap of the tail methyl group densities (C29) of cholesterol molecules in 

the case of the SM+CHOL bilayer (see Fig 2.5 (b)). At the same time, the density of 

the hydroxyl group of cholesterol is found to have a significant overlap with the 

density of the CO and –OH groups of the SM molecules. 

 

Fig 2.5 The electron density profile of the SM+CHOL bilayer plotted as a function of 

the distance along the bilayer normal. 
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Fig 2.6 The electron density profile of the asymmetric bilayer plotted as a function of 

the distance along the bilayer normal 

 

Fig 2.6 (a) and (b) are the electron density profiles of the asymmetric bilayer. The 

peak-to-peak distance in Fig.6 (a) is found to be 48.4 Å. The Na+ ions were found to 

be located only on the side of the SOPS+CHOL leaflet, despite the presence of the 

three-dimensional periodic boundary conditions. These ions were delocalized over the 

interfacial region from carboxylate to the ester-carbonyl groups. As in the symmetric 

bilayers, tail groups C29 of CHOL were found to have a minimal overlap in the 

asymmetric bilayer (Fig 2.6 (b)). 

We also calculated the deuterium-order parameters96 for the lipid tails, which are 

defined as following: 

2
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Where θz is the angle between the z axis of the simulation box and the molecular axis 
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under consideration. The molecular axis is defined as the vector from Cn-1 to Cn+1. The 

parameters Sx and Sy are defined in the same way. The brackets denote average over 

time and molecules. Order parameters can vary between 1 (full order along the bilayer 

normal) and -1/2 (full order perpendicular to the normal), with a value of zero in the 

case of isotopic orientation. The lipid chain order parameters are shown in Fig 2.7 

 

Fig 2.7 Deuterium order parameter profiles for symmetric and asymmetric bilayers. (a) 

Stearoyl and (b) oleoyl chains of SOPS. (c) Stearoyl and (d) sphingosine chain of SM. 

n is the number of carbon atoms along the hydrocarbon chains as shown in Fig. 2.1 

The order parameters for the lipid chains in the symmetric bilayers indicate that 

the sphingosine and the stearoyl chains of SM are slightly more ordered than the 

stearoyl chain of SOPS. Fig. 2.7 (a) and (b) show that the effect of the bilayer 

asymmetrization in our simulation was most significant for the SOPS+CHOL leaflet. 

The stearoyl chain and, to some extent the oleoyl chain, of the SOPS became more 
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ordered in the asymmetric bilayer than in the symmetric bilayer. The ordering of the 

sphingosine chain of SM remained unaffected by the asymmetrization (Fig. 2.7 (d)), 

while the stearoyl chain became slightly less ordered (Fig. 2.7 (c)). Thus, for the 

symmetric bilayers, the SM+CHOL bilayer exhibits a lower average area/molecule 

and therefore a larger lipid chain order than the SOPS+CHOL bilayer. In the 

asymmetric bilayer, the SOPS+CHOL gets more ordered while the order in the 

SM+CHOL leaflet slightly decreases as compared to the symmetric bilayer. This is 

consistent with the observed trend of area/lipid (see Fig.2.3). 

The results of our simulations on symmetric bilayers demonstrate that 

geometrical parameters such as areas per lipid and chain order parameters (for 

saturated bonds) are very close in cases of SOPS+CHOL and SM+CHOL bilayers. 

Does this mean that if the SM+CHOL bilayer is the lo phase, the phase of the 

SOPS+CHOL bilayer is also an lo phase and that SOPS and CHOL mixture if also 

raft-forming? If we follow a previously proposed suggestion that raft-forming 

tendencies are connected to cholesterol-lipid complex-forming tendencies51, and these 

in turn are correlated with hydrogen-bonding network properties72 we need to study 

properties of hydrogen bonding network in our bilayers. 

 

2.3.2 Properties of Hydrogen-bonding Network 

Let us consider here the interlipid hydrogen-bonding properties of the bilayers. 

We use the geometric criteria for the definition of the hydrogen bond between two 

lipids. To this end, for SOPS+CHOL bilayer, a radial distribution function was 
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calculated between hydrogen atoms of groups such as NH3+ of SOPS and –OH of 

CHOL and the oxygen atoms belonging to different molecules in the system. The first 

minima for these radial distribution functions were found to be about 2.5 Å. Therefore, 

an interlipid hydrogen bond was assumed to exist when the distance between a 

hydrogen atom from one lipid and an oxygen atom from the other lipid, rHO is <2.5 Å 

and the angle hydrogen-donor-oxygen, θHDO, is <30°. In the present work, the donor 

can either be a nitrogen or an oxygen atom. This definition of hydrogen bond is 

similar to the criterion used by Mukhopadhyay et al.97, who had used rHO≤2.4 Å and 

θHDO ≤ 35°. In the case of the pure SM bilayer, it was shown recently76 that among 

–OH and –NH groups only the –NH group participates in the interlipid hydrogen bond. 

In addition to the definition of the hydrogen bond given above, to study the interlipid 

hydrogen bonding in the SM+CHOL mixture, we assume that the hydrogen bond can 

be made between the N+(CH3)3 group of the SM and the OH group of cholesterol. The 

existence of such a bond was proposed when interlipid hydrogen bonding was studied 

for the bilayer containing dipalmitoylphosphatidylcholine (DPPC) and cholesterol 

mixture72. The concept of CH…O hydrogen bond is well established in chemistry98-101. 

The geometric criterion used for identifying this interlipid hydrogen bond for the 

united-atom model of CH3 was also used in the earlier work on lipid cmoplexation82. 

The hydrogen bond between N+(CH3)3
 and -OHCHOL is assumed to exist whenever the 

distance between N-CH3-O is in the range between 79° and 139°. This criterion is also 

used to identify hydrogen-bonding interaction between the two charged groups, 

N+(CH3)3 and PO4-, belonging to two different SM molecules. 
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Fig. 2.8 shows the distributions of the number of molecules hydrogen-bonded to a 

given lipid in the SOPS+CHOL bilayer. 

 

Fig 2.8 Distribution of molecules that are hydrogen-bonded to a given lipid in 

SOPS+CHOL bilayer. Distribution of (a) total number of lipids. (b)total number of 

SOPS molecules, and (c) total number of cholesterol molecules that are 

hydrogen-bonded to a given SOPS molecule. Panels d-f show the distribution of total 

number of lipids, total number of cholesterol molecules, total number of SOPS 

molecules, respectively, that are hydrogen-bonded to a given cholesterol molecule. 

Inset in each plot show the corresponding distribution of molecules that are 
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hydrogen-bonded to a given lipid in the SOPS+CHOL leaflet of the asymmetric 

bilayer. 

 

As can be seen from Fig. 2.8 (a), an SOPS molecule has maximum probability to 

be hydrogen-bonded with two other lipids, which according to Fig. 2.8 (b) will be, 

with a high probability, two SOPS molecules. Also, an SOPS molecule is most likely 

not to be hydrogen-boned to a cholesterol, as cholesterol concentration is 33% (see 

Fig. 2.8 (c)). In addition, SOPS is not found to be hydrogen-bonded to more than two 

cholesterol molecules. The distribution for the total number of hydrogen bonds per 

cholesterol is dominated by the presence of just one hydrogen bond between the 

SOPS molecule and cholesterol (see Fig. 2.8, (d) and (f)). Notice also the absence of 

the cholesterol-cholesterol hydrogen bonding. 

Fig.2.9 shows the distribution of a number of molecules that are hydrogen bonded 

to a lipid in the SM+CHOL bilayer. As in the case of SOPS+CHOL bilayer, the 

distribution of number of lipids hydrogen-bonded to cholesterol is dominated by the 

corresponding distribution of SM molecules hydrogen-bonded to cholesterol, while 

the probability for the cholesterol-cholesterol hydrogen bonding is insignificant (see 

Fig. 2.9 (d)-(f)). While the distribution of hydrogen bonds for the SOPS molecule was 

peaked at two hydrogen bonds, the peak of the distribution for the SM molecule is at 

three hydrogen bonds. Both SM-cholesterol and SM-SM hydrogen-bonding make a 

contribution into the total distribution (see Fig. 2.9 (a)-(c)). Also, for the SM+CHOL 

bilayer, a cholesterol molecule has a higher probability of participating in a hydrogen 
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bonding with two phospholipids, if compared to the case of the SOPS+CHOL bilayer 

(see Fig. 2.8 (f) and 2.9 (f)). 

 

 

Fig 2.9 Distribution of molecules that are hydrogen-bonded to a give lipid in 

SM+CHOL bilayer. Distribution of (a) total number of lipids, (b) total number of SM 

molecules, and (c) total number of cholesterol molecules that are hydrogen-bonded to 

a given SM molecule. Panels d-f show the distribution of total number of lipids, total 

number of cholesterol molecules, total number of cholesterol molecules, and total 

number of SM molecules, respectively, that are hydrogen-bonded to a given 

cholesterol molecule. Inset in each plot shows the corresponding distribution of 
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molecules that are hydrogen-bonded to a given lipid in the SM+CHOL leaflet of the 

asymmetric bilayer. 

 

Insets in Fig 2.8 and 2.9 show the distributions of molecules hydrogen-boned to a 

given lipid in the two leaflets of the asymmetric bilayer. While the distribution of 

hydrogen bonds per SOPS molecule is peaked at two bonds for the symmetric bilayer, 

it is peaked at three in the asymmetric bilayer. As the comparison of plots in Fig. 2.8 

shows, the difference comes from a subtle change in the bonding character of SOPS 

with other lipids in the bilayer. Properties of the distributions for the number of lipid 

molecules hydrogen-bonded to a given cholesterol molecule in the SOPS+CHOL 

leaflet remain the same as in the case of the symmetric SOPS+CHOL bilayer. The 

shift of the most probable number of hydrogen bonds fro the SOPS+CHOL leaflet is 

consistent with the increase of order observed from calculations on area and order 

parameters when going from the symmetric to asymmetric bilayer. The properties of 

the distribution of hydrogen-bonded molecules in case of SM+CHOL leaflet of the 

asymmetric bilayer are similar to those in the symmetric SM+CHOL bilayer (see Fig 

2.9). This is also consistent with our previous observations on order parameters (Fig. 

2.7). 

From the histogram shown in Fig. 2.8 and 2.9 we conclude that individual 

cholesterol molecules are more prone to engage in hydrogen-bonding with SM 

molecules compared to PS molecules. To understand the collective properties of the 

interlipid hydrogen-bond network, we perform an analysis of hydrogen-bonded 
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patches or clusters formed in each bilayer leaflet. A patch is defined as a group of 

lipids that share at least one hydrogen bond among them. The patch size is reported in 

terms of the number of lipids that constitute a patch. Fig. 2.10 shows the results for 

the upper leaflet of the two bilayers, the results for the lower leaflets are the same, 

since the bilayer are symmetric. For the SM+CHOL bilayer, the direct bonding 

between charge groups like N+(CH3)3 and PO4- is also taken into account. Fig 2.10 (a) 

and (b) show the distributions of maximum number of lipids contained in a patch for 

the SOPS+CHOL and SM+CHOL bilayers, respectively. These distributions were 

obtained from the trajectories and therefore they characterize the dynamics of the 

hydrogen bonding. As we see from Fig. 2.10 (a) the most probable patch contains 

maximum of ~30 lipids in case of the SOPS+CHOL bilayer. For the SM+CHOL 

bilayer the most probable patch contains ~60 lipids maximum, as Fig. 2.10 (b) shows. 

 

Fig 2.10 The distribution of maximum patch size in a leaflet (a) SOPS+CHOL and (b) 
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SM+CHOL bilayer. Patch size is measured in terms of the number of lipids that 

constitute the patch. The distribution of the number of patches in a leaflet of (c) 

SOPS+CHOL and (d) SM+CHOL bilayer. Calculation takes into account all types of 

interlipid bonding. Inset of each plot shows the corresponding distribution calculated 

using interlipid bonding among phospholipids only. In each plot the line is drawn as a 

guide to the eye only. 

 

This is close to the situation when the whole leaflet in our simulation box is 

connected through the network of hydrogen bonds. Distributions for the number of 

distinct patches in a leaflet, shown in Fig. 2.10 (c) and (d), indicate the level of 

organization or fragmentation of the bilayer surface. It can be seen from Fig. 2.10 that 

the SOPS+CHOL bilayer surface is more fragmented than the SM+CHOL bilayer 

surface. These properties of network of interlipid bonding or patches were calculated 

for all types of interlipid bonding. It is important to know the contribution of the 

phospholipid (PL) + CHOL hydrogen bonding to the overall patch size. This can be 

investigated by identifying the interlipid bonding network only due to PL molecules. 

The corresponding results are shown as an inset in Fig.2.10. As can be seen from the 

inset to Fig. 2.10 (a) and (b), the influence of cholesterol on the patch size is different 

fro the SOPS+CHOL and SM+CHOL bilayers. For the SM+CHOL bilayer, the most 

probable patch contains maximum of ~40 SM molecules. This number is close to the 

total number of SM molecules in the leaflet. For the SOPS+CHOL bilayer, the 

distribution shows that most probable patches contain between 15 to 20 phospholipids. 
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The number of distinct SM patches is also smaller than the average number of distinct 

SOPS patches (see inset to Fig. 2.10 (c) and (d)). As we saw previously any given 

cholesterol molecule is most likely to be hydrogen-bonded to a single phospholipid 

molecule rather than to two or more phospholipid molecules (see Figs 2.8 (f) and 2.9 

(f)). The consequences of this are manifested on a nanoscale through the results on 

patch sizes shown in Fig. 2.10. Based on data from Figs 2.8-2.10, we conclude that a 

cholesterol molecule does not act as a bridge between two patches to form a large 

patch that can cover nearly the whole leaflet. Rather cholesterol increases the size of 

the patch mostly by just connecting through hydrogen bonds to the patch that exists 

because of hydrogen-bonding between phospholipids. Fig. 2.11 (a) and (b) show a 

schematic of patches of different sizes that exist in leaflets of SOPS+CHOL and 

SM+CHOL bilayers, respectively. In Fig. 2.11 (a) and (b), positions of nitrogen atoms 

from the NH3+ group of SOPS and the N+(CH3)3 group of SM and the position of 

oxygen atoms from CHOL are plotted in the xy plane as representative of respective 

lipids. Fig 2.12 shows the distributions of hydrogen-bond network patches for the 

asymmetric bilayer when the PL-CHOL hydrogen-bonding is taken into account. 

Insets to Fig. 2.12 show the distributions calculated by considering only the 

phospholipid hydrogen-bond network. As can be seen from Fig. 2.12, the average 

properties of the patch sizes did not undergo a significant change by going from the 

symmetric to the asymmetric bilayer. Thus we conclude that the interleaflet coupling 

in the asymmetric bilayer did not induce any largescale changes in the surface 

organization of the two leaflets as compared to the symmetric bilayers. 
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Fig 2.11 A schematic view of the different patch sizes in a leaflet of (a) SOPS1CHOL 

bilayer and (b) SM1CHOL bilayer. The solid circles represent positions in the x,y 

plane of nitrogen atoms from NH13 of SOPS and N+(CH3)3 of SM, while the 

triangles represent the positions in the x,y plane of the oxygen atoms of CHOL. The 

line around the patches is drawn only as a guide to the eye. 
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Fig 2.12 The distribution of maximum patch size in (a) SOPS1CHOL leaflet and (b) 

SM1CHOL leaflet of the asymmetric bilayer. Patch size is measured in terms of the 

number of lipids that constitute the patch. The distribution of the number of patches in 

(c) SOPS+CHOL leaflet and (d) SM+CHOL leaflet of the asymmetric bilayer. 

Calculation takes into account all types of interlipid bonding. Inset of each plot shows 

the corresponding distribution calculated using interlipid bonding among 

phospholipids only. In each plot the line is drawn as a guide to the eye only. 

 

2.4 Conclusion 

The histograms from Figs. 2.8 and 2.9 demonstrate that in the symmetric 

SM+CHOL and SOPS+CHOL bilayers the individual lipid molecules have nearly the 

same number of hydrogen-bonded nearest neighbors, although some slight differences 

between Figs. 2.8 and 2.9 exist. These differences practically disappear from the 

histograms shown in insets to Figs. 2.8 and 2.9, meaning that the hydrogen bonding 

per lipid is the same in the asymmetric bilayer. Nevertheless, as Figs. 2.10–2.12 show, 

the hydrogen-bonding network is different for the two symmetric bilayers with the 

SM+CHOL bilayer having more robust and SOPS+CHOL bilayer having more 

fractured characters. If one correlates the robustness of hydrogen-bonded network 

with the tendency to create lo domains, one concludes that in the SM+CHOL mixtures 

the probability to observe rafts on a larger spatial scale is higher. From the simulations 

performed on the asymmetric bilayers we conclude that properties of the monolayers 

in the leaflets (with compositions specific for our simulations), do not change much 
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when going from a symmetric to an asymmetric bilayer, indicating that cross-leaflet 

interactions such as interdigitations are unimportant. The outer leaflet in an 

asymmetric bilayer (containing SM+CHOL) is more prone to raft creation compared 

to the inner leaflet. The conclusions from our simulations are consistent with the ideas 

expressed in the work of Devaux and Morris58, who proposed that the sizes of the lo 

domains in membrane leaflets should not be the same and that, possibly, proteins may 

play an important role in creation and functioning of rafts. Finally, we would like to 

mention that although our simulations were performed on relatively long timescales 

for simulations (tens of nanoseconds), the large-scale rearrangements of lipids are not 

possible on this timescale. Nevertheless, if the cross-leaflet interaction would be 

important, we would have observed its effects on the timescale of our simulation. 

 

 

 

 

 

 

 

 

 

 

 



 

 

CHAPTER 3: ON THE INTERACTIONS OF CHOLESTEROL 

WITH DIFFERENT LIPIDS 

3.1 Introduction 

Biological membranes are very complicated entities containing self assembled 

mixtures of different lipids and proteins. Around 500 different lipid species are 

identified in biomembranes44, but one of these species, cholesterol, plays a unique role. 

The importance of cholesterol is related to its influence on the physical properties of 

lipid bilayers. For example, cholesterol regulates elastic properties of plasma 

membranes and at high cholesterol concentrations the mechanical strength of this 

membrane is increased.102  Cholesterol is also instrumental for the creation of 

“membrane rafts” or domains in membrane.  The concept of a membrane or lipid raft 

was suggested in 199732 and since then the study of these rafts has undergone an 

explosion. It was proposed that lipid rafts participate in a multitude of cellular 

processes such as signal transduction 33,103,104, protein and lipid sorting 105, cellular 

entry by toxins and viruses and viral budding 106,107 (to name just a few).  Many 

issues related to the nature and organization of rafts in cellular membranes are far 

from being clarified61, although recently, a definition of what is a raft was established. 

According to the Keystone Symposium on Lipid Rafts and Cell Function in 2006, 

“Membrane rafts are small (10-200 nm) heterogeneous, highly dynamic, sterol– and 

sphingolipid-enriched domains that compartmentalize cellular processes”. 39    
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Since biological membranes are complicated mixtures of phospholipids, sterols 

and proteins, it is very difficult to analyze them and understand the role every 

component plays in the functioning of the assembly. As a result, many investigations 

are performed on model membranes containing either pure components or 

well-controlled mixtures of two/three components.108 It was observed that bilayers 

containing ternary mixtures of cholesterol and two other phospholipids, such as a 

bilayer containing cholesterol, a saturated lipid and an unsaturated lipid ternary 

mixture of cholesterol/sphingomyelin/palmitoyloleoylphosphatidylcholine 

(Chol/SM/POPC) is laterally inhomogeneous and it contains domains enriched in 

cholesterol and SM.53 Thus it was concluded that artificial membranes also have 

raft-like domains, although these domains have a different length scale. The phase 

diagram for this mixture was obtained and it showed regions of liquid-liquid phase 

coexistence. (A recent review of Veatch and Keller56 presents an excellent 

introduction into the subject of phase diagrams of two and three component mixtures 

in general and mixtures with cholesterol specifically). Two liquid phases that appear 

in the bilayer correspond to the liquid ordered phase (lo) and liquid disordered phase 

(ld).  In the lo phase, the conformational order of lipid chains displays a high degree 

of order, while the translational order parameter shows a high degree of disorder. In 

the ld phase, both conformational and translational order parameters display high 

degree of disorder. The lo phase constitutes the domains that are enriched by a mixture 

of cholesterol and SM, while the ld phase is enriched by POPC.   

Although for natural membranes the recent definition of rafts requires presence of 
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the sphingomyelin in the system, it was observed that for the synthetic bilayers 

containing a ternary mixture of cholesterol, a saturated phosphatidylcholine with a 

high melting temperature such as dipalmitoylphosphatidylcholine (DPPC), and an 

unsaturated phosphatidylcholine with a low melting temperature, such as dioleoyl 

phosphatidylcholine (DOPC), i.e. for a mixture of Chol/DPPC/DOPC, the phase 

diagram is similar to the diagram observed for the Chol/SM/POPC ternary mixture.56 

This indicates that the phase separation and following from it lateral domain creation 

is quite general in model systems.  

A number of different physical techniques have been used to study lateral 

organization of lipid domains in natural and model membranes.53,109-117  Although 

the details about the structural properties of the domains in biological cells are not yet 

known, and it is also not clear if the domains in cell membranes (rafts) are related to 

the domains observed in model membranes, it has been observed that in both natural 

and artificial membranes domains are rich in cholesterol and saturated lipids. 

Therefore, it is important to understand the nature of interactions between cholesterol 

and other lipids. 

To explain the phase diagram of the type seen for the Chol/SM/POPC or 

Chol/DPPC/DOPC mixtures, Radhakrishnan and McConnell proposed that the 

phospholipid with a higher melting temperature forms a complex51 with cholesterol by 

a reversible reaction Cp+ Rq � X where C is cholesterol, R is a phospholipid with a 

high melting temperature, Tm , and X=CpRq is the complex.  Complexes can 

associate and exist in the oligomeric form and the lo phase contains these oligomers. 
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The low Tm phospholipid is only partially miscible with the complex and therefore is 

considered to be “unreactive” (U) with cholesterol. The existence of complexes is 

hard to prove experimentally, although the interpretation of some recent 

nearest-neighbor recognition measurements suggested their possible presence in the 

bilayers.118  No complexes were observed in the earlier molecular dynamics 

simulations on bilayers containing mixtures of cholesterol and phospholipids, until 

Chiu et al. suggested that hydrogen bonding between cholesterol and DPPC molecule 

is responsible for the 1:1 complex between these two lipids.70  The idea that 

hydrogen bonding between phospholipids and cholesterol is responsible for 

complexation of cholesterol with phospholipids was advanced even further by Pandit 

et al.119 who performed simulations on bilayers containing binary cholesterol and 

DPPC and also on bilayers containing mixtures of cholesterol with a phospholipid of 

a smaller Tm – DLPC. Since complexes of cholesterol and phospholipids can contain 

p cholesterol and q phospholipid molecules, where p and q are often assumed to be 1 

and 2,  it was suggested119 that cholesterol can hydrogen bond to DPPC lipid not just 

through its headgroup hydrogen, but also through its oxygen, thus hydrogen bonding 

to the methyl group of tetramethylammonium of the DPPC. The most probable 

number of hydrogen bonds per cholesterol in simulations of Pandit et al. turned out to 

be two when the bilayer contained a mixture of cholesterol and DPPC.  When the 

phospholipid in the bilayer was DLPC, the most probable number of hydrogen bonds 

per cholesterol was just one.  Pandit et al. speculated that with two hydrogen bonds 

per cholesterol, one can create a linear network of hydrogen bonded molecules 
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Ph(phospholipid)-chol-Ph-chol … when Ph is a DPPC molecule. Such a network has 

a smaller chance to exist in the case when Ph is a DLPC molecule. Therefore, if one 

assumes that presence of hydrogen bonded network is correlated with the existence of 

oligomeric complexes, one should find more such complexes in the bilayers 

containing mixtures of cholesterol and DPPC compared to bilayers containing 

mixtures of cholesterol and DLPC. Cholesterol is most probably engaged in two 

hydrogen bonds with DPPC and only one bond with DLPC due to the tilt of 

cholesterol axis in DLPC.119  This tilt appears so that cholesterol can be properly 

accommodated in the hydrophobic region of the DLPC membrane.  Due to this tilt, 

cholesterol is not in a favorable position to engage in two hydrogen bonds with 

neighboring DLPC phospholipids. The phase diagrams obtained for cholesterol/DPPC 

and cholesterol/DLPC monolayers by McConnell and coworkers and their 

interpretation of these diagrams indicated that if complexes exist, they exist for the 

DPPC/cholesterol system and do not exist for the DLPC/cholesterol case52, which is 

consistent with the interpretation of Pandit et al. obtained from the simulations 

performed on bilayers119. Although there is a qualitative agreement between the 

interpretation of simulations and experiment in this case, still one has to be careful 

comparing the results from simulations on bilayers with the experimental results 

obtained for monolayers, since the structural properties of monolayers and bilayers 

can be quite different.  

Recent simulations performed on ternary mixtures containing cholesterol, POPC 

and SM120,121 confirmed the previous suggestion that cholesterol/SM interaction is 
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different from the cholesterol/POPC interaction due to the difference in the structures 

of phospholipids.122 Still, it is not clear how this difference is responsible for the shape 

of phase diagrams observed for the ternary mixture of these lipids. Also, simulations 

did not confirm the existence of the complexes between cholesterol and SM and did 

not clarify the role of different regions of lipids in the phospholipid/cholesterol 

interaction. Especially interesting will be to understand what part of the phospholipid 

molecule contributes mostly to this interaction and, if complexes exist, to their 

creation. The role of different lipid regions and their corresponding contributions into 

the cholesterol/phospholipid interaction was investigated by experimentalists for quite 

a while.123,124  

Simulations can help in providing at least some partial answers to the above 

posed questions; therefore we performed a series of simulations on model lipid 

membranes.   Three of the simulations were performed on bilayers containing 

binary mixtures of cholesterol with one phospholipid component: either SSM (18: 0 

SM), or OSM (18:1 SM) or POPC. Three other simulations were done on bilayers 

containing just a pure phospholipid: SSM or OSM or POPC.  By comparison 

between the results from our simulations, we can understand how the addition of 

cholesterol changes phospholipid properties in the membranes and also how a change 

in the structure of the headgroup or tail of the phospholipid molecule influences 

properties of the bilayer with cholesterol. 

 

3.2 Computational Details 
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Since we want to understand how the details of the molecular structure influence 

cholesterol/phospholipid interactions, we performed our simulations using an atomic 

description of the molecules. This restricted us to simulations of bilayers that are 

rather limited in their size. Also, since we want to understand the relative importance 

of different structural regions of phospholipids in the cholesterol/phospholipid 

interaction, we performed simulations on different binary bilayers containing 

cholesterol and different phospholipids. Every bilayer in our simulation contained 128 

lipid molecules, 64 in each leaflet. In bilayers containing cholesterol, there were 22 

cholesterol molecules in each leaflet, resulting in a cholesterol concentration of about 

34 mol %. Every lipid molecule was hydrated by 30 water molecules.  The 

molecular structures of SSM, OSM, POPC and Chol were generated by SYBYL 

version 7.0 (Tripos Inc., St. Louis, MO). The initial structure of a bilayer leaflet was 

obtained by generating an 8x8 array of 64 lipids in the x-y plane by random rotation of 

each lipid molecule around the z-direction. For bilayers containing Chol, 22 of the 

phospholipids were randomly selected and replaced by Chol molecules. The other 

leaflet was obtained by reflection and translation of the first one. A water slab with 

3840 water molecules was added to both sides to solvate the headgroups. The normal 

of the bilayer was directed along the z- axis. 

All simulations were performed using the GROMACS package 5,6. The LINCS 

algorithm was used to constrain all bonds in the systems 83 allowing an integration 

timestep of 2 fs. Periodic boundary conditions were applied in all three directions and 

long range electrostatics interaction was handled using the SPME algorithm 10 with a 
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real space cut off of 10 Å, 4th order interpolation and a tolerance of 10-5. A 10 Å 

cut-off was used for all van-der Waals interactions. All simulations were done in the 

NPT ensemble. The temperatures in the simulations were maintained at 323 K using 

the Nose-Hoover scheme84 with a thermostat oscillatory relaxation period of 0.5 ps 

and the Parrinello-Rahman semi-isotropic pressure coupling scheme 85 with a barostat 

time constant of 2.0 ps was used to keep the pressures at 1 atm.  The SPC/E model of 

water 86 was employed in the simulations. Force field for the SM was the same as 

used by Niemelä et al. 90, who demonstrated that it is reasonable in reproducing 

experimental trends. The force field parameters of Chol were the same as used in the 

study by Pandit et al.119 The force field for the POPC is obtained from Tieleman et al 

125.  

All the simulations except the POPC/Chol bilayer were 100 ns long, and the 

simulation of POPC/Chol was 95 ns long, since the area per lipid in this case behaved 

in a very stable way. The positions and velocities of the atoms were saved every 1 ps. 

The first 20 ns run was considered to be the equilibration time for all bilayers, and the 

last 80 ns (75 for POPC/Chol) trajectory was used for their analyses. The analyses 

were performed using the utilities available in GROMACS as well as programs 

written by us. 

 

3.3 Results and Discussion. 

3.3.1 Structural properties 

We will start with some description of the structural properties of the bilayers that 
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we simulated.  Fig. 3.1 shows the area per lipid in the six simulated bilayers as a 

function of time.The average values are 48.1±0.7Å2, 53.4±0.7Å2, and 65.0±1.2Å2 for 

pure SSM, OSM, and POPC.  For mixed bilayers the areas obtained from our 

simulations are 39.4±0.4 Å2, 41.2±0.7 Å2, and 42.9±0.5Å2 for SSM/Chol, OSM/Chol 

and POPC/Chol bilayers, respectively. The average area values for the pure SM 

bilayers are somewhat smaller compared to what Niemelä et al. 90 calculated from 

their study, although we used the same force field for the SM lipids. This could be due 

to our use of the SPC/E water model instead of the SPC model that was used in their 

simulations.  Our calculated areas per one component lipid bilayer can be compared 

to the values for the areas that were extracted from experiments.  As it turned out, 

there are not that many data on the areas per SSM, OSM and POPC in the literature. 

The areas determined for SM lipids from the X-ray diffraction measurements were 47 

Å2 for the (16:0)SM and 55 Å2 for the SSM lipid at 328K.126  Other measurements, 

although not done on bilayers, but by using Langmuir film balance at a surface 

pressure of 30 mN/m and at T=303 K showed a more consistent trend: the area per 

(16:0)SM was 52.5 Å2, while it decreased to 48.6 Å2 for SSM.48  For the OSM, the 

area reported by the same group was 61.5 Å2.48   The experimental value of the area 

per headgroup in POPC bilayer obtained from the X-ray measurements was reported 

to be 68.3 ± 1.5 A2 at 303K.127  To determine the area per headgroup in the bilayer 

from the simulation, that can be compared with the experimentally extracted, requires 

very careful consideration.128,129  For mixed bilayers the areas obtained from our 

simulations are 39.4±0.4 Å2, 41.2±0.7 Å2, and 42.9±0.5Å2 for SSM/Chol, OSM/Chol 
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and POPC/Chol bilayers, respectively.  
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Fig 3.1 The area per molecule in the simulations: pure OSM (black), pure SSM (red), 

pure POPC (orange), OSM/Chol mixture (green), SSM/Chol mixture (blue), 

POPC/Chol (magenta). 

 

Values for the area we calculated and that are given above called geometrical area, 

are obtained by using a simple geometrical construction when the area of the 

simulation box is divided by the number of lipids in the bilayer.  Although simple, 

this approach allows us to perform comparison of areas per lipid in different bilayers. 
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Thus, we observed, that as the acyl chain in SM molecule became unsaturated, the 

area per lipid increased. We also observed that the area per SM molecule in the pure 

SM bilayer was substantially smaller than the area per POPC molecule in the pure 

POPC bilayer due to the intermolecular hydrogen bonds in the SM bilayer.  The 

corresponding average areas per molecule in the bilayers with binary mixtures were 

reduced, with the largest reduction observed for the POPC/Chol bilayer. To see the 

more specific effect cholesterol molecules produce on the area per lipid molecule in 

the mixture bilayers, we used the method developed by Hofsäß et al 71 to evaluate the 

individual areas for SM and Chol molecules. According to Hofsäß et al, the area per 

phospholipid and Chol molecule can be calculated by the following equations:  

              








−
−

−
=

WW

chollipid

lipid

PL
VNV

VxN

Nx

A
a 1

)1(
2

                       (3.1) 

              
WW

chol
chol

NNV

AV
a

−
=

2
                            (3.2) 

where A is the cross section (x-y) area of the simulation box, Nlipid is the total number 

of molecules in the bilayer, x is the mole fraction of cholesterol: x=Nchol/Nlipid, V is the 

volume of the simulation box, NW is the number of water molecules in the system. The 

volume per Chol molecule, Vchol, is taken to be 0.593 nm3 and that of water, VW, is 

0.0305 nm3. Following the above equations, the area per SSM molecule was found to 

be 47.6 Å2 and that of Chol 23.7 Å2 in the SSM/Chol bilayer; the area per OSM 

molecule was calculated to be 49.7 Å2 and that of Chol 24.9 Å2 in the OSM/Chol 

bilayer. The area per POPC molecule is 49.8 Å2 and that of Chol is 25.2 Å2 in the 

POPC/Chol bilayer when equations (1) and (2) are used. No significant shrinkage in 
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the area per SSM is observed when going from pure SSM bilayer to a bilayer with 

34.4 mol% Chol. The area per OSM shrinks by 2-3 Å2 with the addition of cholesterol 

and the area per POPC shrinks by a significant amount of 15 Å2 when cholesterol is 

added.  The reason for the observed small changes in the SM area is that SM 

molecules in the pure SM bilayer are already well packed, hence there is not much 

space left for condensation when cholesterol is added. Again, one should mention here 

that obtaining the area per molecule in bilayers with lipid mixtures is not a simple 

issue and the values derived could be dependent on the method one uses. Nevertheless, 

the values presented here show a clear trend in area changes with addition of 

cholesterol. 

Fig. 3.2 shows the electron density plots from our simulations. The peak to peak 

distances (ppd) for the whole system estimated from the plots are 48.0 Å and 48.6 Å; 

44.3 Å and 46.8 Å; 36.0 Å and 45.5 Å for pure SSM bilayer and SSM/Chol mixture; 

pure OSM bilayer and  OSM/Chol mixture; pure POPC and POPC/Chol mixture, 

respectively. Perhaps more instructive will be to consider just the change in the ppd 

for the phospholipids, also shown on Figure 2, with the addition of cholesterol. For 

the SSM the ppd change is only 0.5 Å (from 45.0 Å to 45.5 Å); for the OSM it is 3 Å 

(from 40 Å to 43 Å); finally for the POPC it is 6 Å (from 34 Å to 40 Å).  While there 

is a slight increase in the ppd in the case of the SSM bilayer and a moderate increase 

in the thickness of the OSM bilayer, the increase in the ppd of the POPC bilayer is 

quite large upon addition of the cholesterol. These results are consistent with the area 

changes in the corresponding bilayers: the larger increase in the ppd corresponds to 
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the larger reduction of the area per lipid molecule. Experimental values of the peak to 

peak distances for different SM bilayers and SM/Chol bilayer are within the range of 

4.1 nm-5.6 nm 102,126,130,131. An exact comparison between the simulation results and 

the experimental values are difficult due to the various experimental conditions and 

we consider our results to be within a reasonable range. 
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Fig 3.2 The electron density plot of pure SSM bilayer (top left), SSM/Chol bilayer 

(top right), pure OSM bilayer (middle left), and OSM/Chol bilayer (middle right), 

pure POPC bilayer (bottom left) and POPC/Chol bilayer (bottom right). 

 

Fig 3.3 shows profiles of the deuterium order parameter for the chains of the 
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phospholipid molecules in our simulations. The lipid tails in pure SSM bilayer are 

more ordered than those in pure OSM bilayer because the cis- double bond on the acyl 

chain in OSM disrupts the packing of the tails. Upon the addition of Chol to the SM 

bilayers, the order parameters increase in both SSM and OSM bilayers. The increment 

is larger in the case of OSM bilayer, although the absolute value of the order 

parameters is higher in SSM/Chol bilayer. Overall, the data show that SSM/Chol 

bilayer is tightly packed. A dramatic increase in the POPC carbon tail order 

parameters was observed when Chol was added to a POPC bilayer, indicating that 

condensing effect is very strongly pronounced in this case; the implication of this will 

be discussed below. 
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Fig 3.3 The deuterium order parameter profiles for the carbon tails of SM molecules 

in pure SM and POPC bilayers (black) and in SM/Chol or POPC/Chol bilayers (red). 

 

Another revealing structural property of cholesterol in bilayers containing a mixture 

of cholesterol and phospholipids is the cholesterol axis tilt angle distribution with 

respect to the bilayer normal. This tilt angle is believed to be related to the ability of 

cholesterol to support a hydrogen bonding network in the bilayer and its 

ordering119,121. Fig. 3.4 shows distributions for cholesterol tilt in the SSM/Chol, 

OSM/Chol, and POPC/Chol bilayers. The curves are quite similar for both SM/Chol 

bilayers, while the distribution is broader for the POPC/Chol bilayer. Also, the 

average tilt angles of cholesterol in bilayers with SM are smaller than in POPC case, 

which is consistent with the smaller hydrophobic length of the POPC/Chol bilayer, as 

demonstrated in the ppd data. 

 

3.3.2 Lipid tail distributions around cholesterol  

Our results indicate that SSM/Chol and OSM/Chol bilayers display somewhat 

similar structural properties.  Nevertheless, it is known that the structure of SM 

molecule does influence the properties of bilayers containing ternary mixtures such as 

SM/DOPC/Chol132 133. Therefore, we would like to understand how the replacement 

of the saturated acyl tail by an unsaturated one influences the properties of the SM 

interaction with cholesterol.  
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Fig 3.4 Cholesterol principal axis tilts angle distribution with respect to bilayer normal. 

The cholesterol principal axis is defined as the vector from carbon C21 (the carbon 

atom in the ring that connects to the short tail of a cholesterol molecule) to C5 (the 

carbon atom to which the hydroxyl group binds).  

 

The cholesterol molecule has a smooth α-face and a rough β-face with two protruding 

methyl groups. This kind of a special molecular structure is believed to be important 

in shaping the interaction of cholesterol with different lipid molecules. In their 

simulation of a dioleoylphosphatidylcholine (DOPC), SSM, and cholesterol ternary 

mixture, Pandit et al 78 observed that the smooth α-face of cholesterol preferentially 

packs next to the SSM molecules. And Suits et al. from their simulation134 observed 

that cholesterol prefers to be solvated by the saturated lipid tail and has a low affinity 
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for the polyunsaturated fatty acid. Here, we also study the organization of SM lipid 

tails around cholesterol molecule to see if there are any obvious differences in the 

SSM/Chol and OSM/Chol bilayers. 

In fig. 3.5 and 3.6, we show the sphingosine chain and the acyl chain carbon atom 

density distribution isosurface as a function of the distance and orientation around 

cholesterol molecule in the bilayers. The isosurfaces were drawn using gOpenMol 

software by Laaksonen et al.135,136. The figures illustrate that the distributions for the 

sphingosine carbon atoms and the acyl chain atoms are not homogeneous in the case 

of OSM/Chol bilayer, especially when facing the smooth side of cholesterol (the 

down side in the plot). Next to the smooth face, one is more likely to find carbon 

atoms from the saturated sphingosine chain (regions shown in blue). Though carbon 

atoms from acyl (unsaturated) chain (regions in red) can also be found on this side, 

they are located more towards the  
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Fig 3.5 Probability density isosurface for sphingosine chain (blue) and acyl chain (red) 

tails of the OSM lipid around Chol molecule. There are several layers of lipid tails 

solvating Chol molecule and here a cut-off for the probability is applied to show only 

the first layer. 

 

 

Fig 3.6 Probability density isosurface for sphingosine chain (blue) and acyl chain (red) 

tails of the SSM lipid around Chol molecul 

 

edge of the cholesterol ring. While the probability to find carbon atoms next to the 

rough face of cholesterol molecule is small due to strong steric interaction with the 

methyl groups, it is more or less the same for the carbon atoms from both chains on 

each side of the two methyl groups. (Note that the color of a region is purple when 

carbon atoms from both chains can be found with similar probability in this region). 
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The situation in the case of SSM/Chol bilayer is different. The tail distribution for 

neighboring SM molecules is more homogeneous in this situation, especially in the 

region facing the smooth face of the cholesterol, as can be seen from the prevailing 

purple color in the plot. This makes intuitive sense, since in the SSM molecule both 

tails are saturated and there should not be any preference of cholesterol over any one 

of these tails. Thus, we conclude that the smooth face of cholesterol has a preference 

for the saturated chains of the SM molecules, while the rough face does not have a 

real preference of one tail over the other.   

 

3.3.3 Interaction energy between cholesterol and phospholipids  

As we have shown, there is some difference in the structures of SSM/Chol and 

OSM/Chol bilayers.  More profound is the difference between POPC/Chol and any 

of the SM/Chol bilayers.  Does this mean that cholesterol can make complexes with 

SM and not with the POPC lipid molecule?  If yes, how can we recognize these 

complexes?  Can the hydrogen bond be a signature of a complex?  Since a 

hydrogen bond is created due to the headgroup interactions, it can characterize only 

the headgroup interactions.  One needs to consider the full phospholipid/cholesterol 

interaction energy and contributions into this energy from the tail and headgroup 

regions to reach a conclusion about the strength of the cholesterol phospholipid 

interaction and the existence of a possible complex.  

If there is a complex between cholesterol and the phospholipid molecule, it 

probably exists between neighbors and it is probably of low energy.  Therefore, we 
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calculated the distribution of lowest interaction energies (min(U(chol,phospholipid))) 

between cholesterol and its phospholipid neighbors in the bilayers containing 

cholesterol. The lipid neighbors for a cholesterol molecule were found according to 

the radial distribution function of the center of mass of phosphate groups (-PO4) in 

lipids with respect to the hydroxyl oxygen atom in the cholesterol molecule. 

According to those RDFs (not shown), a cutoff distance of 0.8 nm between the 

oxygen atom in a cholesterol molecule and the center of mass of –PO4 in a 

phospholipid (SM or POPC) was chosen to define the neighboring lipid molecules of 

a cholesterol. This cutoff is somewhat larger than the first minimum position in the 

RDF plot, but since we are going to calculate the distribution for the lowest energies 

(among all the interaction energies of a cholesterol with all its neighboring lipids), a 

larger cutoff distance could avoid the situation when the interaction energy is lowest 

but the distance between cholesterol oxygen and the PO4 is beyond a smaller cutoff. 

The distribution for the lowest interaction energies between lipids and cholesterol are 

shown in Fig. 3.7. Also shown in this figure are separate contributions to the total 

energy from the headgroup and tail interactions. The hydroxyl group of a cholesterol 

molecule is taken to be its headgroup and the rest of the cholesterol atoms represent 

the tail. For the phospholipids, carbon chains are considered to be the tail part and the 

rest of the molecule is grouped into the headgroup part for the purpose of energy 

calculations.  We observe from the Figure that the total energy curves are very 

similar for the SSM/Chol and OSM/Chol bilayers, while the curve for the POPC/Chol 

bilayer is shifted a little bit towards the lower energy range. 
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Fig 3.7 Lowest pair interaction energy distribution of Chol with its nearest lipid 

neighbors. (Note: h2h stands for head-to-head, t2t stands for tail-to-tail and h2t stands 

for head-to-tail) 

 

Our figures show that all the interactions between cholesterol and SM (SSM or OSM) 

molecules are similar. The energy distributions of the headgroup-to-headgroup 

interaction in the SM/Chol bilayers are bimodal, while in the POPC/Chol bilayer 

mostly one peak is observed. One of the peaks in the SM/Chol case is situated at the 

lower energy than the peak in the POPC/Chol bilayer. This is a reflection of a 

different hydrogen bonding pattern present in our systems. SM molecules have more 

hydrogen bonding groups in the headgroup that could interact favorably with 

cholesterol. Considering that two atoms (the hydroxyl group) of cholesterol from the 
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headgroup of cholesterol can engage in hydrogen bonding, the interaction energies are 

typical for this bonding. The tail-tail interactions in all three bilayers are similar, 

although the bimodal character of this interaction is more pronounced in the SM/Chol 

bilayers, probably correlated with the different tilt of the cholesterol axis. The head to 

tail interaction is stronger in the POPC/Chol bilayer, and this is correlated to the larger 

tilt angle of cholesterol molecules in this bilayer. A larger tilt angle brings the 

phospholipid head and cholesterol tail group, which includes the ring system, closer to 

each other, thus lowering the van der Waals interaction between them. We observed 

that this lower head/tail interaction energy in the POPC/Chol bilayer is actually the 

reason for the shift towards the slightly lower total interaction energy between 

cholesterol and POPC. The energy distributions we obtained do not confirm the 

intuitive idea that the pair interaction between cholesterol and SM is stronger than the 

pair interaction between cholesterol and POPC. The distributions of total energy do 

not show a strong bimodal feature either, which can be used to identify 1:1 complexes 

as belonging to a population with a low interaction energy mode. Moreover from 

these distributions it is not possible to infer the existence of 1:1 complexes between 

cholesterol and SM and its absence between cholesterol and POPC. Given that the 

mol% of cholesterol is ~33, and that 1:2 complexes are possible, we calculated the 

distribution of the lowest energies of interaction of three molecules that are neighbors:  

one cholesterol molecule and two phospholipids.  This distribution is shown in 

Figure 8.  
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Fig 3.8 Lowest triple interaction energy distribution of CHOL with its nearest lipid 

neighbors. This energy also includes the interaction energy between the two lipids. 

 

As we can see from this Figure, the distributions are very similar for all three binary 

bilayers.  Again, we must conclude that energies of interaction we observed do not 

predict that 2 SM phospholipids and 1 cholesterol are engaged in a complex creation 

and 2 POPC molecules and 1 cholesterol are not. In addition, the triplet energy can 

not help us to determine what triplet of lipids is in a complex.   

 

3.4 Conclusions 

To understand the difference in the interaction between cholesterol and the two 

phospholipids: SSM and POPC, we performed simulations on binary bilayers 
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containing cholesterol and these phospholipids.  Since the phospholipids are 

different in their tail and headgroup structures, we extended our simulations to include 

OSM, which represents a phospholipid with a structure somewhat transitional 

between POPC and SSM.  The interactions of cholesterol with OSM and SSM were 

found to be similar in many aspects, although we observed that the smooth face of 

cholesterol shows some preference for the saturated tail of the OSM molecule. Also, 

we found, to some degree of surprise, that the distribution of the lowest interaction 

energy between cholesterol and POPC is similar to the one between cholesterol and 

SM.  (We even found that the average lowest interaction energy between POPC and 

cholesterol is slightly lower than the one between SM and cholesterol). We studied the 

distribution of interaction energy of cholesterol and all nearest neighbors in all three 

binary bilayers and the results were similar to the one from Figure 7.  The total 

interaction energies for the triplet of neighbors containing one cholesterol and two 

(same kind) lipid molecules were also very similar for the considered mixed bilayers.  

We conclude that our calculations of energy can not distinguish complexes from 

non-complexes. Also, we do not observe any energetic preference of cholesterol to 

interact with the SM compared to POPC. Given all this, the question that still remains 

to be answered is: What is the driving force for the phase separation in mixtures such 

as SM/POPC/Chol? We speculate here that while the interaction energy of cholesterol 

and POPC or cholesterol and SM is roughly the same and may be even that POPC 

may be slightly more favorably interacting with cholesterol compared to SM, the 

change in the tail ordering of POPC when cholesterol is inserted is rather dramatic 



 81 

and this produces an unfavorable loss of entropy. As a result, POPC avoids mixing 

with cholesterol. In general, it is the delicate balance between the energy and entropy 

change when we mix the three components – SM, POPC and Chol that determines the 

phase diagram of the system. In a recent paper by Frazier et al.137 where 

BSM/POPC/Chol bilayer was studied using Fluorescence Resonance Energy Transfer 

as an experimental technique and where MC simulations were also performed on a 

simple lattice, it was shown that one finds phase separations and domains in that 

system when all the three Flory-Huggins type parameters that describe the difference 

between the free energies of interactions between components in the bilayers have 

values of order of only 300 cal/mol.  These small values indeed indicate the 

existence of a delicate balance between energy and entropy. Due to such balance it is 

possible that in ternary mixtures of sphingomyelin /phosphatidylcholine/Chol, domain 

structure may exist when sphingomyelin has both saturated chains like in SSM, while 

the domain structure may disappear when SSM is replaced by OSM. Indeed, Epand 

and Epand noted that this is the case when phosphatidylcholine is SOPC and 

attributed the change in mixing behavior to a greater miscibility of OSM with the 

phosphatidylcholine.132 To understand what the driving force for the domain creation 

and separation in bilayers is, one needs to calculate from simulations the change in 

energy and entropy upon mixing. This task may be problematic, given the accuracy of 

the force fields we use today. Nevertheless, from simulations we can get a qualitative 

and semi-quantitative understanding of the role that different regions in cholesterol 

and phospholipid molecules play in their mutual interaction and subsequently the 
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ordering in the bilayers containing these lipids. Our simulations also suggest that 

phenomenological theories of lipid mixtures should consider in addition to 

compositional variables also conformational degrees of freedom reflected in the 

membrane width, to provide a description of free energies and subsequently phase 

diagrams.  Such theories are already proposed.138  Simulations can provide the 

values of parameters and test main assumptions made in these theories.  Therefore, 

more computational work is needed to understand the nature of lipid rafts in both 

artificial and natural membranes. 



 

 

CHAPTER 4: FREE ENERGY CALCULATION OF 

CHOLESTEROL TRANSFER BETWEEN LIPID BILYERS 

 

4.1 Introduction. 

Biological membranes are inhomogeneous mixtures containing a variety of 

molecular components such as phospholipids, sterols and proteins. One of the lipids in 

the mixture, cholesterol, plays a crucial role in promoting this inhomogenuity. It was 

proposed32 that biological membranes contain domains, called “rafts”, which display 

different from the rest of the membrane physico-chemical properties.  Rafts in 

biological membranes contain an enhanced amount of cholesterol and sphingomyelin 

(SM). Although the proposed existence of the lipid rafts in biological membranes is 

not yet experimentally confirmed 53,61,139, the existence of such raft-like domains, 

possibly on a different, larger, length scale was observed in model membranes. 

Typical model membranes containing rafts consist of ternary mixtures of lipids, where 

one of the components is a phospholipid with a high melting temperature, another 

component is a phospholipid with a low melting temperature and finally, the third 

component is cholesterol56.  In these model membranes, one can observe a 

liquid-liquid phase separation into the liquid ordered phase containing mostly a 

mixture of cholesterol and saturated phospholipid and a liquid disordered phase, 

containing mostly the unsaturated phospholipid56.  A typical membrane of this kind 
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containing a ternary mixture of cholesterol, SM and 

palmytoyl-oleoyl-phosphatidylcholine (POPC) with cholesterol and SM mostly found 

in the raft domains. What is the reason behind the phase separation and the existence 

of domains in these model membranes? Is it mostly due to the difference in the 

interaction energy between cholesterol and different phospholipids?  Indeed, 

phospholipids such as SM and POPC differ in their structure, and this difference 

should be reflected in their interaction with the cholesterol.121  It was noticed some 

time ago, that, while cholesterol can engage in the hydrogen bonding between its 

hydroxyl headgroup and the SM’s molecule headgroup as a donor and an acceptor, it 

can only serve as a donor when interacting with the PC’s lipid headgroup.122  Since it 

was also recently shown that cholesterol prefers to be in the neighborhood of a 

saturated chain of a phospholipid molecule134, we expect that it will prefer the vicinity 

of the tails from the SM molecules. These considerations suggest that an energetic 

preference should exist for the cholesterol to choose an SM as its neighboring 

molecule and, therefore, should explain why domains with an enhanced amount of 

cholesterol and SM are observed. Moreover, very recently experimental work using 

high resolution calorimetry verified that indeed cholesterol prefers to be in the 

environment of SM140. It was determined that the free energy of transfer of cholesterol 

from the bilayer containing POPC and cholesterol at 30 mol% to the bilayer 

containing SM and 30 mol% cholesterol is equal to – 5 kJ/mol. It was also determined 

that the free energy of cholesterol transfer depends on the amount of cholesterol.  

Thus, when the concentration of cholesterol in the bilayers was 20% the free energy 
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of transfer was -8 kJ/mol (at 500C.)140  Not only was the free energy of transfer 

determined in these experiments, but also the energetic and entropic components were 

determined. It was shown that the transfer is exothermic (with an enthalpy change of 

-13 kJ/mol at 30% of cholesterol and -23 kJ/mol at 20%) and therefore having an 

unfavorable entropic contribution upon transfer (T∆S=-8 kJ/mol at 30% cholesterol 

and -15 kJ/mol at 20 % cholesterol, 50 0C).  Recently, we performed simulations 

where we compared the energetics of the cholesterol - POPC and cholesterol - SM 

interactions.141 We observed from our simulations on binary bilayers containing 

cholesterol and SSM or cholesterol and POPC at 34 mol% cholesterol that the 

distribution of the interaction energy between cholesterol and the POPC is similar to 

the distribution of the interaction energy between SM and cholesterol.  Moreover, the 

POPC-cholesterol average interaction energy was slightly more favorable than the 

SM-cholesterol average interaction energy. Superficially, this observation obtained 

from simulation may seem to be contradictory to the experimental result. Nevertheless, 

it is important to recognize that the energy of the interactions between phospholipids 

can change substantially with the cholesterol transfer due to the condensing effect 

caused by the presence of the cholesterol.  As a result the total energy contributions 

from the cholesterol-phospholipid and the phospholipid-phospholipid interactions 

may change upon cholesterol transfer in any direction, depending on the balance of 

these interactions.  

To obtain a better understanding of the balance of entropy and energy in the 

phospholipid-cholesterol interaction and also to get a quantitative measure of such a 
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balance, we performed simulations where we calculated the shape of the potential of 

mean force (pmf) for the cholesterol removal from bilayers containing SM or POPC 

lipids. We chose to perform our simulations at limited cholesterol dilution, so that we 

can have a clear understanding of how cholesterol-phospholipid interactions affect the 

free energy of cholesterol transfer from the POPC to the SM bilayer.  

 

4.2 Computational Model 

To calculate the relative affinity of cholesterol for different bilayers, such as 18:0 

SM (SSM) or POPC we need to perform free energy calculations.  We calculate the 

free energies of cholesterol removal from the POPC (∆G1) and SSM (∆G2) bilayers 

and determine the free energy of cholesterol transfer as a free energy difference (∆∆G) 

between these quantities.  

We use the umbrella sampling method142,143 to calculate the potential of mean 

force (pmf), i.e. the free energy of the cholesterol removal, as a function of distance 

between the cholesterol center-of mass and the center of a phospholipid bilayer, as 

cholesterol is slowly removed from the bilayer. Umbrella sampling technique was 

successfully employed to study the pmf for the insertion of liquid crystal-forming 

molecules into phospholipid bilayers144, a problem similar to ours from the 

computational point of view. The difference in the pmf values when cholesterol is 

outside the bilayer and when it is inside the bilayer (for more accurate definition of 

this difference, see below) determines the free energy of cholesterol removal. Since 

we need to perform a large number of runs due to different windows in the umbrella 
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sampling, the size of the system we chose was not that large. Thus we considered 

systems containing only 35 phospholipid molecules and one cholesterol molecule in 

each leaflet of the bilayers, resulting in the presence of 72 lipid molecules in each 

bilayer solvated with 3600 water molecules.  To avoid artifacts that could be created 

due to asymmetric amount of cholesterol in our small sized systems we placed one 

cholesterol molecule in every leaflet of the bilayer. The SPC/E water model 86 was 

employed in the simulations. The force field for the SM we used in our simulations 

was the same as used by Niemelä et al90. Force field parameters for the cholesterol 

were the same as used in the study by Pandit et al72, and the force field for the POPC 

was obtained from Hoff et al.125  Prior to using the umbrella sampling technique, 

40ns runs were done to obtain the equilibrated initial configurations. All the 

simulations were performed using the GROMACS package5,6. The LINCS 

algorithm83 was used to constrain all bond length in the systems, allowing an 

integration timestep of 2 fs. Periodic boundary conditions were applied in all three 

directions and the long range electrostatics was handled using the SPME algorithm 10 

with a real space cut off of 10 Å, 4th order interpolation and a tolerance of 10-5 . A 10 

Å cut-off was used for the van-der Waals interactions. All simulations were done in 

the NPT ensemble. We performed two series of simulations at two different 

temperatures, 319 K and 329 K.  The temperatures in the simulations were 

maintained using the Nose-Hoover scheme84 with a thermostat oscillatory relaxation 

period of 0.5 ps. The Parrinello-Rahman pressure coupling scheme85 with a barostat 

time constant of 2.0 ps was used to keep the pressures at 1 atm. For the equilibrium 
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process, the semi-isotropic pressure coupling scheme was applied to give the correct 

area per headgroup in the systems and for the removal simulations, the isotropic 

pressure coupling was used.  We found that this arrangement was needed, since it 

prevented the bilayer from falling apart during the cholesterol removal procedure.  

The umbrella potential we used had a simple harmonic form: 

2
0 )( hhkU umbumb −=                                    (4.1) 

with kumb = 500.0 kJ/(mol*nm2). In equation (1) h is the distance between the center of 

mass of the bilayer and the center of mass of the cholesterol molecule. The values of 

h0 ranged from 0 nm to 3.8 nm with an increment of ∆h0 = 0.2 nm.  We considered 

20 windows for each system at a specified temperature, therefore performing 80 

separate simulations in total.  In each window we simulated the system for 30 ns, 

therefore the total simulation time in windows was 2.4 µs. The first 10 ns of every 

window simulation was considered to be the equilibrating time and was discarded, 

while the last 20 ns run was used for the free energy calculation. The potential of 

mean force curves for each bilayer were calculated using the weighted histogram 

analysis method (WHAM) formulas. 145 

 

4.3 Results. 

We calculated the free energies for the process of cholesterol removal from the 

bilayers and show the results for the corresponding pmf’s at temperature T=319 K in 

Fig. 4.1. In addition to pmf plots we also show the densities for the different 

components and groups in the bilayers, to aid in the understanding of these pmf’s. Fig. 
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4.1 (a) and (b) show the density profiles of the various components in the SSM and 

POPC bilayers respectively.  Every bilayer contains two cholesterol molecules in 

equilibrium, one in each leaflet. The density of cholesterol has been magnified on the 

Figure by a factor of 20 for clarity (therefore the asymmetry in cholesterol density that 

is observed in Fig. 4.1(b) is not as strong in reality). The density maxima for 

cholesterol in SSM bilayer are located around h = ±1.5 nm and those in POPC bilayer 

are around h = ±1.0 nm. These maxima are consistent with the previously observed 

stronger tilt of cholesterol axis in POPC141. Fig. 4.1 (c) and (d) display the shapes for 

the potentials of mean force curves obtained for the removal of cholesterol from the 

SSM and POPC bilayers, respectively.  
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Fig 4.1 (a) Density profiles for different components in SSM/cholesterol bilayer. 

Dotted line: cholesterol; Solid line: SSM; Dash-dotted line: water. The density 

magnitude of cholesterol has been multiplied by a factor of 20 for clarity. (b) Same as 

(a), only for the POPC/cholesterol bilayer. (c) Potential of mean force (pmf) curves 

for the removal of a cholesterol molecule from the SSM bilayer. Left and right curves 
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are corresponding to cholesterol removal from one of the two leaflets of the bilayer. 

Each pmf is calculated twice by dividing the simulations in every window into two 

parts (each 10 ns long), thus producing a total of four pmf curves (d) Like (c) only for 

the removal of cholesterol from the POPC bilayer. 

 

We observe that the minima in these curves are consistent with the positions of 

the maxima in cholesterol density profiles. From the pmf curves we calculated the 

free energy costs for removing a cholesterol molecule from an SSM bilayer or from a 

POPC bilayer as ∆G = Gmax - Gmin , where Gmax is the free energy value where the 

curve is flat in water and Gmin is the minimum value on the curve which has been 

arbitrarily set to zero. The ∆G value in the SSM case is 60.5±0.6 kJ/mol, and the value 

in the POPC case is 54.0±1.0 kJ/mol. The error bars were obtained from four pmf 

curves for each bilayer. These four curves were produced by removing cholesterol 

from each leaflet of the bilayer and each removal pmf was calculated twice by 

dividing simulations into two halves, each half of 10 ns length.  

According to our calculation, the difference in ∆G, ∆∆G that shows the free 

energy of cholesterol transfer from POPC to SSM at the limited cholesterol dilution is 

only -6.5±1.6 kJ/mol. This number is the measure of the relative affinity cholesterol 

has to SSM compared to POPC. Also, according to our calculations, cholesterol 

prefers the SSM bilayer to POPC bilayer.  

To separate the free energy difference into its energetic and entropic parts, one 

can use numerical approximations to thermodynamic relationships. For this purpose, 
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one needs to calculate the free energy of cholesterol removal from the bilayer at few 

different (but close to each other) temperatures. We decided to perform our 

calculations at two different temperatures: 319K and 329 K, and use a simple 

approximation to the derivative that determines entropy at temperature T  
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Usually a central difference is used to approximate the derivative   
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The use of central difference is numerically advantageous, but it requires calculations 

of free energy at two different temperatures T+∆T and T-∆T, in addition to the 

calculation of the free energy at temperature T.  Since the calculations of free 

energies of transfer are expensive, we approximate the derivative as a one sided 

difference, i.e. we use eq. (4.2).  In addition, since we want to find the 

energy/entropy contributions at T=319 K, which is close to the main transition 

temperature of the SSM bilayer, we did not want to perform calculations at 

temperatures below 319K.    

We obtained from our simulations that at temperature T=329 K, the ∆G of 

cholesterol removal from the SSM is 55.0 ±0.8 kJ/mol, and the value for the removal 

from the POPC is 50.2±0.6 kJ/mol. Therefore, the difference in ∆G, ∆∆G, which 

shows the free energy of cholesterol transfer from POPC to SSM at limited 

cholesterol dilution, is    -4.8±1.4 kJ/mol at T=329 K  If we calculate the entropic 

contribution to the free energy, given by the term T∆S by using eq. (4.2), we get that it 
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is equal to –(121.2 ± 51.0) kJ/mol for the insertion of cholesterol into the POPC 

bilayer and it is –(175.5 ± 45.2) kJ/mol for cholesterol insertion into the SSM bilayer.  

This results in the unfavorable entropic contribution of –(54.3 ± 96.2) kJ/mol  to the 

free energy when cholesterol is transferred from POPC to SSM. Here we observe that 

large error bars are present in the calculation of the free energy difference and entropy 

difference. These large error bars appear due to the accumulation of errors in the 

calculation of a difference between two similar in value numbers.  Thus, although 

the error in the free energy calculation for the cholesterol removal (∆G) is less than 

1%, the error in the difference of the free energies (∆∆G) is already much larger and it 

is around 30%. Use of equation (4.2) produces even larger relative error. 

Since the free energy of cholesterol transfer from POPC to SSM is favorable, but 

entropy is not, this means that the transfer is promoted by the energetic component, i.e. 

transfer is exothermic. This is in a qualitative agreement with the recent results from 

the work of Heerklotz and collaborators.140  

As we already mentioned, in our earlier simulations we observed that cholesterol 

interacts somewhat stronger with POPC than with SSM. Indeed, we calculated (at 

T=319K) the average interaction potential energy of a cholesterol molecule with the 

SSM bilayer and with the POPC bilayer respectively for the equilibrium positions of 

cholesterol in these bilayers. We observed that the average interaction potential energy 

of a cholesterol molecule with an SSM bilayer is equal to -(356.7 ± 0.7) kJ/mol, and 

that of a cholesterol with a POPC bilayer is –(360.8 ± 0.8) kJ/mol. (These energy 

values were calculated with a cut-off distance of 10 Å for the van der Waals 
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interaction and a cut-off distance of 18 Å for the electrostatic interaction. The last 20 

ns of the equilibrating run were used for these calculations).  Based just on the 

interaction energy between cholesterol and phospholipids we would conclude that 

transfer is endothermic and it should be driven by entropy. The fact that the transfer is 

exothermic is due to a large change in the interaction energy between the 

phospholipid molecules when cholesterol is removed from or inserted into the bilayer. 

Moreover, since we deal with the transfer process, it is the delicate balance of the 

difference in the removal energies and entropies that determines if the transfer is 

exothermic or endothermic.  Indeed, it is possible that there are cases where 

favorable transfer is dominated by entropy.  

 

4.4 Discussion. 

At this point, let us try to understand why the transfer of cholesterol from the 

POPC to SSM bilayer at limited cholesterol concentration produces favorable change 

in energy and unfavorable entropy change. With this in mind, we first consider the 

chain order parameters SCD for lipids that are next to cholesterol and that are away 

from cholesterol upon cholesterol insertion.  These are shown in Fig. 4.2. It is also 

useful to compare these order parameters with the ones we calculated from our 

previous simulations performed without cholesterol and at concentration of 34 

mol%141. As we observed in our previous simulations, the change in the SCD order 

parameters for the tails of POPC molecules was rather large when we added a large 

amount of cholesterol. 
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Fig 4.2 Deuterium order parameters of lipid tails in SSM and POPC bilayer with one 

cholesterol molecule in each leaflet. Order parameter profiles of lipid tails in bulk are 

represented by solid curves while dashed curves are for the order parameter profiles of 

lipid tails close to cholesterol molecule.   

 

At limited cholesterol dilution, the change is not that large for the POPC molecules 

neighboring cholesterol and, for the phospholipids far away from cholesterol, the 

order parameters are the same as in a bilayer containing pure phospholipids.  Thus 

the change in order parameters of POPC tails depends on cholesterol concentration. 

The change in the order parameters for the SSM lipid next to cholesterol in our 

present simulation is nearly the same as in our previous simulation, i.e. we observe 

that the change in SCD does not depend on the cholesterol concentration in the case of 

a SSM bilayer. In addition, we observed that cholesterol orients itself in the 

phospholipid bilayer in such a way as to produce a small interference.  In the case of 

SSM bilayer, cholesterol can achieve this by inserting itself in an almost vertical 

position into the bilayer, where it fits nicely due to its matching hydrophobic length. 
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In the case of the POPC bilayer, cholesterol will try to orient itself to avoid the misfit 

of hydrophobic lengths and it can do this, since the free volume in POPC is larger 

than in SSM.  By orienting itself at an angle to the bilayer normal, cholesterol 

produces smaller interference on the tail conformational motion of neighboring POPC 

lipids and, therefore, causes a smaller reduction of the lipid chain conformational 

entropy. In Fig. 4.3, we present the distribution for the orientational angle, which is 

defined as the angle between the cholesterol axis and the normal to the bilayer.   
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Fig 4.3 Cholesterol principal axis tilt angle distributions with respect to bilayer normal 

in SSM (solid) and POPC (dotted) bilayers. The cholesterol principal axis is defined 

as the vector connecting carbon C21 (the carbon atom in the ring to which the short 

tail of a cholesterol molecule is attached) and C5 (the carbon atom to which the 

hydroxyl group binds). 
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While the distribution is narrow for cholesterol in SSM, it is broad for cholesterol 

in POPC, much broader compared to the distribution obtained when cholesterol 

concentration was 34 mol%.141  The broadness of the distribution in the POPC that 

we observe at limited cholesterol dilution indicates that cholesterol undergoes 

rotational (librational) motion in this bilayer, when its concentration is small.  Indeed, 

this can be confirmed by considering the change of the cholesterol tilt angle as a 

function of time (plot is not shown). Fig. 4.4 presents snapshots from our simulations 

and the difference in the orientation of cholesterol with respect to the bilayer normal 

in POPC and in SSM bilayers is clearly seen from this Figure. 
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Fig 4.4 Snapshots of the lipid bilayers used in our study. The upper one is depicting 

the POPC bilayer with two cholesterol molecules (green) in it (water: red and white; 

choline: yellow; phosphate: orange; glycerol and carbonyl: blue; carbon tails: grey). 

The lower one is of the SSM bilayer with two cholesterol molecules (green) in it 

(water: red and white; choline: yellow; phosphate: orange; sphingosine: blue; carbon 

tails: grey).    

 

Thus, when cholesterol is transferred from the POPC to SSM, its rotational 

entropy is reduced and, perhaps, a small relative change in the conformational entropy 

of the surrounding lipids is produced. As a result we loose in total entropy.  The 

balance in total energy is also dependent on the inclination of cholesterol, since it 

perturbs the tail ordering of neighboring lipids and subsequently the van der Waals 

interactions between them. To determine the values of the change in the 

conformational and rotational entropies and cholesterol-phospholipid and 

phospholipid-phospholipid interactions as a result of cholesterol transfer, one will 

need to perform very careful and detailed calculations. At this stage, it is hard to 

perform such, since the methodology of calculations of free energy components is not 

well developed and the calculations by using the derivatives of free energy suffer 

from large uncertainties in the results.  In addition, the results of the calculations will 

be very sensitive to the force fields used. Nevertheless, as we can see, the present 

calculations are in qualitative agreement with the experiment by determining that the 

transfer of cholesterol from the POPC bilayer to SSM bilayer has an exothermic 
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character with a loss of entropy. Although the experiment was not performed at 

limited cholesterol dilution, it showed a dependence on the cholesterol concentration. 

Thus, from experiment, the free energy change for a process of cholesterol transfer 

from the POPC bilayer to SM at 30 mol% cholesterol was -5 kJ/mol and it decreased 

to -8 kJ/mol when cholesterol concentration decreased to 20 mol%.  We do not know 

if the measured free energy change decreases monotonically with the decrease in 

cholesterol concentration, but if it is, the calculated free energy change is having a 

value that is below the experimental value, and a refinement of the force field for 

cholesterol interactions with phospholipid molecules will be required.  This indicates 

the need for further experiments and calculations that will produce consistent results. 

At this stage we want to point out that our calculations and available experimental 

data show that the free energy of cholesterol transfer from POPC to SM is only ~5-10 

kJ/mol. Assuming that this energy is equally distributed between 4-6 phospholipid 

neighbors interacting with the cholesterol we get a change of ~ 1-2 kJ/mol per 

interacting pair upon cholesterol transfer. The same order of magnitude in free energy 

change was also obtained in the resent experiments performed by Frazier et al.137 who 

studied BSM/POPC/cholesterol bilayer using Fluorescence Resonance Energy 

Transfer technique.  

At this stage we believe that simulations can provide a qualitative and even 

semi-quantitative insight into the complicated (and system sensitive) energetics of 

cholesterol transfer from one lipid bilayer to another.  This can be very helpful for 

the understanding of lipid raft formation.  



 

 

CHAPTER 5: ORIENTATIONAL DYNAMICS OF WATER IN 

PHOSPHOLIPID BILAYERS WITH DIFFERENT HYDRATION 

LEVELS 

 

5.1 Introduction 

Biological molecules such as proteins and DNA or biological assemblies such as 

cell membranes need to be hydrated by water for their proper functioning. Therefore, 

it is important to understand the structural and dynamical properties of water 

molecules located at the interface with bio-molecules. Often this interfacial water is 

called “biological water”. Different experimental techniques were employed to study 

the structure and dynamics of biological water, techniques such as NMR146-148, 

time-resolved fluorescence spectroscopy149-153, neutron scattering148,154,155, ultrafast 

vibrational spectroscopy and IR absorption spectroscopy156. Computer simulation 

techniques such as molecular dynamics and Monte Carlo were also applied to study 

properties of biological water molecules157, including simulations that studied the 

interface of water with model membranes or micelles155,158-160. Experimental and 

computational studies showed that biological water is characterized by slowed down 

orientational dynamics, although the mechanism for such a slowing-down is not 

clarified yet. Even for bulk water, the mechanism of reorientational relaxation was 

clarified only recently. Previously it was assumed that reorientational relaxation 
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occurs via diffusion; recent work based on a series of computer simulation studies of 

water in bulk or in the hydration layer of an anionic solute161-163 demonstrated that 

water reorientation occurs via molecular jump mechanism or MJM. In MJM water 

molecules reorient mainly through the switch of hydrogen bond acceptor during 

which the water OH bond experiences a large angular jump. Using the results from 

molecular dynamics simulations Jana157 et al. studied the H-bond breaking mechanism 

and water reorientation dynamics in the hydration layer of lysozyme protein and 

found that a large angular jump was common for all the reorientation processes in this 

case also.  

Below we present the results obtained from a molecular dynamics simulation 

study of water next to phospholipid bilayers with different hydration levels. The 

simulations were devised according to a recent experimental study by Zhao et al156. 

We studied water reorientational relaxation and compared the results to the 

experimental ones. We also discuss possible mechanisms for the slowing down of the 

orientational relaxation of water molecules located in the hydration layer of lipid 

bilayers.  

 

5. 2 Computational Details 

We performed simulations on six different systems: each containing a dilauroyl 

-phosphatidylcholine (DLPC) lipid bilayer but with a different hydration level. The 

amount of water (x) was 2, 4, 6, 8, 16 and 32 molecules per lipid. Each bilayer in the 

simulation cell contained 128 lipids, with 64 lipids in each leaflet. We also simulated 



 101 

bulk water with a simulation cell containing 2180 water molecules. The force field for 

the DLPC we used was the same as that of dipalmitoyl-phosphatidylcholine (DPPC)87, 

except that the last four united carbon atoms in each lipid tail were removed. The 

SPC/E86 model was employed to describe water molecules. All simulations were done 

with the GROMACS package5,6. The LINCS algorithm83 was used to constrain all 

bond lengths in the system. Periodic boundary conditions were applied in all three 

dimensions and long range electrostatics was handled with SPME algorithm10 with a 

real space cutoff of 10 Å. A 10 Å cut-off was used for Van der Waals’ interactions. All 

simulations were done in NPT ensemble. The temperature in the simulations was 

maintained at 310 K using the Nose-Hoover scheme84 with a thermostat oscillatory 

relaxation period of 0.5ps. The Parrinello-Rahman semi-isotropic pressure coupling85 

scheme with a barostat time constant of 2.0ps was used to keep the pressures at 1 atm 

The simulations for the bilayers were equilibrated for 15ns, with a time step of 2 

fs. After that a 1ns production simulation was done for each system with the same 

time step but with configurations saved every 10 fs. The first 300 ps of these 1ns 

trajectories were used for the calculation of the OH bond reorientation correlation 

functions that were evaluated until t= 5 ps. Following the 1 ns production simulation, 

a 100 ps simulation was done for each system with a time step of 0.5 fs and 

configurations were saved every step to capture the hydrogen bonding switching 

events. Another 1ns simulation was also done for the 2 -16 water/lipid case with 

coordinates saved every 100 fs to study the OH bond reorientation decay over longer 

time lengths. Bulk water simulation analysis was done in a similar way, except that 
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the equilibrium time was 5 ns, instead of 15 ns. 

 

5.3 Results and Discussion 

5.3.1 Water OH Bond Orientational Relaxation 

The anisotropy decay measured in experiment is connected to the orientational 

relaxation of the OH bond in water by the following equation: 

R(t) = 0.4 * P2(µ(t)*µ(0))                              (1) 

In eq. (1) P2 is the second order Legendre polynomial, and µ is the unit vector along 

the OH bond in water molecules. The orientational relaxations calculated from the 

simulation data are shown in Fig. 5.1. The relaxation curves from simulations are in a 

good qualitative agreement with the experimental findings of Zhao et al156, though the 

latter investigated the OD orientation relaxation in water. The trend that the relaxation 

slows down as the hydration level decreases was well reproduced in the simulations. 

Even when the hydration level is at 32 water molecules per lipid (this water/lipid case 

was absent in experiment), the relaxation is still slower than in the bulk water, 

although the hydration level in this case is above the full hydration level of the bilayer, 

indicating a significant influence of the lipids on the dynamics of water molecules. As 

in the experiment, we fitted all the relaxation curves in bilayers with biexponential 

decay and the relaxation curve for bulk water with a single exponential decay.  Since 

the experimental conditions do not allow to register the data for anisotropy decay at 

short times of order 0.1-0.2 ps we also fitted the data from the simulations over time 

interval t = 0.2 ps to t = 5 ps. The biexponential fitting was done using the following 
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form: 

R(t) = A1*exp(-t/τ1) + A2*exp(-t/τ2)                      (2) 

with the single exponential fit done in a similar manner but using just one exponent.   

Table 1 gives the parameters of the fits.  
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Fig. 5.1 Anisotropy decays (orientational relaxation) of the OH bond in water next to 

hydrated bilayers containing different numbers of water molecules per lipid and in 

bulk water. The correlation function is calculated over time period of 5 ps. 

 
Sample  A1 τ1 (ps) A2 τ2 (ps) 
X=2 0.024 0.466 0.310 65.70 
X=4 0.035 0.600 0.298 34.98 
X=6 0.046 0.740 0.285 19.49 
X=8 0.062 0.800 0.269 13.46 
X=16 0.093 0.880 0.220 7.19 
X=32 0.123 0.900 0.180 4.79 
Bulk Water 0.287 1.900 ------- ------- 
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Table 5.1 Biexponential fit parameters for the orientational relaxation R(t) when the 

correlation function is calculated over time period of t=5 ps. 

While the shape and the qualitative behavior of the curves obtained from 

experiments and from simulations look quite similar, there is a quantitative difference 

between the simulation and experiment. Thus in experiment the short time decay 

exponents (τ1) had a nearly constant value of ~0.4 ps; in our simulations they 

constantly increased as the degree of hydration increased. The longer time relaxation 

exponent decreased both in the simulation and in the experiment.  From the data in 

experiment it was assumed that the τ2 value in the case of x= 2 is practically equal 

infinity, while in our simulation it has a final value of ~ 66 ps. The values of τ2 at x=8 

and 16 we obtained are close to the ones reported in the experiment.    

Zhao et al156, based on a theoretical analysis164 as well as on the previous MD 

simulations that studied water in reverse micelles155,159,160, excluded the possibility 

that the biexponential decay arises from two single exponential decays associated with 

two populations of water in distinct environments. In those simulations it was found 

that water molecules both inside the headgroup region and away from that region 

displayed a decay that was fitted to a biexponential function. In our previous 

simulations on water next to phospholipid membranes we also observed the same 

phenomenon158,165. Using the data from the present simulations we have calculated the 

OH orientation decay for water molecules inside the headgroup region and outside of 

that region in the bilayer with 16 water molecules per lipid, and the results are shown 

in Fig. 5.2. 
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Fig. 5.2 Anisotropy decays of the OH bond in the bilayer with x=16. The black curve 

is for all water molecules, green for water inside the headgroups, red outside 

headgroups. 

 

We observed that the curves for the total relaxation of the whole population of 

water in the system., for the slow relaxation of water molecules that stayed inside the 

headgroup region during the calculation time and for the fast relaxation of water 

molecules that stayed outside of the headgroup region, all these three curves from Fig. 

5.2 follow biexponential decay (the fitting parameters are not shown). Moreover, for 

the cases when the hydration level is low, the biexponential decay cannot arise from 

two water populations since there are no two water populations in the system. For 

example, in the case of 2 water molecules per lipid, the maxima in the density 

distributions (data not shown) of water and phosphate group overlap, indicating that 
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there is no bulk-like water in this case.  

What is the origin of the biexponential decay in the correlation functions? Zhao et 

al. suggested that the biexponential orientational relaxation arises from a fast 

wobbling-in-the-cone166 motion followed by a complete orientational randomization. 

The wobbling-in-the-cone motion is responsible for the decay of the correlation 

function on a ~ 0.3-0.4 ps time scale, and corresponds to a tumbling motion of single 

water molecules.  While the simulations show that there is also an initial fast 

orientational relaxation decay on a ~100 fs scale corresponding to the fast librational 

motion of water molecules, this decay is not observed in experiments of Zhao et al. 

due to the inability of capturing it. Therefore the experimental data were collected for 

the time intervals beyond 200 fs and all the exponential fits in that work were done 

with starting time at 200 fs. The long time decay, according to Zhao et al., 

corresponds to the collective motion of the water molecules, producing the 

restructuring of the hydrogen bonding network. The MJM mechanism, mentioned in 

the Introduction, may be used to explain this long time decay. 

Are the time constants obtained from the biexponential fits to experimental data 

and simulations reflecting some physical reality? To answer this question, we 

calculated for the case of 16 waters/lipid, the decay of the correlation function up to 

10, 20, 30, 40 and 50 ps from the trajectories saved every 100 fs, as mentioned in the 

computational details section. We fitted these curves with biexponential as well as 

three-exponential decays to see if the fitting parameters depend on the time interval 

over which we calculated the correlation function. The fitting parameters we obtained 
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are listed in Table 5.2.  

(a) Three Exponential Fit 
Time(ps) A1 τ1 (ps) A2 τ2 (ps) A3 τ3 (ps) R 
0.2-10 0.053 0.261 0.143 2.13 0.14 13.93 0.9999 
0.2-20 0.061 0.513 0.165 3.17 0.096 24.14 0.9999 
0.2-30 0.071 0.687 0.165 3.74 0.082 30.38 0.9999 
0.2-40 0.083 0.887 0.158 4.33 0.072 36.12 0.9999 
0.2-50 0.094 1.058 0.151 4.87 0.066 40.80 0.9999 
                      (b) Biexponential Fit 
Time (ps) A1 τ1 (ps) A2 τ2 (ps) R 
0.2-10 0.134 1.448 0.172 10.882 0.9996 
0.2-20 0.175 2.228 0.120 18.359 0.9994 
0.2-30 0.189 2.626 0.101 23.940 0.9992 
0.2-40 0.196 2.900 0.090 28.488 0.9989 
0.2-50 0.201 3.090 0.080 32.028 0.9987 
                      (c) Stretched Exponential Fit 
Time (ps) A0 τ (ps) β R 
0.2-10 0.37 3.58 0.52 0.9998 
0.2-20 0.42 2.68 0.42 0.9991 
0.2-30 0.46 2.06 0.38 0.9987 
0.2-40 0.42 2.68 0.41 0.9980 
0.2-50 0.53 1.41 0.34 0.9983 

Table 5.2 Parameters for the multiexponential fits of the orientational relaxation R(t) 

for water molecules in the case of 16 water molecules per lipid bilayer when the 

correlation functions have been calculated over different time intervals.  

 

It can be seen that none of the values of the parameters are preserved when the fittings 

are done over different time spans or when a three exponential formula is used instead 

of a biexponential one, even when the fittings are done for the same time span. Each 

individual fitting has quite a good correlation coefficient R, though the three 

exponential fittings are better in all cases. Some of the correlation functions are fitted 

to curves having a stretched exponential form, i.e. 
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R(t) = A0*exp(-t/τ)β                              (3)  

We also fitted the correlation functions in x=16 case to the stretched exponental 

curves and the data are included in Table 2. Again, as in the case of multiexponential 

fits, the values of the parameters are not preserved when the fittings are done over 

different time spans. In addition, we observed that the quality of the multiexponential 

fits was higher than the stretched exponential.  Furthermore, we extended the length 

of our simulations and obtained the correlation functions for the time period of up to 

500 ps in different hydration cases. The corresponding correlation functions are 

shown in Fig. 5.3.  
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Fig. 5.3 Anisotropy decays (orientational relaxation) of the OH bond in water next to 

hydrated bilayers containing different numbers of water molecules per lipid. The 

correlation function is calculated over time period of 500 ps. 

 

We fitted the correlation functions to biexponential curves and also to 

three-exponential curves and again, in all cases, obtained better results for the fits 
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using three exponents, although the biexponential fits produce sets with more 

consistent behavior, as the level of hydration was changing. The results of the fits are 

given in Table 3. As we can see from the comparison of data in Tables 1-3, the 

characteristic time scales that appear in the fits depend on the time period for which 

we know the values of the correlation function. If the correlation function is observed 

for the longer time period, the fitted curves contain exponents with longer time decay.  

 
                      (a) Three Exponential Fit 
Sample A1 τ1 (ps) A2 τ2 (ps) A3 τ3 (ps) R 
X=2 0.037 7.25 0.075 83.1 0.20 945.8 0.9998 
X=4 0.088 13.90 0.137 116.6 0.07 1138.8 0.9997 
X=6 0.108 6.85 0.128 46.75 0.06 380.7 0.9996 
X=8 0.134 5.14 0.120 34.39 0.036 297.9 0.9995 
X=16 0.190 2.72 0.08 18.5 0.02 157.7 0.9995 
                       (b) Biexponential Fit 
Sample A1 τ1 (ps) A2 τ2 (ps)       R 
X=2 0.079 52.8 0.21 837.3 0.9990 
X=4 0.138 39.8 0.13 442.6 0.9975 
X=6 0.178 23.8 0.081 274.4 0.9966 
X=8 0.194 15.6 0.057 195.2 0.9950 
X=16 0.216 4.89 0.044 77.6 0.9950 

Table 5.3 Parameters for the multiexponential fits of the orientational relaxation R(t) 

for water molecules when the correlation functions have been calculated over 500 ps 

time interval.  

 

Is this decay a reflection of some collective process over longer length scale and 

therefore requiring longer time to happen? The answer to this question can be given 

by considering a detailed model of the correlation function and a construction of such 

a model and its testing should be pursued. Nevertheless, from Tables 5.1- 5.3 we 
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observe that longer time of the observation of the correlation function allows the 

observation of the relaxation component that has longer time decay.  At the same 

time, the decay with a short time component gets suppressed. 

Finally, some more words of caution. We also observed previously158,165 that the 

obtained values for the exponents depend on the presumed behavior of the correlation 

function over very long times.  If we presume that the correlation function does not 

decay to zero, but instead decays to a plateau, the exponent with very long time decay 

changes substantially165. Therefore, one should be careful when one assigns a physical 

interpretation to the time exponents obtained from the fits, especially to the long time 

exponents.  

5.3.2 Water Hydrogen Bonding 

In bulk liquid water molecules are hydrogen bonded to each other and these 

hydrogen bonds form and break all the time. In hydrated lipid bilayers some water 

molecules penetrate into the headgroup region and hydrogen bond with oxygens of 

the phosphate groups and to a lesser extent with oxygens of the carbonyl groups. 

Previously we observed that these hydrogen bonds are stronger158 than water-water 

hydrogen bonds. Moreover, lipid molecules are much heavier than water molecules 

and therefore diffuse slower. Therefore we expect that hydrogen bonds between water 

and lipid headgroups break less frequently. This can be quantified by calculating the 

average lifetimes of hydrogen bonds in bilayers with different hydration levels and 

comparing these data with the average lifetime of hydrogen bond in bulk water. Table 

4 shows the average hydrogen bond lifetimes in different cases. (We use the geometric 
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criterion for the hydrogen bond definition: Roo < 3.5 Å, θHOO < 30°, where Roo is the 

distance between the donor and acceptor oxygen atoms, and θHOO is the angle between 

the OH bond and the OO vector. The hydrogen bonding lifetime is defined as the time 

during which the hydrogen bond exists continuously without any interruptions.)  

 
Hydration Level (water/lipid) Hydrogen bonding lifetime (fs) 
2 413 
4 342 
6 295 
8 264 
16 214 
Bulk Water 179 

Table 5.4 Hydrogen bonding lifetime of water in bilayers and in bulk water. 

 

The table shows that the average lifetime of a hydrogen bond for water in bilayers 

increases as the hydration level decreases. Thus, the average lifetime in the bilayer 

with two water molecules per lipid is larger by an order of magnitude compared to 

bulk water. The increase in hydrogen bonding lifetime is consistent with the slowing 

down of water OH bond reorientational relaxation in each case: the longevity of 

hydrogen bonding means slow relaxation.  

As we can see from Table 5.4, hydrogen bonds live longer in lipid bilayers with 

low hydration level, but still they break up and form again. It was shown recently that 

the dynamics of hydrogen bond switching in bulk water follows a so called “jump” 

model: the O-H bond vector will have a fast and large angular jump during a 

hydrogen bond switch event161. To see if this kind of a quick switch also happens in 

our simulations, when a water molecule changes its hydrogen bonding acceptor, we 
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first monitored the hydrogen bonding switch events in the bilayer with the lowest 

hydration level with x=2, and monitored the directional change of the OH bond vector 

as a function of time. For our study we considered one of the OH bonds from each of 

256 water molecules as hydrogen bonding donor and monitored the acceptors’ change 

during a 20ps simulation. Of the 256 H-bonding donor groups, 35 (14%) of them 

never H-bonded to any acceptor as a donor during 20 ps observation time; 86 (34%) 

of them H-bonded to the same acceptor during this time span as a donor (these 

H-bonds do not have to exist continuously). The rest 52% of OH bonds H-bonded to 

more than one acceptor during this time. From all the H-bonding switches (more than 

one switch can happen to an OH donor during 20 ps) we were able to observe only 15 

clear jump motions of the OH bond orientation, which is less than 10% of all the 

switches. Fig. 5.4 depicts such an event. (The angle is defined in the same way as in 

the original jump model, namely, between the projection of the OH vector on the 

OOaOb plane and the bisector of the OaOOb angle. Atom Oa and Ob are the 

acceptors of the hydrogen bonding before and after the switch).  
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Fig 5.4 The angle (see the text for the definition) as a function of time during a 
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H-bond switching event. 

 

We also observed other H-bonding switches when no clear jump was present. These 

usually happened when the switch was not complete and the OH donor group was just 

more or less shared by two acceptors, e.g. two oxygen atoms from the same phosphate 

group in a lipid. According to our observations, a water molecule as the old or new 

acceptor or two water molecules as both old and new acceptors were usually found to 

be involved in a jump. We observed that a clear jump motion of an OH bond is rare in 

bilayers with small hydration level due to the lack of water molecules. As the 

hydration level increased, the number of available waters for the jump mechanism to 

take place also increased. This explains why the OH bond relaxation becomes faster 

as the hydration level of the bilayer increases: there are more water molecules moving 

around to break and form hydrogen bonds and as a result, facilitate the orientation of 

OH bond in water molecules. We studied the H-bonding switch in the case of 8 water 

molecules per lipid. In this case H-bonding switch happened much more frequently 

due to the higher level of hydration. We observed that when a clear switch happened, 

which means the H-bonds before and after the switch lived for a long time, the OH 

bond orientation always followed a jump motion. 

 

5.4 Conclusions 

Following the conditions from a recent experimental work156, we simulated 

DLPC lipid bilayers with hydration levels of 2 to 16 water molecules for each lipid 
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and also considered bilayers with 32 water molecules per lipid. The water OH bond 

reorientation relaxation in these different bilayers were calculated and found to agree 

with experimental results qualitatively and even semi-quantitatively, when the data 

from our calculations and experiment were compared over the same time period. Our 

results also showed that the orientational relaxation can be fitted nicely by curves 

containing a sum of two or three exponentials.  We observed that the values of time 

constants from the fits depend on the amount of the information we have for the 

correlation function, i.e. on the length of time for which the correlation is measured 

and also on the resolution.  If we measured the correlation over longer times we 

observed that multi-exponent curves contain components with longer time decays, 

although the relative contribution of these components is small. Moreover, some of 

the long time exponents may be an artifact due to the extrapolation of the data, in 

cases when the data actually reach a plateau value in longer times. Therefore we 

would not recommend emphasizing either the functional form of the fit to the 

correlation function or the time constants obtained from such a fit. We tried different 

fits for some of the relaxation curves and conclude that interpretation of the physical 

process according to a particular fitting formula can be misleading. We also would 

like to suggest that “wobbling in the cone” model is perhaps not a correct model, 

since it is hard to define the physics of the wobbling motion and the “cone”. We 

observed that the hydrogen bonding lifetime of water increases, as the hydration level 

decreases in bilayers, and this is correlated with the slower reorientation relaxation of 

water OH bond. The simulations show that hydrogen bonding switch follows the 
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molecular jump model161 and we confirm that such jumps are more difficult to 

accomplish at low hydration level, as was suggested by Zhao et al156. Interestingly, we 

observed very long relaxation decay times for very low hydration levels of x=2 and 4 

waters/lipid only after we calculated the relaxation function for 500 ps, while the long 

relaxation decay in experiment was already observed with the data gathered for up to 

5 ps. This may be due to the difference in the conditions in the experiments and 

simulations. 
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