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Abstract

Yang Liu: Identifying Local Dependence with a Score Test Statistic Based on the Bifactor 2-Parameter

Logistic Model

(Under the direction of Dr. David M. Thissen)

Local dependence (LD) refers to the violation of the local independence assumption of most item re-

sponse models. Statistics that indicate LD between a pair of items on a test or questionnaire that is being

fitted with an item response model can play a useful diagnostic role in applications of item response the-

ory. In this paper a new score test statistic, Sb , for underlying LD (ULD) is proposed based on the bifactor

2-parameter logistic model. To compare the performance of Sb with the score test statistic (St) based on a

threshold shift model for surface LD (SLD), and the LD X2 statistic, we simulated data under null, ULD,

and SLD conditions, and evaluated the null distribution and power of each of these test statistics. The re-

sults summarize the null distributions of all three diagnostic statistics, and their power for approximately

matched degrees of ULD and SLD. Future research directions are discussed, including the straightforward

generalization of Sb for polytomous item response models, and the challenges involved in the corresponding

generalizations of St and LD X2.
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Introduction

1. Local dependence

Item response theory (IRT) provides a collection of latent variable models and statistical procedures (in-

cluding parameter estimation techniques, model evaluation methods and diagnostics) used for item analysis

and test scoring (Thissen & Steinberg, 2009). One basic assumption of IRT models is local independence

(LI), which requires that responses to different items are independent conditional on the latent variable of

interest1. Formally, LI implies the probability of observing responses x = {x1, . . . , xj} to all J items given θ to

be the product of each item’s trace line function Tj(·):

L(θ; x) =

J∏
j=1

Tj(xj|θ) (1)

Equation 1 formalizes the strong version of LI (SLI; McDonald, 1982). SLI serves as the basis for both

estimating item parameters and scoring, where the likelihood function of the overall response pattern for a

given θ is usually treated as though the contribution of each item is independent. Although SLI is important,

there is no feasible statistical procedure to test it, for there must be no interaction among item responses in all

marginal tables (from two-way to J-way). Consequently, only violations of pairwise independence in certain

parametric forms, that will be introduced in the next section, are tested in practice.

Thissen et al. (1992) distinguished two substantive types of local dependence: underlying local depen-

dence (ULD) and surface local dependence (SLD). ULD refers to the scenario where an additional latent

variable can be employed to explain the error covariance within each locally dependent set of items. A read-

ing comprehension test is a typical example of ULD: Responses to items following the same text will be more

correlated due to context similarity. In contrast, SLD arises when the response to an item is fostered (i.e.

positive SLD) or hampered (i.e. negative SLD) by responses to previous items. One frequently cited example

of positive SLD involves redundant items: that is, (nearly) the same question asked more than once in a test.

Negative SLD, on the other hand, is in general less common and may be difficult to explain.

1The latent variable is not necessarily unidimensional



2. Existing methods to identify LD

2.1 Models

The difference between underlying and surface LD can be described using a path diagram2. The path

diagram in Figure 1 illustrates the bifactor model (left), which implies ULD, and the threshold shift model

(right), which implies SLD.

θ1
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x2

x3

x4

x5

x6

θ2

θ1

x1

x2

x3

x4

x5

x6

Figure 1: Path diagrams: (a) Bifactor model; (b) Threshold-shift model

The bifactor model is a special multidimensional factor analysis model (Gibbons & Hedeker, 1992, for

the more general two-tier model, see Cai (2010)). The specification of the item bifactor model parallels the

notion of ULD in the sense that an extra latent variable θ2 produces residual covariances (for a certain subset

of items) when the data are fitted with a unidimensional model. A two-parameter logistic (2PL) version of

the bifactor model for item pair p and q is:

{ Tp(1|θ1, θ2) =
1

1 + exp(−apθ1 − apqθ2 − cp)

Tq(1|θ1, θ2) =
1

1 + exp(−aqθ1 ± apqθ2 − cq)

(2)

In order to identify the model when the LD subset comprises only two items, some constraint must be

imposed on the two secondary dimension slope parameters. A convenient restriction may be equality of

the absolute value of bifactor slopes. The negativity/positivity of the apqθ2 term in the second formula is

determined by positive/negative LD to be modeled.

The 2PL model is a special case of bifactor model obtained by setting apq = 0 in Equation 2. In addition,

it can be proved (see Appendix A) that the bifactor model is equivalent to the error covariance model (see

below) in the continuous and probit case. Another parameterization of a restricted bifactor model was given

2Only unidimensional models are shown here; however, one can make a generalization to the multidimensional case.
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by Bradlow, Wainer & Wang (1999), in which bifactor slopes are fixed to be equal to their corresponding

primary slope, and the variance of the secondary factor is estimated.

The development of a threshold shift model may be traced back to the work of Kelderman (1984) and

Jannarone (1986) on the Rasch model. It also appeared later in work by Hoskens & De Boeck (1997), where

it was called an “ordered-constant” interaction model, among four types of item response models employing

additional pairwise interaction parameters. Glas & Suárez Falcón (2003) derived a score test for this model’s

interaction term (see also vanaderaLinden & Glas, 2010).

In the 2PL case, for example, the trace line function of the second item in a locally dependent item pair

p and q (p < q) may be written as:

Tq(1|θ1; xp) =
1

1 + exp(−aqθ1 − cq − δpqxp)
(3)

where δpq can be considered a “threshold shift” for the second item when the first item response is positive,

which is in accordance with the scenario of SLD. δpq is also an ANOVA-like interaction term when the log

odds of the pairwise response pattern is considered3. Notice that if δpq = 0, the threshold shift model reduces

to 2PL model as well.

Apart from these models, there are other limited or full information parametric models for LD. For

example, both LISREL and Mplus can handle error covariances in a factor analysis model with ordered

categorical indicators based on the polychoric correlation matrix (Christoffersson, 1975; Muthén, 1978; see

Wirth & Edwards (2007) for a review); Braeken, Tuerlinckx, and De Boeck (2007) proposed to estimate the

dependency parameter of the bivariate logistic distribution constructed with copula functions.

2.2 Statistical procedures

Asymptotic tests: Let η = (η
0
, η

1
) be the model parameters defined in some parameter space Θ which

can be factored into the direct product of subspaces Θ0 × Θ1 such that η
0
∈ Θ0 and η

1
∈ Θ1. Consider the

hypothesis testing problem based on a partition of the subspace Θ1 = {ϑ1}∪{ϑ1}
c, in which {ϑ1}

c is the relative

complement of {ϑ1} in Θ1.

H0 : η
1

= ϑ1 (Null model)

H1 : η
1
, ϑ1 (Alternative model)

Three asymptotic test statistics are commonly used for this testing problem. The likelihood ratio statistic
3This is Hoskens & De Boeck’s interpretation; however, it is less intuitive. So I will call it the “threshold shift model” for the rest of

this paper.
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(Neyman & Pearson, 1928) is defined as

Λ(η̂) =
supη

0
∈Θ0

L(η
0
,ϑ1; x)

sup(η
0
,η

1
)∈Θ L(η0, η1; x)

=
LΘ0

(η̃
0
,ϑ1; x)

LΘ0×Θ1
(η̂

0
, η̂

1
; x)

(4)

where (η̂
0
, η̂

1
) = η̂ is the maximum likelihood estimate (MLE) in Θ, while (η̃

0
,ϑ1) = η̃ is the conditional

MLE obtained under the restriction η
1

= ϑ1. The Wald statistic is (Wald, 1943)

W(η̂
1
) = (η̂

1
− ϑ1)′HΘ1

(η̂
1
, η̂

1
)(η̂

1
− ϑ1) (5)

where HΘ1
(η̂

1
, η̂

1
) is the lower-right block of the Hessian matrix of the log-likelihood. Finally, the score test

statistic (Rao, 1948) is

S(η) = ∇′Θ(η̃; x)H−1Θ (η̃, η̃)∇Θ(η̃; x) (6)

where ∇Θ(η̃; x) is the Fisher’s score function

∇Θ(η̃; x) =
∂`Θ(η; x)

∂η

∣∣∣∣∣
η=η̃

=
∂ log LΘ(η; x)

∂η

∣∣∣∣∣
η=η̃

(7)

and H−1
Θ

(η̃, η̃) is the inverse of the Hessian matrix (evaluated at η̃). It can be proved (see Buse, 1982) that like-

lihood ratio, Wald, and score statistics are all asymptotically χ2 distributed with degrees of freedom equal to

the number of constraints imposed by H0. However, the score test statistic does not require the computation

of the MLE which is an advantage over the other two tests when applied to LD models. Because in practice

we need to test the hypotheses for each pair of items, the process of obtaining MLEs based on each LD model

can be very time consuming for long tests.

Residual measures: In this class of procedures, the IRT model with the desired number of dimensions is

fitted first, and then diagnostic statistics for residual association are calculated. One popular residual measure

uses the LD χ2 statistics for two-way marginal tables (Chen & Thissen, 1997). Using the dichotomous case as

an example, for each pair of items the 2 × 2 tables as shown in Table 1 can be constructed for observed and

expected frequencies:

Table 1: Two-way marginal tables for items p and q

Item q
0 1

Item p 0 O00 O01

1 O10 O11

Item q
0 1

Item p 0 E00 E01
1 E10 E11
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Here, O denotes the observed frequencies and E the expected ones. Expected cell counts are calculated

according to the locally independent item response model:

Expxq = N
∫
Tp(xp|θ)Tq(xq|θ)φ(θ)dθ (8)

Basically, LD χ2 statistics reflect the discrepancy between the observed and the model-implied expected

counts. Chen and Thissen proposed the Pearson X2 and likelihood ratio G2 for this purpose:

X2 =

1∑
xp=0

1∑
xq=0

(Oxpxq − Expxq )
2

Expxq
(9)

G2 = −2

1∑
xp=0

1∑
xq=0

Oxpxq log
( Expxq
Oxpxq

)
(10)

The theoretical null distributions for both X2 and G2 remain unclear so far. Chen and Thissen suggested

using the χ2-distribution with one degree of freedom as an approximation (for dichotomous items) based on

their simulation results. They claimed that the degree of freedom is one for test of independence, whereas

estimating slope parameters from the relationships among items could be regarded as imposing fractional

loss of the one degree of freedom.

There are other residual diagnostics. For example, Yen’sQ3 (1984) is defined as the sample Pearson correla-

tion between paired residuals. However, it has the same problem as LD X2 and G2, that the null distribution

of the residual correlation is not clear for categorical data4. Another residual diagnostic, the DIMTEST T

statistic, was proposed by Stout (1987) for testing unidimensionality. As compared to Yen’s Q3, DIMTEST is

a nonparametric procedure testing whether the average residual covariance in a given item subset is signifi-

cantly larger than zero.

The research described here investigates the feasibility and usefulness of a score test for ULD, and com-

pares its performance to the score test for SLD proposed by Glas & Suárez Falcón (2003) and LD X2 statistics

(Chen & Thissen, 1997).

3. Theory of score test

3.1 Derivatives in general form

Let the response for each item be dichotomous (xij ∈ {0, 1}). Bock (unpublished) gave the general form of

first order derivatives taken on the marginal loglikelihood function with respect to a general item parameter

4Yen (1984) suggested to use Fisher r-to-z transformation, and then use standard normal distribution as an approximation. However,
subsequent studies suggested that it is actually not a good approximation (see Chen & Thissen, 1997; Ip, 2001).
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ηs:

∂`

∂ηs
=

N∑
i=1

1

Pr(xi)
∂Pr(xi)
∂ηs

=

N∑
i=1

1

Pr(xi)

∫
θ

∂L(xi|θ)
∂ηs

φ(θ)dθ

=

N∑
i=1

1

Pr(xi)

∫
θ

[ J∑
j=1

xij
Tj(xij|θ)

∂Tj(xij|θ)
∂ηs

]
L(xi|θ)φ(θ)dθ (11)

where L(xi|θ) =
∏J
j=1 Tj(xij|θ), and Pr(xi) =

∫
θ
L(xi|θ)φ(θ)dθ. The analytical expression of the Hessian is quite

convoluted; in practice, however, the calculation of second order derivatives can be avoided by invoking the

cross-product approximation (Bock & Lieberman, 1970; Kendall & Stuart, 1961):

∂2`

∂ηs∂ηt
≈ −N

∑
{xi}

1

Pr(xi)
∂Pr(xi)
∂ηs

∂Pr(xi)
∂ηt

(12)

in which the summation is over all 2J possible response patterns. This is often further approximated by

limiting the summation to observed response patterns.

3.2 Multidimensional 2PL model

For 2PL model, the trace line functions for binary responses can be written as (subscript i’s for subjects

are dropped):

Tj(xj|θ) =
1

1 + exp[(−1)xj (a′jθ + cj)]
(13)

The first derivatives of trace line with respect to slope and intercept parameters are listed respectively as:

∂Tj(xj|θ)
∂aj

= θTj(xj|θ)[xj − Tj(1|θ)] (14)

∂Tj(xj|θ)
∂cj

= Tj(xj|θ)[xj − Tj(1|θ)] (15)

3.3 Glas’ score statistic for threshold shift

In Glas’ threshold shift model, the trace line for the second item in an item pair is:

Tq(xq|θ, xp) =
1

1 + exp[(−1)xj (a′qθ + cq + δpqxp)]
(16)
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and the corresponding first order derivative with respect to δpq is:

∂Tq(xq|θ, xp)
∂δpq

= xpTq(xq|θ)[xq − Tq(1|θ)] (17)

3.4 The score statistic for bifactor slope

The bifactor model is a special case of multidimensional IRT model, so the derivatives of the trace line

function are described by Equation 14 and 15.

First, we note that we cannot compute the score test from exactly apq = 0. Let (θ1, θ2) be a partition of θ

where θ1 represents the primary factor(s)5 and θ2 the specific factor to item p and q. To evaluate ∂`
∂apq

at apq = 0,

notice that when apq = 0, Tj(·) and thus L(xi|θ) are constant with respect to θ2; additionally, φ(θ) = φ(θ1)φ(θ2)

due to the fact that θ1 and θ2 are orthogonal. Therefore, we can write the joint integral as successive integrals

according to Fubini’s theorem6:

∂`

∂apq

∣∣∣∣∣
0

=

N∑
i=1

1

Pr(xi)

{ ∫
θ2

θ2φ(θ2)dθ2

∫
θ1

[xip − Tp(apq|θ, xip = 1)

± xiq − Tq(apq|θ, xiq = 1)]L(xi|θ1)φ(θ1)dθ1
}

= 0 (18)

It zeros out due to the fact that the first integral is the expectation of standard normal distribution, which

further indicates that apq = 0 is either a global maximum or a saddle point. To illustrate this, the bivariate

profile log-likelihood surfaces7 of both the positive and the negative LD models as functions of (apq, ap) are

plotted as Figure 2.

5For the proofs and derivations in this section, we consider a more generic situation where there can be more than one primary
factors.

6To check the prerequisite of Fubini’s theorem, define D(apq) = θ2[xip − Tp(apq |θ, xip)] ± θ2[xiq − Tq(apq |θ, xiq)]. Then |D(apq)| ≤ 2|θ2 |
implies the integrand is dominated.

7The profile log-likelihood at a certain point (s, t) shown in the graphs is obtained as the restricted maximum log-likelihood after
fixing apq = s and ap = t.

7
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Figure 2: Bivariate profile log-likelihood surfaces for positive LD model (left; correct model for the data used
here) and negative LD model (right; wrong model for the data used here): contours (i.e. dotted lines) and
univariate profile log-likelihood curves (as a function of apq only; i.e. thick broken lines) are superimposed

As a result, we test the null hypothesis apq = ε instead of apq = 0, with ε some small value (0.0001 in this

research). Due to the symmetry of the likelihood function with respect to apq = 0, we only consider the part

that apq > 0 (which can be visualized in Figure 2 as the part of log-likelihood surface on the right side of

the thick solid line) when we compute the score statistics for both positive and negative LD models. After

the two statistics associated with these two models are obtained, we check the sign of ∂`
∂apq

∣∣∣∣∣
0.0001

to determine

which model to keep: the model with a positive value of the first derivative will be kept; if both models

produce negative value, then we consider the local independence model as the correct model.

Method

1. Simulation design

To investigate the performance of bifactor LD score statistics, dichotomous item response data were gen-

erated using R (R Development Core Team, 2010) in three scenarios: the null case (i.e. local independence),

a ULD case, and an SLD case.

For the locally independent case, we generated test data with 10, 25, and 50 items for the sample sizes of

200, 500, and 1000. Item parameters were sampled from the same distributions as Chen and Thissen (1997)

used, which were believed to resemble the empirical distributions seen in practice. Specifically, the slopes

8



are drawn from log-normal distribution log a ∼ N(0, 0.5), and the thresholds (b = −c/a) are drawn from

N(0, 1.5). The data generation procedure was replicated 1000 times for each condition; LD statistics (i.e.

bifactor score statistic Sb, threshold shift score statistic St, LD X2) were extracted only for the first item pair of

each replication.

Table 2: Conditions under the null case

No. of items Sample sizes

10 200, 500, 1000

25 200, 500, 1000

50 200, 500, 1000

Design: No. of items × Sample sizes

ULD data were simulated using a bifactor version of the 2PL model, with only one LD pair for each

replication. Apart from sample size and number of items, we also introduced variations of the strength and

direction of LD (as shown in Table 3). The strength of LD was manipulated by changing the magnitude of

secondary slopes sampled after being transformed to loadings (see Wirth & Edwards, 2007):

λpq =
apq/1.702√

1 + (apq/1.702)2
; (19)

λpq ∼ N(µλ, 0.01) where µλ = 0.3, 0.5, 0.7, indicating low, moderate, and strong LD, respectively. In order to

obtain valid values for loadings and control the dispersion of item parameters, all these sampling distribu-

tions were truncated to the interval (µλ − 0.2, µλ + 0.2). As for direction, although negative LD does not have

the same substantive interpretation as positive LD, they are mathematically the same. Thus, we generate 500

negative LD pairs out of the total 1000 replications under each simulated condition.

Table 3: Conditions under the ULD and SLD cases

No. of items Sample sizes
Properties of LD pairs

Strength Direction

10 200, 500, 1000 µλ = 0.3, 0.5, 0.7 (500)+, (500)−

25 200, 500, 1000 µλ = 0.3, 0.5, 0.7 (500)+, (500)−

9



50 200, 500, 1000 µλ = 0.3, 0.5, 0.7 (500)+, (500)−

Design: No. of items × Sample sizes × Strength

Simulated conditions for SLD data are the same as ULD; however, the transformation between δpq and

λpq are not exact because no apparently equivalent factor analysis model is defined for the threshold shift

model. One approximation is to use the result proved (in Appendix A) with continuous indicators:

λpq =
√
δpq(1 − λ2p) (20)

where λp is the primary slope for the first item in each LD pair.

A modified version of the computational engine of the software IRTPRO was used for estimating item

parameters and computing LD statistics.

2. Evaluation of LD statistics

The distribution of Sb, St, and X2 under the null hypothesis can be obtained by pooling over all repli-

cations within each cell. For the locally independent case, we compare the empirical distributions to the

χ2
1

distribution8 by means of quantiles. This shows the Type I error rates and empirical p-values of the LD

statistics.

The receiver operating characteristic (ROC) curves of all three statistics for all conditions are presented to

provide information about the power of these tests. The horizontal axis of each of ROC curve represents the

false positive rate, or the alpha level in the setting of hypothesis testing; the vertical axis represents the true

positive rate which is the power of the statistics.

Results

1. Locally independent data

Several important quantiles (i.e. 0.25, 0.5, 0.75, 0.9, 0.95, and 0.999) of the empirical distributions are

tabulated for each condition of the simulation in Table 4; the corresponding quantiles of the χ2
1

distribution

are included in the footnote of the table.
8χ2

1
is the asymptotic distribution of Sb and St according to the large-sample theory, as well as the approximate distribution of LD X2

(Chen & Thissen, 1997).
9The 0.99 quantiles estimated out of 1000 replications are not very reliable.
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A general trend is that both Sb and St tend to be liberal while LD X2 is conservative if the χ2
1

cutoffs

are used. Both increasing test length and decreasing sample size result in larger statistics, which makes the

distribution of LD X2 closer to χ2
1
, but which further exacerbates the liberality of both score test statistics. The

empirical quantiles of Sb and St are nearly identical; that can be seen more clearly in empirical cumulative

density function (cdf) plots in Figure 3.
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Figure 3: Empirical cdf plots

From Figure 3, it can be concluded that χ2
1

serves as a good approximation of the null distribution for the

score statistics Sb and St in a short test (i.e. 10 items) with medium (i.e. N = 500) or large (i.e. N = 1000)

samples, as well as a medium length test (i.e. 25 items) with large samples. Otherwise, both score statistics

are liberal. In all the conditions of this study, the empirical distributions of LD X2 are always stochastically

smaller than χ2
1
, which indicates conservativeness.

2. Surface LD data

Figures 4 to 6 show the ROC curves for the three statistics with data generated by the surface LD model.
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Figure 4: ROC curves for weak SLD (δpq = 0.16)

In Figure 4, the results for weak SLD, with a threshold shift of only 0.16 standard units, show that there

is very little difference between the empirical curves and the diagonal line of the ROC plots (i.e. random

guess at rejecting null hypothesis) for any of the statistics, which indicates low power. Even though we gain

some power with increasing sample size, it is no more than 0.2 with 1000 observations if 0.05 is used as the

nominal level.
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Figure 5: ROC curves for medium SLD (δpq = 0.34)

Figure 5 shows that when δpq = 0.34, there is, again, more power to detect LD in larger samples; the power

is affected very little by test length. To illustrate, choosing 0.05 as the nominal level and only considering

50-item tests, the power of bifactor statistics is 0.11 for sample size 200, 0.28 for sample size 500, and 0.43 for

sample size 1000. The empirical ROC curves for all three statistics are very similar.
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Figure 6: ROC curves for strong SLD (δpq = 0.66)

Figure 6 shows that as the threshold shift parameter increases to 0.66, the power of all statistics becomes

higher (i.e. greater than 0.6) if sample size is 500 or 1000, but remains low/moderate (i.e. about 0.25) for

small samples.

To summarize, the ROC curves of all three statistics are roughly identical, which reflects their similar

performance in all the SLD conditions. The power increases when sample size increases, but remains about

the same when test length changes.

3. Underlying LD data

Figures 7 to 9 show the ROC curves for the three statistics with data generated by underlying LD model.
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Figure 7: ROC curves for weak ULD (apq = 0.54)

Figure 7 shows that for the weak ULD condition (apq = 0.54; error covariance is 0.09), the power is

relatively low or moderate for all cells; the power at α = 0.05 ranges from (approximately) 0.1 to 0.3. How-

ever, the pattern of results is similar: Power increases as the number of observations increases, and is not

influenced very much by the number of items; all three statistics have nearly the same ROC curves.
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Figure 8: ROC curves for medium ULD (apq = 0.96)

Figure 8 shows that the power at nominal level 0.05 falls between 0.4 to 0.8 when apq = 0.96 (error

covariance is 0.25) for all the statistics, which is high compared to the medium SLD conditions. Again, all

three statistics yield similar results.
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Figure 9: ROC curves for strong ULD (apq = 1.67)

Figure 9 shows that when apq increases to 1.67 (error covariance is 0.49), the power for all statistics is high

for all cells; especially with large samples, all three procedures have nearly perfect power to detect underlying

LD, which is shown by their extremely steep ROC curves.

In all, the results for ULD data are similar to those obtained for SLD data; the only difference is that all

statistics seem to be more powerful here than in the corresponding SLD conditions. That may be attributed

to the approximate formula (i.e. Equation 20) used to transform loadings to threshold shift parameters,

which may lead to the unmatched LD levels between the SLD and ULD data generating models.

Discussion

For locally independent data, the empirical distribution of both score test statistics closely resembles

χ2
1
, especially when sample size is large and the number of items is small (which means fewer parameters are

estimated). However, we should be cautious when using χ2
1

as the null distribution in smaller samples and/or

with longer tests, because the results suggest that both score test statistics tend to be liberal. In contrast, LD

X2 is conservative if treated as χ2
1
, which is consistent with the results found by Chen & Thissen (1997);
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however, it might be a good alternative for small samples and/or long tests.

With respect to power, all three statistics exhibit similar patterns in terms of receiver operating character-

istics, whether SLD or ULD is the data generating model. Together with the similarity of their empirical null

distributions, we conclude that both score test statistics are very close numerically. This calls the theoretical

difference between surface and underlying local dependence into question; however, further investigation is

required before reaching any conclusion about that.

In summary, all three statistics considered in this study provide useful diagnostic information about local

dependence. LD X2 is the easiest to compute and works well; its power is comparable to the score statistics,

although it is conservative when χ2
1

is used as its approximate null distribution. Both score statistics behave

similarly; however, the computation of the bifactor statistic Sb requires numerically integrating over one

more dimension which makes it computationally more expensive than the threshold shift statistic St.

In future research, it would be interesting to generalize both score test statistics to polytomous IRT mod-

els, e.g. the graded response model (Samejima, 1969). The generalization of bifactor statistic is straightfor-

ward; that involves adding another dimension to the original model. In contrast, because graded response

model has more than one threshold, there are complications in generalizing the threshold shift statistic. Sup-

pose the item pair has K response categories; one possibility is to incorporate different shift parameters for

each of K − 1 non-zero responses of the first item on each of K − 1 thresholds of the second item, which

leads the number of additional parameters to increase from one to (K − 1)2. It might be unwieldy to explain

each of these shift parameters; nevertheless, it is acceptable to compute a multivariate score test statistic (i.e.

with limiting distribution χ2(K−1)2) without actually obtaining parameter estimates. Other possible extensions

involve imposing constraints on the (K − 1)2 shift parameters; for example, shift parameters on the same

threshold of the second item may be constrained to be equal, which results in a K − 1 dimensional score test

statistic. Further simulation studies are needed to evaluate these possible alternatives.

Based on all the results of the current study, we conclude that (1) LD X2 is the easiest to compute, performs

well, and has been implemented in commercial software; (2) Score test statistics St based on the threshold

shift model is also easy to compute, and works better than LD X2 in larger samples and shorter tests; (3) Score

test statistics Sb based on the bifactor model is the hardest to compute, and provides no advantage over St for

dichotomous data.
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Appendix 1: Model equivalence

The equivalence of the bifactor model and the error covariance model can be established by comparing

their covariance structures. Here we only prove the simplest case in which there is only one primary dimen-

sion and one secondary dimension (the proof can be easily generalized to multiple primary dimensions).

Consider the bifactor model: { x∗
1

= λ11θ1 + λ12θ2 + ε1

x∗
2

= λ21θ1 ± λ12θ2 + ε2

(21)

which has covariance structure: 
Var(x∗

1
) = λ2

11
+ λ2

12
+ Var(ε1)

Var(x∗
2
) = λ2

21
+ λ2

12
+ Var(ε2)

Cov(x∗
1
, x∗

2
) = λ11λ21 ± λ

2

12

(22)

Similarly, the error covariance model:

{ x∗
1

= λ′
11
θ1 + ε′

1

x∗
2

= λ′
21
θ1 + ε′

2

(23)

has covariance structure: 
Var(x∗

1
) = λ′2

11
+ Var(ε′

1
)

Var(x∗
2
) = λ′2

21
+ Var(ε′

2
)

Cov(x∗
1
, x∗

2
) = λ′

11
λ′
21

+ Cov(ε′
1
, ε′

2
)

(24)

By equating the covariance structures (that is, Equation sets 24 and 22), we have:



λ′
11

= λ11

λ′
21

= λ21

Var(ε′
1
) = λ2

12
+ Var(ε1)

Var(ε′
2
) = λ2

12
+ Var(ε2)

Cov(ε′
1
, ε′

2
) = ±λ2

12

(25)

The same procedure can be applied to prove the equivalence between the error covariance model and the

threshold shift model. The only difference is that we need to include the covariance structure of a third item
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other than the item pair of interest. The threshold shift model is:


x∗
1

= λ′′
11
θ1 + ε′′

1

x∗
2

= λ′′
21
θ1 + β21x∗1 + ε′′

2

x∗
1

= λ′′
31
θ1 + ε′′

3

(26)

with covariance structure:



Var(x∗
1
) = λ′′2

11
+ Var(ε′′

1
)

Var(x∗
2
) = λ′′2

21
+ β2

21
λ′′2
11

+ 2β21λ
′′
11
λ′′
21

+ β2
21

Var(ε′′
1

) + Var(ε′′
2

)

Cov(x∗
1
, x∗

2
) = λ′′

11
λ′′
21

+ β21λ
′′2
11

+ β21Var(ε′′
1

)

Cov(x∗
2
, x∗

3
) = λ′′

21
λ′′
31

+ β21λ
′′
11
λ31

(27)

Augmenting Equation set 24 with

Cov(x∗
2
, x∗

3
) = λ′

21
λ′
31

(28)

and then comparing them with Equation set 27 yields:



λ′
11

= λ′′
11

λ′
21

= λ′′
21

+ β21λ
′′
11

λ′
31

= λ′′
31

Var(ε′
1
) = Var(ε′′

1
)

Var(ε′
2
) = β21Var(ε′′

1
) + Var(ε′′

2
)

Cov(ε′
1
, ε′

2
) = β21Var(ε′′

1
)

(29)

The last equation above together with Equation set 25 justifies the transformation between threshold

shift parameter (i.e. β21) and the error covariance, then the secondary loading.
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