
 
PINCER COMPLEXES OF PRECIOUS METALS 

 
Javier Grajeda 

 
A dissertation submitted to the faculty at the University of North Carolina at Chapel 

Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the 

Department of Chemistry. 

 
Chapel Hill 

2018 

 
                              Approved by: 

 Alexander J. M. Miller  

 Thomas J. Meyer 

 Gerald J. Meyer 

 Frank A. Leibfarth 

 Jeffrey S. Johnson 



ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2018 

Javier Grajeda 

ALL RIGHTS RESERVED 

 



iii 

 

 
ABSTRACT 

Javier Grajeda: Pincer Complexes of Precious Metals 

(Under the direction of Alexander J. M. Miller) 
 

  

The synthesis and characterization of several new iridium(I) and iridium(III) carbonyl 

complexes supported by aminophosphinite pincer ligands is reported. A surprising diversity 

of reaction pathways were accessible upon treatment of Ir carbonyl complexes with salts of 

redox-inactive alkali, alkaline earth, and lanthanide metal cations. Iridium(III) 

hydridocarbonyl chloride complexes underwent either halide abstraction or halide 

substitution reactions, whereas iridium(I) carbonyl complexes underwent protonative 

oxidative addition reactions. When the nitrogen donor of the pincer ligand is an aza-crown 

ether macrocycle, cation–macrocycle interactions can be supported, leading to divergent 

reactivity in some cases. 

New iridium and rhodium complexes supported by aminophosphinite pincer-crown 

ether ligands were synthesized. Iridium-catalyzed hydroformylation of allylbenzene was 

explored. Catalytic amounts of LiOTf (OTf = trifluoromethanesulfonate) doubled the rate of 

hydrofunctionalization. The iridium pincer complexes were found to undergo remetallation 

pathways under the conditions of catalysis. This guided the design of a new, more active 

iridium catalyst supported by a pincer ligand with a methoxy substituent incorporated to 

prevent remetallation. Rhodium-catalyzed hydroformylation of 1-octene was explored as 

well. A systematic decrease in the n (linear) to iso (branched) aldehyde ratio was observed in 
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the presence of increasingly bulky ammonium additives. However, catalyst stability studies 

showed that rhodium pincer complexes undergo decomposition under hydroformylation 

conditions and presumably simply act as pre-catalysts. 

The first mononuclear gold(III) PNP pincer complexes (PNP = bis(2-

diisopropylphosphinophenyl)amide) are reported. The chloro complex [(PNP)Au(Cl)][OAcF] 

(OAcF = OCOCF3) was synthesized by microwave irradiation of a tetrachloroaurate salt and 

the neutral PNHP ligand. Dehalogenation with AgOAcF afforded the trifluoroacetate-bound 

complex [(PNP)Au(OAcF)][OAcF]. Electronic absorption spectroscopy and time-dependent 

density functional theory studies assigned the electronic transition that imbues the complexes 

with a deep royal blue color. The Au(III) trifluoroacetate complex is surprisingly stable, and 

no reactivity towards ethylene was observed, even under high pressures and at high 

temperatures. Density functional theory calculations suggest that the lack of reactivity is due 

to the high energy of the putative dicationic ethylene-bound intermediate invoked in a formal 

insertion reaction. 
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Chapter 1 PINCER COMPLEXES AND THEIR APPLICATIONS IN ALKENE 

FUNCTIONALIZATION 

 

Section 1.1 Pincer Ligands: Tunable Ligand Platforms 

Since the first reports of pincer ligands in the 1970s, this class of ligands has proven 

to be a highly versatile platform in the field of coordination chemistry.1 The term “pincer”, 

first coined by van Koten in 1989, originally referred to a tridentate ligand framework 

composed of a central, monoanionic aryl group, flanked by two donors (PR2, NR2, SR) 

further capable of binding the metal center to enforce a meridional coordination 

environment.2 With the advent of new ligand designs, the term has evolved to encompass a 

far wider range of ligands. Herein, the term is used to refer to ligands that adopt a tridentate, 

meridional coordination mode (Figure 1.1). 
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Figure 1.1 Design factors of pincer ligands.  

 In 1974, Shaw and Uttley reported that bulky tertiary phosphine ligands yielded PC-

cyclometallated species of platinum (Figure 1.2).3 Recognizing the potential of this type of 

ligand backbone, Shaw and Moulton hypothesized that installing a second bulky phopshine 

ortho to the metallated carbon site would yield a tridentate-bound metal complex.4 In this 

seminal work, the reported PCP ligand was metallated with group 9 and 10 metals to afford 

the first examples of transition metal pincer complexes (Figure 1.3).  

 

Figure 1.2 Bidentate and tridentate cyclometalated complexes of platinum.  
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Figure 1.3 Selected examples of group 9 and 10 pincer complexes reported by Shaw 

and co-workers. 

Since this early report, many classes of pincer ligands have been developed, which 

can span from neutral to mono-, di-, and trianionic.5 The anionic (X) donors can be located 

across different sites of the pincer. The position and nature of different donor groups, X or 

neutral (L) donors, can be rationally designed to promote specific reactivity of the resulting 

metal complexes. The modular nature of these ligand scaffolds allows for incorporation of 

different steric and electronic profiles to influence the reactivity at the metal center. The 

ligand backbone can also be modified to control the electronic properties at the metal center.  

Pincer complexes have been widely used to catalyze various organic 

transformations.6–8 The tridentate binding mode imparts stability to the resulting metal 

complexes, enabling them to successfully withstand a variety of reaction conditions. Pincer 

complexes of iridium have been successfully used as catalysts for alkane dehydrogenation 

(Scheme 1.1). The thermal stability conferred by these pincer ligand frameworks allows these 

catalysts to operate at very high temperatures (200-250 °C).  However, under certain reaction 

conditions, decomposition of pincer complexes to afford M(0) species is possible, processes 

often triggered by dissociation of one of the chelating arms.9,10 This is an important 

consideration when invoking mechanisms for organic transformations catalyzed by pincer 

complexes. 
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Scheme 1.1 Alkane dehydrogenation and selected examples of iridium pincer 

complexes used in this transformation. 

Section 1.2 Pincer Ligands with New Functionalities 

Since the early work by Shaw, the field has rapidly progressed to include many new 

capabilities by variation of central anchors, linker sizes, and flanking donors. For example, 

new pincer ligand designs allow for the isomerization between meridional and facial 

tridentate coordination modes.5,11,12 A typical example comes from PSiP ligands, where the 

sp3 hybridization at the Si central donor allows for meridional/facial ligand rearrangement 

(Scheme 1.2).13 For the PSiP complex of iridium shown, the traditional meridional pincer 

coordination mode was found to be favored at lower temperatures.  

 

Scheme 1.2 Interconversion between meridional and facial coordination modes with 

an iridium PSiP system. 
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One of the most exciting developments in the field has been the incorporation of 

hemilability, defined as the property of hybrid polydentate ligands where a weak donor in the 

framework can dissociate from the metal to provide a site for a substrate to bind, while other 

strong donors remain coordinated.14 By extending the arm length of PCN pincer ligands, 

Milstein and co-workers discovered new reactivity pathways promoted by amine dissociation 

from a platinum metal center (Scheme 1.3).15 Upon binding of H2 to the metal center, the 

amine donor acts as an internal base to generate a Pt–H species and dissociates as a cationic 

[RNHMe2]
+ group. Amine dissociation triggers reductive elimination of the hydride onto the 

aryl backbone. The resulting Pt(0) species eventually funnels into the platinum cluster 

depicted in Scheme 1.3. Conversely, the analogue with a shorter methylene linker did not 

react with H2.  

 

Scheme 1.3 Formation a platinum cluster, promoted by amine arm hemilability.  

The Milstein group also reported the synthesis of a ruthenium complex supported by 

a neutral PNN, which in the presence of KOtBu undergoes deprotonation at the benzylic 

phopshine arm, rather than at the metal hydride (Scheme 1.4).16 This complex has been used 

in numerous catalytic applications, including dehydrogenative alcohol esterification,16 

dehydrogenative coupling of alcohols and amines to yield amides,17 and alkene 

isomerization.18 The aromatization/dearomatization of the ligand backbone, as well as 

dissociation of the hemilabile amine donor from the metal center, have been invoked as 

likely steps in catalytic cycles with this complex.19 
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Scheme 1.4 Dearomatization of a Ru PNN pincer complex. 

 More recently, new approaches have emerged to further control and enhance 

reactivity with pincer complexes.20 A promising approach involves the incorporation of 

Lewis acidic/basic groups on the secondary coordination sphere of the pincer framework. 

Szymczak and co-workers have studied this approach using terpyridine-based pincer ligands 

bearing Lewis acidic and/or basic sites. They reported a vanadium complex with a 

morpholino and borane substituents, capable of stabilizing the first example of an η2-[N2H3]
− 

ligand on vanadium obtained upon reaction with N2H4 and NEt3 (Scheme 1.5).21 The [N2H3]
− 

ligand interacts with both the Lewis acidic and basic appended functional groups. An iron 

complex supported by a similar system, but bearing two Lewis acidic substituents, afforded 

cleavage of the N–N bond of N2H4, with the resulting amido fragments stabilized by the 

Lewis acidic borane groups (Scheme 1.6).22 The amido ligands could be protonated to 

generate NH3 ligands that still interacted with the boranes. These NH3 ligands could then be 

released upon further addition of N2H4. 

 

Scheme 1.5 Terpyridine-based complex bearing Lewis acidic/basic appended groups 

and its reactivity towards N2H4.  
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Scheme 1.6 N–N bond cleavage by an iron NNN pincer complex bearing Lewis 

acidic boranes.   

 Pincer-crown ether ligands with an appended macrocycle capable of binding Lewis 

acids represent a new avenue to control reactivity at metal pincer complexes.23 Kita and 

Miller reported the synthesis of an NCOP iridium hydridochloride pincer complex (Scheme 

1.7). 24 In weakly coordinating solvents like methylene chloride, the oxygen donors of the 

macrocycle complete the coordination sphere at iridium. Abstracting the halide cis to the 

hydride afforded a pentadentate, cationic complex capable of catalyzing allylbenzene 

isomerization to β-methylstyrene.25 Catalysis could be turned off by addition of chloride to 

reform the hydridochloride complex. In the presence of Na+ and Li+ additives, impressive 

rate enhancements were observed for the isomerization reaction, increasing the turnover 

frequency from ~2 h−1 to 2000 h−1 in the presence of catalytic amounts of Li+ additive. 

Understanding the effects of cationic additives on the reactivity of pincer-crown ether 

complexes will enable better control over their use in a variety organic transformations. To 

this end, the reactivity of pincer-crown ether complexes of iridium with a variety of Lewis 

acidic additives is discussed in Chapter 2. 



8 

 

 

Scheme 1.7 Pincer-crown ether complexes of iridium and different available binding 

modes and catalytic states. 

Section 1.3 Pincer Complexes in Alkene Functionalization 

Homogeneous Alkene Functionalization in the Chemical Industry 

In the mid-20th century, the discovery and development of catalytic reactions of 

alkenes had a major impact in the chemical industry.26 One of the most notable examples is 

the Wacker process, in which ethylene is oxidized to acetaldehyde, catalyzed by aqueous 

solutions of PdCl2 with CuCl2 as a co-catalyst (Scheme 1.8).27,28 The catalytic cycle involves 

the formation of Pd(0), with CuCl2 acting as an oxidant to regenerate a Pd(II) species. First 

reported in the 1950s, this homogeneously-catalyzed process remains the primary means of 

production of acetaldehyde, an important intermediate in the production of butanol, 2-

ethylhexanol, chlorinated acetaldehydes, alkyl amines, and other chemicals.29 More than a 

half century later the mechanism of this reaction remains the subject of intense study.30 
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Scheme 1.8 Pd/Cu-catalyzed oxidation of ethylene to acetaldehyde (Wacker process). 

 Alkene hydrocyanation is another highly relevant example of industrial-scale alkene 

functionalization.31 The reaction involves the addition of HCN across a C=C bond to yield 

nitriles. Researchers at DuPont reported the use of nickel phosphite catalysts for the double 

hydrocyanation of 1,3-butadiene to adiponitrile (Scheme 1.9).32,33 This process generates 

about one million tons of adiponitrile annually, which is further funneled into the production 

of nylon-6,6.34 

 

Scheme 1.9 Double hydrocyanation of 1,3-butadiene (DuPont process). 

 Hydroformylation refers to the addition of a formyl (CHO) group and a hydrogen 

atom to an alkene, generating either linear (normal, n) or branched (iso) aldehydes. This 

process represents one of the most successful and highly studied examples of homogeneous 

catalysis applied on an industrial scale.35 During 2008, almost 10.4 million metric tons of 

aldehydes were produced for further use in the synthesis of alcohols, esters, and amines. The 

hydroformylation of propylene, typically catalyzed by rhodium complexes (Scheme 1.10), is 

the most important example of this functionalization carried out on an industrial scale.36 A 

number of chemicals, including butanol, butylamine, and 2-ethylhexanol, are derived from 

butyraldehyde. Hydroformylation is the subject of Chapter 3 of this dissertation. 
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Scheme 1.10 Hydroformylation of propylene to afford n and iso aldehydes. 

 Alkene functionalization has been used successfully in the pharmaceutical industry as 

well.37 In the synthesis of anti-inflammatory drug Naproxen, a Heck coupling of 2-bromo-6-

methoxynaphthalene and ethylene yields 2-methoxy-6-vinylnaphthalene (Scheme 1.11).38 

Hydroxycarbonylation of this terminal alkene yields Naproxen. In the context of alkene 

hydroxy- and alkoxycarbonylation, direct esterification of alkenes with organic acids has 

long been recognized as a valuable and more direct route to a variety of esters.39 In Chapter 4 

we discuss our efforts towards achieving this goal using pincer complexes. 

 

Scheme 1.11 Synthesis of Naproxen via Heck coupling and alkene 

hydroxycarbonylation. 

Pincer Chemistry of Industrially Relevant Alkene Reactions 

In the realm of pincer-catalyzed alkene functionalization, a vast amount of work has 

been done with palladium complexes.6,7 Milstein and co-workers first reported the use of 

PCP pincer complexes for Heck coupling of olefins with aryl iodides and bromides (Scheme 

1.12).40 They stated that the pincer complexes were so thermally stable that they did not 

undergo decomposition even at 180 °C. Typical Heck reaction mechanisms involve a 

Pd(0)/Pd(II) cycle. Given that monoanionic pincer complexes of palladium decompose upon 
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reduction to Pd(0), a mechanism involving a Pd(II)/Pd(IV) catalytic cycle was proposed. A 

similar mechanism was proposed by the Jensen group for the Heck coupling of alkenes and 

aryl chlorides, involving the oxidative addition of styrene to a Pd(II) center (Scheme 1.13).41 

 

Scheme 1.12 Heck coupling catalyzed by Pd-pincer complexes.  

 

Scheme 1.13 Proposed oxidative addition of styrene to a Pd(II) POCOP complex. 

 These assertions were made on the basis that the pincer complexes were recovered 

seemingly intact after the reaction. This Pd(II)/Pd(IV) cycle remains controversial, however. 

It is now widely accepted that under the high temperatures required for these reactions, the 

palladium pincers undergo degradation to afford catalytically active Pd(0).9,10,42–44 In some 

instances, the pincer complexes can be regenerated, but Pd(0) even in trace amounts of has 

been shown to be very active in this type of coupling reaction.45 

 Using hypervalent iodonium salts as aryl sources, Szabó and co-workers have shown 

that pincer complexes of palladium can plausibly catalyze the arylation of alkenes via a 

Pd(II)/Pd(IV) cycle (Scheme 1.14).46 These reactions could be carried out using milder 
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temperatures (50-65 °C). To confirm that Pd(0) was not the active species in these reactions 

they performed the mercury-drop test, carrying out the reactions in the presence of 150 equiv 

of mercury relative to palladium, obtaining essentially the same yields (>90%). Hypervalent 

iodonium salts have also been used in C–H borylation of alkenes catalyzed by palladium 

PNP pincer complexes.47 

 

Scheme 1.14 Arylation of alkenes with a palladium pincer complex, using an 

iodonium salt as aryl source.  

Pincer complexes with metals other than palladium have also been reported in 

catalytic alkene functionalization. Hydrosilylation of alkenes has been carried out with pincer 

complexes of iron.48 Peng et al. utilized phosphinite-iminopyridine (PONN) complexes of 

iron to hydrosilylate various alkenes with high chemoselectivity (Scheme 1.15).49 These 

complexes showed high selectivity for reactivity with alkenes in the presence of various 

functional group such as amides, esters, and ketones. NNN pincer complexes of nickel 

catalyze the tandem isomerization/hydrosilylation of internal alkenes (Scheme 1.16).50 This 

remarkable tandem cycle was found to be tolerant of various functionalities as well, 

including esters, ethers, and amides.   
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Scheme 1.15 Hydrosilylation of alkenes bearing carbonyl groups, catalyzed by an 

iron PONN pincer complex. 

 

Scheme 1.16 Tandem isomerization/hydrosilylation of internal alkenes, catalyzed by 

a NNN Ni pincer complex. 

Meek and co-workers have developed new rhodium bis(phopshine)carbodicarbene 

pincer complexes for diene hydroarylation (Scheme 1.17).51 They found that catalytic 

activity is triggered by addition of Lewis acids like Li+, Au+, or Ag+. They hypothesized that 

upon binding of a metal salt to the CDC backbone, electron density at rhodium and π-

backbonding ability decrease, facilitating ligand substitution of styrene by the diene 

substrate. This type of pincer complexes has been further used for the hydroamination and 

hydroalkylation of dienes.52–54 
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Scheme 1.17 Hydroarylation of alkenes with CDC pincer complexes of rhodium in 

the presence of Lewis acidic Li+. 

Pincer complexes have also been used in alkene hydroformylation. The groups of 

Mathey and Chen developed different PNP pincer ligands (Figure 1.4) that can be used in the 

rhodium-catalyzed hydroformylation of cyclic alkenes.55,56 These ligands were added in situ 

in catalytic runs, with a Rh(acac)(CO)2 metal precursor.  

 

Figure 1.4 Selected examples of PNP ligands used for rhodium-catalyzed 

hydroformylation of cyclic alkenes. 

 Gelman and co-workers reported the use of PC(sp3)P pincer complexes of iridium and 

rhodium in alkene hydroformylation (Scheme 1.18).57 The pincer ligand design incorporates 

a dangling hydroxyl group. They proposed a metal-ligand cooperative mechanism in which 
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the OH group assists in catalysis by releasing a proton to liberate the aldehyde product, 

generating an iridium-alkoxide in the process (Scheme 1.19). Subsequent incorporation of H2 

regenerates an iridium hydride species with a dangling hydroxide group. In the case of 

iridium, typical n (linear) to iso (branched) ratios of aldehydes were ~0.1:1. Hydrogenation 

pathways were suppressed by performing the reactions in 1:24 mixtures of H2:CO. The 

rhodium complex displayed n:iso selectivity ranging from 0.5:1 to ~1:1, without any 

hydrogenation detected.  

 

Scheme 1.18 Hydroformylation of styrene with iridium or rhodium PC(sp3)P pincer 

complexes.  

 

Scheme 1.19 Proposed metal-ligand cooperative mechanism for aldehyde release 

with an iridium PC(sp3)P pincer complex.  

 Since the first report of pincer complexes, many breakthroughs have been reported on 

new ways to promote reactivity with these versatile ligands. In catalytic alkene 

functionalization, a significant amount of the work has been reported using pincer complexes 



16 

 

of palladium. With the advent of new ligand designs, pincer complexes with various metals 

have started to attract more attention. Understanding the effects of appended functionalities 

on pincer ligands will enable their efficient use in the field of alkene functionalization. 

Studies on deactivation pathways will serve as guidelines to design more thermally robust 

pincer complexes capable of withstanding the often harsh conditions required for catalysis. A 

mechanistic understanding of how pincer complexes react with alkenes will further allow for 

improvements in ligand design, such that these versatile ligand frameworks could be utilized 

in industrially relevant processes.  
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Chapter 2 DIVERSE CATION-PROMOTED REACTIVITY OF IRIDIUM 

CARBONYL PINCER-CROWN ETHER COMPLEXES 

 

Reproduced with permission from Grajeda, J.; Kita, M. R.; Gregor, L. C.; White, P. S.; 

Miller, A. J. M. Organometallics 2016, 35, 306–316. Copyright American Chemical Society. 

 

Section 2.1 Introduction 

Transition metal complexes and Lewis acidic metal cations have a rich history of 

cooperative reactivity.1–3 In catalysis, Lewis acid activation of substrates or intermediates can 

lower kinetic barriers or alter reaction outcomes.2,4–7 In sensing applications, Lewis acids and 

transition metals can work synergistically to improve sensitivity or selectivity.8,9 In 

oxidation-reduction reactions, Lewis acids can modulate electron transfer rates by tuning 

reduction potentials.10–15 Understanding fundamental reactivity trends of transition metals 

with Lewis acids might spark progress in these and other areas.3,16–18  

Pincer-crown ether ligands, featuring a macrocyclic amine donor as part of an 

aminophosphinite (NCOP) pincer framework, provide an opportunity to study the reactivity 

of transition metals with cationic Lewis acids with the aid of cation–macrocycle binding.19,20 

In this Chapter, we discuss how new iridium carbonyl complexes supported by NCOP pincer 

ligands exhibit a diverse range of reactivity in addition to the expected cation–macrocycle 

interactions. Halide abstraction, halide exchange, metal protonation, and cation-macrocycle 

binding are all independently observed. The reaction pathway depends on the Lewis acidity 

of the cation as well as the nature of its counter anion. The role of the macrocycle was probed 
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by comparing the reactivity with control complexes supported by non-macrocyclic NCOP 

ligands. Some of the cation-promoted reactions require a macrocyclic ligand, while others 

proceed readily with either complex. These findings highlight the diverse reactivity that is 

possible on a single platform in the presence of various salts, and may guide the development 

of cation-assisted catalytic reactions. Specifically, the use of water as a proton source for 

transition metal complexes is unusual and interesting in relation to recent studies of water 

oxidative addition at transition metal centers.21 

Section 2.2 Synthesis of Ir(III) and Ir(I) Carbonyl Complexes 

Iridium(III) hydridocarbonylchloride complexes were accessed using Ir(p-

toluidine)(CO)2(Cl),22 which afforded (15c5NCOPiPr)Ir(H)(CO)(Cl) (115c5) as a brownish-

yellow solid in 95% yield after refluxing in toluene with the aminophosphinite ligand 

(15c5NCOPiPr)H (Scheme 2.1). The 1H NMR spectrum of 115c5 features two sets of iso-propyl 

methine resonances and diastereotopic resonances for the benzylic linker, consistent with the 

presence of inequivalent positions perpendicular to the pincer ligand. The hydride resonated 

as a doublet (δ –18.3, 2JPH = 20.6 Hz) in a region typical of a six-coordinate Ir(III) hydride 

trans to a chloride ligand.23–25 A singlet was observed by 31P{1H} NMR spectroscopy (δ 

154), 6 ppm downfield of the free (15c5NCOPiPr)H ligand. The presence of the CO ligand was 

confirmed by IR spectroscopy (νCO = 2010 cm–1), as well as by 13C{1H} NMR spectroscopy 

(δ 182, 2JPC = 2.9 Hz). 
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Scheme 2.1 Synthesis of 115c5. 

Pale yellow single crystals of 115c5 suitable for X-ray diffraction were grown from a 

concentrated solution in benzene layered with pentane. A trans-hydridochloride geometry, 

with bond distances typical of (pincer)Ir(H)(CO)(Cl) complexes,23,24 is apparent in the 

molecular structure rendering (Figure 2.1). The Ir–Cipso distance (2.036(5) vs. 1.979(5) Å) 

and the Ir–P distance (2.236(1) vs. 2.1825(14) Å) are longer than previously observed in a 

tetradentate cis hydridochloride pincer-crown ether complex, where an oxygen from the 

crown-ether binds trans to the hydride.19 
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Figure 2.1 Structural representation of 115c5 with ellipsoids drawn at the 50% 

probability level. Hydrogen atoms of the 15c5NCOPiPr ligand are omitted for clarity. 

The hydride was found in the electron density difference map and the Ir–H bond 

distance was restrained to 1.9 Å. Selected distances (Å) and angles (deg): Ir1−P1 

2.236(1), Ir1−C8 2.036(5), Ir1−N1 2.237(4), Ir1−Cl1 2.475(1), Ir1−C1 1.935(5), 

C1−O1 1.119(6); N1−Ir1− Cl1 88.1(1), O1−C1−Ir1 177.3(5). 

 

Formation of a trans hydridochloride product is noteworthy in light of a recent study 

of Ir pincer complexes that investigated the impact of phosphine substituents on the product 

of metallation with Ir(p-toluidine)(CO)2(Cl).23 In that study, bulkier tert-butyl groups 

produced Ir(I) pincer carbonyl complexes, while less sterically demanding iso-propyl groups 

led to Ir(III) hydridocarbonylchloride complexes. The origin of the ligand-specific 

metallation products is not fully clear, but steric crowding from the tert-butyl groups might 

promote chloride dissociation, leaving a cationic hydride that is sufficiently acidic to be 

deprotonated by p-toluidine in situ. Attempts at spectrophotometric titration of Ir(III) 
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hydridochloride 115c5 using DBU (conjugate acid pKa 24.3;26 DBU is 1,8-

diazabicyclo[5.4.0]undec-7-ene) led to stoichiometric deprotonation to form 

(15c5NCOPiPr)Ir(CO)  (215c5) in acetonitrile (Figure 2.2). On the other hand, addition of up to 

100 equiv NEt3 (conjugate acid pKa 18.8)26 resulted in no observable deprotonation, 

bracketing the acidity of 115c5 in acetonitrile: 19 < pKa(115c5) < 24. The estimated acidity of 

115c5 is consistent with the experimental observation that p-toluidine (pKa ~ 11)26 does not 

effect hydrodehalogenation (instead acting as an easily displaced ligand during metallation). 

 

Figure 2.2 UV-vis spectra obtained during titration of 115c5 with DBU. The inset 

shows that the Ir(I) species 215c5 was formed after addition of only ~1 equiv DBU, 

indicating essentially irreversible deprotonation with this base. 

A non-macrocyclic analogue, (EtNCOPiPr)Ir(H)(CO)(Cl) (1Et), was synthesized in a 

similar fashion by refluxing Ir(p-toluidine)(CO)2(Cl) and the diethylamine-containing ligand, 

(EtNCOPiPr)H,27 in toluene (Scheme 2.2). The spectroscopic features of complex 1Et are quite 

similar to those of 115c5, starting with the 31P{1H} NMR spectrum (δ 154, s). The doublet 

corresponding to the hydride ligand (δ –18.5, 2JPH = 20.7 Hz) is almost identical to the 

hydride signal in 115c5. The ethyl groups of the amine appeared as four diastereotopic 
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methylene protons between δ 2.5 and 4.2 and two CH3 triplets that overlap with the CH3 

resonances of the iso-propylphosphine.  

 

Scheme 2.2 Synthesis of 1Et. 

Iridium(I) species were obtained by dehydrohalogenation of the Ir(III) 

hydridochloride complexes. Addition of 1.5 equivalents of potassium tert-butoxide (KOtBu) 

to 115c5 in benzene generated (15c5NCOPiPr)Ir(CO) (215c5; Scheme 2.3) as a bright yellow solid 

in 78% yield. In benzene solvent, precipitation of KCl precludes any cation-crown 

interactions.   
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Scheme 2.3 Synthesis of 215c5 and 2Et. 

The increased symmetry afforded by the square planar geometry is evident in the 1H 

NMR spectrum of 215c5. For example, a single iso-propyl methine resonance is observed, and 

the benzylic linker appears as a singlet (δ 4.1). The 31P{1H} NMR spectrum of 215c5 features 

a singlet shifted 17 ppm downfield relative to 115c5 (δ 171 for 215c5; δ 154 for 115c5). The 

infrared spectrum of 215c5 exhibits a strong CO stretch (νCO = 1921 cm–1) that is consistent 

with formal reduction to an Ir(I) center capable of increased π-back-donation (νCO is reduced 

by 89 cm–1 relative to 115c5). 

 Slow evaporation of a pentane solution of 215c5 yielded bright yellow crystals suitable 

for single crystal X-ray diffraction, which confirmed the expected square planar geometry 

around Ir (Figure 2.3). The two independent molecules of 215c5 present in the asymmetric unit 

possessed essentially identical bond distances. Metal–ligand distances shortened in the Ir(I) 

complex 215c5 compared to those in the Ir(III) complex 115c5. Notably, the Ir–P distance 

shortened to 2.187(2) Å in 215c5 from 2.236(1) Å in 115c5 and the Ir–CO bond shortened to 

1.898(8) Å in 215c5 from 1.935(5) Å in 115c5, consistent with increased back-donation from a 
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more electron-rich metal center. The Ir–C–O bond angle (174.7(8)°) is slightly more acute 

than the value typically observed in Ir(I) pincer carbonyl complexes (~180°).23,28,29  

 

Figure 2.3 Structural representation of one of the two independent molecules of 215c5 

in the asymmetric unit, with ellipsoids drawn at the 50% probability level. Hydrogen 

atoms are omitted for clarity. Selected distances (Å) and angles (deg):  Ir1−P1 

2.187(2), Ir1−C8 2.017(7), Ir1−N1 2.206(7), Ir1−C1 1.898(9), C1−O1 1.14(1); 

Ir1−C1− O1 174.8(8). 

 The diethylamine-containing complex 2Et was accessed in the same manner via 

dehydrohalogenation with KOtBu (Scheme 2.3). Extraction with pentane afforded the 

complex as a yellow solid in 47% yield. Complex 2Et exhibits a CO stretch (νCO = 1922 cm–1) 

and a 31P{1H} NMR signal (δ 172, s) that are very similar to the macrocyclic analogue 215c5, 

suggesting similar electronic environments. With pairs of Ir(III) and Ir(I) complexes in hand, 
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we set out to explore the reactivity of these species with several salts of redox-inactive alkali, 

alkaline earth, and lanthanide metal cations. 

Section 2.3 Reactivity of (15c5NCOPiPr)Ir(H)(CO)(Cl) with Metal Cations 

The reactivity of octahedral Ir(III) pincer-crown ether complexes was assessed with 

Na+, Ca2+, and La3+ salts. Typical experiments were conducted in NMR tubes with equimolar 

Ir/salt mixtures in CD3CN solvent. Mixing one equivalent of NaBArF
4 (ArF is 3,5-

bis(trifluoromethyl)phenyl) with 115c5 in CD3CN results in partial conversion to a new 

species. Addition of up to 3 equivalents of NaBArF
4 shifted the mixture further towards the 

new species (Figure 2.4). The presence of a doublet (δ −19.6, 2JPH = 21.9 Hz) in the hydride 

region of the 1H NMR spectrum nearby the starting material, and a 31P{1H} NMR singlet (δ 

154) near that of 115c5 (δ 155), suggested an Ir(III) product. Compared to 115c5 (νCO = 2024 

cm–1 in acetonitrile), the product CO stretch shifted slightly to higher energy (νCO = 2031 cm–

1).  
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Figure 2.4 1H NMR spectra of conversion of 115c5 to [315c5][BArF
4] in CD3CN. 

An 1H–13C HMBC NMR experiment revealed a correlation between the hydride and a 

carbon resonance at δ 124 that is assigned to the quaternary carbon atom of an Ir-bound 

acetonitrile molecule (Figure 2.5).30 When NaBArF
4 was added to 115c5 in a 1:1 

CD3CN:CH3CN mixture, a sharp singlet at δ 2.32 protruded from the broad singlet of free 

acetonitrile in the 1H NMR spectrum (Figure 2.6). This was assigned to the methyl protons of 

the Ir-bound acetonitrile ligand. The spectroscopic evidence indicates that sodium is 

performing a halide abstraction, followed by coordination of CD3CN, generating the cationic 

complex [(15c5NCOPiPr)Ir(H)(CO)(NCCD3)][BArF
4] ([315c5][BArF

4]; Scheme 2.4). In a prior 

study, we observed that halide and nitrile ligands trans to the hydride influenced the 

chemical shift similarly.19 Formation of [315c5][BArF
4] was also observed in the presence of 

one equivalent of H2O, ruling out competitive binding between H2O and acetonitrile under 

these conditions. The acetonitrile ligand is apparently quite weakly bound, hampering 

complete characterization. Subjecting [315c5]+ to vacuum and dissolving in CD2Cl2 revealed 
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loss of the acetonitrile ligand and formation of a new species formulated as the tetradentate 

complex [κ4-(15c5NCOPiPr)Ir(H)(CO)]+,31 featuring an upfield hydride resonance (δ –25.7, 

2JPH = 21.4 Hz) consistent with a weak ether donor trans to the hydride.19 Addition of ~8 

equiv CH3CN resulted in partial conversion to acetonitrile complex [315c5]+ (Ir–H δ –19.8, 

2JPH = 21.8 Hz; Ir–NCCH3 δ 2.37). The nitrile ligand was also lost in mass spectrometry 

experiments. Analogous macrocycle hemilability has been observed in other Ir and Ni 

pincer-crown ether complexes.19,20 

 

Figure 2.5 1H–13C HMBC NMR spectrum of [315c5][BArF
4] in CD3CN. 
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Figure 2.6 1H NMR spectrum of [315c5][BArF
4] formed upon addition of NaBArF

4 to 

115c5 in a 1:1 mixture of CD3CN and CH3CN. 

 

Scheme 2.4 Syntheis of [315c5][BArF
4]. 

Because excess NaBArF
4 was required to effect complete halide abstraction, some of 

the remaining Na+ would be capable of interacting with the macrocyclic ligand. Rapid, 

reversible cation−crown binding involving Na+ and unreacted 115c5 is indeed evident from 

systematic shifting of selected resonances in 1H NMR spectra. The hydride resonance of 115c5 

shifted 0.01 ppm upfield with each equivalent of NaBArF
4 added, while the crown multiplet 

shifted similarly downfield. The resonances for the diastereotopic benzylic protons also 
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exhibited shifts of 0.01 ppm away from each other upon addition of increasing equivalents of 

NaBArF
4 (Figure 2.7). Smaller shifts are apparent in the resonances of [315c5]+. 

 

Figure 2.7 Superimposed 1H NMR spectra showing cation-crown interactions 

between unreacted NaBArF
4 and 115c5 in CD3CN. The crown multiplet shifted 

downfield upon addition of NaBArF
4. The resonances for the diastereotopic benzylic 

protons (δ ~4.25 and δ ~4.65) exhibited shifts of 0.01 ppm away from each other 

upon addition of increasing equivalents of NaBArF
4. The inset shows the shifts in the 

hydride region. 

Addition of either Ca(OTf)2 or La(OTf)3 to CH3CN solutions of 115c5 in the presence 

of one equivalent of water similarly leads to formation of [315c5][OTf]. The La3+ salt was 

more effective, reaching 70% conversion with one equiv added, versus ~30% conversion 

with one equiv NaBArF
4

 or Ca(OTf)2. This could be due to relative Lewis acidity, or relative 

solubility of the resulting salts. In synthetic practice, halide abstractions using Na+ are 

usually driven by precipitation events from less polar solvents such as CH2Cl2.
32,33  

When sodium is paired with an iodide anion, halide exchange and iodide coordination 

is observed. The reaction between 115c5 and NaI in CH3CN does not go to completion. Taking 
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inspiration from the Finkelstein reaction,34 we next tried acetone as the solvent. Addition of 

NaI to 115c5 in acetone-d6 led to precipitation of NaCl and formation of the corresponding 

hydridoiodide complex (15c5NCOPiPr)Ir(H)(CO)(I) (415c5; Scheme 2.5), identified by NMR 

spectroscopy and high-resolution mass spectrometry. The hydride resonance of 415c5 (δ 

−16.5, 2JPH = 19.4 Hz) is consistent with an iodide trans to the hydride ligand.35 Similar 

halide exchange was observed upon mixing LaI3 with hydridochloride complex 115c5 in 

CD3CN; the hydridoiodide complex 415c5 was formed quantitatively (Scheme 2.5). The 

driving force for halide exchange is likely the formation of products that match hard acids 

and hard bases (e.g. NaCl) and match soft acids and soft bases (i.e. the Ir–I bond in 415c5).36,37 

 

Scheme 2.5 Synthesis of 415c5. 

Following initial halide exchange, addition of excess LaI3 to 415c5 led to systematic 

shifts in the 1H NMR spectrum that are indicative of a weak cation-macrocycle interaction 

(Scheme 2.6). Addition of aliquots of LaI3 to the hydridoiodide complex 415c5 in acetone-d6 

led to a steady upfield shift in the iridium hydride 1H NMR resonance (Figure 2.8). Similar 

shifts were observed in the diastereotopic benzylic protons of the linker and in protons 

attributed to the ethylene units of the macrocycle. In contrast, the phenyl backbone and iso-

propyl protons did not shift to any appreciable extent, suggesting that the interaction is 

localized in the macrocycle (and perhaps involving the axial iodide ligand, which would 

affect the hydride chemical shift) as shown in Scheme 2.6.  
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Scheme 2.6 Cation-crown interactions between 415c5 and LaI3. 

 

Figure 2.8 1H NMR spectra (hydride region) showing the effects of addition of 

increasing amounts of LaI3 to 415c5 in acetone-d6. 

The 1H NMR data suggest that any cation−macrocycle interaction between 415c5 and 

LaI3 occurs with relatively low binding affinity. The hydride resonance shifts upfield by 

roughly 0.01 ppm per equivalent of LaI3, and the magnitude of the shift is roughly constant 

within the limits of LaI3 solubility. Strong cation−macrocycle interactions reach a limiting 

chemical shift with increasing cation concentration, so the linear trend suggests weak 

binding, with only partial incorporation of La into the macrocycle.38 A weak interaction is 

consistent with the pincer-crown ether macrocycle acting as a tetradentate donor to La, with 

the Ir–N bond intact. Studies on lanthanide(III) complexation have shown that hexadentate 
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18-crown-6 and pentadentate 15-crown-5 macrocycles bind lanthanides more strongly than 

tetradentate 12-crown-4.39 

The foregoing data suggest that addition of LaI3 to 115c5 involves three separate 

interactions: initial chloride abstraction from the primary coordination sphere of Ir by La3+, 

halide exchange with iodide, and cation-macrocycle interactions in the secondary 

coordination sphere of the Ir center. 

Section 2.4 Reactivity of (EtNCOPiPr)Ir(H)(CO)(Cl) with Metal Cations 

To assess the role of the macrocycle in halide exchange and halide abstraction 

reactivity, the non-macrocyclic diethylamino complex 1Et was treated with LaI3 and 

NaBArF
4. Within minutes of mixing 1Et with 1 equiv LaI3 in CD3CN, complete conversion to 

hydridoiodide complex 4Et was observed by 1H NMR spectroscopy. The reaction of 1Et with 

LaI3 therefore proceeds similarly to the analogous reaction of 115c5 with LaI3.  

 

Scheme 2.7 Synthesis of 4Et. 

 Addition of 1 equiv NaBArF
4 to 1Et in CD3CN led to ~15% acetonitrile cation 3Et 

within minutes. After ~24 h, a roughly 1:1 ratio of 1Et:3Et was observed. As with halide 

exchange, the halide abstraction reaction rate and product ratios closely mimic the behavior 

of the macrocycle-containing complex 115c5. These experiments suggest that the macrocycle 

does not facilitate (or hinder) the reaction, at least in the case of the halide exchange and 
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halide abstraction. The lack of inhibition is noteworthy, since macrocycle binding can render 

the cationic guest less Lewis acidic.40      

Section 2.5 Reactivity of (15c5NCOPiPr)Ir(CO) with Metal Cations 

Upon addition of one equivalent of nominally anhydrous LaI3 to 215c5, the bright 

yellow solution rapidly decolorized and NMR spectroscopy revealed quantitative formation 

of the Ir(III) hydridoiodide complex 415c5. The proton source was identified as adventitious 

H2O bound to the LaI3 salt, based on the presence of a broad O−H stretch in an IR spectrum 

of the material. Attempts to dehydrate samples of LaI3 proved unsuccessful, with the harsh 

conditions leading to decomposition and possible formation of LaOI and HI.41,42 

The observed protonation was surprising because the Ir(I) complex 215c5 does not 

react with excess H2O in CD3CN in the absence of LaI3, even after extended periods of time 

and high temperatures. Aquo ligands of metal cations have long been recognized to be 

considerably more acidic than water itself,43 and we hypothesize that the water bound to the 

Lewis acidic cation is acting as a Brønsted acid to protonate the Ir center. This sort of cation-

triggered protonation has seldom been explored in the context of proton transfers to 

organotransition metal complexes, so we initiated a more thorough study of the reactivity of 

Ir(I) complexes with water in the presence of a series of salts of varying Lewis acidity.  
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Scheme 2.8 Reactivity of 215c5 with different iodide salts in the presence of water in 

CD3CN.   

 The iodide salts of La3+, Ca2+, and Li+ were explored first, as shown in Scheme 2.8. 

Addition of one equivalent of LaI3 to 215c5 in the presence of one equivalent of H2O in 

CD3CN leads to formation of Ir(III) hydridoiodide 415c5 within seconds. 1H NMR spectral 

monitoring revealed that the resonance for free H2O diminished as the Ir–H resonance 

appeared. With protonation by water having formed an iridium iodide product, the fate of the 

hydroxide was examined. A downfield singlet (δ 5.4, 1H) observed by 1H NMR spectroscopy 

is consistent with a metal aquo or hydroxide, and underwent broadening upon addition of 

more H2O. A 139La NMR spectrum obtained shortly after mixing LaI3 and 215c5 revealed a 

broad resonance, δ 250, roughly 100 ppm upfield of LaI3 in CD3CN (δ 357), consistent with 

a significant change in the coordination environment around La (Figure 2.9).44 We speculate 

that a La–OH species is formed initially and maintained in solution through cation–

macrocycle interactions (evident in 1H NMR spectra showing subtle shifts in the crown-ether 

protons). A white precipitate was observed upon standing, suggesting that the La eventually 

precipitates as an insoluble mixed La7(I)x(OH)y species, such as La7I3(OH)18.
45 
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Figure 2.9 139La NMR spectrum of of LaI3 in CD3CN (green) and 139La NMR 

spectrum of LaI3 after reacting with IrI complex 215c5 and H2O in CD3CN (purple). 

 

The reaction was monitored in situ by UV-vis spectroscopy. The Ir(I) complex 215c5 is 

bright yellow, with a series of absorption maxima at 480, 412, and 366 nm. In contrast, the 

resulting Ir(III) hydridoiodide 415c5 has almost no absorbance above 325 nm. A solution of 

215c5 and excess H2O in CH3CN was injected into a cuvette charged with excess LaI3 and 

stirred. From the time-course spectra obtained (Figure 2.10) the reaction was determined to 

reach completion in approximately 7 s. 
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Figure 2.10 Time-course UV-vis spectra (one second intervals) following injection of 

a solution of 215c5 and H2O in CH3CN to a cuvette charged with LaI3. The loss of 

absorbance is attributed to protonation of 215c5 to form 415c5. 

 The reaction of 215c5 with CaI2 in the presence of H2O also led to rapid protonation 

(within 15 minutes) to form 415c5 in 50% yield, along with other unidentified products. The 

reaction of 215c5 with LiI, on the other hand, was quite sluggish: it took three days to produce 

only ~30% yield of hydridoiodide 415c5, in addition to another unidentified product. The 1H 

NMR signals for unreacted 215c5 broadened and shifted slightly after Li+ addition, suggesting 

the presence of dynamic cation–crown interactions.  

 The reactivity of metal salts of the less strongly coordinating triflate (OTf) anion was 

also explored. Addition of one equivalent of La(OTf)3 to 215c5 in the presence of one 

equivalent of H2O in CD3CN led to rapid formation of the cationic acetonitrile complex 

[315c5][OTf] (Scheme 2.9), presumably with concomitant formation of La(OTf)2OH. As with 

LaI3, protonation to form an Ir(III) complex was evidenced by discoloration of the bright 



41 

 

yellow Ir(I) solution within the time of mixing. The strong Lewis acids Zn(OTf)2 and 

Sc(OTf)3 displayed reactivity similar to La(OTf)3, with clean formation of the cationic 

acetonitrile complex [315c5][OTf]. The yellow solutions became colorless within seconds of 

mixing, indicating rapid cation-triggered protonation. 

 

Scheme 2.9 Reactivity of 215c5 with different triflate salts in the presence of water in 

CD3CN.   

 

In contrast, addition of one equivalent of Ca(OTf)2 to 215c5 in the presence of one 

equivalent of H2O in CD3CN led initially to a mixture of protonation products containing the 

acetonitrile complex [315c5][OTf] in just 28% yield, along with another as-yet-unidentified 
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hydride-containing intermediate (δ –19.13, 2JPH = 14.0 Hz). Over the course of 48 hours, 

however, the majority of the Ir had converted to a new hydride-containing species [515c5]2+ (δ 

–19.36, 2JPH = 22.0 Hz) in 70% yield. Subsequent addition of a second equivalent of 

Ca(OTf)2 often gave even higher yields of [515c5]2+.  

The product [515c5]2+ has several unusual spectroscopic features. The pincer backbone 

features an atypical pattern of three resonances including a doublet of doublets (δ 6.97 J = 

6.8, 2.3 Hz) and a weakly coupled doublet (δ 7.03 J = 1.7 Hz) overlapping with another 

apparent doublet of doublets (Figure 2.11). The aromatic resonances are inconsistent with the 

pincer connectivity observed in the other Ir complexes discussed here. The data suggest a 

pincer backbone metallated at the other C–H bond ortho to the phosphinite (Scheme 2.9).  

 

Figure 2.11 1H NMR spectrum (aromatic region) of [515c5]2+ in CD3CN. 

 

Another striking spectroscopic feature is the downfield doublet of doublets (δ 7.87 J 

= 10.9, 7.1 Hz; Figure 2.11). Multidimensional and multinuclear NMR experiments are 

indicative of an iminium structure. The resonance at δ 7.87 is assigned to an iminium 
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R2N=CHR proton, derived from formal oxidation of the aza-crown ether macrocycle, 

coupling with the diastereotopic protons to the iminium (by 1H-1H COSY). One-bond 

coupling between the resonance at δ 7.87 and a 13C resonance at δ 170.34 (by 1H-13C 

HMQC), and two-bond coupling between the 13C resonance at δ 170.34 and the 

diastereotopic protons to the iminium (δ 3.29, by 1H-13C HMBC) further confirms the 

assignment. A medium intensity band at 1617 cm–1 in the infrared spectrum is also consistent 

with the presence of an iminium C=N double bond (Figure 2.12). 

 

Figure 2.12 Solid-state IR spectrum of [515c5]2+. 

The rest of the Ir coordination environment in [515c5]2+ is proposed to include a 

carbonyl (by IR spectroscopy, νCO = 2041 cm−1) and two acetonitrile ligands (by NMR 

studies, including a correlation between the Ir–H and the quaternary carbon of Ir–NCCH3). 

Electrospray ionization—mass spectrometry studies suggest that the calcium ion is 

maintained in the macrocycle, based on the observation of ion fragments containing Ir, the 

pincer-crown ether ligand, and Ca. Unfortunately, extensive attempts to crystallize [515c5]2+ 

afforded only amorphous, oily solids. Nonetheless, Ca2+ is unique amongst the Lewis acids 

examined here in promoting dissociative amine oxidation and structural rearrangements.  
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The reaction was performed in the presence of D2O in an attempt to better understand 

the mechanism. Interestingly, substantial deuterium labeling of the hydride of the minor 

initial intermediate [315c5]+ was observed, whereas the unidentified hydride-containing 

intermediate (δ −19.13) showed no apparent deuterium incorporation. The presence of an 

initial intermediate without deuterium incorporation suggests that C–H activation (for 

example, of a methylene in the macrocycle) might be involved in formation of iminium 

species [515c5]2+. The product showed deuterium incorporation only in the hydride ligand 

(which is expected to be susceptible to H/D exchange with D2O in solution). While exploring 

the potential role of bases in promoting this reaction, we discovered that addition of LaI3 to 

215c5 in CD3CN in the presence of NEt3 generated a species that is spectroscopically very 

similar to [515c5]2+. This finding suggests that balancing Lewis acidity and proton transfer 

ability may be necessary for this transformation, but the detailed mechanism is unclear at this 

stage. 

Addition of LiOTf to Ir(I) complex 215c5 in the presence of one equivalent of H2O did 

not trigger protonation. Instead, the Li+ cation binds the crown, as evidenced by broadening 

and shifting of 1H NMR resonances (Figure 2.13), similar to those observed for LiI. The 

resonance for the methylene linker shifted upfield (δ 4.46 to 4.43) and the multiplet for the 

crown-ether protons shifted downfield (δ 3.61 to 3.73). The signal for H2O was still present 

and shifted downfield as well (δ 2.14 to 2.54). The magnitude of these shifts suggest that Li+ 

binds the macrocycle of 215c5 more strongly than La3+ in 415c5. 



45 

 

 

Figure 2.13 1H NMR spectra showing Li+-macrocycle interactions by addition of 

LiOTf to 215c5 in CD3CN in the presence of one equivalent of H2O. 

 

Section 2.6 Reactivity of (EtNCOPiPr)Ir(CO) with Metal Cations   

In order to assess the role of the pendent macrocycle, analogous experiments were 

conducted with the diethylamine analogues (Scheme 2.10). One equivalent of LiOTf, 

Ca(OTf)2, or La(OTf)3 was added to solutions of 2Et in CD3CN containing 1 equiv of H2O. In 

contrast to the reactivity with 215c5, Li(OTf) did not react with 2Et: neither protonation nor 

cation interactions with the Ir center was observed (although the resonance for free water did 

shift downfield slightly in the 1H NMR, indicating a Li+–OH2 interaction). As expected in the 

absence of a macrocycle capable of binding cations, no shifts in the 1H NMR resonances of 

2Et were observed. Addition of La(OTf)3 triggered protonation to yield [3Et][OTf] (δ −19.63, 

2JPH = 21.8 Hz), a reactivity trend that closely matched that of the complex containing the 

macrocyclic ligand. 
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Scheme 2.10 Reactivity of 2Et with different triflate salts in the presence of water in 

CD3CN.   

 

Whereas Ca(OTf)2 has a unique reactivity pattern with 215c5, the reactivity of 2Et with 

Ca(OTf)2 was found to be qualitatively similar to that observed for other alkali metals. 

Addition of Ca(OTf)2 led to 75% conversion to [3Et][OTf] over the course of 3 hours. No 

change in the site of metallation, nor iminium formation was observed, even after monitoring 

for extended periods. Calcium-macrocycle interactions apparently are required to trigger 

amine oxidation and dechelation as well as metallation at a different position along the 

pincer-crown ether arene backbone. Even when 2Et was treated with Ca(OTf)2 and H2O in 

the presence of free 12-crown-4 in solution, only protonation was observed (no change in 

metallation or iminium formation). 

As shown in Scheme 2.10, cation-triggered protonation by H2O depends on the 

specific salt employed. More Lewis acidic metals would render cation-bound H2O a stronger 

Brønsted acid, but the protonation reactivity is also affected by the solvent medium and 

hydrogen bonding. For example, when Ca(OTf)2 was added to 2Et as an aqueous solution 

(rather than a 1:1 Ca(OTf)2:H2O ratio), almost no protonation was observed over the course 
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of 3 h. The reduced reactivity in the presence of excess H2O is attributed to hydrogen 

bonding between water molecules in the secondary coordination sphere and those in the 

primary coordination sphere, which would render the cation-bound H2O less Brønsted acidic. 

The stronger Lewis acid LaI3 was not inhibited by excess water, consistent with the ability of 

lanthanide salts to act as good Lewis acids in aqueous catalysis.40 

Section 2.7 Conclusions 

The reactivity of new Ir(I) and Ir(III) carbonyl complexes with various Lewis acidic 

metal cations has been characterized. In the Ir(III) state, halide abstraction, halide exchange, 

and cation–macrocycle interactions are all observed, depending on the choice of metal salt. 

The solvent also plays an important role, as precipitation can drive one reaction over another. 

At the Ir(I) state, protonation by water is dominant, but, again, the choice of metal salt can 

dictate the rate of protonation and the yield of the resulting Ir(III) hydride product. Schemes 

2.9 and 2.10 highlight the distinct reaction pathways possible when the Ir(I) carbonyl 

complexes are treated with metal triflate salts in the presence of water. In the case of Li+, 

only cation–macrocycle interactions are observed, whereas stronger Lewis acids such as 

Sc(OTf)3 and La(OTf)3 trigger protonation at the Ir center. 

The observed reactivity trends appear to correlate with the average of reported pKa 

values of the corresponding metal aquo complexes.43 More Lewis acidic metal cations tend to 

support aquo complexes with lower pKa values.46 The strongest Lewis acids, Sc3+, Zn2+, and 

La3+ (aquo pKa of 4.9, 8.9, and 9.5 respectively) cleanly and rapidly protonated the Ir(I) site; 

the weaker Lewis acid Li+ (aquo pKa = 13.7) did not protonate the Ir(I) site. Intriguingly, the 

cation of intermediate acidity, Ca2+ (aquo pKa = 12.7) initially resulted in protonation to give 

two species, but it eventually funneled to the alternate metalation iminium product [515c5]2+. 
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The protonation reactivity of the strong Lewis acid La3+ was not inhibited by the presence of 

large amounts of water, whereas the weaker Lewis acid Ca2+ showed almost complete loss of 

reactivity. 

When combined with an early metal cation, (NCOP)Ir(CO) complexes react with 

water in a different fashion than other Ir(I) complexes.47 As shown in Scheme 2.14, some 

Ir(I) complexes undergo O–H oxidative addition at the Ir center (path A).48–51 Simple ligand 

association is another common reaction of water (path B), with formation of Ir–OH2 species 

observed in lieu of oxidative addition reactivity.52 (NCOP)Ir(CO) complexes react with water 

to form Ir–H products (path C), but we see no evidence of Ir(H)(OH) species that would be 

indicative of formal O–H oxidative addition of water. Instead, we hypothesize that water 

binds to the Lewis acidic cations, rendering the water molecule a stronger Brønsted acid 

capable of protonation at Ir and leaving the hydroxide ligand bound to the hard early metal 

cation. An analogous mechanism has been proposed for water oxidative addition to Pt centers 

flanked with H-bond donors or boranes in the secondary coordination sphere.18,53 The ability 

of a specific salt to trigger protonation by H2O depends on the Lewis acidity of the cation and 

the amount of H2O present; more Lewis acidic cations lead to bound H2O that is more 

Brønsted acidic, but this acidity can be tempered by hydrogen bonding by excess H2O in the 

secondary coordination sphere of the cation. 
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Figure 2.14 Different reactivity pathways of Ir(I) complexes with water.  

One goal of this project was to examine the role of the pendent macrocycle in the 

pincer-crown ether ligand. The macrocycle is important in some reactions, but plays no 

apparent role in others. Halide abstraction and halide exchange reactions, for example, 

proceed similarly with or without a macrocyclic ligand. On the other hand, cation–

macrocycle interactions are fostered only by complexes supported by the pincer-crown ether 

ligand. The host-guest complexation is weak when LaI3 interacts with the Ir(III) complex 

415c5, whereas stronger interactions are indicated by the larger change in chemical shift 

observed in mixtures of 215c5 and LiOTf. The non-macrocyclic NCOP ligand does not 

interact with cations in solution, as evidenced by the lack of any changes in 1H NMR 

resonances in the presence of various salts. The other reaction unique to the pincer-crown 

ether ligands is a complicated reaction that results in iminium formation and a change in the 

metallation site of the ligand backbone. 

Section 2.8 Experimental Details 

General Considerations. All manipulations were carried out using standard Schlenk or 

glovebox techniques under a N2 atmosphere. Under standard glovebox operating conditions, 

pentane, diethyl ether, benzene, toluene, and tetrahydrofuran were used without purging, 
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such that traces of those solvents were present in the atmosphere and in the solvent bottles. 

1H, 31P, 13C, and 139La NMR spectra were recorded on 400, 500 or 600 MHz spectrometers at 

298 K. NMR solvents were purchased from Cambridge Isotopes Laboratories, Inc. Acetone-

d6, acetonitrile-d3 (CD3CN), and benzene-d6 (C6D6) were freeze-pump-thaw degassed three 

times before drying by passage through a small column of activated alumina. 1H and 13C 

chemical shifts are reported in ppm relative to residual proteo solvent resonances. 31P 

chemical shifts are reported relative to 85% H3PO4 external standard (δ 0). 139La resonances 

are reported relative to a 0.1 M solution of La(ClO4)3·6H2O in 80:20 H2O:D2O (δ 0). The 

compounds (15c5NCOPiPr)H,19 (EtNCOPiPr)H,27 and Ir(p-toluidine)(CO)2(Cl)22 were 

synthesized according to literature procedures. All other reagents were commercially 

available and used without further purification. Elemental analyses were performed by 

Robertson Microlit Labs (Ledgewood, NJ). UV-Vis spectra were collected with an Ocean 

Optics USB2000+ spectrometer with a DT-MINI-2GS deuterium/tungsten halogen light 

source. Infrared spectroscopy was carried out with a Bruker Alpha FT-IR equipped with an 

ATR module or a Thermo Scientific Nicolet iS5 FT-IR equipped with Quest Single 

Reflection ATR Accessory. Mass spectrometry was carried out with a LTQ FT (ICR 7T) 

(ThermoFisher, Bremen, Germany) mass spectrometer. Measurements were made on 

complexes dissolved in acetonitrile. Samples were introduced via a micro-electrospray 

source at a flow rate of 3 µL/min. Xcalibur (ThermoFisher, Breman, Germany) was used to 

analyze the data. Molecular formula assignments were determined with Molecular Formula 

Calculator (v 1.2.3). Low-resolution mass spectrometry (linear ion trap) provided 

independent verification of molecular weight distributions. All observed species were singly 

charged, as verified by unit m/z separation between mass spectral peaks corresponding to the 



51 

 

12C and 13C12Cc-1 isotope for each elemental composition. Single crystal X-ray diffraction 

data was collected on a Bruker APEX-II CCD diffractometer at 100 K with Cu Kα radiation 

(λ = 1.54175 Å). Using Olex2,54 the structures were solved with the olex2.solve55 structure 

solution program using Charge Flipping and refined with the XL56 refinement program using 

Least Squares minimization.  

Synthesis of (15c5NCOPiPr)Ir(H)(CO)(Cl) (115c5). A Schlenk flask was charged with 0.211 g 

(0.539 mmol) Ir(p-toluidine)(CO)2(Cl) and suspended in 5 mL toluene. The ligand 

(15c5NCOPiPr)H (0.240 g, 0.544 mmol) was dissolved in 5 mL toluene and added to the Ir 

precursor suspension to yield a yellow solution that was further diluted with an additional 10 

mL toluene. The mixture was refluxed for 14 h, at which point the mixture was allowed to 

cool and the solvent removed under vacuum. The residue was washed with pentane (2 × 5 

mL) and extracted with benzene (10 mL). The resulting orange benzene solution was 

evaporated under vacuum to yield 0.356 g of a brown-yellow solid (95% yield). 1H NMR 

(400 MHz, C6D6): δ 6.96 (t, J = 7.6 Hz, 1H, ArH), 6.91 (d, J = 7.8 Hz, 1H, ArH), 6.75 (d, J = 

7.1 Hz, 1H, ArH), 4.95 (d, J = 13.2 Hz, 1H, ArCHHN), 4.61 (d, J = 14.2 Hz, 1H, crown-CH), 

4.13 (dt, J = 9.7, 6.5 Hz, 1H, crown-CH), 3.98 – 3.90 (m, 1H), 3.87 (dd, J = 13.4, 3.8 Hz, 1H, 

ArCHHN), 3.80 (ddd, J = 9.7, 6.6, 4.9 Hz, 1H, crown-CH), 3.58 (ddd, J = 11.4, 7.2, 4.4 Hz, 

1H, crown-CH), 3.48 (dq, J = 12.1, 6.1 Hz, 1H, crown-CH), 3.41 – 3.12 (m, 14H, , crown-

CH2), 2.93 (dp, J = 14.7, 7.3 Hz, 1H, CH(CH3)2), 1.94 (dp, J = 12.2, 7.0 Hz, 1H, CH(CH3)2), 

1.32 (dd, J = 18.5, 7.3 Hz, 3H, CH(CH3)2), 1.11 (dd, J = 16.2, 7.1 Hz, 3H, CH(CH3)2), 0.81 

(overlapping dd, J = 19.0, 15.7, 7.0 Hz, 2×3H, CH(CH3)2), –18.30 (d, 2JPH = 20.8 Hz, 1H, Ir–

H). 13C{1H} NMR (151 MHz, C6D6): δ 181.88 (d, J = 2.9 Hz, Ir–CO), 161.93 (d, J = 2.5 Hz, 

CAr), 149.22 (d, J = 4.9 Hz, CAr), 148.67 (d, J = 2.2 Hz, CAr), 126.17 (s, CAr), 117.63 (s, CAr), 
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109.05 (d, J = 12.3 Hz, CAr), 71.30 (s, crown-CH2), 71.25 (d, J = 2.5 Hz, crown-CH2), 71.17 

(s, ArCH2N), 70.79 (d, J = 9.6 Hz, crown-CH2), 70.68 (d, J = 4.6 Hz, crown-CH2), 70.50, (s, 

crown-CH2), 68.13 (d, J = 1.0 Hz, crown-CH2), 64.01, (s, crown-CH2), 59.50 (d, J = 2.5 Hz, 

crown-CH2), 32.42 (d, J = 33.7 Hz, CH(CH3)2), 29.46 (d, J = 42.3 Hz, CH(CH3)2), 18.36 (d, 

J = 5.0 Hz, CH(CH3)2), 18.02, (s, CH(CH3)2), 17.70 (d, J = 2.7 Hz, CH(CH3)2), 16.02 (s, 

CH(CH3)2). 
31P{1H} NMR (162 MHz, C6D6): δ 153.73. IR (solid, cm–1): νCO 2010 cm−1, 

ν(Ir−H) 2198 cm−1. IR (solution, CH3CN, cm–1): νCO 2024 cm−1. Anal. Calcd for 

C24H40ClIrNO6P: C, 41.34; H, 5.78; N, 2.01. Found: C, 42.15; H, 5.62; N, 1.98. HRMS 

(ESI+) m/z [115c5+Na]+ Calcd for C24H40ClIrNNaO6P 720.1809; Found 720.1817.  

 

Figure 2.15 1H NMR spectrum of (15c5NCOPiPr)Ir(H)(CO)(Cl) (115c5) in C6D6. 
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Figure 2.16 13C{1H} NMR spectrum of (15c5NCOPiPr)Ir(H)(CO)(Cl) (115c5) in C6D6. 

 

 

Figure 2.17 31P{1H} NMR spectrum of (15c5NCOPiPr)Ir(H)(CO)(Cl) (115c5) in C6D6. 
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Synthesis of (EtNCOPiPr)Ir(H)(CO)(Cl) (1Et). A procedure directly analogous to that of 

115c5 was used, affording 1Et as a brown-yellow oil in 90% yield. 1H NMR (600 MHz, C6D6): 

δ 6.98 (t, J = 7.7 Hz, 1H, ArH), 6.93 (d, J = 8.0 Hz, 1H, ArH), 6.75 (d, J = 7.3 Hz, 1H, ArH), 

4.80 (d, J = 13.4 Hz, 1H, ArCHHN), 4.15 (dd, J = 14.4, 7.2 Hz, 1H, NCH2CH3), 3.47 (dd, J 

= 13.4, 3.7 Hz, 1H, ArCHHN), 3.41 (dq, J = 14.3, 7.3 Hz, 1H, NCH2CH3), 2.96 (tq, J = 14.5, 

7.2 Hz, 1H, CH(CH3)2), 2.66 (dq, J = 14.3, 7.3 Hz, 1H, NCH2CH3), 2.41 – 2.32 (m, 1H, 

NCH2CH3), 1.98 (dp, J = 12.5, 6.9 Hz, 1H, CH(CH3)2), 1.34 (dd, J = 18.5, 7.3 Hz, 3H, 

CH(CH3)2), 1.13 (dd, J = 16.1, 7.0 Hz, 3H, CH(CH3)2), 0.85 (ddd, J = 26.0, 17.4, 7.0 Hz, 6H, 

CH(CH3)2), 0.77 (t, J = 7.1 Hz, 3H, NCH2CH3), 0.53 (t, J = 7.3 Hz, 3H, NCH2CH3), –18.48 

(d, J = 20.8 Hz, 1H, Ir–H). 13C{1H} NMR (151 MHz, C6D6): δ 181.94 (s, Ir–CO), 161.98 (d, 

J = 2.8 Hz, CAr), 148.89 (d, J = 5.7 Hz, CAr), 148.51 (d, J = 2.4 Hz, CAr), 126.08 (s, CAr), 

117.46 (s, CAr), 108.95 (d, J = 12.2 Hz, CAr), 69.79 (d, J = 2.3 Hz, ArCH2N), 56.36 (s, 

NCH2CH3), 52.09 (d, J = 2.5 Hz, NCH2CH3), 32.43 (d, J = 33.7 Hz, CH(CH3)2), 29.17 (d, J 

= 41.8 Hz, CH(CH3)2), 18.43 (d, J = 5.3 Hz (s, CH(CH3)2), 18.07 (s, CH(CH3)2), 17.73 (d, J 

= 2.8 Hz, CH(CH3)2), 15.94 (s, CH(CH3)2), 12.77 (s, NCH2CH3), 8.70 (s, NCH2CH3). 

31P{1H} NMR (162 MHz, C6D6): δ 154.20. IR (solid, cm–1): ν(CO) 2011 cm−1, ν(Ir−H) 2198 

cm−1. Note: The oily nature of 1Et precluded purification by re-crystallization and led to 

deviation from the expected elemental analysis values. HRMS (ESI+) m/z [1Et+K]+ Calcd for 

C18H30ClIrKNO2P 590.0969; Found 590.0975. 
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Figure 2.18 1H NMR spectrum of (EtNCOPiPr)Ir(H)(CO)(Cl) (1Et) in C6D6. Trace 

amounts of silicone grease (δ 0.29), toluene (δ 2.15, 7.03), and pentane (δ 0.94, 1.28). 

 

Figure 2.19 13C{1H} NMR spectrum of (EtNCOPiPr)Ir(H)(CO)(Cl) (1Et) in C6D6. 

Trace amounts of silicone grease (δ 1.44), toluene (δ 20.65, 129.97), tetrahydrofuran 

(δ 25.82, 67.83), H grease (δ 30.25). 
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Figure 2.20 31P{1H} NMR spectrum of (EtNCOPiPr)Ir(H)(CO)(Cl) (1Et) in C6D6. 

 

Synthesis of (15c5NCOPiPr)Ir(CO) (215c5). A 20-mL scintillation vial was charged with 0.100 

g (0.143 mmol) 115c5 and 0.026 g (0.235 mmol) KOtBu. The solids were dissolved in 6 mL 

benzene and the resulting dark orange solution that was stirred for 3 h. Benzene was then 

removed under vacuum. The residue was stirred in 20 mL pentane for 48 h and filtered, 

yielding a bright yellow solution. Pentane was evaporated under vacuum, affording a bright 

yellow solid (0.074 g, 78% yield). 1H NMR (600 MHz, C6D6): δ 7.02 (d, J = 7.8 Hz, 1H, 

ArH), 6.95 (t, J = 7.6 Hz, 1H, ArH), 6.73 (d, J = 7.3 Hz, 1H, ArH), 4.40 (dt, J = 11.6, 6.0 Hz, 

2H, crown-CH2), 4.10 (s, 2H, ArCH2N), 3.87 (dt, J = 11.0, 5.5 Hz, 2H, crown-CH2), 3.74 – 

3.66 (m, 2H, crown-CH2), 3.61 (dtd, J = 13.2, 5.6, 1.7 Hz, 2H, crown-CH2), 3.49 – 3.24 (m, 

12H, crown-CH2), 2.10 (h, J = 7.0 Hz, 2H, CH(CH3)2), 1.19 (d, J = 7.1 Hz, 6H, CH(CH3)2), 

1.17 (dd, J = 7.0, 3.8 Hz, 6H, CH(CH3)2). 
13C{1H} NMR (151 MHz, C6D6): δ 198.81 (d, J = 

2.5 Hz, Ir–CO), 167.27 (d, J = 8.2 Hz, CAr), 166.22 (d, J = 6.2 Hz, CAr), 153.93 (d, J = 3.3 



57 

 

Hz, CAr), 127.40 (s, CAr), 115.07 (s, CAr), 107.68 (d, J = 12.5 Hz, CAr), 73.07 (s, ArCH2N), 

71.06 – 70.84 (m, crown-CH2), 70.68 (s, crown-CH2), 63.45 (d, J = 2.3 Hz, crown-CH2), 

31.42 (d, J = 37.9 Hz, CH(CH3)2), 30.25 (s, CH(CH3)2), 18.45 (d, J = 4.8 Hz, CH(CH3)2), 

17.72 (s, CH(CH3)2). 
31P{1H} NMR (162 MHz, C6D6): δ 170.70. IR (solid, cm–1): ν(CO) 

1921 cm−1. Anal. Calcd for C24H39IrNO6P: C, 43.63; H, 5.95; N, 2.12. Found: C, 43.90; H, 

5.98; N, 2.09. 

 

Figure 2.21 1H NMR spectrum of (15c5NCOPiPr)Ir(CO) (215c5) in C6D6. 
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Figure 2.22 13C{1H} NMR spectrum of (15c5NCOPiPr)Ir(CO) (215c5) in C6D6. 

 

Figure 2.23 31P{1H} NMR spectrum of (15c5NCOPiPr)Ir(CO) (215c5) in C6D6. 
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Synthesis of (EtNCOPiPr)Ir(CO) (2Et). A procedure directly analogous to that of 215c5 was 

used, affording 2Et as a bright orange-yellow solid (0.051 g, 47 % yield). 1H NMR (500 

MHz, C6D6): δ 7.02 (d, J = 7.9 Hz, 1H, ArH), 6.96 (t, J = 7.6 Hz, 1H, ArH), 6.72 (d, J = 7.4 

Hz, 1H, ArH), 3.77 (s, 2H, ArCH2N), 2.93 (dqd, J = 12.3, 7.2, 1.7 Hz, 2H, NCH2CH3), 2.84 

(dqd, J = 14.2, 7.1, 2.6 Hz, 2H, NCH2CH3), 2.11 (h, J = 7.0 Hz, 2H, CH(CH3)2), 1.28 (t, J = 

7.1 Hz, 6H, NCH2CH3), 1.20 (dd, J = 7.0, 2.7 Hz, 6H, CH(CH3)2), 1.17 (dd, J = 7.0, 5.6 Hz, 

6H, CH(CH3)2). 
13C{1H} NMR (151 MHz, C6D6): δ 198.72 (d, J = 2.7 Hz, Ir–CO), 167.10 (d, 

J = 8.3 Hz, CAr), 166.13 (d, J = 6.3 Hz, CAr), 155.19 (d, J = 2.8 Hz, CAr), 127.22 (s, CAr), 

114.36 (s, CAr), 107.57 (d, J = 12.3 Hz, CAr), 70.54 (s, ArCH2N), 58.89 (d, J = 2.3 Hz, 

NCH2CH3), 31.44 (d, J = 37.6 Hz, CH(CH3)2), 18.43 (d, J = 5.1 Hz, CH(CH3)2), 17.69 (s, 

CH(CH3)2), 13.69 (s, NCH2CH3). 
31P{1H} NMR (162 MHz, C6D6): δ 171.58. IR (solid, cm–

1): ν(CO) 1922 cm−1. Anal. Calcd for C18H29IrNO2P: C, 42.01; H, 5.68; N, 2.72. Found: C, 

42.82; H, 5.82; N, 2.62. 



60 

 

 

Figure 2.24 1H NMR spectrum of (EtNCOPiPr)Ir(CO) (2Et) in C6D6. Trace amounts of 

pentane (δ 0.88) and H grease (δ 1.37). 

 

Figure 2.25 13C{1H} NMR spectrum of (EtNCOPiPr)Ir(CO) (2Et) in C6D6. Trace 

amounts of pentane (δ 14.31, 22.75, 34.45) and H grease (δ 30.25). 
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Figure 2.26 31P{1H} NMR spectrum of (EtNCOPiPr)Ir(CO) (2Et) in C6D6. 

Synthesis of (15c5NCOPiPr)Ir(H)(CO)(I) (415c5). A 20-mL scintillation vial was charged with 

21.3 mg (30.5 μmol) 115c5 and dissolved in acetone (0.5 mL). A solution of 14.2 mg (94.7 

μmol) NaI in acetone (0.5 mL) was added to the initial vial resulting in a pale yellow 

solution. The reaction mixture was allowed to stir for 48 h, during which time NaCl 

precipitated. The mixture was stripped of solvent under vacuum, extracted with benzene (3 

mL), and filtered. Benzene was removed from the filtrate under vacuum, affording an off-

white solid (22.2 mg, 92% yield). 1H NMR (600 MHz, C6D6): δ 6.91 – 6.85 (m, 2H, ArH), 

6.78 – 6.74 (m, 1H, ArH), 4.90 (d, J = 13.3 Hz, 1H, ArCHHN), 4.67 (dt, J = 11.9, 5.1 Hz, 

1H, crown-CH), 4.08 (dd, J = 10.3, 3.9 Hz, 1H, ArCHHN), 4.06 (s, 1H, crown-CH), 3.89 

(ddd, J = 14.2, 7.0, 4.7 Hz, 1H, crown-CH), 3.79 (dt, J = 10.5, 5.4 Hz, 1H, crown-CH), 3.59 

– 3.50 (m, 2H, crown-CH2), 3.41 – 3.22 (m, 15H, crown-CH2), 3.33 (1H, CH(CH3)2), 2.04 

(ddd, J = 19.6, 13.4, 6.6 Hz, 1H, CH(CH3)2), 1.20 (dd, J = 19.8, 7.3 Hz, 3H, CH(CH3)2), 1.02 

(dd, J = 14.4, 7.1 Hz, 3H, CH(CH3)2), 0.80 (dd, J = 15.9, 6.8 Hz, 3H, CH(CH3)2), 0.74 (dd, J 
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= 19.5, 6.9 Hz, 3H, CH(CH3)2), –16.05 (d, J = 19.1 Hz, 1H, Ir–H). Note: The resonance for 

the CH(CH3)2 proton at δ 3.33 overlaps with the multiplet of the crown-ether protons (δ 3.41-

3.22). 13C{1H} NMR (151 MHz, C6D6): δ 180.38 (d, J = 3.8 Hz, Ir–CO), 162.05 (d, J = 2.9 

Hz, CAr), 148.02 (d, J = 2.2 Hz, CAr), 145.98 (dd, J = 5.3, 3.2 Hz, CAr), 125.98 (s, CAr), 

117.55 (s, CAr), 108.96 (d, J = 12.4 Hz, CAr), 72.96 (d, J = 1.9 Hz, ArCH2N), 71.30 (s, 

crown-CH2), 70.96 (d, J = 16.1 Hz, crown-CH2), 70.70 (s, crown-CH2), 70.46 (d, J = 10.5 

Hz, crown-CH2), 70.38 (s, crown-CH2), 68.59 (s, crown-CH2), 63.75 (s, crown-CH2), 61.78 

(s, crown-CH2), 36.58 (d, J = 35.6 Hz, CH(CH3)2), 28.08 (dd, J = 41.2, 2.5 Hz, CH(CH3)2), 

18.87 (d, J = 6.4 Hz, CH(CH3)2), 17.79 (d, J = 1.8 Hz, CH(CH3)2), 17.69 (d, J = 5.1 Hz, 

CH(CH3)2), 15.55 (d, J = 5.2 Hz, CH(CH3)2). 
31P{1H} NMR (162 MHz, C6D6): δ 153.87. IR 

(solid, cm–1): ν(CO) 2014 cm−1, ν(Ir−H) 2182 cm−1. Anal. Calcd for C24H40IIrNO6P: C, 

36.55; H, 5.11; N, 1.78. Found: C, 36.48; H, 4.91; N, 1.66. HRMS (ESI+) m/z [415c5+Na]+ 

Calcd for C24H40IIrNNaO6P 812.1165; Found 812.1165. 
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Figure 2.27 1H NMR spectrum of (15c5NCOPiPr)Ir(H)(CO)(I) (415c5) in C6D6. Trace 

amounts of silicone grease (δ 0.29), H grease (δ  1.36), THF (δ 1.42) and acetone (δ 

1.55). 

 

Figure 2.28 1H–13C HMQC NMR spectrum of (15c5NCOPiPr)Ir(H)(CO)(I) (415c5) in 

C6D6, showing the correlation between a proton at δ 3.33 (CH(CH3)2) and a carbon 

resonance at δ 36.7 (CH(CH3)2). 
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Figure 2.29 13C{1H} NMR spectrum of (15c5NCOPiPr)Ir(H)(CO)(I) (415c5) in C6D6. 

Trace amounts of silicone grease (δ 1.43), H grease (δ  30.23), THF (δ 29.38, 67.83), 

and acetone (δ 29.54). 

 

Figure 2.30 31P{1H} NMR spectrum of (15c5NCOPiPr)Ir(H)(CO)(I) (415c5) in C6D6. 
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Synthesis of iminium complex [515c5]2+. Complex 215c5 (3.7 mg, 5.6 μmol) was dissolved in 

CD3CN (500 μL). To the resulting yellow solution was added a 2.5 μL aliquot of a 2.2 M 

solution of H2O in CD3CN (5.5 μmol). To this mixture was added Ca(OTf)2 (3.3 mg, 9.8 

μmol), resulting in discoloration of the solution to a pale yellow color. The reaction progress 

was monitored by 1H and 31P{1H} NMR spectroscopy, yielding [515c5]2+ in 70% yield (by 1H 

NMR spectroscopy) as an orange solution. 1H NMR (400 MHz, CD3CN): δ 7.87 (dd, J = 

10.9, 7.1 Hz, 1H, N=CH−CH2), 7.05 – 7.00 (m, 2H, ArH), 6.97 (dd, J = 6.4, 2.9 Hz, 1H, 

ArH), 4.86 (d, J = 14.7 Hz, 1H, ArCHHN), 4.26 (d, J = 14.8 Hz, 1H, ArCHHN), 4.19 – 3.51 

(m, 15H, crown-CH2), 3.47 – 3.22 (m, 3H, crown-CH2), 3.15 (dd, J = 14.6, 2.2 Hz, 1H, 

crown-CH2), 2.83 – 2.68 (m, 1H, CH(CH3)2), 2.67 – 2.26 (m, 1H, CH(CH3)2), 1.37 (dd, J = 

16.4, 7.0 Hz, 3H, CH(CH3)2), 1.29 (dd, J = 17.1, 7.3 Hz, 3H, CH(CH3)2), 1.10 (dd, J = 19.2, 

7.0 Hz, 3H, CH(CH3)2), 0.93 (dd, J = 16.3, 6.9 Hz, 3H, CH(CH3)2), −19.36 (d, J = 16.6 Hz, 

1H, Ir–H). 13C NMR (151 MHz, CD3CN): δ 189.78 (d, J = 6.2 Hz, Ir–CO), 172.70 (d, J = 3.5 

Hz, CAr), 170.33 (m, N=CH−CH2), 168.82 (s, CAr), 130.09 (s, CAr), 127.77 (s, CAr), 125.12 

(s, CAr), 122.35 (s, trans Ir–NCCD3), 120.23 (s, cis Ir–NCCD3), 112.83 (d, J = 12.1 Hz, CAr), 

71.16 (s, crown-CH2), 70.94 – 70.19 (m, crown-CH2), 69.90 (s, crown-CH2), 61.49 (s, 

crown-CH2), 55.05 (s, ArCH2N), 54.76 (s, N=CH−CH2), 32.69 (dd, J = 32.7, 4.1 Hz, 

CH(CH3)2), 31.01 (d, J = 35.7 Hz, CH(CH3)2), 18.08 (d, J = 5.0 Hz, CH(CH3)2), 17.84 (d, J = 

1.2 Hz, CH(CH3)2), 17.53 (s, CH(CH3)2), 17.31, (s, CH(CH3)2). 
31P{1H} NMR (162 MHz, 

CD3CN): δ 159.08. IR (solid, cm–1): νCO 2041 cm−1, ν(N=CH−CH2) 1617cm−1.  



66 

 

 

Figure 2.31 1H NMR spectra showing formation of [515c5]2+ by addition of Ca(OTf)2 

to 215c5 in CD3CN in the presence of one equivalent of H2O. 

 

Figure 2.32 1H NMR spectra (hydride region) showing formation of [515c5]2+ by 

addition of Ca(OTf)2 to 215c5 in CD3CN in the presence of one equivalent of H2O. 
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Figure 2.33 31P{1H} NMR spectra showing formation of [515c5]2+ by addition of 

Ca(OTf)2 to 215c5 in CD3CN in the presence of one equivalent of H2O. 

 

Figure 2.34 1H-1H COSY NMR spectrum of [515c5]2+. 
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Figure 2.35 1H-13C HMQC NMR spectrum of [515c5]2+. 

 

Figure 2.36 1H-13C HMBC NMR spectrum of [515c5]2+. 



69 

 

 

Figure 2.37 13C APT NMR spectrum of [515c5]2+. 

 

Figure 2.38 1H NMR spectrum of [515c5]2+ formed upon addition of Ca(OTf)2 to 215c5 

in a 1:1 mixture of CD3CN and CH3CN in the presence of H2O.  
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Spectrophotometric titration of 115c5 in CH3CN. Complex 115c5 (4.2 mg, 0.0060 mmol) 

was dissolved in 6.25 mL CH3CN. A 2 mL aliquot of this solution was placed in a cuvette 

and an initial spectrum was obtained. Additional spectra were obtained after each addition of 

a 2 μL aliquot of a 0.25 M solution of DBU (conjugate acid pKa = 24.34) in CH3CN. An 

analogous experiment using up to 100 equiv NEt3 as the base led to no observable spectral 

changes.  

General procedure for reactivity of 115c5 with metal cations. Complex 115c5 (15.0 mg, 21.5 

μmol) was dissolved in CD3CN (1.5 mL). To the resulting golden yellow solution was added 

a 4 μL aliquot of a 5.6 M solution of H2O (22.4 μmol) in CD3CN. The mixture was equally 

split into three Teflon-capped NMR tubes. 1H and 31P{1H} NMR spectra were collected prior 

to salt addition. One equivalent of the corresponding salt (NaBArF
4, Ca(OTf)2, or La(OTf)3) 

was then added. Ca(OTf)2 led to formation of [315c5][OTf] in 33% yield over the course of 24 

h. La(OTf)3 led to formation of [315c5][OTf] in 69% yield within 2.5 h. No further changes 

were observed after this time. NaBArF
4 led to 33% yield within 24 h. Subsequent additions of 

NaBArF
4 (up to three equivalents added) led to conversions of up to 76% yield of 

[315c5][OTf]. 

General procedure for reactivity of 1Et with metal cations. Complex 1Et (10.4 mg, 18.9 

μmol) was dissolved in CD3CN (1.2 mL). The resulting yellow solution was equally split into 

two Teflon-capped NMR tubes. One equivalent of the corresponding salt (LaI3 or NaBArF
4) 

was then added. The reactions were monitored by 1H and 31P{1H} NMR spectroscopy. 

Within minutes of addition of LaI3 complete conversion to 4Et was observed. The reaction 

with NaBArF
4 led to a ~1:1 mixture of 1Et and [3Et][BArF

4] over the course of 24 h.  
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Titration of 415c5 with LaI3. In a N2-filled glovebox a solution of 415c5 (5.6 mg, 7.1 μmol) in 

acetone-d6 was added to a Teflon-capped NMR tube. LaI3 was added in increments of ~1 

equivalent (~4.0 mg, 7.7 μmol) up to six equivalents. After each addition of LaI3 
1H NMR 

spectra were collected to monitor the shifts in the methylene linker protons and hydride 

resonances. After the initial shifts in the resonances immediately observed after each addition 

no further changes were observed even after stirring for extended periods of time.  

 

Figure 2.39 1H NMR spectra (diastereotopic benzylic linker protons) monitoring 

addition of LaI3 to 415c5 in acetone-d6. 

 

Monitoring protonation of 215c5 by UV-vis. A cuvette equipped with a stir bar was charged 

with approximately 6.0 mg of LaI3 (11.0 μmol). Separately prepared, a 2 μL aliquot of a 5.5 

M solution of H2O (11.0 μmol) in CH3CN was added to 3 mL of a 0.139 mM solution of 215c5 

(0.417 μmol) in CH3CN. The resulting mixture was added to the cuvette while stirring and 

UV-vis spectra were collected every 0.2 seconds.  
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General procedure for NMR scale addition of Lewis acids to 215c5. Complex 215c5 (5.0 

mg, 7.6 μmol) was dissolved in CD3CN. To the solution was added a 7 μL aliquot of a 1.1 M 

solution of H2O (7.6 μmol) in CD3CN. The mixture was transferred to a Teflon-capped NMR 

tube. 1H and 31P{1H} NMR spectra were collected prior to salt addition. One equivalent of 

the corresponding salt (LiI, CaI2, LaI3, LiOTf, Ca(OTf)2, Zn(OTf)2, La(OTf)3, or Sc(OTf)3) 

was then added as a solid. With the exception of the Li+ and Ca2+ salts, all solutions 

immediately evolved from a bright yellow solution to colorless upon mixing, indicating 

complete conversion to either 415c5 or [315c5][OTf]. 1H and 31P{1H} NMR spectra were 

collected after salt addition. In the cases of the Li+ and Ca2+ salts, further spectra were 

collected to monitor the cation-crown complexation or the slow protonation of the Ir(I) 

complex 215c5 to a mixture of products. In forming [515c5]2+ addition of more than 1 equiv of 

Ca(OTf)2 led to higher yields of product. Performing the reaction in the presence of 2 equiv 

Ca(OTf)2 pre-treated with D2O (stirred in D2O followed by drying under reduced pressure) 

and 1 equiv D2O led to deuterium incorporation to intermediate [315c5]+ and eventual 

formation of a final deuteride-containing [515c5]2+ species.  
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Figure 2.40 1H NMR spectra showing formation of 415c5 by addition of LaI3 to 215c5 

in CD3CN in the presence of one equivalent of H2O. 

 

Figure 2.41 31P{1H} NMR spectra showing formation of 415c5 by addition of LaI3 to 

215c5 in CD3CN in the presence of one equivalent of H2O. 
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Figure 2.42 1H NMR spectra showing formation of [315c5][OTf] by addition of 

La(OTf)3 to 215c5 in CD3CN in the presence of one equivalent of H2O. 

 

Figure 2.43 31P{1H} NMR spectra showing formation of [315c5][OTf] by addition of 

La(OTf)3 to 215c5 in CD3CN in the presence of one equivalent of H2O. 
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Figure 2.44 1H NMR spectrum obtained 30 minutes after mixing 215c5 with Ca(OTf)2 

(previously stirred in D2O and pumped to dryness) in CD3CN in the presence of 1 

equiv D2O. Deuterium incorporation into [315c5][OTf] was determined by the 

integration of the residual hydride (δ −19.56) relative to a diastereotopic benzylic 

proton (δ 4.59). 

General procedure for NMR scale addition of Lewis acids to 2Et. Complex 2Et (14.7 mg, 

28.3 μmol) was dissolved in CD3CN. To the bright yellow solution was added a 5 μL aliquot 

of a 5.5 M solution of H2O (27.5 μmol) in CD3CN. The mixture was equally split into three 

Teflon-capped NMR tubes. 1H and 31P{1H} NMR spectra were collected prior to salt 

addition. One equivalent of the corresponding salt (LiOTf, Ca(OTf)2, or La(OTf)3) was then 

added. The solution to which La(OTf)3 was added underwent decolorization within seconds. 

A slight decolorization was observed for the Ca(OTf)2 reaction. The reactions of 2Et with 

Ca(OTf)2 and La(OTf)3 proceeded similarly in the presence of 12-crown-4. Addition of 

Ca(OTf)2 as an aqueous solution (100 μL) to a solution of 2Et in CD3CN precluded formation 

of [3Et]+. No changes were observed in the solution to which LiOTf was added. The presence 

of small amounts of strong acids (e.g. HI or HOTf) is sometimes responsible for Lewis acid-

promoted reactivity, but an experiment containing excess NEt3 still gave protonation at Ir. 
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Figure 2.45 1H NMR spectrum showing La(OTf)3-triggered protonation of 2Et to 

[3Et][OTf] in CD3CN in the presence of H2O (δ 2.32) and 12-crown-4 (δ 3.92). 

 

 

Figure 2.46 31P{1H} NMR spectra showing LaI3-triggered protonation of 2Et to 4Et in 

CD3CN in the presence of NEt3. Within minutes, a ~1:1 mixture of 2Et and 4Et was 

observed. Complete protonation of 2Et was achieved over the course of several hours. 
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Figure 2.47 1H NMR spectrum showing the limited protonation of 1Et in CD3CN by 

addition of Ca(OTf)2 as an aqueous solution (500 μL). The inset shows the 31P{1H} 

NMR spectrum.  
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Chapter 3 HYDROFORMYLATION REACTION STUDIES WITH PINCER-

CROWN ETHER COMPLEXES OF GROUP 9 

 

Reproduced in part with permission from Camp, A. M.; Kita, M. R.; Grajeda, J.; White, P. 

S.; Dickie, D. A.; Miller, A. J. M. “Mapping the Binding Modes of Hemilabile Pincer-Crown 

Ether Ligands in Solution Using Diamagnetic Anisotropic Effects on NMR Chemical Shift.” 

Inorg. Chem. 2017, 56, 11141-11150. Copyright American Chemical Society. 

 

Section 3.1 Introduction 

Hydroformylation, or the oxo process, refers to the catalytic addition of a formyl 

(CHO) group and a hydrogen atom to an alkene, yielding either linear (normal, n) or 

branched (iso) aldehydes (Scheme 3.1). This process represents one of the most successful 

examples of homogeneous catalysis applied on an industrial scale.1 During 2008, almost 10.4 

million metric tons of aldehydes were produced for further use in the synthesis of alcohols, 

esters, and amines. Aldehyde-derived products are used in the synthesis of specialty 

chemicals of importance to the fragrance, pharmaceutical, and agrochemical industries.2  

 

Scheme 3.1 Hydroformylation of alkenes. 

 

Rhodium complexes are amongst the most widely used hydroformylation catalysts 

because they display high activity and chemoselectivity for aldehydes, with negligible 
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amounts of hydrogenation products (alkanes or alcohols) or alkene isomerization products 

(internal olefins).3 A general scheme for rhodium-catalyzed hydroformylation of alkenes is 

depicted in Scheme 3.2.4 Upon binding to the metal center, alkene insertion into a metal 

hydride bond generates a Rh-alkyl species. Migratory insertion followed by hydrogenolysis 

generates the aldehyde product. The scheme depicts formation of linear aldehydes. In the 

realm of aliphatic alkene hydroformylation the major challenge is the rational development 

of ligands that can impart control over the n:iso selectivity.4,5 Both n and iso butyraldehydes 

resulting from the hydroformylation of propylene are funneled to a variety of chemicals, and 

the ratios required vary based on market needs.6,7 The development of catalysts that can be 

fine-tuned to generate different ratios of aldehydes to satisfy shifts in demand would be 

highly beneficial. 
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Scheme 3.2 Mechanism for rhodium-catalyzed hydroformylation of terminal alkenes. 

The cycle depicts formation of linear aldehydes exclusively, omitting the branched 

pathway to generate iso aldehydes.  

Despite the fact that rhodium is scarce and expensive, other transition metals have 

received less attention due to the lower activity and chemoselectivity of complexes studied 

before.1,8 The activity trend for unmodified metal carbonyl complexes is the following: 

Rh>>Co>Ir, Ru>Os>Pt>Pd>>Fe>Ni.1 The main challenge in iridium-catalyzed 

hydroformylation lies in the fact that most complexes of this metal catalyze the 

hydrogenation of alkenes with great efficiency, yielding undesired alkyl products.3 Due to its 

low chemoselectivity, iridium has therefore received little attention in the field.9 
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The use of cationic additives for distal regulation via host-guest interactions has been 

employed to control regio- and enantioselectivity in asymmetric hydroformylation.10,11 We 

envisioned the use of catalytic systems featuring secondary binding pockets capable of 

supporting host-guest interactions in order to use additives to tune selectivity in 

hydroformylation catalysis (Figure 3.1).  

 

Figure 3.1 Host-guest interaction approaches for selectivity control in iridium- and 

rhodium-catalyzed hydroformylation. The green, yellow, and blue spheres represent 

varying steric profiles imparted by different additives in the crown. 

 

It is well-established that Lewis acids in close proximity to the metal center can 

enhance the rates of CO migratory insertion into metal–carbon bonds.12–16 For iridium-

catalyzed hydroformylation, enhancements in rates of CO migratory insertion could impart 

aldehyde chemoselectivity by outcompeting undesired hydrogenation pathways. In the case 

of rhodium, additives of varying steric profiles in close proximity to the catalytically active 

site could impart control over regioselectivity. Pincer-crown ether ligands, featuring an aza-

crown-ether macrocycle capable of binding cationic additives proved ideal candidates for 

these studies. Although rare, examples of hydroformylation with pincer complexes of 

rhodium, and even iridium, have been reported.17–19 
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Beller and co-workers recently showed that iridium complexes can produce aldehydes 

in greater than 80% yield, with only ~10% hydrogenation products.20 Other groups have 

shown that competing hydrogenation can be suppressed with iridium catalysts by adding 

simple alkali metal additives.21,22 Under certain conditions, selectivity for aldehydes could be 

increased to >90% in the presence of additives. The Behr group has also shown that iridium 

catalysts can be readily recovered and utilized in continuous feeds in a miniplant, with high 

activity and aldehyde chemoselectivity.23,24 

The challenge of regioselectivity in rhodium-catalyzed hydroformylation of aliphatic 

alkenes remains an area of intense study.4,5,7,25 Clarke and co-workers showed that the steric 

profiles of bidentate phosphoramidite-phosphine ligands can affect the binding mode and the 

geometries of the catalytically active species (Figure 3.2).7 They found that these different 

coordination modes, on their own, did not strongly affect the selectivity for isobutyraldehyde 

formation. They concluded that further control over the coordination sphere was necessary in 

order to more controllably tune regioselectivity in hydroformylation. Supramolecular 

rhodium assemblies based on tris(meta-pyridyl)phosphine and zinc(II) porpholactone display 

the highest iso regioselectivity in propylene hydroformylation reported to date with ligand-

supported systems (n:iso 0.84).25 
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Figure 3.2 Bis-equatorial and axial-equatorial binding modes observed with 

phosphine-phosphoramidite ligands with varying steric profiles. 

In this Chapter we describe the synthesis of pincer-crown ether complexes of iridium 

and rhodium, and their performance in alkene hydroformylation. Effects of alkali metal and 

ammonium additives through potential host-guest interactions, as well as the fate of the 

complexes after catalytic conditions, were also investigated.   

Section 3.2 Synthesis of Iridium and Rhodium Pincer-Crown Ether Complexes 

Given the typically detrimental role of halides in hydroformylation catalysis,6 we 

targeted a halide-free hydridocarbonyl complex of iridium. Addition of NaBArF
4 (ArF is 3,5-

bis(trifluoromethyl)phenyl) to κ3-(15c5NCOPiPr)Ir(H)(CO)(Cl) (1)26 afforded the new cationic 

hydridocarbonyl complex [κ4-(15c5NCOPiPr)Ir(H)(CO)][BArF
4] (2) (Scheme 3.3).27 Crystals 

of 2 suitable for an X-ray diffraction study were grown by slow evaporation of an Et2O 

solution. Figure 3.3 shows that 2 adopts a tetradentate binding mode in the solid state, with a 

crown ether oxygen donor trans to the hydride. Multinuclear NMR spectroscopy studies 

reveal that this tetradentate binding mode is retained in solution in non-coordinating solvents 

such as methylene chloride.27 Placing complex 2 under 1 atm of CO afforded the new 
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dicarbonyl complex [κ3-(15c5NCOPiPr)Ir(H)(CO)2][BArF
4] (3), on the basis of the downfield 

hydride resonance at δ −9.43, which is indicative of a strong donor trans to the hydride. 

Subjecting complex 3 to vacuum regenerated monocarbonyl 2.  

 

Scheme 3.3 Synthesis of complexes 2 and 3. 
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Figure 3.3 Structural representation of one of the two independent molecules of 2 

in the asymmetric unit, with ellipsoids drawn at the 50% probability level.  

Hydrogen atoms and the BArF
4 counter ions are omitted for clarity. Selected distances 

(Å) and angles (°): Ir1–P1 2.252(3), Ir1–O3 2.282(7), Ir1–C8 2.025(8), Ir1–N1 

2.185(8), Ir1–C1 1.940(9); P1–Ir1–O3 102.93(19), C1–Ir1–O3 96.1(3), C8–Ir1–O3 

84.9(3), C1–Ir1–C8 178.5(4), N1–Ir1–O3 79.1(3). 

Analogues supported by a methoxy-substituted pincer-crown ether ligand were also 

synthesized for this study. Incorporation of substituents on the ligand backbone allows for 

control over the primary coordination sphere at the metal center. The substitution pattern 

ortho to the phosphinite group was specifically chosen to prevent previously observed 

remetallation pathways.26 Starting with complex κ3-(MeO-15c5NCOPiPr)Ir(H)(CO)(Cl) (4),16 

tetradentate complex [κ4-(MeO-15c5NCOPiPr)Ir(H)(CO)][BArF
4] (5) was synthesized in the 

same fashion as parent complex 2 (Scheme 3.4).  
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Scheme 3.4 Synthesis of complex 5. 

Rhodium complexes supported by a pincer-crown ether ligand framework were also 

targeted as hydroformylation catalysts. Metalation proceeded smoothly at room temperature 

by mixing 2 equiv of (15c5NCOPiPr)H with [Rh(COE)2Cl]2 (COE = cyclooctene) in toluene, 

yielding tetradentate complex κ4-(15c5NCOPiPr)Rh(H)(Cl) (6) in 75% yield (Scheme 3.5). A 

doublet is observed by 31P{1H} NMR spectroscopy due to coupling to Rh (δ 198, JRhP = 

167.0 Hz). The hydride resonance in the 1H NMR spectrum is a doublet of doublets (δ −22.9, 

J = 36.2, 27.0 Hz), due to coupling to both Rh and P. Single-crystal XRD data confirms the 

tetradentate binding mode in the solid state, with a cis configuration of the hydride and 

chloride ligands (Figure 3.4). The bond distances and angles are very similar to those for a 

previously reported iridium analogue.28 
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Scheme 3.5 Synthesis of complexes 6 and 7. 

 

Figure 3.4 Structural representation of 6 with ellipsoids drawn at the 50% probability 

level. Hydrogen atoms of the 15c5NCOPiPr ligand are omitted for clarity. The hydride 

was found in the electron density difference map, and the Rh–H bond distance was 

restrained to 1.9 Å. Selected distances (Å) and angles (°): Rh1–P1 2.1878(9), Rh1–

O2 2.368(3), Rh1–N1 2.231(3), Rh1–Cl1 2.4617(8); P1–Rh1–O2 101.22(7), P1–

Rh1–Cl1 102.96(3), N1–Rh1–Cl1 94.68(8), N1–Rh1–O2 78.64(10), P1–Rh1–N1 

162.34(8). 
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Abstraction of the chloride ligand from complex 6 with NaBArF
4 afforded 

pentadentate species [κ5-(15c5NCOPiPr)Rh(H)][BArF
4] (7) in 96% yield. Pentadentate complex 

7 features a hydride resonance slightly downfield to that of 6, at δ −21.6. The 1H NMR 

spectrum confirms the presence of a BArF
4 counter ion, with the expected resonances in the 

aromatic region integrating to 4H and 8H. The 31P{1H} NMR spectrum further confirms 

conversion to a new species, with a new doublet at δ 193 (JRhP = 163.8), 5 ppm upfield to that 

of chloride complex 6. Methoxy-substituted analogues κ4-(MeO-15c5NCOPiPr)Rh(H)(Cl) (8) 

and [κ5-(MeO-15c5NCOPiPr)Rh(H)][BArF
4] (9) were accessed using the same synthetic 

procedures as for the unblocked complexes (Scheme 3.6), and displayed similar 

spectroscopic features.  

 

Scheme 3.6 Synthesis of complexes 8 and 9. 

Attempts at synthesizing rhodium carbonyl complexes proved unsuccessful. Placing 

complexes 6 or 7 under 1 atm of CO in toluene-d8 led to mixtures of products. Heating the 
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resulting mixtures to 90 °C did not simplify the product distribution. Over time, further 

decomposition was evident by NMR spectroscopy. We hypothesized that decomposition 

might result from acid generated through reductive elimination pathways triggered by 

carbonyl ligand binding. Addition of NEt3 immediately after admission of CO to the mixture 

still did not generate clean conversion to a single carbonyl species. Methoxy-substituted 

pentadentate complex 9 similarly afforded mixtures of products when placed under 1 atm 

CO. Heating a solution of 9 in toluene-d8 under 1 atm CO to 90 °C led to ligand 

decomposition. The presence of a singlet by 31P{1H} NMR spectroscopy (δ 68.5) indicates 

decomposition and dissociation from the rhodium metal center. 

Section 3.3 Hydroformylation of Allylbenzene with Iridium Pincer-Crown Ether           

 Complexes 

 

Allylbenzene was chosen as a substrate for hydroformylation studies with iridium 

pincer-crown ether complexes. With this substrate, a number of possible products are 

expected under hydroformylation conditions (Scheme 3.7). The productive pathways involve 

formation of either n or iso aldehydes from terminal alkene functionalization. Some of the 

possible unproductive pathways are alkene hydrogenation to yield propylbenzene and alkene 

isomerization to yield β-methylstyrene.  
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Scheme 3.7 Products expected for allylbenzene substrate under hydroformylation 

conditions. Undesired products are denoted in red and desired products are denoted in 

green.  

Tetradentate hydridocarbonyl complex [κ4-(15c5NCOPiPr)Ir(H)(CO)][BArF
4], 2, was 

tested for allylbenzene hydroformylation under the conditions shown in Scheme 3.8, with 0.3 

mol% loading of 2 relative to allylbenzene in 10 mL 1,2-dichloroethane solvent. We 

performed a time-dependence study to determine whether additives had any effects on the 

rate of hydrofunctionalization. Five reactors were loaded under standard catalytic conditions, 

pressurized with 20 bar of a 9:1 mixture of CO:H2, and heated to 90 °C. The gas mixture, 

composed primarily of CO, was chosen in order to suppress undesired hydrogenation 

pathways.19 Individual reactors were then cooled down after 0.5, 1, 1.5, 3, and 6 h (Figure 

3.5). The reaction mixtures were then analyzed by 1H NMR spectroscopy with 

hexamethyldisiloxane (HMDSO) as an internal standard. 
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Scheme 3.8 Hydroformylation of allylbenzene and derivatives with iridium pincer-

crown ether complexes. 

 

Figure 3.5 Consumption of allylbenzene over time with unblocked, tetradentate 

complex 2 as a catalyst, plotted as ln[allylbenzene] vs. time. 

After 3 h, approximately half of the allylbenzene substrate had been consumed, with a 

26% yield of aldehydes with a 2.3 n:iso ratio (Table 3.1, entry 1). Propylbenzene and β-

methylstyrene were formed in 12% and 5% yields, respectively. Running the same reaction 

for 3 h in the presence of catalytic amounts (1.5 or 3 mol%) of LiOTf (OTf = 

trifluoromethanesulfonate) doubled the rates of product formation across the board after 3 h. 

Similar product distributions were maintained, even down to the n:iso ratio, but with over 

80% conversion (Table 3.1, entries 2 and 3).   
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Table 3.1 Hydroformylation of allylbenzene in the presence of catalytic amounts of 

LiOTf. Yields determined by 1H NMR spectroscopy after 3 h under standard catalytic 

conditions (2.2 mmol allylbenzene, 0.3 mol% 2, 90 °C, 1,2-dichloroethane, 20 bar 9:1 

CO:H2).  

Entry LiOTf conv.% alkane% isom.% aldehydes% n:iso 

1 - 44 12 5 26 2.3 

2 1.5 mol% 82 22 10 51 2.0 

3 3 mol% 86 24 11 50 2.1 

 

Running the reaction for 18 h resulted in complete consumption of allylbenzene 

substrate. A 61% combined yield of aldehydes (2.6 n:iso ratio) was obtained (Table 3.2, entry 

1), along with propylbenzene (27% yield) and β-methylstyrene (12% yield). Carrying out the 

reaction in the presence of 3 mol% LiOTf did not affect chemoselectivity to any appreciable 

extent (Table 3.2, entry 2). 

Table 3.2 Alkene hydroformylation with 0.3 mol % of 2 in the absence or presence of 

3 mol% LiOTf. Yields determined by 1H NMR spectroscopy after 18 h under 

standard catalytic conditions (2.2 mmol substrate, 0.3 mol% 2, 90 °C, 1,2-

dichloroethane, 20 bar 9:1 CO:H2).  

Entry substrate addit. conv.% alkane% isom.% ald.% n:iso 

1 allylbenzene - >99 27 12 61 2.6 

2 allylbenzene LiOTf >99 26 11 62 2.1 

3 2-allylanisole - >99 31 18 50 2.1 

4 2-allylanisole LiOTf >99 29 10 61 2.1 

5 allyl phenyl ether - >99 31 5 59 1.0 

6 allyl phenyl ether LiOTf >99 35 7 57 1.0 

 

We hypothesized that derivatives of allylbenzene with O-donors could enable 

chemoselectivity control by bridging the Li+ cation in between the substrate and the 

macrocycle. Under standard hydroformylation catalytic conditions (Scheme 3.8), after 18 h, 

2-allylanisole was found to undergo isomerization to a greater degree than allylbenzene, with 

an 18% yield of the isomerization product and aldehydes formed in 50% yield (Table 3.2, 
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entry 3). Allyl phenyl ether afforded 59% yield of aldehydes, with a 1.0 n:iso aldehyde ratio 

(Table 3.1, entry 5). With 2-allylanisole, in the presence of catalytic amounts (3 mol%) of 

LiOTf, the yield of aldehydes increased slightly to 61% (Table 3.1, entry 4), with the same 

n:iso ratio of 2.1 and a decrease in isomerization to 10%. In the case of allyl phenyl ether, 

product distribution remained essentially unchanged in the presence of LiOTf (Table 3.1, 

entry 6).  

Section 3.4 Identifying the Fate of the Iridium Pincer-Crown Ether Complex under         

 Hydroformylation Reaction Conditions 

 

In order to understand the origins of activity enhancement in the presence of LiOTf, 

we embarked on mechanistic studies to try to determine the active species during catalysis. 

Placing tetradentate complex 2 under 1 atm of CO in C6D5Cl led to initial formation of bis-

carbonyl species 3 (Ir–H δ −9.9) at room temperature. Heating this mixture to 90 °C to mimic 

catalytic conditions, a new iridium species was generated (10), featuring a singlet at δ 175 by 

31P{1H} NMR spectroscopy (Scheme 3.9). This product is consistently formed upon heating 

to 90 °C, including in the presence of 10% H2 relative to CO. By 1H NMR spectroscopy, it 

became apparent that the new complex had undergone remetallation to a bidentate species, 

with three new aromatic resonances at δ 6.4 (dd, JHH = 7.6, 1.9), 6.8 (d, JHH = 1.9 Hz), and 

7.8 (d, JHH = 7.5 Hz). The coupling between these protons was confirmed by a 1H-1H COSY 

NMR spectrum.  
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Scheme 3.9 Synthesis of iridium(I) bis-carbonyl species 10. 

Solid-state IR spectroscopy revealed the presence of two carbonyl ligands for 

complex 10, with CO stretching frequencies at 1989 and 2051 cm-1. These values are 

consistent with similar Ir(CO)2Cl(PR3) (R = Et, Cy, tBu, iPr) complexes.29 This finding, 

coupled with the 31P{1H} NMR resonance of δ 175, suggest that complex 10 is an Ir(I) 

species.26 Reductive elimination of the Ir–hydride onto the phenyl backbone of species 3, 

followed by C–H activation at the other position ortho to the phosphinite arm generates the 

bidentate, remetallated species. A presumably intermolecular deprotonation from an unbound 

aza-crown-ether group generates the observed Ir(I) species. That Ir(I) bis-carbonyl species 10 

exists in the protonated state is supported by the fact that addition of the base DBU (DBU = 

1,8-diazabicyclo[5.4.0]undec-7-ene) yielded a closely related product, tentatively assigned as 

neutral species κ2-(15c5NCOPiPr)Ir(CO)2, with a peak at δ 171 by 31P{1H} NMR spectroscopy.  
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To determine whether species 10 could be present during catalysis, we characterized 

the iridium species at the end of a typical hydroformylation reaction. A reactor loaded with 

allylbenzene and 0.3 mol% of tetradentate complex 2 was pressurized and heated under 

standard conditions (20 bar 9:1 H2:CO; 90 °C, 3 h). After venting, the solution was pumped 

to dryness under vacuum to afford a yellow oil. In C6D5Cl solution, 1H NMR spectroscopy 

revealed similar resonances to those of an authentic sample of 10. A closely-related singlet at 

δ 181 was observed by 31P{1H} NMR spectroscopy. Two CO stretches (νCO = 1985 and 2049 

cm-1) were observed by solid-state IR spectroscopy (Figure 3.6), closely matching those 

observed for authentic complex 10 (νCO = 1989 and 2051 cm-1). 

 

Figure 3.6 IR spectra of an authentic sample of 10 (red trace) and complex recovered 

after subjecting complex 2 to catalytic conditions (blue trace).  

 

Section 3.5 Hydroformylation of Allylbenzene with a Methoxy-Blocked Iridium 

 Pincer-Crown Ether Complex 

 

In light of the observed remetallation reactivity with 2, we turned our attention to the 

methoxy-blocked, tetradentate analogue, 5. Inclusion of a methoxy substituent in the pincer 
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ligand backbone resulted in an almost three-fold rate enhancement, as measured by the 

consumption of allylbenzene over time (Figure 3.7). After 3 h, 54% of allylbenzene was 

consumed. Aldehydes were generated in 31% yield, with a 2.2 n:iso ratio (Table 3.3, entry 

1). Propylbenzene and β-methylstyrene were formed in 15 and 8% yields, respectively.  

 

Figure 3.7 Consumption of allylbenzene over time with unblocked 2 (blue) and 

methoxy-blocked catalyst 5 (red), plotted as ln[allylbenzene] vs. time. 

Table 3.3 Hydroformylation of allylbenzene with methoxy-blocked complex 5. 

Yields determined by 1H NMR spectroscopy after 3 h under standard catalytic 

conditions (2.2 mmol allylbenzene, 0.3 mol% 5, 90 °C, 1,2-dichloroethane, 20 bar 9:1 

CO:H2). Unless otherwise noted, additives present in 2 mol%.  

Entry Addit. conv.% alkane% isom.% aldehydes% n:iso 

1 - 54 15 8 31 2.2 

2 LiOTf 76 21 11 44 2.6 

3 LiBArF4
[a] 45 10 19 16 1.9 

4 Li[Al(OC(CF3)3)4]
 [b] 45 10 20 16 2.0 

5 MgOTf2 34 11 7 16 2.0 

6 CeOTf4 57 9 43 5 0.6 

7 [PPN][OTf] 62 16 10 36 2.2 

[a] 0.4 mol%. [b] 0.7 mol%. 
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Catalytic amounts of LiOTf (2 mol%) enhanced the activity of methoxy-blocked 

complex 5, albeit to a lesser degree than with unblocked 2. The yield of aldehydes increased 

to 44%, with a similar n:iso ratio of 2.6 (Table 3.3, entry 2). The yields of propylbenzene and 

β-methylstyrene increased to 21 and 11%, respectively. LiOTf was the only additive found to 

effectively increase hydroformylation activity. In the presence of as low as 0.4 mol % 

LiBArF
4·2Et2O, over 50% of the allylbenzene substrate remained unreacted after 3 h (Table 

3.3, entry 3), with an enhancement in isomerization affording β-methylstyrene in 19% yield, 

at the expense of hydroformylation products (16% yield). Li[Al(OC(CF3)3)4] in 0.7 mol% 

loading afforded very similar numbers as LiBArF
4·2Et2O, similarly enhancing isomerization 

to the detriment of the yield of aldehydes.  

MgOTf2 (2 mol%) hindered activity (Table 3.3, entry 5), with 66% allylbenzene 

substrate remaining after 3 h, with only a 16% yield of aldehydes (vs. 31% in the absence of 

any additives). The n:iso ratio remain effectively unchanged at 2.0 relative to additive-free 

conditions (n:iso: 2.2). Ce(OTf)4 was found to drastically suppress hydroformylation and 

promote isomerization, affording 43% yield of β-methylstyrene (Table 3.3, entry 6). Only 5% 

yield of aldehydes was obtained in a 0.6 n:iso ratio. Propylbenzene resulting from 

hydrogenation was detected in 9% yield, with 43% of allylbenzene substrate remaining at the 

end of the reaction. [PPN][OTf] (PPN = bis(triphenylphosphine)iminium) in 2 mol% loading 

did lead to a slight enhancement in activity, with 38% allylbenzene remaining after 3 h, 

without affecting product distribution, Table 3.3, entry 7).  

The results summarized in Table 3.3 suggest that the combination of Li+ and –OTf 

increases the catalytic activity of complex 5 towards hydroformylation. Other Li+ salts, such 

as LiBArF
4 and Li[Al(OC(CF3)3)4], hinder hydroformylation in favor of isomerization. 
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Previous studies have shown that Li+ greatly enhances the isomerization of allylbenzene to β-

methylstyrene with iridium pincer-crown ether complexes.30 It is possible that the enhanced 

solubility in 1,2-dichloroethane of –BArF
4 and –[Al(OC(CF3)3)4] salts relative to LiOTf is 

inducing rapid isomerization at room temperature before pressurization and heating. OTf 

salts of Mg2+ and Ce4+ also decrease aldehyde chemoselectivity. In the presence of Ce(OTf)4, 

β-methylstyrene, resulting from isomerization, is the major product. 

In an effort to rationalize the effects observed in the presence of additives, the fate of 

methoxy-blocked complex 5 was tested under catalytic conditions. A reactor loaded with 

allylbenzene and 0.3 mol% 5 in 10 mL 1,2-dichloroethane. It was pressurized with 20 bar of 

a 9:1 mixture of CO:H2 and heated to 90 °C for 3 h. At this point it was cooled down and 

vented. The volatiles were removed under vacuum under gentle heating (60 °C). The residue 

was redissolved in CD2Cl2 and 1H and 31P{1H} NMR spectra were acquired. Tetradentate 

complex 5 was present in the 31P{1H} NMR spectrum, but the main phosphine-containing 

product after the reaction was a new, as-of-yet unidentified, species at δ 143.  

The hydride region in the 1H NMR spectrum confirmed the presence of 5, as well as 

additional minor hydride species further downfield (δ −9 to −13). A carbonyl stretch was 

detected by solid-state IR spectroscopy at 1954 cm−1 (Figure 3.8), suggesting that the major 

species during catalysis is a mono-carbonyl species. The cleaner reactivity displayed under 

catalytic conditions is a promising sign for the potential applicability of complex 5 in 

hydroformylation catalysis. Moving forward, it will be crucial to determine the fate of the 

more active, and seemingly more robust, complex 5, which bears a methoxy protecting 

group. 
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Figure 3.8 Solid-state IR spectrum obtained after subjecting methoxy-blocked 

complex 5 to catalytic conditions. The stretching frequency at 1720 cm−1 is attributed 

to residual aldehyde that was not removed under vacuum.  

Section 3.6 Hydroformylation of 1-octene with Rhodium Pincer-Crown Ether 

 Complexes 

 

We next focused our attention on rhodium-catalyzed hydroformylation. In order to 

mimic industrially relevant conditions for propylene hydroformylation, 1-octene was chosen 

as a model substrate. Typical reaction conditions included pincer-crown ether complexes of 

rhodium in 0.4 mol% loading, 20 bar of 1:1 CO:H2 in 0.75 mL toluene, ran at 95 °C for 1 h 

(Scheme 3.10).  The compositions of the reaction mixtures were analyzed by gas 

chromatography (GC) with mesitylene as an internal standard. Under these conditions, 

hydroformylation to n or iso aldehydes was accessible, in addition to hydrogenation to 

octane, isomerization to internal alkenes, as well as hydroformylation of internal alkenes to 

generate other branched aldehydes. 
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Scheme 3.10 Hydroformylation of 1-octene with rhodium pincer-crown ether 

complexes. Depicted in green are n and iso aldehyde products. Depicted in red are 

general structures for unproductive pathways of hydrogenation (octane) and 

isomerization (2-octene). Not depicted are other internal octene isomers or their 

corresponding hydroformylation products. 

Both κ4-(15c5NCOPiPr)Rh(H)(Cl) (6) and [κ5-(15c5NCOPiPr)Rh(H)][BArF
4] (7) were 

initially tested for 1-octene hydroformylation. Under typical catalytic conditions, both 6 and 

7 displayed similar activity (Table 3.4), affording ~65% yield of aldehydes in a 1.4 n:iso 

ratio, ~30% octane/octene isomers, and ~5% yield of other branched aldehydes. Under our 

quantification conditions, it was not possible to separate and individually quantify different 

octene isomers/octane or other branched aldehydes from one another.  

Table 3.4 Hydroformylation of 1-octene with rhodium complexes 6 and 7. Yields 

determined by GC after 1 h under standard catalytic conditions (0.6 mmol 1-octene, 

0.4 mol% catalyst, 95 °C, 0.75 mL toluene, 20 bar 1:1 CO:H2). Mesitylene added as 

an internal standard for quantification. n+iso reflects the yields of n-nonanal and 2-

Me-octanal. 

catalyst n+iso% n:iso octane/octenes% other aldehydes% 

6 66 1.4 32 2 
 7 68 1.4 26 6 
  

Isomerization to internal alkenes proved to be a challenging issue in the quantification 

of the n:iso ratios. Hydroformylation of 2-octene could also afford 2-Me-octanal, affecting 

the ratio via internal alkene hydroformylation, rather than by controlling 1-octene 

functionalization through steric profile modifications. In order to elucidate the degree of 
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isomerization, a set of control experiments was designed under different gas compositions 

(Scheme 3.11).  

 

Scheme 3.11 Control experiments for hydrogenation/isomerization under different 

gas compositions (20 bar N2, or 10 bar CO, or 10 bar H2). 4-octene not depicted. 

Under either N2 or CO, hydridochloride complex 6 and pentadentate hydride complex 

7 afforded similar product distributions (Table 3.5, entries 1-4). Between 80-90% of 1-octene 

substrate remained unreacted at the end of the reactions, along with 10-20% yield of 

isomerization/hydrogenation products. Pentadentate complex 5 displayed slightly higher 

activity under these conditions. In the presence of H2, 1-octene was almost completely 

consumed with either 6 or 7 (Table 3.5, entries 5 and 6). At the end of the reaction, ~10% of 

1-octene remained unreacted, with ~90% yield of isomerization and hydrogenation products. 

Under N2 and CO, light yellow solutions were obtained after pressurization/heating. On the 

other hand, under H2 alone, brown oils were observed in the reaction vials, a possible 

indicator of catalyst degradation to yield rhodium clusters. Rhodium carbonyl clusters, or 

even rhodium nanoparticles are known to be catalytically active for alkene hydrogenation 

and hydroformylation.31–33 

 

 

 

 



107 

 

Table 3.5 Quantification of isomerization/hydrogenation with complexes 6 and 7 

under different gas compositions. Yields determined by GC after 1 h under standard 

catalytic conditions (0.6 mmol 1-octene, 0.4 mol% catalyst, 95 °C, 0.75 mL toluene). 

Mesitylene added as an internal standard for quantification. 

Entry gas catalyst 1-octene% octenes/octane% 

1 N2 (20 bar) 6 89 11 

2 N2 (20 bar) 7 78 22 

3 CO (10 bar) 6 88 12 

4 CO (10 bar) 7 78 22 

5 H2 (10 bar) 6 8 92 

6 H2 (10 bar) 7 13 87 

 

Having established the extent of isomerization under different gas compositions, we 

sought to examine 2-Me-octanal production via 2-octene hydroformylation. Using either 6 or 

7 as the catalyst, 2-octene was subjected to standard catalytic conditions for 

hydroformylation (Scheme 3.12). Both 6 and 7 resulted in partial isomerization of 2-octene 

to terminal 1-octene and its subsequent hydroformylation to afford n-nonanal in 14 and 8% 

yields, respectively. With hydridochloride complex 6, 2-Me-octanal was produced in 28% 

yield and a 0.52 n:iso ratio (Table 3.6, entry 1). Other branched aldehydes were obtained in 

16% yield. Octene isomers and octane were detected in 41% yield, including unreacted 2-

octene that could not be independently quantified from the rest of the octene isomers. 

Complex 7 afforded a higher 42% yield of 2-Me-octanal (Table 3.6 entry 2), with an n:iso 

ratio of 0.20. Almost no octene isomers or octane were present after the reaction. This 

complex yielded higher numbers of other branched aldehydes, totaling 46%. 
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Scheme 3.12 Hydroformylation of 2-octene with rhodium pincer-crown ether 

complexes 6 or 7. Only 2-Me-octanal and 2-Et-heptanal branched aldehydes depicted. 

n-nonanal depicted as a possible product via isomerization of 2-octene to 1-octene. 

Not depicted are other branched aldehydes. 

Table 3.6 Hydroformylation of 2-octene with rhodium complexes 6 and 7. Yields 

determined by GC after 1 h under standard catalytic conditions (0.6 mmol 1-octene, 

0.4 mol% catalyst, 95 °C, 0.75 mL toluene, 20 bar 1:1 CO:H2). Mesitylene added as 

an internal standard for quantification.   

Entry catalyst 

octenes/octane

% n ald. % iso ald.% n:iso other ald.% 

1 6 41 14 28 0.52 16 

2 7 4 8 42 0.20 46 

 

In order to impart control over the regioselectivity for either linear or branched 

aldehydes, we envisioned expanding our portfolio of cationic additives beyond simple metal 

salts previously used with iridium. We expected ammonium additives with varying steric 

profiles to have greater effects on regioselectivity than simple metal cations upon binding to 

the crown. A family of butylammonium salts (Figure 3.9) was synthesized by protonating the 

corresponding amines with NH4PF6 in refluxing toluene.34 Ammonium-crown complexation 

is based on hydrogen bonding interactions between the N–H groups and the O atoms in the 

macrocycle.35 In order to maximize interactions between the additives and the crown, 

primary ammonium salts were targeted.  



109 

 

 

Figure 3.9 Butylammonium additives. 

With these additives in hand, a study was undertaken to determine their effects on 

hydroformylation regioselectivity with pentadentate complex 7. Addition of the ammonium 

salts (3-4 mol%), in combination with NaBArF
4 (2 mol%), led to a systematic decrease in the 

n:iso ratio with increasing steric bulk (Table 3.7, entries 2-4), all the way down to a ratio of 

1.0. The yields of the desired n and iso aldehydes also decreased in the presence of the 

ammonium additives, affording higher yields of other branched aldehydes. This could be 

indicative of a role of the additives in accelerating isomerization to internal alkenes, which in 

turn undergo hydroformylation to different branched aldehydes. In order to assess the role of 

the Na+ salt, [tBuNH3][PF6] was mixed with NaBArF
4 in toluene-d8. NMR spectroscopy 

suggests that anion-exchange takes place to yield toluene-soluble [tBuNH3][BArF
4]. 

31P{1H} 

NMR spectroscopy ruled out the presence of any phosphorus-containing species.  

Table 3.7 Hydroformylation of 1-octene with pentadentate 7 in the presence of 

[RNH3][PF6] and NaBArF
4. Ammonium PF6 salts were added in 3-4 mol% loading. 

Yields determined by GC after 1 h under standard catalytic conditions (0.6 mmol 1-

octene, 0.4 mol% 7, 95 °C, 0.75 mL toluene, 20 bar 1:1 CO:H2). Mesitylene added as 

an internal standard for quantification. n+iso reflects the yields of n-nonanal and 2-

Me-octanal. 

Entry 

RNH3
+ 

addit. NaBArF
4 conv.% 

octenes/ane 

% n+iso % n:iso 

other 

ald.% 

1 - - 98 26 67 1.4 6 

2 R = nBu 2 mol% 96 30 55 1.2 11 

3 R = sBu 2 mol% 96 30 54 1.1 12 

4 R = tBu 2 mol% 96 24 52 1.0 20 

5 - 2 mol% 96 46 32 1.2 19 
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The role of NaBArF
4 as an additive was also studied (Table 3.7, entry 5), resulting in 

a decrease in the n:iso ratio, as well as an increase in the yield of other branched aldehydes. 

The most pronounced effects imparted by NaBArF
4 were an increase in the degree of 

isomerization or hydrogenation from 26% to 46%, as well as a decrease in the total yield of 

the targeted n-nonanal and 2-Me-octanal products from 67% to 32% yield.  

The catalytic activity of [κ5-(MeO-15c5NCOPiPr)Rh(H)][BArF
4] (9) in hydroformylation 

was explored next. Complex 9 outperformed unblocked analogue 7, with a chemoselectivity 

for n and iso aldehydes of 96% and a 1.3 n:iso ratio (Table 3.8, entry 1). Alkene isomers 

were only formed in 4% yield and other branched aldehydes were present in less than 1% 

yield. In the presence of ammonium additives and NaBArF
4, selectivity for n and iso 

aldehydes dropped considerably to ~50% in all cases (Table 3.8, entries 2-4), along with a 

drop in the n:iso ratio to ~1.1. Approximately 5% of 1-octene substrate remained in the 

presence of additives. Olefin isomerization or hydrogenation was greatly accelerated in the 

presence of these additives, with ~45% yields of internal alkenes across the board.  

Table 3.8 Hydroformylation of 1-octene with methoxy-blocked pentadentate 9 in the 

presence of [RNH3][PF6]. Ammonium PF6 salts added in 3-4 mol% loading. Yields 

determined by GC after 1 h under standard catalytic conditions (0.6 mmol 1-octene, 

0.4 mol% 9, 95 °C, 0.75 mL toluene, 20 bar 1:1 CO:H2). Mesitylene added as an 

internal standard for quantification. n+iso reflects the yields of n-nonanal and 2-Me-

octanal. 

Entry 

RNH3
+ 

addit. NaBArF
4 conv.% 

octenes/ane

% 

n+iso 

% n:iso 

other 

ald.% 

1 - - >99 4 96 1.3 <1% 

2 R = nBu 2 mol% 95 42 53 1.1 <1% 

3 R = sBu 2 mol% 95 44 51 1.1 <1% 

4 R = tBu 2 mol% 96 43 52 1.0 <1% 
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With both unblocked and methoxy-blocked pentadentate complexes 7 and 9, n:iso 

ratios dropped in the presence of ammonium salts. However, these additives seemed to 

greatly enhance the rate of alkene isomerization. With unblocked 7, the yields of other 

branched aldehydes (products of internal alkene hydroformylation) increased to up to 20% 

(from 6% in the absence of any additives). In the case of methoxy-blocked 9, the yields of 

internal alkenes increased from 4% to 42-44%, at the expense of production of n-nonanal and 

2-Me-octanal. These studies suggest that the role of the additives in decreasing the n:iso ratio 

could primarily be due to their enhancing the rate of olefin isomerization. Hydroformylation 

of 2-octene also leads to formation of 2-Me-octanal, which could be decreasing the observed 

n:iso ratios.  

Section 3.7 Exploring the Fate of [κ5-(15c5NCOPiPr)Rh(H)][BArF
4] under 

Hydroformylation Conditions 

 

The fate of rhodium pincer-crown ether complexes in catalysis was studied next, in 

order to help understand the mechanism by which they operate, as well as the role that 

ammonium additives could be playing in affecting product selectivity. Aliquots (0.750 mL) 

of a solution of pentadentate complex 7 in toluene-d8 were placed in two Teflon-capped 

NMR tubes. One tube was further loaded with 0.090 mL of 1-octene, to mimic typical 

catalytic loadings (Scheme 3.14). 1H and 31P{1H} NMR spectra were acquired, confirming 

the presence of complex 7. The solutions were transferred to GC vials and placed in the HEL 

Cat18 reactor. They were then subjected to typical hydroformylation conditions, pressurized 

to 20 bar 1:1 CO:H2 and heated at 90 °C for 1 h. After cooling, the solutions were transferred 

to Teflon-capped NMR tubes under an inert N2 atmosphere. In both instances (with and 

without 1-octene) no signals corresponding to the rhodium complex were detected by 
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31P{1H} or 1H NMR spectroscopy (Figure 3.10). In the presence of 1-octene, both n-nonanal 

and 2-Me-octanal were present in the 1H NMR spectrum, with a 1.6 n:iso ratio closely 

matching the values determined by GC.  

 

Scheme 3.13 Catalyst stability studies with pentadentate complex 7. Samples were 

prepared under typical hydroformylation catalysis conditions, either with or without 

1-octene.  

 

Figure 3.10 31P{1H} NMR spectra obtained in toluene-d8 before and after subjecting 

complex 7 to hydroformylation conditions. Similar effects were observed with and 

without 1-octene.  
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NMR spectroscopic experiments also revealed that 1-octene triggers slow complex 

decomposition. Addition of 1-octene to a solution of complex 7 in toluene-d8 under typical 

concentrations of catalytic experiments resulted in slow loss of signal by 1H NMR 

spectroscopy over the course of several days (Figure 3.11).  

 

Figure 3.11 1H NMR spectra obtained over the course of several days after mixing 1-

octene and complex 7 in toluene-d8. 

Although ammonium additives seem to affect control over regioselectivity in 

hydroformylation, at present it is not clear if this is due to steric control, or a simple rate 

enhancement of alkene isomerization. Given the propensity of rhodium pincer-crown ether 

complexes to undergo decomposition under catalytic conditions, even in the presence of 

substrate at room temperature, or under 1 atm of CO, it is clear that different avenues are to 

be pursued to access industrially-relevant catalysts. Phosphine ligands that form more robust 

molecular catalysts, with sites for additives to promote regioselectivity control, are currently 

being targeted.  
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Section 3.8 Experimental Details 

General Considerations. Unless otherwise noted, all manipulations were carried out using 

standard Schlenk or glovebox techniques under a N2 atmosphere. Under standard glovebox 

operating conditions, pentane, diethyl ether, benzene, toluene, and tetrahydrofuran were used 

without purging, such that traces of those solvents were present in the atmosphere and in the 

solvent bottles. 1H, 31P, 19F, and 13C spectra were recorded on 400, 500 or 600 MHz 

spectrometers at 298 K. NMR solvents were purchased from Cambridge Isotopes 

Laboratories, Inc. Dichloromethane-d2 (CD2Cl2), C6D5Cl, and toluene-d8 were freeze-pump-

thaw degassed three times before drying by passage through a small column of activated 

alumina. 1H and 13C chemical shifts are reported in ppm relative to residual proteo solvent 

resonances. 31P chemical shifts are reported relative to 85% H3PO4 external standard (δ 0). 

The compounds (15c5NCOPiPr)H,28 (MeO-15c5NCOPiPr)H,16 κ3-(15c5NCOPiPr)Ir(H)(CO)(Cl),26 κ3-

(MeO-15c5NCOPiPr)Ir(H)(CO)(Cl),16 [Rh(COE)2Cl]2,
36 NaBArF

4,
37 LiBArF

4·3Et2O,28 

Li[Al(OC(CF3)3)4],
38 [nBuNH3][PF6],

34 [sBuNH3][PF6],
34 and [tBuNH3][PF6]

34 were 

synthesized as previously reported. All other reagents were commercially available and used 

without further purification. GC analysis was performed on a Agilent 6890 GC equipped 

with a HP-1 column (100 m × 0.25 mm I.D. × 0.50 μm film thickness), using GC 

ChemStation software. Elemental analyses were performed by Robertson Microlit Labs 

(Ledgewood, NJ).  Infrared spectroscopy was carried out with a Thermo Scientific Nicolet 

iS5 FT-IR equipped with Quest Single Reflection ATR Accessory. High temperature and 

pressure catalysis was performed with a stainless steel HEL Cat18 parallel pressure autoclave 

or a Parr Series 5000 Multiple Reactor System operated by a Parr 4871 Process Controller 

equipped with six reactors with internal stirring.  Each Parr reactor is individually pressure- 
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and temperature-controlled with maximum operating limits of 3000 psi (200 bar) and 300 °C. 

Each reactor is monitored by computer software SpecView 32. Single-crystal X-ray 

diffraction data were collected on a Bruker APEX-II CCD diffractometer at 100 K with Cu 

Kα radiation (λ = 1.54175 Å). Structures were solved using SHELXT and refined using 

SHELXL39,40 software package within OLEX2.41 

Synthesis of [κ4-(15c5NCOPiPr)Ir(H)(CO)][BArF
4] (2). A 20-mL scintillation vial was 

charged with κ3-(15c5NCOPiPr)Ir(H)(CO)(Cl) (0.0522 g, 0.0749 mmol), NaBArF
4 (0.0732 g, 

0.0826 mmol), and CH2Cl2 (8 mL). The resulting yellow slurry was stirred for 17 h. The 

mixture was filtered, and the light-golden-yellow filtrate was concentrated to ~1 mL under 

vacuum. Pentane (5 mL) was added, and the solvent was removed under vacuum, affording 2 

as an off-white solid (0.0997 g, 87% yield). Single crystals suitable for X-ray diffraction 

were grown by slow evaporation of an Et2O solution of 2 into (Me3Si)2O. 1H NMR (600 

MHz, CD2Cl2): δ −25.67 (d, J = 21.4 Hz, 1H, Ir–H), 0.92 (dd, J = 16.8, 7.0 Hz, 3H, 

CH(CH3)2), 1.05 (dd, J = 20.9, 6.9 Hz, 3H, CH(CH3)2), 1.38 (dd, J = 18.9, 7.5 Hz, 3H, 

CH(CH3)2), 1.44 (dd, J = 14.8, 6.8 Hz, 3H, CH(CH3)2), 2.55 (overlapping m, 2H, CH(CH3)2), 

3.06 (m, 1H, crown-CH2), 3.58 (m, 9H, crown-CH2), 3.78 (m, 4H, crown-CH2), 3.93 (m, 1H, 

crown-CH2), 4.01 (m, 2H, crown-CH2), 4.18 (m, 1H, crown-CH2), 4.28 (m, 2H, crown-CH2), 

4.58 (dd, J = 15.6, 2.9 Hz, 1H, ArCHHN), 4.63 (d, J = 15.7 Hz, 1H, ArCHHN), 6.80 (d, J = 

7.7 Hz, 1H, Ar–H), 6.82 (d, J = 8.3 Hz, 1H, Ar–H), 7.07 (t, J = 7.8 Hz, 1H, Ar–H), 7.56 (s, 

4H, p-B-Ar-H), 7.72 (s, 8H, o-B-Ar-H). 13C{1H} NMR (151 MHz, CD2Cl2): δ 16.12 (d, J = 

4.7 Hz, CH(CH3)2), 17.37 (d, J = 2.3 Hz, CH(CH3)2), 17.86 (d, J = 4.0 Hz, CH(CH3)2), 18.20 

(d, J = 6.3 Hz, CH(CH3)2), 29.69 (d, J = 38.9 Hz, CH(CH3)2), 31.93 (d, J = 36.0 Hz, 

CH(CH3)2), 66.13 (d, J = 1.4 Hz, crown-CH2), 67.50 (s, crown-CH2), 69.08 (s, crown-CH2), 
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69.42 (d, J = 2.0 Hz, crown-CH2), 70.52 (d, J = 2.4 Hz, crown-CH2), 70.66 (s, crown-CH2), 

70.83 (s, crown-CH2), 71.75 (s, crown-CH2), 73.12 (s, crown-CH2), 75.69 (d, J = 1.4 Hz, 

ArCH2N), 78.56 (s, crown-CH2), 110.16 (d, J = 12.3 Hz, CAr), 115.57 (s, CAr), 117.87 (p, J = 

4.1 Hz, p-CH, BArF), 124.99 (q, J = 272.4 Hz, CF3, BArF), 129.05 (s, CAr), 129.26 (qdd, J = 

31.2, 5.8, 2.9 Hz, C–CF3, BArF), 135.19 (s, o-CH, BArF), 145.87 (d, J = 5.0 Hz, CAr), 152.27 

(d, J = 3.3 Hz, CAr), 162.14 (dd, J = 99.7, 49.9 Hz, B–C, BArF), 162.80 (d, J = 1.4 Hz, CAr), 

183.35 (s, Ir–CO). 31P{1H} NMR (243 MHz, CD2Cl2): δ 152.77. IR (solid): νCO = 2041 cm−1. 

Anal. Calcd for C56H52BF24IrNO6P: C, 44.11; H, 3.44; N, 0.92. Found: C, 44.38; H, 3.28; N, 

0.95. 

 

Figure 3.12 1H NMR spectrum of [κ4-(15c5NCOPiPr)Ir(H)(CO)][BArF
4] (2) in CD2Cl2. 
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Figure 3.13 13C{1H} NMR spectrum of [κ4-(15c5NCOPiPr)Ir(H)(CO)][BArF
4] (2) in 

CD2Cl2. 

 

Figure 3.14 31P{1H} NMR spectrum of [κ4-(15c5NCOPiPr)Ir(H)(CO)][BArF
4] (2) in 

CD2Cl2. 
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Synthesis of [κ3-(15c5NCOPiPr)Ir(H)(CO)2][BArF
4] (3). A sample of 2 was dissolved in 

CDCl3 and transferred to a Teflon-capped NMR tube. The tube was freeze-pump-thaw 

degassed three times, and 1 atm CO was added at room temperature. After 30 min, an 

equilibrium mixture of 2 and 3 was apparent by NMR spectroscopy. Backfilling again with 

CO saw further conversion to 87%. Complex 3 is stable only under a CO atmosphere, so this 

product was not isolated. 1H NMR (600 MHz, CDCl3): δ −9.42 (d, J = 20.8 Hz, 1H, Ir–H), 

1.07−1.14 (m, 6H, CH(CH3)2), 1.15−1.26 (m, 6H, CH(CH3)2), 2.52 (m, 2H, CH(CH3)2, 

3.56−3.82 (m, 14H, crown-CH2), 3.83−3.92 (m, 2H, crown-CH2), 4.03 (m, 1H, crown-CH2), 

4.21 (m, 1H, crown-CH2), 4.46 (d, J = 14.7 Hz, 1H, ArCHHN), 4.59 (dd, J = 14.7, 3.43 Hz, 

1H, ArCHHN), 6.85 (d, J = 8.2 Hz, 1H, Ar–H) 6.99 (d, J = 7.0 Hz, 1H, Ar–H), 7.08 (m, 1H, 

Ar–H). 13C{1H} NMR (151 MHz, CDCl3): δ 16.45 (s, CH(CH3)2), 16.61 (s, CH(CH3)2), 

17.29 (d, J = 2.6 Hz, CH(CH3)2), 17.43 (d, J = 3.4 Hz, CH(CH3)2), 30.64 (d, J = 42.1 Hz, 

CH(CH3)2), 33.88 (d, J = 34.8 Hz, CH(CH3)2), 67.14 (s, crown-CH2), 67.55 (s, crown-CH2), 

67.71 (s, crown-CH2), 69.76 (s, crown-CH2), 69.89 (s, crown-CH2), 70.07 (s, crown-CH2), 

70.27 (s, crown-CH2), 70.48 (s, crown-CH2), 70.48 (s, crown-CH2), 70.55 (s, crown-CH2), 

70.95 (s, ArCH2N), 111.02 (d, J = 12.3 Hz, CAr), 117.44 (p, J = 11.7 Hz, p-CH, BArF), 119.3 

(s, CAr), 124.52 (q, J = 272.5 Hz, CF3, BArF), 128.7 (s, CAr), 128.76 (qdd, J = 31.5, 5.9, 2.9 

Hz, C–CF3, BArF), 129.87 (d, J = 4.0 Hz, CAr), 134.76 (s, o-CH, BArF), 145.37 (d, J = 2.0 

Hz, CAr), 161.13 (s, CAr), 161.54 (dd, J = 100.7, 48.67 Hz, B–C, BArF), 168.51 (d, J = 2.9 

Hz, trans-CO), 169.81 (s, cis-CO). 31P{1H} NMR (243 MHz, C6D5Cl): δ 152.80. IR 

(CH2Cl2): νCO 2099, 2062 cm−1. 
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TMS	

CDCl3	

 

Figure 3.15 1H NMR spectrum of [κ3-(15c5NCOPiPr)Ir(H)(CO)2][BArF
4] (3) in CDCl3. 

Equilibrium formation of trace amounts of κ4-[(15c5NCOPiPr)Ir(H)(CO)][BArF
4] (2) is 

observed. 

TMS	

CDCl3	

 

Figure 3.16 13C{H} NMR spectrum of [κ3-(15c5NCOPiPr)Ir(H)(CO)2][BArF
4] (3) in 

CDCl3. Equilibrium formation of trace amounts of κ4-

[(15c5NCOPiPr)Ir(H)(CO)][BArF
4] (2) is observed. 
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Figure 3.17 31P{1H} NMR spectrum of [κ3-(15c5NCOPiPr)Ir(H)(CO)2][BArF
4] (3) in 

C6D5Cl (δ 152.80). κ4-[(15c5NCOPiPr)Ir(H)(CO)][BArF
4] (2) also observed (δ 151.14). 

Synthesis of [κ4-(MeO-15c5NCOPiPr)Ir(H)(CO)][BArF
4] (5). A 20-mL scintillation vial was 

charged with κ3-(MeO-15c5NCOPiPr)Ir(H)(CO)(Cl) (0.3375 g, 0.4641 mmol), NaBArF
4 (0.4523 

g, 0.5104 mmol), and CH2Cl2 (18 mL). The resulting yellow slurry was stirred for 17 h. The 

mixture was filtered, and the amber-yellow filtrate was concentrated to ~1 mL under vacuum. 

Pentane (10 mL) was added, and the solvent was removed under vacuum, affording 5 as a 

yellow solid (0.4941 g, 68% yield). 1H NMR (600 MHz, CD2Cl2): δ −25.65 (d, J = 21.4 Hz, 

1H, Ir–H), 0.93 (dd, J = 16.7, 6.9 Hz, 3H, CH(CH3)2), 1.06 (dd, J = 20.8, 6.9 Hz, 3H, 

CH(CH3)2), 1.44 (ddd, J = 26.4, 16.8, 7.2 Hz, 6H, CH(CH3)2), 2.48 – 2.67 (overlapping m, 

2H, CH(CH3)2), 3.04 (dd, J = 14.0, 4.1 Hz, 1H, crown-CH2), 3.46 – 4.34 (m, 22H, 

overlapping crown-CH2 and O–CH3), 4.56 (overlapping m, 2H, ArCH2N), 6.68 (d, J = 8.2 

Hz, 1H, Ar–H), 6.79 (d, J = 8.2 Hz, 1H, Ar–H), 7.56 (s, 4H s, 4H, p-B-Ar-H), 7.72 (p, J = 
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2.2 Hz, 8H o-B-Ar-H). 31P{1H} NMR (162 MHz, CD2Cl2): δ 152.81. IR (solid): νCO = 2047 

cm−1. 

 

Figure 3.18 1H NMR spectrum of [κ4-(MeO-15c5NCOPiPr)Ir(H)(CO)][BArF
4] (5) in 

CD2Cl2. 
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Figure 3.19 31P{1H} NMR spectrum of [κ4-(MeO-15c5NCOPiPr)Ir(H)(CO)][BArF
4] (5) 

in CD2Cl2.  

 

Synthesis of κ4-(15c5NCOPiPr)Rh(H)(Cl) (6). [Rh(COE)2Cl]2 (0.1151 g, 0.1604 mmol) was 

dissolved in 5 mL toluene. (15c5NCOPiPr)H (0.1434 g, 0.3248 mmol) was dissolved in 5 mL 

toluene in a separate vial. The (15c5NCOPiPr)H solution was added to the orange solution of 

rhodium dimer. The resulting solution turned light yellow over the course of several minutes. 

After stirring at room temperature for 15 h, the solvent was reduced to ~1 mL under vacuum. 

The product precipitated as an off-white solid upon addition of pentane (5 mL). The yellow 

supernatant was decanted and the off-white solid was further washed with 3 mL pentane and 

dried under vacuum (0.1393 g, 75% yield).  1H NMR (600 MHz, CD2Cl2): δ −22.90 (dd, J = 

36.2, 27.0 Hz, 1H, Rh–H), 1.00 (dd, J = 16.0, 6.9 Hz, 3H, CH(CH3)2), 1.23 (dd, J = 19.0, 7.0 

Hz, 3H, CH(CH3)2), 1.38 (dd, J = 13.9, 7.0 Hz, 3H, CH(CH3)2), 1.45 (dd, J = 16.4, 7.4 Hz, 

3H, CH(CH3)2), 2.38 (dhd, J = 13.8, 7.7, 6.9, 1.5 Hz, 1H, CH(CH3)2), 2.58 (dhept, J = 9.4, 

7.3 Hz, 1H, CH(CH3)2), 2.94–3.01 (m, 1H, crown-CH2), 3.17 (dd, J = 15.1, 3.6 Hz, 1H, 
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crown-CH2), 3.35 (ddd, J = 11.1, 3.3, 1.3 Hz, 1H, crown-CH2), 3.44 (ddd, J = 10.5, 7.0, 1.4 

Hz, 1H, crown-CH2), 3.50 (ddd, J = 12.0, 6.9, 1.3 Hz, 1H, crown-CH2), 3.58–3.81 (m, 10H, 

crown-CH2), 3.98–4.06 (m, 2H, crown-CH2), 4.15–4.21 (m, 2H, overlapping ArCHHN and 

crown-CH2), 4.42 (d, J = 15.7 Hz, 1H, ArCHHN), 4.66 (dd, J = 15.2, 10.8 Hz, 1H, crown-

CH2), 4.84–4.94 (m, 1H, crown-CH2), 6.51 (d, J = 7.8 Hz, 1H, Ar–H), 6.57 (d, J = 7.5 Hz, 

1H, Ar–H), 6.77 (t, J = 7.7 Hz, 1H, Ar–H). 13C{1H} NMR (151 MHz, CD2Cl2): δ 16.62 (d, J 

= 2.7 Hz, CH(CH3)2), 17.11 (d, J = 2.9 Hz, CH(CH3)2), 17.42 (d, J = 8.0 Hz, CH(CH3)2), 

18.00 (s, CH(CH3)2, 28.81 (dd, J = 31.5, 3.7 Hz, CH(CH3)2), 31.30 (d, J = 23.6 Hz, 

CH(CH3)2), 63.01 (d, J = 2.7 Hz, crown-CH2), 63.63 (s, crown-CH2), 67.35 (d, J = 2.3 Hz, 

crown-CH2), 69.51 (s, crown-CH2), 69.86 (s, crown-CH2), 70.68 (s, ArCH2N), 70.76 (s, 

crown-CH2), 70.96 (s, crown-CH2), 72.22 (s, crown-CH2), 72.89 (s, crown-CH2), 75.26 (s, 

crown-CH2), 108.18 (d, J = 12.9 Hz, CAr), 114.48 (s, CAr), 124.00 (s, CAr), 148.44 (dd, J = 

30.8, 7.0 Hz, CAr), 150.61 (s, CAr), 163.21 (dd, J = 5.3, 1.9 Hz, CAr). 
31P{1H} NMR (243 

MHz, CD2Cl2): δ 197.80 (d, J = 167.0 Hz). 
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Figure 3.20 1H NMR spectrum of κ4-(15c5NCOPiPr)Rh(H)(Cl) (6) in CD2Cl2. 

 

Figure 3.21 13C{1H} NMR spectrum of κ4-(15c5NCOPiPr)Rh(H)(Cl) (6) in CD2Cl2. 
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Figure 3.22 31P{1H} NMR spectrum of κ4-(15c5NCOPiPr)Rh(H)(Cl) (6) in CD2Cl2. 

Synthesis of [κ5-(15c5NCOPiPr)Rh(H)][BArF
4] (7). A scintillation vial was charged with 

0.0200 g (0.0345 mmol) of 6 and 0.0309 g (0.0349 mmol) of NaBArF
4. CH2Cl2 (5 mL) was 

added and the resulting slurry was allowed to stir for 18 h. The mixture was filtered and the 

volume of the pale yellow filtrate was reduced to ~1 mL under vacuum. Pentane (5 mL) was 

added and the solvent was pumped down under vacuum with vigorous stirring, yielding 7 as 

a white solid (0.0465 g, 96% yield). 1H NMR (600 MHz, CD2Cl2): δ −21.59 (dd, J = 34.7, 

28.3 Hz, 1H, Rh–H), 1.10 – 1.19 (m, 6H, CH(CH3)2), 1.23 – 1.29 (m, 3H, CH(CH3)2), 1.35 

(dd, J = 14.5, 7.1 Hz, 3H, CH(CH3)2), 2.41 (dh, J = 14.3, 7.0 Hz, 2H, CH(CH3)2), 3.05 (dq, J 

= 14.2, 3.4 Hz, 1H, crown-CH2), 3.30 (dt, J = 13.6, 4.1 Hz, 1H, crown-CH2), 3.41 (ddd, J = 

14.7, 11.0, 4.0 Hz, 1H, crown-CH2), 3.49 (dt, J = 11.0, 3.8 Hz, 1H, crown-CH2), 3.55 – 3.72 

(m, 4H, crown-CH2), 3.80 (dddd, J = 16.7, 13.8, 8.5, 2.8 Hz, 4H, crown-CH2), 3.87 – 4.19 

(m, 8H, overlapping ArCHHN and crown-CH2), 4.24 (ddd, J = 12.5, 8.5, 4.0 Hz, 1H, crown-
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CH2), 4.31 (d, J = 16.0 Hz, 1H, ArCHHN), 6.60 (d, J = 7.9 Hz, 1H, Ar–H), 6.64 (d, J = 7.6 

Hz, 1H, Ar–H), 6.90 (t, J = 7.8 Hz, 1H, Ar–H), 7.57 (s, 4H, p-B-Ar-H), 7.73 (dt, J = 4.7, 2.2 

Hz, 8H, o-B-Ar-H). 13C{1H} NMR (151 MHz, CD2Cl2): δ 16.29 (s, CH(CH3)2), 16.34 (d, J = 

2.0 Hz, CH(CH3)2), 16.82 (s, CH(CH3)2), 18.10 (s, CH(CH3)2), 28.28 (dd, J = 34.1, 2.9 Hz, 

CH(CH3)2)), 31.05 (d, J = 24.5 Hz, CH(CH3)2), 59.72 (s, crown-CH2), 61.63 (d, J = 2.5 Hz, 

crown-CH2), 65.80, 67.51 (s, crown-CH2), 67.59 (s, crown-CH2), 70.36 (s, crown-CH2), 

71.25 (s, crown-CH2), 72.00 (s, crown-CH2), 72.87 (s, crown-CH2), 73.48 (s, crown-CH2), 

76.98 (s, crown-CH2), 109.97 (d, J = 12.4 Hz, CAr), 117.14 (s, CAr), 117.89 (p, J = 4.1 Hz, p-

CH, BArF), 125.02 (q, J = 272.4 Hz, CF3, BArF), 125.88 (s, CAr), 129.28 (qdd, J = 31.6, 5.9, 

2.8 Hz, C–CF3, BArF), 135.22 (s, o-CH, BArF), 136.03 – 136.55 (m, CAr), 147.45 (s, CAr), 

162.16 (dd, J = 99.8, 49.9 Hz, B–C, BArF), 163.28 (s, CAr). 
31P{1H} NMR (243 MHz, 

CD2Cl2): δ 192.67 (d, J = 163.8 Hz). 

 

Figure 3.23 1H NMR spectrum of [κ5-(15c5NCOPiPr)Rh(H)][BArF
4] (7) in CD2Cl2. 
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Figure 3.24 13C{1H} NMR spectrum of [κ5-(15c5NCOPiPr)Rh(H)][BArF
4] (7) in 

CD2Cl2. 

 

Figure 3.25 31P{1H} NMR spectrum of [κ5-(15c5NCOPiPr)Rh(H)][BArF
4] (7) in 

CD2Cl2. 
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Synthesis of κ4-(MeO-15c5NCOPiPr)Rh(H)(Cl) (8). [Rh(COE)2Cl]2 (0.0711 g, 0.0991 mmol) 

was dissolved in 5 mL toluene. (MeO-15c5NCOPiPr)H (0.0935 g, 0.198 mmol) was dissolved in 

5 mL toluene in a separate vial. The (MeO-15c5NCOPiPr)H solution was added to the orange 

solution of rhodium dimer. The solution turned light yellow over the course of several 

minutes. After stirring at room temperature for 15 h, the solvent was reduced to ~1 mL under 

vacuum. The product precipitated as a white solid upon addition of pentane (5 mL). The 

yellow supernatant was decanted. The white solid was further washed with 3 mL pentane and 

dried under vacuum (0.0558 g, 46% yield).  1H NMR (500 MHz, toluene-d8): δ −22.60 (m, 

1H), 1.07 (dt, J = 16.1, 8.5 Hz, 3H), 1.19 – 1.37 (m, 6H), 1.42 (dd, J = 16.4, 7.4 Hz, 3H), 

2.14 – 2.28 (m, 1H), 2.50 (m, 1H), 2.72 – 2.91 (m, 2H), 3.04 (dd, J = 22.0, 10.5 Hz, 2H), 

3.12 – 4.09 (m, 18H), 4.77 (d, J = 13.7 Hz, 1H), 5.10 – 5.30 (m, 1H), 6.40 (m, 2H). 31P{1H} 

NMR (202 MHz, toluene-d8) δ 198.27 (d, J = 167.9 Hz). 

 

Figure 3.26 1H NMR spectrum of κ4-(MeO-15c5NCOPiPr)Rh(H)(Cl) (8) in toluene-d8. 
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Figure 3.27 31P{1H} NMR spectrum of κ4-(MeO-15c5NCOPiPr)Rh(H)(Cl) (8) in toluene-

d8. 

 

Synthesis of [κ5-(MeO-15c5NCOPiPr)Rh(H)][BArF
4] (9). A scintillation vial was charged with 

0.0208 g (0.0341 mmol) of 8 and 0.0320 g (0.0361 mmol) of NaBArF
4. CH2Cl2 (5 mL) was 

added and the resulting slurry was allowed to stir for 18 h. The mixture was filtered and the 

volume of the light pink filtrate was reduced to ~1 mL under vacuum. Pentane (5 mL) was 

added and the solvent was pumped down under vacuum with vigorous stirring, yielding 9 as 

a light pink solid in quantitative yield.1H NMR (600 MHz, toluene-d8) δ −22.03 (dd, J = 

35.1, 28.3 Hz, 1H), 0.64 (dd, J = 19.8, 7.1 Hz, 3H), 0.79 (dd, J = 16.6, 6.8 Hz, 3H), 0.95 

(ddd, J = 22.7, 15.3, 7.1 Hz, 6H), 1.81 – 1.91 (m, 2H), 1.98 – 2.03 (m, 1H), 2.33 – 2.49 (m, 

3H), 2.66 (ddt, J = 29.9, 12.9, 3.6 Hz, 2H), 2.77 – 2.90 (m, 2H), 2.92 – 3.31 (m, 10H), 3.33 – 

3.44 (m, 6H), 3.47 – 3.54 (m, 1H), 6.25 – 6.33 (m, 2H), 7.67 (s, 4H), 8.23 – 8.30 (m, 8H). 

31P{1H} NMR (243 MHz, toluene-d8) δ 193.02 (d, J = 162.8 Hz). 
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Figure 3.28 1H NMR spectrum of [κ5-(MeO-15c5NCOPiPr)Rh(H)][BArF
4] (9) in toluene-

d8. 

 

Figure 3.29  31P{1H} NMR spectrum of [κ5-(MeO-15c5NCOPiPr)Rh(H)][BArF
4] (9) in 

toluene-d8. 
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Synthesis of [κ2-(15c5N(H)COPiPr)Ir(CO)2][BArF
4]  (10). κ4-

(15c5NCOPiPr)Ir(H)(CO)][BArF
4] (2) (0.0503 g, 0.0330 mmol) was dissolved in 0.5 mL 

C6D5Cl and placed in a Teflon-capped NMR tube. The solution was freeze-pump-thaw 

degassed three times before being back-filled with CO and set to heat at 90 °C for 22 h. 

31P{1H} and 1H NMR spectroscopy showed almost-complete (>95%) consumption of 2 to 

afford 10 as the major species, with minor products observed in the 31P{1H} NMR spectrum. 

Analytically pure complex was not isolated. Similar reactivity was observed in the presence 

of 9:1 mixtures of CO:H2. 
1H NMR (500 MHz, C6D5Cl): δ 0.86 (d, J = 7.1 Hz, 3H, 

CH(CH3)2), 0.89 – 0.97 (m, 9H, CH(CH3)2), 1.95 (hept, J = 6.8 Hz, 2H, CH(CH3)2), 2.18 (dq, 

J = 11.8, 3.7, 2.8 Hz, 2H, crown-CH2), 2.67 (ddd, J = 12.3, 8.0, 3.7 Hz, 2H, crown-CH2), 

2.97 – 3.44 (m, 16H, crown-CH2), 3.80 (s, 2H, ArCH2N), 6.39 (dd, J = 7.6, 1.9 Hz, 1H, Ar–

H), 6.81 (d, J = 1.9 Hz, 1H, Ar–H), 7.60 (s, 4H, p-B-Ar-H), 7.79 (d, J = 7.5 Hz, 1H, Ar–H), 

8.23 (dt, J = 4.9, 2.2 Hz, 8H, o-B-Ar-H). 31P{1H} NMR (202 MHz, C6D5Cl): δ 174.83. IR 

(solid): νCO = 1989 and 2051 cm−1.  
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Figure 3.30 1H NMR spectrum of [κ2-(15c5N(H)COPiPr)Ir(CO)2][BArF
4] (10) in 

C6D5Cl. 

 

Figure 3.31 31P{1H} NMR spectrum of [κ2-(15c5N(H)COPiPr)Ir(CO)2][BArF
4] (10) in 

C6D5Cl. 



133 

 

Iridium Pincer-Crown Ether-Catalyzed Hydroformylation using the Series 5000 Parr 

Multireactor System. CAUTION: When working with CO gas, especially under high 

pressures, the use of CO monitors is recommended. These experiments were conducted with 

a personal monitor worn on the researcher’s lab coat at all times and an additional monitor 

located near the syngas cylinder. All catalytic loadings were performed in a glovebox with 

degassed 1,2-dichloroethane. A stock solution of the desired iridium catalyst was prepared in 

1,2-dichloroethane such that 1 mL was added to each reactor (0.0073 mmol/reactor). For 

example, 0.0797 g [κ4-(MeO-15c5NCOPiPr)Ir(H)(CO)][BArF
4] (5) was dissolved in 7 mL of 1,2-

dichloroethane and 1 mL aliquots of this stock solution were added to each of the six 

reactors. Next, 2.2 mmol of the corresponding substrate was added, along with the 

appropriate Lewis acid or ammonium salt. Additional 1,2-dichloroethane (9 mL) was added 

to each reactor. The reactor and vessel heads were secured in the box under N2 atmosphere, 

and the sealed reactors were removed and connected to the multireactor system. The reactor 

manifold was purged with a 9:1 mixture of CO:H2 and each vessel was subjected to three 

pressurization-venting cycles (5-10 bar) to ensure full replacement of the N2 headspace with 

CO:H2. The vessels were then pressurized to 20 bar with the 9:1 mixture of CO:H2 and the 

temperature was set utilizing the SpecView 32 software. The t = 0 of the reaction was chosen 

as the time when the reactor vessels reached their set temperature. After the given reaction 

time, the vessels were cooled in an ice bath before venting the gas slowly. Once vented, 

0.025 mL (0.12 mmol) hexamethyldisiloxane (HMDSO) was added directly as NMR 

standard via syringe. The reactor was shaken and a ~500 µL aliquot was removed and placed 

in an NMR tube fitted with a C6D6 capillary. 1H NMR spectra were obtained utilizing a delay 
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time of 10 seconds per scan. Product yields were determined by integration relative to 

HMDSO. 

 

Figure 3.32 Typical 1H NMR spectrum after multireactor catalysis. Conditions: 1,2-

dichloroethane solution containing HMDSO internal standard and a C6D6 capillary. 

The product peaks are set to the representative number of protons (1H for each 

aldehyde product or alkene proton, or 3 H for propylbenzene) and relative integration 

against HMDSO internal standard is used to calculate the mmol of products: 

 

Studies on the Fate of Iridium Catalysts. Reactors were loaded with allylbenzene (2.2 

mmol) and 0.3 mol% of unblocked complex 2. The reactor was pressurized and heated under 

standard conditions (20 bar 9:1 H2:CO; 90 °C, 3 h). After venting, the solution was pumped 

to dryness under vacuum to afford a yellow oil. In C6D5Cl solution, 1H NMR spectroscopy 
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revealed similar resonances to those of an authentic sample of 10. A closely-related singlet at 

δ 181 was observed 31P{1H} NMR spectroscopy. Two CO-stretching frequencies (νCO = 

1985 and 2049 cm-1) were observed by solid-state IR spectroscopy, closely matching those 

observed for authentic complex 10 (νCO = 1989 and 2051 cm-1). 

 

Figure 3.33 1H NMR spectrum in C6D5Cl acquired after a catalytic allylbenzene 

hydroformylation run with complex 2 as a catalyst.  
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Figure 3.34 31P{1H} NMR spectrum in C6D5Cl acquired after a catalytic allylbenzene 

hydroformylation run with complex 2 as a catalyst. 

A similar experiment was conducted with methoxy-blocked complex 5. Trace 

amounts of hydrides were present in the 1H NMR spectrum. One major species was observed 

in the 31P{1H} NMR spectrum at δ 143. A carbonyl stretching frequency was present in the 

solid-state IR spectrum at 1954 cm−1 (Figure 3.7).  
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Figure 3.35 1H NMR spectrum in CD2Cl2 acquired after a catalytic allylbenzene 

hydroformylation run with complex 5 as a catalyst.  

 

Figure 3.36 31P{1H} NMR spectrum in CD2Cl2 acquired after a catalytic allylbenzene 

hydroformylation run with complex 5 as a catalyst. 
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Rhodium Pincer-Crown Ether-Catalyzed Hydroformylation using the HEL Cat18 

Reactor. These experiments were conducted with a personal monitor worn on the 

researcher’s lab coat at all times and a ToxgardII CO detector located near the syngas 

cylinder. All catalytic loadings were performed in a glovebox with degassed toluene. A stock 

solution of the desired rhodium catalyst was prepared in toluene such that 0.75 mL was 

added to a GC vial (0.0024 mmol/vial). For example, 0.0099 g [κ5-

(15c5NCOPiPr)Rh(H)][BArF
4] (7) was dissolved in 2.2 mL of toluene and 0.75 mL aliquots of 

this stock solution were added to two GC vials. Next, 90 μL (0.57 mmol) 1-octene were 

added, along with the appropriate ammonium salt and NaBArF
4. The vials were capped with 

pre-cut septa caps in the box under N2 atmosphere and placed in the HEL Cat18 reactor. The 

reactor was sealed and pressurized to 20 bar with a 1:1 mixture of CO:H2 and the temperature 

was set to 95 °C using a IKA hot plate. The t = 0 of the reaction was chosen as the time when 

the reactor reached the set temperature. After 1h, the reactor was cooled in an ice bath before 

venting the gas slowly. Once vented, 0.10 mL aliquots of the resulting solutions were further 

diluted with 0.90 mL toluene in a new GC vial. A 5 μL aliquot (0.036 mmol) of 

methylstyrene was added to each dilution vial. The products were then analyzed by GC.  
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Figure 3.37 GC calibration curves for 1-octene and n-nonanal. Ax is area of analyte 

and Ais is area of mesitylene internal standard. Cx and Cis are concentrations of 

analyte and internal standard, respectively.  

Table 3.9 Retention times for GC quantification in rhodium-catalyzed 

hydroformylation.  

Analyte Retention Time (min) 

toluene 18.912 

1-octene 21.821 

trans-4-octene 22.381 

trans-3-octene 22.613 

cis-4-octene 22.681 

cis-3-octene 22.742 

n-octane 22.75 

trans-2-octene 23.139 

cis-2-octene 23.885 

mesitylene 29.314 

n-nonanal 31.301 

2-Me-octanal 30.778 

2-ethyl-heptanal 30.661 

3-propyl-hexanal 30.531 

 

Studies on the Fate of Rhodium Catalysts. A sample of 0.0099 g [κ5-

(15c5NCOPiPr)Rh(H)][BArF
4] (7) was dissolved in 2.2 mL of toluene-d8. A 0.75 mL aliquot of 

this solution was transferred to Teflon-capped NMR tube. To a second 0.75 mL aliquot of the 
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solution of 7 was added 1-octene (90 μL, 0.57 mmol) and the resulting solution was 

transferred to a Teflon-capped NMR tube. 1H and 31P{1H} NMR spectra were acquired 

before and after catalytic conditions (20 bar 1:1 CO:H2 and heated at 90 °C for 1 h). After 1 

h, the HEL Cat18 reactor was transferred to a glovebox, and the resulting solutions were 

transferred to Teflon-capped NMR tubes under N2, followed by NMR spectra acquisition. No 

resonances were observed by 31P{1H} NMR spectroscopy after the reactions (Figure 3.10).  

 

Figure 3.38 1H NMR spectra obtained of 7 and 1-octene in toluene-d8 before and 

after pressurizing the mixture with 20 bar 1:1 CO:H2 and heating to 95 °C. 

Yet a third aliquot of the solution of 5 (0.375 mL) was mixed 1-octene (45 μL, 0.29 

mmol) and placed in a Teflon-capped NMR tube. Over time, the signals of 5 began to 

decrease in intensity by 1H NMR spectroscopy (Figure 3.11).  

Reactivity of [tBuNH3][PF6] with NaBArF
4. [tBuNH3][PF6] (0.0051 g, 0.023 mmol) and 

NaBArF
4 (0.0210 g, 0.0237 mmol) were massed out in a vial. Toluene-d8 (0.5 mL) was 

added. The resulting solution was decanted from the white-solids left in the vial into a 
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Teflon-capped NMR tube. 1H, 31P{1H}, and 19F{1H} NMR spectra were acquired. No 

resonances were observed by 31P{1H} NMR spectroscopy, indicating precipitation of NaPF6. 

 

Figure 3.39 1H NMR spectrum acquired after mixing [tBuNH3][PF6] and NaBArF
4 in 

toluene-d8. 
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Figure 3.40 19F{1H} NMR spectrum acquired after mixing [tBuNH3][PF6] and 

NaBArF
4 in toluene-d8. 
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Chapter 4 SYNTHESIS AND CHARACTERIZATION OF STABLE GOLD(III) 

PNP PINCER COMPLEXES 

 

Reproduced in part with permission from Grajeda, J.; Nova, A.; Balcells, D.; Bruch, Q. J.; 

Wragg, D. S.; Heyn, R. H.; Miller, A. J. M.; Tilset, M. Eur. J. Inorg. Chem. 2018, 

doi.org/10.1002/ejic.201800019. Copyright Wiley-VCH Verlag GmbH & Co. 

 

 

Section 4.1 Introduction 

Because of their air and moisture tolerance, gold complexes can enable catalytic 

transformations under ambient conditions that are otherwise inaccessible to more reactive 

precious metal catalysts.1–3 In light of this, the field of Au organometallic chemistry has 

grown rapidly over the last decade.4–6 Within the field, Au(III) complexes remain 

underexplored compared to Au(I) complexes, as the former are readily reduced or undergo 

protodemetalation.7,8 However, in recent years, increased efforts have been directed at 

accessing new Au(III) complexes and exploring their reactivity.6,9–20  

 Direct catalytic functionalization of an alkene with a carboxylic acid has long been 

recognized as an important area of research, as it directly yields esters, avoiding the step of 

olefin hydration to an alcohol and the complications of water removal to drive the 

esterification.21,22 Towards this goal, in 2012, the Tilset group reported the efficient 

microwave synthesis of a cyclometalated Au(III) complex with 2-(p-tolyl)pyridine (tpy) and 

two trifluoroacetate (OAcF) ligands.11 Facile ethylene (C2H4) insertion into the Au–O bond of 
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the OAcF ligand has been accomplished in trifluoroacetic acid (HOAcF).23 The product of 

ethylene insertion at the site trans to the pyridine donor was found to be thermodynamically 

favored. Attempts at protonating the resulting acetoxyalkyl ligand with trifluoroacetic acid to 

complete a catalytic cycle proved unsuccessful. Addition of stronger Brønsted acids led to 

protonation of the sp2
 carbon of the chelating tpy ligand rather than the sp3 carbon atoms of 

the acetoxyalkyl ligand at the Au(III) center, consistent with previous findings.12 More 

recently, this system was employed for the catalytic functionalization of acetylene with 

HOAcF
 via a double insertion pathway.24  

We envisioned using a LXL-type pincer ligand framework to position a strong σ-

donor trans to the active site, which could facilitate protonolysis of an acetoxyalkyl ligand. 

Pincer ligands have long been recognized as convenient platforms for the formation of 

thermally stable complexes, many of which serve as robust catalysts for a variety of chemical 

transformations.25,26 In the realm of Au(III) chemistry, the use of pincer ligands remains 

underexplored.8,27–32 Bochmann et al. recently reported a Au(III) trifluoroacetate complex 

supported by a CNC pincer ligand of the XLX-type (CNC = 2,6-bis(4-tBuC6H3)2pyridine 

dianion).7,33 Notably, this complex also inserts ethylene into the Au–O bond, albeit more 

slowly than the complex reported by our group.13  

The PNP ligand (PNP = bis(2-diisopropylphosphinophenyl)amide) reported by Liang 

and co-workers was identified as an interesting target for Au(III) chemistry.34  This ligand 

and its close relatives support a tremendous wealth of coordination chemistry, with tridentate 

pincer binding modes observed across the periodic table.35–42 For coinage metals, however, 

PNP ligands often favor dinuclear coordination modes with bridging amides, such that each 

metal is only bound in a bidentate fashion.43 The first PNP gold complexes, recently reported 



149 

 

by van der Vlugt and coworkers, are structurally and electronically intriguing dinuclear gold 

systems that do not adopt pincer binding modes.44,45 

In this Chapter, we describe the synthesis and characterization of the first PNP 

Au(III) mononuclear pincer complexes, along with initial efforts at generating acetoxyalkyl 

species by reaction with C2H4. Density Functional Theory (DFT) studies reveal the 

thermodynamically challenging nature of C2H4 functionalization with these complexes, and 

provide insight into their electronic structure. 

Section 4.2 Synthesis of Gold(III) PNP Pincer Complexes 

Pincer complexes were initially targeted by salt metathesis with the [Li][PNP] and 

Au(III) chloride precursors, but the conditions applied did not afford any observable reaction. 

Microwave synthesis, thoroughly explored in our lab for metallation with gold,11 was 

attempted next. Microwave reactions of H[PNP], NaAuCl4·2H2O, and 1 equiv of HOAcF in 

1:1 mixtures of H2O:CH3CN afforded royal blue [(PNP)Au(Cl)][OAcF] (1) in ~10% yield. 

The reaction yields were improved to 19% by switching to neat HOAcF as solvent (Scheme 

4.1). The obtained material was spectroscopically pure, but analytical purity was elusive even 

after extensive efforts at purification. Au nanoparticles were considered as a possible NMR-

silent impurity, but transmission electron microscopy (TEM) studies did not detect any 

nanoparticles. 
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Scheme 4.1 Synthesis of 1. 

Complex 1 features a singlet (δ 84) in the 31P{1H} NMR spectrum and a singlet (δ 

−77) in the 19F{1H} NMR spectrum. The 1H NMR spectrum reveals C2v symmetry of the 

complex in solution, with single resonances for the protons on both sets of aryl groups on the 

molecule. Two resonances arise from the inequivalent iso-propyl methyl groups. These 

resonances exhibit virtual coupling ascribed to the two magnetically nonequivalent 31P 

nuclei. The symmetry displayed in solution is consistent with isoelectronic Pd complexes, 

supported by similar backbone-substituted PNP ligands, reported by the Ozerov group.35,36 

Crystals suitable for X-ray diffraction were grown by layering a concentrated solution of 1 in 

CH2Cl2 with Et2O. The solid-state structure confirms the C2v symmetry, with the C2 axis 

coinciding with the N–Au–Cl bonds (Figure 4.1).46 The crystal structure features a co-

crystallized HOAcF molecule that forms a hydrogen bonding interaction with the outer-

sphere OAcF counterion. 
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Figure 4.1 Structural representation of cation of 1 with ellipsoids drawn at the 50% 

probability level. Hydrogen atoms, OAcF counter-anion, and HOAcF omitted for 

clarity. Selected bond lengths (Å) and angles (°): Au1–N1: 2.004(3), Au1–Cl1: 

2.2753(14), Au1–P1: 2.3381(8); P1−Au1−P1’: 166.77(4), N1−Au1−P1: 83.38(2), 

Cl1−Au1−P1: 96.62(2).  

 

The deep royal blue color of chloro complex 1 was investigated by UV-vis 

spectroscopy and Time-Dependent Density Functional Theory (TD-DFT) calculations. In 

CH2Cl2, an absorbance maximum in the visible range was detected at 587 nm (Figure 4.2). 

On the basis of TD-DFT calculations including CH2Cl2 solvation with the continuum SMD 

model, this absorption band is assigned to the HOMO → LUMO electronic excitation 

(max,calc = 535 nm). The natural transition orbitals (NTOs) associated with this transition 

(Figure 4.3) are ligand-to-metal charge transfer (LMCT) in nature. The donor orbital features 



152 

 

lone pair character located on the amido site of the pincer ligand, whereas the acceptor orbital 

has * character centered upon the metal center. The orthogonal / symmetry of these two 

orbitals is consistent with the small oscillator strength of the transition (f = 0.0055). 

 

Figure 4.2 Experimental (black line) and calculated (vertical blue lines) UV-Vis 

spectrum of 1 in CH2Cl2 at the TD-DFT(ωB97XD) level. 

 

 

Figure 4.3 Donor amido lone pair (left) and acceptor σ* (right) NTOs for the HOMO 

→ LUMO transition in the UV-Vis spectrum of 1 (isovalue = 0.04). 



153 

 

 

Dehalogenation of chloro complex 1 was carried out by addition of 1 equiv AgOAcF, 

resulting in the precipitation of AgCl and formation of the trifluoroacetate-bound complex 

[(PNP)Au(OAcF)][OAcF] (2) as the sole (PNP)Au complex seen  by NMR spectroscopy 

(Scheme 4.2). This new complex displays 1H NMR signals that are very similar to those of 

chloro complex 1, indicating C2v symmetry in solution. Complex 2 features a single 

resonance by 31P{1H} NMR in CD2Cl2 solvent at δ 92. The 19F{1H} NMR spectrum in 

CD2Cl2 features a sharp new singlet (δ −73) attributed to the bound OAcF ligand and a broad 

singlet (δ −77) assigned to an outer-sphere OAcF unit in rapid exchange with residual 

AgOAcF in solution. In DOAcF solution, only one resonance (δ −78) is observed in the 

19F{1H} NMR spectrum, indicating rapid exchange between bound and free OAcF. Despite 

extensive efforts to completely remove Ag+ from the obtained product, ICP-MS indicated 

~25% Ag in the mixture. 

 

Scheme 4.2 Synthesis of trifluoroacetate-bound complex, 2. 

The product resulting from a reaction of 1 with excess AgOAcF grew as single 

crystals from a CH2Cl2 solution undergoing slow diffusion with pentane (Figure 4.4). The 

crystallographic data (2’) revealed the expected [(PNP)Au(OAcF)]+ cation. The asymmetric 

unit of 2’ features an [Ag4(OAcF)6]
2− dianion as a tetrasilver paddlewheel structure that is 

generated by an inversion center (Figure 4.5). This kind of tetrameric structure has been 
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observed with Ag complexes, but is not common.47 Unlike in solution, the C2 axis of 

symmetry in the Au cation of 2’ is not retained in the solid state. Comparing structural 

features of 2’ to other Au(III) OAcF complexes provides insight into the trans influence of 

the PNP amido nitrogen. The cation of 2’ features an Au–OAcF distance (Au1–O1: 2.039(3) 

Å) that is intermediate between the Au–O distances trans to C (2.111(5) Å) and trans to N 

(1.993(5) Å) in the (tpy)Au(OAcF)2 complex.11 The Au–OAcF distance is slightly longer than 

those of the (CNC)Au trifluoroacetate complex reported by Bochmann and co-workers, with 

a pyridine bound trans to the OAcF ligand (2.0078(16) and 2.0156(17) Å).7 

 

Figure 4.4 Structural representation of cation of 2’ with ellipsoids drawn at the 50% 

probability level. Hydrogen atoms and counter-anion omitted for clarity. The CF3 

group was disordered over two sites. Selected bond lengths (Å) and angles (°): Au1–

N1: 1.992(3), Au1–O1: 2.039(3), Au1–P1: 2.3402(10), Au1–P2: 2.3545(10); 

P1−Au1−P2: 165.38(4), N1−Au1−O1: 177.58(13), N1−Au1−P1: 82.82(10), 

N1−Au1−P2: 83.07(10), O1−Au1−P1: 94.80(9), O1−Au1−P2: 99.28(9). 
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Figure 4.5 Structural representation of the counter-anion in complex 2’, with 

ellipsoids drawn at the 50% probability level. CF3 groups were disordered over two 

sites. The [Ag4(OAcF)6]
2−

 counter-anion appears as a tetrameric paddlewheel structure 

that is generated by an inversion center. Selected bond lengths (Å): Ag1–Ag2: 

2.9283(4), Ag1–Ag2: 2.8903(4). 

 

Trifluoroacetate-bound complex 2 is also deep blue in color. UV-vis spectroscopy 

reveals an absorbance maximum of 614 nm, red-shifted relative to 1 (Figure 4.6). TD-DFT 

calculations on 2 are consistent with an electronic transition in the visible region that is of a 

HOMO → LUMO nature with low intensity (max,calc = 541 nm, f = 0.0047; Figure 4.7) and 

red-shifted with respect to the calculated transition for 1 (max,calc = 535 nm). 
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Figure 4.6 Experimental (black line) and calculated (vertical blue lines) UV-Vis 

spectrum of 2 in CH2Cl2 at the TD-DFT(ωB97XD) level. 

 

Figure 4.7 Donor amido lone pair (left) and acceptor σ* (right) NTOs for the HOMO 

→ LUMO transition in the UV-Vis spectrum of 2 (isovalue = 0.04). 

 

Section 4.3 Reactivity of Trifluoroacetate-Bound Complex 2 Towards Ethylene 

Complex 2 proved to be stable towards C2H4 insertion into the Au–OAcF bond. 

Reactions in CH2Cl2 or HOAcF, even at 50-60 °C under 20 bar of C2H4, yielded primarily 
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starting material 2, with trace amounts of other species observed by 19F{1H} and 31P{1H} 

NMR spectroscopy. Reactions at 60 °C in DOAcF, under 1 atm of C2H4, resulted in 

deuterium incorporation into the aryl backbone of the ligand, primarily in the position para 

to the amido nitrogen (Scheme 4.3). This could be the result of Lewis acid-catalyzed Caryl−H 

bond activation, possibly due to residual Ag+.48 Reactions at higher temperatures (100 °C) in 

C6D5Cl, resulted in decolorization and decomposition to intractable mixtures. 

 

Scheme 4.3 Deuteration of complex 2 in DOAcF.  

DFT studies of the attempted insertion reaction reveal that formation of the gold alkyl 

product is slightly exergonic (ΔG° = −3.4 kcal/mol) in HOAcF (Scheme 4.4). The formal 

insertion process could proceed via trifluoroacetate dissociation and ligand nucleophilic 

attack, or by ethylene association and insertion. Formation of the monocationic, five-

coordinate species is calculated to be 23 kcal/mol uphill. This intermediate could lead to an 

intramolecular ethylene insertion; however, other Au(III) systems feature high energy 

insertion barriers, which could prevent C2H4 insertion.23 Formation of the putative dicationic 

C2H4-bound intermediate required for the intermolecular addition of an OAcF anion is uphill 

by over 30 kcal/mol. It is worth noting that isoelectronic, dicationic Pd(II) and Pt(II) 

complexes [(PNpyP)M(C2H4)]
2+ (M = Pd or Pt; PNpyP = 2,6-
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bis(diphenylphosphinomethyl)pyridine) are synthetically accessible and readily react with 

weakly basic nucleophiles, like MeOH and H2O, to generate insertion products.49–51  

 

Scheme 4.4 Free energy profile (in kcal/mol) for the insertion of C2H4 into complex 

2, computed in HOAcF solution, including reactant, intermediate and product.  Both 

substitution (red line) and addition (black line) pathways were considered. 

 

The incorporation of a dianionic pincer ligand of the LXX form could enable alkene 

insertion reactivity by avoiding the highly-charged reaction intermediates invoked with the 

complexes described in this Chapter. Indeed, DFT reveals that ligand substitution of OAcF by 

ethylene with a Au complex supported by a dianionic PNC [(PNC = (2-

diisopropylphosphinophenyl)(2’-diisopropylmethylphenyl)amide) an analogue of PNP with a 

carbon anion in place of a P atom] pincer ligand is uphill by 21.3 kcal/mol (Scheme 4.5). 
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Scheme 4.5 ΔGrxn (kcal/mol) for ligand substitution by C2H4 at a Au(III) center 

supported by a dianionic PNC pincer system computed in HOAcF solution. 

 

Section 4.4 Conclusions 

The synthesis and characterization of the first PNP Au(III) pincer complexes has been 

described. Microwave synthesis generates Au–Cl complex 1. Subsequent dehalogenation 

generates trifluoroacetate-bound complex 2, with a OAcF ligand bound trans to the amido 

group in the PNP ligand backbone. No reactivity with C2H4 was observed under the 

attempted reaction conditions. This reluctance to react is ascribed to the high energy of the 

putative intermediates in the formal insertion reaction.  

Section 4.5 Experimental Details 

General Considerations. All manipulations were carried out using standard Schlenk or 

glovebox techniques under a N2 or Argon atmosphere, unless otherwise stated. The 

microwave oven used was of the type Milestone MicroSYNTH with a rotor of the type SK-

10. Under standard glovebox operating conditions, pentane, diethyl ether, benzene, toluene, 

and tetrahydrofuran were used without purging, such that traces of those solvents were 

present in the atmosphere and in the solvent bottles. 1H, 31P{1H}, 13C{1H}, 19F{1H}, 1H-1H 

COSY, and 1H-1H-NOESY NMR spectra were recorded on 400, 500, or 600 MHz 

spectrometers at 298 K. NMR solvents were purchased from Cambridge Isotopes 

Laboratories, Inc. 1H and 13C chemical shifts are reported in ppm relative to residual proteo 
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solvent resonances. 31P chemical shifts are reported relative to 85% H3PO4 external standard 

(δ 0). 19F chemical shifts are reported relative to CFCl3 external standard (δ 0). H[PNP] was 

synthesized as previously reported.34 All other reagents were commercially available and 

used without further purification. Elemental analyses were performed by Robertson Microlit 

Labs (Ledgewood, NJ). UV/vis spectra were collected with an Ocean Optics USB2000+ 

spectrometer with a DT-MINI-2GS deuterium/tungsten halogen light source. High 

temperature and pressure reactions were performed with a Parr Series 5000 Multiple Reactor 

System operated by a Parr 4871 Process Controller equipped with six reactors with internal 

stirring.  Each reactor is individually pressure- and temperature-controlled with maximum 

operating limits of 3000 psi (200 bar) and 300 °C. Each reactor is monitored by computer 

software SpecView 32. High-resolution mass spectrometry (HRMS) was carried out with a 

LTQ FT (ICR 7T) (ThermoFisher, Bremen, Germany) mass spectrometer. Measurements 

were made on complexes dissolved in acetonitrile. Samples were introduced via a micro-

electrospray source at a flow rate of 3 µL/min. Xcalibur (ThermoFisher, Breman, Germany) 

was used to analyze the data. Molecular formula assignments were determined with 

Molecular Formula Calculator (v 1.2.3). Low-resolution mass spectrometry (linear ion trap) 

provided independent verification of molecular weight distributions. All observed species 

were singly charged, as verified by unit m/z separation between mass spectral peaks 

corresponding to the 12C and 13C12Cc-1 isotope for each elemental composition. Samples were 

analyzed with an Element XR inductively coupled plasma (ThermoFisher, Bremen, 

Germany) mass spectrometer (ICP-MS). Samples were introduced via a peristaltic pump 

connected to an Elemental Scientific SC autosampler (Omaha, Nebraska). Transmission 

electron microscopy images were obtained using a JEOL 2010F-FasTEM with an 
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acceleration voltage of 200 kV. Samples were prepared by drop casting on the lacey carbon 

film on a 400 mesh copper grid. EDS analysis was performed on Oxford Instruments, INCA 

Energy TEM 250 attached to the scope. Single crystal X-ray diffraction data was collected on 

a Bruker D8 Venture equipped with a Photon 100 detector at 298 K and using Mo Kα 

radiation (λ = 0.71073 Å) or a Bruker APEX-II CCD diffractometer at 100 K with Cu Kα 

radiation (λ = 1.54175 Å). Using Olex252 and WinGX,53 the structure of 1 was solved with 

the ShelXT54 structure solution program in the Bruker Apex 3 suite55 and refined with the 

ShelXL56 refinement package. Using Olex2,52 the structure of 2’ was solved with the 

ShelXT54 intrinsic phasing program and refined with the ShelXL56 refinement package using 

Least Squares minimization. Multiple CF3 groups were disordered in the structure of 2’ and 

were modeled using DFIX, DANG, and EADP to restrain and constrain the disordered 

fluorine atom sites. 

Synthesis of [(PNP)Au(Cl)][OAcF] (1). Under air, H[PNP] (0.143 g, 0.356 mmol) and 

NaAuCl4·2H2O (0.142 g, 0.358 mmol) were placed in a microwave vessel equipped with a 

stir bar. To this mixture was added HOAcF (30 mL). The resulting orange-brown slurry was 

heated in the microwave oven at 120 °C for 30 minutes. The mixture was allowed to cool 

down, and the resulting blue slurry was passed through a frit padded with Celite. The filtrate 

was pumped down under vacuum to a blue oily solid. In an N2-filled glovebox, the residue 

was extracted with CH2Cl2 (15 mL) and filtered through Celite into three different vials. The 

blue solution in each vial was concentrated to ~1 mL, layered with Et2O (18 mL), and placed 

at −30 °C. The resulting blue crystals were combined into a single vial, redissolved in 

CH2Cl2, filtered through Celite, and the filtrate was once again set to recrystallize by layering 

with Et2O (18 mL), affording 1 (0.0503 g, 0.0674 mmol) as a blue crystalline solid (19% 
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yield). 1H NMR 600 MHz, CD2Cl2):
 δ 1.34 – 1.43 (m, 12 H, CH(CH3)2), 1.43 – 1.51 (m, 12 

H, CH(CH3)2), 3.20 (heptd, J = 7.2, 2.8 Hz, 4 H, CH(CH3)2), 6.99 (t, J = 7.5 Hz, 2 H, Ar-H), 

7.36 – 7.44 (overlapping m, 4 H, Ar-H), 7.63 (dt, J = 8.7, 2.3 Hz, 2 H, Ar-H). 13C{1H} NMR 

(151 MHz, CD2Cl2): δ 17.75 (s, CH(CH3)2), 17.91 (s, CH(CH3)2), 27.22 (t, J = 14.1 Hz, 

CH(CH3)2), 112.24 (t, J = 26.0, 24.8 Hz, CAr), 117.85 (t, J = 5.4 Hz, CAr), 123.81 (t, J = 4.6 

Hz, CAr), 133.95 (t, J = 2.1, 1.3 Hz, CAr), 134.98 (CAr), 160.51 (t, J = 6.9 Hz, CAr). 
–OCOCF3 

was not observed by 13C NMR. 31P{1H} NMR (162 MHz, CD2Cl2): δ 84.49. 19F{1H} NMR 

(376 MHz, CD2Cl2): δ −76.65. UV/Vis [CH2Cl2] λmax (log ε) = 587 (2.53) nm. HRMS (ESI+) 

m/z: [1 – O2C2F3]
+ 632.16798 (calcd. 632.167136). C26H36AuClF3NO2P2 (745.94) calcd. C 

41.86, H 4.86, N 1.88; found C 40.45, H 4.62, N 1.61. 

 

Figure 4.8 1H NMR spectrum of 1 in CD2Cl2 (600 MHz). Inset shows splitting 

pattern for iso-propyl methyl groups. Et2O present in the sample (δ 1.15 and 3.43). 
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Figure 4.9 13C{1H} NMR spectrum of 1 in CD2Cl2 (151 MHz). Et2O present in the 

sample (δ 15.49 and 66.04). 

 

Figure 4.10 31P{1H} NMR spectrum of 1 in CD2Cl2 (162 MHz). 
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Figure 4.11 19F{1H} NMR spectrum of 1 in CD2Cl2 (376 MHz). 

 

Synthesis of [(PNP)Au(OAcF)][OAcF] (2). A sample of chloride complex 1 (0.0176 g, 

0.0236 mmol) was massed out in a scintillation vial. AgOAcF (0.0053 g, 0.024 mmol) was 

added to the vial. CH2Cl2 (5 mL) was added, and the resulting blue solution was left stirring 

in the dark for 24 h. At this point, the resulting blue/white slurry was filtered, and the blue 

filtrate was stripped of solvent under vacuum, affording compound 2 as a blue solid. The 

blue residue was recrystallized by slow diffusion of pentane (8 mL) into a concentrated 

solution of 2 in CH2Cl2 (2 mL). NMR spectroscopy revealed full conversion to 

trifluoroacetate-bound species 2. Attempts at purifying the complex beyond ~75% by 

removing excess Ag+ proved unsuccessful, as evidenced by 19F{1H} NMR and ICP-MS. 

Single crystals suitable for XRD analysis were obtained from a different reaction carried out 

with excess AgOAcF, by slow diffusion of pentane into a CH2Cl2 solution of the complex. 

The asymmetric unit of 2’ features an [Ag4(OAcF)6]
2− counter-anion as a Ag-tetrameric 



165 

 

paddlewheel structure that is generated by an inversion center. The NMR spectra obtained for 

these crystals match those reported below from preparative-scale reactions. 1H NMR (600 

MHz, CD2Cl2): δ 1.31 – 1.39 (m, 12H, CH(CH3)2), 1.39 – 1.47 (m, 12H, CH(CH3)2), 3.12 

(hd, J = 7.1, 2.6 Hz, 4H, CH(CH3)2), 6.98 – 7.04 (m, 2H, Ar-H), 7.36 – 7.39 (m, 2H, Ar-H), 

7.41 (ddq, J = 8.5, 7.2, 1.3 Hz, 2H, Ar-H), 7.60 (dt, J = 8.6, 2.3 Hz, 2H, Ar-H). 13C{1H} 

NMR (151 MHz, CD2Cl2): δ 17.47 (s, CH(CH3)2), 17.77 (s, CH(CH3)2), 27.52 (t, J = 13.6 

Hz, CH(CH3)2), 111.24 (t, J = 26.8 Hz, CAr), 118.41 (t, J = 5.2 Hz, CAr), 124.54 (t, J = 4.5 

Hz, CAr), 133.77 (t, J = 3.0 Hz, CAr), 135.30 (s, CAr), 160.06 (t, J = 6.8 Hz, CAr). 
–OCOCF3 

was not observed by 13C NMR. 31P{1H} NMR (243 MHz, CD2Cl2): δ 92.20. 19F{1H} NMR 

(376 MHz, CD2Cl2): δ −76.53, −73.24. 1H NMR (600 MHz, DOAcF) δ 1.24 – 1.33 (m, 12H, 

CH(CH3)2), 1.33 – 1.41 (m, 12H, CH(CH3)2), 3.04 (hd, J = 7.2, 2.6 Hz, 4H, CH(CH3)2), 6.84 

– 6.96 (m, 2H, Ar-H), 7.16 – 7.34 (overlapping m, 4H, Ar-H), 7.51 (dt, J = 8.6, 2.5, 1.5 Hz, 

2H, Ar-H). 31P{1H} NMR (243 MHz, CD2Cl2): δ 93.51. 19F{1H} NMR (376 MHz, CD2Cl2): 

δ −78.31. UV/Vis [CH2Cl2] λmax (log ε) = 614 (2.63) nm. HRMS (ESI+) m/z: [2 – O2C2F3]
+ 

710.18039 (calcd. 710.183316). 
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Figure 4.12 1H NMR spectrum of 2 in CD2Cl2 (600 MHz). Et2O (δ 1.15 and 3.43) 

and H-grease (δ 0.88 and 1.26) present in the sample. 

 

Figure 4.13 13C{1H} NMR spectrum of 2 in CD2Cl2 (151 MHz). Et2O (δ 15.49 and 

66.06) and H grease (δ 30.08) present in the sample. 
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Figure 4.14 31P{1H} NMR spectrum of 2 in CD2Cl2 (243 MHz). 

 

 

Figure 4.15 19F{1H} NMR spectrum of 2 in CD2Cl2 (376 MHz). 
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Figure 4.16 1H-1H NOESY NMR spectrum of 2 in CD2Cl2 (500 MHz). 

 

Figure 4.17 1H-1H COSY NMR spectrum of 2 in CD2Cl2 (500 MHz). The inset 

shows the aromatic region. 
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Figure 4.18 1H NMR spectrum of 2 in DOAcF (600 MHz). 

 

Figure 4.19 31P{1H} NMR spectrum of 2 in DOAcF (243 MHz). 
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Figure 4.20 19F{1H} NMR spectrum of 2 in DOAcF (376 MHz). 

 

Complex 2 under high pressure of C2H4. In a typical experiment, trifluoroacetate-bound 

complex 2 (5-10 mg) was dissolved in CH2Cl2 or HOAcF (10 mL) in a Teflon liner. The liner 

was placed in a Parr reactor and sealed. The sealed reactors were connected to the 

multireactor system. The reactor manifold was purged with C2H4 and each vessel was 

subjected to three pressurization-venting cycles (approximately 5 bar) to ensure full 

replacement of the headspace with C2H4. The vessels were then pressurized to 20 bar of C2H4 

and the temperature was set to 50-60 °C utilizing the SpecView 32 software. After 

approximately 15 h, the vessels were allowed to cool to room temperature. The reactor 

contents were pumped to dryness under vacuum and the resulting blue solids analyzed by 

NMR in CD2Cl2, revealing primarily starting material, as well as some minor unidentified 

products.  
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Figure 4.21 31P{1H} NMR spectrum in CD2Cl2 obtained after heating 2 in HOAcF at 

60 °C under 20 bar of C2H4 for 15 h (202 MHz). 

Reactivity of complex 2 in DOAcF. A sample of trifluoroacetate-bound complex 2 (0.0125 

g, 0.0152 mmol) was dissolved in DOAcF and placed in a Teflon-capped NMR tube. The 

blue solution was freeze-pump-thawed three times and back-filled with 1 atm of C2H4. No 

reaction was observed, even after heating at 60 °C for 6 h. After heating at 60 °C for one 

week, incorporation of deuterium primarily into the position para to the amido group (δ 6.90) 

was observed. No significant changes were observed by 31P{1H} and 19F{1H} NMR 

spectroscopy.  
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Figure 4.22 1H NMR spectrum of 2 after heating at 60 °C for one week in DOAcF 

under 1 atm C2H4 (δ 5.26) (600 MHz). 

 

Figure 4.23 31P{1H} NMR spectrum of 2 after heating at 60 °C for one week in 

DOAcF under 1 atm C2H4 (243 MHz). 
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TEM images of 1 and 2.   

 

Figure 4.24 Bright field TEM image of a sample of complex 1 showing no presence 

of any metal nanoparticles. 

 

Figure 4.25 Bright field TEM images of a sample of complex 2. Both (a) and (b) 

show different-sized clusters of Ag species present in the sample as detected by EDS 

analysis. 
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Figure 4.26 Representative EDS spectrum obtained for a sample of 2. 
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