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Abstract 
 

Elizabeth Enlow: Engineering PLGA Particles for Advanced Drug Delivery 
(under the direction of Professor Joseph M. DeSimone) 

 
Many effective therapeutics fail to meet their full potential in vivo due to toxic side 

effects, degradation under physiological conditions, poor bioavailability, and/or poor 

accumulation at the site of disease which has led to the development of particulate drug 

carriers. Of particular interest are biodegradable polymer particles which can be tailored 

to meet a wide range of needs, are biocompatible and leave no residuals in vivo. Herein 

the fabrication of engineered poly(lactic acid-co-glycolic acid) (PLGA) nanoparticles via 

the PRINT® (Particle Replication In Non-wetting Templates) process is reported. 

Complete control of size, shape, and composition was demonstrated. Biodistribution 

characterization of PLGA PRINT nanoparticles showed 10-15% tumor accumulation, 

suggesting these particles would make excellent drug delivery vehicles for advanced 

cancer therapy. Two approaches to cancer therapy were investigated: RNAi therapy and 

chemotherapy. These two therapies have different modes of action, different delivery 

requirements, and different cargo sensitivities. By exploring these dissimilar systems the 

true versatility of the PRINT process is demonstrated. To demonstrate gene delivery, 

nanoparticles were loaded with siRNA and knockdown was measured in vitro. Particles 

with poly(ethyleneimine) (PEI) as a complexing agent achieve knockdown with an EC50 

of 184 nM, while particles coated with lipid achieve knockdown with an EC50 of 7 nM, 

rivaling the best systems reported. To illustrate chemotherapeutic efficacy, nanoparticles 

were fabricated with high and efficient loadings of docetaxel, up to 40% (w/w) with 
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encapsulation efficiencies >90%. These particles display cellular toxicity at sub-

femtomolar docetaxel concentrations, displaying better in vitro efficacy than the standard 

of care, Taxotere®. In vivo these particles were shown to delay tumor progression in a 

xenograft mouse model. Fabrication of PLGA particles via the PRINT process enables 

independent control of particle properties (size, shape, cargo, polymer molecular weight, 

polymer lactic acid to glycolic acid ratio, and stabilizer) leading to a higher degree of 

tailorability than traditional methods and is versatile enough to be applied to dissimilar 

therapeutics. This system therefore shows great promise as a platform drug delivery 

technology. 
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1.1 Introduction to Advanced Drug Delivery 

Advanced drug delivery is the growing effort to take existing therapeutics with 

low efficacy or highly undesirable side effects and improve their localization to the site of 

disease thereby limiting systemic exposure and increasing therapeutic concentrations. 

The most common treatments in today’s healthcare system are drugs administered orally 

or parenterally. Both result in the drug circulating in the bloodstream, reaching all tissues 

in the body. For some therapies this results in unwelcome side effects. This consequence 

is common for therapies where the drug is a cytotoxin, such as chemotherapies. 

Alternatively there are therapies where this exposure is not harmful for the body but 

degrades or destroys the activity of the therapeutic. This is common for therapeutics 

which are unstable or can be degraded by the body, such as RNA. For these reasons, the 

medical community is seeking new ways of delivering drugs. The most widespread 

application of these advanced therapies is in the treatment of cancer. 

 

 1.2 Cancer and therapeutic options 

Cancer is a family of disease in which cells at almost any location in the body, 

though typically in organs, mutate. These cells loose the ability to perform their function, 

rapidly divide and eventually form a tumor. Cells can exit the tumor, enter the 

circulation, and lodge elsewhere spreading the cancer (termed metastasis). Cancer is 

difficult to treat because the body recognizes the tumor as self and therefore mounts no 

defense. Fatality results when the affected organ(s) fail. Treatment of cancer fall into 

three main categories: surgery to remove the tumor (resection), radiation therapy, and 

chemotherapy. Chemotherapy is the administration of cytotoxic agents whose purpose is 
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to kill the cells in the tumor. Unfortunately these cytotoxins reach not only the tumor, but 

the rest of the body as well, killing healthy cells and resulting in unwanted side effects. 

The reason this is effective to a degree is that chemotherapeutics tend to act more heavily 

on faster dividing cancer cells than healthy cells dividing at a normal rate. However, 

some healthy cells naturally have a high growth rate, such as hair, which is why people 

undergoing chemotherapy experience hair loss. Other common side effects include 

nausea, neuropathy, fluid retention, stomatitis, nail disorders, weakness, hypersensitivity 

reactions, and infection.1 These harsh side effects limit the amount of therapy that can be 

administered and the frequency of administration. This limits the effectiveness of the 

treatment. If drug could be delivered to the tumor with limited systemic exposure then 

higher concentrations of drug in the tumor could be maintained and efficacy could be 

increased. Another method being investigated for cancer treatment is gene therapy. The 

administration of RNA or DNA can alter the production of proteins which are abnormally 

expressed in tumor cells leading to drug resistance, rapid division, and metastasis. 

However, these therapies will need an effective delivery vehicle to have clinical 

applications. Gene therapy can be used alone or to sensitize cells to chemotherapeutics.  

 

1.3 Systemic administration of solubilized drug and drug conjugates  

Two ways to deliver therapeutics more effectively to the tumor are passive 

targeting and active targeting. In passive targeting the unique attributes of tumor tissue 

are exploited. Since tumors grow more rapidly than normal tissue they are disordered and 

several systems are compromised. First the junctions of the endothelial cells in the 

vasculature are larger than in normal tissue. Therefore larger particles and moieties can 
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escape the vasculature than can in healthy tissue. This vasculature is termed “leaky”. 

Second the lymphatic system which drains tissue is not properly formed which results in 

poor clearance. These combine to form the enhanced permeability and retention (EPR) 

effect. Particles accumulate in the tumor since more can exit the circulation and are not 

effectively cleared. Passive targeting is employed by some the most common cancer 

therapies in the clinic today; formulations designed to deliver hydrophobic 

chemotherapeutics which were initially passed over in preference to hydrophilic 

chemotherapeutics which could easily be administered intravenously. Stabilizers such as 

Cremphor EL and Tween 80 are mixed with the therapeutic in water with small amounts 

of solvent so that the drug can be administered through an infusion. These formulations 

tend to create nano-aggregates which enhance tumor accumulation via the EPR effect and 

as such are a step toward enhanced delivery. The stabilizers carry toxicities of their own, 

however, which cause side effects.  

By contrast active targeting relies on ligands which bind to receptors either 

specifically expressed or over-expressed on tumor cells, resulting in higher accumulation. 

The first therapies to take advantage of active targeting were drug conjugates. These 

chemically bound systems have a 1:1 payload to ligand ratio so for each recognition 

event only one molecule of therapeutic is administered. In addition to the low ratios of 

payload to ligand, these conjugates can elicit an immunoresponse and offer no protection 

to the cargo.  
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1.4 Enhanced drug delivery with liposomes and polymeric micelles 

Liposomes, discovered in 19652 and proposed as drug delivery vehicles in 1976,3, 

4 took the idea of drug delivery beyond simple targeting of single therapeutic molecules 

to carrier systems which could deliver many therapeutic molecules and which could be 

multi-functional.5 Liposomes are made up of a lipid bilayer which has wrapped around on 

itself to form a vesicle. Drugs can be encapsulated in these vesicles and can be released 

by diffusion or by the dissolution of the liposome. Hydrophilic drugs can be carried in the 

core, while hydrophobic drugs can be carried in the lipid bilayer. These carriers can take 

advantage of the EPR effect. One example of this technology currently in the clinic is 

Doxil®, a liposome that contains doxorubicin. This is a product of ALZA 

Pharmaceuticals (http://www.alza.com), and is marketed as STEALTH® liposomal 

technology. These liposomal systems are not without problems. There are instability and 

leakage issues, since the individual lipids are not covalently bound together. Liposomes 

also have a tendency to elicit the body’s immunoresponse unless they include a 

poly(ethylene gycol) (PEG) coating. Finally, liposomes cannot completely protect cargo 

from degradation as they are not solid and have a certain flux of fluids and lipid 

molecules. Surfactant and polymeric micelles have been investigated as synthetic 

substitutes for liposomes.6 Micelles can typically access a smaller size range than 

liposomes and can be produced at lower costs; some phospholipids are expensive. 

However, micelles still exhibit stability problems and incomplete cargo protection for the 

same reasons as liposomes. In addition, both liposomes and micelles have a critical 

micelle concentration (CMC), below which they disband. When a dose of micelles or 

liposomes is administered to a patient, the concentration is greatly lowered and special 
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care must be taken that this does not drop below the CMC. Finally, both micelles and 

liposomes are limited in the polymers/lipids that can be used for their formation as they 

require an amphiphile with specific subunit lengths, which restricts specific tailoring of 

delivery vehicles. Despite the disadvantages many therapeutics employing conjugate, 

liposome, and micelle technologies are approved by the FDA or are in clinical trials 

(Table 1.1).  

 

Table 1.1 Examples advanced chemotherapy systems in clinical stages.7 
Therapeutic 

Name Platform Chemotherapeutic Clinical 
Stage 

Smancs Polymer conjugate Neocarzinostatin Approved 

PK1 Polymer conjugate Doxorubicin Phase 2 

hT-101 Polymer conjugate Camptothecin Phase 2 
Xyota Polymer conjugate Paclitaxel Phase 3 

CT-2106 Polymer conjugate Camptothecin Phase 2 
MAG-CPT Polymer conjugate Camptothecin Phase 1 

Doxil Liposome Doxorubicin Approved 
EndoTAG Liposome Paclitaxel Phase 2 

LE-SN-38 Liposome SN-38 Phase 2 
CPX-1 Liposome CPT-11, floxuridine Phase 2 
NK105 Micelle Paclitaxel Phase 2 

NC-6004 Micelle Cisplatin Phase 1/2 
NK012 Micelle SN-38 Phase 2 

SP1049C Micelle Doxorubicin Phase 3 
 

 

1.5 Drug delivery using polymer particles 

Recently, the interest in using solid polymer particles for medical purposes has 

grown considerably. Therapeutics can be encapsulated in polymer particles that can then 

be targeted to the appropriate site just as with liposomes and micelles. The advantages to 
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using solid polymer particles as vehicles for drug delivery are their ability to reduce the 

immunoresponse, give more protection to the cargo, reach a wider range of sizes, and 

tailor the release kinetics by specifically tailoring the polymer matrix.8   

 

1.5.1 Bioabsorbable polymers 

Of particular interest for solid polymer particles are bioabsorbable polymers. The 

use of bioabsorbable polymers in medical applications can be traced back to 150 A.D. 

when catgut was used to suture injured gladiators. Since then a range of synthetic 

polymers which degrade in situ have been discovered. These polymers are mainly 

polyesters which degrade hydrolytically and include poly(glycolic acid), poly(L-lactic 

acid), poly(D-lactic acid), poly(dioxanone), poly(ε-caprolactone), poly(β-

hydroxybutyrate), poly(β-valerolactone), and their copolymers (Figure 1.1). 

 

Figure 1.1 The chemical structure of biodegradable polyesters A) poly(glycolic acid), B) 
poly(lactic acid), C) poly(dioxanone), D) poly(valerolactone), E) poly(ε-caprolactone), F) 

poly(β-hydroxybutyrate), and G) poly(β-hydroxyvalerate). 
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As homopolymers, all the above polymers are semi-crystalline. The degradation 

of these semi-crystalline polymers varies according to the degree to which the ester in the 

backbone is susceptible to hydrolysis. Poly(L-lactic acid) degrades slower than the other 

mentioned homopolymers because of steric hindrance to hydrolysis created by the methyl 

groups off the backbone and because it alone is glassy at physiological temperatures, 

giving less mobility to the amorphous chains. Copolymers tend to be completely 

amorphous; however, at low percent incorporation of the second monomer they can 

retain some crystallinity. Random copolymers can be created by ring-opening 

polymerizations with incorporation ratios close to that of the feed ratios. When 

considering which polymer would be best for a specific purpose, the degradation rate is 

often the deciding factor. Amorphous polymers degrade faster than their semi-crystalline 

counterparts. This is due to the accessibility of the amorphous chains to water compared 

to the inaccessibility of close-packed crystalline chains. The most commonly used 

polyester is poly(lactic-co-glycolic acid) (PLGA). This polymer can be tailored by 

changing the lactic acid to glycolic acid ratios, yielding polymers which degrade 

anywhere from weeks to months. These polymers are identified by their lactic acid to 

glycolic acid ratios with the lactic acid, usually equal or higher, first (e.g. 85:15 PLGA is 

85% lactic acid and 15% glycolic acid). Furthermore they degrade hydrolytically to 

produce lactic acid and glycolic acid which are naturally occurring and readily 

metabolized by the citric acid cycle. High molecular weight PLGA can be produced by a 

ring-opening polymerization of D,L-lactide and glycolide using an FDA approved 

stannous octoate catalyst. There are 17 medical uses of PLGA approved by the FDA. 

Prior approval makes this material very attractive as a drug delivery matrix.  
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1.5.2 Fabricating PLGA particles 

Various methods for fabricating PLGA particles, including emulsions, 

precipitations, spray drying, and flow focusing, are currently under investigation by a 

large number of research groups.9-14 A substantial volume of literature has been dedicated 

to investigating the effects of process parameters on particle properties and the attempts 

to develop trends to guide particle design have been reviewed.15, 16 PLGA particles are, 

for the most part, currently being made by either emulsion solvent evaporation methods 

or supercritical processing techniques. 

 

1.5.2.1 Emulsion/solvent evaporation methods 

In emulsion solvent evaporation methods, PLGA is dissolved in a good solvent, 

typically dichloromethane. This solution is then added to water which contains a 

surfactant, typically poly(vinyl alcohol) (PVOH). By controlling the speed with which 

this mixture is stirred, the concentration of surfactant, and the specific PLGA used the 

size of the particles is roughly controlled. The solvent is then evaporated and the PLGA 

hardens into spheres.9, 17-26 There are variations on this method involving double 

emulsions27-30 and oil-in-oil emulsions11, 31 that attempt to improve encapsulation of 

water-soluble drugs which tend to partition into the main water phase during the 

emulsion process.  

 

1.5.2.2 Supercritical solvent/anti-solvent methods 

Supercritical processing techniques used to produce PLGA particles can be 

divided into two main categories, those in which the supercritical fluid is the solvent and 
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those in which the supercritical fluid acts as an antisolvent. RESS (precipitation by rapid 

expansion of supercritical solutions) and RESOLV (rapid expansion of a supercritical 

solution into a liquid solvent) are two methods that have been used to produce PLGA 

particles in which the supercritical fluid acts as the solvent.32-34 In these methods, PLGA 

is dissolved in scCO2 with ethanol as a cosolvent. This solution is then sprayed into air 

(RESS) or an aqueous media (RESOLV). The rapid expansion of CO2 lowers its ability 

to solubilize the polymer and particles precipitate. ASES (aerosol solvent extraction 

system) and PCA (precipitation with a compressed antisolvent) are two methods that 

have been used to produce PLGA particles in which the supercritical fluid acts as an 

antisolvent.35-40 In supercritical antisolvent processes, PLGA is dissolved in a good 

solvent, typically dichloromethane. This is then sprayed into a chamber of supercritical 

CO2. The solvent’s ability to solvate the polymer is reduced as the solvent swells with the 

supercritical phase and the polymer hardens into spheres. For all supercritical processing 

techniques, the particle size is roughly controlled by the type of spray generated. 

 

1.5.2.3 Methods to non-spherical particles  

More recently investigation into non-spherical PLGA particles has been 

conducted including the fabrication of micron scale PLGA features by imprint 

lithography which can contain a reservoir41, 42 and the deformation of PLGA 

microspheres into a wide variety of non-spherical shapes using a film stretching 

technique43. The former technique can only produce large particles while the latter 

technique requires starting with particles fabricated by emulsion methods so while shape 

can be imparted, the disadvantages of the emulsion method limit this technology. 
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Recently a hydrogel template method was demonstrated for the fabrication of PLGA 

particles. Microparticles were fabricated in a wide range of sizes and shapes, including a 

micron scale reproduction of a computer keyboard. Cylindrical 500 nm and 200 nm 

particles were also demonstrated. In this method gelatin is used as a mold, generated by 

pouring warmed gelatin over a silicon template and cooling in the refrigerator to 

“solidify”. The so called hydrogel template is then filled with a high solids (40%) 

solution of PLGA in dichloromethane. After the dichloromethane evaporates the 

hydrogel template containing PLGA particles is warmed to dissolve the gelatin and 

release isolated PLGA particles.44 These technologies clearly point to the desire to have 

more control over PLGA drug carriers, but have yet to produce nanoparticles with 

independent control over all key parameters and demonstrated efficacy as delivery 

vehicles. 

 

1.5.3 PLGA-PEG particles: A popular variation on solid PLGA particles 

While many researchers have studied solid PLGA particles, others have turned 

their attention to particles containing poly(ethylene glycol) (PEG) in the form of PLGA-

PEG  block copolymers. These block copolymers are most commonly synthesized using 

a carbodiimide coupling reaction between PLGA and commercially available amine-

functional PEG45, 46 but can be synthesized by using an methoxy-PEG (mPEG) to initiate 

a ring opening polymerization of lactide and glycolide in the presence of a tin catalyst.47 

Particles are fabricated from these copolymers by emulsion or nanoprecipitation 

processes. An emulsification agent such as PVOH is often still required since the PEG 

block, typically 2-5kDa, can be over an order of magnitude smaller than the PLGA block. 
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The goal is for the PEG block to orient to the surface of the particle, providing enhanced 

stability and stealth. The degree to which PEG appears on the surface, and to which 

residual PVOH remains, is more often presumed than measured. However, the effects are 

measured. For instance, Senthilkumar et al. compared solid PLGA particles to PLGA-

PEG particles fabricated using the exact same method and saw some enhancement in 

circulation and tumor accumulation in vivo.47 The additional considerations for PLGA-

PEG particles are the liability of the bond between polymers and the ratio of PLGA to 

PEG.       

 

1.5.4 Factors affecting encapsulation and release of therapeutics 

The two most studied properties of PLGA particles for drug delivery are their 

ability to encapsulate drug and the release profile of this drug. These properties depend 

strongly on the PLGA used and the method of fabrication. The encapsulation efficiency 

of a drug is defined as the amount of drug in the particle over the amount of drug charged 

to the system. This is a crucial parameter because in all the previously described systems 

there are two phases and any cargo can partition between these two phases based on its 

specific solubility characteristics. Furthermore it has been reported that in the case of 

emulsion fabrication methods, by far the most common methods, the more drug charged 

to the system the higher the loss.48 This limits the payload of the particles. Attempts to 

increase the encapsulation efficiency include moving from oil-in-water (o/w) emulsions 

to water-in-oil-in-water (w/o/w) double emulsions, increasing interfacial tension between 

the dispersion of polymer/drug and the second phase, modifying the therapeutic to 

increase its hydrophobicity, and modifying the process to generate particles which harden 
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faster.16 Another characteristic of the particle which is affected by the process parameters 

is the release profile. Studies have shown that particle release and degradation properties 

are affected by solvents, emulsifier/stabilizer, cargo, molecular weight of polymer, lactic 

acid to glycolic acid ratio and particle size.49-53 There is no simple formula as all these 

parameters are interrelated, however, three trends do emerge from the body of literature: 

smaller particles release faster, high lactic acid content slows release, and higher 

molecular weight slows release. Smaller particles show faster release due to their 

increased surface area to volume ratio and reduced distance to the surface from the core 

of the particle.16 A polymer with a higher lactic acid content slows the degradation and 

release rates due to the increased hydrophobicity of the lactic acid unit which reduces 

water diffusion into the particle. The methyl group which distinguishes this unit from the 

glycolic acid unit also adds steric hindrance so that access to the backbone of the polymer 

by water is decreased resulting in slower degradation.54 Finally, higher molecular weight 

polymers exhibit slower release and degradation characteristics due to higher 

entanglement, higher Tg, and longer times to soluble fractions.54 Other variables that 

relate to the rate the drug diffuses through the PLGA matrix include the properties of the 

drug, the amount of drug loaded, drug/polymer interactions, plastization of the polymer 

by the drug or residual solvents, and initial porosity.16 Despite all these differences, most 

PLGA particles display a burst release of 10-30%. This is attributed to the fast dissolution 

of drug on and near the surface of the particles. This is then typically followed by a slow 

release phase as drug diffuses from the center of the particle and the polymer degrades.16  
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1.5.5 In vitro toxicity and internalization of PLGA particles 

Once a formulation is chosen, particles are typically tested first for their in vitro 

behavior using cell culture and then for their in vivo behavior using mouse models. The 

most common in vitro measurements are for toxicity of the matrix material, 

internalization of particles, and efficacy. PLGA is such an attractive choice because it has 

a long history of safety in humans. Specifically micro- and nanoparticles fabricated from 

PLGA have proven to be non-toxic on a wide variety of human cell lines.55 After vehicle 

safety is determined, the internalization of PLGA nanoparticles is important to 

characterize for each formulation being considered. The specific cell line under 

investigation affects the degree and rate of particle internalization.56 The specific 

therapeutic being delivered is also important to consider. For some treatments the 

therapeutic can cross the cellular membrane on its own and particle internalization is not 

necessary, however, can potentially improve efficacy. In these instances particles can be 

used as local depots of drug, delivering drug to the extracellular space of the tumor. For 

other treatments the therapeutic can not cross the cellular membrane on its own and must 

be transported across the membrane by the particle. This is common with negatively 

charged therapeutics such as siRNA because the cell membrane is also negatively 

charged and the two repel each other. For particles which are internalized, intracellular 

trafficking is also important. The particles are typically endocytosed via pathways that 

join with or evolve into endosomes. The therapeutic or particle must escape the 

endosome before it evolves into a lysosome, in which the therapeutic will most likely be 

degraded. Most studies of internalization and transport use a hydrophobic fluorescent dye 

which has been encapsulated or physically entrapped in the particle as a marker of 
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location. It is believed that this dye will not be released from the particle due to 

hydrophobic interactions with PLGA and poor solubility in the surrounding media. 

Confocal microscopy or flow cytometry are then used to determine if dye can be 

observed inside the cells. These studies predominately show rapid internalization of 

PLGA nanoparticles.57 In most cases the particles are not targeted and have a coating of 

PVOH which was used in the fabrication of the particles or a coating of PEG 

incorporated via PLGA-PEG block copolymers. Since PLGA, PVOH and PEG can only 

contribute negative charge it is not surprising that these particles are always negatively 

charged. What is surprising is that the cells would be rapidly internalizing negatively 

charged particles based on the aforementioned repulsion with the cell membrane. In fact 

many other studies have shown that positively charged particles are rapidly endocytosed 

while negatively charged particles are not.58 While some researchers have accepted a 

positive internalization result using these methods without further investigation, some 

recent findings are suggesting a closer look may be warranted.57 An alternative 

explanation of contact transfer of dye from the particles to the cellular membrane has 

been suggested by Xu et al. They propose particles in contact with the cell membrane 

transfer dye directly into the lipid bilayer. A thorough set of experiments was conducted 

to test the contact transfer theory. First two sets of particles were fabricated: one with a 

physically entrapped hydrophobic dye and one with a dye chemically bound to the 

PLGA. The particles with physically entrapped dye showed very high cellular 

internalization at very short time points whereas the particles with bound dye showed 

almost no internalization out to 24 hours. In time course studies with physically 

entrapped dye they saw very rapid internalization followed by a drop in intracellular 
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fluorescence once the media was changed. This implied the dye was partitioning back out 

of cells into the media over time. This is important to note as some groups report this 

same observation and attribute it to particle exocytosis. This can be substantial with 

observations of a 65% drop of fluorescence at 30 minutes after replacing media being 

reported.59 Xu et al. further studied the contact transfer phenomena to determine whether 

the dye is first released from the particles and then internalized by cells or whether the 

dye is transferred to the lipophilic membrane via direct contact. To study this they 

compared release in phosphate buffered saline (PBS) to release in PBS with fetal bovine 

serum (FBS) and release in PBS containing liposomes to simulate the cell membrane. 

They found almost no dye released in PBS, increased slightly by the addition of FBS to 

simulate media, but increased by 5-fold with the inclusion of liposomes. This supports 

the mechanism of contact transfer and is a crucial observation as some groups 

demonstrate no release in PBS as evidence that the dye does not leach from the particle.57 

This is not to say that all positive internalization measurements are false readings and that 

under no circumstances are PLGA particles internalized by cells. Several variables could 

be playing a role to this point missed due to an over-estimation of internalization. For 

example, the amount of residual PVOH on the surface of particles is highly varied and 

not well controlled. This could affect internalization by modifying the hydrophilicity of 

the particle and the degree of surface shielding. It has been demonstrated that particles 

with higher amounts of PVOH associated with the surface show lower cellular 

internalization.60 Although fluorescence may not be reliable there are other methods 

available for the determination of cellular internalization. These methods require more 

sample preparation and more sophisticated equipment so are used less often. 
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Transmission electron microscopy (TEM) is an example of a more reliable method which 

has been used to observe particle internalization.61 In addition this method has been used 

to look at the intracellular fate of particles. The most important aspect of intracellular 

trafficking is escape from the endosome. In a study by Panyam et al. rapid endosomal 

escape (10 minutes) of 70 nm PVOH stabilized PLGA particles was observed using 

fluorescent microscopy supported by TEM analysis. Further investigation into the 

mechanism of this escape revealed the PLGA particles exhibited a charge reversal at pH 

5 from negative to positive. As an endosome matures the pH drops to 5 from initial 

physiological pH. This would reverse the charge on the particle once internalized and this 

charge reversal would result in interaction with the endosomal membrane and generate a 

proton sponge effect.61 Other groups have observed endosomal escape with PLGA 

nanoparticles as well.62      

The investigation into non-spherical particle internalization is a relatively 

unexplored arena as most fabrication methods result in spherical particles. Champion et 

al. looked at the internalization of particles which were on the micron scale and found the 

angle of curvature where the cell encounters the particle determines whether the cell will 

attempt to phagocytos the particle. Whether it succeeds then depends on how large the 

particle is in relation to the cell.63 Whether the angle of curvature theory holds for 

nanoparticles is unknown. The internalization of non-spherical nanoparticles with 

controlled shape and size is a relatively new field as technologies capable of fabricating 

these particles emerge. A study looking at cationically charged PEG hydrogel particles 

fabricated by the PRINT® process has demonstrated the importance of shape and size on 

the nanoscale. It was shown that particles 1 micron and smaller were readily taken by 
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HeLa cells within 4 hours. It was furthermore demonstrated that 150 nm particles with an 

aspect ratio of 3 were taken up more rapidly than particles of a similar volume with an 

aspect ratio of 1.58 A particle with a high aspect ratio can deliver a higher payload per 

internalization event than a particle with the same critical dimension and an aspect ratio 

of 1. This could be used to achieve higher efficacy at a lower total dose.  

 

1.5.6 Biodistribution 

While the internalization of particles is necessary for some therapeutics and not 

for others, the biodistribution of the particles is always an important consideration. This 

has mostly been studied through the chemical attachment of a radioactive isotope to the 

polymer itself. Factors affecting the biodistribution of particles include size, shape, and 

stabilization method. There are several key aspects of biodistribution to consider for 

cancer therapy applications. First and foremost being the quantity of particles 

accumulating in the tumor over time. Particles <400 nm can take advantage of the EPR 

effect as previously discussed.56 Secondly, circulation half lives are important since the 

longer particles circulate the more passes of the tumor vasculature and therefore the 

higher probability that they will be extravasated. Additionally the circulation half life of 

the particle must be considered when tailoring release and degradation characteristics. 

There are also organs where a lack of accumulation is desired. For example some 

chemotherapeutics are cardiotoxic when delivered systematically and therefore 

accumulation in the heart would preferably be decreased. Finally there is the avoidance of 

the clearance systems in the body. The main organs of clearance are the liver, spleen, and 

kidneys. The kidneys clear molecules and particles <10nm.56 Almost all polymer 
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particles currently being investigated fall above this cut off and kidney clearance is not 

consider a major issue. The liver and spleen tend to clear particles which are >100nm.56 

The liver and spleen are therefore the main organs of accumulation for PLGA 

nanoparticle therapies which are typically 100 – 300 nm in size.64-67 Naturally the level of 

particles in these organs drop over time as the particles are cleared.64, 65, 68 The particles 

once cleared can accumulate further in the tumor or be cleared by the intestines and, once 

degraded, the kidneys.64, 66 A comparison of PEGylated and sterically stabilized PLGA 

nanoparticles by Panagi et al. revealed similar distribution profiles between formulations 

over very different time scales. The PEGylated PLGA particles (113 nm; -4 mV) 

exhibited distribution over 24 hours while the sterically stabilized PLGA particles (154 

nm; -45 mV) distributed over just 60 seconds. The majority of the particles (60%) 

accumulated in the liver and spleen. While organ accumulation was very similar the 

PEGylated particles showed enhanced circulation times which could be very beneficial in 

tumor accumulation; however this study was in healthy animals so tumor accumulation 

was not tested. Unlike most biodistribution studies which only look at major organs, this 

study looked at accumulation in the muscles, bone, and the carcass once all measured 

organs were removed. The authors report 5-10% of all formulations accumulating in both 

muscle and bone as well as 20% in the carcass. This demonstrates the potential for 

missing particles when only major organs are measured. Furthermore the effect of dose 

on biodistribution was investigated. Four doses over an order of magnitude were 

administered: 150-1050 µg for PEGylated and 63-750 µg for sterically stabilized. For 

PEGylated particles the dose had no effect, however, for sterically stabilized particles the 

higher dose resulted in slightly longer circulation and reduced liver and spleen uptake 
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with no other organs affected. This was attributed to saturation.65 Many groups use 

PEGylated PLGA particles based on the touted advantages in circulation times. Li et al. 

demonstrated that 198 nm PLGA-PEG particles circulated for 24 hours, while 214 nm 

PLGA particles only circulated for 2 hours.69  

Whenever considering the biodistribution profile of a specific formulation note 

should also be taken of lung accumulation. Larger particles or aggregates of particles can 

become physically entrapped in the lung. If there is too much accumulation this can result 

in inflammation or embolization. Generally lung accumulation is unwanted and may be a 

sign of stability problems with the formulation, however, some have considered this as a 

passive targeting strategy. Zhang et al. dosed mice with PLGA microparticles in three 

size ranges: <5 microns, 5-20 microns, and >20 microns. Particles 5-20 microns showed 

the highest lung accumulation, while all sizes showed lung accumulation higher than 

liver and spleen.70 In addition to size, charge has been linked to lung accumulation. Xu et 

al. measured biodistribution of 192 nm PEGylated PLA particles which carried a positive 

charge (+5 mV) and observed lung accumulation 3 times higher than similarly sized 

negative PEGylated PLA particles (155nm, -36 mV) for which liver was the most 

prominent organ of accumulation as expected.68  

 

1.5.7 In vivo internalization and tumor penetration 

Some groups have taken the study of biodistribution further looking at the 

distribution of particles within the tumor and cell internalization in vivo. This information 

is important when designing therapies because some delivery systems will aim to destroy 

the vasculature of the tumor thereby cutting off its nutrient supply while other therapies 



 21

will need deeper tumor penetration. And as previously discussed some therapies require 

cell internalization while some do not. In vitro studies can not fully mimic the 

environment of a tumor. Lee et al. studied the tumor penetration of PEGylated 

poly(caprolactone) (PCL) nanoparticles, the second most prevalently used polyester after 

PLGA. They compared particles which were 25 nm and 60 nm. In addition they 

compared targeted versus non-targeted particles to investigate the theory of binding site 

barrier. This suggests that targeted particles will have less/slower diffusion through tumor 

tissue since they will bind to cell as soon as they leave the circulation. First they found 

that 25 nm particles had a 2-fold lower total tumor accumulation than 60 nm particles and 

that targeted particles had a slightly higher accumulation for both sizes. They attributed 

this to the smaller particles being easier to clear from the tumor. This further 

demonstrates that an optimum size is yet to be completely teased out, partly due to the 

heterogeneous sizes of traditionally fabricated particles. Next they looked at tumor 

penetration and found that the 25 nm particles penetrated tumor tissue 46 microns from 

the vasculature, reduced to 34 microns when targeted and that 60 nm particles penetrated 

tumor tissue only 20 microns, reduced to 14 microns when targeted. Finally they looked 

at cellular internalization observing most particles, targeted and non-targeted, were in 

extracellular space. This is in sharp contrast to their in vitro finding which showed high 

internalization of all particles.71 This study clearly demonstrates the complex issues of 

tumor delivery, in vivo internalization, and the need for studies which have very well 

defined particle size. 

While size effects on biodistribution have been investigated, shape has remained 

more elusive. Most particle fabrication techniques can not access non-spherical shapes 
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and most particle fabrication techniques that can produce micron-sized particles. 

Recently the Discher group developed a process for the fabrication of “filomicelles” 

which are flexible, filamentous micelles composed of PCL-PEG block copolymers. They 

studied the distribution of these filomicelles compared to spherical micelles of the same 

critical dimension and found increased circulation times and frustrated macrophage 

internalization. At 24 hours 63% of the filomicelles were still in circulation. They further 

showed that the filomicelles could encapsulate hydrophobic anti-cancer drugs and 

increase the maximum tolerated dose (MTD). These particles exhibited better in vivo 

efficacy than the standard of care therapy.72 The enhanced efficacy of these particles over 

spherical particles further intensifies interest in non-spherical particles and the effect of 

shape on biodistribution.   

 

1.6 Chemotherapeutic Delivery  

Particles with promising biodistribution profiles are often tested for efficacy using 

standard of care chemotherapeutics. These systems are well documented in the literature, 

standard in vitro cytotoxicity assays can be used to screen formulations, and efficacy in in 

vivo models are well known. The most commonly used chemotherapeutics interfere with 

either microtubule assembly/disassembly or DNA replication to prevent mitosis. Taxanes 

are a group of compounds, natural and synthetic, which prevent mitosis by stabilizing 

microtubules, in essence “freezing” the cell. Docetaxel (Figure 1.2) is a semi-synthetic 

taxane; an esterified product extracted from the yew tree.  
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Figure 1.2 The chemical structure of docetaxel. 

 

Docetaxel has been approved for the treatment of breast, lung, prostate, gastric, and head 

and neck cancer in the form of Taxotere®, a formulation of docetaxel in water and ethanol 

with poloxomer 188 (Tween 20) for stabilization. Docetaxel has shown promise over 

doxorubicin, paclitaxel and fluorouracil, however, it has dose limiting toxicities 

associated with systemic delivery, making it a prime candidate for improvement through 

encapsulation in a delivery vehicle.73  

 

1.6.1 Docetaxel encapsulation 

Several groups are investigating the use of PLGA particles as delivery vehicles 

for docetaxel. The first challenge is to load docetaxel into the nanoparticle. Using a block 

copolymer of PLGA and PEG to form micelles which encapsulate docetaxel in their 

hydrophobic core is the most common approach with maximum loadings at 15% (Table 

1.2). The ability of a system to load docetaxel effectively is dictated by the partitioning of 

the docetaxel between the pre-particle phase and the secondary phase, usually water. The 

specific process parameters used will effect encapsulation. 
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Table 1.2 The encapsulation of docetaxel in PLGA/PLA particles. 
Fabrication 

Method Matrix Theoretical 
Loading 

Encapsulation 
Efficiency Ref 

     

Emulsion PLGA 0.5-1% 17-23% 74 

 PLA 0.5-1% 11-22% 74 
 PLGA-mPEG 2% 77-83% 47 
 PLGA-mPEG 2% 74% 48 
 PVP-b-PLGA 4% >95% 75 
 PLGA-mPEG 6% 26% 48 
 PLGA-lecithin-PEG 10% 62% 49 
 PLGA 11% 70% 53 
 PLGA/Poloxamer188 11% 88% 53 
     

Nanoprecipitation PLGA-PEG 10-15% 21-51% 76 
     

Film Rehydration PEG-b-PLA 12% 98% 77 
     

Ultrasonication NGR-PLA-PEG 5-15% 95-98% 78 
     

   

 

1.6.2 Docetaxel release 

In addition to being able to load a cargo efficiently, it is essential that the cargo is 

able to be released in an appropriate time frame. Release studies are typically carried out 

at 37oC and pH 7.4 to mimic in vivo conditions. In addition it is important that the release 

is measured under so called “sink” conditions. Released drug is removed so that there is 

always a gradient which favors drug diffusion out of the particle into the surrounding 

media. PLGA particles release cargo through a combination of diffusion and 

degradation.50 Although docetaxel has very low water solubility (14 ug/mL) these 

particles display a typical burst release followed by a extended release phase. The burst 
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phase typically represents 10-30% of the total encapsulated docetaxel, but can be higher 

with reports of 65% burst release (Table 1.3). Particles then release cargo at a slower rate 

over a week to a month.45, 47, 74, 79  

 

Table 1.3 Examples of release from docetaxel loaded PLGA/PLA particles. 

Matrix Size (nm) Docetaxel 
Loading* Burst Release Total Days    

of Release Ref 

PLGA 157 0.5% 65% 15 74 

PLA 123 0.5% 45% 15 74 
PLGA-mPEG 105 2% 30% 30 47 

PLGA 105 2% 12% 30** 48 
PLGA-lecithin-PEG 80 10% 20% 4 49 

PLGA 275 11% 10% 30 53 
PLGA/Poloxamer188 218 11% 15% 30 53 

PEG-b-PLA 35 12% 20% 1 77 
*See Table 1.2 for encapsulation values 
**This particle released a maximum of 40%  
 

1.6.3 In vitro cytotoxicity of docetaxel containing PLGA nanoparticles 

Typically docetaxel containing PLGA nanoparticles are slightly less potent or 

equally potent to Taxotere® in vitro. It should be noted however that drug free 

nanoparticles show much less toxicity than Tween 80, therefore the toxicity comparison 

is somewhat clouded.45, 52 When compared to free docetaxel instead of clinically 

formulated drug, docetaxel loaded PLGA nanoparticles have been shown to exhibit 

higher toxicity. Esmaeili et al. compared docetaxel loaded PLGA nanoparticles sterically 

stabilized with PVOH to free docetaxel which they solubilized using a stock solution in 

dimethyl sulfoxide (DMSO) instead of ethanol and Tween 80 (Taxotere®). They observed 

IC50 values up to 9 times lower than docetaxel with their particle formulation and showed 

enhanced toxicity in three different cell lines (T47D, SKOV3, and MCF7)  with one cell 
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lines exhibiting similar toxicity (A549).79 Targeting can further enhance docetaxel 

toxicity, presumably by enhancing internalization. Farokhzad et al. compared the toxicity 

of docetaxel loaded PLGA-PEG nanoparticles which were untargeted to nanoparticles 

targeted with a PMSA aptamer on LNCaP cells. Viability decreased from 61% to 42% at 

30 minutes and from 48% to 30% at 2 hours with the addition of the targeting ligand.46 

Docetaxel can cross the cell membrane on its own so internalization is not necessary for 

cytotoxicity, but by delivering a higher payload directly into the cell higher toxicity can 

be achieved.  

 

1.6.4 In vivo efficacy via intratumoral injection 

Many researchers move from in vitro studies to in vivo studies by first testing 

particles directly injected into the tumor. This allows the cytotoxicity of the formulation 

to be tested under in vivo conditions without involving the additional issue of 

biodistribution.  Farokhzad et al. investigated the efficacy of non-targeted versus targeted 

PLGA-PEG nanoparticles (153 nm) in LNCaP xenograft tumor bearing nude mice. Mice 

were dosed with 40 mg/kg docetaxel in one intratumoral injection. As such, accumulation 

in the tumor was the same for all formulations; however different clearance and delivery 

mechanisms were still in play. The results after almost 4 months of monitoring showed 

that the non-targeted particles were more effective than emulsified drug while the 

targeted particles were the most effective. Both particle formulations resulted in 

regression with subsequent growth at a slower rate than controls. After 110 days the non-

targeted particle group had progressed back to the original tumor volume while the 

targeted particle group was still one third to one fourth the original volume. The 
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enhancement seen with targeting could be due to reduced clearance or to increased 

internalization or both.46 

  

1.6.5 In vivo efficacy via intravenous injection 

While higher potency in vitro is not always achieved, the enhanced tumor 

accumulation of the particle often leads to higher in vivo efficacy, while the decreased 

exposure to other organs reduces systemic toxicity. Senthilkumar et al. compared 

docetaxel loaded 100nm PLGA nanoparticles without PEG, with 2K PEG, and with 5K 

PEG to free docetaxel. The plasma elimination half lives of PLGA nanoparticle 

formulations with PEG were twice that of the formulation without PEG: 3.29 hours (no 

PEG) versus 6.90 hours (2K PEG) and 7.26 hours (5K PEG). All nanoparticle 

formulations outperformed free docetaxel which had a plasma elimination half life of 

1.93 hours. At 12 hours post-administration PLGA-PEG (5K) particles showed tumor 

accumulation 8 times higher than free docetaxel and 3 times higher than nanoparticles 

without PEG. As expected the tumor accumulation increased from 1 hour post-

administration to 12 hours post-administration. Interestingly by 24 hours docetaxel had 

been eliminated from the tumor for all particle formulations and free docetaxel. All 

formulations showed high liver and spleen accumulation at 1 hour which decreased over 

the following 24 hours. With all three particle formulation showing increased tumor 

accumulation, the anti-tumor efficacy of these formulations was tested in mice bearing 

xenograft C26 tumors (murine colon adenocarcinoma). Mice were dosed every other day 

until they had received a total of 5 doses (the dose is reported only as “a selected dose” 

throughout the manuscript). However it is clear that all mice treated with docetaxel 
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showed tumor regression while vehicle and saline treated mice did not. Furthermore the 

particle formulations showed enhanced efficacy, with the PEGylated formulations 

showing the most regression. As a measure of health the mice were also weighed during 

the course of the study. Mice which received free docetaxel exhibited significant weight 

loss. Mice which received nanoparticles without PEG also showed some weight loss 

while mice which received PEGylated nanoparticles did not. This is not addressed by the 

authors but could be due to increased accumulation in other organs as compared to the 

PEGylated formulations.47 

In addition to increased tumor accumulation, avoidance of cardiotoxicity is a 

major concern with docetaxel therapy. Esmaeili et al. investigated the biodistribution of 

docetaxel loaded PLGA nanoparticles (175 nm) sterically stabilized with PVOH 

compared to Taxotere® in healthy mice. They showed decreased accumulation in the 

heart, kidneys, and interestingly the liver with nanoparticle formulations.79 This could 

partly be due to the fact that Taxotere® forms nanoaggregates which would be trapped by 

the liver. The favorable comparison to Taxotere® makes PLGA nanoparticle systems 

even more attractive. 

 

1.6.6 Chemotherapeutic PLGA particles in clinical trials 

The benefits of these polyester delivery systems for chemotherapy have led to 

clinical applications. Genexol® is a PDLLA-PEG nanoparticle containing paclitaxel 

currently in Phase I/II/III trials for various cancers and combination therapies. Genexol® 

is already approved in Korea. Paclitaxel is the naturally occurring analog from which 

docetaxel was developed. It has been studied longer and is currently in patients as 



 29

Taxol®, a Cremaphor EL solubilized form similar to Taxotere®. Also approved is 

Abraxane®, a nanoassembly with albumin. Genexol® did not show enhanced in vitro 

cytotoxicity, but as previously discussed the anti-tumor efficacy was improved over 

Taxol® due to the improved tumor delivery. A combination of Genexol® with cisplatin is 

has proven more effective with less systemic toxicity in patients with advanced non-small 

cell lung cancer than Taxol® with cisplatin. Genexol® showed a higher response rate in 

women with metastatic breast cancer over Taxol®. This particular application has 

progressed to Phase III clinical trials and demonstrates the advances being made with 

PLGA drug delivery.52       

 

1.7 RNA interference and siRNA delivery 

In addition to the delivery of hydrophobic chemotherapeutics, PLGA 

nanoparticles have been explored for RNA therapies. RNA interference (RNAi) is a 

natural gene silencing process which can be induced by the introduction of small 

interfering RNA (siRNA), double stranded RNA molecules 20-22 nucleotides in length, 

to the cytoplasm. Once the siRNA enters the cytoplasm it is recognized and the active 

strand is incorporated in the RNA-induced silencing complex (RISC). This complex 

binds messenger RNA (mRNA) possessing the complementary sequence. This mRNA is 

then cleaved, preventing protein production. Many mRNA can be cleaved by a single 

siRNA/RISC. The reduction in the targeted protein levels is referred to as gene 

knockdown (Figure 1.3).    
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Figure 1.3 The RNAi pathway.  

 

RNAi was first reported by Craig Mellow and Andrew Fire in 1998, who won the Nobel 

Prize in 2006 for this discovery. The RNAi pathway is a cell’s defense against viruses 

and so called jumping genes. Viruses use a host cell to generate copies by injecting 

genetic information into the cell. Most RNA in our cells is single stranded. A major class 

of viruses (Class III) inject double-stranded RNA into cells. The cell recognizes this RNA 

material as foreign and the RNAi pathways acts to degrade the viral mRNA before 

proteins are produced generating copies of the virus. Exploiting this inherent pathway of 

gene knockdown is recognized as a therapeutic treatment options for a variety of diseases 

including cancer. The targets are oncogenes, genes that are mutated or expressed in 

abnormal levels in cancerous cells. Examples of genes over-expressed in cancerous cells 

are growth factors, transcription factors, tyrosine kinases, and regulatory GTPases. These 

genes regulate cell proliferation and can induce angiogenesis, the growth of new blood 

vessels. The over-expression of these genes leads to uncontrolled proliferation which 
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results in the formation of a tumor. Turning these genes off using siRNA therapy could 

be effective at fighting the disease; however siRNA is easily degraded in vivo and does 

not readily cross the cell membrane so the development of effective therapies will fully 

require the development of efficient delivery systems.  

 

1.7.1 Incorporating siRNA in cationic PLGA nanoparticles for effective transfection 

The design of PLGA nanoparticles for siRNA delivery is more complex than for 

the delivery of chemotherapeutics. First siRNA is hydrophilic making it more difficult to 

encapsulate using traditions two-phase processes that typically rely on water as the anti-

solvent. For this reason modifications such as the use of double emulsions (w/o/w) have 

been employed. Secondly the delivery of chemotherapeutics does not require particle 

internalization, but the delivery of siRNA does. The siRNA must be introduced into the 

cytoplasm so both particle internalization and endosomal escape are necessary. The most 

common method used to achieve efficient delivery is the incorporation of poly(ethylene 

imine) (PEI) (Figure 1.4). 

 

Figure 1.4 The chemical structure of branched poly(ethylene imine) (PEI). 

 

PEI can be used alone as a transfection agent due its high water solubility and high 

density of primary amines which act to condense the negatively charged siRNA, induce 
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endocytosis, and promote endosomal escape through the proton sponge effect. PEI can be 

linear or branched, with the branched variation having primary, secondary, and tertiary 

amines. However there are toxicities associated with free PEI due to membrane 

disruption common to positively charged molecules. Combining PEI with PLGA in a 

nanoparticle form reduces toxicity.80 The safety of PLGA/PEI particles with and without 

siRNA has been demonstrated by Patil et al. who observed no toxicity out to 500 ug/mL 

in vitro while PEI alone showed >90% cell death at doses an order of magnitude lower 

(<50 ug/mL).81 Despite the ionic interactions with PEI, siRNA still exhibited a burst 

release from these particles followed by steady release over the next two weeks.81 There 

are a variety of ways PEI can be incorporated in the particle. Zhang et al. compared three 

different methods using plasmid DNA (pDNA), a gene therapy tool for increasing protein 

expression. They compared 2 micron PLGA particles fabricated using a double emulsion 

technique encapsulating pDNA: composition one contained pDNA in the inner emulsion 

of PLGA without PEI, composition two contained pDNA in the inner emulsion of 

PLGA/PEI, composition three contained pre-formed PEI/pDNA complexes in the inner 

emulsion of PLGA, and composition four had pDNA adsorbed to the surface of 

PLGA/PEI particles. They determined the pDNA was effectively bound in/to the particles 

in all cases. They also showed all three methods of incorporating PEI in the PLGA 

particle greatly reduced associated toxicity on COS7 cells, a monkey kidney line, 

compared to free PEI. At 15 µg/mL viability was >80% for all particle compositions but 

at a comparable PEI concentration <15% viability was observed. The difference in the 

four compositions emerged when the transfection ability was tested. pDNA upregulates 

protein production and in this case a common model system, luciferase, was used. They 
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found that particles with pre-formed PEI/pDNA complexes had the most efficient 

transfection.82 Cationic complexes are traditionally used for in vitro transfection, but can 

not be used in vivo due to toxicity and immunogenicity. Cationic complexes are 

commonly pre-formed for the incorporation in liposomes used as a drug delivery vehicle 

in vivo. This research demonstrates that though incorporated in a solid polymer particle, 

having a cationic complex may still provide benefits over a homogeneously mixed 

system.     

Other groups have also demonstrated the enhancement in knockdown provided by 

a cationic PLGA particle. Andersen et al. compared PLGA particles to PLGA particles 

with PEI and cetylated PEI. They found that the PLGA particle did not result in gene 

knockdown while the PLGA/PEI and PLGA/cetylated PEI particles showed 62% and 

41% knockdown respectively.83 In addition to PEI, other cationic moieties have been 

investigated; the second most common being chitosan. Chitosan is a naturally occurring 

polymer with high primary amine density. Tahara et al. coated PLGA particles containing 

DOTAP/siRNA complexes in PVOH or a 1:1 mixture of PVOH and chitosan. They only 

observed gene knockdown in the sample coated with chitosan.84  

 

1.7.2 The effect of N/P ratio on in vitro gene knockdown 

The transfection of cationic PLGA nanoparticles in vitro often depends on the N/P 

ratio. This is a ratio of the number of nitrogens in the cationic moiety to the number of 

phosphorous groups in the gene. Some groups report N/P directly while other groups 

report the weight percent of the cationic moiety and siRNA in the solid particle. PEI and 

other cationic polymers tend to have a higher nitrogen density than lipids or synthetic 
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amphiphiles such as cetyl trimethylammonium bromide (CTAB). In general a higher N/P 

ratio results in higher transfection. Oster et al. compared the transfection capabilities of 

PLGA particles containing varying amounts of CTAB to particles containing varying 

amounts of PEI. In both cases pDNA was absorbed to the surface of the particle. They 

found that particles with PEI had much higher transfection than particles with CTAB at 

similar weight percents. Furthermore the higher the percentage PEI, the higher the 

transfection. Particles with 0-5% PEI showed transfection barely above background while 

particles with 10% and 50% PEI showed almost a 10 and 100 fold increase in protein 

respectively. Particle with 0-50% CTAB showed transfection barely above background.80 

Katas et al. also used adsorption of siRNA onto PLGA/PEI particles for transfection. 

They compared particles with varying N/P ratios and examined the often overlooked 

variable of PVOH molecule weight. They found that high levels of gene silencing were 

achieved at 24 hours; greater than 80% knockdown was achieved with 5 of the 6 

formulations tested. Particles with higher molecular weight PVOH (30-70 kDa) exhibited 

a clear trend with higher N/P producing greater and more sustained knockdown (50:1 > 

35:1 > 25:1). Particles with lower molecular weight PVOH (13-23 kDa) did not show a 

clear trend with the middle N/P tested, 35:1, exhibiting the greatest knockdown of all the 

formulations. while the others were not as effective as particles fabricated with higher 

molecular weight PVOH.85 This could indicate a sweet spot in the formulation range 

investigated or a difference in that particular particle formulation as the emulsion process 

is heterogeneous.  
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1.7.3 In vivo gene knockdown by PLGA nanoparticles 

A few groups have taken cationic PLGA siRNA systems in vivo. In 2008 Murata 

et al. reported anti-tumor efficacy using PLGA/PEI and PLGA/arginine microparticles. 

They chose an anti-VEGF siRNA as a therapeutic vector against S-180 (sarcoma) 

xenograft tumors. Vascular endothelial growth factor (VEGF) is responsible for 

angiogenesis which allows a tumor to grow and spread. By reducing VEGF and therefore 

the blood supply, many believe a tumor can be contained. They first examined the ability 

of PEI and arginine to complex with siRNA and produce knockdown. They found, as 

previously described, a higher N/P ratio resulted in higher knockdown and were able to 

reach 54% knockdown with arginine complexes and 68% knockdown with PEI 

complexes. They incorporated these complexes in microspheres that would act as 

injectable depots using a w/o/w emulsion. The two formulations showed similar release 

profiles with a burst of 20% and another 20% released over 3 weeks at a steady rate. In 

vitro these particles exhibited 60% and 43% knockdown with PLGA/arginine and 

PLGA/PEI respectively (formulation difference not significant; p>0.05). For in vivo 

evaluation the authors injected microspheres intratumorally and monitored tumor volume. 

They looked at vehicle controls and compared PLGA/siRNA particles to 

PLGA/arginine/siRNA particles and PLGA/PEI/siRNA particles. The PLGA/siRNA 

particles showed some significant growth inhibition (p<0.05), while the PLGA/arginine 

particles showed a higher level of growth inhibition (p<0.01), and the PLGA/PEI 

particles were the most efficient formulation with little growth over 21 days.86   

In 2009 Woodrow et al. reported the investigation of intravaginal topical 

application of siRNA containing PLGA/spermidine nanoparticles as a topical microbicide 
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for defense against sexually transmitted diseases including human immunodeficiency 

virus (HIV). Using an N/P ratio of 8:1 they demonstrated PLGA/spermidine/siRNA 

particles were able to provide more sustained knockdown than commercial transfection 

agents in vitro, >14 days as compared to <7 days with the commercial agent. They tested 

particle distribution and found 7 days after in vivo application particles were detected 

throughout the reproductive tract. An EFGP reporter was used to test in vivo knockdown; 

10 days after topical administration 50% knockdown was measured in the uterine horn, 

60% knockdown was measured in the cervix, and 60% knockdown was measured in the 

vaginal tract. They compared these particles to lipid delivery systems which showed 

equal knockdown, but caused inflammation and epithelial disruption in the vaginal tissue 

whereas the PLGA nanoparticles did not.87 While PLGA particles do not have a lot of 

clout as siRNA delivery systems yet, there is a growing body of evidence suggesting 

these particles can be tailored with varying cationic moieties and show equal knockdown 

with less toxicity than traditional carriers.  

 

1.8 Future Directions 

The use of PLGA nanoparticles for the treatment of cancer is under exploration 

by a wide variety of research groups. The future will see many of these therapies entering 

clinical trials. As the first generation of PLGA nanoparticles make their mark, the future 

of the technology is already starting to unfold. Next generation particles will be able to 

combine therapies for maximum efficacy and will have a higher degree of control. 
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1.8.1 Combination therapy 

Amid PLGA carriers showing promise in both chemotherapy and siRNA, some 

researchers have started to consider the combination of the two for higher efficacy. 

Already patients are treated with cocktails of chemotherapeutics which have different 

mechanisms of toxicity. The combination of a cytotoxin with gene therapy aimed at 

reducing the cancer’s ability to resist may bring about more rapid and more complete 

regression. Researchers have demonstrated that the knockdown of certain genes can 

sensitize cells to chemotherapeutics.88, 89 Combination therapies without carriers have 

been shown to be more effective against tumor growth than the individual components.90 

Saad et al. developed a cationic liposome which incorporated doxorubicin, siRNA against 

MDR1/MRP1 (drug efflux pump) and siRNA against BCL2 (cellular anti-apoptotic 

defense) in the same nanoparticle. They achieved efficacy in multi-drug resistant cells 

which could not be approached by any of the individual components.91  

 

1.8.2 Higher Degree of Control 

In order to have more control over particle properties, a higher degree of control 

is needed in the fabrication process. A process would ideally generate monodisperse 

particles of a chosen size and geometry which could efficiently incorporate high loadings 

of therapeutic. Furthermore the process would allow the composition of the particle to be 

tailored independent of the size and geometry so that compositional effects could be 

explored with no uncontrolled variables. One way this can be accomplished is through 

the use of soft lithography. Currently two groups are exploring very different soft 

lithography technologies. The Park group at Purdue University has developed a hydrogel 
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template method which allows for the fabrication of PLGA particles fulfilling the 

necessary control requirements. They have demonstrated exquisite control on the micron 

scale achieving very high loadings and controlled release profiles. While not suitable for 

intravenous delivery, microparticles are useful for inhalation and depot applications. 

Furthermore they have shown the ability to fabricate drug free nanoparticles and are 

currently studying these particles for drug delivery.44 The DeSimone group at the 

University of North Carolina at Chapel Hill has developed the PRINT process which 

allows for the fabrication of PLGA micro- and nanoparticles which fulfill all the above 

criteria and have demonstrated efficacy as drug delivery vehicles as is detailed herein.      
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2.1 Introduction to the PRINT® Process 

In 2004 the DeSimone lab reported a new material with low surface energy and 

high solvent resistance for the fabrication of microfluidic devices.1 This material is a 

photocurable perfluorinated polyether oil which has since been trademarked Fluorocur® 

by Liquidia Technologies. This material demonstrated superior performance to 

poly(dimethyl siloxane) (PDMS), the most commonly used elastomer for the fabrication 

of microfluidic devices.1, 2 Following this success, other applications in which PDMS 

plays a critical role were investigated, most notably imprint lithography. Imprint or “soft” 

lithography is family of patterning technologies where an elastomeric mold is fabricated 

from a hard template. This mold is then used to pattern another material either by inking 

the mold and transferring to a substrate to create a 2D pattern like a stamp or by pressing 

the mold into another material which fills the pattern, replicating the template in 3D. 

PDMS is the most common mold material due to its low surface energy (20 dyn/cm) and 

its low modulus. Once cured the flexible, low surface energy mold is easily peeled from 

the template without damage to the template. This is important because the template is 

typically created on silicon through standard lithography and is therefore expensive and 

delicate. By comparison Fluorocur has a surface energy of 8-10 dyn/cm and also has a 

low, tailorable modulus.3 As such it was hypothesized that Fluorocur would outperform 

PDMS in soft lithography applications. In 2005 the DeSimone lab reported not only that 

Fluorocur was successfully used in imprint lithography to generate molds and replicate 

patterns in the same way that PDMS is used, but in addition Fluorocur could be used to 

create completely isolated particles.4 This technology was termed the PRINT (Particle 

Replication In Non-wetting Templates) process. In typical PDMS molding there is a layer 
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of material which connects the cavities, termed the “scum” or “flash” layer, which must 

then be removed by an additional step such as etching. As feature size decreases this 

becomes an increasing problem as the layer being etched approximates the size of the 

feature being molded. Using Fluorocur instead of PDMS eliminates the connecting layer; 

the cavities of a Fluorocur mold can be filled without wetting the land area between. This 

versatile technology platform has applications from advanced drug delivery to energy 

collection and storage. 

 

2.1.1 Control of Size, Shape, and Composition 
 

Imprint or “soft” lithography in general offers many benefits over standard 

particle fabrication techniques and the PRINT process specifically enhances control over 

particle size, shape and composition. Standard lithography is very advanced due to the 

needs of the electronics industry. Therefore template fabrication is very precise. Size 

resolution is sub-100nm and shapes are largely unlimited. The PRINT process takes full 

advantage this state of the art technology. Figure 2.1 shows a selection of particles which 

have been fabricated using the PRINT process. These particles demonstrate the ability to 

design features into the particle which could affect cellular internalization, flow in air 

(inhalation) or in fluid (bloodstream), drug release profiles and biodistribution. Since 

there is always a flat spot generated from where the feature in the template joins the 

silicon wafer completely spherical particles can not be molded, however, spherical 

particles can be generated through an extra rounding step. 
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Figure 2.1 A variety of sizes and shapes generated using the PRINT process (A) 80nm x 

360nm cylinders, (B) 200nm x 200nm cylinders, (C) 200nm x 600nm cylinders, (D) 1 
µm sphere approximates, (E) 2 µm cubes with ridges on the sides, (F) 3 µm particles with 

center fenestrations, (G) 3 µm arrows, (H) 10 µm boomerangs, and (I) 7 µm discs. 
 
 

In addition to control over size and shape, the PRINT process allows for unprecedented 

control over composition. The same size and shape can be generated from hydrogels, 

linear polymers, inorganics, small molecules, proteins, pure drug or a combination.4-8 The 

method is gentle and biologicals as sensitive as proteins and siRNA can be molded and 

maintain biological activity. This is flexibility that other particle fabrication techniques 

simply do not possess and is why the PRINT process is truly a platform technology. 

Control over composition allows for the tailoring of the matrix to meet the specific needs 

of that delivery agent. For example, siRNA can be complexed with primary amine 

containing polymers for enhanced cytosolic delivery, different PLGA polymers can be 

used to tailor the release profiles of drug, and acid sensitive crosslinkers can be used to 

deliver drug to intracellular only locations. As a component of composition, targeting 
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ligands can be added to the particles for enhanced uptake specificity or markers of self 

can be added to the particles to prevent uptake. Control over composition independent of 

size and shape is unique since in most particle fabrication techniques the composition and 

size are interrelated. Complete and independent control over size, shape, and composition 

allows for the rational design of drug delivery vehicles with the PRINT process. 

 
2.1.2 Mold Fabrication 
 

The Fluorocur mold is the keystone in the PRINT process. Fluorocur is a mixture 

of a perfluorinated polyether oil (Figure 2.2) and a soluble photoinitiator.  

 

 
Figure 2.2 An example of the perfluorinated polyether oil structure. The chain length (n 

and m) can be varied as well as the end group functionalization. 
 

 

Mold fabrication is the first step in the PRINT process. The Fluorocur oil is poured onto a 

silicon wafer that has been etched with the desired pattern (Figure 2.3 A). The oil wets 

the pattern completely due to the high spreading coefficient of Fluorocur. The wafer and 

photocurable oil are then placed in a chamber which is first purged with nitrogen for 2 

minutes and then exposed to ultraviolet light under nitrogen purge for 2 additional 

minutes, at which point the oil crosslinks, forming a solid film (Figure 2.3 B). This 

elastomeric film is referred to as the mold and has the inverse pattern of the wafer. The 

mold is peeled off the silicon wafer, which can be used in this way repeatedly without 

damage (Figure 2.3 C). A smooth surface can be created in the same way with a silicon 
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wafer that does not have a pattern (Figure 2.3 D-F). This flat substrate is used in solvent 

evaporation, pressure fill methods as described below.  

 

 

 
Figure 2.3 Mold and substrate fabrication (A) Fluorocur is poured onto a template, (B) 
The Fluorocur wets the template completely and crosslinks upon exposure to UV light, 

(C) The mold generated can be peeled from the template and now has the inverse pattern 
of the template, (D) Fluorocur is poured onto a flat silicon wafer, (E) The Fluorocur 

crosslinks upon exposure to UV light, (F) The substrate generated can be peeled from the 
template and is smooth on the wafer side. 

 
 
 
2.2 The solvent evaporation, pressure fill PRINT method 
 

In the first iteration of the PRINT process, a polymer dissolved in an organic 

solvent is sandwiched between a mold and a flat Fluorocur substrate. Pressure is applied 

and where the mold and substrate come in contact excess liquid is excluded. This allows 

the cavities to be filled without a connecting layer. The particles are then solidified by 

removing the solvent under vacuum. This method is particularly useful for making 

porous particles or particles with crystallinity.  
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2.2.1 Experimental  
 
 

2.2.1.1 Materials  

Poly(L-lactic acid) (PLLA; 130,000 g/mol), dichloromethane (DCM) and 1,4-

dioxane were purchased from Sigma Aldrich. Fluorocur® was synthesized first in lab as 

previously reported1 and then supplied by Liquidia Technologies.  

 

2.2.1.2 Particle visualization and characterization  

For visualization by scanning electron microscopy (SEM) samples were coated 

with 3 nm gold palladium alloy using a Cressington 108 auto sputter coater. Images were 

taken at an accelerating voltage of 2 kV using a Hitachi model S-4700 SEM. For thermal 

characterization, measurements were made on a Seiko 120 differential scanning 

calorimeter (DSC) using a heating rate of 10oC/min. Electron diffraction measurements 

were made on a high resolution FEI-Philips Tecnai 12 transmission electron microscope 

(TEM). 

 

2.2.1.3 Particle fabrication procedure 
 

A mold of the desired features and a flat substrate are fabricated (Figure 2.4 A). A 

polymer is dissolved in an organic solvent. Solutions which are 1-5% (w/v) are typically 

used. The mold and substrate are placed in contact and the polymer solution is injected 

between the two using a needle and syringe (Figure 2.4 B). This prevents premature 

evaporation of the solvent. The mold/solution/substrate sandwich is then placed in a 

clamping device which applies pressure to ensure good contact between the mold and 
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substrate. The entire apparatus is then placed under vacuum at ambient temperature for 

24 hours to thoroughly remove the solvent. When all the solvent evaporates, the polymer 

solidifies in the cavities of the mold (Figure 2.4 C). The apparatus can then be removed 

from vacuum, taken apart, and the mold can be peeled from the substrate (Figure 2.4 D). 

The particles remain in the mold due to the higher surface area contact with the mold 

compared to the substrate. 

 

 

 
Figure 2.4 The solvent evaporation, pressure fill PRINT method (A) a mold and 

substrate are fabricated from Fluorocur, (B) a solution of polymer in organic solvent is 
injected between the mold and substrate, (C) pressure is applied to the sandwich which is 

placed under vacuum to remove the solvent solidifying the particles, and (D) the mold 
and substrate are separated revealing isolated particles in the mold. 

 
 
2.2.2 Results 
 

In this method particles are formed from linear polymers. Herein poly(L-lactic 

acid) (PLLA) is investigated due to its biocompatibility, record of safety in humans, and 

semi-crystalline nature. Since the cavities are filled with solvent/PLLA mixtures and the 

solvent is removed, the resulting particle is porous. The degree of porosity is affected by 

the initial ratio of PLLA to solvent. Solutions too high in concentration leave behind 
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polymer with very little evaporation and so create scum before pressure is applied and 

good contact is made between mold and substrate. Solutions too low in concentration do 

not fully replicate the size and shape of the mold. As shown in Figure 2.5 below, PLLA 

particles fabricated from 1% (w/v) are less solid than particles fabricated from 5% (w/v) 

solutions. The same solvent and mold were used for these two compositions. Particles 

fabricated from 1% (w/v) solutions do not replicate the full shape of the mold very well, 

though they are of similar size. Particles fabricated from 5% (w/v) solutions exhibit the 

shape of the 3 micron cylindrical mold, though large pores are still clearly evident. 

Interestingly, the particles in both cases appear more solid than expected if 95-99% of 

their volume was solvent and was removed during the PRINT process. While the 

particles could be highly porous on a scale below image resolution, it seems more likely 

that the particles actually contain more polymer than projected. During the solvent 

evaporation the vacuum pulls solvent out through the Fluorocur mold creating a vacuum 

within each individual cavity. This vacuum pulls more solvent and polymer from the 

interstitial spaces. The solvent evaporation, pressure fill method relies on the contact 

between the mold and the substrate to exclude material and create isolated particles. This 

excluded material could be increasing the density of the particles. Porosity in particles is 

useful for effecting release and degradation profiles, for affecting travel in air and lung 

deposition in inhalation products, and for imaging agents.  
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Figure 2.5 PLLA particles from 1,4 dioxane solutions. (A) 1% (w/v) top view, (B) 1% 

(w/v) side view, (C) 5% (w/v) top view, and (D) 5% (w/v) side view. 
 
 

In addition to different polymer concentrations, different solvents can be used to fabricate 

particles. This also affects the porosity of the particles. A comparison between 1,4-

dioxane and dichloromethane (DCM) highlights the affects the solvent has on the 

particle’s porosity (Figure 2.6).  

 

 
Figure 2.6 PLLA particles from 5% (w/v) solutions from (A) dichloromethane top view, 
(B) dichloromethane side view, (C) 1,4-dioxane top view, and (D) 1,4-dioxane side view. 
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The largest difference between the two solvents is their evaporation rate which is an order 

of magnitude different (Table 2.1). Importantly the contact angle with Fluorocur is 

similar so the solvents equally de-wet the mold and substrate.  

 
 

Table 2.1 Relevant characteristics of solvents.  

Solvent Evaporation Rate    
(BuAc = 1) 

Receding Contact 
Angle with PFPE 

Viscosity 
(cP, 20oC) 

Dichloromethane 27.5 42o 0.44 

1,4-dioxane 2.7 51o 1.54 

 
 

The particles from DCM have the shape of the original pattern with no visible external 

porosity. The particles could be more solid; as the solvent evaporates faster the vacuum 

created within the cavity pulls more polymer solution into the cavity. The lower viscosity 

of DCM could also contribute to more excess polymer solution entering the cavity. 

However it is also possible that the quality of the solvent is affecting the structure. 

Dichloromethane is a very good solvent for PLLA and, as the solvent evaporates through 

the walls of the cavity, it could pull solvated polymer to the wall. The polymer cannot 

escape the cavity, however, and a skin is formed. This would give the outward 

appearance of a more solid particle, however, the internal structure of the particle would 

still be porous. The particles from 1,4-dioxane are clearly porous. This can be explained 

by the fact that 1,4-dioxane is not as good a solvent as dichloromethane so not as much 

polymer is pulled to the walls. Alternatively, the slower evaporation and higher viscosity 

could result in less polymer solution being pulled into the cavity during evaporation. 

These structural differences have important implications. Porous PLLA degrades slower 

than non-porous PLLA.9 As PLLA degrades acidic endgroups are generated. These 
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degradation products autocatalyze further degradation. When a particle is porous a flux of 

molecules out and water in keeps the microenvironment from becoming too acidic, in 

essence slowing degradation. It is believed that this affects not only the degradation of 

the polymer, but can affect the cargo as well. The acidic microenvironment in non-porous 

particles can damage acid sensitive cargos.10 In order to determine the structural 

differences responsible for the differences in surface appearance of the particles, a freeze 

facture process would be needed to expose the inside of the particle.      

In addition to porosity, the evaporation of solvent can crystallizes polymers which 

have crystalline or semi-crystalline natures. PLLA is a semi-crystalline polymer. PLLA 

can be thermally crystallized or crystallized by a solvent. PLLA has three crystal 

structures α, β and γ. The α-form occurs in thermally crystallized polymer samples and 

has a pseudo-orthorhombic crystalline structure. The β-form is typically obtained by hot-

drawing fibers and has an orthorhombic crystalline structure. The γ-form occurs when 

PLLA is epitaxially crystallized.11, 12 By evaporating the solvent through the mold, the 

PLLA crystallizes as it hardens to form particles. Differential scanning calorimetry 

(DSC) studies were conducted on a macroscopic scale to determine the degree to which 

crystallization occurs. A drop of solution was placed in a DSC sample pan and placed 

under vacuum to quickly evaporate the solvent. This sample was then tested for thermal 

transitions by DSC. The thermograms in Figure 2.7 show the results of these 

investigations. All thermograms are first heats because the temperature treatment of the 

polymer affects its crystallinity. In the second heat, all samples have had the same 

thermal treatment and the resulting thermograms are identical. Figure 2.7 A shows a 

thermogram of the raw material as received. There is a glass transition at 55oC, a 
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crystallization exotherm at 108oC, and a melting endotherm at 172oC. The peak that 

accompanies the glass transition is an expansion peak from physical aging. As the 

polymer ages, it densifies. Once heated to the glass transition temperature, the polymer is 

given enough mobility to spread out from this packed state; this is common of PLLA. By 

integrating the area under the curves, the degree of crystallinity can be calculated. The 

heat of fusion of 100% crystalline PLLA polymer is 140 J/g.13 The melting peak indicates 

a heat of fusion equal to 42 mJ/mg. This gives a crystallinity of 30%. Since the area 

under the crystallization peak approximately equals the area under the melting peak it can 

be determined that the sample was completely amorphous. All crystallinity in the sample 

was derived from thermal crystallization during the measurement. Figure 2.7 C shows the 

thermogram of an evaporated drop from 1,4-dioxane. The glass transition has remained 

approximately the same. The crystallization temperature has increased dramatically to 

131oC. This implies crystals were present which, as the sample heated up, rearranged into 

a more thermodynamically preferred crystal state. Therefore this exotherm is more 

appropriately called a recrystallization peak. The polymer likely crystallized somewhat in 

the β-form. It has been shown that annealing the β-form will transform the crystals into 

the α-form at about 130oC.12, 14 The crystallinity of this sample is also 30%. However, if 

we consider the recrystallization that occurred, the polymer was 13% β-crystalline and 

17% α-crystalline. Figure 2.7 B shows the thermogram of an evaporated drop from 

dichloromethane. The glass transition has disappeared, or been overshadowed by the 

crystallization exotherm which appears at 73oC. The crystallization temperature has been 

shifted lower due to a more ordered amorphous phase, which crystallizes more readily 

since there is less order to impart. The melting endotherm appears at 170oC. Using the 
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same method as before, the crystallinity in this sample is 31%. Now, however, if we take 

into account the thermal crystallization that occurs, it accounts for 7% of the crystallinity. 

This means the polymer was already 24% crystalline. Furthermore there is no evidence of 

the β-crystalline form in this sample. While the DSC results shown here are from 

macroscopic evaporated drops and not from actual particles, they clearly show that PLLA 

undergoes solvent induced crystallization when dichloromethane or 1,4-dioxane is 

evaporated from a 5% (w/v) solution. Moreover, the solvent plays an important role in 

the degree and type of crystallization that occurs. Dichloromethane, which is a better 

solvent for PLLA than 1,4-dioxane, crystallizes the polymer more completely.  

 

 
Figure 2.7 DSC thermograms of PLLA (A) as received, (B) from a solution of PLLA in 

dichloromethane and (C) from a solution of PLLA in 1,4 dioxane.   
 
 

In addition to DSC, electron diffraction was performed to confirm crystallinity on a 

sample from dichloromethane. The electron diffraction experiments were carried out on 

actual particles as opposed to macroscopic samples. This data confirms the presence of a 
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crystalline structure. From the diffraction patterns obtained, calculation of the crystal 

lattice d spacing was performed. This confirmed which crystalline form was present; α-

PLLA has unit cell parameters of a = 1.07 nm, b = 0.645 nm, and c = 2.78 nm while β-

PLLA has unit cell parameters of a = 1.03, b = 1.82, and c = 0.900 nm.15, 16 The particles 

were confirmed as α-PLLA and the diffraction spots were indexed by plane (Table 2.2).  

 
 
 
Table 2.2 Calculated and observed d spacing values from TEM electron diffraction. 

Index 
(hkl) 

Observed d spacing 
(nm) 

Calculated d spacing 
(nm) 

(106) 0.439 0.438 
(316) 0.259 0.259 
(226) 0.231 0.231 
(236) 0.174 0.175 
(606) 0.169 0.167 
(436) 0.154 0.153 
(636) 0.130 0.129 

 
 

Using the solvent evaporation, pressure fill PRINT method particles which are porous 

and semi-crystalline can be generated. While there are many uses for particles with these 

properties, this method does have limitations. Nanometer sized particles could not be 

reproducibly generated using this method. Typical fabrication resulted in some isolated 

particles and some scum (Figure 2.8).  
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Figure 2.8 A sample with both scum and free, isolated 200nm particles; typical results 

for the solvent evaporation, pressure fill PRINT method of nanoparticles. 
 

This method, as the name implies, relies heavily on the pressure contact between the 

mold and the substrate. If this contact is imperfect, polymer solution will remain and a 

scum layer will be generated. When moving from the microscale to the nanoscale the 

room for error is dramatically decreased. If the relief of the mold is considered, the 

micron sized cavities can be compressed or distorted more than the nanometer cavities so 

they compensate for imperfect pressure to a higher degree. The solvent evaporation, 

pressure fill PRINT method is therefore a good method for micron-sized particles, but in 

order to generate smaller particles a different method is needed. 

 
 
2.3 The thermal, capillary fill PRINT method 
 

Having found the limitations of the solvent evaporation pressure fill PRINT 

method, a new method was sought with the ability to fabricate both microparticles and 
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nanoparticles. In the second iteration of the PRINT process, capillary action is used to 

pull molten polymer into cavities during a film split with a high energy film. The excess 

polymer remains on the high energy film. This method is ideal for making microparticles 

and nanoparticles. 

 

2.3.1 Experimental 

 

2.3.1.1 Materials  

Poly(lactic acid-co-glycolic acid) (PLGA50:50; 33,000 g/mol and PLGA85:15; 

50,000 g/mol) was purchased from Lakeshore Biomaterials. Dimethyl sulfoxide (DMSO) 

and dimethylformamide (DMF) were purchased from Sigma Aldrich. Fluorocur®, 200nm 

x 200nm and 80nm x 360nm pre-fabricated molds were obtained from Liquidia 

Technologies.  

 

2.3.1.2 Particle visualization 

For visualization samples were coated with 3 nm gold palladium alloy using a 

Cressington 108 auto sputter coater. Images were taken at an accelerating voltage of 2 kV 

using a Hitachi model S-4700 scanning electron microscope (SEM). 

 

2.3.1.3 Particle fabrication procedure 
 

A polymer is dissolved in an organic solvent. The ideal concentration depends on 

the size of the particle, a larger particle requires a higher concentration. For nanoparticles 

a 2% (w/v) solution is best. A sheet of poly(ethylene terephthalate) (PET) is coated with 
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the desired composition from 150 µL solution using a #5 Mayer rod (R.D. Specialties) 

(Figure 2.9 A). The solvent is evaporated under heat. The film is then placed in contact 

with the patterned side of a mold and passed through a heated nip (ChemInstruments Hot 

Roll Laminator) at 100oC and 50 psi (Figure 2.9 B). The film is split immediately as it 

passes out of the nip. The polymer solidifies and the result is a filled mold containing 

isolated particles (Figure 2.9 C). 

 
 

 
Figure 2.9 The thermal, capillary fill PRINT process. (A) A film is cast on PET. This 

sheet is termed the delivery sheet, (B) The delivery sheet in passed under a heated nip in 
contact with a mold, and (C) The mold is filled with isolated solid polymer particles. 

 

 

2.3.3 Results 

This method has the ability to fabricate both micro- and nanoparticles, a benefit 

over the solvent evaporation, pressure fill PRINT method. In addition the fidelity of 

template replication and homogeneity of the particles produced was increased as the 

particles were no longer porous and fully reproduced the shape of the template. PLLA 

and PLGA were investigated, though the focus fell on PLGA as the more attractive drug 

delivery matrix due to the higher degree of tailorability. Figure 2.10 shows the successful 

fabrication of 80 x 320 nm particles using this method.  
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Figure 2.10 80nm x 320nm PLGA nanoparticles. 

 

The thermal, capillary fill PRINT method is based on raising a polymer above its Tg and 

reaching a state of flow. While a polymer which is heated to its Tg goes from glassy to 

rubbery, the Tg must be exceeded in order to achieve flow. The PRINT process is 

typically operated at 100-130oC for PLGA which has a Tg of 45-50oC. There is a range of 

temperatures for a particular polymer because the Tg is not the only factor that affects 

filling. The molecular weight of the polymer directly affects the viscosity of the melt. The 

mold fills by capillary forces which must compete against the viscosity of the polymer 

melt. Once the viscosity of the melt reaches a critical level the capillary forces can no 

longer overcome it and the mold does not fill. In a small intermediate range, the delivery 

sheet is embossed with the pattern. This indicates the polymer has some mobility, but not 

enough to separate from the bulk film on the delivery sheet. Molecular weight 

measurements are made using different techniques and different standards, but inherent 

viscosity measurements are simple and standardized. By looking at the inherent viscosity 
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of a polymer, the ability of that polymer to fill the mold without a plasticizer can be 

determined. PLGA with an inherent viscosity <0.5 dL/g can fill the mold while polymers 

above require a plasticizing agent to bring down the Tg and viscosity of the mixture. This 

agent can be almost any small molecule or a second polymer with lower Tg. Another 

important consideration when choosing a polymer is whether the particle has a high 

enough modulus to hold its shape at room temperature. The molecular weight and PDI of 

the polymer plays a key roll in this characteristic, with low molecular weights having a 

decreased modulus. The PDI can also affect the modulus if there are significant lower or 

higher molecular weight fractions. In general very low molecular weight polymers 

(approx. <5 kDa) can be filled, but do not retain their shape. Very low molecular weight 

polymers are not desirable for drug delivery applications anyway because the release of 

cargo is too fast. Low to moderate molecular weight polymers (approx. 5 – 50 kDa) can 

be filled and retain their shape. And finally high molecular weight polymers (approx. >50 

kDa) can not fill the mold without the addition of a plasticizing agent. The addition of a 

plasticizing agent is a viable options for drug delivery vehicles, though it does add a layer 

of complexity.  

 

2.4 Particle Harvesting 
 

In the final step of the PRINT process the particles must be removed from the 

mold and collected in solution. This is termed harvesting. There are a number of ways to 

harvest particles, but they all fall under two categories: mechanical or sacrificial layer 

harvesting. In mechanical harvesting a force is applied directly to the particles once 

transferred to an array. In sacrificial layer harvesting the particles are transferred in an 
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array onto a material which can be dissolved or melted freeing the particles with no 

mechanical force applied. Both methods follow the same basic steps. Particles are 

transferred from the mold into an array and are then collected as free, isolated particles 

(Figure 2.11). The difference lies is the substrate they are transferred onto. 

 

 
Figure 2.11 An SEM image of the (A) the empty mold after particles are removed, (B) 
the array of particles transferred out of the mold onto a substrate, and (C) collected free 

particles. 
 
 
2.4.1 Mechanical Harvesting 
 

The first methods used to remove particles from the mold where mechanical in 

nature. Rubbing a glass slide across the mold was used to remove particles which were 

crosslinked. For linear polymer particles this method was too forceful and damaged 

particles. A more gentle method, termed squeegee harvesting after the action of collecting 

the particles, was developed. This method was used for most of the in vitro work 

presented herein. In this technique particles are transferred from the mold to a solid 

substrate such as silicon, glass, or PET by placing the filled mold on the substrate (Figure 

2.12 A) and applying heat while the two are in contact (Figure 2.12 B). This re-melts the 

particles which adhere to the higher energy substrate. When the mold is peeled off the 

particles remain stuck to the substrate (Figure 2.12 C). While the surface area contact is 5 

times higher for the Fluorocur mold, the surface energy is so much lower that the 

particles are released to the higher surface energy film. Once the array is transferred the 
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particles are collected using a cell scraper and a bead of water with polyvinyl alcohol 

(PVOH; 22,000 g/mol) supplied by Liquidia technologies as a stabilizer (Figure 2.12 D).  

 

 
Figure 2.12 Particle harvesting via the squeegee method: (A) the mold is placed in 

contact with a solid substrate, (B) the mold and substrate are heated while in contact 
adhering the particles to the substrate, (C) when the mold is peeled back the particles are 
left in an array on the substrate, (D) a cell scraper (blue) and a bead of water containing 

stabilizer are used to mechanically collect the particles using gentle lateral force. 
 
 

This process relies on the use of a stabilizer. The stabilizer lowers the surface tension 

which assists in the release from the substrate with lowered mechanical force. In addition 

the stabilizer prevents hydrophobic particle-particle interactions, which prevents 

aggregation.  

 
 
2.4.2 Sacrificial Layer Harvesting 
 

As transitions were made to larger scales and in vivo studies some evidence of 

aggregation was observed. It was concluded that this aggregation was due to the 

mechanical force applied to particles during squeegee harvesting. As particles are 

harvested with a cell scraper the row of particles are pushed into the next row of particles 

which can lead to aggregation despite the presence of stabilizer. A non-mechanical 
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technique was developed to overcome this challenge since the best way to prevent 

aggregation is to never force the particles together. In sacrificial layer harvesting the 

particles are removed from the mold on a water soluble sacrificial layer which is then 

dissolved to release the particles into solution. This eliminates mechanical force and 

allows the particles to be coated with stabilizer immediately. The most commonly 

employed sacrificial layer is poly(vinyl alcohol) (PVOH). PVOH coated poly(ethylene 

terephthalate) was obtained from Liquidia Technologies. The mold is placed in contact 

with the PVOH coated PET (Figure 2.13 A). While in contact the film and mold are 

heated melting both the particle and the PVOH film (Figure 2.13 B). When the mold is 

removed the particles remain on the harvesting layer (Figure 2.13 C). When a drop of 

water is placed on this harvested layer the PVOH dissolves releasing the particles and 

coating the particles with PVOH (Figure 2.13 D). 

 

 
Figure 2.13 PVOH harvesting: (A) the mold is placed in contact with a solid substrate 

coated with PVOH, (B) the mold and coated substrate are heated while in contact 
adhering the particles to the substrate, (C) when the mold is peeled back the particles are 
left in an array on the coated substrate, (D) a bead of water is used to collect the particles 

without mechanical force.  
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2.5 PRINT process scale-up 

The previously described techniques were all developed on a small scale. The 

scale up of the PRINT process has been critical to the expansion from small in vitro 

experiments to large in vivo experiments. Scale up involved the purchase and 

manufacturing of new equipment and advances made by Liquidia Technologies in mold 

fabrication. Initially molds were made by hand as needed and templates were typically 

AFM calibration grids or other pre-fabricated patterns of appropriate size (Figure 2.14). 

Particle quantities from these small templates were useful for the demonstration of the 

PRINT process, but not sufficient for in vitro applications. Slowly the size of the master 

was scaled-up from templates millimeters in size to 8 inch wafers which were sufficient 

for in vitro studies. As the technology progressed, fabrication of larger quantities was 

needed. Liquidia Technologies developed the machinery necessary to make rolls of mold 

in a continuous line (Figure 2.14). Using these molds cut time and cost and allowed for 

large batches of particles to be fabricated at a time. 

 

 
Figure 2.14 Advances in mold technology. Left: original master on a glass slide with the 

mold size compared to a dime. Right: a roll of 200 nm mold supplied by Liquidia 
Technologies. 

 
 

In addition to advances made in mold fabrication, new equipment was obtained and the 

PRINT process became higher throughput. A hot roll laminator (HL-100) was purchased 
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from ChemInstruments. This piece of equipment has two rolls which create a nip point 

allowing a large angle of separation during filling (Figure 2.15 A). This is important 

because when the film is split the polymer needs to still be in the molten state in order for 

the polymer which has filled the cavity to separate from the bulk film. Since this nip can 

be run continuously, an indefinite length of mold can be filled. The particles can be 

transferred to the PVOH layer in the same way (Figure 2.15 B). Finally the harvesting 

step was upgraded to a semi-continuous roll process. A piece of equipment termed the 

“bead harvester” was constructed. It consists of two rolls creating a nip point. The 

transfer layer is passed through the nip on which a bead of water rests (Figure 2.15 C). 

The PVOH is immediately dissolved when the bead contacts it, releasing the particles 

into the bead.    

 
 

 
 

 
 

Figure 2.15 Scaled-up PRINT process. (A) a mold is filled, (B) the particles are 
transferred to a water soluble film, (C) the particles are collected in a bead of water.  
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While harvesting the particles using the bead harvester is semi-continuous and generates 

very stable particles, there is a large excess of PVOH present. This PVOH needs to be 

removed and the particles need to be concentrated. There are many filtration methods 

available including dialysis, centrifugation, centrifiltration, and tangential flow filtration. 

Centrifugation and centrifiltration are the quickest and simplest, however, they pack the 

particles together against the bottom of the tube or the filter membrane. As discussed 

previously this type of mechanical force is undesirable. Dialysis is a slow and water 

intensive process which tends to dilute the sample further. Tangential flow filtration is a 

method of filtration where the flow is parallel to the filter membrane. The pressure 

generated when passing the solution through the fiber membrane pushes the excess water 

and soluble PVOH out into a collection tube (Figure 2.16). 

     
Figure 2.16 Krosflow® MicroKros (X1-500S-200) tangential flow filtration apparatus. 

 

Krosflow® MicroKros (X1-500S-200) were purchased from Spectrum Labs. Both the 

PVOH and the particles are concentrated overall; however, the amount of PVOH 

removed becomes clear when the ratio between the PVOH and particles is compared. 
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Before tangential flow filtration there is ~17 times as much PVOH as particles by mass. 

After tangential flow filtration this is reduced to only ~2 times.  

 
 

Table 2.3 A demonstration of PVOH removal and particle concentration by tangential 
flow filtration. 

 PVOH concentration 
(mg/mL) 

Particle concentration 
(mg/mL) Ratio 

Before Filtration 5 0.3 16.7 

After Filtration 18 8 2.3 

 

 

2.6 In vitro cytotoxicity of engineered PLGA PRINT nanoparticles 

The first step in characterizing how PLGA PRINT nanoparticles interact with the 

body is in vitro evaluation of cytotoxicity. A drug delivery vehicle should be non-toxic so 

that once the therapeutic is delivered, the vehicle is safely metabolized or excreted. In 

addition to 100% PLGA nanoparticles, particles containing 10% poly(ethyleneimine) 

(PEI) were tested. The latter composition was of interest both for complexing siRNA and 

as a way of introducing a chemical handle on which to react PEG or targeting ligands.  

 

2.6.1 Experimental 

 

2.6.1.1 Materials 

7,000 g/mol PLGA with a lactic acid to glycolic acid content of 50:50 was 

purchased from Lakeshore Biomaterials. PEI (25,000 g/mol branched) and maleic 

anhydride were purchased from Sigma Aldrich. Dimethyl sulfoxide (DMSO) and 

dimethylformamide (DMF) were purchased from Sigma Aldrich. mPEG(5K)-NHS(SS) 
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was purchased from Creative PEGWorks. CellTiter-Glo assays were purchased from 

Promega. 

 

2.6.1.2 Particle fabrication and post-reaction with PEG 

Particles were fabricated using the thermal, capillary fill method and the squeegee 

harvest method previously described. PEI was incorporated by simply mixing with PLGA 

in the precursor solution. PEGylation was accomplished by reacting particles containing 

PEI with an excess of mPEG(5K)-NHS(SS) for 45 minutes at pH 6.5 and room 

temperature. Negatively charged PEGylated particles were generated by further reacting 

the PEGylated particles with excess maleic anhydride under the same conditions to 

quench any unreacted amines. Excess reagents were then removed by tangential flow 

filtration.  

 

2.6.1.3 In Vitro cytotoxicity 

In vitro cytotoxicity was measured using an ATP-luciferase assay. All cell lines 

were cultured in media supplemented with 10% serum. For toxicity studies, cells were 

plated at 5,000 cells per well in white walled 96 well plates. Particles were dosed on cells 

in media supplemented with 10% serum. After 72 hours the viability of the cells was 

measured using a CellTiter-Glo assay and a SpectraMax M5 plate reader (Molecular 

Devices). 
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2.6.2 Results 

Two cells lines to be used in subsequent biodistribution and efficacy experiments 

were investigated: non-small cell lung carcinoma (H460) and ovarian cancer (SKOV3). 

Negatively charged (-20mV) 100% PLGA particles, positively charged (+63mV) 90% 

PLGA / 10% PEI particles, and PEGylated (+49mV) 90% PLGA / 10% PEI particles 

were investigated. Figure 2.17 shows viability as a percent of untreated (control) cells. 

The compositions with PEI showed slightly lower viability than the compositions without 

due to the positive charge of the particle, but all compositions show ≥80% viability up to 

125 µg/mL. These compositions were chosen for in vivo tolerance screening.    

  

  

 
Figure 2.17 The 72 hour viability of H460 (blue) and SKOV3 (purple) cells when treated 

with PVOH stabilized PLGA PRINT 200 nm cylindrical particles (solid bars), 90% 
PLGA / 10% PEI PRINT 200nm cylindrical particles (striped bars), and PEGylated (5K) 

90% PLGA / 10% PEI PRINT 200nm cylindrical particles (checkerboard bars). 
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2.7 In vivo immune response to engineered PLGA PRINT nanoparticles 

In order to test how well particle injections were tolerated in vivo, two markers of 

immune response were investigated. Tumor necrosis factor alpha (TNFα) is an acute 

immune response cytokine produced mainly by macrophages which leads to 

inflammation. TNFα typically peaks at 2 hours post-administration. Interleukin 12 (IL-

12) is a cytokine which can also be produced by macrophages in addition to dendritic 

cells and B-cells. IL-12 is a T-cell stimulating factor and typically peaks 6 hours post-

administration.  

 

2.7.1 Experimental  

 

2.7.1.1 Materials 

7,000 g/mol PLGA with a lactic acid to glycolic acid content of 50:50 was 

purchased from Lakeshore Biomaterials. PEI (25,000 g/mol branched) and maleic 

anhydride were purchased from Sigma Aldrich. Dimethyl sulfoxide (DMSO) and 

dimethylformamide (DMF) were purchased from Sigma Aldrich. mPEG(5K)-NHS(SS) 

was purchased from Creative PEGWorks. Matrigel® was purchased from BD 

Biosciences. IL-12 and TNFα ELISA assays were purchased from BD Biosciences. 

 

2.7.1.2 Particle fabrication and post-reaction with PEG 

Particles were fabricated as using the thermal, capillary fill method and the 

squeegee harvest method previously described. PEGylation was accomplished as 

previously described.  
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2.7.1.3 Measurement of immune response 

All mice were handled in accordance with the University of North Carolina’s 

Institutional Animal Care and Use Committee (IACUC) protocols. Immuno-

compromised Balb/c Nude and SCID CB.17 mice were purchased from Harlan Labs. One 

week after arrival mice were injected with 5 million H460 or SKOV3 cells in the right or 

left flank. Injections of H460 cells used Matrigel® as a tumor formation aid. Once tumors 

formed, mice were injected I.V. with PLGA PRINT nanoparticle solutions and control 

solutions (n=3). Blood was collected at 2 hours by mandibular bleed and at 6 hours by 

cardiac puncture. Immune response was measured using TNFα and IL-12 ELISA assays 

read on a SpectraMax M5 plate reader (Molecular Devices). 

 

2.7.2 Results 

Figures 2.18 and 2.19 below show the TNFα and IL-12 response of mice to a 

variety of controls and particle compositions. Controls included mice which received no 

injection, injections of PBS (“control injection”) and injections of dye and PVOH. None 

of the particle compositions tested excited an immune response statistically significant 

from the control groups by measure of either cytokine. This confirms what the in vitro 

cytotoxicity assay suggests: both 100% PLGA and PLGA/PEI/PEG compositions are 

well tolerated in vivo.   
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Figure 2.18 The TNFα levels in serum 2 hours after injection. 

 

 
Figure 2.19 The IL-12 levels in serum 6 hours after injection. 
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2.8 Biodistribution of engineered PLGA PRINT nanoparticles 

The biodistribution of a therapeutic determines the level of systemic exposure and 

the maximum concentration in the tumor. The goal of advanced drug delivery is to 

accumulate drug in the tumor using a drug delivery vehicle while reducing the exposure 

of organs which can be damaged by the therapeutic. The biodistribution of PLGA PRINT 

nanoparticles fabricated via the thermal, capillary fill PRINT method was investigated. 

Systemic administration through intravenous (IV) injection is the quickest way to gain 

access to the bloodstream, in which the particles must travel to reach the tumor. 

Inhalation, oral administration, intraperitoneal (IP) injection, subcutaneous (SC) 

injection, and intramuscular (IM) injection are also valid methods of administering 

therapeutics. While some of these methods can be preformed by the patient at home 

offering higher patient compliance, in each case the particle must traverse additional 

barriers in order to gain access the bloodstream before accumulation in the tumor can 

occur. To minimize the barriers to delivery, PLGA PRINT nanoparticles were 

administered through IV injection in all biodistribution studies. Two types of tumor 

models were studied: xenograft and orthotopic. A xenograft model is one in which cancer 

cells are injected into the back or leg of an immuno-compromised mouse. An orthotopic 

model is one in which cancer cells are injected where that tumor would naturally grow. 

The three tumor models studied were a xenograft non-small cell lung carcinoma model 

(H460), a xenograft ovarian cancer model (SKOV3), and an orthotopic pancreatic cancer 

model (ASPC-1). 
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2.8.1 Experimental  

 

2.8.1.1 Materials  

Poly(lactic acid-co-glycolic acid) (PLGA; 50:50; 33,000 g/mol) was purchased 

from Lakeshore Biomaterials. Dimethyl sulfoxide (DMSO) and dimethylformamide 

(DMF) were purchased from Sigma Aldrich. 1,1’-dioctadecyl-3,3,3’,3’-

tetramethylindodicarbocyanine perchlorate (DiD) was purchased from Invitrogen.  

 

2.8.1.2 Particle fabrication and characterization 

Particles were fabricated using the thermal, capillary fill method and the PVOH 

sacrificial layer harvest method previously described. DiD was incorporated at 2% total 

solids. For size and charge characterization, dynamic light scattering (DLS) 

measurements were made at 30µg/mL particle concentrations on a Malvern Instruments 

Nano-ZS.  

 

2.8.1.3 Biodistribution 

All mice were handled in accordance with the University of North Carolina’s 

Institutional Animal Care and Use Committee (IACUC) protocols. Immuno-

compromised Balb/c Nude and SCID CB.17 mice were purchased from Harlan Labs. One 

week after arrival mice were injected with 5 million H460 or SKOV3 cells in the right or 

left flank. Injections of H460 cells used Matrigel® (BD Biosciences) as a tumor formation 

aid. The orthotopic model was generated by injecting ASPC-1 cells orthotopically. Once 

tumors formed, mice were injected IV with PLGA PRINT nanoparticle solutions and 
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control solutions (n=3). At set times organs were harvested and measured using an IVIS® 

Kinetic Optical Imaging system. Particles were detected at an excitation wavelength of 

675 nm and an emission wavelength of 720 nm with a 30 second exposure.          

 

2.8.2 Imaging agents 

Tracking particles in vivo can be accomplished through chemically labeling the 

polymer matrix or encapsulating a beacon (a dye, a magnetic contrast agent or a 

radioactive isotope). Animals can then be imaged whole body or organs can be 

individually harvested and measured. A dye was chosen to follow PLGA PRINT 

nanoparticles in vivo due to the ease of processing on communal equipment (radioactive 

isotopes contaminate equipment with radiation) and access to optical in vivo imaging 

systems. The first studies were carried out using a near-infrared (NIR) dye labeled 

PLGA. However in order to achieve a higher signal over background a physically 

entrapped dye was used for later studies. Using a beacon which is not chemically bound 

to the matrix is risking release and subsequent detection of the small molecule’s 

biodistribution. The dye was therefore chosen to be highly hydrophobic and the release 

studied. Figure 2.20 shows the chemical structure of DiD, the NIR dye chosen for 

entrapment, as well as the release profile of DiD from PLGA particles over 48 hours. 

Less than 5% of the dye is released over 48 hours, twice the longest biodistribution time 

point studied. This makes DiD a good choice for an entrapped beacon. 
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Figure 2.20 The release of DiD (inset structure) from PLGA PRINT nanoparticles. 

 
 

2.8.3 Biodistribution of PLGA PRINT nanoparticles in a SKOV3 xenograft model 

The particle composition chosen for further investigation was PVOH stabilized 

PLGA PRINT nanoparticles (Figure 2.21). This composition demonstrated promising 

tumor accumulation in initial biodistribution trials and the avoidance of PEI and other 

additives, if not necessary, is appealing for the development of therapeutics which can 

move through FDA screening easier due to prior art.   

  

 
Figure 2.21 SEM images of (A) 80 x 320 nm particles and (B) 200 nm particles. 
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By using the sacrificial harvesting method, well stabilized samples of both sizes were 

generated. The PDI of both samples was <0.100, a narrow size distribution (Table 2.4). 

The particles exhibited a comparable, negative charge.    

 

Table 2.4 Dynamic light scattering characterization. 

Particle Size (nm) PDI Zeta Potential (mV) 

200 nm   242 0.084 -6 

80 x 360 nm  193 0.077 -3 

 

 

The biodistribution of these samples (Figure 2.22) reflects the stability of the formulation. 

At 24 hours post-administration 25-40% of particles are still in circulation. Additionally 

10-15% of particles have accumulated in the tumor. These numbers compare favorably to 

other PLGA systems, especially considering previous work by other research groups has 

suggested that PEGylation is necessary for enhanced circulation and tumor 

accumulation.17-21 In most of these cases the particles are formed from PLGA-PEG block 

copolymers. Using block copolymers in the PRINT process, however, yields an unstable 

particle due to the differences in polymer orientation. When PLGA-PEG polymers are 

used to fabricate particles by emulsion methods, the polymer orients so that the PLGA 

forms a core and the PEG is mostly on the surface (i.e. the PLGA is in the organic phase 

while the PEG stretches into the water phase). However, when PLGA-PEG polymers are 

used to fabricate particles using the PRINT process there is no orientation preference so 

when these particles are introduced to water much of the PEG is buried within the 

particle and stabilization is poor. For these reasons a post-reaction with PEG is needed if 
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PEGylated particles are desired. However, the results here suggest that PEGylation is not 

necessary to achieve high tumor accumulation with PLGA PRINT nanoparticles.   

  

 

Figure 2.22 The biodistribution of PVOH stabilized 200nm (blue) and 80 x 360 nm 
(purple) particles 24 hours after injection in SCID mice with xenograft SKOV3 tumors. 

 

In this study the difference between 200 nm and 80 x 320 nm particles was examined. A 

200 nm particle has 3.5 times the volume of a 80 x 320 nm particle and is 2.5 times larger 

in the smallest (critical) dimension. Due to the smaller size the liver and spleen 

accumulation of 80 x 320 nm particles is reduced resulting in increased circulation in the 

blood. The tumor accumulation at 24 hours is the same, however, as particles are cleared 

from circulation over time it is expected that the 80 x 320 nm particles would show 

higher tumor accumulation as a result of their extended circulation. The effect of dose 
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was also studied on the 80 x 320 nm particles. When the dose was increased 4 times the 

percent of particles in circulation increased while the percent accumulation in liver 

decreased. This may be due to saturation of the liver at high particle doses. It should be 

noted that while the percent accumulation in the tumor remains the same, the total 

accumulation in the tumor is therefore 4 times higher. This indicates the tumor is not 

being saturated, even at high particle doses, which will allow for a wider dosing range.   

 

2.8.4 Biodistribution of PLGA PRINT nanoparticles in an orthotopic ASPC-1 model  

In addition to xenograft tumor models, an orthotopic model was investigated. A 

tumor grown subcutaneously on the leg of a mouse is the simplest, but not the most 

accurate, model. Tumors grown orthotopically are in the environment the tumor would 

naturally be in and genetically engineered mouse models (GEMM) are the most accurate 

with tumors spontaneously developing. The biodistribution of PVOH stabilized 80 x 320 

nm particles was investigated in an orthotopic pancreatic tumor model. When compared 

to the xenograft model previously discussed many similarities are seen (Figure 2.23). A 

change in organ distribution would not be expected. What is different in this model is the 

accumulation in the tumor. Pancreatic tumors are dense, poorly vascularized tumors. At 4 

hours very little accumulation in the tumor has occurred although it can be seen that 

particles are reaching the pancreas. At 24 hours, however, almost 5% of the recovered 

dose is to be found in the tumor. The accumulation over time is probably due to fractions 

remaining in circulation over longer times and to clearance from other organs. The 

particle accumulation in the liver, lung, and pancreas decreases over time while signal in 

the tumor and the intestines increases. Increased accumulation in the intestines over time 
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may be a sign of how the particles are cleared and excreted. This data is an indication that 

PLGA PRINT nanoparticles will be able to reach even dense tumors wherever they are 

located in the body.  

 

 
Figure 2.23 The biodistribution of PVOH stabilized 80 x 360 nm particles 4 hours (blue) 

and 24 hours (purple) after injection in nude mice with orthotopic pancreatic tumors. 
 

 

2.9 Conclusions 

The fabrication of size and shape specific particles using the PRINT process has 

been demonstrated. Two very different processes were developed. The solvent 

evaporation, pressure fill PRINT method produces microparticles with porosity and 

crystallinity. These particles could be used for inhalation delivery; by tailoring the size, 

shape, and porosity the deposition of the particle in the lung could be altered and by 
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tailoring the crystallinity, the release characteristics of the particle could be altered. The 

thermal, capillary fill PRINT method is ideal for fabricating micro- and nanoparticles. 

This method has been scaled up and is capable of fabricating milligram scale quantities of 

particles. The cytotoxicity and immune response to PLGA PRINT nanoparticles with and 

without the addition of PEI and PEG was shown to be low. The biodistribution of PVOH 

stabilized particles was shown to depend on the size of the particle, the dose 

administered, and the tumor model investigated. Over time particles clear from most 

organs with the exception of the tumor and the intestines where further accumulate is 

seen. High tumor accumulation and long circulation was demonstrated. Biodistribution in 

an orthotopic model demonstrates tumor accumulation in an environment more similar to 

the environment of naturally occurring tumors. These studies indicate PLGA PRINT 

nanoparticles would make excellent drug delivery vehicles and have the potential to 

improve efficacy over systemic administration. 

 

2.10 Future Work 

The investigation of a wider range of sizes and shapes will determine optimal 

properties for long circulation, reticuloendothelial system (RES) avoidance and high 

tumor accumulation. A series of masters with a critical dimension of 80 nm and aspect 

ratios from ~1 to ~63 are currently available. This particle series can be used to determine 

the effect of shape on particle biodistribution in a systematic fashion. There is already 

some evidence that high aspect ratio particles may evade the reticuloendothelial system 

more efficiently than particles with an aspect ratio of 1, warranting further study.22 In 

addition to this series of shapes, smaller size masters are being generated (down to 20 
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nm) which will allow for a comparison of particle size with homogeneous particle 

populations, something not currently available. A library of available shapes and sizes 

with known biodistribution profiles will allow for a plug and play approach to cancer 

therapy. As biodistribution studies move forward a shift from so called chop and count to 

whole animal imaging will allow biodistribution to be tracked over longer time courses 

with fewer mice. In addition these methods can be used to track particles during efficacy 

trials and are translatable to clinical trials in humans. In order to move to clinically 

relevant whole animal imaging, magnetic or radioactive beacons must be incorporated in 

the particles for MRI or PET imaging respectively. Finally current biodistribution studies 

examined particle location on a whole organ scale. Future biodistribution studies will 

examine where particles are located within a given organ, most importantly how 

differences in size and shape effect tumor penetration. The PRINT platform will allow for 

the study of these mechanisms on a level currently unavailable and more importantly will 

allow for the tailoring of therapies based on their specific requirements. 
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3.1 Introduction  

The efficacy of particles designed for advanced drug delivery must be tested in 

progressively more representative models, until they reach clinical trials and are 

administered in patients. The first two hurdles are in vitro cell based assays followed by 

in vivo efficacy trials in mouse models. In order to test the efficacy of PLGA PRINT 

nanoparticles two different therapeutic techniques were explored: RNAi therapy and 

chemotherapy. These two therapies have different modes of action, different delivery 

requirements, and different cargo sensitivities. By exploring these dissimilar systems the 

true versatility of the PRINT process is demonstrated.  

 

3.2 RNAi therapy 

RNAi therapy, as previously described, is a method of knocking down protein 

expression by delivering siRNA into the cytoplasm of cells. Since siRNA can not cross 

the cell membrane itself, the drug delivery vehicle must be internalized and the siRNA 

released intracellularly. Encapsulation of siRNA is a challenge with the conventional 

methods to fabricate PLGA particles because some of the hydrophilic siRNA partitions 

out of the polymer phase before solidification. Encapsulation of siRNA in the PLGA 

PRINT particle, however, is straightforward as the second phase is a hydrophobic, 

oleophobic perfluorinated polyether elastomer. In order to demonstrate successful 

intracellular delivery, knockdown in a luciferase model was explored.   
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3.2.1 Experimental 
 
 
3.2.1.1 Particle fabrication  
 

7,000 g/mol PLGA with a lactic acid to glycolic acid content of 50:50 was 

purchased from Lakeshore Biomaterials. 20,000 g/mol PLGA with a lactic acid to 

glycolic acid content of 75:25 was purchased from Sigma-Aldrich. 25,000 g/mol 

branched PEI was purchased from Sigma-Aldrich. Anti-luciferase siRNA-1 and 

siGENOME non-targeting siRNA #1 were purchased from Dharmacon. Particles were 

fabricated using the thermal, capillary fill PRINT method and harvested using the 

squeegee method as previously described.  

 

3.2.1.2 Particle characterization 

For particle visualization by scanning electron microscopy (SEM), samples coated 

with 3 nm gold palladium alloy using a Cressington 108 auto sputter coater. Images were 

taken at an accelerating voltage of 2 kV using a Hitachi model S-4700 SEM. For size and 

charge characterization, dynamic light scattering (DLS) measurements were made at 

30µg/mL particle concentrations on a Malvern Instruments Nano-ZS. To determine 

siRNA release profiles, particles were incubated at 37oC in PBS for set time intervals. 

Particle solutions were then passed through Ultrafree-MC Durapore PVDF 100 nm 

membranes (Fisher) to remove all particles. Particle supernatant and free siRNA samples 

were then run on a 2.5% agarose gel in 1M CaCl2.    
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3.2.1.3 In vitro assays 

Luciferase transfected HeLa and H460 cells were plated at 5,000 cells per well in 

a 96-well plate and allowed to adhere for 24 hours. Cells were then dosed with 

nanoparticle solutions in Opti-MEM for 4 hours in triplicate. After 4 hours the cell were 

washed and incubated with fresh complete media for an additional 72-96 hours. 

Promega’s Bright-Glo™ Luciferase Assay System was used to determine luciferase 

expression in each well according to the standard protocol provided. The MTS assay 

(Promega) was used to determine viability according to the manufacture’s protocol. A 

SpectraMax M5 plate reader (Molecular Devices) was used to measure the results of both 

assays. 

 

3.2.1.4 Confocal imaging 

The cells were treated with particles using the same method as for the other in 

vitro assays only in a well with a coverslip bottom. The samples were additionally stained 

with DRAQ5 (Biostatus Ltd) according to the manufacturers protocol in order to stain the 

nuclei (ex. 647nm, em. 670nm) and fixed with 4% paraformaldehyde. Images were taken 

on an Olympus FV500 confocal laser scanning microscope (Olympus Co Ltd).   

 

3.2.1.5 TEM imaging 

The cells were treated with particles using the same method as for the other in 

vitro assays. The samples were then treated with 2% paraformaldehyde / 2% 

glutaraldehyde and 1% osmium tetroxide / 1.25% ferrocyanide. To prepare for sectioning 

the samples were dehydrated with ethanol and embedded in Polybed 812 epoxy resin 
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(Polysciences Inc). After sectioning with a diamond knife, the sections were treated with 

4% aqueous uranyl acetate and Reynold’s lead citrate. Sections were imaged on a LEO 

EM910 transmission electron microscope (LEO Electron Microscopy Inc).  

 

3.2.2 Encapsulating siRNA in PLGA PRINT particles 

The key to fabricating any particle composition using the PRINT process is 

casting a homogeneous film, or delivery sheet. For particles which consist of more than 

one component the film must be examined to determine if there is any phase separation. 

Any heterogeneity in the film will lead to heterogeneity in the particles. Figure 3.1 shows 

two films with heterogeneity (A and B) and one film appropriate for use in the PRINT 

process (C).   

 

 
Figure 3.1 Examples of films cast from PLGA/PEI/siRNA solutions. (A and B) 

heterogeneous films and (C) a homogeneous film. 
 

For most systems any solvent(s) in which all components are miscible can be used to cast 

the delivery sheet. For siRNA a judicious choice of solvent must be made since siRNA is 

only highly soluble in water. Furthermore if complexes between siRNA and PEI are 

generated, their size must be controlled. If simply mixed, siRNA and PEI form large 

complexes that precipitate out of solution. In order to generate small complexes, mixing 

the siRNA and PEI at an interface between two miscible solvents was required. The 
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solvents chosen were DMF and DMSO due to their high water miscibility and good 

solvent characteristics for both PLGA and PEI. First the polymers are mixed in DMSO, 

while the siRNA is dissolved in water. The siRNA/water is then diluted with DMF and 

added on top of the polymer/DMSO solution slowly in order to create two phases (Figure 

3.2 A). The ratio of the DMF phase to the DMSO phase is 4:1. This two-phase solution is 

then mixed slowly until completely homogeneous (Figure 3.2 B). This technique 

generates complexes which are on average 8-10 nm. This film can then be cast (Figure 

3.2 C) resulting in a homogeneous film and particles.  

 

 
 

Figure 3.2 The generation of homogeneous PLGA/PEI/siRNA films. (A) a two-phase 
solution where yellow is DMF with siRNA/water and dark red is DMSO with PLGA/PEI, 

(B) the two phases are then mixed until completely homogeneous, and (C) the film is 
then cast from this solution. 

 

Particles were successfully fabricated from a wide range of compositions. By varying the 

amount of PEI and siRNA incorporated, the zeta potential of the particle was tailored. 

Particles were generated with zeta potentials from -25mV to +60mV. Figure 3.3 shows 

monodisperse 200 nm particles which have a zeta potential of +40mV. These particles are 

very stable in solution due to static repulsion and therefore do not require a stabilizer; this 

is one of the rare cases in which PVOH is not included in the harvesting procedure.   
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Figure 3.3 SEM of 200 nm PLGA PRINT particles containing 10% PEI and 5% siRNA. 

 
 

3.2.3 siRNA release from PLGA PRINT nanoparticles 

Once particles were successfully fabricated, the release of siRNA was 

investigated. In order for the particles to be effective drug delivery agents, they must be 

able to release siRNA and the siRNA must have remained unharmed by the processing 

conditions. The thermal, capillary fill PRINT method does heat the delivery sheet to 

100oC, but the time any one location on the film is heated this high is only 1-2 seconds. 

In addition the siRNA is at that point complexed with PEI and imbedded in a solid 

polymer film which may provide additional protection. To investigate the release of 

siRNA, gel electrophoresis was used. The supernatant from particles incubated at 37oC in 

PBS from 0-72 hours was investigated (Figure 3.4). This time course was chosen as most 

in vitro knockdown studies were focused on a 72 hour incubation. 
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Figure 3.4 The release of siRNA from 200 nm PLGA/PEI particles over 72 hours. 

 

The gel shows siRNA is continually released from the particles over the full 72 

hours. The final lane is free siRNA equal to the total amount of siRNA in each particle 

sample (i.e. representative of 100% encapsulation and 100% release from the particle). 

The particles appear to have released all the siRNA by 72 hours. Interestingly the siRNA 

from the particles does not travel quite as far down the gel as the free siRNA. This would 

indicate the siRNA is slightly larger or slightly less negative, retarding its motion down 

the gel. This indicates there could be some residual PEI. Salt (CaCl2) was added to each 

lane to break up the complex, but the bands remained slightly higher than the free siRNA. 

The smear seen with the particle samples as opposed to the single band seen with free 

siRNA is also an indication that some siRNA is still bound. The lack of any smaller 

fragments confirms the siRNA is not being degraded in the process.  
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3.2.4 Cellular internalization and particle degradation 

Once particles which could encapsulate and successfully release siRNA were 

fabricated, cellular internalization was investigated. As previously mentioned, using an 

encapsulated hydrophobic dye is a very popular method, but can lead to false positives as 

the dye can be taken up into the lipophilic cell membrane.1 Instead of relying on a 

questioned technique, internalization of particles was examined with a Cy3-labeled 

siRNA and was confirmed by TEM. First confocal studies were carried out knowing that 

the dye-labeled siRNA could not cross the cell membrane alone. Figure 3.5 shows the 

uptake of 200 nm particles in HeLa cells at 2 hours. The cells dosed with negatively 

charged particles (-24mV, no PEI) show no internalization, while cells dosed with 

positively charged particles (+34mV, 10% PEI) show the presence of particles within the 

cells. This confirms that PEI (a positive charge) is necessary for internalization. 

 

 
Figure 3.5 The internalization of (A) -24mV PLGA/siRNA particles and (B) +34mV 
PLGA/PEI/siRNA particles. The nucleus is stained purple while the particles contain 

Cy3-labeled (red) siRNA.  
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The same samples were then examined by TEM to confirm internalization of particles. 

Figure 3.6 shows particles being endocytosed by a HeLa cell. The particles are rounded, 

which is expected since the particles which are PLGA (Tg = 45oC) and PEI (Tg = -47oC) 

have been at 37oC for 4 hours and a sphere is the minimal energy shape. The particles 

have a granulated appearance which is probably due to the PEI/siRNA complexes.  

 

 
Figure 3.6 TEM image of a HeLa cell internalizing PLGA/PEI/siRNA particles. 

 

In addition many particles were seen in intracellular compartments (Figure 3.7). The cell 

appears to combine dozens of particles in one vesicle and these vesicles locate near the 

nucleus. From 4 to 24 hours the particles start to loose their structure and definition. Over 

72 hours the particles are completely broken down by the cells, however, polymer can 

still be still in vesicles. It is likely that during this process, PEI/siRNA complexes are 

escaping the vesicles due to their high positive charge. 
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Figure 3.7 The degradation of PLGA/PEI/siRNA particles over 72 hours. 

 

By using a dye-labeled siRNA, which can’t cross the cell membrane alone, and 

confirming with TEM, definitive proof of particles internalization was obtained. 

 

3.2.5 In vitro knockdown 

The culmination of these tests is an assay for efficacy. The simplest way to test 

efficacy of a siRNA system is with a reporter protein and the most commonly used 

reporter is luciferase. In this model cells are stably or transiently transfected with 

luciferase. When treated with the substrate for luciferase, luciferin, these cells luminesce. 

Luciferase knockdown on HeLa-Luc (luciferase expressing cervical cancer) and H460-

Luc (luciferase expressing non-small cell lung carcinoma) was demonstrated (Figure 3.8).  
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Figure 3.8 Delivery of anti-luciferase siRNA. Expressed as a percent of control 

(untreated) cells. 
 

 

Appropriate controls are necessary when looking at protein knockdown since cell death 

could also cause reduced expression. Viability assays showed the particles caused no 

toxicity and particles containing irrelevant siRNA show no significant reduction in 

luciferase expression (data not shown). These controls confirm any effect is due to the 

delivery of active siRNA. Particles containing anti-luciferase siRNA show significant 

dose dependent knockdown. H460 cells were more easily affected by the particles due to 

a lower overall expression of luciferase. The doses required for knockdown are two to 

three orders of magnitude higher the most effective siRNA delivery systems reported: 

lipidoids reported by Love et al. in 2010.2 Three different lipidoid formulations show 

>80% knockdown at single digit nM doses. These systems have already shown efficacy 

in mice and nonhuman primates at low siRNA doses. Comparison to the EC50 values of 

other PLGA nanoparticles is made difficult by the tendency to report knockdown at only 

one dose. Katas et al. reported 0-99% knockdown based on different PLGA/PEI 

compositions at an siRNA dose of 27nM on HEK 293 cells and 10-65% knockdown from 

the same particles and dose on CHO K1 cells.3 This along with our own work 
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demonstrates how important the specific cell line is to the efficacy of the particle. Tahara 

et al. reported  0-60% knockdown based on PLGA and chitosan modified PLGA 

compositions at an siRNA dose of 50nM on A549 cells.4 These two examples illustrate 

PLGA/PEI PRINT nanoparticles are slightly above other reported particle systems. The 

most likely reason for this is the particle’s inability to escape the endosome. Recall from 

the TEM studies (Figure 3.8) that polymer remains trapped in the vesicle even at 72 

hours. This vesicle has most likely matured into a lysosome in which any remaining 

siRNA will be degraded. The fraction of siRNA which escaped the endosome earlier 

leads to the knockdown observed, but dosing is slightly above averages reported due to 

incomplete endosomal escape. Confocal studies with dye-labeled siRNA were used to 

confirm this hypothesis. High concentrations of siRNA were observed concentrated in 

vesicles out to 72 hours. The amount of diffuse fluorescence (siRNA in the cytosol) can 

not be measured because it is low compared to the signal from the vesicles. This does not 

necessarily indicate the particles would not show efficacy in vivo. It is crucial to 

acknowledge the pros and cons of using in vitro screening to select formulations for in 

vivo administration. The particles release siRNA over the full 72 hours which may not be 

the optimal release profile for in vitro studies were particles have been shown to 

internalize in the first 15-30 minutes. For in vivo studies the release profile of the particle 

may be more appropriate since the particle must make its way to the tumor, enter and 

transverse the tumor tissue, and be internalized. In this situation the particle may be 

“primed” by this travel time and release more siRNA during the critical pH window in 

the endosome. Furthermore the PRINT process allows the release rates to be 

systematically tailored so if not optimal a different composition could be explored.  
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3.2.6 Conclusions 

The PRINT process has been demonstrated as an effective tool for the fabrication 

of siRNA containing PLGA particles. High cell uptake was achieved through the 

incorporation of PEI in the particle matrix, giving the particles a positive charge. The 

degradation of the particles in vitro over 72 hours was shown to be rapid, however, some 

polymer and siRNA remains in the vesicle. The particles exhibit no toxicity in vitro and 

dose dependent knockdown in an in vitro luciferase model has been demonstrated.  

 

3.2.7 Future Work 

 

3.2.7.1 Decreased EC50 with lipid coated compositions 

In order to achieve lower EC50 a slightly different formulation is under 

investigation. Since the best knockdown currently reported is with lipid containing 

systems, lipids were added to the PLGA PRINT system. The purpose of the lipid is to 

achieve cellular internalization and to aid in endosomal escape. Lipids were successfully 

added to the PLGA particle matrix, however, like with adding PEG into the particles 

matrix, many of the lipids are buried inside the particle. In order to get the highest benefit 

from the lipids used, the PLGA/siRNA particle was first fabricated and then lipids were 

simply added to the harvesting medium. The lipids coated the PLGA particles due to the 

hydrophobic nature of PLGA and the amphiphilic nature of lipids. The characterization 

of 80 x 320 nm PLGA/siRNA particles coated with a 1:1 mixture of DOTAP:DOPE is 

shown in Table 3.1 below. 
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Table 3.1 The characterization of 80 x 320 nm PLGA PRINT nanoparticles coated with 
lipid. 

Lipid 
concentration 

(mg/mL) 

Size 
(nm) 

Zeta Potential 
(mV) 

0 212 -6 
0.1  220 +11 
0.5 240 +15 

 

These particles were then tested for internalization using a dye-labeled DNA of the same 

sequence as the anti-luciferase siRNA (Figure 3.9) and flow cytometry. Particles without 

lipid coating showed no uptake as expected. The lipid coating resulted in cellular 

internalized with higher lipid concentrations resulting in higher internalization. Lipid 

coatings above 0.5 mg/mL display cytotoxicity due to a high concentration of free lipid, 

which disrupts cell membranes.  

 

 
Figure 3.9 The internalization of lipid coated 80 x 320 nm PLGA PRINT nanoparticles 

as a function of time. 
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Finally the in vitro efficacy of these particles were tested (Figure 3.10). Not only were the 

particles successful in knocking down luciferase expression, but EC50 values were similar 

to the values reported in the literature for lipidoids. Particles coated with 0.25 mg/mL 

lipid had an EC50 of 7nM and particles coated with 0.2 mg/mL lipid had an EC50 of 

15nM.   

 

 
Figure 3.10 Knockdown of luciferase in HeLa-Luc cells by 80 x 320 nm lipid coated 

PLGA/siRNA nanoparticles. 
 

This composition shows great promise for in vivo efficacy and can easily be tailored, 

using different lipids and different ratios / concentrations of lipid to find an optimal 

coating.   

 

3.2.7.2 Therapeutic siRNA and in vivo knockdown 

The knockdown of a reporter gene such as luciferase is an easy screening tool and 

can be used in vivo, but moving to the knockdown of a relevant, therapeutic gene is a 

more attractive choice. Currently under investigation is the knockdown of the androgen 
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receptor in the prostate cancer cell line LNCaP. This receptor is implicated in treatment 

resistant prostate cancers. Once in vitro knockdown of this gene is successful, the in vivo 

efficacy can be tested by monitoring mRNA levels and tumor progression in mice with 

xenograft LNCaP tumors. Using the lessons learned from biodistribution experiments 

will be crucial to choosing the best size and shape to deliver particles to the tumor most 

effectively. Once siRNA delivery with PLGA PRINT nanoparticles is demonstrated in 

vivo, combination therapies with chemotherapeutics can be explored.  

 

3.3 Chemotherapy 

The second therapy investigated with the PLGA PRINT nanoparticle system was 

chemotherapy. The purpose of chemotherapy is not to correct the cancerous cells’ 

function as in RNAi therapy, but to destroy the cell and allow the body’s natural 

clearance mechanisms rid the body of the tumor cell by cell. Docetaxel and its need for a 

drug delivery vehicle were previously described. The requirements of the docetaxel 

delivery system are different from the siRNA delivery system. The key difference being 

cellular internalization is not required for efficacy. There are also aspects of the PRINT 

process that are different. The incorporation of small molecules instead of nanometer-

sized complexes allows for a higher loading of therapeutic. And in the case of small 

molecules all components can be mixed without a special protocol. The chemotherapeutic 

delivery system therefore quickly succeeded in vitro above currently reported systems 

and in vivo investigations were begun.   
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3.3.1 Experimental  

 

3.3.1.1 Particle Fabrication 

Poly(lactic acid-co-glycolic acid) (PLGA; 50:50; 33,000 g/mol) was purchased 

from Lakeshore Biomaterials. PLGA (85:15; 50,000 g/mol) was purchased from 

Polysciences. Dimethyl sulfoxide (DMSO) and dimethylformamide (DMF) were 

purchased from Sigma Aldrich. HPLC grade acetonitrile (ACN) and water were 

purchased from Fisher Scientific. Docetaxel was purchased from LC Laboratories. 

Fluorocur®, 200nm x 200nm and 80nm x 360nm pre-fabricated molds and polyvinyl 

alcohol (PVOH; 22,000 g/mol) were obtained from Liquidia Technologies. Particles were 

fabricated using the previously described thermal, capillary fill PRINT method and either 

squeegee harvested (in vitro studies) or bead harvested (in vivo studies). 

 

3.3.1.2 Particle characterization  

  To accurately determine particle concentration, thermogravimetric analysis 

(TGA) samples were prepared by pipetting 20 µL of particle solution into a sample pan 

and monitoring the weight on a Perkin Elmer Pyris 1 TGA under the following heating 

steps: 25-100oC at 10oC/min, 15 minute hold, 100-500oC at 10oC/min. For particle 

visualization by scanning electron microscopy (SEM), samples were prepared by 

pipetting 50 µL of particle solution onto a woven mesh filter (BioDesign Inc. Cell 

Microsieve 5µm) and then rinsing with Milli-Q filtered water. Samples were dried and 

coated with 3 nm gold palladium alloy using a Cressington 108 auto sputter coater. 

Images were taken at an accelerating voltage of 2 kV using a Hitachi model S-4700 SEM. 
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For size and charge characterization, dynamic light scattering (DLS) measurements were 

made at 30µg/mL particle concentrations on a Malvern Instruments Nano-ZS.  

 

3.3.1.3 Docetaxel encapsulation and release by HPLC 

Encapsulation efficiency was measured using an Agilent Technologies Series 

1200 HPLC with a C18 reverse phase column (Zorbax Eclipse XDB-C18, 4.6x150mm, 5 

micron). A mobile phase of water and acetonitrile on a gradient from pure water to pure 

acetonitrile over 10 minutes with a flow rate of 1 mL/min was employed with a detection 

wavelength of 210nm. A five minute hold at pure acetonitrile was employed after the 

initial gradient to wash out the polymer. The docetaxel peak appeared at 8.9 minutes and 

the PLGA peak appeared at 11.1 minutes. The ratio of the peaks in the precursor solution 

was compared to the ratio of the peaks in the particle to determine encapsulation. 

Particles (200nm x 200nm) were harvested and mixed 1:1 with acetonitrile to dissolve the 

particles for injection. Using the same HPLC method as was used to measure 

encapsulation efficiency, release profiles were measured for all four PRINT docetaxel 

compositions. Particles (200nm x 200nm) were incubated in PBS at 37oC for set periods. 

Aliquots were removed and spun down. The supernatant was removed and the pellet was 

dissolved in acetonitrile. HPLC was used to determine the docetaxel content remaining.  

 

3.3.1.4 In vitro cytotoxicity 

H460 cells, a non-small cell lung carcinoma, were cultured in RPMI media 

supplemented with 10% serum. For toxicity studies, cells were plated at 5,000 cells per 

well in white walled 96 well plates. Particles (200nm x 200nm) and the standard of care, 
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Taxotere, were dosed on cells in RPMI media supplemented with 10% serum at twelve 

ten-fold dilutions of docetaxel concentration. After 72 hours the viability of the cells was 

measured using a CellTiter-Glo assay (Promega) and a SpectraMax M5 plate reader 

(Molecular Devices). 

 

3.3.1.5 In vivo efficacy 

All mice were handled in accordance with the University of North Carolina’s 

Institutional Animal Care and Use Committee (IACUC) protocols. Immuno-

compromised Balb/c Nude and SCID CB.17 mice were purchased from Harlan Labs. One 

week after arrival mice were injected with 5 million SKOV3 cells in the right or left 

flank. Once tumors formed, mice were injected I.T. with PLGA PRINT nanoparticle 

solutions and control solutions (n=5). Tumor volumes were then monitored initially every 

day and then every 2-3 days. 

 

3.3.1.6 PK determination 

The same method used for biodistribution studies was used to treat mice for PK 

determination. Blood samples and organ harvest occurred at 0.083 (n=2), 1 (n=2), 6 (n=3) 

and 24 (n=3) hours. The Taxotere treatment group consisted of sampling at 0.083, 0.25, 

0.5 1, 1.5, 2, 4, 6, 7, 16 and 24 hrs (n=3 all). Simple protein precipitation using 

acetonitrile was used to extract docetaxel from plasma and tumor samples. A validated 

LC-MS/MS assay was used to measure the total docetaxel concentration in plasma and 

tumor samples.5 
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3.3.2 High Drug Loading  

In addition to exquisite control over the physical properties of the particle, the 

PRINT process allows for complete control over particle composition. The “second 

phase” in this process is a perfluoropolyether network which is both oleophobic and 

hydrophobic so partitioning into this material is low.6 This has led to the ability to 

achieve good encapsulation with loadings much higher than possible with traditional 

methods. In the literature (Table 1.2) maximum docetaxel loading is 15% with 

encapsulation widely varying dependant not only on the particular fabrication method, 

but on the specific parameters used. PLGA PRINT particles 200nm x 200nm can be 

loaded with 0 – 40% docetaxel (w/w) using the same processing parameters for all 

compositions. Encapsulation efficiency is >90% for all compositions. Others have cited 

lowered encapsulation efficiency as drug loading increases7, however, with the PRINT 

process loading does not affect encapsulation nor does it affect the particle’s physical 

properties. The largest dimension of the 200nm x 200nm cylinder is approximately 

280nm and the smallest 200nm which is reflected in the size measured by dynamic light 

scattering (DLS) and is consistent across all compositions (Table 3.2).   

 

Table 3.2 Encapsulation efficiency of PLGA PRINT nanoparticles at varying drug 
loadings (w/w) and physical characterization by DLS. 

Theoretical 
Loading 

Encapsulation 
Efficiency 

(%) 

Size 
(nm) 

Zeta Potential 
(mV) 

0% -- 263 ± 5 -22.6 ± 0.6 
10% 93 ± 11 256 ± 10 -19.8 ± 0.8 
20% 95 ± 5 246 ± 2 -22.3 ± 0.3 
30% 99 ± 7 247 ± 4 -19.6 ± 0.3 
40% 99 ± 3 251 ± 1 -21.8 ± 0.2 
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The charge is negative, typical of PLGA nanoparticles, and is also consistent across all 

compositions. SEM shows the particles are a homogeneous size and shape within and 

between compositions (Figure 3.11). The ability to create the same outward physical 

properties with different compositions in a homogeneous population of particles is going 

to generate investigations into interesting dosage questions that traditional methods can 

not explore. One interesting and unexplored question is the difference in delivering the 

same drug dose in different particle doses. For example, to compare the efficacy of 

administering 1 mg of 20% docetaxel particles versus 0.5 mg of 40% docetaxel particles. 

This is a comparison other methods simply can not investigate because the loadings are 

not achievable with traditional methods and even if they were the particle’s physical 

properties would not be identical, clouding the results. The availability of more dosing 

options can provide a better chance of increasing efficacy in patients. 

 

 
Figure 3.11 SEM images of cylindrical 200nm x 200nm PLGA PRINT nanoparticles 
containing varying amounts of docetaxel: A) 0%, B) 10%, C) 20%, D) 30%, E) 40%. 
Inset images are a magnification of a portion of the image to the same scale for more 

detail. 
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3.3.3 Release Profiles 

As with siRNA the release of active docetaxel from the particle is also of high 

importance. The main concern with docetaxel is heat induced degradation during the melt 

filling step of the PRINT process. This was investigated by HPLC (Figure 3.12). 

 

 
Figure 3.12 The HPLC trace of heat stressed docetaxel (blue) and PLGA/docetaxel 

particles (red). 
 

The main heat degradation product of docetaxel is 7-epi-docetaxel which comes out later 

in the solvent gradient. 7-epi-docetaxel is still active against microtubule 

depolymerization, however, it is less cytotoxic than docetaxel. There are also two 

smaller, fragment degradation products which come out earlier in the gradient are and 

inactive.8, 9  All these degradation products can be seen in the blue trace, docetaxel which 

was heated to 100oC for 1 minute. When particles containing docetaxel are then 

compared, no 7-epi-docetaxel is seen (red trace). All latter peaks in the red trace are 

identified components of the particle. Having shown the docetaxel remains intact 
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throughout the PRINT process, HPLC was used to measure the release of docetaxel from 

PLGA particles under sink conditions (Figure 3.13). The PLGA chosen for in vitro 

cytotoxicity experiments was one with a fast release profile. All compositions show 

similar release and complete release is achieved in 24 hours. The release rates of the 

particles should therefore have no effect on the cytotoxicity across compositions 

measured at 72 hours. 

 

 
Figure 3.13 Release profiles of PLGA nanoparticles containing 10-40% docetaxel at pH 

7.4 and 37oC. 
 

The particles exhibit the typical burst rate seen in the literature with PLGA nanoparticles 

(Table 1.3). Importantly the particles completely release docetaxel. Some formulations 

reported in the literature show incomplete release even at low time points.7 Interestingly 

the highest loading of docetaxel exhibits a slightly slower release. This may be attributed 

to the hydrophobic nature of docetaxel and the increased docetaxel-docetaxel interactions 

of the particle with higher loading.  
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3.3.4 In vitro drug delivery efficacy 

Uptake studies had previously confirmed that negatively charged PLGA PRINT 

nanoparticles are not internalized by cells (Figure 3.6). The efficacy of these particles 

then depends on their ability to release docetaxel which will then be internalized by cells 

or their ability to transfer docetaxel directly across the cell membrane while in contact 

with cells. A comparison of toxicity among particles containing 0 – 40% docetaxel on 

H460 non-small cell lung cancer is shown in Figure 3.14 below.   

 

 

Figure 3.14 H460 cell viability after 72 hour exposure to Taxotere® and PLGA PRINT 
nanoparticles containing various docetaxel weight percents: 0% docetaxel (x), 10% 

docetaxel (■), 20% docetaxel (▲), 30% docetaxel (●), 40% docetaxel (♦), and Taxotere® 
(□). Blank particles (0%) were dosed at equal particle concentrations to 10% docetaxel 

containing particles (i.e. the highest particle dose). 
 

Particles without drug are non-toxic as expected from the biocompatible, bioabsorbable 

nature of the polymer and previous toxicity experiments. PLGA PRINT nanoparticles 
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containing docetaxel exhibit dose dependant toxicity and are toxic in sub-picomolar 

docetaxel concentrations. This demonstrates the wide dosing range at which the particles 

may have efficacy in vivo. The particles are compared to the standard of care therapy, 

Taxotere®. Slightly lower toxicity compared to this standard is seen with particles 

containing 10% and 20% docetaxel while particles containing 30% and 40% docetaxel 

show higher toxicity at the same docetaxel concentration (Table 3.3).  

 
Table 3.3 IC50 values for docetaxel loaded PLGA PRINT Nanoparticles and Taxotere. 

 IC50 [nM] 

Taxotere 1.2 x 10-5 
10% Docetaxel  
PLGA PRINT 2.8 x 10-4 

20% Docetaxel  
PLGA PRINT 2.6 x 10-4 

30% Docetaxel  
PLGA PRINT 2.7 x 10-7 

40% Docetaxel  
PLGA PRINT 5.3 x 10-9 

 

These results demonstrate not only that the PRINT process allow for high encapsulation 

of docetaxel, but that the docetaxel is released from the particle, can be delivered to its 

desired cellular target, and is unharmed by the processing conditions. Since release rates 

are equal for all four PRINT docetaxel compositions, it suggests higher docetaxel 

loadings could be important to increase efficacy at a lower total dose and further 

investigation into the effects of higher loadings on toxicity, something until now 

impossible to study, are warranted. In addition the IC50s of docetaxel PLGA PRINT 

nanoparticles are orders of magnitude lower than any values reported in the literature 

which range from 1 nM to 105 nM.10-13  
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 3.3.5  In vivo drug delivery efficacy  

The in vivo efficacy docetaxel PLGA PRINT nanoparticles was investigated in a 

xenograft SKOV3 mouse model. To test efficacy without the added complexity of 

biodistribution, intratumoral (I.T.) injections were employed. This is an investigation of 

the particles’ ability to release docetaxel in vivo where it will reach its intracellular target 

and actively block cell division; thereby delaying the growth of the tumor or in the best 

case, leading to regression. Each mouse was injected with three doses (0.2 mg of 

docetaxel per dose) every other day of Taxotere, docetaxel containing PLGA particles, or 

an equal mass of blank (drug free) particles. The tumor volumes (4 mice each) are shown 

in Figure 3.15 below.   

 

 
 

Figure 3.15 The in vivo efficacy of 40% docetaxel PLGA PRINT nanoparticles in 
SKOV3 mouse model (*p<0.05, **p<0.01). 

 

The mice injected with 100% PLGA particles and the mice injected with PBS show 

identical tumor progression over 45 days. This demonstrates neither the particle injection 
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nor the PLGA affects tumor progression. The mice treated with docetaxel containing 

PLGA PRINT nanoparticles show a 15 day delay in progression which is significant out 

to day 45 after which there are fewer than 4 mice remaining. The group treated with 

Taxotere shows a longer delay of an additional 15 days. No treatment was able to prevent 

progression all together or achieve regression. In fact once progression began the rate of 

growth is similar between all groups. The benefit of Taxotere over PLGA nanoparticles is 

likely due to their size and therefore their mobility in the tumor tissue. DLS measurement 

showed Taxotere is actually a nanoparticle suspension with particles measuring 14 nm 

(PDI 0.2) and -2 mV. The smaller particle probably penetrates through the tumor tissue, 

away from the injection site more easily than the 200 nm PLGA PRINT particle.14 This 

allows the Taxotere to reach a higher volume of the tissue and delay progression more 

effectively. Nevertheless the PLGA PRINT nanoparticles have clearly demonstrated their 

ability to deliver docetaxel in vivo and effect the progression of a rapidly growing tumor.  

 

3.3.6 Pharmacokinetics of docetaxel in vivo 

To design a particle which will have the highest efficacy when administered I.V. 

we turned to pharmacokinetics (PK). By studying which particles deliver the most 

docetaxel to the tumor, a good estimate of the optimal formation for in vivo efficacy can 

be obtained. Two formulations were investigated in the initial PK study. The first was the 

formulation used previously in the I.T. efficacy study: 40% docetaxel in a 50:50 PLGA 

(33,000 g/mol). The second was a slower release formulation: 40% docetaxel in an 85:15 

PLGA (50,000 g/mol). The difference in release is 1 day versus over 1 week (Figure 

3.16).  
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Figure 3.16 The release of docetaxel from two different PLGA polymers: orange is a 

50:50, 33kDa PLGA and purple is a 85:15, 50kDa PLGA. 
 

There are no physical differences in the particle formulations (Table 3.4) which indicates 

the particle itself should have the same biodistribution. This is one of the many benefits 

of the PRINT method. The formulation can be tailored one variable at a time.  

 

Table 3.4 The physical properties of PLGA PRINT nanoparticles from different PLGA 
polymers. 

PLGA 
Polymer Size (nm) PDI Zeta Potential 

(mV) 

50:50 225 ± 3 0.031 -8 
85:15 227 ± 1 0.041 -3 

 

Any difference in PK must, therefore, be due to a difference in release profile. It would 

be expected that the 50:50 PLGA particle may be releasing docetaxel in the blood stream 

before the particle accumulates in the tumor, while the 85:15 PLGA particle will lose less 

docetaxel before reaching the tumor. As hypothesized, the particle with a slower release 

profile showed higher docetaxel accumulation in the tumor. And both PLGA PRINT 

compositions showed higher tumor accumulation than Taxotere (Figure 3.17).  
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Figure 3.17 The PK profiles of two PRINT compositions compared to Taxotere over 24 

hours. Concentrations in (A) plasma and (B) tumor. 
 

This initial study indicates the 85:15 PLGA composition would be more effective when 

administered I.V. The plasma clearance can be characterized by the area under the curve 

(AUC). Table 3.5 shows the AUC values for Taxotere, PLGA PRINT nanoparticles, and 

some PLGA formulations from the literature.  
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Table 3.5 AUC values for Taxotere and PLGA nanoparticles. 

Injection  Fabrication 
Method Composition Size 

(nm) PDI AUC0-∞    
(h•nM) Ref 

Taxotere -- -- 14 0.2 8,172 -- 
Nanoparticle PRINT 50:50 PLGA 225 0.031 3,605 -- 
Nanoparticle PRINT 85:15 PLGA 227 0.041 4,140 -- 
Nanoparticle Emulsion 50:50 PLGA 175 0.24 67,781 12 
Nanoparticle Emulsion 75:25 PLGA 102 0.15 70,545 10 

 

The formulations reported in the literature are smaller and much more heterogeneous in 

size than the PRINT compositions which probably leads to the enhancement in 

circulation. Smaller particles and more importantly the smaller fractions of a 

heterogeneous particle population (<100nm) are less likely to be cleared by the liver and 

spleen. This suggests a smaller PRINT particle should be investigated. Before in vivo 

efficacy trials are begun, however, the PK of more compositions needs to be tested. The 

efficacy trial takes months to complete while a PK experiment can be conducted in one 

day. Obviously the PK study is a valuable screening tool and full advantage should be 

taken.  

 

3.3.7 Conclusions  

The fabrication of PLGA nanoparticles with high and efficient docetaxel loadings 

has been demonstrated. The physical properties of these particles remain constant even 

while the chemical composition is altered. These particles have shown toxicity in vitro 

higher than currently studied PLGA emulsion formulations with some indication that 

high loadings increases efficacy. In an efficacy study, particles delayed the progression of 

SKOV3 xenograft tumors. This was the first demonstration of in vivo anti-tumor efficacy 
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by PRINT nanoparticles; higher efficacy compositions are sure to follow. PK 

investigation is underway to choose the next compositions for in vivo efficacy testing.  

 

3.3.8 Future Work 

The ultimate goal of advanced drug delivery with PLGA PRINT nanoparticles is a 

fully tailorable system whereby a doctor can choose a desired chemotherapeutic or 

combination of therapeutics and a desired PK/PD profile for the specific needs of a 

patient.  

 

3.3.8.1 PK studies with more sizes, shapes and compositions 

To achieve a fully tailorable system, compositions with different sizes, shapes, 

and release profiles as well as different doses and dosing regimes must be thoroughly 

explored. The first hurdle is the fabrication of smaller particles with highly efficient 

loadings. While 200 nm particles show >90% encapsulation efficacy, initial test on 80 x 

320 nm particles showed much lower loading. It was hypothesized that while no x,y 

phase separation occurs in the films, some separation in the z-direction could occur as 

demonstrated in Figure 3.18 below. 

 



 124

 
 

Figure 3.18 A cutaway view of a PLGA/docetaxel film which is typically 300-500 nm in 
depth. The docetaxel is represented by the red color which is depleted in the first 10-50 

nm on the very surface of the film. 
 

To test if this separation was occurring, the film was explored using time of flight 

secondary ion mass spectrometry (TOF SIMS). In this method a sample beam and a 

sputtering beam alternate, giving a depth profile of the film. Figure 3.19 shows the depth 

profile of a 40% docetaxel PLGA film cast from DMF/DMSO. Region I is the surface of 

the film where ubiquitous surface contamination strongly influences secondary ion yield. 

Region II is the bulk of the film and region III is the interface of the film with the PET 

substrate. A depletion of docetaxel is clearly seen near the surface of the film. In order to 

make smaller particles with high loadings this issue must be solved. Some progress has 

already been made, increasing encapsulation efficiency from ~10% to ~70%. 
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Figure 3.19 TOF SIMS depth profile of PLGA/docetaxel film. 
 

Once this issue is fully solved, the comparison of particles from the 80 nm differing 

aspect ratio series and the smaller aspect ratio of 1 series discussed previously can be 

explored. Since tumor penetration will be an important issue for this delivery system, 

information gathered from biodistribution studies will be very instructive. Different 

PLGA polymers will also need to be explored to vary the release rate of the particle. This 

can be used to maintain a therapeutic concentration of drug in the tumor for a desired 

length of time. Finally targeting of this system is also underway and the effect on 

biodistribution, tumor penetration, and drug PK/PD will be another layer of complexity to 

explore.  

 

3.3.8.3 Combinations of gene therapy and chemotherapy 

A combination of siRNA and chemotherapy should be investigated once both are 

fully developed. Several groups have already demonstrated the improved efficacy of the 
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combination over either single component.15-17 Genes targeted by these groups included 

inhibitor of apoptosis proteins (IAPs) which serve a pro-survival function and are often 

upregulated in cancer cells; focal adhesion kinases (FAKs) which affect cell migration, 

invasion, and proliferation and whose upregulation in cancer is a predictor of poor 

prognosis; and epidermal growth factor receptor (EGFR) which triggers proliferation, 

angiogenesis, and metastasis and is upregulated in many cancers. Combination therapy 

with PLGA PRINT nanoparticles will be very straightforward as all components can be 

mixed into a single particle or components can be administered together in separate 

particles which can have the same physical properties. This is an advantage over current 

methods which can not tailor physical properties independent of composition and which 

can not easily encapsulate cargos with different philicities. Furthermore the limited 

amount of cargo other particle technologies are capable of loading certainly limits the 

ability to encapsulate effect quantities of multiple cargos. The PRINT process allows for 

the fabrication of highly engineered PLGA particles, beyond any currently available 

technologies, showing great promise as a tailorable drug delivery system. While the 

future plans for PLGA PRINT nanoparticles are not just imagined, but already underway; 

the future of this work is truly limitless. 
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