

Operative vs. Non-Operative Treatment of Acute Appendicitis

Primary Author: Alexandra Pressley First and Second Readers: Janelle Bludorn, PA-C and Dr. Shannelle Campbell, MD

Introduction

- Appendicitis is one of the most common medical emergencies worldwide⁹. Surgical removal of the appendix through appendectomy has been the definitive standard of care since the 19th century 3,10,9 .
- However, due to the potential complications of surgery, researchers have begun to investigate a more conservative treatment of appendicitis through the use of antibiotics alone 2,13,14,15.
- The following PICOT question will be investigated: How effective is antibiotic administration for the treatment of acute appendicitis compared to surgical appendectomy?

Methods

Resources **Utilized:**

-PubMed, Cochrane Library, and Google Scholar were utilized. -Uptodate and F1000 also used

Primary Search

Terms:

"Appendicitis", "Antibiotics", and "Appendectomy", "Appendix", "Medications", and "Treatment

Alternative Search Terms:

"Appendix", "Medications", and "Treatment".:

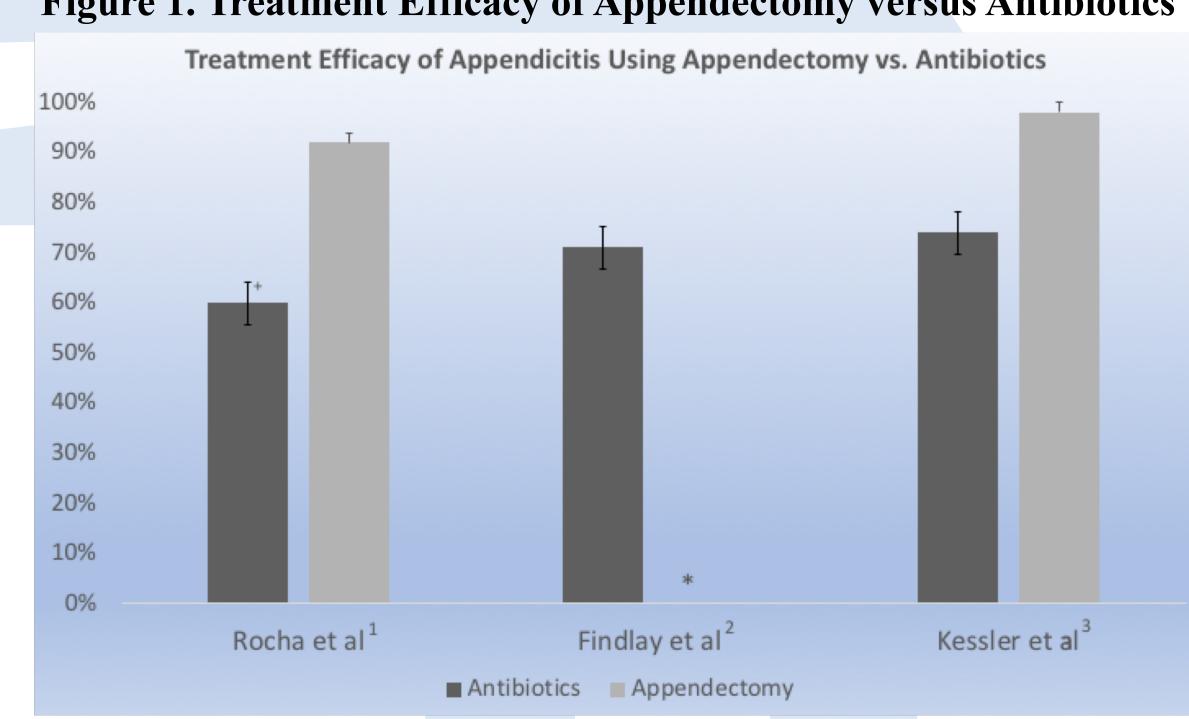
Inclusion

Criteria: -Only Systematic Review Papers -Published after 2015 ->1 year follow up

with patients

Exclusion Criteria:

-RCT -Published before 2015 -<1 year patient follow


Analysis:

-The systematic reviews were critically analyzed using the GRADE bias evaluation

Results

Treatment of appendicitis using antibiotics was found to be effective 60-74% of the time.

Figure 1. Treatment Efficacy of Appendectomy versus Antibiotics

1. Treatment efficacy defined as overall treatment of appendicitis. 2. Definition of efficacy not specified 3. Treatment efficacy defined as resolution of appendicitis, readmission, and complications * Efficacy for treatment with appendectomy not provided + all confidence intervals at 95% unless otherwise stated

Table 1. Outcome Comparisons and Favored Result from Rocha et al¹², Kessler et al¹⁴, and Findlay et al¹³

			-	
Outcome	Rocha et al ¹²	Kessler et al ¹⁴	Findlay et al ¹³	
Treatment Efficacy	Appendectomy	Appendectomy	Appendectomy	
	Favored	Favored	Favored	
Complications	Antibiotics Favored	No Difference	No Difference	
Failure of	Appendectomy	Appendectomy	Appendectomy	
Treatment	Favored	Favored	Favored	
Readmissions	Appendectomy	Appendectomy	N/A	
	Favored	Favored		
Length of Hospital	No Significant	N/A	Appendectomy	
Stay	Difference		Favored	
Pain	Antibiotics Favored	N/A Antibiotics Favor		

Table 2. Grade Bias Evaluation of the Systematic Reviews Regarding Efficacy of Treatment of Acute Appendicitis with Antibiotics

			* *			
	Inconsistency	Indirectness	Imprecision		Limitations	Quality
				Bias		
Findlay	High Risk ¹	Moderate	Low Risk	High	High Risk ⁵	Very Low
et al		Risk ²		Risk ³		
2015						
Kessler et	High Risk ¹	Low Risk	Low Risk	High	High Risk ⁵	Very Low
al				Risk ⁶		
Rocha et	Moderate	Low Risk	Low Risk	High	High Risk ⁵	Low
al 2017	Risk ⁸			Risk ⁷		

1. Rated as high risk due to high heterogeneity (i2 > 80%) in the studies 2. Rated as moderate risk due to variations in diagnostic criteria, inclusion, and exclusion criteria 3. Rated as high risk due to unclear randomization and unclear reporting of complications. Rated as moderate risk due to varying population parameters 5. Rated as high risk due to low quality of studies investigated and varying antibiotics 6. Rated as high risk due to allocation bias, variety of protocols within the studies 7.Rated as

heterogeneity and variation

high risk due to selection bias from unblinded outcomes and crossover rate 8. Rated as moderate risk due to moderate

Conclusions

Key Findings

Treatment with Antibiotics:

- Efficacy ranged from 60% to 74%.
- Decreased inflammatory response, faster return to work, and decreased pain.
- Higher rate of readmission compared to appendectomy

Appendectomy more effective compared to antibiotics

Limitations

- Design related bias
- Variations in antibiotics
- Imaging modalities used for diagnosis
- Length of follow up time

Clinical **Applications**

- Although antibiotic treatment may be appealing due to the decreased risk of complications and decreased pain, the rate of hospital readmission and treatment efficacy is worrisome.
- Of note, majority of the appendectomies were performed as open although laparoscopic is typically the gold standard today.

Conclusion/Future Directions

- The evidence supports appendectomy as standard of treatment for acute appendicitis
- More studies need to be completed standardizing study design, surgical modality, and increasing length of follow up time.

ACKNOWLEDGEMENTs:

I would like to thank Janelle Bludorn, Dr. Shannelle Campbell, and Kim Faurot for their oversight on this project.

REFERENCES:

- Switzer NJ, Gill RS, Karmali S. The evolution of the appendectomy: from open to laparoscopic to single incision. *Scientifica (Cairo)*. 2012;2012:895469. O'Connell EP, White A, Cromwell P, et al. Non-operative treatment of appendicitis: public perception and decision-making. Ir. J. Med. Sci. 2018:1-10. doi:10.1007/s11845-
- Horattas MC, Horattas IK, Vasiliou EM. Early Uncomplicated Appendicitis-Who Can We Treat Nonoperatively? Am. Surg. 2018;84(2):174-180. Wilms IMHA, de Hoog DENM, de Visser DC, Janzing HMJ. Appendectomy versus antibiotic treatment for acute appendicitis. Cochrane Database Syst. Rev.
- 2011;(11):CD008359. doi:10.1002/14651858.CD008359.pub2. McCutcheon BA, Chang DC, Marcus LP, et al. Long-term outcomes of patients with nonsurgically managed uncomplicated appendicitis. J. Am. Coll. Surg.
- 2014;218(5):905-913. doi:10.1016/j.jamcollsurg.2014.01.003. Saluja S, Sun T, Mao J, et al. Early versus late surgical management of complicated appendicitis in children: A statewide database analysis with one-year follow-up. J. Pediatr. Surg. 2018;53(7):1339-1344. doi:10.1016/j.jpedsurg.2017.09.012 Jaffe B, Berger D. Chapter 30. The Appendix | Schwartz's Principles of Surgery, 9e | AccessMedicine | McGraw-Hill Medical. 2009. Available at:
- https://accessmedicine.mhmedical.com/content.aspx?bookid=352§ionid=40039772&jumpsectionID=40049387. Accessed April 7, 2018. Martin R. Acute Appendicitis in Adults: Clinical Manifestations and Differential Diagnosis. UptoDate 2017. Bhangu A, Søreide K, Di Saverio S, Assarsson JH, Drake FT. Acute appendicitis: modern understanding of pathogenesis, diagnosis, and management. The Lancet
- 2015;386(10000):1278-1287. doi:10.1016/S0140-6736(15)00275-5 Clinical Standards | Texas Children's Hospital. Available at: https://www.texaschildrens.org/departments/safety-outcomes/clinical-standards. Accessed August 1, 2018. John Hopkins Medicine Health Library. Appendectomy . Available at:
- https://www.hopkinsmedicine.org/healthlibrary/test_procedures/gastroenterology/appendectomy_92,P07686. Accessed April 9, 2018. Rocha LL, Rossi FMB, Pessoa CMS, Campos FND, Pires CEF, Steinman M. Antibiotics alone versus appendectomy to treat uncomplicated acute appendicitis in adults: what do meta-analyses say? World J. Emerg. Surg. 2015;10:51. doi:10.1186/s13017-015-0046-
- Findlay JM, Kafsi JE, Hammer C, Gilmour J, Gillies RS, Maynard ND. Nonoperative Management of Appendicitis in Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Am. Coll. Surg. 2016;223(6):814-824.e2. doi:10.1016/j.jamcollsurg.2016.09.005.
- Kessler U, Mosbahi S, Walker B, et al. Conservative treatment versus surgery for uncomplicated appendicitis in children: a systematic review and meta-analysis. Arch. Dis. Child. 2017;102(12):1118-1124. doi:10.1136/archdischild-2017-313127.