

Bo Yao. Adding Vocabularies to the HIVE demo at RENCI.org: Step-by-step Processes.

A Master’s Paper for the M.S. in I.S degree. April, 2014. 36 pages. Advisor: Jane

Greenberg

The demand for high quality metadata is growing in response to the massive growth of

digital information and data. Traditionally, keywords and other metadata have been

created by authors and professional indexers. However, manual metadata generation is

increasingly insufficient, due to the digital information explosion and the growth of

multidisciplinary digital environments. There is a growing need to develop, study, and

advance knowledge about tools that automatically generate metadata, particularly tools

that reach across different disciplines.

This study addresses this need by introducing “HIVE” which supports automatic

metadata generation by drawing descriptors from multiple SKOS (Simple Knowledge

Organization Systems) encoded controlled vocabularies. First, HIVE’s core components

and key concepts are defined and discussed. Next, this study describes the step-by-step

process of adding new controlled vocabularies into the HIVE demo at RENCI.org. The

paper concludes by showing the result of the step-by-step process and addressing further

steps of the HIVE project.

Headings:

Controlled Vocabularies

Metadata

Automatic Keyphrases Extraction

RDF/SKOS

HIVE

ADDING VOCABULRIES TO THE HIVE DEMO AT RENCI.ORG: STEP-BY-STEP

PROCESSES

by

Bo Yao

A Master’s paper submitted to the faculty

of the School of Information and Library Science

of the University of North Carolina at Chapel Hill

in partial fulfillment of the requirements

for the degree of Master of Science in

Information Science.

Chapel Hill, North Carolina

April 2014

Approved by

Jane Greenberg

 1

Table of Contents
INTRODUCTION .. 2

LITERATURE REVIEW ... 3

1.1 Semantic web .. 3

1.2 Controlled vocabulary ... 4

1.3 RDF ... 5

1.4 SKOS ... 5

1.5 Keyphrase Extraction Algorithm (KEA) ... 6

1.6 MAUI .. 10

ABOUT HIVE .. 12

RESEARCH OBJECTIVE ... 14

DESCRIPTION OF THE WORK .. 14

RESULT OF THE WORK ... 31

FUTURE STEPS OF THE STUDY ... 31

REFERENCES ... 33

 2

INTRODUCTION

 According to the EMC-sponsored IDC Digital Universe study, “Extracting Value

from Chaos” in 2001, the world’s information is more than doubling every two years,

with a colossal 1.8 zettabytes to be created and replicated in 2011, which is growing

faster than Moore’s Law. The high demand of information together with the information

explosion heightened the position of metadata. Today’s metadata activities are

unprecedented because they extend beyond the tradition library environment in an effort

to deal with the Web’s exponential growth (Greenberg, 2003).

Due to this information explosion, traditional ways of manual indexing and

metadata generation by professional indexers or authors are to be described as costly,

time-consuming, inefficient, and inconsistency. Furthermore, in today’s world, more and

more multidisciplinary digital information are generated, which makes manual metadata

generation and indexing even more difficult. Metadata generation is inefficient, with

automatic applications not being fully employed, and often the same metadata is being

generated via humans in more than one setting (Greenberg, 2009). The need for

developing the techniques to effectively automatically extract keywords and generate

metadata across different discipline is increasing rapidly.

This study includes a literature review introduced some key concepts and existing

researches on automatic metadata generation. Following that is an introduction about a

 3

system called “Helping Interdisciplinary Vocabulary Engineer” or “HIVE”, which

supports automatic metadata generation by drawing descriptors from multiple Simple

Knowledge Organization System (SKOS) encoded controlled vocabularies, and also

provide a step-by-step process of how to add new vocabulary into the HIVE demo hosted

on RENCI.org. The study concludes by showing the result of the step-by-step process

and addressing further steps of the HIVE project.

LITERATURE REVIEW

1.1 Semantic web

In addition to the classic “Web of documents” W3C is helping to build a technology

stacks to support a “Web of data”. The ultimate goal of the “Web of data” is to enable

computers to do more useful work and to develop systems that can support trusted

interactions over the network. The term “Semantic Web” refers to W3C’s vision of the

Web of linked data. Semantic Web technologies enable people to create data stores on the

Web, build vocabularies, and write rules for handling data. Linked data are empowered

by technologies such as RDF, SPARQL, OWL, and SKOS.

According to W3C, the Semantic Web is a Web of data — of dates and titles and part

numbers and chemical properties and any other data one might conceive of. The

collection of Semantic Web Technologies includes Resource Description Framework

(RDF), Web Ontology Language (OWL), Simple Knowledge Organization System

(SKOS), SPARQL Protocol and RDF Query Language (SPARQL), etc. provides an

environment where application can query that data, draw interfaces using vocabularies,

etc. (W3C Standards)

 4

The Semantic Web Stack below illustrates the architecture of the Semantic Web.

Figure 1 Semantic Web Stack (from semanticweb.org)

1.2 Controlled vocabulary

According to Sarah, Campbell and Beetham (2005), a controlled vocabulary is a

vocabulary consisting of a “prescribed list of terms or headings each one having an

assigned meaning”. The way a controlled vocabulary defines the relationships between

these terms or headings will vary in degree of complexity according to the purpose of the

vocabulary, from simple alphabetically arranged flat lists to ontologies with richly

defined relationships.

One example of controlled vocabularies is MeSH which stands for Medical Subject

Headings. It was created by the National Library of Medicine to index biomedical

 5

journals and books. There are about 25,000 subject headings arranged in a hierarchy. And

a heading can appear in multiple locations in the hierarchy.

1.3 RDF

According to W3C, Resource Description Framework (RDF) is a standard model for

data interchange on the web. RDF has features that facilitate data merging even if the

underlying schemas differ, and it specifically supports the evolution of schemas over time

without requiring all the data consumers to be changed. RDF extends the linking structure

of the Web to use URIs to name the relationship between things as well as the two ends

of the link (this is usually referred to as a “triple”). Using this simple model, it allows

structured and semi-structured data to be mixed, exposed, and shared across different

applications (W3C, 2014-02-25).

RDF is not designed for being displayed to people, instead, it is designed to be read

and understood by computers. RDF documents are written in Extensive Makeup

Language (XML), and the XML language used by RDF is called RDF/XML. By using

XML, RDF information can easily be exchanged between various types of computers

using different operating systems and application languages.

1.4 SKOS

SKOS, Simple Knowledge Organization System, is a formal language for representing

a controlled structured vocabulary. By “controlled structured vocabulary” we mean to

include (Miles & Pérez-Agüera, 2009):

 6

• Thesauri broadly conforming to the ISO 2788:1986 guidelines such as the UK

Archival Thesaurus (UKAT, 2004), the General Multilingual Environmental Thesaurus

(GEMET), and the Art and Architecture Thesaurus (AAT) (ISO 5964:1985).

• Classification schemes such as the Dewey Decimal Classification (DDC), the

Universal Decimal Classification (UDC), and the Bliss Classification (BC2).

• Subject heading systems such as the Library of Congress Subject Headings (LCSH)

and the Medical Subject Headings (MeSH).

Those “controlled structured vocabularies” share a similar structure, and are used in

similar applications. SKOS captures much of this similarity and makes it explicit, to

enable data and technology sharing across diverse applications. The SKOS data model

provides a standard, low-cost migration path for porting existing knowledge organization

systems to the Semantic Web. SKOS also provides a lightweight, intuitive language for

developing and sharing new knowledge organization systems. It may be used on its own,

or in combination with formal knowledge representation languages such as the Web

Ontology language (Miles & Bechhofer, 2009).

SKOS uses RDF to represent knowledge. By using it, the information can be passed

between computer applications in an interoperable way. Using RDF also allows

knowledge organization systems to be used in distributed, decentralized metadata

applications. Decentralized metadata is becoming a typical scenario, where service

providers want to add value to metadata harvested from multiple sources (W3C, 2012).

1.5 Keyphrase Extraction Algorithm (KEA)

Keyphrases are widely used in both physical and digital libraries as a brief, but

precise, summary of documents (Medelyan & H.Witten, 2007). They describe the content

 7

of single document and provide a kind of semantic metadata that is useful for a wide

variety of purpose. The task of assigning keyphrases to a document is called keyphrase

indexing. Keyphrase Extraction Algorithm (KEA) is an algorithm for extracting

keyphrases from text documents. It can be either used for free indexing or for indexing

with a controlled vocabulary. It is implemented in Java and is platform independent. It is

an open-source software developed by University of Waikato at New Zealand and

distributed under the GNU general Public License.

Figure 2 KEA method diagram (from http://www.nzdl.org/Kea/description.html)

KEA identifies candidate keyphrases using lexical methods, calculates feature values

for each candidate, and use a machine-learning algorithm to predict which candidates are

good keyphrases (Witten, Paynter, Frank, Guitwin and Newill-Maning, 1999).

Basically, KEA’s indexing algorithm has two stages (Medelyan & H.Witten, 2007):

1. Candidate identification: identifies candidate terms that related to the document’s

content, including ones that appear verbatim as phrase in the document.

http://www.nzdl.org/Kea/description.html

 8

2. Keyphrase selection: uses a model to identify the most significant terms based on

certain properties or “features”. This involves first learning a model based on

training data, and then applying it to test documents.

As Figure 2 shows, first, KEA gets a directory name and processes all documents in

this directory that have the extension “.txt”. The default language and the encoding is set

to English, but this can be changed as long as a corresponding stopword file and a

stemmer is provided.

Second, if a vocabulary is provided, Kea matches the documents’ phrases against this

file. For processing SKOS files stored as RDF file, KEA uses the Jena API, which is a

free and open source Java framework for building Semantic Web and Linked Data

applications.

Then KEA starts the Candidates Extracting process. It first cleans the input text, then

identifies candidates, and finally stems and case-folds the phrases.

Input Cleaning

 Modifications made here include:

 Punctuation marks, brackets, and numbers are replaced by phrase boundaries;

 Apostrophes are removed;

 Hyphenated words are split in two;

 Remaining non-token characters are deleted, as are nay tokens that do not

contain letters

The result is a set of lines, each a sequence of tokens containing at least one letter.

Candidates identification

 9

Here KEA extracts n-grams of a predefined length (e.g. 1 to 3 words) that do not

start or end with a stopword. In controlled indexing, it only collects those n-grams that

match thesaurus terms. If the thesaurus defines relations between non-allowed terms

(non-descriptors) and allowed terms (descriptors), it replaces each descriptor by an

equivalent non-descriptor.

Stemming and case-folding

The final step in determining candidate phrases is to casefold all words and stem

them using the iterated Lovins method. This involves using the classic Lovins stemmer to

discard any suffix, and repeating the process on the stem that remains until there is no

further change.

After extracting candidates, KEA starts to calculate four features for each candidate

phrase. The features are:

 TF-IDF (Term Frequency – Inverse Document Frequency) is a measure

describing the specificity of a term for this document under consideration,

compared to all other documents in the corpus, candidate phrases that have high

TF*IDF value are more likely to be keyphrases.

 First occurrence is computed as the percentage of the document preceding the

first occurrence of the term in the document. Terms that tend to appear at the

start or at the end of a document are more likely to be keyphrases.

 Length of a phrase is the number of its component words. Two-word phrases are

usually preferred by human indexers.

 10

 Node degree of a candidate phrase is the number of phrases in the candidate set

that are semantically related to this phrase. This is computed with the help of the

thesaurus. Phrases with high degree are more likely to be keyphrases.

After features calculation, KEA starts to build the model. It needs to create a model

that learns the extraction strategy from manually indexed documents. This means, for

each document in the input directory there must be a file with the extension ".key" and

the same name as the corresponding document. This file should contain manually

assigned keyphrases, one per line.

Given the list of the candidate phrases, Kea marks those that were manually assigned

as positive example and all the rest as negative examples. By analyzing the feature values

for positive and negative candidate phrases, a model is computed, which reflects the

distribution of feature values for each phrase. The technique KEA uses here is Naïve

Bayes.

When the model was built, KEA can start to extract keyphrases from a new

document. KEA determines candidate phrases and feature values, and then applies the

model build during training. The model determines the overall probability that each

candidate is a keyphrase, and then a post-processing operation selects the best set of

keyphrases (Witten, Paynter, Frank, Guitwin and Newill-Maning, 1999).

1.6 MAUI

Another algorithm for topic indexing is called MAUI (Multi-purpose automatic topic

indexing) which can be used for the same tasks as KEA, but offers additional features.

Tasks MAUI performs include the following:

 Term assignment with a controlled vocabulary (or thesaurus)

 11

 Subject indexing

 Topic indexing with terms from Wikipedia

 Keyphrases extraction

 Terminology extraction

 Automatic tagging

 Semi-automatic topic indexing

According to MAUI’s wiki site, MAUI implements a two-stage algorithm for

performing its tasks automatically. The first stage is called “candidate generation” which

identifies candidate topics in a given document. The second stage is called “filtering”,

which analyzes the features of the candidate topics and filters out the most significant

ones. Features MAUI utilizes are:

 Frequency statistics, such as TF, IDF, TF*IDF;

 Occurrence positions in the document;

 Keyphrasesness;

 Semantic relatedness;

All these make MAUI very similar with KEA. Actually, MAUI builds on KEA.

Major parts of KEA become parts of MAUI without any further modifications. Other

parts, such as feature computation, were extended with new elements.

Besides KEA, there are some other software inside MAUI. MAUI uses the machine

learning toolkit Weka for creating the topic indexing model from documents with topics

assigned by people and applying to new documents. MAUI also uses Jena library to make

it applicable for topic indexing with many kinds of controlled vocabularies. In order to

access data on Wikipedia, MAUI utilized Wikipedia miner which converts regular

 12

Wikipedia dumps into MySQL database format and provides an object-oriented access to

parts of Wikipedia.

ABOUT HIVE

Imagine we have some research data about how the solar variation influences the

production of corn in different geographic regions, and we need to create metadata or

indexing terms for this research data. Obviously, the data are interdisciplinary, covering

astronomy, agriculture, biology, geography and environmental science. So, in order to

index it, we need to draw standard indexing vocabularies from every discipline the data

cover. The challenge here is, even though specialized vocabularies covering these fields

are available on the Web, it is very time consuming and costly to search every vocabulary

individually and finally generate the best indexing term.

This challenge simulates the advent of HIVE, which stands for Helping

Interdisciplinary Vocabulary Engineering. HIVE is both a model and a system that

supports automatic metadata generation by drawing descriptors from multiple Simple

Knowledge Organization System (SKOS)-encoded controlled vocabularies (Greenberg,

Losee, Perez Aguera, Scherle, White and Willis, 2011). HIVE allows a person to

simultaneously search multiple vocabularies cross different disciplines. The project is led

by a research team at the University of North Carolina at Chapel Hill’s School of

Information and Library Science (SILS) Metadata Research Center (MRC), in

collaboration with the National Evolution Synthesis Center (NESCent) in Durham, N.C.

The project is funded by the Institute of Museum and Library Services.

HIVE implements the technological infrastructure to store millions of concepts from

different vocabularies and make them available on the web by a simple HTTP call.

 13

Vocabularies can be imported in HIVE using SKOS RDF/XML format (Greenberg,

Losee, Perez Aguera, Scherle, White and Willis, 2011).

 HIVE features can be used in three ways:

 HIVE Web: Google Web Toolkit (GWT)-based web application

 Core API: Java SE API for programmatic access

 REST Service: Representational State Transfer (REST)-Based service for

programmatic access

HIVE support the following functions:

 Conversion of various vocabularies to SKOS

 Browsing and searching SKOS vocabularies (Concept Browser)

 Automatic controlled indexing using KEA++, MAUI, and simple Lucene-based

indexers.

Figure 3 The HIVE model (from http://sils.unc.edu/news/2011/hive)

The HIVE model above well illustrates how HIVE works. First, HIVE need to accept

requests from clients. After get clients’ requests, the HIVE vocabulary server will go to

different existing vocabularies to draw appropriate terms back to the HIVE. Then, HIVE

http://sils.unc.edu/news/2011/hive

 14

will transfer the well-formatted result to the client side. It is like bees gathering pollen

from several flowers and bring it back to the hive. After some process, the hive finally

returns honey to us.

RESEARCH OBJECTIVE

The research objectives for this study include:

1. To study and learn the process of preparing terminologies in SKOS for integration

into HIVE.

2. To learn about the scope and extent of ontologies and the semantic web.

3. Develop a step-by-step process of loading new vocabularies into HIVE.

DESCRIPTION OF THE WORK

The HIVE demo this study worked on is hosted on Renaissance Computing

Institute (RENCI)’s server. This demo can be accessed using any web browsers at

http://hive.renci.org:8080/home.html.

The “Home” tab tells users some general information about the vocabularies

exists in the demo, such as vocabulary name, number of concepts, number of

relationships, and last update time. “Concept Browser” allows us to browse the terms in

each vocabulary. Users can choose to view each term in SKOS format also. “Indexing”

tab provides the function to automatically extract concepts from a document or URL

based on selected vocabularies. The result will be concepts from the vocabulary source

we selected.

http://hive.renci.org:8080/home.html

 15

Figure 4 HIVE.RENCI demo

Figure 5 Concept Browser

 16

Figure 6 View concepts in SKOS

Figure 7 Indexing Tab

 17

Figure 8 Indexing result (From NESCent HIVE Demo)

Before adding new vocabulary into it, there are already four vocabularies there. We

are going to load another one into the server. The new vocabulary we are going to load is

called “STW Thesaurus for Economics”, which contains terms on any economics subject.

It has more than 6,000 standardized subject headings and about 19,000 entry terms to

support individual keywords.

In order to load new vocabularies into the demo, we use SSH Secure Shell Client to

connect to the server and finish our job. Secure Shell is a cryptographic network protocol

for secure data communication, remote command execution, and other secure network

services.

After click the “Connect” button in SSH, a window will pop up asking for

connection information. Fill in those fields with the information below and replace my

username with yours.

 18

Figure 9 Connect to Remote Host Window

After correctly entering password, we are now on the server side of the

HIVE.RENCI demo. “whoami” command will return our username to tell us who we

currently login as.

The first step we should do is to stop the Tomcat server. This step is very important,

we must stop Tomcat before running AminVocabularies tool. Otherwise, we will got an

error when running the tool. We will introduce AdminVocabularies tool later. The

command to stop Tomcat is “sudo service tomcat6 stop”. “sudo” stands for

“super user do”. It will promotes you for your personal passwords and confirms your

request to execute a command. When entering our password, we will not see any “•” or

“*” like normal password text field. Just type in our password and press “Enter”. In the

console, it will look like this:

[username@hive ~]$ sudo service tomcat6 stop

[sudo] password for username:

Stopping tomcat6:

[OK]

[username@hive ~]$

 19

After we got “[OK]”, we can refresh the tab of HIVE.RENCI demo in our

browser. The browser will tell us it failed to connect to the URL, which means we

successfully stopped Tomcat.

For the rest of the task, we must work as the Tomcat user instead of ourselves. Type

“sudo –u /bin/bash” in SSH. This command will create a bash shell for the tomcat

user. Also, it will promotes your for your password. After entering the password, if we

type in “whoami”, the system will tell us we are “tomcat” instead of ourselves. The

command and result will be:

Next, we should import RDF file which contains our new vocabulary into the right

directory.

First, using “cd” command to change current directory to where hive data are. In this

demo, all RDF files are under “/opt/hiveData/” folder. So we use “cd

/opt/hiveData” to navigate to this directory. “ls” command will tell us what

documents or directories are in our current directory. Currently, we have four folders

“agrovoc”, “lcsh”, “mesh”, and “uat” correspond to four vocabularies already exist in the

demo. Like those four vocabularies, the new vocabulary should has its own directory also.

The “mkdir stw” command will create a new directory called “stw” for our new

vocabulary. After that, we can “cd” to “stw” folder. “pwd” command will return the

“present working directory” for us. The commands and results will be similar to:

[username@hive ~]$ sudo -u tomcat /bin/bash

[sudo] password for username:

bash-4.1$ whoami

tomcat

 20

Then, we should import the new RDF file into “present working directory”. The

command we use here is “wget”. Simply add the URL of the RDF file after “wget”

command, the server will copy the file into current directory. If the vocabulary is in

another format, it must be converted into SKOS before importing.

bash-4.1$ pwd

/home/username

bash-4.1$ cd /opt/hiveData/

bash-4.1$ ls

agrovoc mesh uat

lcsh

bash-4.1$ mkdir stw

bash-4.1$ ls

agrovoc mesh stw

lcsh uat

bash-4.1$ cd stw

bash-4.1$ pwd

/opt/hiveData/stw

bash-4.1$ wget

http://urlofvocabulary.com/vocabulary/stw.rdf

--2014-03-25 00:14:22--

http://urlofvocabulary.com/vocabulary/stw.rdf

Resolving urlofvocabulary.com... 192.168.210.100

Connecting to urlofvocabulary.com |192.168.210.100|:80...

connected.

HTTP request sent, awaiting response... 200 OK

Length: 15210220 (15M) [application/rdf+xml]

Saving to: stw.rdf?

100%[======================================>] 15,210,220

51.3M/s in 0.3s

2014-03-25 00:14:22 (51.3 MB/s) - stw.rdf saved

[15210220/15210220]

bash-4.1$ ls

stw.rdf

 21

Now, we have imported the RDF data file into the server space, but did not add it

into the demo yet. The next step should be modify the default HIVE configuration and

create configuration file for the new vocabulary. If we want to have KEA or MAUI

indexing, we need create another directory called “stwKEA” under “stw”. Within

“stwKEA”, there should be a “train” and a “test” directory containing a group of “.txt”

and “.key” files which are used to train and test the algorithm. Another “data” directory

should contain a list of stopwords. We can “cd” to “agrovoc” folder to see what those

data look like. Currently, HIVE is transferring from KEA to MAUI and the process is not

finished yet, and we do not have any training and testing data for the “stw” vocabulary,

so there is no “stwKEA” directory here. Once we finished the transferring process and

have the training and testing data, we can go through this process again to make the

indexing work.

All configuration files are located in another directory so we should “cd” to there

first. Type in “cd /usr/share/tomcat6/webapps/ROOT/WEB-INF/conf” to

navigate to configuring files directory.

In this directory, we have a default HIVE configuration file called

“hive.properties” and one “<vocabularyname>.properties” file for each vocabulary.

bash-4.1$ cd /usr/share/tomcat6/webapps/ROOT/WEB-INF/conf

bash-4.1$ ls

agrovoc.properties lcsh.properties

lter.properties tgn.properties

hive.properties mesh.properties uat.properties

itis.properties nbii.properties

 22

Type “vi hive.properties” to open “hive.properties” file in “vi editor”. The

file contains the name of the vocabularies the demo will load.

Any text after “#” will be regarded as comment and ignored when running this file.

So, if we do not want to load a certain vocabulary, we can add a “#” at the beginning of

its hive.vocabulary text line. For here, in order to let the system know we want to load

“stw” vocabulary. We just need to add “hive.vocabulary = stw” into the file.

After down with editing, press “Esc” button and then type “:wq” to save and quit editing.

We’d better use “vi <filename>” command to open it again to make sure the change

has been successfully saved. The “:q!” will exit the “vi editor” without saving any

changes.

The “hive.properties” file is used by SKOSServer identify which vocabularies will

be opened. When the system is running, HIVE will first read “hive.properties” file to

bash-4.1$ vi hive.properties

Configured vocabularies

hive.vocabulary = agrovoc

hive.vocabulary = uat

#hive.vocabulary = itis

hive.vocabulary = lcsh

#hive.vocabulary = nbii

#hive.vocabulary = tgn

hive.vocabulary = mesh

hive.vocabulary = stw

Path to location of scheme properties files. If not

set, defaults

to the current path (where this properties file is

stored)

hive.schemePath =

Selected tagger. Possible values "kea" and "dummy"

#hive.tagger = kea

hive.tagger = maui

~

~

 23

know what vocabulary it needs to load. Then, HIVE will read the configuration file for

these vocabularies in the same directory as “hive.properties” file. So, we need to

manually create a configuration file for the vocabulary with the paths to the files and

indexes that will be generated by the HIVE import tools. The name of the configuration

file for the vocabulary should be “<vocabulary name>.properties”.

Each configuration file must follow the format:

 24

#Vocabulary data

name = <vocabulary name>

longName = <long vocabulary name>

uri = <url of the rdf file>

rdf_file = /opt/hiveData/<vocabulary name>/<vocabulary

name>.rdf

stemmerClass = kea.stemmers.PorterStemmer

#Sesame Store

store = /opt/hiveData/<vocabulary name>/<vocabulary

name>Store

#Lucene Inverted index

index = /opt/hiveData/<vocabulary name>/<vocabulary

name>Index

#H2 index

h2 = /opt/hiveData/<vocabulary name>/<vocabulary name>H2

#Autocomplete path

autocomplete = /opt/hiveData/<vocabulary

name>/autocomplete

#Dummy tagger data files

lingpipe_model =

/opt/hiveData/lingpipe/postagger/models/medtagModel

#KEA data

stopwords = /opt/hiveData/<vocabulary name>/<vocabulary

name>KEA/data/stopwords/stopwords_en.txt

kea_training_set = /opt/hiveData/<vocabulary

name>/<vocabulary name>KEA/train

kea_test_set = /opt/hiveDat/<vocabulary name>/<vocabulary

name>KEA/test

kea_model = /opt/hiveData/<vocabulary name>/<vocabulary

name>KEA/<vocabulary name>

maui_model = /opt/hiveData/<vocabulary name>/<vocabulary

name>KEA/maui

~

~

~

 25

We can use “nano editor” to create the file and type in those texts. We just need to

replace “<vocabulary name>” with “stw” and save this file. Or, if there already exists

some configuration files for other vocabularies, we can take a shortcut by simply copy an

existing file and modify it in “vi editor”. The command to copy a file is “cp <source

filename> <target filename>”.

“Sesame Store”, “Lucene Inverted Index”, “H2 index”, and “Autocomplete path”

indicate the path of those databases if we choose to create them when running the

“AdminVocabularies” tool later.

“KEA data” indicates the location of “stopwords”, “kea training set”, “kea test set”,

“kea model”, and “maui model”. Those information will be very important if we need to

get the KEA or MAUI indexing working. Even if those directories does not exist now, we

do not need to comment those lines out. Actually, if we comment them out, we will get

an error when running “AdminVocabularies” tool. So, keep those lines, the system will

skip those steps if they cannot find directories.

This is a relatively long file, so double check to make sure there is no typos before

save and exit. If there is something wrong here when running the tool, we have to clean

all files created by “AdminVocabularies” under “/opt/hiveData/stw” directory and run the

tool again.

Now we successfully imported the RDF/SKOS file of our new vocabulary, modified

“hive.properties” and created “stw.properties”. The next big step is to run the

“AdminVocabularies” tool. The tool can run correctly only when Tomcat is shut down,

that is why we use “sudo service tomcat6 stop” to stop Tomcat. Actually, we

can import RDF/SKOS files, modify and create configuration files while Tomcat is

 26

running, but we can only stop Tomcat service when we login as ourselves. We cannot

stop it if we were Tomcat user. So, if we stopped Tomcat service at the very beginning

before running “sudo –u tomcat /bin/bash” command, we do not need to log

out Tomcat user to stop Tomcat and re-login again.

“AdminVaocabularies” takes three parameters:

1. Path to configuration directory

2. Name of the vocabulary

3. Active training option for KEA algorithm (optional, if we do not train our system,

we cannot use automatic indexing classes)

The template of the command line to run “AdminVocabularies” is

Flags:

For our demo, “<path to HIVE lib dir>” should be replaced with

“/usr/share/tomcat6/webapps/ROOT/WEB-INF/lib ”, “<path to directory with

java -Djava.ext.dirs=<path to HIVE lib dir>

edu.unc.ils.mrc.hive.admin.AdminVocabularies -c <path to

directory with hive.properties> -v <vocabulary name> [-a

| -sldktmx]

 -c <path> Path to directory that contains

hive.properties

 -v <name> Name of vocabulary to be initialized (e.g.,

agrovoc)

 -s Initialize Sesame index

 -l Initialize Lucene index

 -d Initialize H2 database

 -k Initialize KEA database

 -t Train KEA

 -m Train Maui

 -x Initialize autocomplete

 -a Initialize everything (equivalent of -sldktmxa)

 27

hive.properties>” should be “/usr/share/tomcat6/webapps/ROOT/WEB-INF/conf”,

“<vocabulary name>” is “stw”. For other flaggers, since we do not have training and

testing data for KEA or MAUI, we can just initialize “autocomplete”, “Lucene index”,

“Sesame index”, and “H2 database”. We can add more if we need. So, in this case, the

command we will run is:

Before running this command, we must make sure we are currently in the right

directory. This command can only run in the same directory as “perfStaes.log” and “hive-

core.log” files. When running the tool, system will need these two .log file. If they are not

in currently directory, the system will try to copy them and get a “permission denied”.

Both files are under “/usr/share/tomcat6/ROOT/WEB-INF/”, one level higher than

configuration files. Thus, we need “cd” to this directory and then run the

“AdminVocabularies” command. The command lined and result will be:

java -Djava.ext.dirs=/usr/share/tomcat6/webapps/ROOT/WEB-

INF/lib edu.unc.ils.mrc.hive.admin.AdminVocabularies -

c /usr/share/tomcat6/webapps/ROOT/WEB-INF/conf -v stw -x

-l -s -d

bash-4.1$ cd /usr/share/tomcat6/ROOT/WEB-INF/

bash-4.1$ ls

classes hive-core.log.2013-05-22 lib

conf hive-core.log.2014-02-10

perfStats.log

deploy hive-core.log.2014-02-11

perfStats.log.2013-05-21

hive-core.log hive-core.log.2014-02-17 tmp

hive-core.log.2013-05-21 hive-core.log.2014-02-19

web.xml

bash-4.1$ java -

Djava.ext.dirs=/usr/share/tomcat6/webapps/ROOT/WEB-

INF/lib edu.unc.ils.mrc.hive.admin.AdminVocabularies -c

/usr/share/tomcat6/webapps/ROOT/WEB-I

NF/conf -v stw -x -l -s -d

 28

3/29|00:24:38 INFO

[edu.unc.ils.mrc.hive.admin.AdminVocabularies] - Starting

import of vocabulary stw

3/29|00:24:38 INFO

[edu.unc.ils.mrc.hive.api.impl.elmo.SKOSSchemeImpl] -

Loading vocabulary configuration from

/usr/share/tomcat6/webapps/ROOT/WEB-

INF/conf/stw.properties

3/29|00:24:38 WARN

[edu.unc.ils.mrc.hive.api.impl.elmo.SKOSSchemeImpl] -

Missing or invalid creationDate

3/29|00:24:38 WARN

[edu.unc.ils.mrc.hive.api.impl.elmo.SKOSSchemeImpl] -

atomFeedURL property is empty

Using kea stemmer l

Using maui stemmer maui.stemmers.PorterStemmer

3/29|00:24:40 INFO

[edu.unc.ils.mrc.hive2.api.impl.HiveVocabularyImpl] -

importConcepts /opt/hiveData/stw/stw.rdf

3/29|00:24:40 INFO

[edu.unc.ils.mrc.hive2.api.impl.HiveVocabularyImpl] -

Importing /opt/hiveData/stw/stw.rdf to Sesame store

3/29|00:24:47 INFO

[edu.unc.ils.mrc.hive2.api.impl.HiveVocabularyImpl] -

Import to Sesame store complete

3/29|00:24:47 INFO

[edu.unc.ils.mrc.hive2.api.impl.HiveVocabularyImpl] -

Initializing Lucene index

3/29|00:24:47 INFO

[edu.unc.ils.mrc.hive2.api.impl.HiveVocabularyImpl] -

Initializing H2 index

Mar 29, 2014 12:24:47 AM

org.openrdf.elmo.rolemapper.SimpleRoleMapper unregistered

WARNING: Unregistered type http://zbw.eu/namespaces/zbw-

extensions/Thsys

Mar 29, 2014 12:24:48 AM

org.openrdf.elmo.rolemapper.SimpleRoleMapper unregistered

WARNING: Unregistered type

3/29|00:24:40 INFO

[edu.unc.ils.mrc.hive2.api.impl.HiveVocabularyImpl] -

importConcepts /opt/hiveData/stw/stw.rdf

 29

As we can see from the result, since we do not have KEA and MAUI flaggers in

the command, the tool skipped KEA and MAUI training. The time HIVE spends to run

this “AdminVocabularies” tool mostly based on the size of the RDF/SKOS file. “stw.rdf”

is about 15MB, and it took around 20 seconds to run. Some large vocabulary such as

3/29|00:24:40 INFO

[edu.unc.ils.mrc.hive2.api.impl.HiveVocabularyImpl] -

Importing /opt/hiveData/stw/stw.rdf to Sesame store

3/29|00:24:47 INFO

[edu.unc.ils.mrc.hive2.api.impl.HiveVocabularyImpl] -

Import to Sesame store complete

3/29|00:24:47 INFO

[edu.unc.ils.mrc.hive2.api.impl.HiveVocabularyImpl] -

Initializing Lucene index

3/29|00:24:47 INFO

[edu.unc.ils.mrc.hive2.api.impl.HiveVocabularyImpl] -

Initializing H2 index

Mar 29, 2014 12:24:47 AM

org.openrdf.elmo.rolemapper.SimpleRoleMapper unregistered

WARNING: Unregistered type http://zbw.eu/namespaces/zbw-

extensions/Thsys

Mar 29, 2014 12:24:48 AM

org.openrdf.elmo.rolemapper.SimpleRoleMapper unregistered

WARNING: Unregistered type http://zbw.eu/namespaces/zbw-

extensions/Descriptor

3/29|00:24:56 INFO

[edu.unc.ils.mrc.hive2.api.impl.HiveVocabularyImpl] -

Initializing autocomplete index

3/29|00:24:58 INFO

[edu.unc.ils.mrc.hive2.api.impl.HiveVocabularyImpl] -

Autocomplete index initialization complete

3/29|00:24:58 INFO

[edu.unc.ils.mrc.hive.admin.AdminVocabularies] - Skipping

KEA H2 initialization

3/29|00:24:58 INFO

[edu.unc.ils.mrc.hive.admin.AdminVocabularies] - Skipping

KEA training

3/29|00:24:58 INFO

[edu.unc.ils.mrc.hive.admin.AdminVocabularies] - Skipping

Maui training

bash-4.1$

 30

Library of Congress Subject Headings (LCSH) is about 300MB, which will take more

than 5 minutes to finish the process. So, be patient if it looks like the system is not

responding. Once we saw “bash-4.1$”, that means HIVE has finished running

“AdminVocabularies” tool.

If we “cd” to “/opt/hiveData/stw” we will see the directories and files the tool just

created.

Now the new vocabulary has been added into the HIVE.RENCI demo, in order to

make it available to the public we need to start Tomcat service.

bash-4.1$ cd /opt/hiveData/

bash-4.1$ ls

agrovoc hive-core.log mesh

stw

hive-agrovoc-sample-2.1.tar.gz lcsh

perfStats.log uat

bash-4.1$ cd stw/

bash-4.1$ ls

autocomplete stwH2 stwIndex stw.rdf stwStore

bash-4.1$ cd stwH2/

bash-4.1$ ls

stw.h2.db stw.lock.db

bash-4.1$ cd ..

bash-4.1$ cd stwIndex/

bash-4.1$ ls

_0.cfs segments_2 segments.gen write.lock

bash-4.1$ exit

exit

[username@hive ~]$ whoami

username

[username@hive ~]$ sudo service tomcat6 start

 [sudo] password for username:

Starting tomcat6:

[OK]

 31

RESULT OF THE WORK

After that, we can refresh the tab of the demo in the web browser to see the result. It

will take several seconds for the server to response after loading a new vocabulary.

Figure 10 HIVE.RENCI demo with newly added STW vocabulary

We can see “STW” vocabulary is in the demo with 6,334 Concepts and 45,824

Relationships.

FUTURE STEPS OF THE STUDY

As mentioned earlier, HIVE is transferring its keywords extraction algorithm

from KEA to MAUI that is why we did not include KEA or MAUI flaggers when

running the “AdminVocabularies” tool. So the first big step the project should take is to

finish the transferring process. After it is finished and training and testing dataset are

 32

ready for each vocabulary, we re-run the “AdminVobucabularies” command to make

indexing work with MAUI

Another step is try to develop the function to automatically update existing

vocabularies to the latest version. For now, every time a new version of any existing

vocabularies is published, we have to use “wget” command to manually copy the new

RDF/SKOS file into HIVE, and also manually re-run the “AdminVocabularies” tool. So,

in the future, the function should be developed to let HIVE automatically detect

vocabulary update, copy it into server and run the “AdminVocabularies” tool.

 33

REFERENCES

Greenberg, J. “Metadata and the World Wide Web”, The Encyclopedia of Library and

Information Science, Vol.72, 224-261, Marcel Dekker, New York, 2003.

Greenberg, J. (2009). Theoretical considerations of lifecycle modeling: An analysis of the

Dryad repository demonstrating automatic metadata propagation, inheritance, and value

system adoption. Cataloging and Classification Quarterly, 47(3–4), 380–402.

Greenberg, J., Losee, R., Pérez Agüera, J., Scherle, R., White, H., & Willis, C. (2011).

Hive: Helping interdisciplinary vocabulary engineering. Bulletin of the American Society

for Information Science and Technology, 37(4).

Medelyan, O., & H.Witten, I. (2008). Domain-independent automatic keyphrase indexing

with small training sets. Journal of the American Society for Information Science and

Technology, 59(7), 1026-1040. doi: 10.1002/asi.20790

H. Witten, I., W.Paynter, G., Frank, E., Gutwin, C., & G.Nevill-Manning, C. (1999). Kea:

Practical automatic keyphrase extraction. Proceedings of the fourth ACM conference on

Digital libraries, 254-255.

Miles, A & Pérez-Agüera, J (2007) SKOS: Simple Knowledge Organisation for the Web,

Cataloging & Classification Quarterly, 43:3-4, 69-83, DOI: 10.1300/J104v43n03_04

Semantic web-w3c. (n.d.). Retrieved March 23, 2014 from

http://www.w3.org/standards/semanticweb/

Currier Sarah, Lorna M. Campbell, Helen Beetham (2005). Pedagogical Vocabularies

Review, JISC Pedagogical Vocabularies Project, Final Draft, 23rd December 2005, From

http://www.jisc.ac.uk/whatwedo/programmes/elearningpedagogy/vocabularies.aspx

Harpring, P. (2010). Introduction to controlled vocabularies: Terminology for art,

architecture, and other cultural works. (1st ed.). Los Angeles: the Getty Research

Institute. Retrieved from

http://www.getty.edu/research/publications/electronic_publications/intro_controlled_voca

b/

RDF Working Group. (2014, 02 25). Resource description framework (rdf). Retrieved

March 24, 2014 from http://www.w3.org/RDF/

http://www.w3.org/standards/semanticweb/
http://www.jisc.ac.uk/whatwedo/programmes/elearningpedagogy/vocabularies.aspx
http://www.getty.edu/research/publications/electronic_publications/intro_controlled_vocab/
http://www.getty.edu/research/publications/electronic_publications/intro_controlled_vocab/
http://www.w3.org/RDF/

 34

Miles, A., & Bechhofer, S. (2009, August 18). Skos simple knowledge organization

system reference. Retrieved from http://www.w3.org/TR/skos-reference/

SKOS: Simple Knowledge organization for the web. (2012/01/01.). Retrieved March 24,

2014, from website: http://www.w3.org/2004/02/skos/intro

KEA: Keyphrase Extraction Algorithm. (n.d.).Retrieved March 24, 2014, from website:

http://www.nzdl.org/Kea/description.html

Details about topic indexing with Maui. (2009/07/27).Retrieved March 25, 2014 from

website: https://code.google.com/p/maui-indexer/wiki/InsideMaui

http://www.w3.org/TR/skos-reference/
http://www.w3.org/2004/02/skos/intro
http://www.nzdl.org/Kea/description.html
https://code.google.com/p/maui-indexer/wiki/InsideMaui

