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Background—Consistent evidence of an influence of maternal dietary intake during pregnancy 

on infant body size and composition in human populations is lacking, despite robust evidence in 

animal models.

Objective—To evaluate the influence of maternal macronutrient intake and balance during 

pregnancy on neonatal body size and composition, including fat mass and fat free mass.

Study Design—The analysis was conducted among 1040 mother-offspring pairs enrolled in the 

prospective pre-birth observational cohort: The Healthy Start Study. Diet during pregnancy was 

collected using repeated 24 hour dietary recalls (up to 8). Direct measures of body composition 

were obtained using air displacement plethysmography. The National Cancer Institute 

measurement error model was used to estimate usual dietary intake during pregnancy. 

Multivariable partition (non-isocaloric) and nutrient density (isocaloric) linear regression models 

were used to test the associations between maternal dietary intake and neonatal body composition.

Results—The median macronutrient composition during pregnancy was 32.2% from fat, 15.0% 

from protein and 47.8% from carbohydrates. In the partition multivariate regression model, 

individual macronutrient intake values were not associated with birth weight or fat free mass, but 

were associated with fat mass. Respectively, 100 kilocalorie increases in total fat, saturated fat, 

unsaturated fat and total carbohydrates were associated with 4.2 gram (p=0.03), 11.1 gram 

(p=0.003), 5.9 gram (p=0.04) and 2.9 gram (p=0.02) increases in neonatal fat mass, independent of 

pre-pregnancy BMI. In the nutrient density multivariate regression model, macronutrient balance 

was not associated with fat mass, fat free mass or birth weight after adjustment for pre-pregnancy 

BMI.

Conclusions—Neonatal adiposity, but not birth weight, is independently associated with 

increased maternal intake of total fat, saturated fat, unsaturated fat, and total carbohydrates, but not 

protein, suggesting that most forms of increased caloric intake contribute to fetal fat accretion.

Keywords

birth weight; dietary intake; fetal growth; fetal programming; neonatal body composition; nutrition 
during pregnancy; saturated fat

Introduction

There is significant interest in the role of maternal dietary intake during pregnancy on 

offspring body size and composition. Epidemiologic studies have demonstrated that human 

fetal growth can be influenced by variations within the normal range of dietary intakes in 

high income counties 1. Animal studies have consistently demonstrated a relationship 

between prenatal intake of a high-fat diet and offspring adiposity and metabolic 

dysfunction 2. In rodent models, over-feeding of a high-fat or high-cholesterol diet during 

pregnancy and lactation results in an obese phenotype in the offspring that closely resembles 

human metabolic syndrome, including increased adiposity 3–6. Human studies are less 

conclusive7–12, and prone to substantial methodological limitations. Most studies of 

pregnant women have relied upon food frequency questionnaires7–12, prone to measurement 

error, which can result in a loss of statistical power to detect a true effect13. Inconsistencies 

in the findings from previous studies of the role of maternal dietary intake on offspring body 
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size at birth or composition may be explained, in part, by inadequate adjustment for 

measurement error associated with food frequency questionnaires when applying energy-

adjustment models14. Observational studies of pregnancy diet relying upon food frequency 

questionnaires suffer from residual confounding stemming from underreporting of intake 15, 

and systematic reporting bias related to the tendency for individuals with higher BMIs and 

higher habitual caloric intake to underreport intake.16–19. In addition, inconsistent results 

across studies may arise from the categorization of continuous dietary intake data into 

quartiles, expressing results as “the top versus bottom intake of the group” rather than “per 

unit intake” making comparisons across studies difficult. To address some of these 

limitations, we sought to characterize the relationship between maternal dietary intake 

during pregnancy using repeated 24-hour recalls collected via an automated multi-pass 

method 20 and direct measures of neonatal body composition in the Healthy Start pre-birth 

cohort Study. To expand comparability with other human studies, the relationship with 

neonatal outcomes was explored using two approaches: a partition model to assess the role 

of energy intake from specific macronutrients, and a nutrient density model to assess the role 

of macronutrient composition holding energy constant.

Materials and Methods

The Healthy Start Study recruited and enrolled 1410 pregnant women at ≤ 24 weeks 

gestation from prenatal obstetric clinics at the University of Colorado Hospital in Aurora, 

Colorado. A detailed description of the Healthy Start study methods has been published 

elsewhere 21. Briefly, pregnant women ages 16 and older who enrolled in the study were 

invited to participate in two research visits during their pregnancy, the first between 8 and 24 

weeks gestation (median gestational age = 17 weeks) and the second in mid/late pregnancy 

between 24 and 32 weeks gestation (median gestational age = 27 weeks). A third research 

visit was conducted in the hospital within 72 hours after delivery (median postnatal age = 

1.0 day) when offspring fat mass (FM) and fat free mass (FFM) were assessed using air 

displacement plethysmography (PEA POD) and anthropometric measures were obtained. 

All research measurements were obtained by trained research assistants and study nurses. 

The Healthy Start study protocol was approved by the Colorado Multiple Institutional 

Review Board and registered as an observational study at clinicaltrials.gov (NCT02273297).

Maternal measurements during pregnancy

At the two research visits during pregnancy, maternal height was measured with a 

stadiometer (Accustat, Ross Laboratories, Bardonia, New York) and weight measured with a 

calibrated scale (Tanita Corporation, Tokyo, Japan). Questionnaires were administered to 

assess demographic information and physical activity levels. Maternal pre-pregnancy BMI 

was calculated using maternal height measured at the first research visit and pre-pregnancy 

weight was obtained from medical records (83.7%) or self-reported at the first research visit 

(16.2%). Physical activity during pregnancy was measured using the Pregnancy Physical 

Activity Questionnaire 22 and metabolic equivalent (MET) values were estimated as 

described in detail in previous publications 23. Prenatal smoking was ascertained through 

interview-administered questionnaires at each research visit.
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Maternal diet during pregnancy

Diet during pregnancy was assessed with repeated 24 hour dietary recalls using the NCI 

Automated Self-Administered 24-hour Recall (ASA24) utilizing the Multipass Method 20. 

Participants completed up to 8 recalls (approximately one per month) beginning at their first 

study with 82% having at least 2 diet recalls. Data from the ASA24 were collected and 

processed by the Nutrition Obesity Research Center, University of North Carolina (UNC) at 

Chapel Hill. My Pyramid Food Equivalents (MPFE) and macro- and micronutrient 

components for each dietary recall were derived through the ASA24 system using nutrient 

values provided by the United States Department of Agriculture’s MPFE Database (Versions 

1.0 and 2.0) and the Food and Nutrient Database for Dietary Studies (Versions 1.0 and 4.1).

Dietary data

The National Cancer Institute’s (NCI) measurement error model was used to estimate usual 

dietary intake during pregnancy from the repeated ASA24 hour dietary recalls 24–26. The 

NCI method is a two-part non-linear mixed effects model from which individual estimates of 

usual macronutrient intake can be generated using a combination of single and multiple 

dietary recalls25. The model separates usual intake of a nutrients into two parts: the 

probability of consumption on a particular day, and given that the food was consumed, the 

amount eaten on the consumption day. For dietary components consumed on an almost daily 

basis by nearly everyone, such as the macronutrients in the present analysis, the probability 

of consumption is close to or equal to 1, thus the “amount only” model was sufficient to 

predict the usual amount consumed. To increase precision of predicted estimates of usual 

dietary intake of macro- and micronutrients, covariates known to impact dietary intake were 

incorporated. Covariates included in the NCI model were chosen a priori and included 

smoking at any time during pregnancy (yes/no), pre-pregnancy BMI (normal weight, 

overweight, obese), gravidity and observed mean total daily energy (kcal/day). Non-

episodically consumed nutrients including total fat; saturated fatty acid (SFA); 

monounsaturated fatty acid (MUFA); polyunsaturated fatty acid (PUFA); total 

carbohydrates; carbohydrates from sugar including fruit, added sugars and beverages; and 

protein were estimated using only the first part of the NCI model (amount only model). SAS 

macro-code from the NCI website was used to implement all nutrition models 27.

Neonatal measures

Offspring’s birth length, weight, head circumference, and skin-fold thickness were measured 

by trained nurses. Neonatal body composition, fat mass (FM) and fat-free mass (FFM) were 

calculated from total mass and density using air displacement plethysmography (PEA POD). 

Body composition was recorded twice for each neonate, with a third measurement taken if 

the first two percent body fat values were more than two percentage points apart. Values 

used in this report are the average of the two closest measures. Gestational age at birth was 

abstracted from medical records. Neonatal chronological age at PEA POD was calculated as 

the difference in days between the date of birth and the PEA POD research visit.

Crume et al. Page 4

Am J Obstet Gynecol. Author manuscript; available in PMC 2017 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Statistical analysis

Characteristics of participating mothers and offspring at birth are presented as mean ± 

standard deviations (SD) or number (n) and percent (%) in Table 1. Maternal usual dietary 

intake of total energy (kcal), macro- and micronutrients during pregnancy are presented as 

median grams per day or percentage of total daily caloric intake along with the 25th and 75th 

percentile.

Two modeling approaches 28 were used to examine the associations between maternal 

prenatal dietary intake and neonatal body composition outcomes: FM, FFM, and birth 

weight. The first model was a partition model, which estimates the change in neonatal 

outcomes associated with a 100 kcal increase in intake of the macronutrient of interest, 

adjusted for all other macronutrient intake (i.e., total energy intake is not held constant). The 

second model was a nutrient density model that estimated the change in neonatal outcomes 

associated with a 1% isocaloric increase in a specific macronutrient, offset by a concomitant 

drop in other nutrients (total energy is held constant). For both modeling approaches a base 

model included adjustment for offspring sex, gestational age at birth, and postnatal age at the 

PEA POD measurement; maternal age, gravidity, race/ethnicity (non-Hispanic, Hispanic, 

non-Hispanic Black, and other), smoking at any time during the pregnancy (yes/no), and 

quartiles of metabolic equivalent (MET) values of physical activity levels during pregnancy. 

Effect modification of the relationship between each macronutrient intake and neonatal 

outcomes by pre-pregnancy BMI was evaluated and found to be non-significant at the 

alpha=0.10 level for all macronutrients examined. Thus a second model (model 2) controlled 

for pre-pregnancy BMI in addition to each of the variables in the base model. Finally, 

gestational weight gain was not controlled for in the multivariate model under the hypothesis 

that it is on the causal pathway between dietary intake and infant fat accretion. Estimated 

coefficients are presented in tabular form with 95% confidence intervals. P values of <0.05 

were considered statistically significant, and all analyses were done using SAS software 

version 9.3 (SAS Institute, Cary, NC).

Results

A total of 1,410 pregnant women were enrolled in the Healthy Start study. Participants were 

included in the current analysis if they had at least one dietary recall (N=1,366). Women 

who had been diagnosed with gestational diabetes mellitus (n=53) were excluded, as these 

women are encouraged to adopt special diets after diagnosis. Neonates born at less than 32 

weeks gestation or those without body composition measures at birth were further excluded 

for a final analytic sample size of 1,040. Comparison of the analytic sample to the larger 

enrolled cohort revealed no relevant differences in maternal race/ethnicity (p=0.35), 

maternal age at delivery (p=0.67), pre-pregnancy BMI (p=0.25), or household income 

(p=0.31). Since infants born before 32 weeks gestation were excluded from the analytical 

cohort, birth weight in the analytic cohort was higher compared to excluded cases (3,255 

versus 3,007 grams, p<0.001).

Maternal and offspring characteristics are displayed in Table 1. Nearly a quarter of the 

cohort was Hispanic and 15% were non-Hispanic black. A quarter of the cohort had a BMI 

between 25–29 kg/m2 and 20% had a BMI ≥ 30 kg/m2. The majority was primiparous, 13% 
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had less than a high school education and 9% reported smoking at some point during 

pregnancy. The mean gestational age at birth was 39.6 ± 1.10 weeks and the mean birth 

weight of infants was 3283.18 ± 432.54 grams, within the normal range, though slightly 

lower than that of the U.S., a common finding in Denver, Colorado, which is at an altitude of 

5280 feet 29. PEA POD was performed on infants at mean postnatal age of 1.6 days and the 

average %FM of infants was 9.1%.

Table 2 shows the median maternal intake of total energy, fat related macronutrients, protein 

and carbohydrates, as well as the median usual intake of micronutrients (sodium, iron, folate 

and calcium) during pregnancy in our cohort. Median usual total energy was 2,062 kcals per 

day with 32.2% energy from fat, 15.0% from protein and 47.8% from carbohydrates. 

Distributions of median total energy by fat subtypes included 17.6% of from unsaturated fat, 

11.1% SFA with remaining fat subtypes comprising 3.8% of total energy intake. Median 

usual daily intake of total carbohydrates was 252.5 grams (g) per day, of which, 45.4% was 

from sugar.

Table 3 shows the results of the partition multivariate regression model. In the base model, 

each 100 kcal increase in maternal intake of total fat was associated with a 3.7 g increase in 

neonatal FM (p=0.01) and each 100 kcal increase in SFA intake was associated with a 9.7 g 

increase in FM (p=0.01). There was a marginally statistically significant relationship 

between total protein intake and FM such that every 100 kcal increase of protein intake was 

associated with an 11.0 g increase in FM (p=0.052). Additional adjustment for pre-

pregnancy BMI in model 2 somewhat strengthened the relationships for total fat and SFA 

intake, such that each 100 kcal increase in maternal intake of total fat was associated with a 

4.2 g increase in neonatal FM (p=0.03) and each 100 kcal increase in SFA intake was 

associated with a 11.1 g increase in FM (p=0.003). In addition, after adjustment for pre-

pregnancy BMI, significant associations between intake of unsaturated fat and intake of total 

carbohydrates with neonatal FM were noted such that neonatal FM increased by 5.9 g 

(p=0.04) and 2.9 g (p=0.02) for every 100 kcal of maternal unsaturated fat and total 

carbohydrate, respectively. Individual macronutrient intake during pregnancy in the partition 

model was not associated with birth weight or FFM.

Table 4 shows the results of the nutrient density multivariate regression model. In the base 

model, each 1% isocaloric increase in maternal intake of SFA was associated with a 3.6 g 

increase in neonatal FM (p=0.04) and each 1% isocaloric increase in carbohydrates from 

sugar was associated with a 2.1 g decrease in FM (p=0.04). Additional adjustment for pre-

pregnancy BMI in model 2 attenuated the above relationships to non-significance. Individual 

macronutrient intake during pregnancy was not associated with birth weight or FFM in the 

base model or the model adjusted for pre-pregnancy BMI.

Comment

In this contemporary cohort of mother-infant pairs from Colorado we found that, 

independent of pre-pregnancy BMI, increased maternal dietary intake of all macronutrients 

except protein (total fat, SFA, unsaturated fat, and total carbohydrates) was significantly 

associated with increased neonatal FM. Macronutrient composition during pregnancy 
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appeared to also impact neonatal fat mass. Specifically, a higher proportional intake of SFA 

offset by lower intake of other macronutrients, including lower intake of sugar, was 

associated with increased neonatal fat mass. However, upon adjustment for maternal pre-

pregnancy BMI, macronutrient composition was no longer significantly associated with 

neonatal adiposity, suggesting that maternal obesity is a powerful confounder of this 

relationship. Finally we did not detect an association between macronutrient-specific energy 

intake or macronutrient composition during pregnancy and birth weight or neonatal fat-free 

mass.

Few human observational studies have evaluated the impact of maternal dietary intake 

during pregnancy on infant body composition and results are inconsistent. Among 179 

mother-fetus pairs in Australia, Blumfield, et al. 8 reported an inverse association between 

maternal intake of protein and % fetal abdominal visceral fat at 19 and 36 weeks gestation 

while intake of carbohydrates were associated with increased % fetal abdominal visceral fat. 

They also reported that each isocaloric 1% increase in SFA intake was associated with a 

decrease in fetal midthigh lean area. In our study, each 1% isocaloric increase in SFA intake 

was associated with increase neonatal adiposity, however not independent of pre-pregnancy 

BMI, and we did not detected a relationship between specific macronutrient intake or 

macronutrient balance on FFM or birth weight. We also did not detect a relationship 

between protein intake and neonatal FM in either the partition or the nutrient density model. 

Moore et al. 10 reported a positive relationship between proportion of maternal total energy 

(kcal) derived from protein in early and late pregnancy and both birth weight and ponderal 

index among 551 mother-infant pairs in Australia using a nutrient density model adjusted for 

pre-pregnancy weight. Our finding of a positive relationship between maternal intake of total 

carbohydrates and offspring FM in a partition model, independent of pre-pregnancy BMI, is 

consistent with findings by Renault KM et al 12 who reported higher offspring fat mass of 

103-g among mothers in the highest quartile of carbohydrate intake compared to the lowest. 

Murrin et al 11 evaluated the odds of overweight/obesity at 5 years of age among 585 

children in Ireland and reported that maternal sugar intake in the top quartile was associated 

with nearly a 5% increased risk of overweight/obesity in children. Long-term offspring body 

composition outcomes associated with maternal dietary intake during pregnancy have been 

reported by Brion et al. 9 who observed no association between maternal macronutrient 

intake during pregnancy and offspring adiposity or lean mass at 10 years of age among over 

5500 mother-infants pairs in the Avon Longitudinal Study of Parents and Children 

(ALSPAC). It is likely that inconsistencies in the literature on the relationships between 

maternal dietary intake in pregnancy and offspring adiposity are due to differences in sample 

size, timing of assessment of offspring outcomes, as well as methodological limitations 

related to diet assessment, modelling of nutritional exposures, and appropriate adjustment 

for confounders.

Evaluation of the impact of in utero nutritional exposures on birth weight alone ignores the 

potential differential impact on specific body compartments. A review by Sparks et al. 31 

hypothesized that fetal fat free mass is primarily influenced by genetic factors, whereas fetal 

body fat mass is influenced by the maternal metabolic and nutritional environment. Fat mass 

at birth is estimated to be responsible for, on average, less than 15% of total birth weight but 

accounts for 46% of the total variation in birth weight 32. Findings from this study and other 
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Healthy Start reports support the Sparks hypothesis. For example, we previously reported a 

strong positive linear relationship between maternal insulin resistance and glucose levels 

during pregnancy and neonatal fat mass, independent of maternal pre-pregnancy BMI, with 

no relationship detected between maternal fuels and fat free mass 21.

The clinical relevance of our findings are several-fold: first, we show that FM at birth is 

influenced by a variety of maternal macronutrient intake sources, suggesting total energy 

intake is a more important contributor than calorie source; second, while the magnitude of 

effect is small (e.g. a 100kcal increase from SFA is associated with an 11.1 gram or 4% 

increase in FM at birth), it is independent of maternal pre-pregnant BMI, a major correlate 

of neonatal adiposity10 and several other risk factors; and third, we provide evidence that the 

effect of maternal energy intake during pregnancy is specific to neonatal FM, and had no 

detectable influence of FFM or birth weight. Thus, our data suggest that potential nutritional 

interventions during pregnancy may result in reductions in neonatal adiposity, without 

unwanted effects on overall neonatal body size or lean mass.

Mechanisms explaining the relationship between maternal dietary intake during pregnancy 

and neonatal adiposity are poorly understood. Early metabolic or epigenetic programming 

events are influenced by nutrient availability and impact adipose tissue development 34, 

which plays a role in energy regulation, metabolism and insulin sensitivity 35, as well as 

multiple other developing organs 2. In mouse models, a high fat diet during pregnancy and 

lactation produced an offspring phenotype significantly more obese, hyperinsulinemic and 

hyperleptinaemic compared to control offspring, independent of post-weaning diet 2;36. 

Relative to controls, offspring of lard-fed dams have increased body mass and adiposity with 

no evidence of hyperphagia 4 prompting a hypothesis that this phenotype is maintained, in 

part, due to decreased basal metabolic activity 2.

Our study has some limitations and numerous strengths. Given the observational nature of 

the study, causal inference is limited; however the prospective longitudinal design provides 

evidence for temporality of events. Dietary intake was obtained from repeated recalls. 

Previous studies have relied upon food frequency questionnaires (FFQs), usually just one, to 

estimate dietary intake during pregnancy 8;9;11. FFQs are designed to measure long-term 

dietary behavior and suffer from several shortcomings including a finite list of foods and a 

reliance on the individual to retrospectively report their food intake over a long period of 

time. In contrast, our study utilized repeated recalls with an automated multi-pass method 

that provides cues to prompt respondents to remember what they consumed in the past 24 

hours, which has been shown to reduce bias in the collection of total energy intake 20. 

Overall, 82.1% of participants completed two or more ASA24 hour dietary recalls. 

Compared to women who completed one ASA24, women who completed 2 or more were 

more likely to be non-Hispanic white (p<0.0001), to have a lower pre-pregnancy BMI 

(p<0.000.1) a higher level of education (p<0.0001) and an older maternal age at delivery 

(p<0.0001). Limiting our analytic cohort to women with 2 or more ASA24 dietary recalls in 

a sensitivity analysis led to generally similar results in the both the partition and nutrient 

density models but less precise estimates due to decreased sample size. Finally, 

underreporting of unhealthy foods or beverages is to be expected and may be more 

pronounced among obese individuals 16,17. Attenuation of the associations observed in the 
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current study are likely minimal, as we adjusted for pre-pregnancy BMI in our NCI models 

to increase precision of predicted macronutrient estimates, as well as in the fully adjusted 

model.

In conclusion, in a large, diverse pre-pregnancy cohort from Colorado we found that 

increased maternal energy intake from most macronutrients (especially dietary fat, fat 

subtypes and total carbohydrates), influence fetal fat accretion, but not total body size, 

independent of pre-pregnancy BMI. Whether increased neonatal adiposity predicts later 

childhood obesity is still unknown, but our data contributes novel evidence on the potential 

role of maternal diet during pregnancy on offspring growth and body composition.
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FM fat mass

FFM fat free mass

NCI National Cancer Institute
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ALSPAC Avon Longitudinal Study of Parents and Children
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Table 1

Characteristics of participating mothers and offspring at birth

Maternal characteristics (N=1040) Mean ± SD or N (%)

Age in years (mean) 27.87 ± 6.11

Race/ethnicity

NHW 570 (54.81%)

Hispanic 256 (24.62%)

NHB 153 (14.71%)

Other 61 (5.87%)

Pre-pregnancy BMI (kg/m2) 25.53 ± 6.07

Pre-pregnancy BMI status

Underweight 31 (2.98%)

Healthy BMI 551 (52.98%)

Overweight 258 (24.81%)

Obese 200 (19.23%)

Maternal level of education < high school 140 (13.46%)

Primiparous (N, %) 667 (64.13%)

Maternal smoking during pregnancy (any) 90 (8.65%)

Maternal GDM – by design these women were excluded -

Offspring characteristics Mean ± SD or N (%)

Gestational age (weeks) 39.60 ± 1.10

Sex: Female 511 (49.13%)

Birth weight (g) 3283.18 ± 432.54

Birth weight z score −0.41 ± 0.88

Postnatal age at PEAPOD (days) 1.64 ± 2.34

Fat mass (g) 296.48 ± 152.94

Fat mass percent (%) 9.13 ± 3.96

Fat free mass (g) 2852.98 ± 336.47

Waist circumference (cm) 29.57 ± 2.43

Head circumference (cm) 34.26 ± 2.09

Sum of skinfolds (cm) 15.21 ± 3.68

SD=standard deviation; NHW=non-Hispanic white; NHB=non-Hispanic black; GDM=gestational diabetes; g=grams; c=centimeters
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Table 2

Maternal usual dietary intake during pregnancy

Maternal Dietary Component Median grams per day (25th, 75th quartile)

Total energy (kcal) 2024.56 (1789.19, 2252.03)

Total fat (g) 71.82 (55.50, 90.56)

% energy from total fat (%) 32.20% (27.08%, 37.17%)

 SFA (g) 24.24 (18.54, 31.49)

 % energy from SFAT 10.83% (8.90%, 12.80%)

 Unsaturated fat (g) 38.62 (29.77, 49.19)

 % total energy from unsaturated fat (%) 17.11% (14.44%, 20.11%)

  MUFAs (g) 25.24(19.37, 32.23)

  PUFAs (g) 13.30 (10.34, 16.82)

 Unsaturated:saturated ratio 1.58 (1.50, 1.68)

 % total energy intake from remaining fat 3.91% (3.35%, 4.41%)

Protein (g) 76.07 (62.50, 92.70)

% total energy from protein 15.03% (13.26%, 16.89%)

Fiber (g) 16.58 (12.52, 21.12)

Carbohydrates (g) 242.30 (195.63, 291.63)

% total energy from carbohydrates 47.75% (42.27%, 53.18%)

 Total sugar carbohydrates (g) 107.72 (85.00, 135.57)

 % total carbohydrates from sugar 45.48% (41.94%, 49.04%)

Sodium (mg) 3210.16 (2561.02, 4037.00)

Iron (mg) 14.39 (11.87, 17.12)

Folate (mcg) 432.04 (357.42, 521.96)

Calcium (mg) 1032.55 (827.92, 1289.53)

standard deviation=SD; kilocalories=KCAL; gram=g; saturated fat = SFAT; Monounsaturated fatty acids = MUFA, polyunsaturated fatty acids = 
PUFA, milligrams=mg; micrograms=mcg
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