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ABSTRACT

Jing Shan: Development of a stationary chest tomosynthesis system using carbon nanotube
x-ray source array

(Under the direction of Otto Zhou)

X-ray imaging system has shown its usefulness for providing quick and easy access of

imaging in both clinic settings and emergency situations. It greatly improves the workflow

in hospitals. However, the conventional radiography systems, lacks 3D information in the

images. The tissue overlapping issue in the 2D projection image result in low sensitivity and

specificity. Both computed tomography and digital tomosynthesis, the two conventional 3D

imaging modalities, requires a complex gantry to mechanically translate the x-ray source to

various positions.

Over the past decade, our research group has developed a carbon nanotube (CNT) based

x-ray source technology. The CNT x-ray sources allows compacting multiple x-ray sources

into a single x-ray tube. Each individual x-ray source in the source array can be electronically

switched. This technology allows development of stationary tomographic imaging modalities

without any complex mechanical gantries. The goal of this work is to develop a stationary

digital chest tomosynthesis (s-DCT) system, and implement it for a clinical trial.

The feasibility of s-DCT was investigated. It is found that the CNT source array can

provide sufficient x-ray output for chest imaging. Phantom images have shown comparable

image qualities as conventional DCT. The s-DBT system was then used to study the ef-

fects of source array configurations and tomosynthesis image quality, and the feasibility of

a physiological gated s-DCT. Using physical measures for spatial resolution, the 2D source

configuration was shown to have improved depth resolution and comparable in-plane res-

olution. The prospective gated tomosynthesis images have shown substantially reduction

of image blur associated with lung motions. The system was also used to investigate the
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feasibility of using s-DCT as a diagnosis and monitoring tools for cystic fibrosis patients. A

new scatter reduction methods for s-DCT was also studied. Finally, a s-DCT system was

constructed by retrofitting the source array to a Carestream digital radiography system. The

system passed the electrical and radiation safety tests, and was installed in Marsico Hall.

The patient trial started in March of 2015, and the first patient was successfully imaged.
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CHAPTER 1: Introduction

Section 1.1: Dissertation Overview

X-ray imaging is the most widely used, non-invasive medical test that help physicians

diagnose medical conditions. It utilizes the difference of absorption or attenuation rates of

materials to x-ray photons to produce images. Because of it can show the human anatomy

non-invasively, it was used for medical examinations shortly after its discovery. Nowadays,

x-ray imaging has evolved into multiple modalities, each focusing on specific tasks. Among

all of them, imaging modalities used in diagnosing medical conditions of the chest, which

includes imaging lungs, hearts, and bones of spine and chest, will be the focus in this dis-

cussion.

Chest x-ray radiography (CXR) is the most widely used chest x-ray imaging technique.[1]

It has been ordered so commonly by doctors that it’s the most performed diagnostic imaging.

The advantages of this modality are high accessibility, low cost, and relatively low radiation

exposure to the patient. CXR simply acquires a 2D projection image of the chest. However,

the tissues in the path of the x-ray beam superimpose onto each other in the final image.

The tissue overlapping lowers the visibility of lesions, resulting low sensitivity and specificity

for CXR.

Computed tomography (CT), which was invented in the 1970s, is a 3D imaging modality.[2]

During one CT scan, hundreds of projection images are acquired by rotating the x-ray source

around the body. 3D volume data is computed from these base images. The dataset is usu-

ally sliced along a certain direction and a stack of cross-sectional images is presented to

doctors. The computed images remove tissue overlapping, thus increasing the visibility of

lesions. However, the patients are exposed to much higher radiation in a CT examination
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compared to CXR. Studies have shown the dose from a normal chest CT scan is on the order

of 100 times the dose of a CXR. [1, 3] The procedure is also more expensive. [1]

Digital tomosynthesis (DTS) is another 3D imaging modality that produces sectional im-

ages using low dose projection images acquired over a limited scanning angle. [1, 4] Compared

to CT, DTS reduces both the radiation dose to the patient and the examination cost. [1]

The technology is used clinically on breast, chest, sinonasal, abdominal, and musculoskele-

tal imaging. [1, 5–7] Multiple studies have shown that digital chest tomosynthesis (DCT)

improves the ability to detect small lung nodules and other lung pathologies compared to

CXR. [8–12] Several commercial DCT systems are used clinically. These DCT systems me-

chanically sweep a single x-ray source over a long distance to acquire projection images at

different viewing angles. The moving x-ray source results in a relatively long scanning time

(∼ 10 s), which leads to potential patient motion blur. [13, 14]

In this dissertation, the feasibility and development of a stationary DCT system using the

carbon nanotube (CNT) x-ray source technology developed at University of North Carolina

at Chapel Hill (UNC) will be investigated. The key technology is the stationary digital

chest tomosynthesis (s-DCT) system using a CNT x-ray source, which enables tomographic

imaging without any mechanical motion of the x-ray source. [15] The CNT source array may

hold the future of an affordable 3D imaging modality in future.

The primary goal of this dissertation is to develop an s-DCT prototype system for use

in a clinical trial. A desktop proof-of-concept system was first developed. System was

characterized to demonstrate the feasibility of s-DCT system. Then a prototype s-DCT was

constructed by retrofitting the CNT source array to a digital radiography system. Once

the s-DCT passed the electric and radiation safety certification, it was moved to a clinical

research setting for the clinical trial.

The secondary goal of this dissertation is to investigate the system requirement of CNT

source arrays for applications of chest tomosynthesis, and parameters affecting image quality.

Image configurations for tomosynthesis, such as dose and source array geometry configura-

2



tion will be studied. The effect of imaging time on tomosynthesis image quality, and the

physiologically gated tomosynthesis will be investigated too.

Section 1.2: Specific Research Aims

1.2.1: Feasibility of s-DCT

In this specific aim, a bench-top system was developed to demonstrate the feasibility of

s-DCT using a CNT source array. Key questions investigated in this phase included whether

the CNT x-ray source array can output sufficient x-ray flux needed for chest imaging; whether

the s-DCT system has comparable or better image quality compared to current DCT systems;

and the impact of imaging configurations on the tomosynthesis image quality. The source

array output and consistency between sources was measured. Anthropomorphic phantom

images were acquired for overall evaluation of the system image quality, and the system

modulation transfer function (MTF) and artifacts spread function (ASF) was measured

to quantitatively characterize the image quality. The effects of the number of beams and

tomosynthesis angular coverage on image quality was studied.

1.2.2: Integration of s-DCT for Clinical Use

An s-DCT system was constructed by retrofitting the CNT x-ray source array to the

Carestream digital radiography x-ray system. The system was modified to comply with

regulations on electric and radiation safety. The system was characterized for clinical use

based on new imaging geometry and dose requirement using an anthropomorphic phantom.

A customized operating software was developed for radiologist technician use.

1.2.3: Investigation of Imaging Parameters and Imaging Protocols

Imaging parameters that affect the tomosynthesis image quality were studied in this

phase, using both the bench-top system and the s-DCT system. Besides the physical phan-
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tom and anthropomorphic phantom, porcine lung specimens and human cadaver samples

were imaged to investigate the imaging protocols, including imaging dose, imaging config-

urations and imaging time. Physiologically gated tomosynthesis was also studied in this

phase. The effects of respiration gated s-DCT for motion reduction were evaluated and

implemented for clinical trial.

Section 1.3: Dissertation Organization

This dissertation is organized in the following order: (1) background information, (2) sys-

tem development and related research, (3) investigations of imaging parameters and imaging

protocols, and (4) clinical trial implementation of the system. Chapter 2 provides back-

ground information about x-rays. Chapter 3 gives an overview of tomosynthesis and its

application to chest imaging. Chapter 4 covers the background on CNT x-ray sources and

related applications. In Chapter 5, the feasibility study of s-DCT is reported. Character-

ization of the system and related physics problems are discussed in Chapter 6. Chapter 7

investigates the effects of system configurations on image quality. Physiologically gated s-

DCT is studied in Chapter 8. Chapter 9 covers other applications and a scatter reduction

technique for s-DCT system. Chapter 10 overviews the implementation of the s-DCT for

clinical trial. Finally, in Chapter 11, the dissertation is summarized and the future direction

of the research is discussed.
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CHAPTER 2: X-rays

Section 2.1: Discovery of X-rays

German physicist Wilhelm Conrad Röntgen first discovered x-rays on November 8th, 1895

when he was studying the cathode rays in ”Crookes tubes”, an evacuated glass bulb with

positive and negative electrodes, which display fluorescent glow when high voltage current

passing through. Röntgen noticed the green fluorescent light on the screen even though the

tube was blocked with heavy black papers. He figured out the fluorescence was caused by

invisible rays from the tube, which penetrated the paper and struck the screen. He named

the ”invisible light” he discovered ”x-ray”, where the ”x” is used to indicate unknowns in

mathematics.[16]

After a series of experiments, he found that x-rays were capable of passing through a

variety of substances, including soft tissues of the human body such as muscles. Photographic

films were used to record shadows of objects imaged by x-ray. One of the earliest photographs

of x-ray was the hand of Röntgen’s wife (Figure 2.1), which first demonstrated the idea of

using x-ray for medical imaging.

Section 2.2: Interactions with Matter

X-ray is a form of electromagnetic radiation of exactly the same nature as light, but of

much shorter wavelength. The wavelength of x-rays typically range from 100 nm to 0.01 nm,

corresponding to photon energies on the order of 100 eV to 100 keV.

X-ray photons carry energy that is proportional to their frequency according to quantum
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Figure 2.1: X-ray photograph of the hand of Röntgen’s wife.
[16]

mechanics, as shown in Equation 2.1.

E = hν = h
c

λ
(2.1)

where the h is Planck’s constant. The photon interacts with matter while traveling through

space, resulting in absorption and scattering of x-rays. The interaction between x-ray pho-

ton and matter constitute the physics behind x-ray imaging. There are four main ways

x-rays interact with matter: photoelectric absorption, Rayleigh scattering, Compton scat-

tering, and pair production. The strength of these interactions are mainly determined by

the x-ray photon energy and the material composition of the matter. For medical imaging,

photoelectric absorption, Rayleigh scattering, and Compton scattering are most common

interactions.(Figure 2.2)

2.2.1: Photoelectric Absorption

Photoelectric absorption is the dominant interaction for low-energy x-ray. In this process,

illustrated in Figure 2.3, energy of an x-ray photon is transferred to an electron of an atom
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Figure 2.2: Illustration of x-ray and matter interactions. (A) Most x-ray photons have no
interaction with the material, passing through unattenuated. (B) Photoelectric absorption
results in total removal of the x-ray photon and production of a photoelectron, and a char-
acteristic x-ray. (C) Elastic Rayleigh scattering with small change of trajectory of the x-ray
photon. (D) Compton scattering between high energy photons and less bounded electrons.
Scattering photon with less energy and a recoiled electron are generated.

[17]

when the photon energy is higher than the electron binding energy in the atom. The electron

is freed up from the atom and the excessive energy is transferred to the kinetic energy of the

ejected electron, which is called the photoelectron. If the photoelectron is released from the

inner orbit of an atom, which is a lower energy and more stable quantum state, other electron

in the higher energy state tends to ”jump” to this state and fill the vacancy. The energy

difference between two states is released in the form of electromagnetic radiation, resulting

in characteristic x-rays. However, in some cases, the released characteristic x-ray can excite

another electron at a higher energy state to a free electron (the Auger electron).[18] The

kinetic energy of the Auger is the difference between characteristic x-ray photon energy and

the binding energy of the Auger electron. The resulted vacancy from the release of an Auger
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electron or characteristic x-ray leads to another cascaded emission of characteristic x-rays or

Auger electrons.

Figure 2.3: Illustration of photoelectric effect. (a) Photon absorption and ejection of photo-
electron. (b) Characteristic x-ray emission.

[19]

Photoelectric absorption is subject to statistical processes. The probability of the effect

is described by the cross section σ.[17]

σpe ∝
Zn

E3
(2.2)

where Z is the atomic number of the material, and E is energy of the incident photon.

The higher the photon energy, the less likely photoelectric absorption happens. The σ also

proportion to Z. The heavier the atom (higher Z), the more photons are absorbed. The

variance of absorption rate of different material results in the contrast of the object in the

projected x-ray image. However, in this interaction, x-ray energy is transferred to matter,

ionizing atoms and disrupting molecular bonds, which is harmful to living tissue.
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2.2.2: Rayleigh Scattering

Besides being absorbed by matter, x-ray photons can be also scattered by atoms. Rayleigh

scattering is one of the scattering interactions between x-ray photons and matter. It is an

elastic scattering, meaning the energy of the scattered photon does not change, as shown

in Figure 2.2. This process occurs when the incoming x-ray photon temporarily excites

the electron without removing it from the atom, the excited electron returns to its normal

energy state by emitting a photon with the same energy, but in a different direction. In

this interaction, no energy is deposited into matter, thus it does not contribute to imaging

dose. However, the scattered photons cause increased noise in the image which degrade

image quality. Rayleigh scattering is more likely to happen with low energy x-ray photons

and high Z material. The probability of Rayleigh scattering is described by the scattering

cross-section:[17]

σR ∝
Z2

E1.2
(2.3)

2.2.3: Compton Scattering

Compton scattering is another form of scattering between x-ray and matter. Compton

scattering is an inelastic scattering. It is the dominant interaction for high energy x-ray

photons. When the energy of the incident photon is much higher than the binding energy

of the electron, part of the energy is transferred to the electron, which causes a recoil and

removal of the electron. The remainder of the energy is transferred to the scattered photon,

which has a trajectory with an angle of θ relative to the trajectory of the incident photon,

as illustrated in Figure 2.2. θ is called the scattering angle. Both the total momentum and

energy are conserved in this process, therefore, the scattered photon is given by:[17, 20]

Es =
Ei

1 + Ei
mec2

(1− cos θ)
(2.4)

9



Where Es is the energy of the scattered photon, Ei is the energy of the incident photon,

mec
2 is the rest energy of electron (511 keV ), and θ is the scattering angle.

At low energies (∼ 5keV ), x-ray photons are mostly back-scattered; at intermediate

energy (∼ 20keV ), the scattering photons are distributed approximately equally in all

directions; while at high energies, the photons are forward scattered with a small scattering

angle. [17] In x-ray imaging, these scattered photons can continue on to the x-ray detector,

contributing to image noise and the degradation of the image contrast. Compton scattering

also causes ionization in living tissue. As the incident photon energy increases, more energy

is transferred to the the ejected electron, increasing the radiation dose to the object.

The cross-section of Compton scattering depends on the photon energies, when the x-ray

energy between 10 keV and 100 keV , the cross-section is:[17]

σLEC ∝ Z · E0 (2.5)

while at the high energies (> 100 keV ), the cross-section is:[17]

σHEC ∝ Z

E
(2.6)

2.2.4: Pair Production

When the energy of an x-ray or γ-ray photon is higher than 1.02 MeV , the interaction

between photon and matter results in the production of electron-positron pairs. The excessive

energy is transferred to the kinetic energies of electron and positron equally. Once the

positron exhausts its kinetic energy, it will annihilate with a nearby electron, producing two

x-ray photons of energy of 511 keV each that are emitted in opposite directions. However,

pair production only occurs at energies much higher than those used in diagnostic imaging.
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Section 2.3: X-ray Attenuation

Due to the interactions of x-ray photons with matter discussed in the previous section,

the combined effect is the attenuation of the x-rays, either through absorption or scattering,

when x-rays pass through the material.

Consider a monochromatic x-ray beam, the attenuation of the beam intensity (I) was

experimentally observed as:

dI

I
= −µdx (2.7)

Where µ is the constant for a given material and photon energy. The equation describes an

exponential decay of the beam intensity. Given the incident beam intensity (I0), the exit

beam intensity (I) after passing a material of thickness x is:

I = I0e
−µx (2.8)

The µ is called the attenuation coefficient, which statistically describes the probability of an

x-ray photon interacting with matter. Like the individual ways of interaction, µ is strongly

dependent on incident photon energy and the density of the material. Generally, high Z

materials have higher attenuation coefficients. The attenuation coefficient also decreases

with increased photon energies.

Simply, if the object is composed by many materials, the beam intensity after attenuation

is:

I = I0e
∑
i µixi (2.9)

Where µi is the attenuation coefficient of the i-th material, and xi is the thickness of the i-th

material in the beam path.
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Section 2.4: Generation of X-ray

Section 2.2 briefly introduced the physical properties of x-ray, this section will focus on

the generation of x-rays. X-ray, as a form electromagnetic radiation, is naturally generated

through numerous physics processes, such as acceleration of charges, nuclear reactions, etc.

Since the discovery of x-ray, scientists also found several ways to generate x-rays in laboratory

settings. In this section, the mechanisms to produce x-rays will be briefly introduced.

2.4.1: Bremsstrahlung Radiation

Bremsstrahlung radiation occurs when one charged particle (usually electron) decelerates

as it is passing by another charged particle (usually the nucleus of an atom). The energy

of the photon equals the loss of the kinetic energy of the incoming charge. Thus the energy

spectrum of Bremsstrahlung radiation is continuous, with the maximum possible energy

equal to the kinetic energy of the incident charge. The maximum energy can only occur

when all kinetic energy transfers to a single photon, in which case the probability is very

small. Thus the number of photons decrease as photon energy increases.

2.4.2: Characteristic X-rays

When an electron in the inner shell of an atom is removed from the atom, an electron

in the outer shell leaps from high energy state to fill the vacancy, emitting a photon during

this process. The emitted photons are called the characteristic x-rays because the energies

of the photons are equal to the energy differences in the two states, which are unique to

a given element. Each characteristic x-ray is marked by the letter of vacant shell, with a

subscript indicating whether the electron is from adjacent shell (α) or non-adjacent shell (β).

For example, if an electron is ejected from the K shell of an atom, the characteristic x-ray

emitted when an L shell electron fills in is called Kα, and the characteristic photon from

the M shell is Kβ. The characteristic x-rays are shown in the energy spectrum as discrete
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Figure 2.4: Illustration of the Bremsstrahlung radiation. An electron is deflected when
passing by the nucleus of an atom, the loss of kinetic energy transfers to the x-ray photon.

lines. The Kα line is typically a doublet, with slightly different photon energy, due to the

spin-orbit interaction energy between electron spin and orbit angular momentum. Kα lines

are usually the strongest x-ray spectral line for an element. Figure 2.5 shows the energy

spectrum of x-rays of a 90 kVp x-ray tube, with the characteristic lines marked.

2.4.3: Synchrotron Radiation

Synchrotron radiation is the x-ray radiated when charged particles are accelerated radially

(a⊥v). Synchrotron radiation is generated in the synchrotrons, which uses a magnetic field

to bend the trajectory of the high speed (ultra-relativisitic) charged particles (Figure 2.6).

The emitted photons are highly collimated, polarized, and have high intensity. But the

synchrotron facilities cost hundreds of millions of dollars to construct.
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Figure 2.5: Energy spectrum of x-rays generated using a 90 kVp tube. The characteristic
lines Kα1, Kα2, and Kβ1 are marked.

Figure 2.6: Synchrotron radiation from the bending charged beam. The radiation beam is
sharply collimated forward.
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Section 2.5: X-ray Tubes

Currently, an x-ray tube is the most convenient way to generate x-rays controllably.

The design of x-ray tubes haven’t changed significantly since William Coolidge invented the

modern design of the x-ray tube in 1913 (Figure 2.7).[20]

Figure 2.7: Diagram of a Coolidge tube. The major component of the tube is the cathode,
the anode, and the tube housing.

[20]

The x-ray tube consists of an electron source, and an anode target in a vacuum chamber.

The anode is held at high voltage. Electrons emitted from the cathode are accelerated,

and bombard the target material. Bremsstrahlung radiation is the main mechanism of x-

ray production. If the anode voltage is high enough, characteristic radiation of the anode

material is also generated.

2.5.1: Cathode

The cathode is the electron source in x-ray tubes. In conventional x-ray tubes, it is usually

made of high melting temperature material, typically tungsten (W). The tungsten wire is

machined to a helical spiral shaped filament. When operating, a small voltage is applied

to the cathode (around 10 V), generating a current up to 7 A.[20] The heat generated in

the filament increases the energy of the electrons. Once the energy is greater than the work
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function of the metal, electrons are emitted from the cathode, which is called thermionic

emission. In most modern tubes, a focusing cup electrode is placed behind the filament and

at a negative voltage, propelling the emitted electrons to focus into a spot.

2.5.2: Anode

The anode in the x-ray tube is applied a positive high voltage.1 The electrons emitted

from the cathode are accelerated by the electric field generated by the high anode voltage.

The potential energy of the electric field is transferred to the kinetic energy of the electrons.

The high speed electrons bombard the surface of the anode and penetrate into the target

material. The electrons decelerate after hitting the anode, generating x-ray due to the

Bremsstrahlung effect. If the electron energy is high enough, characteristic x-rays are also

produced.

Over 99% of the energy of the electrons is transferred to heat. High atomic number targets

yield to higher x-ray production efficiency. Therefore, high melting temperature and high

atomic number materials are preferred for the anode. Tungsten, with a melting temperature

of 3695 K and atomic number of 74, is the most commonly used anode material. When

the electrons hit the anode surface, the penetration depth is on the order of a few hundred

micrometers,[21] thus most heat is generated at the surface of the anode. To prevent anode

cracking and pitting, an alloy of 10% rhenium (Re) and 90% tungsten is used to provide

better resistance to surface damage.[20]

The anode heat load is a crucial issue to consider when designing the x-ray tube. For

a low power tube, a stationary anode with highly conducting backing (typically copper) is

used. However, to prevent anode damage, a rotating anode is often used in modern high

power tubes. The rotating anode consists of the anode disk, the stem, and the rotor. Typical

rotation speed of the anode is 3,000 RPM to 9,000 RPM.

1For medical imaging, the high voltage typically ranges from 20 kVp to 200 kVp.
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2.5.3: Focal Spot

The electron trajectories are focused by the electric field. The area where electrons

bombard the anode target is called the focal spot. The size of the focal spot is very import

in x-ray imaging due to its direct involvement in the image resolution. Smaller focal spots

yield to better spatial resolution.

For conventional x-ray tubes, the actual focal spot size depends on the size and shape

of the filament. Since most filaments are long and thin, the focal spot is elongated in one

direction, causing asymmetric spatial resolution in the image. To compensate for this, the

anode and the detector are usually placed at an angle. This angle is referred as anode angle

θ. The effective focal spot is the projected focal spot on the detector plane. The length of

the effective focal spot is the actual focal spot length times sin θ. The anode angle affects the

field of view and the effective focal spot. Figure 2.8 illustrates this relationship. Generally,

a small anode angle (∼ 7◦ − 9◦) is desirable for small field of view applications, such as

dental x-ray; while a larger anode angle (∼ 12◦ − 15◦) is preferred for general radiographic

applications.[20]

For most diagnostic imaging systems, the effective focal spot is isotropic, so that the

image has the same spatial resolution along all directions. The (effective) focal spot size of

an imaging system depends on the tradeoff between the imaging resolution requirement for

the imaging task, the field of view, x-ray flux requirement, and anode heat load.

2.5.4: Tube Housing and Filtration

The cathode and anode are required to be placed in a vacuum environment to ensure the

passing of electrons. The tube housing serves as a vacuum barrier. In addition, the housing

also provides initial x-ray shielding, since the x-rays are produced in every direction. Dense

materials, such as lead, are typically used for radiation shielding in the tube housing.

The x-ray window provides an exit for the x-rays from the tube housing. It is made of

thin and light material, such as glass, beryllium, or aluminum. The x-ray window is also
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Figure 2.8: Illustration of the field of view and effective focal spot with respect to anode
angle.

[20]

called the inherent filtration, since the window material also provides filtration to the x-ray

spectrum. In addition to the inherent filtration of an x-ray tube, thin layers of material

(typically aluminum) are also mounted outside the window for additional filtration of the

beam. The filtration in an x-ray tube attenuates low energy photons to improve the beam

quality. Since the low energy photons have little chance of passing through the patient in

diagnostic imaging, filtering out this part of photons reduces the radiation dose to patient.

The beam quality is quantitively measured by the half value layer (HVL) of the x-ray beam.

HVL gives a measure of the effective energy of the beam. It is defined as the thickness of

aluminum (in mm) required to reduce the intensity of the x-ray beam to half. The effective

attenuation coefficient of aluminum µAleff can be calculated from HVL:

µAleff =
ln 2

HV L
(2.10)

By looking up the attenuation coefficient, the effective beam energy can be found. Increasing

the additional filtration increases the HVL.

18



Table 2.1: Excerpts of FDA HVL regulations for an x-ray tube operated between 60 kVp
and 120 kVp.

X-ray Tube Voltage (kVp) Minimum HVL (mm of aluminum)

60 1.5
70 1.8
71 2.5
80 2.9
90 3.2
100 3.6
110 3.9
120 4.3

In the United States, the Food and Drug Administration (FDA) regulates the beam

quality of x-ray for diagnostic imaging. All diagnostic imaging equipment must comply with

the minimum HVL requirement specified in Title 21 of the Code of Federal Regulations.[22]

Table 2.1 is an excerpt of HVL regulations for x-ray tubes between 60 kVp and 120 kVp.

Figure 2.9: Illustration of the effect of x-ray tube filtration on x-ray spectrum. (a) Shows
the unfiltered Bremsstrahlung spectrum with great low-energy x-ray photon production. (b)
Shows the filtered spectrum with preferential attenuation on the low energy photons.

[20]

With the tube filtration, a large number of low energy photons that do not contribute
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to imaging are removed from the energy spectrum. The benefits of filtration are (1) re-

ducing unnecessary radiation exposure to the patient; and (2) reducing scattering and its

degradation to image quality. Figure 2.9 illustrate the filtered spectrum from a 90 kVp tube.
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CHAPTER 3: Digital Chest Tomosynthesis

Section 3.1: X-ray Imaging Modalities for Chest

There are three x-ray imaging modalities used in the clinic for chest examinations: chest

x-ray radiography (CXR), computed tomography (CT), and digital chest tomosynthesis

(DCT). This section will provide a brief introduction on each modality.

3.1.1: Chest X-ray Radiography

Chest x-ray radiography (CXR) is the most commonly practiced imaging procedure.[1]

It is frequently the first imaging test performed on patients with known or suspected lung

disease. It has been used for the diagnosis of diseases related to lungs and hearts such as

infectious diseases, malignancies, airway diseases, interstitial diseases, bone diseases, and

evaluation of trauma.

Different views of CXR can be obtained by changing the orientation of the chest and

the direction of the incident x-ray beams. Posteroanterior (PA), anteroposterior (AP), and

lateral views are the most common CXR views. The PA view is typically acquired with the

patient standing up straight, in front of detector. The x-ray source is positioned behind the

patient so that the x-ray beam can enter the posterior aspect (back) of the chest and exit

from the anterior aspect (front) of the chest. In this exam, the source-to-image distance is

typically 1.8 m.

With the advancement of technology, the digital flat panel detector has been replacing

conventional film and imaging cassette as the image receptor. The digital detector also lowers

the radiation dose delivered to patients due to its high dose efficiency.[23] CXR is normally

acquired at 80 kVp - 120 kVp, while the technique (mAs value settings used in exam) is
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determined using automatic exposure control (AEC).[3] The AEC chambers are embedded

in the detector housing and are used to measured the radiation dose reaching the detector

after passing through the patient. Once the reading from AEC reaches the designated value,

it cuts off the x-ray output so that a reasonably good quality image is acquired at the lowest

possible dose. For chest imaging, the AEC chambers are typically placed in the lung regions.

Despite the low radiation dose, low cost, and high accessibility, there are several challenges

for CXR. In CXR images, a 3D object is projected onto the 2D imaging plane. Organs and

tissues along the path of x-ray beam are superimposed, resulting in loss of ”depth resolution”.

Besides, the superposition of anatomical features may hide a lesion, leading to low sensitivity

for the exams.

3.1.2: Computed Tomography

Until the invention of CT in 1972, x-ray imaging relied on 2D radiography. CT enables

true 3D x-ray imaging. A CT scanner consists of an x-ray tube and a detector. But instead of

fixing the positions of x-ray source and detector during image acquisition, both are mounted

on a gantry and rotated around the object. The purpose of rotation is to allow x-rays to pass

through all portions of the body through sufficient paths, so that the fully sampled object

can be reconstructed using computers.

The principle of CT reconstruction is to calculate the attenuation coefficient of the

material.[2] 3D datasets were calculated, and the value of each voxel is the CT number.

The dataset is sliced along a certain direction and a stack of cross-sectional images are

presented to the physicians.

The CT images solve the tissue overlap issue in conventional radiography images, thus

increases the visibility of lesions. The additional ”depth” resolution better represents the

anatomic structures, as well as the localization of the lesion. However, due to its complex

mechanical structures, CT machines are very expensive, leading to high examination costs

compared to radiography. In addition, the huge number of projection images acquired by
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CT results in high radiation dose to the patient. Studies have shown that the average dose

of a two-view CXR is less than 1% of that of chest CT.[3]

However, due to cost, workflow, and radiation dose concerns, it is unlikely that CT will

supplant CXR in the near future for general chest imaging. Therefore, an alternative low

dose 3D imaging modality is desirable.

3.1.3: Digital Chest Tomosynthesis

DCT is an emerging low-dose tomographic imaging modality. It utilizes a small number

of projection images acquired over a limited angle to produce quasi-3D image datasets. The

technique yields some of the tomographic benefits of CT, but at lower cost and dose. It has

been shown that the average dose of DCT is approximately 2% of chest CT.[3]

Section 3.2: Digital Tomosynthesis

3.2.1: Principles of Chest Tomosynthesis

The term ”tomosynthesis” was introduced by Grant in 1972.[24] It was combined from

two Greek words: ”toms” – a section, a slice – and ”synthesis” – combining two or more pre-

existing elements to get something completely new. Grant proposed a technique that uses a

small number of projections to generate 3D images. However, it was not widely implemented

until the development of digital detectors.

Current digital chest tomosynthesis (DCT) is illustrated in Figure 3.1. The system

includes a conventional x-ray source, a computer controlled gantry that can be moved to

various locations along a vertical path, a flat panel detector, and control electronics. The

patient is positioned in front of a stationary detector, usually in PA position, as in CXR.

Images are acquired and readout during the course of the tube movement.

The projection images are reconstructed to a stack of slices, each is parallel to the detec-

tor and focused at a specific height. The traditional method to reconstruct the tomosynthesis
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Figure 3.1: Illustration of a DCT system. The system consists of a computer controlled
gantry that can move the x-ray source to various locations long a vertical path, a flat panel
detector, and computers.

[1]

image is the shift-and-add technique, as illustrated in Figure 3.2. The shift-and-add tech-

nique is similar to the back projection technique in CT reconstruction. By shifting and

adding the projection images, composite image slices at different planes are generated. Each

plane is at a specific height. Only the object in the plane shows clearly in the reconstructed

slice (Figure 3.2(B)). By scrolling through the reconstructed image set, different objects

come in focus at different slices, while the object at other planes blurs out as artifacts.

However, traditional shift-and-add technique results in substantial blur artifacts. De-

blurring techniques are always used to render clearer images. Besides the shift-and-add

technique, filtered back projection and iterative algorithms have been also developed.[25]
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Figure 3.2: Shift-and-add technique for tomosynthesis image reconstruction. In this illus-
tration, five projection views are used for tomosynthesis reconstruction. The five images are
shifted and added to yield composite images at two different planes. Different objects come
in focus at different imaging planes.

[1]

3.2.2: Commercial DCT Systems

Currently, several DCT systems have been developed and used in the clinic.[1, 8, 10, 26,

13, 27] These systems were mostly based on clinical in-room digital radiography system. The

prototype scanner developed at Duke University was reported to perform a tomosynthesis
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scan of 71 projections over a 20◦ angular span, within 11 s.[1, 8]

GE has developed a tomosynthesis option for their in-room digital radiography (DR)

system. With the VolumeRAD option, the x-ray tube in the DR system can be moved in

a vertical path to perform tomosynthesis with a variable source-to-detector distance of 180

cm -187 cm, as shown in Figure 3.3. A typical tomosynthesis scan takes 10 s and includes 61

low dose projections over 30◦.[10, 28] The tomosynthesis radiographic technique varies from

patient to patient. The mAs per projection was determined using a scout view. [3, 27, 9]

Figure 3.3: Illustration and photo of GE VolumeRAD DCT system.
[27]

The relatively long scanning time, approximately 10 s, leads to image blur due to patient

motion.[13] Shimadzu developed a fast tomosynthesis system. In the Shimadzu SONIALVI-

SION (Shimadzu, Japan) DCT, both the x-ray tube and the detector move linearly in op-

posing directions. As illustrated in Figure 3.4, the patient is placed on the imaging bed in

the AP chest position. The bed is tilted to 80◦. A set of 74 projections are acquired over a

40◦ angle in 5 s.[13] Table 3.1 summarizes the key specs of current DCT systems.
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Figure 3.4: Illustration of Shimadzu SONIALVISION DCT system.
[13]

Table 3.1: List of key specs of the commercial DCT systems.

Commercial systems GE VolumeRAD Shimadzu Safire

Anode kVp 80 - 120 80 - 120
SID 180 - 187 cm (PA) 110 - 120 cm (AP) 110 - 130 cm (AP)

Number of projections 60 74
Angular coverage 30◦ - 35◦ 40◦

Scanning time 10 s 5 s
Focal spot size 0.6 mm/1.2 mm 0.4 mm

mAs per projection 1/6 of CXR N/A
In-plane resolution 3.5 cycles/mm[29] 3 cycles/mm[30]
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3.2.3: Dosimetry of DCT Systems

DCT acquires low dose projection images to reconstruct tomosynthesis datasets. Cur-

rently, most DCT uses the following protocol to determine the radiographic technique. When

a patient is positioned, a scout view, which is a standard PA radiograph image using AEC,

is acquired first. The technician uses this image to check the patient position and determine

the technique for DCT acquisition. The mAs value from the scout view is multiplied by a

constant, typically 10, and then divided by the total number of the projection views (61 for

GE’s VolumeRAD system), to calculate the mAs setting for each projection.[3] For some of

GE’s DCT system, the base DR system only has discrete settings for mAs. Thus the number

is usually rounded down to the closest setting.[9]

In medical imaging, the effective dose is commonly used to measure the risk of radiation

exposure. For standard chest CT, the effective dose is about 7 mSv.[3] For PA CXR, the

average effective dose is around 0.017 mSv, while the two-view (PA + Lateral view) is 0.056

mSv.[3] Multiple studies have evaluated the effective dose for DCT. For adults, the average

effective dose for a standard sized patient is approximately 0.1 mSv - 0.2 mSv.[3, 10, 13, 9]

3.2.4: Diagnostic Accuracy of DCT

Recently, the potential of DCT for diagnosing lung disease has been investigated. De-

tection of pulmonary nodules, a pathology usually related to lung cancer, is one of the most

challenging tasks in chest imaging.[1] Several studies have been performed to evaluate the

detection the lung nodules using DCT compared to CXR and chest CT, the current gold

standard. Table 3.2 summarizes the diagnostic accuracy of DCT. It is shown that DCT has

comparable sensitivity for detecting lung nodules compared to CT, for nodules larger than 5

mm, while at a low cost and effective dose. In addition to pulmonary nodules, DCT has shown

increased diagnostic accuracy compared to CXR for other lung pathologies, such as bron-

chiolitis, pulmonary consolidation, pulmonary emphysema, and cystic fibrosis.[31, 11, 12]
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Table 3.2: Comparison of CXR, DCT and CT for detection of lung nodules with CT as
reference

3 - 5 (mm) 5 - 8 (mm) > 10 (mm) Effective dose (mSv) [3, 9] Cost

CT 100% 100% 100% 2 - 7 High
CXR 7% [8] 19% [27] 63.6% [27], 53% [8] 0.02 - 0.06 Low
DCT 53% [8] 91.4% [27] 100% [27], 90% [8] 0.1 - 0.2 Medium

3.2.5: Limitations of Conventional DCT

Current DCT scanners collect projection images by mechanical translation of a single

x-ray tube to different viewing angles, resulting in (1) long scan time, and (2) relatively low

depth resolution. The imaging time of the current DCT scanners is longer than a human

respiratory cycle, which is about 3 - 6 s.[32] Image blurring caused by respiratory motion,

even if the projection images are collected within a single breath-hold, significantly reduces

the system spatial resolution and sensitivity, especially for small nodules. This contributes to

the significant drop in the detection sensitivity of DCT for small nodules compared to CT.[1]

A recent study by Kim et al. concludes that when there is no respiratory motion artifact, the

detection sensitivity of DCT for nodules is significantly better than that of CXR. But, when

motion artifacts are present, the sensitivity of DCT is reduced to the level of CXR.[14] The

mechanical translation mechanism limits the angular coverage, which results in a low depth

resolution. Several studies reported the challenges of using DCT to localize pleural and

subpleural nodular lesions.[33] The limited depth resolution also leads to artifacts, which is

of special concern when high-density objects are superimposed on tissue with low density.[10]
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CHAPTER 4: Carbon Nanotube X-ray Source

Section 4.1: Carbon Nanotube

Carbon nanotubes (CNTs) are allotropes of carbon with cylindrical crystal structure

which was first discovered in 1991.[34] CNTs are members of the fullerene structure family.

CNTs are long, hollow shaped tube structures with a high aspect ratio. Their walls are

formed by graphene. Based on the number of layers, CNTs can be categorized as single-

walled nanotubes (SWNTs) or multi-walled nanotubes (MWNTs). The diameters of SWNTs

range from 0.4 nm to 2 nm, while those of MWNTs are between 2 nm to 100 nm. CNTs can

be considered as graphene rolled at specific angles. The different ways of rolling result in a

variance in properties of CNTs, such as metallic or semiconducting. [35]

CNTs can be synthesized using multiple techniques, such as arc discharge, laser ablation,

chemical vapor deposition, etc.[36] Sumio Iijima synthesized the first CNTs using the arc

discharge method in 1991.[34] Mass production of nanotubes is now available.[36]

Section 4.2: CNT Based Field Emission X-ray Source

4.2.1: Field Emission Effect

As discussed in Section 2.5, cathode is an important part of the x-ray tube, which provides

electrons to generate x-rays. In the conventional x-ray tube, a tungsten filament is the most

commonly used electron source. The filament is heated up to a high temperature, at which

the energy of electrons exceeds the work function of the tungsten (approximately 4.5 eV).

Electrons are emitted from the surface of the filament. The current density from thermionic
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emission is described by the empirical formula:

J = (1− rav)A0T
2e−

φ
kT (4.1)

Where rav is the reflection rate of outgoing electrons at the surface, T is the temperature of

the filament, k is the Boltzmann constant, φ is the work function of the material, and A0 is

a constant given by

A0 =
4πmk2e

h3
= 1.2× 106Am−2K−2 (4.2)

The emission current increases as temperature rises. Using a material with high melting tem-

perature, current density of conventional thermionic filaments can be up to 1000 mA/cm2.

In 1928, Ralph H. Fowler and Lothar Wolfgang Nordheim discovered the field emission

effect.[37] Electrons are emitted by applying an external electric field to the material, instead

of heating up the material, thus it’s also called ”cold electron emission”. The presence of

the external electric field lowers the effective work function, so the electrons near the Fermi

surface can tunnel through the potential barrier, as illustrated in Figure 4.1.[38] The emission

current density is determined by the Fowler-Nordheim equation:[38]

J = a
F 2

φ
e−

bφ3/2

F (4.3)

Where a and b are constants with values of 1.54×10−6 A ·eV ·V −2 and 6.83 eV −3/2 ·V ·nm−1,

respectively. F is the applied electric field. The derivative of the current density

dJ

dF
∝ Fe−

1
F (4.4)

shows the field emission current increases exponentially as the applied electric field. The

Fowler-Nordheim equation also shows that the field emission current is easier to modulate

compared to that of thermionic emission, since current is solely dependent on the applied

electric field, which is easier to control compared to the temperature of a filament.
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Figure 4.1: Illustration of the field emission effect. The application of the electric field lowers
the effective barrier so electrons near the Fermi level can tunnel through the barrier.

[39]

4.2.2: X-ray Source Using CNT Field Emitters

The high aspect ratio of CNTs makes CNTs excellent field emitters. Due to the sharp

tip of CNTs, an enhanced field is created, which makes electrons easier to tunnel through

the energy barrier.[40] CNTs have been studied as field emitters as early as 1995.[41] Early

applications of CNT field emitters includes using CNT-based field emission displays,[42] and

CNT as electron sources in x-ray tubes.[43]

Our lab at UNC built its first CNT based x-ray source over a decade ago, using single-

walled carbon nanotubes.[44] The cathode was made of purified SWNT bundles, which had

an average diameter of 1.4 nm and average bundle size of 50 nm.[44] Figure 4.2 shows the

schematic of this early x-ray tube and sample images of a fish and human hand phantom.

The tube anode was made of copper, and had a gated cathode assembly in a concealed

vacuum chamber. The cathode assembly includes the cathode and gate mesh, which was a

metal grid placed 50 µm − 200 µm away from the cathode, and was grounded. A negative

voltage was applied to the cathode and positive high voltage was applied to the anode. Due
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to the power limit and vacuum conditions of this tube, the anode voltage was set to 14 kV.

(a) (b)

Figure 4.2: (a) Schematic of the triode-type field emission x-ray tube. (b) X-ray images of
a fish and human hand phantom taken using the CNT x-ray source.

[44]

Currently, all CNT-based x-ray sources developed at UNC use the triode electric design:

CNT cathode, gate electrode, and anode.[45–49] The entire tube is kept at a high vacuum

state approximately 10−9 torr. Figure 4.3 illustrates the typical design of the CNT x-ray

sources. The cathode is bulk molybdenum substrates with CNTs deposited on top. The

area of the deposited CNTs varies depending on different applications. The gate electrode

consists of a mesh of tungsten bars.[50] Gate-cathode voltage (Vgc) on the order of 1000 - 2000

V is applied either on the gate or cathode, with the other grounded.1 Switching electronics

are typically required to enable the switch of the Vgc so the source can be operated in pulsed

mode. The focusing electrodes are designed to provide an electric field distribution between

the gate and anode to bend trajectories of electrons. Either positive or negative voltage is

applied on the focusing electrodes. The shape and the size of the electrodes, and the voltage

applied are dependent on the intended focal spot size.[50] A DC high voltage, ranging from

30 kVp to 160 kVp, for different imaging and therapy applications, is applied on the anode.

The anode used in CNT x-ray sources is a stationary tungsten anode. Due to the triode

1Two situations: (1) Gate is grounded, the cathode has a negative voltage applied to it. (2) Cathode is
grounded, the gate has a positive voltage applied on it.
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Figure 4.3: Schematic of the typical CNT source design. The source consists of a CNT
cathode, gate and focusing electrodes, and anode. The anode has high voltage applied,
while a smaller voltage (in the order of 1000 V) is applied between the gate and cathode.
The blue box shows a picture of a representative cathode surface with CNTs, captured by
scanning electron microscope (SEM).

design, the current emitted from the cathode may leak to the gate electrode, and the focusing

electrodes in some cases. Therefore, the current that reaches the anode (also called as anode

current or tube current), which is the current that actually generates x-rays, is less than the

field emission current from the cathode. The ratio of tube current to the cathode current

is defined as the transmission rate. Typical transmission rate of the CNT x-ray source is

around 60% to 70%.

Similar to conventional x-ray sources, in the design of a CNT x-ray source, the main

issues that need to be considered are tube rating (in kVp), tube output (in mA), and focal

spot size. The anode voltage rating is determined by imaging or therapy applications. The

high voltage feedthrough and spacing between electrodes need to be designed to prevent

arcing. Higher tube current allows shorter pulses at a given exposure (in mAs), which is

extremely beneficial for diagnostic imaging. The maximum tube current is dependent on

the heat management of the anode. Given a focal spot and anode material, the maximum

power applied on the anode can be derived from simulation using the finite element analysis

(FEA) method.[51] The maximum tube current is calculated as the maximum power divided
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by anode voltage. For the CNT x-ray source, the tube current is an interplay of cathode

emission current and transmission rate. The current from the CNT cathode depends on many

factors such as density of CNTs, area of deposited CNTs, voltage between gate electrode

and cathode, and gate mesh design. Higher density and larger area of the CNT deposit

increases the total number of CNT emitters, thus producing higher current output at the

same operating condition. The mesh design, i.e. spacing and shape of the gate mesh, affect

the electric field distribution between the gate and cathode at a given Vgc, as well as the

transmission rate. The focal spot size, which plays an important role in determining an

imaging system’s spatial resolution, is heavily dependent on the electric field distribution

between the gate, focusing electrodes, and anode. These parameters are not isolated, and

need to be considered thoroughly. The anode heat management and focusing electric field

design were studied using FEA simulations.[50, 51]

Section 4.3: CNT X-ray Source Applications

The compact design of source, instantaneous switching, and flexibility of cathode shape

give CNT x-ray sources advantages over conventional thermionic sources. Current appli-

cations of CNT x-ray sources include: micro-CT, stationary digital breast tomosynthesis

(s-DBT), stationary digital chest tomosynthesis (s-DCT), stationary CT, and micro beam

radiation therapy(MRT).

4.3.1: Micro-CT

Micro-CT is a useful imaging modality for small animal imaging in pre-clinical studies.[52–

54] Micro-CT has very high spatial resolution. However, in-vivo imaging of mice is a challenge

for conventional micro-CTs due to the very fast respiration and cardiac cycles. Retrospec-

tive gating is frequently used, however, the excessive radiation exposure to mice may be a

concern for longitudinal studies.[53] CNT x-ray sources have instantaneous turn-on and off

capabilities, therefore enabling the prospectively gated imaging. [45, 55] Figure 4.4 shows
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(a)

(b)

Figure 4.4: Micro-CT using a CNT based x-ray source. (a) System setup of the micro-
CT. The inset shows the system with the cover and shielding. (b) Reconstructions of the
micro-CT datasets of a mouse gated to both cardiac and respiration cycles.

[54]

the system setup of the CNT-based micro-CT scanner developed at UNC. The scanner con-

sists of a micro-focus x-ray tube with a 100 µm effective focal spot size. The respiration

and cardiac cycles were monitored using sensors. Images can be gated to any phase of the

respiration and/or cardiac cycle.[56] Figure 4.4(b) shows an example reconstructed image of

a free-breathing mouse gated to both cardiac and respiratory cycles.
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Figure 4.5: A photo of the s-DBT system under clinical evaluation in the N.C. Cancer
hospital.

4.3.2: s-DBT

As discussed in Chapter 3, conventional DTS utilizes a single rotating x-ray tube.[4]

For digital breast tomosynthesis (DBT), the rotation of the source during image acquisition

decreases the spatial resolution due to the source motion blur, which degrades the visibility of

the microcalcifications.[57] An s-DBT system has been developed using the distributed CNT

source array.[46, 47] The s-DBT has shown improved image resolution and image acquisition

time compared to conventional DBT.[47] The s-DBT system is currently being evaluated in

clinical trials. Figure 4.5 shows the s-DBT system installed in the N.C. Cancer hospital,

under clinical evaluations. The CNT source array has 31 focal spots.

4.3.3: Stationary CT

Conventional CT systems use a single x-ray source mounted on a gantry and rotated

around the isocenter to acquire images. The gantries in the current CT systems are usually

mechanically complex, large in size, and heavy. Studies have been done to explore the
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Figure 4.6: Desktop micro-beam radiation therapy system using CNT x-ray sources. (a)
The picture of the system setup. (b) A histological slice of a mouse brain showing the DNA
damage of tumor cells by the micro-beam.

feasibility of non-rotating CTs using multiple thermionic x-ray sources.[58] However, due to

the size of the conventional x-ray tubes, building a CT system using fixed multiple sources

results in a large distance between x-ray sources, thus under-sampling the CT scan. The

compact design of the CNT x-ray sources allows the close packing of sources. A rectangular

shaped stationary CT using CNT source array has been constructed for luggage scanning.[59,

60] The system consists of two CNT source arrays and two linear detectors.

4.3.4: MRT

Micro-beam radiation therapy was a radiation therapy method developed at synchrotron

facilities a few decades ago.[61] The high flux and high collimation of the synchrotron beam

allows for therapy using micro-beams, which are collimated beams with high dose ”peaks”

(on the order of 100 µm) and low dose ”valleys”. The ”peak” to ”valley” dose ratio can be

kept high. It is found that micro-beams spare normal tissue while killing the tumors.[61]

The mechanism of MRT is currently unclear and needs further study. However, the micro-

beam is only available at a limited number of synchrotron facilities around the world. These

facilities are expensive to build and run, thus limiting the research of MRT. Using a CNT
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source array with long narrow focal spots, a desktop MRT system was constructed.[48] The

system is able to produce a 300 µm wide micro-beam at a dose rate of 2 Gy/s. Figure 4.6

shows the system setup of MRT in the lab and a histology of a mouse brain demonstrating

the therapeutic effect of the micro-beam. The compact size and the relatively low cost of

the desktop MRT would allow more research on MRT and future implementation of the

technology in the clinic.
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CHAPTER 5: Feasibility of a Stationary Chest Tomosynthesis System Using
CNT Source Array

Section 5.1: Overview

Chest tomosynthesis is a low-dose, quasi-3D imaging modality that has been demon-

strated to improve the detection sensitivity of small lung nodules, compared to 2D chest

radiography. The purpose of this chapter is to investigate the feasibility and system re-

quirements of stationary chest tomosynthesis (s-DCT) using a spatially distributed carbon

nanotube (CNT) x-ray source array, where the projection images are collected by electroni-

cally activating individual x-ray focal spots in the source array without mechanical motion

of the x-ray source, detector, or the patient.

A bench-top system was constructed using an existing CNT field emission source array

and a flat panel detector. The tube output, beam quality, focal spot size, system in-plane and

in-depth resolution were characterized. Tomosynthesis slices of an anthropomorphic chest

phantom were reconstructed for image quality assessment. All 75 CNT sources in the source

array were shown to operate reliably at 80 kVp and 5 mA tube current. Source-to-source

consistency in the tube current and focal spot size was observed. The incident air kerma

reading per mAs was measured as 74.47 uGy/mAs at 100 cm. The first half value layer of the

beam was 3 mm aluminum. An average focal spot size of 2.5 mm× 0.5 mm was measured.

The system MTF was measured to be 1.7 cycles/mm along the scanning direction, and

3.4 cycles/mm perpendicular to the scanning direction. As the angular coverage changed

from 11.6◦ to 34◦, the full width at half maximum (FWHM) of the artifact spread function

improved greatly from 9.5 mm to 5.2 mm. The reconstructed tomosynthesis slices clearly

show airways and pulmonary vascular structures in the anthropomorphic lung phantom.

The results show the CNT source array is capable of generating sufficient dose for chest
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tomosynthesis imaging. The conclusion of this chapter is that an s-DCT using a distributed

CNT x-ray source array is feasible.

Section 5.2: Purpose

Currently, digital tomosynthesis (DTS) has been in clinical use for breast, chest, sinonasal,

abdominal, and musculoskeletal imaging.[6, 1, 7, 62, 4] Clinical studies have demonstrated

that digital chest tomosynthesis (DCT) improves the ability to detect small lung nodules in

comparison to CXR, and at a much lower dose than chest CT.[1, 8, 10, 3, 9, 13] Other than

lung nodules, DCT also shows improved diagnostic ability in detecting other lung pathol-

ogy, such as bronchiolitis, pulmonary consolidation, pulmonary emphysema, and cystic fibro-

sis when compared to CXR.[31, 12, 11]

DCT systems in use today use a single-beam x-ray source that moves to collect a set

of low dose projection images acquired from multiple angles. The relatively long scanning

time, approximately 10 s, leads to image blur due to patient motion.[13] In systems with a

moving x-ray source, there is a tradeoff between the scanning time and tube moving speed.

In general, the shorter the scanning time, the faster the tube needs to be moved. This can

be mechanically challenging, and may lead to blurring due to x-ray source focal spot motion

during the detector integration time.

We have recently developed a carbon nanotube (CNT) based distributed field emission

x-ray source array technology.[15, 63] The technology utilizes an array of individually con-

trollable CNT emitters as the ‘cold cathodes’. By electronically switching the individual

CNT cathodes on and off, a scanning x-ray beam is generated by different focal spots on the

x-ray anode without any mechanical motion. The CNT x-ray source array is particularly

attractive for tomographic imaging because the projection views are acquired from different

angles without mechanical motion. This technology enables stationary tomography with fast

scanning speeds and high image resolution by eliminating imaging blur due to source and

patient motions. It also opens up the feasibility of designing tomography scanners with novel
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geometries, as stationary imaging with multiple sources removes the issues associated with

managing the momentum of heavy x-ray sources moving in multidimensional paths.

The purpose of this chapter is to investigate the feasibility of s-DCT using a CNT x-ray

source array, and the system requirements for the source array for s-DCT.

Section 5.3: Materials and Methods

A bench-top system was set up using a linear x-ray source array containing 75 focal

spots and a flat panel detector, as shown in Figure 5.1. The linear source was characterized.

The x-ray output and beam quality were measured. Focal spot sizes of multiple spots

were measured using a pinhole phantom. Projection images of a cross wire phantom were

acquired and reconstructed to measure the system modulation transfer function (MTF) and

the artifact spread function (ASF) as quantitative measurements of the system in-plane

resolution and in-depth resolution, respectively.

Figure 5.1: Bench-top stationary chest tomosynthesis system. The linear CNT x-ray source
array consists of 75 x-ray generating focal spots. The detector and phantom, mounted on
the same stage, can be translated to simulate different imaging geometries.
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5.3.1: Distributed CNT X-ray Source Array

The CNT x-ray source array (Model 2008-08-L75-002, XinRay System Inc., Research

Triangle Park, NC) contains 75 linearly distributed x-ray focal spots with a 4 mm pitch,

and an end-to-end spacing of 296 mm. Each x-ray source consists of a CNT cathode, gate

and focusing electrodes, and an elongated tungsten anode shared with other sources. The

cathode is grounded, while the gate electrode is applied a positive voltage to extract electrons

from the cathode via the field emission effect. The field emission current is controlled by the

electric field applied between the gate electrode and cathode. The maximum output current,

as in conventional x-ray tubes, is limited by the thermal management of the anode, and is

influenced by interplay of many factors including the focal spot size, the anode voltage, the

pulse width, and the duty cycle. The x-ray tube current, defined as the current that reaches

the anode, is less than the cathode emission current due to leakage primarily to the gate

electrode. The electron transmission rate, defined as the ratio of tube current to the emitted

cathode current, as well as the gate voltage required for each cathode corresponding to a

certain current, are used to characterize the CNT x-ray source. The tungsten anode has a

12◦ tilting angle relative to the x-ray window. A 2 mm aluminum window serves both as the

vacuum barrier and as the inherent filter.

The CNT x-ray sources’ stability was measured. The source stability is quantified as the

cathode-gate voltage change for a fixed anode current over time. A source stability test was

performed over a four-month period, during which the x-ray source was used multiple times

a day. The tube current, cathode-gate voltage (Vgc), tube output in mAs, pulse width, and

the date were recorded and logged into a database.

The focal spot size of each individual x-ray source in the array was measured using the

pin-hole method described by the European standard EN12543-2. The tungsten pinhole used

in the measurement was 400 µm in diameter and 2 mm in thickness. The pinhole images

were acquired using a CsI based flat panel detector (Carestream DRX-1C). The pinhole was

placed between the source array and the detector. The ratio between detector-to-pinhole
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distance and source-to-pinhole distance was roughly 3:1, as recommended in the standard, to

gain enough magnification. The exact magnification factor was determined later by analyzing

the projection images. The pinhole was carefully aligned to the focal spot, whose location

was determined using a system geometry calibration procedure. The images were corrected

by the flat field air image to get uniform back- ground, and then the intensity in the pinhole

was measured, normalized, and fitted into a 2D-Gaussian distribution. The full-width-at-

half maximum (FWHM) values in both parallel (x) and perpendicular (y) directions to the

scanning direction were measured and used as the focal spot size.

5.3.2: System Description

The bench-top chest tomosynthesis system, as shown in Figure 5.1, consists of the CNT

linear x-ray source array, a CsI based flat panel detector (Model DRX-1C) manufactured by

Carestream Health Inc. (Rochester, NY) mounted on a translation stage, a phantom stage,

and an electronic control unit. The detector, which was originally designed for radiographic

imaging purpose, has a field of view of 35 cm × 43 cm and a 139 µm × 139 µm pixel size.

The integration time can be adjusted from 260 ms to 1100 ms. The detector requires a frame

by frame external trigger to acquire a sequence of images. Since the x-ray source array used

in this study has a relatively short length, the detector and the phantom are mounted on

a translation stage to achieve a wider range of imaging geometries. A LabVIEW program

was made to automate the x-ray tube operation and image acquisition. As illustrated in the

timing diagram in Figure 5.2, the computer generates a sequence of trigger signals to trigger

the detector read-out, followed by the detector ready-to-exposure signal which is synced to

the x-ray source switching system. The x-ray source switching system is programed to switch

and fire each x-ray source based on the sequence set by the operator. The x-ray sources can

be fired in any sequence, either one-by-one from one end to the other, or in a predefined

pattern.

The system geometry is shown in Figure 5.3. The source-to-detector distance is 110 cm,
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Figure 5.2: Timing diagram for s-DCT imaging. Computer generates a trigger signal to
externally trigger the detector. The detector ready-to-exposure signal is synced to the x-ray
source switching system, where each pulse will be used to trigger a single CNT x-ray source
in the source array. The CNT sources are fired in a sequence preset by the operator.

with the source array aligned to the centerline of the detector. The 75 focal spots with 4 mm

pitch, in the present x-ray source array, cover a 15.7◦ angular span relative to the detector

center. Translation of the detector and the phantom together, relative to the source array,

allows extended acquisition geometries with variable source-to-detector distances, angular

coverage, and number of projection views. Due to limitations of the optical table size,

the maximum effective source array length that can be emulated is 672 mm. However,

the resulting 34◦ angular coverage relative to the detector center is comparable to current

commercial systems. This effective source array has a source-to-source pitch of 4 mm and

can generate up to 169 projection views. By choosing different combinations of sources, one

can simulate various imaging configurations with different numbers of projections, angular

span, and source-to-source pitch. For most images acquired in this study, we used every

other source in this effective source array. This produced up to 85 projections with 0.4◦

angular steps between projections, which is comparable to commercial DCT systems.

To reconstruct the tomosynthesis dataset from the projection views, the geometric rela-
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Figure 5.3: An illustration of the imaging geometry in the bench top stationary chest to-
mosynthesis system. The source-to-detector distance is 110 cm. By moving the detector and
phantom together, parallel to the source array, we were able to emulate different imaging
geometries. In the current bench-top proof-of-concept setup, the effective x-ray source ar-
ray is able to cover up to a 34◦ angular span relative to the detector center with up to 85
projections.

tionship between the x-ray sources and the detector is required. The relative locations of

each of the focal spots are determined by a geometry calibration procedure that utilizes the

projection images of a phantom with metal beads positioned at different source-to-object

distances to calculate the coordinates of each source relative to the center of the detector.1

5.3.3: X-ray Output and Beam Quality

The x-ray output and beam quality of the x-ray source array were measured. The radi-

ation dose was measured using a solid-state dosimeter (Unfors Mult-O-Meter 470L) manu-

factured by Unfors Instruments AB and calibrated 3 months before measurements. (Billdal,

Sweden). The dosimeter effective energy range is from 50 kVp to 150kVp. Due to the x-ray

source array was not designed for medical applications originally, a 0.8 mm additional alu-

minum filter was added to comply with the beam quality requirement for medical imaging.

1The geometry calibration will be discussed in more details in Section 6.5.
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Combined with the 2 mm aluminum inherent filtration, the total filtration of the source

array was 2.8 mm aluminum.

The dosimeter probe was aligned to the x-ray tube and was placed 100 cm away from

the focal spot without the presence of phantom or patient in front the probe to measure the

incident air kerma at 100 cm in a single x-ray shot. To investigate the relationship between

the incident air kerma at the detector plane and tube output (mAs), the incident air kerma

was measured at 80 kVp at various mAs.

The beam quality of the source array was quantified using the first half value layer (HVL)

of aluminum. The CIRS HVL filter set (Model L430) manufactured by Computerizing Imag-

ing Reference Systems, Inc. (Norfolk, Virginia) was used as additional aluminum filtration

in the measurement, in addition to the 2.8 mm aluminum total filtration of the source array.

A collimator made of 6.35 mm (0.25 inch) thick lead was placed in front of the source array

x-ray window, and aligned to the central source. Additional aluminum sheets were taped

sequentially to the collimator. The doses after the additional aluminum filtration were mea-

sured three times for each thickness. The average dose was normalized to the dose without

additional filtration, and plotted in a semi-logarithmic graph (base of 2) to determine the

first HVL.

5.3.4: Image Reconstruction

In this study, a commercial reconstruction system from Real Time Tomography (RTT)

(Villanova, PA) was used for tomosynthesis image reconstruction. The RTT software uses

a back projection filtering method, which allows for on-the-fly reconstruction. It allows for

easy implementation of different imaging configuration parameters and image processing

techniques.[64]
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5.3.5: The System MTF and ASF

The MTF is used as a quantitative measure of the in-plane resolution while the ASF gives

a quantitative measurement of the in-depth (z-axis) resolution. In this study, the system

MTF and ASF were measured using a 100 µm diameter tungsten cross-wire phantom. The

MTF is calculated as the discrete Fourier transform of the line spread function (LSF) of the

wire phantom. The LSF is measured using a slant angle oversampling method.[65, 66] The

LSF was fitted to a Gaussian function to remove noise before doing the Fourier transform.

The in-plane resolution was measured as the frequency at 10% of the MTF. MTFs in both

the x and y directions were measured.

ASF can be used to evaluate the in-depth resolution of a tomosynthesis system.[67, 68]

It is calculated by measuring the contrast between objects, and the background for every

reconstructed slice.[68, 69] The equation used to calculate the ASF is:

ASF(z) =
|µobj(z)− µbkg(z)|

µbkg(z)
(5.1)

where µobj(z) is the average pixel value of the object in the region of interest (ROI) for

the slice located at z, and µbkg(z) is the average value of the background pixels near the

ROI for the slice. In the linear imaging geometry, the out-of-plane artifacts of the wire

are blurred along the scanning direction on the off-focus tomosynthesis slices, therefore the

wire perpendicular to the scanning direction is used to measure the ASF of the system.

The average pixel value of the perpendicular tungsten wire in the randomly chosen ROI was

measured for each slice. The slices were reconstructed with 1 mm separation along the z-axis.

The full width at half maximum (FWHM) of the ASF is used as a quantitative measure of

the z-axis resolution.[67, 68, 70]

The relationship between the image quality and imaging geometry was studied. The

system MTF and FWHM of ASF were measured at different imaging configurations with an

angular coverage between 11.6◦ and 34◦.
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Figure 5.4: An example of CNT cathode performance in the x-ray tube. (a) The I-V curve
of a CNT cathode shows the voltage needed to extract 7.5 mA of current. (b) The anode
current waveforms for 5 mA current and 33 ms pulse width from 5 different CNT sources.
The overshot signal at the beginning of each pulse was the step response of the switching
electronics, which was not a real anode current overshoot.

5.3.6: Anthropomorphic phantom imaging

Projection images of an anthropomorphic phantom (Kyoto Kagaku Co. Ltd, Kyoto,

Japan) were acquired and reconstructed into tomosynthesis slices. The phantom was po-

sitioned as shown in Figure 5.1. The scanning direction was along the axis of the spine

(superior–inferior direction), as commonly used in previous studies, to reduce the limited

angular artifacts of the ribs.[1, 4, 10] The projection images were acquired at 80 kVp and

0.6 mAs exposure per projection. The images were reconstructed using the RTT software

with 4 mm slice spacing for image quality assessment.

Section 5.4: Results

5.4.1: CNT X-ray Source Array Characterization

All 75 CNT sources in the array were characterized. Figure 5.4 shows the field emission

properties of the CNT source measured at 80 kVp. As shown in Figure 5.4(a), the emission

current versus the applied cathode-gate voltage curve follows the Fowler-Nordheim equation

for electron field emission.[38] Once the cathode-gate voltage exceeds the CNT field emission
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Figure 5.5: Stability measurement of a CNT source over 400 scans during a 4 month period.
The tube current (green dashed curve) was kept at 5 mA, the cathode-gate voltage (blue
curve) barely changes in the test. The tube current fluctuation is less than 2% over the 400
scans, and no significant degradation of cathode-gate voltage was observed.

threshold voltage, the emission current increases exponentially as the gate voltage increases.

The measured transmission rates were consistent among all sources, with an average value of

70%. Figure 5.4(b) shows the anode current waveform for 5 different sources, measured using

an oscilloscope, during source characterization. Each source outputs 5 mA of anode current

during a 33 ms pulse width. As demonstrated in figure 5.4(b), the targeted specification of

5 mA anode current can be achieved with a programmable pulse width and good source-to-

source consistency for all sources. The source stability database shows long-term stability

for all the CNT x-ray sources used. The source stability for a typical cathode is plotted in

Figure 5.5. The cathode-gate voltage showed little change at 5mA tube current for over 400

scans in four months. This stability is consistently observed from source to source, suggesting

that the tube can be stably operated over a long time under this condition.

The source-to-source consistency for all 75 CNT x-ray sources was evaluated. The gate

voltage needed to generate 5mA tube current for each source was measured and is plotted in
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Figure 5.6: Cathode-gate voltages needed to generate 5 mA tube current from each cathode.
All 75 CNT cathodes can generate the desired current, with a small variation in voltage from
cathode to cathode. The average voltage needed is 1240 V. The P00 refers to the central
beam source, while the P and N notate positive and negative locations of the source relative
to the central beam, respectively.

Figure 5.6. All 75 sources were able to output the desired current. The difference between

the highest and lowest cathode-gate voltage for 5 mA tube current is approximately 400 V,

which was readily compensated for by the control electronics. The source-to-source output

consistency in one scan was also evaluated. Figure 5.7 shows the anode current from each

source in a single tomosynthesis scan using 32 CNT x-ray sources. The results show that the

CNT source array can output 5 mA anode current consistently from source to source, within

0.3% accuracy. For all the images acquired in this study, all sources were set to output 5 mA

tube current. By changing the pulse width (in ms) of each source was on, the x-ray output

(in mAs) for each projection image was easily controlled.

51



N16 N12 N08 N04 P01 P05 P09 P13 P16
0

1

2

3

4

5

6

X−ray sources position

A
no

de
 c

ur
re

nt
 (

m
A

)

 

 

Anode Current (mA) Relative difference to average

N16 N12 N08 N04 P01 P05 P09 P13 P16

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

R
el

at
iv

e 
di

ffe
re

nc
e 

to
 a

ve
ra

ge
(%

)

Figure 5.7: Summary of anode current in a short tomosynthesis scan using 32 sources and
the relative difference to the average anode current. The CNT source array consistently
output 5 mA from source to source with relative difference within 0.3%.

Figure 5.8: Focal spot measurement using a pinhole. (a) shows the a typical pinhole image
acquired at 80 kVp and 5 mA. The pinhole was 400µm in diameter and 2 mm in thickness.
(b) shows the normalized intensity and the 2D Gaussian fit of the focal spot distribution.

5.4.2: Focal Spot Size

The source array used in the study was designed to have an anisotropic focal spot shape,

as it was originally designed for non-medical applications. Figure 5.8(a) shows the pinhole

image from a source. The magnification factor of the pinhole was calculated based on the
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Figure 5.9: Summary of the focal spot size measurement of 5 sources in the source array.
The average focal spot size was measured to be 2.5 mm× 0.5 mm. The results show a good
source-to-source consistency, as the relative difference is less than 4%.

magnification in size of the pinhole assembly. The intensity profile of the focal spot was mea-

sured, normalized, and fitted into a 2D Gaussian distribution, as shown in Figure 5.8(b).

The intensity was closely matched to a 2D Gaussian distribution, with a coefficient of de-

termination (R2) of 0.9923, which agrees with the simulation results using electrical optics

simulation model from our lab.[50] The FWHM of the intensity profile was used as the focal

spot size. Figure 5.9 shows a summary of the measured focal spot size of 5 sources in the

source array and the relative difference to the average value. The FSSx refers to the focal

spot size along the scanning direction (x-direction), while the FSSy is the focal spot size

perpendicular to the scanning direction (y-direction). The measurement results show the

focal spot size is consistent from source to source within 4% relative error, with an average

FWHM of 2.5 mm×0.5 mm, which agrees with the designed value for this particular source

array.
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Figure 5.10: Normalized intensity in log 2 scale versus the thickness of additional aluminum
filtration. The first HVL was determined by finding the thickness of aluminum to halve the
dose. The first HVL of this source array was measured to be 3 mm at 80 kVp.

5.4.3: Beam Quality

The first HVL of the beam was measured to evaluate the beam quality. The first HVL

was determined to be 3 mm at 80 kVp for this source array with 0.8 mm aluminum additional

filtration (Figure 5.10), which complies with the regulatory minimum of 2.9 mm aluminum

at 80 kVp (Table 2.1).

5.4.4: Radiation Dose

The incident air kerma at 100 cm from the focal spot was measured using the dosimeter

at different tube mAs at 80 kVp. The tube output varied from 0.1 mAs to 0.5 mAs. For each

mAs setting, three measurements were made. Figure 5.11 plots the relationship between the

incident air kerma and the mAs at 100 cm from the central source of the source array at 80
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Figure 5.11: Experimentally measured relation between the incident air kerma at 100 cm
from focal spot and x-ray tube output (mAs). The air kerma is linear to the anode output.
The incident air kerma per mAs at 100 cm was measured as 74.47 µGymAs−1.

kVp. The measurements show a linear increase with the anode output mAs, as expected.

The air kerma reading per mAs at 100 cm was measured to be 74.47 µGymAs−1.

5.4.5: System MTF and ASF

Projection images of the cross wire phantom were acquired at 80 kVp and 0.6 mAs per

projection. The images were reconstructed using the RTT software into a tomosynthesis

dataset with a 1 mm distance between slices. Figure 5.12(a) shows a reconstructed slice,

where the crossed wires were focused. The MTF and ASF were studied for three imaging

configurations with angular coverages, relative to the center of the detector, of 11.6◦, 23◦

and 34◦. For each imaging geometry, 29 projection images were used in reconstruction, with

0.4◦, 0.8◦ and 1.2◦ angular spacing between each projection, respectively. Three randomly

chosen regions across the perpendicular wire, as illustrated in the region outlined by a red
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box, were used as ROIs to measure the ASF. The average pixel value of the wire in the

ROI and the background were measured for each slice and averaged to calculate the ASF.

Figure 5.12(b) shows the LSF of the horizontal tungsten wire and the Gaussian-fitted LSF

for the 34◦ imaging geometry. The MTF curves for both horizontal (x-direction) and vertical

(y-direction) directions with the same imaging geometry are plotted in Figure 5.12(c). The

10% cutoff of the MTF yields a spatial frequency of 1.5 cycles/mm and 3.2 cycles/mm for

the x and y directions respectively. Figure 5.12(d) shows the ASF and the Gaussian-fitted

ASF of the system as a function of depth (z-direction) for the 34◦ dataset. The in-depth

(z-direction) resolution of the system, as mea- sured by the FWHM of the ASF, was 5.2 mm.

Figure 5.12: (a) A reconstructed cross wire phantom in the plane of focus with an angular
coverage of 34◦. The region outlined by the red box illustrates one randomly selected ROI
used to calculate the ASF. (b) The LSF of the horizontal tungsten wire and the Gaussian-
fitted LSF from the 34◦ angular coverage dataset. (c) The MTFs of the system in both x
(1.5 cycles/mm) and y (3.2 cycles/mm) directions for the 34◦ dataset. (d) The ASF of the
system measured in the 34◦ dataset. The measured FWHM of the ASF indicates a 5.2 mm
z-axis resolution.
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Table 5.1: The experimentally measured MTF and ASF of the bench-top chest tomosynthesis
system for three different angular spans. MTFx refers to direction parallel to the scanning
direction, and MTFy refers to the perpendicular direction.

Angular Span MTFx(cycles/mm) MTFy(cycles/mm) FWHM of ASF (mm)

11.6◦ 1.7 3.4 9.5
23◦ 1.6 3.2 5.8
34◦ 1.5 3.2 5.2

Table 5.1 lists the results of system MTF and ASF calculations for all three imaging

configurations. The asymmetric MTF in the x and y directions is due to the anisotropic

focal spot size in this particular CNT x-ray tube. The smaller focal spot size in y-direction

results in a better MTF than in the x-direction. As shown in the table, the MTF in both

the x and y directions remains essentially the same as the angular coverage increases from

11.6◦ to 34◦, while the ASF improves greatly as the angular coverage increases.

5.4.6: Phantom Imaging

Projection images of the anthropomorphic chest phantom were acquired and recon-

structed using RTT for image quality assessments. Tomosynthesis images with the same

imaging dose but different angular spans were reconstructed and compared. Three datasets,

each acquired using 29 projections at 110 cm SID and 80 kVp and 0.6 mAs per projection,

were captured with angular spans of 11.6◦, 23◦ and 34◦. For each projection, 0.6 mAs results

in approximately 62.3 µGy incident air kerma per projection view at the patient entrance

plane, which is 25 cm in front of the detector. The dose per projection is more than sufficient

for the typical dose of projection view reported in clinical DCT systems.[8, 3] Three tomosyn-

thesis slices from these datasets, focused at the same plane, are shown in Figure 5.13(a)–(c),

respectively. Tomosynthesis slices from all three configurations at another depth are shown

in Figure 5.13(d)–(f) as well. All reconstructed images clearly show the airways and detailed

pulmonary vascular structures in the physical phantom. As the angular coverage increases,
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Figure 5.13: (a) and (d) show two slices at different depth (separate by 2.4 cm) reconstructed
from 29 projection images acquired over 11.6◦, (b) and (e), and (c) and (f) show the same
slices reconstructed with same number of projection images but with 23◦ and 34◦ angular
coverage, respectively. All three sets of images were acquired at the same total dose. It can
be seen that the wider the angular coverage the lesser is the out of plan tomo artifact (such
as those from the rib cage), due to improved in-depth resolution.

the artifacts from out-of-focus objects are reduced. At 11.6◦ angular span, ribs out of the

focal plane can be seen in the slice, while at 23◦ and 34◦, the visibility of these out-of-focus

ribs is reduced. This is due to the improved in-depth resolution from increased angular span,

as shown in the ASF measurement above. However, as the angular coverage increases, the

angular step between projection images increases as well, resulting in ripple artifacts due

to under sampling of the angular range.[71, 5] These ripple artifacts are caused by the high

contrast objects (i.e. ribs) far outside the imaging plane that are not sufficiently blurred.

Two sets of tomosynthesis images were compared. Both covered 34◦ angular span and

were acquired with same total mAs, but with different numbers of projection images, were
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compared. Figure 5.14(a) shows a slice reconstructed with 29 projections covering 34◦,

acquired at 80 kVp and 0.6 mAs, while figure 5.14(c) shows the same slice reconstructed with

85 projections over the same angular span. Increasing the number of projections results in

reduced ripple artifacts as shown magnified in figures 5.14 (b) and (d), corresponding to the

region boxed in red in figures 5.14(a) and (c), respectively. At the same angular coverage,

more projection views decreases the angular step between projection views and reduces the

under sampling of the sharp edges.

Figure 5.14: (a) shows a slice reconstructed with 29 projections over 34◦ angular span, while
(c) shows the same slice reconstructed with 85 projections over the same angular span. As
shown in the zoomed in region, outlined with a red box in (b) and (d), it can be seen that
the ripple artifacts decreased when the number of projection images is increased. The two
sets of images were acquired at the same total dose.
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Section 5.5: Discussions

In this chapter, a bench-top DCT system was constructed and used to investigate the

feasibility of a stationary DCT using a spatially distributed CNT x-ray source array. One

of the key questions investigated was whether the CNT x-ray source array is capable of

generating sufficient x-ray output for chest tomosynthesis. Projection images in current

commercial DCT systems are typically acquired at 120 kVp and 180 cm SID. The tube

output (mAs) is usually derived using automatic exposure control (AEC) from a scout view

image.[3, 9, 72, 27] For instance, the GE VolumRAD DCT system multiplies the mAs of the

scout view by 10, and uniformly distribute the derived mAs into 60 projection views.[3] The

scout view uses the standard PA CXR technique. Sabol calculated the mean technique of

1.9 mAs and 0.1 mGy incident air kerma for the standard PA CXR used in clinic from 294

adult cases.[3] Based on the method to derive tomosynthesis radiographic technique from

the scout view, the mean tomosynthesis technique is 0.32 mAs and 16.7 µGy incident air

kerma per projection, where the SID is 180 cm and the incident air kerma was measured 25

cm in front of the detector.[3] The incident air kerma is a more reliable reference since the

tube output in mAs used also depends on the kVp, tube filtration, and SID. For the CNT

source array used in this study, the incident air kerma per mAs at 100 cm was measured

as 74.47 µGy/mAs at 80 kVp. The phantom images in this study were acquired at 0.6

mAs per projection. Using this technique, assuming an average-sized patient with a chest

thickness of 25 cm and extending the s-DCT SID to 180 cm as current systems, the incident

air kerma is scaled to 18.6 µGy at the patient entrance plane (155 cm from source), which

is higher than the mean incident air kerma per projection in the tomosynthesis technique.

With larger patient, the mAs per projection needs to be increased accordingly. Therefore,

the x-ray output from CNT source array in this s-DCT system is comparable to current

clinical tomosynthesis systems. All 75 CNT sources in the tube can be operated stably at

this condition with reasonable source-to-source consistency in the cathode-gate voltage and

focal spot size.
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The x-ray source array was operated at 80 kVp in this study because that was the

maxi- mum design specification for this specific tube, which is why this study was done at

a lower energy than the energy used in commercial chest tomosynthesis systems (typically

120 kVp). However, CNT x-ray source arrays using the same technology with energies up to

160 kVp, with even higher power outputs, are now available for other imaging applications

from XinRay Systems.[59] Future plans include designing and building a dedicated source

array for chest tomosynthesis for higher x-ray energies, the feasibility of which has been

demonstrated through the 160 kVp source array developed at XinRay Systems.

This particular model of CNT source array has an elongated focal spot size of 2.5mm×

0.5mm FWHM by design, as opposed to the isotropic shape found in most commercial

DR systems (0.6 mm –1.2 mm nominal size).[1, 29, 28] The anisotropic focal spot leads to

asymmetric system MTF values in this system. The shape of the focal spot is determined

by the geometry of the CNT cathode and the focusing electron optics design. Smaller

isotropic focal spots can be achieved using a different electron optics, as demonstrated in

the CNT source array designed for breast tomosynthesis.[47] There is a tradeoff between the

focal spot size and the maximum tube power, which needs to be considered when designing a

dedicated source array for chest tomosynthesis. A detailed anode heat simulation is needed to

determine the optimum focal spot size based on the anode heat capability.2[51] For instance,

the tungsten anode can safely withstand 1.1 kW power in a 0.6 mm× 0.6 mm effective focal

spot size during a 250 ms pulse according to simulation.[47, 51] If the tube operates at 120

kVp, the source array can be safely operated at 9 mA tube current. Given the performance

of this tube, a slight reduction of the focal spot area is not expected to affect the ability to

generate the x-ray output needed for chest tomosynthesis.

Due to the short length of the source array used in this feasibility study, the phantom

and the detector were translated to mimic different imaging configurations. A longer x-ray

source array covering the entire angular range can be manufactured with this technology.

2Anode heat load analysis and simulation will be covered in detail in Section 6.4
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Preliminary results show that as the angular range of the image acquisition increases, the

system in-plane resolution (system MTF) remains the same, while the in-depth resolution

(FWHM of the ASF) improves greatly. These findings agree with previous studies on imaging

parameters of tomosynthesis, using both stationary source array and conventional moving

source commercial systems.[71, 5, 70] The system MTF, corresponding to the direction with

shorter focal spot size, resulted an in-plane resolution up to 3.4 cycles/mm at 10% MTF,

which is comparable to the 3.5 cycles/mm at 10% MTF in GE VolumeRAD system and

3 cycles/mm at 10% MTF in Shimadzu SONIALVISION tomosynthesis systems.[30, 29]

Moreover, the flexibility in the spatial configuration of the individual CNT sources allows new

tomosynthesis imaging geometries, beyond the linear scanning mode, which are mechanically

challenging for conventional systems. These novel imaging geometries may improve image in-

depth resolution, and reduce the image artifacts. A systematic investigation and evaluation

of the effects of imaging acquisition geometry and parameters on image quality in the s-DCT

system will be discussed in Chapter 7.

In this study, an anti-scatter grid was not used as is normally done in clinical settings,

because the main purposes were to investigate the feasibility of s-DCT and system require-

ments for CNT source arrays. Scatter reduction is an important issue in chest imaging.

For the s-DCT system using linear source array, conventional focusing anti-scatter grid with

matching focal length can be used to reduce the scatter signal in the images. Besides the

anti-scatter grid, a novel method using primary beam sampling apparatus (PSA) has been

proved to be effective.[73] Initial results of using PSA for scatter rejection of s-DCT will be

covered in Chapter 9.

Section 5.6: Summary

To sum up, this feasibility study was performed using a CNT x-ray source array that was

originally designed for a non-medical application. As such, the technical specifications of the

source are different from the x-ray tube used in commercial chest imaging systems including
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relatively low tube energy (kVp) and anisotropic focal spots. However, these differences

do not impact the conclusions of this study. The s-DCT system reported in this paper is

not the final system that would be for clinical use. One of the purposes of this study is

to find the system requirements for stationary chest tomosynthesis. Based on the results

obtained so far, a dedicated source array for chest tomosynthesis with improved design and

system performance is under development. The source array will be designed with longer

tube length to achieve optimized imaging configurations, higher operating kVp, isotropic and

smaller focal spots, and higher tube current output that allows for fast image acquisition.
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CHAPTER 6: Characterization of s-DCT and Related Physics Problems

Section 6.1: Overview

Chapter 5 discussed the feasibility of s-DCT using CNT x-ray source array. A bench-

top proof-of-concept system was constructed using an existing source array. However, as

discussed in section 5.5, there are some problems needing further discussion. The purpose

of this chapter is to provide more characterization of the source array and some discussion

on related topics. Sections 6.2 and 6.3 will study the source stability and the extra-focal

radiation of the source array in the current s-DCT system. Section 6.4 will discuss the anode

heat management issue for CNT x-ray sources. Finally, section 6.5 will cover the geometry

calibration procedures for the s-DCT system.

Section 6.2: Source Stability

6.2.1: Purpose

The stability of the CNT x-ray source is always an important indicator of the usefulness of

the technology. Previous studies have characterized the CNT x-ray source stability for s-DBT

system using high-current accelerated lifetime testing.[47, 74] The conclusion was that the

CNT emitters show good long-term stability for the task of s-DBT imaging. In Section 5.4,

the stability of the CNT source array in the s-DCT prototype system was characterized.

Preliminary results have shown good stability over 400 scans in a 4-month long period.

The purpose of this section is to further evaluate the source stability of the s-DCT system.
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6.2.2: Methods

Key data that characterize how stable the tube operates, such as current output per

source, gate-cathode voltage per source, and beam on time, were recorded in a database over

a 2-year period. During the past two years, the source array was used to carry out all studies

covered in this dissertation. The source array was operated on a daily basis, from several

scans to hundreds of scans per day. By thoroughly analyzing this data, the stability of the

CNT x-ray source was characterized.

Stability of the x-ray pulse

The stability of the x-ray pulse refers to how stable the x-ray output was during one

pulse. For x-ray sources, the x-ray output is directly related to the tube current per x-ray

source. Therefore, the anode current waveform was measured and monitored to characterize

the stability of the x-ray output in one pulse.

The tube current waveform was measured using a current probe (Tektronix TCP A300

AC/DC Current Probe, Tektronix Inc., Beaverton, OR). The probe senses the magnetic field

generated by the passing current. By sampling the field at high frequency, the waveform of

the AC current can be measured. The probe was connected to an oscilloscope (Tektronix TDS

3014C Digital Phosphor Oscilloscope, Tektronix Inc., Beaverton, OR) so that the waveform

was captured and saved for analysis. However, the current waveform was not monitored each

time due to equipment availability.

Long term stability of the CNT x-ray sources

The current output of the CNT cathode is primarily determined by the voltage between

the gate electrode and the cathode (Vgc). In the long run, the CNT cathode degrades. Thus

to keep the same current output, the Vgc needs to be adjusted accordingly. However, the

degradation of the cathode varies from source to source. The Multi Pixel Electronics (MPE)

switching system used in the s-DCT prototype system can automatically accommodate the
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Figure 6.1: The tube current waveform for a 150 ms pulse. The current was set to output 5
mA. The waveform shows stable current output and accurate timing.

change of Vgc for each cathode, as long as the change is slow and gradual. The long-term

stability of the source is characterized as the change in Vgc over time.

For each tomosynthesis scan, a customized LabVIEW program was used to log the source

on time, tube current, and Vgc for each source automatically into a database. By comparing

the change of the Vgc needed for outputting the same tube current, the trend and stability

were measured.

6.2.3: Results: Stability of the x-ray pulse

The tube current waveforms were measured and monitored. The waveform shows stable

current output during the x-ray pulse and an accurate pulse width. A representative wave-

form is shown in Figure 6.1. For pulses with a relatively long width, there is a slight increase

in the current within the same pulse. The pattern is reproducible from pulse to pulse. This

is suspected to be due to the deformation of the heated gate during the pulse. However,

for the short pulses, the current remains the same during the pulse. Figure 6.2 shows the

current waveforms for 5 pulses from 5 different sources. The waveforms show consistent

current output from source-to-source.
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Figure 6.2: The tube current waveform for 5 mA current and 33 ms pulse width from 5
different CNT sources. The waveforms demonstrate the consistency between sources.

6.2.4: Results: Long term stability of CNT x-ray sources

The long term stability of CNT x-ray sources were measured. The gate voltage (Vgc) and

tube current (Ia) were plotted against time for 5 representative sources across the source

array (from one end to the other). They were source #11 (Figure 6.3), #20 (Figure 6.4),

#24 (Figure 6.5), #29 (Figure 6.6), and #35 (Figure 6.7). In each figure, the top figure

plots the Vgc and Ia change over the number of scans, while the bottom figure plots the

changes against accumulated mAs. The data were recorded between February 21th, 2013

and November 5th, 2014.

All sources show good long term stability, with less than 100 V increase in Vgc to maintain

the same tube current output. There were some sources being used more frequently than

the others. For example, source 20 (Figure 6.4), which is locates in the center of the source

array, was used the most, with over 9900 scans and total output of 1575 mAs. Nevertheless,

after such intensive use for over 2 years, the source still output stably with less than 100 V

increase in Vgc.

However, for each source, there was a sudden increase in Vgc, as pointed out by the red

arrows, due to a tube arcing event that happened on July 29th, 2014. After the arcing,
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Figure 6.3: Stability measure for source #11.
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Figure 6.4: Stability measure for source #20. Source 20 is the most used source in the source
array, with over 9,900 scans and accumulated output of 1,575 mAs.
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Figure 6.5: Stability measure for source #24.
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Figure 6.6: Stability measure for source #29.
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Figure 6.7: Stability measure for source #35.
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nearly all sources experienced a jump in Vgc. Source conditioning was performed for each

source. After reconditioning of the sources for several weeks, the Vgc recovered for all sources.

However, there was still a permanent increase in Vgc for almost all sources. The magnitudes

of the increase in Vgc were different from source to source, suggesting the damage to the

sources was not equal.

One possible explanation for this phenomenon is briefly discussed here. Arcing damages

the carbon nanotubes, decreasing the length of CNT emitters and the total number of

working emitters. Thus, after the arcing, the Vgc needs to be much higher to extract the same

amount of electrons from the damaged cathodes. Figure 6.8 shows an SEM image of a typical

CNT cathode used in CNT x-ray sources. Not all CNTs are pointing outward, which is the

direction favored for field emission. The conditioning procedure activated CNT emitters

that were not emitting electrons previously, increases the number of emitters again, thus

the Vgc is recovered after several conditions. However, those newly activated emitters need

a stronger electric field (i.e. higher Vgc) to extract the same amount of current. Therefore,

there was a permanent increase in Vgc.

Despite the arcing event, the data still show good long term stabilities for all CNT x-ray

sources.

6.2.5: Discussion and Conclusion

The characterization of the source stability in this section suggests the CNT x-ray sources

have good consistency in x-ray output from source to source. The long term data from 2 years

of operation suggests stability and robustness of the CNT sources for the task of s-DCT.

Source 20 was used approximately 10,000 times, with a total output over 1500 mAs,

without significant increase in Vgc. Based on this data, the clinical performance of s-DCT is

estimated as follows. For example, in the coming clinical trial for an average sized patient

using the s-DCT imaging protocols,1 we determined the phototime per projection is about

1More details will be covered in Chapter 10.
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Figure 6.8: SEM image of a CNT cathode typically used in CNT x-ray sources.
[74]

0.3 mAs (5 mA × 60 ms). Based on this radiographic technique, we can project that the

source can reliably work for 5,000 (average sized) patients. Consider 10 patients per work day

for tomosynthesis exam and 250 work days per year. This readily gives 2 years of operation,

with approximately 100 V increase in Vgc.

Section 6.3: Extra-focal Radiation of the s-DCT

6.3.1: Purpose

The purpose of this section is to discuss the extra-focal radiation of the linear source

array (Model 2008-08-L75-002, XinRay Systems) that was used in the feasibility study of

stationary chest tomosynthesis (Chapter 5). This characterization is related to the radiation

safety of an imaging system.

The extra-focal radiation, or off focal spot radiation, can be caused by the geometric

relationship of focal spot and collimators, as illustrated in Figure 6.9. For an x-ray system,

the collimator aperture assembly is designed to collimate the x-ray to the detector, if the
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focal spot is an ideal point. However, the finite size of the focal spot allows part of the x-ray

to shine onto the region outside the the detector. This radiation is the extra-focal radiation.

It can also be caused by electrons bouncing back from anode then hitting the other part of

the x-ray tube, and by secondary radiation from the primary beam. The extra-focal radiation

is useless for imaging, but also gives patients extra radiation exposure. It is a convolution of

many factors, such as focal spot size, focal spot intensity distribution, collimator position,

collimator attenuation coefficient, etc. The IEC 60601-2-54 standard states:

Zone of intersection of all straight lines that pass through all radiation apertures

of the x-ray source assembly, with a plane normal to the reference axis at 1 m

from the focal spot shall not extend more than 15 cm outside the boundary of

the largest selectable X-ray field.

Figure 6.9: Zone of intersection of all straight lines that pass through all radiation apertures
of the x-ray source assembly, with a plane normal to the reference axis at 1m from the focal
spot shall not extend more than 15 cm outside the boundary of the largest selectable X-ray
field.
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The extra-focal radiation of the CNT source array was evaluated by simulation and exper-

iment. The simulation was performed based on the measured size and intensity distribution

of the focal spot in the source array. In the experiment, the detector reading was used as

the quantitative measurement of the x-ray dose.

6.3.2: Methods

Brief system description

As described in section 5.3.1, the source array (Model 2008-08-L75-002, XinRay Systems)

contains 75 linearly distributed x-ray focal spots with a 4 mm pitch. The tube was designed to

have anisotropic focal spot, with the elongated side along the tube scanning direction.2 The

average measured focal spot size was 2.5 mm×0.5 mm. The focal spot size was measured

using the pinhole method described in European Standard EN-12543-2. The pinhole is

400 µm in diameter and 2 mm thick. Figure 6.10 shows the projection image of a pin-

hole acquired at 80 kVp and 5 mA (6.10a), the intensity distribution of the pinhole image

(6.10(b)), and the 2-D Gaussian fit of the normalized focal spot distribution (6.10(c)) with a

coefficient of determination (R2) of 0.9923 , where the full width at half maximum (FWHM)

of the focal spot intensity in both x− and y− direction were used as the measured focal spot

size.

The focal spot size of the tube was also measured at 80 kVp at various anode currents,

as shown in Table 6.1. It was also measured at 5 mA at various anode voltages, as shown

in Table 6.2. Table 6.1 shows that the focal spot size in the y-direction (FSSy) changes

little as anode current changes, while the focal spot size in the x-direction (FSSx) improves

approximately 20%. This is due to the lack of focusing structure in the source array in

the x-direction. A similar trend is also observed in Table 6.2. As anode voltage increases

from 50 kVp to 80 kVp, the FSSx improves from 3.5 mm to 2.5 mm at the higher anode

2For consistency, we will notate the x− direction as the tube scanning direction, and y− direction as the
direction perpendicular to the source array, as defined in Chapter 5
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Figure 6.10: (a) A typical projection image of the pinhole acquired at 80 kVp and 5 mA.
(b) The intensity distribution of the pin-hole image. The X and Y in the figure show the x
and y coordinates in the image, in the unit of pixels. (c) The normalized intensity profile
and 2D Gaussian fit. The coefficient of determination (R2) of the fit was found to be 0.9923.
The FWHM of the intensity in both x− and y− direction are used as focal spot size.

voltage. There is a higher electric field between gate and anode, which provides more focusing

to electrons in the x-direction. This trend of changing FSSx under different operating

parameters is due to a lack of focusing structure in this particular tube. If the dedicated

source array had both x- and y- direction focusing structures, we would expect consistent

focal spot sizes at different operating parameters, as for FSSy in this tube.

Table 6.1: Focal spot size measured at 80 kVp with various anode current.

Current (mA) 5 4 3 2 1

FSSx (mm) 2.5 2.4 2.3 2.2 2.1
FSSy (mm) 0.54 0.57 0.58 0.57 0.57

Table 6.2: Focal spot size measured at 5 mA current at various anode voltages.

Voltage (kVp) 50 60 70 80

FSSx (mm) 3.5 3.1 2.8 2.5
FSSy (mm) 0.57 0.57 0.57 0.54

However, since we operate the s-DCT at 80 kVp and 5 mA for most studies, the extra
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focal radiation is evaluated based on focal spot intensity distribution and focal spot size

measured at 80 kVp and 5 mA.

Extra-focal radiation simulation setup

Based on the experimentally measured focal spot intensity distribution, an extra-focal

radiation simulation was performed. The simulation was run using MATLAB R2010a.

In the simulation, a square detector size of 400 mm was used, and the center of the

detector was set up as the origin O of the coordinate system. The focal spot had a size of

2.5 mm× 0.5 mm with a normalized 2D Gaussian distribution of

I(x, y) =
1

2πσxσy
e
− (x−µx)2

2σ2x
− (y−µy)2

2σ2y (6.1)

where,

σx =
1

2
√

2 ln 2
FWHMx = 1.06 mm (6.2)

σy =
1

2
√

2 ln 2
FWHMy = 0.21 mm (6.3)

and µx and µy are the coordinates of the center of the focal spot that were being simulated.

For simplicity, the simulation was performed for the central beam in the source array, and

assuming the central beam was aligned to the center of the detector, i.e. µx = 0 and µy = 0.

However, µx and µy can always be changed to any value to simulate the radiation dose profile

on the detector for other non-central sources in the source array.

A source-to-imager distance (SID) of 1000 mm (1 m) was used for simulation. A collima-

tor was placed between the focal spot and the detector to collimate the x-ray beam to the

detector, as shown in the geometric setup in Figure 6.11. The source-to-collimator distance

was n, and the collimator-to-detector distance was m. By changing the ratio of m and n, the

extra-focal radiation on the detector plane changes accordingly. We define the magnification
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factor, Mag, as

Mag =
m

n
(6.4)

Qualitatively, the closer the collimator was to the source (i.e. the higher the Mag), the more

extra-focal radiation was on the detector plane.

Figure 6.11: Simulation geometry. The source-to-detector distance was 1000 mm. A colli-
mator was put between the source and detector to collimate the beam right to the detector.
The source-to-collimator distance was n, while the collimator-to-detector distance was m.

Based on the fact that the focal spot of this source array is anisotropic, one would expect

the extra-focal radiation would be worse on the x-direction. Therefore, for simplicity, a 1D

simulation of the extra-focal radiation was perform in the x-direction to evaluate the worst

scenario.

1D dose profile simulation with ideal collimator

This section will discuss the 1D extra radiation simulation with an ideal collimator. By

ideal we assume the collimator follows Assumption 1

Assumption 1 The collimator is designed to collimate the x-ray beam from an ideal point

source, or the center of the focal spot, right to the detector. The collimator is made of
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Figure 6.12: The focal spot was sampled into small bins, the intensity of each bin determined
from the focal spot intensity of the Gaussian distribution.

material that can 100% block x-ray.

The focal spot will generate the x-ray radiation due to Bremsstrahlung radiation, we

assume

Assumption 2 For each point inside the focal spot, the radiation generated at this point is

proportional to the electron intensity at this point.

Assumption 3 There is no interaction between x-ray photons and the collimator material,

or x-ray window, i.e. no scattering photons that may contribute to the extra-focal radiation.

The focal spot was sampled into small bins, then assign an intensity to each bin based on

the focal spot Gaussian distribution, as illustrated in Figure 6.12. For the x-direction, the

FWHMx was 2.5mm, a larger focal spot on the focal spot plane (±50 mm) was chosen to

simulate the full focal spot distribution profile. Similarly, the detector plane was sampled into

small bins to calculate the dose profile. Each bin on the detector can receive x-ray radiation

from multiple bins in the focal spot plane. The intensity of x-ray in this bin was calculated

by summing all radiations it received. The dose profile was calculated by combining the

results of all the bins at the detector plane. The dose profile was then normalized to its

maximum intensity, so that the intensity at the detector center would be 1. The detailed

algorithm is shown in Algorithm 1.
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Algorithm 1 Algorithm for calculating extra-radiation dose profile in 1D with ideal colli-
mator

. %comment: Init focal spot array containing focal spot bins and detector array
contains the detector bins. The size of the arrays are calculated by dividing the length to
the bin size of focal spot and detector, respectively%
focalSpot[]= init(focal spot length,focalBinSize)
detector[]=init(detector length, detectorBinSize)
for i = 1 to focalSpot.length do

. %comment: For each focal spot bin, determine the focal spot bin intensity%
focalSpot[i] = intensity(focalSpot[i].x)
. %comment: calculate the range of the detector bins that can receive x-ray from bin

focalSpot[i]%
idx = detectorBinBegin(focalSpot[i].x,Mag, detectorBinSize)
idxend = detectorBinEnd(focalSpot[i].x,Mag, detectorBinSize)
for j = idx to idxend do

. %comment: For each detector bin j, calculate the intensity, corrected by distance, for
focal spot bin i, then add the intensity%

intensity = doseIntensity(focalSpot[i], focalSpot[i].x, detector[j].x)
detector[j] = detector[j] + intensity

end for
end for

. % comment: Normalize the detector dose intensity profile to the maximum of the
detector intensity%
detector[] = detector[]/max(detector[])

The dose intensity profile was then analyzed to get the width of extra-focal radiation

outside the detector, w2. The IEC 60601-2-54 standard requires the w2 < 15 cm; however, it

does not state a specific requirement on how small the dose should be within w2. In general

sense, one would expect the dose as small as possible. Therefore, 0.1% (3-order magnitude)

of the maximum dose was used as a criteria to determine the w2, which is a reasonable

estimation.

1D dose profile simulation with real collimator

The previous section described the algorithm to simulate the extra-focal radiation with

an ideal collimator. However, this ideal collimator can not exist in reality. The material that

makes the collimator can not 100% block x-rays, especially with high energy x-rays. The

higher the energy of the x-ray photon, the lower the attenuation coefficient is, as illustrated
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in Figure 6.13 of the attenuation coefficient of lead.

Therefore, a modified simulation algorithm, (Algorithm 2) was used to take the attenu-

ation coefficient into consideration. The algorithm was based on Algorithm 1, but instead

of calculating the beginning and end index of bins on the detector that can receive x-ray,

it loops over all possible paths that connect the focal spot bins and detector bins. It then

examines whether there is collimator material in the path and calculates the thickness of the

material, then the intensity of the x-ray was corrected with the attenuation as

I ′ = I0e
−µ·x (6.5)

where the µ is the x-ray attenuation coefficient, and the x is the thickness of the material

the x-ray passing through.

Figure 6.13: Attenuation coefficient of lead. Source: NIST database

However, since x-ray photons with different energy have different attenuation coefficients,

unless we know the spectrum the of the x-ray, it would be hard to accurately calculate

the attenuated x-ray intensity. Therefore, we assumed a monochromatic x-ray of 80 keV

energy, so that we could simulate the worst extra focal radiation scenario. We modified the

simulation model to include a lead collimator of 6.35 mm (0.25 in) in thickness and with a
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opening that collimates x-ray to the detector. We assumed there was no scatter interaction

between x-ray photons and the collimator. Therefore, the modified Algorithm 2 is:

Algorithm 2 Algorithm for calculating extra-radiation dose profile in 1D with ideal colli-
mator

. %comment: Init focal spot array containing focal spot bins and detector array
contains the detector bins. The size of the arrays are calculated by dividing the length to
the bin size of focal spot and detector, respectively%
focalSpot[]= init(focal spot length,focalBinSize)
detector[]=init(detector length, detectorBinSize)
for i = 1 to focalSpot.length do

focalSpot[i] = intensity(focalSpot[i].x)
for j = 1 to detector.length do

. %comment: For each focal spot bin i and detector
bin j, use function checkpath(i, j) to calculate the thickness of lead in between the path,
function will return 0 if the path does not cross collimator%

thickness = checkpath(i, j)
intensity = doseIntensity(focalSpot[i], focalSpot[i].x, detector[j].x) ∗ exp(−µ ∗

thickness)
detector[j] = detector[j] + intensity

end for
end for

. % comment: Normalize the detector dose intensity profile to the maximum of the
detector intensity%
detector[] = detector[]/max(detector[])

The 3-order magnitude drop criteria was still used to determine w2.

Extra-focal radiation experimental setup

An extra-focal radiation experiment was set up to validate the simulation model and

measure the actual extra-focal radiation. The experimental setup is shown in Figure 6.14.

A 6.35 mm (0.25 in) lead sheet was put in front of the tube x-ray window as an collimator.

A 6.35 mm (0.25 in) square hole served as the aperture to collimate the x-ray beams. The

aperture was aligned to one of the sources in the source array. A detector (Varian 3030D)

was used to acquire images; the detector had 300 mm × 300 mm field of view and 190 µm

pixel size. The detector was placed 1060 mm away from the focal spot, and the center was

roughly aligned to the center of the source array.
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Figure 6.14: Experimental extra-focal radiation measurement setup. A lead sheet was put
in front of the tube window, a square aperture was open to collimate x-ray beams. Two 12.7
mm (0.5 in) thick tungsten block were placed in front of the aperture as extra collimator
along x-direction, due to the longer focal spot size in x-direction. The opening between
tungsten block was 5 mm.

The detector reading of the pixels was used as an indicator of radiation dose. A line

profile across the image of the collimator was used to determine how fast the dose drops off

near the edges of the collimator. Because the focal spot size was larger along the x-direction,

to measure the dose profile in the x-direction using such a small detector, two tungsten

blocks of 12.7 mm (0.5 in) thickness were placed in front of the square aperture to narrow

down the opening in the x-direction. The narrowed aperture was 5 mm.

One hundred images, together with 100 dark field images, were acquired so that the

images could be averaged, reducing the effect of image noise. Each image was acquired at

80 kVp and 5 mA with a 30 ms pulse width. The images were corrected using the dark

field images and averaged. Line profiles across the aperture in both x− and y− direction

were used to measure how fast the dose drop off at the collimator edge. To study the worst

scenario, the profile along the x-direction was analyzed.
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6.3.3: Results

1D dose profile simulation for ideal collimator

Simulations of the dose profile along the x-direction using an ideal collimator were per-

formed for various collimator positions, i.e. for different collimator magnification factors,

Mag. Figure 6.15(a) shows the normalized dose profile on the detector plane (1000 mm

away from the source). The dose was normalized to the maximum intensity (at the center

of detector). The detector width was 400 mm, ranging from -200 mm to 200 mm. The

collimator was placed 38.5 mm away from the source, which was reasonably close to the

realistic design, resulting in a Mag = 25 in the simulation. As shown in the figure, the dose

falls off quickly after the detector edge. The same dose profile was plotted in log scale in

Figure 6.15(b). From the plot, the dose magnitude drops to the 10−3 order of the peak dose

in 76.6 mm, which is less than the 15 cm requirement by IEC.

Figure 6.15: (a) Normalized dose profile on the detector plane, the detector width is 400 mm,
the collimator magnification factor Mag is 25, which is close to realistic design. With higher
magnification, the intensity drops more slowly off the detector edge. (b) The normalized
dose intensity plotted in log scale. The plot suggests the extra-focal radiation drops to the
10−3 order within 76.6 mm, which is less than the required 15 cm.

Table 6.3 summarizes the w2 for the dose to drop to the 10−3 order for various collimator

magnification factors. The results in the tables show that the higher the collimator mag-

nification factor, Mag, is (the closer the collimator is to the source), the slower the dose
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Table 6.3: w2 for various collimator magnification factor Mag using ideal collimator

Mag 1 5 6 7 8 9 10 15 19 20 25 30

w2(mm) 3.1 15.5 18.5 21.4 24.6 27.6 31.0 46.0 58.9 61.3 76.6 91.9

drops to the 10−3 order mark (the wider the w2). For a typical x-ray tube, the collimator is

very close to the x-ray exit point. For Mag = 30, the source-to-collimator distance is 32.3

mm while the source-to-detector distance is 1000 mm, which is very close to a realistic x-ray

tube. The dose profile is shown in Figure 6.16, the w2 when dose drops to 10−3 order is 91.9

mm, which is less than the 15 cm requirement.

The simulation model predicts that the dose drops very quickly off the detector edge,

which is expected. However, this model with the ideal collimator does not consider the

limited attenuation effect of the collimator, which may be inaccurate when higher energy
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Figure 6.16: Normalized dose profile for Mag = 30, the dose drops to 10−3 order in 91.9 mm,
which is less than the 15 cm requirement.
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photons are involved. Therefore, a modified simulation algorithm was performed to simulate

the attenuation of the collimator.

1D dose profile simulation for real collimator

The extra-focal radiation dose profile with a 6.35 mm (0.25 in) lead collimator placed at

various source-to-collimator distances were simulated. The simulation evaluates the worst

scenario, which assumes a monochromatic x-ray of 80 keV. The attenuation coefficient of

lead at 80 keV was used, which is µ80keV = 2.74/mm. Table 6.4 summarizs the w2 measured

at 10−3 order for all simulated magnification factors. Figure 6.17(a) shows the simulated

dose profile plotted in log scale for magnification factor Mag = 25, where the source-to-

collimator distance is 38.5 mm. The dose still drops very fast off the detector edge, as the

extra-focal radiation drops to 10−3 order in w2 = 131.8 mm, which is still less than the 15

cm requirement.

Table 6.4: w2 for various collimator magnification factor, Mag, using 1/4 in lead collimator

Mag 1 5 10 15 20 25 30

w2(mm) 5.7 24 48.3 74.3 102.3 131.8 164.8

The two simulation models using ”ideal” and ”real” collimators were compared at the

same parameters, and the simulated dose profiles are plotted in Figure 6.17(b). Both sim-

ulations are done with the same collimator-to-source distance. The comparison shows that

the dose drops more slowly in the worst scenario (80 keV x-ray photon and 6.35 mm lead

collimator) than in the ”ideal” collimator, as the w2 were 131.8 mm vs. 76.6 mm. The

true extra-focal radiation dose profile should be between these two simulated profiles. Even

though the dose drops more slowly in the worst case scenario, the w2 was still less than

the required value of 15 cm, since the 6.35 mm lead sheet blocked most of the x-rays.3

3Only e−2.74×6.35 = 7.2× 10−8 = 7.2× 10−6% x-ray photons can pass through the 6.35 mm thick lead.
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Figure 6.17: (a) Extra-focal radiation dose profile for Mag = 25 with 1/4 in lead collimator.
The w2 is 131.8 mm, which is less than the 15 cm requirement. (b) Comparison of ”Ideal”
collimator and ”real” collimator for Mag = 25. The blue curve shows the simulated dose
profile with ”ideal” collimator, which can block all x-rays. The green curve shows the simu-
lated profile with a 6.35 mm lead collimator with 80 keV monochromatic x-rays. The ”real”
scenario shows slower dose drop. However, both w2s are less than the 15 cm requirement.

The widening of the profile was mostly due to the relatively short path at the edges of the

collimator opening, which blocks less x-ray photons.

Due to the relatively long focal spot size in the x-direction and relatively small detec-

tor in experimental setup, a narrower tungsten collimator was implemented. The tungsten

collimator was 5 mm wide, and was collimated the exposure area to 57.5 mm wide on the

detector (measured width in experiment). To compare the simulation results with the exper-

imental measurement, another set of simulations were performed using a narrower tungsten

collimator. The simulation used a 12.7 mm (0.5 in) tungsten block as a collimator. In this

set of simulations, to evaluate impact of the magnification factor, we assumed the collimated

exposure width was kept same when changing the magnification factor.4 Simulations were

performed at various magnification factors, Mag. The w2 at 10−3 order were measured and

listed in Table 6.5.

4The width of the tungsten collimator opening changes with the magnification factor to maintain the same
collimated area.
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Table 6.5: w2 for various collimator magnification factors, Mag, using 1/2 in tungsten
collimator

Mag 1 5 10 10.5 15 20 25 30

w2(mm) 4.0 19.4 41.0 43.5 66.5 97.2 133.8 178.8

Experimentally measured dose profile

Projection images of the 6.35 mm thick lead collimator were collected. Due to a larger

focal spot size in the x- direction and the small detector, a narrower tungsten collimator

was implemented to narrow the beam in order to measure the radiation distribution outside

the collimated area, as shown in Figure 6.14. The tungsten block was 13.7 mm thick,

had a sharp edge, and was separated by 5 mm. The detector pixel reading was used as

a quantitative measure of the imaging dose. To reduce the imaging noise, 100 frames of

collimator images were acquired. 100 frames of the dark field images were also acquired to

perform an offset correction to the collimator images. Each image was acquired at 80 kVp

and 5 mA anode current in a 30 ms pulse. Figure 6.18(a) shows the corrected projection

image of the collimator. As discussed in previous sections, analysis was focused on the dose

profile in the x-direction. Figure 6.18(b) shows the raw pixel count. The FWHM of the raw

profile was measured and used to determine the magnification factor, Mag, as

Mag =
FWHM

5 mm
− 1 (6.6)

where the 5 mm is the width of the opening of the extra tungsten collimator. By normalizing

and plotting the dose profile on a log scale, the w2 where the dose drops to the 10−3 order

was measured. To compare to the simulation results, the w2 at 10−1 and 10−2 orders were

also measured.

The measured FWHM of the dose profile was 302 pixels, which was 57.38 mm in width.

The calculated collimator magnification factor was 10.47. The normalized dose profile is
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Figure 6.18: (a) Projection image of the lead collimator. The dose profile along the x-
direction was measured, as marked by the red line. (b) The raw pixel number profile of the
collimator image along the x-direction (the red line shown in (a)).

plotted in log scale in Figure 6.19. As shown in the figure, the dose drop rate decreases. The

dose never dropped to 10−3 order as expected. Table 6.6 lists the measured w2 where dose

drops to the 10−1 order and 10−2 order.

Table 6.6: Measured w2 for dose to drop to the 10−1 order and 10−2 order in the x direction.

Order 10−1 10−2 10−3

w2 (mm) 18.24 59.47 N/A

Comparison of experiment and simulation results

The measured extra-focal radiation dose profile was compared to the simulated dose

profile. Figure 6.20 shows the normalized dose in log scale for the experimentally measured

dose, 6.20(a), and the simulated dose, 6.20(b) and 6.20(c). The simulations used the same

condition: 1060 mm SID, a 13.7 mm tungsten collimator with 5 mm opening, and Mag =

10.47. The w2 were also measured from the dose profile at the 10−1, 10−2 and 10−3 orders

of dose level. Table 6.7 summarizes the measured w2 of the experimental dose profile and
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Figure 6.19: Experimentally measured normalized dose profile plotted in log scale. The dose
does not drop to the expected 10−3 order.

simulated profile, and the relative error for all three magnitude orders. The simulation

model 0 (Simu. M0, Figure 6.20(b)) refers to the the algorithm assuming ”ideal” collimator,

while the simulation model 1 (Simu. M1, Figure 6.20(c)) is the worst scenario assuming a

monochromatic x-ray of 80 keV.

Table 6.7: Comparison of the experimentally measured w2 and simulated w2 using both
simulation models.

Order Exp. (mm) Simu. M0 (mm) Error (%) Simu. M1 (mm) Error (%)

10−1 18.24 13.5 −26.0 20.9 +15.1
10−2 59.47 24.5 −58.7 33.8 −43.0
10−3 N/A 32.5 N/A 43.5 N/A

As shown in the figure, the experimentally measured dose profile still shows a fast drop
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Figure 6.20: (a) Experimentally measured dose profile in the x-direction. The dose drop rate
decreases dramatically at approximately 10−1.5 order. (b) Simulated dose profile using an
ideal collimator (Model M0) for the same condition. (c) Simulated dose profile using a 13.7
mm tungsten collimator, and 80 keV monochromatic x-rays (Model M1).

in dose at the edges of collimator. The drop rate:

Rate =
d

dx
logDose (6.7)

decreases as |x − x0| increases, where x0 is the center of the collimated area. At the dose

level of the 10−1.5 order (red circled region in Figure 6.20(a)), the change in the drop rate

becomes significant. However, the drop rate in the simulated cases, both using model M0

and M1, stay almost the same as |x− x0| increases. Due to this unexpected dose drop rate

in the experimentally measured dose profile, the w2 at 10−3 order was not measured in the

experiment.

By comparing the measured w2 at different dose levels for experiment and two simulation

models (Table 6.7), we can see the experimentally measured w2 at 10−1 order was 18.24 mm,

which was in between the simulation results of 13.5 mm in ideal situation (model M0), and

21.0 mm in the worst scenario (model M1). As briefly discussed before, the real extra-focal

radiation dose profile should be between the results from simulation models M0 and M1.

The measured results agree with the previous discussion.

However, at the order of 10−2, the experimentally measured w2 was 59.47 mm, which was
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greater than both the simulated w2 of 24.5 mm (model M0) and 33.9 mm (model M1). The

discrepancies between the simulation and experiment results were due to the changed dose

drop rate measured in experiment. Efforts to explain these discrepancies will be discussed

in the following sections.

Discussions on experiment and simulation discrepancy

Discrepancies between simulation and experimental results were found. This section

discusses the possible reasons for these disagreements.

By looking at the experimentally measured dose profile, as shown in Figure 6.19, it can

be seen that the dose profile becomes noisy when |x − x0| increases. Since the detector

reading was a quantitative measure of the dose, the detector noise may be the reason for the

noisy signal. The detector noise was evaluated by measuring the standard deviation (σ) of

a small region in the dark field images, already an average of 100 dark field images in order

to reduce the noise. The region of interest was near the region showing noisy signal. The σ

was measured several times, and the average standard deviation was used as a measurement

of the detector noise. Table 6.8 lists the measured noise and the average value. The average

noise was σ = 7.19.

Table 6.8: Summary of measured noise in the dark field images.

1 2 3 4 Average

σ 7.18 7.25 7.35 6.99 7.19

The raw dose profile in Figure 6.18(b) shows that the maximum dose (measured in

detector counts) is ∼ 2300. Comparing the measured noise and the peak dose, the order of

the noise is about

O(Noise) ∼ log(
7.2

2300
) ∼ −2.5 (6.8)

which was about the same order where the noisy signal showed in the measured dose profile.
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Moreover, since the minimum count that the detector can readout is 1, we have a measuring

limit of the detector of

O(limit) ∼ log(
1

2300
) ∼ −3.4 (6.9)

Combine that with the noise level of the detector, we can say any dose measurement around

the order of 10−3 using this detector is inaccurate. Therefore, we cannot use the experimental

method described in this section to accurately evaluate the extra focal radiation up to 10−3

order. However, the experimental methods still can be used to evaluate the extra-focal

radiation up to 10−2 order, given the fact that the noise only kicks in until the 10−2 order.

Now, the focus shifts to finding out the reasons causing the discrepancies between sim-

ulation and experiment at 10−2 order. Noticing the red circle region in the experimentally

measured dose profile (Figure 6.20(a)), there is a ”hump” added to the dose profile that

decrease the dose drop rate. This ”hump” is the cause of the discrepancy of the simulation

and experiment. Possible explanations for this ”hump” could be the leakage radiation of

the tube, the penumbra effect at the collimator corners, or scattering x-rays. All will be

discussed, respectively, in the following sections.

Leakage radiation of the tube

The CNT source array has leakage radiation at 80 kVp. The leakage radiation can be

reduced with further conditioning of the tube. The leakage radiation may introduce extra

radiation and cause the discrepancy between the simulation and experiment.

The leakage radiation was constant when the anode reached 80 kVp. To isolate the

leakage radiation, true dark field images and dark field images with the anode at 80 kVp

(dark field image + leakage radiation image) were acquired. By subtracting the true dark

field image from the dark field images with anode on, the leakage radiation images can be

separated. Figure 6.21 shows the subtracted leakage radiation image and a line profile across

the collimated area (red line). The image show a bright spot in the collimated area due to

the leakage radiation of the tube. The line profile was averaged over a strip of 11 lines to

94



Figure 6.21: (a) Subtraction image of the leakage radiation. The bright collimated area
shows the leakage radiation. The red arrow marks the analyzed line profile. (b) A line
profile across the collimated area. The leakage radiation contributes little radiation.

reduce noises. From the line profile, an intensity of ∼ 1.5 was measured at the peak in

the collimated area, and almost 0 outside the region, since the leakage radiation is small

and most of it has been attenuated by the collimator. Thus, the leakage radiation barely

contributes to the experimentally measured dose profile, as the leakage radiation was on the

order of

O(leakage) ∼ log(
1.5

2300
) = −3.2 (6.10)

Therefore, the tube leakage radiation was not the reason of the discrepancy between sim-

ulation and experiment. The leakage radiation also contributed little to the extra-focal

radiation.

Penumbra effect of the collimator

The penumbra effect of the collimator usually happens at the corner of the collimator,

as illustrated in Figure 6.22, where the collimator material was thin in the x-ray path, thus

the x-ray photons cannot be fully attenuated. Cutting the edges of collimator precisely can

prevent such an effect. However, in the experimental setup, there is no access to a dedicated

collimator, so a tungsten block with a sharp edge was used as a collimator instead. This
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may have caused the penumbra effect.

Figure 6.22: (a) Illustration of the penumbra effect caused by the collimator. (b) A simulation
with a low attenuation collimator.

In the second simulation model, this effect was already taken into account. To form

a penumbra as strong as was measured in the experiment, the collimator must be made

using a material with very low attenuation coefficient or very thin material, as illustrated in

Figure 6.22(b). An arbitrary, small attenuation coefficient of µ = 0.5/mm was assigned to a

6 mm thick collimator at Mag = 15 to demonstrate the idea.

Therefore, the penumbra effect of the collimator was not the reason of the discrepancy

between simulation and experiment.

Scattered x-rays

The interactions between x-ray photons and the collimator material cause scattered x-

rays, which could contribute to the ”hump” in the extra-focal radiation measurement. X-ray

scattering was not included in the simulation model; therefore, this may be the source of

discrepancy. If the scattered x-ray intensity can be measured, then the hypothesis can be

verified.

However, direct measurement of scattered x-rays is difficult, because the scattered signal

is much smaller compared to the primary beam passing through the collimator. To evaluate

the contribution of the scattered x-rays, scattered signal needs to be isolated from the primary
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Figure 6.23: Illustration of the experiment to evaluate scattered x-rays. The collimator
was aligned to source 20, which is located roughly in the center of the source array. By
firing source 20, the primary beam (red line) will pass through the collimator and shine on
the detector. The primary beam and the scattered x-rays mix together, thus it is hard to
measure the scattered x-rays. But by firing source 26, which is 48 mm away from source 20,
the primary beam and scattered x-rays can be separated. The primary beam of source 26
(dark blue line) is ∼ 55 cm away from the center of the detector based on a simple geometry
calculation. But the scattered x-ray (blue dashed line) can reach the detector and can be
measured.

x-ray beam. Given the setup of the experiment, the edges of the collimator opening will

generate the most scattered x-rays. So we designed a simple experiment to separate the

primary beam and scattered signals so that we can evaluate the influence of the scattered

x-rays. The experiment is illustrated in Figure 6.23. (Note: The illustration was not drawn

to scale.) The same collimator as that used in the extra-focal radiation measurements was

used here. The collimator opening was aligned to source 20, which is roughly in the center

of the source array. The primary beam of source 20 was collimated to the detector, therefore

it was very difficult to measure the scattered x-ray signal from this source. To separate the
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primary beam and the scattered x-ray, we fired all the x-ray sources inside the source array

one by one, and examined the image acquired from each source to determine which sources

have the primary beam and scattered x-rays separated. When firing the sources at the two

ends of the source array, the primary beam and scattered x-ray were definitely separated,

however, due to the large scattering angle, the scattered x-rays were very weak. Figure 6.24

shows the image acquired for source 2, which is at the left end of the source array. The image

was similar to the leakage radiation image acquired, the leakage radiation is stronger than

the scattered signal. By examining the projection images from all sources, source 26 was

found to have a good separation between primary beam and scattered signal. The source

was 48 mm away from source 20, therefore the primary beam of it was ∼ 55 cm away from

the center of the detector according to the geometric relationship. This distance is sufficient

to isolate the scattered x-ray from the primary beam.

Figure 6.24: Projection image of scattered image of source 2. The image is similar to the
leakage radiation image since the scattered signal is much less than the leakage radiation

Scattered x-ray image of source 26 was acquired. As shown in Figure 6.25(a), the bright

band along the x-direction was the scattered signal from the edge of the collimator. The
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intensity line profiles across the image in x and y directions are plotted in Figure 6.25(b).

The profile in blue shows the intensity of scattered x-rays in the x-direction, while the red

profile is the scatter in the y-direction. The average intensity of the scattering signal along

x-direction was ∼ 13. This value can be used to estimate the scattered x-ray intensity from

source 20. For source 20, since the collimator opening was aligned to the source, the scattered

at the collimator edge should be slightly stronger than the scattered from source 26. But

the scatter signal should be on the same order. Therefore, the order of the scattering x-rays

was estimated to be:

O(scattering) ∼ log(
13

2300
) ∼ −2.2 (6.11)

The order of the scattered x-ray was in the range of the ”hump” signal in the measured

extra-focal radiation dose profile. Therefore, we indirectly verified that the scattered x-ray

was the source the discrepancy between the simulation and experiment.

Figure 6.25: (a)Scatter x-ray image of source 26. The bright band in the image is due to the
scatter radiation from the collimator edge. (b) Intensity profiles along the x-direction (blue)
and y-direction (red).

The scattered x-ray forms a ”band” along the y-direction, the scatter signal drops quickly

to almost ”0” at the top of the ”band”. This may be because the focal spot was aligned

better with the top edge of the collimator opening, thus there was less scatter signal at the

large scatter angle. By changing the position of the focal spot relative to the collimator

99



opening, the scatter intensity off the top edge and bottom edge change. If we move the

collimator up, the scatter intensity from the top edge will increase, while the scatter from

the bottom will decrease. Another simple experiment was designed to verify this hypothesis.

Collimator

Scatter top will 
increase

Scatter bottom 
will decrease

F

F’

Figure 6.26: By changing the relative position of the focal spot and collimator opening, the
scatter intensity on the top and bottom edge will change. Initially, the focal spot F is aligned
better with the top edge, therefore there is less scatter off the top edge. By gradually moving
the collimator up, the focal spot moves to F’ relative to the collimator, and the scatter off
the top edge will increase while the scatter from the bottom edge will decrease.

The experiment is illustrated in Figure 6.26. Initially, the focal spot was aligned better

with the top edge of the collimator opening, resulting in less scatter off the top edge, as

shown in Figure 6.25. As the collimator moved up, the focal spot F moved down relative to

the collimator to a lower position F ′, where the scatter from the top edge will increase and

the scatter off the bottom edge will be reduced.

The scattered x-ray intensities were measured in the same way so that the scatter signal

could be compared as the collimator was moved. Figure 6.27 shows the acquired image with

the collimator moving 2 mm (6.27(a)) and 4 mm (6.27(c)), and the line profile across x and

y directions 6.27(b) and 6.27(d), respectively. As expected, by moving the collimator up, the
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scatter ”band” structure moved up as well. The profile in the y-direction shows the scattered

x-ray slowly drifting to the top as the collimator moved up. The intensity of the scattered

x-ray in the y direction was comparable to the scattering in the x-direction.

Even though the scattering x-ray intensity on source 20 cannot be directly measured,

the scattered x-rays of source 26 was successfully isolated and measured . Assuming the

magnitude of the scattered x-rays of source 20 was on the same order of beam 26, which was

true in the experiment setup, we can conclude that the scattering x-ray photons from the

edge of the collimator opening contributed to the ”hump” we measured in the extra-focal

radiation experiment, and it was the main source of the discrepancy between the simulation

and experiment.

6.3.4: Discussion and Conclusion

The extra-focal radiation of the CNT source array model 2008-08-L75-002 was evaluated.

The evaluation consisted of simulation and experimental measurements. The criteria for

the extra-focal radiation was based on requirement from IEC 60601-2-54, which states the

boundary of the radiation should be less than 15 cm at the 1 m source-to-detector distance.

However, the IEC doesn’t specifically state the criteria to determine the boundaries of the

x-ray radiation. Neither an absolute entrance dose nor a relative dose to the exposing area

is given. In this study, we initially used the criteria of a relative dose of 0.1% to the exposing

area (3-order magnitude dose drop) to determine the boundaries of the extra-focal radiation.

Given the performance of this tube, the 3-order drop of the dose should be enough to meet

the dose requirement. Currently, the source is running at 80 kVp and 5 mA anode current.

The pulse width of each pulse is programmable. When acquiring images with the Varian

3030D detector, which was used to experimentally measure the dose profile in this study, a

maximum 30 ms pulse was used for full resolution mode (1× 1 binning), and a 12 ms pulse

width was used for the 2× 2 binning mode. Based on the pulse width, a maximum of 0.15

mAs tube exposure was used in one projection view, resulting a maximum 1.3 mR exposure

101



Figure 6.27: (a) Projection image of the collimated area with source 26 fired. The image
shows the scattered x-ray intensity. The collimator was moved up 2 mm. (b) The line
profile across x- (blue) and y- (red) direction for figure (a). (c) Scattering x-ray image with
collimator moved up for 4 mm. (d) The line profile along x- and y- direction for figure (c).

on the exposing area. Using the 3-order magnitude dose drop as the criteria to determine

the width of extra-focal radiation, it is expected that the radiation drops to 1.3 µR within

15 cm, which should meet the dose requirement.

The developed simulation models do not have calculations of the scattered x-rays. To

better estimate the extra-focal radiation, the scatter model should be included. However,

accurately simulating the scatter is difficult since the scattered x-rays usually do not have

a direction, and the scatter signal depends on the collimator material and the spectrum of

the x-ray source. Therefore, a simple simulation model was used to focus on the dominant
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factors that cause extra-focal radiation, such as focal spot size, position of the collimator,

etc. Based on the simulation results, the extra-focal radiation, which is the convolution of

system geometries, drops quickly off of the collimated area. The closer the collimator is to

the focal spot, the greater the distance required for the extra-focal radiation to drop to the

10−3 order.

The detector reading was used to measure the dose profile experimentally. Due to the

limited ability to measure low dose and the detector noise, only dose up to the 10−2 order

could be accurately measured using this detector. The scattered x-rays from the collimator

contributes approximately 10−2 order of x-rays to the extra-focal radiation profile. The

measured extra-focal radiation is a mix of the real extra-focal radiation and scatter radiation,

which becomes the dominate radiation as distance increases from the edge of the collimated

area. Therefore, the 3-order dose drop cannot be used as the criteria to determine the width

w2 of the extra-focal radiation. Expanding the requirement to 1% (2-order magnitude drop),

a maximum of 13 µR radiation would be expected as the criteria to define the boundary of

the extra-focal radiation.

The scattered x-rays can contribute up to 1% of the dose of the extra-focal radiation.

This is because the collimator used in this study was simply a cut hole in a lead sheet, and

two tungsten blocks. The opening of the collimator was not precisely cut to match the x-ray

beam path, resulting in increased scatter from the collimator. We have demonstrated this

by using a simple experiment. If a dedicated collimator is made and used in the experiment,

the measured extra-focal radiation could be reduced by eliminating the scattered x-rays.

Section 6.4: Anode Thermal Analysis

6.4.1: Introduction

As discussed in Section 2.5, one of the main tradeoffs in the x-ray tube design is the

photon flux and the focal spot size on the anode. Increasing the tube current (electron beam
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power) can increase the x-ray photon output, however, the power is limited by the anode

melting and lifetime degradation due to the thermal cycling.

The maximum power for conventional x-ray tubes running in DC mode have been studied

both theoretically and experimentally.[75, 76] The CNT based x-ray source can be operated

more efficiently using pulsed mode, due to the fast switching capability of CNT cathodes.

The anode thermal loading in CNT x-ray sources needs more detailed study.

The purpose of this section is to study the factors that determine the maximum power

of the CNT x-ray source in both DC and pulsed modes.

6.4.2: Simulation Model

In the CNT based field emission x-ray tubes, as shown in Figure 6.28, the electron beam

is generated by applying an electric field between the CNT cathodes and gate mesh. The

emitted electrons are accelerated and focused by focusing electrodes toward anode. The

bombardment of high-energy electrons heats the target area on the anode and produces a

local high temperature distribution. Finite element analysis simulations were used to study

the thermal loading on the anode. For a given anode of fixed dimensions; and knowing

the incident electron beam power, exposure time, and duty cycle, the anode temperature

distribution was determined by solving the time dependent inhomogeneous heat equation:[77]

ρcp
∂T (x, t)

∂t
= (Pin(x, t)− Prad(x, t)) · t−∇ · (k∇T (x, t)) (6.12)

where ρ is the density of the anode material, cp is the heat capacity, and k is the thermal

conductivity. Both k and cp are functions of the temperature T . The term k∇2T (x, t)

describes the heat conduction in the anode, the term Pin(x, t) describes the incident power

due to the interaction of the electron beam with the anode, and the term Prad(x, t) describes

the thermal energy radiating out from the anode surface due to the grey body radiation,
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Figure 6.28: Schematic of the structure of the CNT based field emission micro-focused x-ray
tube and the demonstration of the temperature distribution on the anode surface.

given by Prad = εσ(T 4 − T 4
0 ).5

Finite element analysis was employed to numerically solve the heat equation. In this

study, the Transient Thermal Solver in a commercial software, Ansys Workbench 12.1 (An-

sys Inc. Canonsburg, PA), was used to analyze the anode heat load. The temperature

dependency of the heat capacity and thermal conductivity is very important in solving the

heat equation. The thermal diffusivity α(T ), which is defined as:

α(T ) =
k(T )

ρcp(T )
(6.13)

is a measure of how fast heat transfers in a material. Figure 6.29 shows the temperature

dependency of thermal diffusivity for tungsten; illustrating the large change in α(T ) from

0.66 cm2/s at 300 K to 0.24 cm2/s at 3000 K.[78] It is essential that this temperature

dependence of the thermal diffusivity be included in the simulation.

The anode is usually mounted at a tilted anode angle, θ. The image quality is determined

by the effective focal spot size, fs. The real focal spot size, defined as the area bombarded by

the electron beam, is an ellipse with a short axis a = fs , and long axis b = efs = fs/ sin θ,

5ε is the surface emissivity, which depends on materials and the surface smoothness.
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Figure 6.29: Temperature dependence of the thermal diffusivity, thermal conductivity, and
heat capacity of tungsten. The thermal conductivity decreases with the temperature while
the heat capacity increases with the temperature, thus the thermal diffusivity decreases from
0.66 cm2/s at 300 K to 2.4 cm2/s at 3000 K. It is important to include the temperature
dependency of both the thermal conductivity and heat capacity in anode thermal analysis.

where e = 1/ sin θ is the projection factor. In this paper, all focal spot sizes refer to the

effective focal size, fs. However, the real focal spot size, which takes into account the anode

angle, was used in the simulations.

6.4.3: Validation of the Model

Validation of the simulation model was done by comparing the simulation results with

those of the electron beam melting experiment reported by D E Grider.[75] The compared

parameter was the size of the melted anode area. The simulation conditions were identical

to the experimental setup described in the paper. Cylindrical anodes made of tungsten and

molybdenum, with a 1 cm diameter and 2.5 cm height, are hit by high energy electron beams

produced by a micro-focused x-ray tube. The incident electron beam’s power ranged from 3

W to 18 W in 3 W increments. The focal spot radius of the electron beam was measured to
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be 7 µm, beam penetration depth was set to 10 µm, and the exposure time was 60 s. The

electron beam penetration depth, d, in the micro-focus tube is given by: [21]

d(µm) =
2.76× 10−2AE1.67

0

ρZ0.89
(6.14)

where A is the atomic weight, Z is the atomic number, and E0 is the accelerating voltage in

units of kV. For a typical x-ray tube running from 30 kVp to 100 kVp, the electron beam

penetration depth of tungsten is calculated to be between 1.6 µm and 12.5 µm. However,

these simulations used different electron beam penetration depths ranging from 1 um to

15 um showed that the temperature distributions on the anode were not significantly de-

pendent on the penetration depth, in this range. Therefore, the penetration depth is not

a sensitive parameter in the simulation. The thermal conductivity, k, and heat capacity,

cp, of the anode material used in the simulation are temperature dependent. Temperature

distribution on the anode was simulated and the melted spot size was determined by the

area where the temperature was greater than the melting temperature of the anode material.

The simulated melting spot size was then compared with experimentally measured results

reported by D E Grider.

The simulation results of the relationship between the melted area and electron beam

power are plotted in Figure 6.30. The relative error between simulated results and experi-

mentally measured results were less than 10%. The results suggest great agreement between

simulation and experiment. It is concluded that the simulation method can be used as a

reliable numerical tool to analyze the anode heat load in the micro-focus x-ray tubes.

6.4.4: Anode heat simulation for CNT micro-CT

One of the advantages of the CNT based field emission x-ray tube is that the tube can

be electronically programmed for fast switching. Therefore, the tube can be operated in

pulsed mode to achieve high temporal resolution.[79] Respiratory and cardiac gated micro-
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Figure 6.30: Comparison of electron beam melting radius in the micro-focus tube between
simulated and experimental results. The open symbols with fitted smooth lines are simu-
lation results; the scattered solid points are experimental results. The agreement between
simulated and experimental results suggests that the simulation is reliable for investigating
thermal loading of the anode.

CT imaging to non-periodic physiological signals have been reported on the CNT micro-

CT system.[45, 79] For example, to get clear dynamic imaging of a mouse cardiac cycle, a

temporal resolution of 10 ms is desired. To perform prospective respiratory gating, only one

projection view (one x-ray pulse) is used during each respiratory cycle of a small animal (∼

1 second for mice). Thus, the typical tube operation duty cycle is close to 1%.[79]

To study the factors determining maximum CNT x-ray tube power, the same pulse chain

of 10 ms pulses and 1% duty cycle were used. The simulated tungsten anode was a cylinder

with a 4 mm diameter and 5 mm height, which is very similar to the dimension of the anode

used in the actual CNT micro-focus x-ray source. An effective focal spot size (fs) varying

from 20 µm to 200 µm was used to study the maximum power. A set of simulations operated
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in DC mode at 10◦ anode angle is compared with the pulse mode at pulse width of 10 ms.

Three sets of simulations in both DC mode and pulsed mode were performed with anode

angles of 6◦, 10◦, and 20◦ respectively, to find out how the anode angle affects the maximum

tube power. The criteria to determine the maximum power is when the maximum anode

temperature does not exceeds 80% of the melting temperature of the material, 3000 K for

tungsten.

Maximum power in DC mode

Maximum power of the CNT micro-focus tube at a 10◦ anode angle for various focal

spot sizes was studied for both DC and pulsed modes. The results are shown in Figure 6.31.

In conventional micro-focus x-ray tubes with stationary anodes in DC mode, an empirical

formula of the maximum power, P (W ), as function of focal spot size fs(µm) has been

reported by Flynn et. al. as:[76]

P = 1.44f 0.88
s (6.15)

These empirical results are also shown in Figure 6.31 as a reference. At 10◦ anode angle, the

results are in good agreement with this empirical formula.

Figure 6.32 shows the dependence of the maximum power on the effective focal spot size

for three different anode angles of 6◦, 10◦, and 20◦, respectively. It can be seen that the

maximum power in DC mode for small anode angles is higher than that at larger anode

angles. This is expected because the smaller the anode angle, the larger the actual focal

spot size. Thus, heat can transfer more quickly. The results show that the dependence of

the maximum power, P , on the effective focal spot size, fs, can be described by a simple

power law for all anode angles,

P (W ) = (
0.24

sin θ
+ 1.64)f 0.73

s (µm) (6.16)

This simple relation fits well for all three anode angles. In the case of the 10◦ anode angle, this
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Figure 6.31: Maximum power of a micro focus CNT x-ray tube as a function of effective
focal spot size for a 10◦ tungsten anode. In DC mode, the simulated results agree well with
Flynn’s empirical formula (dashed curve). However, in pulsed mode, the allowed maximum
power is approximately a factor of 2 higher.

formula is close to the empirical relationship given by Equation 6.15. However, Equation 6.15

cannot describe the results for different anode angles.

Maximum power in pulse mode

The real focal spot area, defined as the area bombarded by the electron beam, is much

smaller than the anode metal piece in the micro-focus tube. The focal spot area can be

heated up/cooled down rapidly when the electron beam is turned on/off within a short

pulse. Figure 6.33 shows the maximum temperature on the anode vs time, up to 50 ms,

for the tube running at 50 kVp, 3 mA, 10 ms x-ray pulse width, and 100 µm effective focal

spot size. The maximum temperature, at the center of the focal spot area, rises very quickly

when the electron beam is turned on. It rises from 300 K to 2800 K in the first 5 ms.

When the electron beam is turned off, the anode cools down rapidly from 3000 K in 20 ms.

This suggests that if the tube operats in short pulse mode with a low duty cycle, the heat

can dissipate very fast. Therefore, the allowed power during the pulse-on period can be

significantly larger than that in the DC operating mode.
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Figure 6.32: Maximum power of an x-ray tube running in DC mode as a function of effective
focal spot size at 6◦, 10◦, and 20◦ anode angles. The maximum power in DC mode is a power
function of effective focal spot size, P = kf 0.73

s , where the coefficient k is a linear function
of e, k = 0.24e+ 1.64. Simulated results suggest that the maximum power is related to the
anode angle in DC operation mode; the smaller the anode angle, the higher power the x-ray
tube can apply.

For pulse mode, the maximum allowed power is significantly higher than that in DC

mode. The relationship between the maximum power in pulsed mode and the effective focal

spot size is shown in Figure 6.34, for three different anode angles. In all three cases, it is

found that P linearly increases with the effective focal spot size, fs. Results show that the

maximum power can be described by the simple relation:

P (W ) = (
0.20

sin θ
+ 0.35)fs(µm) (6.17)

It can be seen that at smaller anode angles, the anode can withstand higher power. For

example, for 10◦ anode angle and 100 µm effective focal spot, CNT x-ray tubes can operate

at 153 W with 10 ms temporal resolution, a factor of two higher than previously thought

possible.[76] Experimentally, we have operated the CNT micro-CT system at 100 W for in-
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Figure 6.33: Maximum temperature over time in a 10 ms pulse. The temperature both rises
and drops rapidly when the electron beam is turned on or off. This result suggests heat
can be dissipated very quickly in pulsed mode with low duty cycle. Thus, the tube can be
operated at a significantly higher power than that in DC mode.

vivo animal imaging for almost two years, without any anode thermal loading issues.[79, 45]

Simulation results suggest it is possible to increase the x-ray tube power by another 50%

without running into thermal loading issues.

6.4.5: Anode heat simulation for s-DBT and s-DCT systems

Thermal simulations were performed at various power levels for the s-DBT systems. The

maximum stable power was determined by the heat load of the stationary anode. For the

s-DBT system, the power was selected according to the expected operating conditions of the

x-ray tube, up to 38 kVp effective anode voltage at various tube currents and pulse widths.

The anode target was a tungsten block. The effective focal spot size was 0.6 mm× 0.6 mm

FWHM.[47] The power density was distributed on the anode as a Gaussian function with the

measured FWHM of the focal spot size. The temperature distribution on the whole anode
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Figure 6.34: Maximum power of CNT micro-CT x-ray tube running in pulsed mode as a
function of effective focal spot size, with anode angles at 6◦, 10◦, and 20◦. Simulation results
suggest the maximum power for pulsed mode linearly increases with focal spot size, and can
be described by a simple scaling law.

Table 6.9: Simulated anode maximum temperature for 0.6 mm× 0.6 mm FWHM focal spot
size at various conditions.

High voltage (kVp) Tube current (mA) Power (W) Pulse width (ms) Max temperature (K)

38 38 1444 183 3872
38 28 1064 250 2811
38 20 760 250 1962

structure was simulated for the targeted focal spot size.

For the s-DCT system, anode heat simulation is needed in order to design a new source

array (Section 5.5). The targeted focal spot size is expected to be 0.6 mm × 0.6 mm,

equivalent to current commercial systems. The anode was made of tungsten. Because the

heat distribution is only determined by the anode material, focal spot size, and pulse width,

the same conclusions can be applied to the s-DCT system.

Table 6.9 summarizes the maximum temperature for a 0.6 mm × 0.6 mm focal spot

(FWHM) on a tungsten anode, at various conditions. Figure 6.35 shows the time profile of

the maximum temperature for the conditions listed in Table 6.9.

The temperature profiles show a fast increase in the temperature within the first 10 ms.
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Figure 6.35: The simulated temperature profile over time at the center of the focal spot
during a single x-ray exposure at three different power levels. The dashed horizontal line
indicates 80% of the melting temperature of tungsten. The insert shows the temperature
distribution on the anode surface for the 38 kVp, 28 mA, 250 ms exposure.

This is because on this time scale, the heat does not transfer far. Nearly all of the kinetic

energy of the incident electrons transfers to heat in the finite volume near the focal spot

region. The heat capacity of tungsten increases with temperature, meaning more energy

is needed to increase the temperature of the same volume by 1 K. Therefore, the rate of

temperature increase slows down. Meanwhile, the heat transfers to the surrounding material,

bringing out a large portion of the incident energy. As the temperature goes up, the energy

radiating out from the hot surface increases as well. This radiation is mainly in the form of

infrared, with the radiation power proportional to T 4. Together, all these factors bring the

system close to a quasi-equilibrium state. The smaller the incident power, the faster this

quasi-equilibrium state is reached.

The transient temperature drops very quickly to the base value after the exposure, due

to heat transfer and thermal radiation. The falling edge of the temperature profile has a

similar time scale to the rising portion. In about 10 ms, the temperature drops more than

80%.

Under condition II (1064 W, 38kVp, 28 mA, and 250 ms pulse width), the highest anode
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Figure 6.36: Anode temperature distribution for MRT system operated at 160 kVp, 35 mA,
1 s pulse width.

temperature was found to be 2811 K, which is less than 80% of the melting temperature of

tungsten. Therefore, the x-ray source can be safely operated at a power level of approximately

1.1 kW for an effective focal spot of 0.6 mm× 0.6 mm, for both s-DBT and s-DCT systems.

Based on the results of simulation, for the next-generation s-DCT source array, which

has a target focal spot size of 0.6 mm×0.6 mm, the maximum tube current at different kVp

level can be estimated. Table 6.10 lists the estimated tube current from 80 kVp to 120 kVp.

Table 6.10: Estimation of s-DCT operating conditions based on anode heat load simulation.

High voltage (kVp) Tube current (mA)

80 13.8
100 11
120 9.2

6.4.6: Anode heat simulation for MRT system

Similar anode heat simulations were performed for the CNT based MRT system. The

anode of the MRT system is made of a 222 mm× 26 mm× 17 mm molybdenum block with
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Figure 6.37: Anode temperature distribution in the cross-section for the MRT system oper-
ated at 160 kVp, 35 mA, 1 s pulse width.

Figure 6.38: Anode maximum temperature profile for the MRT system at various tube
currents.

a 200 µm tungsten coating on top. Molybdenum is used to increase the heat dissipation

capability of the anode. The focal line of the MRT system consists of five focal spots,

30 mm× 200 µm each. Typical operating conditions of the MRT system is 160 kVp, 35 mA

anode current, and 5% duty cycle.[48]

The temperature distributions on the anode surface and the cross-section at 160 kVp,

35 mA, and 1 s pulse width, are shown in Figure 6.36 and Figure 6.37, respectively. The

maximum temperature at various operating conditions are plotted in Figure 6.38.
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6.4.7: Conclusions

A numerical anode heat simulation model was built using a finite element analysis

method. It was found that the anode thermal limit is determined by the incident power

at a given focal spot size, anode material, and pulse width. CNT x-ray sources can generate

x-rays in pulsed mode, which increases the maximum power compared to conventional x-ray

tubes operating in DC mode.

The results of the anode heat simulations have been used to help design CNT x-ray sources

and operation protocols. Some of the results from this section can be used qualitatively to

estimate the tube thermal limit, or to evaluate the imaging protocol. However, detailed

simulations need to be performed to quantitatively analyze the anode heat load issue.

For the next generation s-DCT source array (discussed in Section 5.5), the permitted

power for a 0.6 mm× 0.6 mm (FWHM) focal spot is around 1.1 kW. If the s-DCT operats

at 120 kVp, as in conventional DCTs, the tube current could reach 9 mA.

Section 6.5: CNT Source Array Geometry Calibration

6.5.1: Introduction

Knowing the positions of the focal spots is crucial for tomosynthesis reconstruction. The

relative positions of focal spots to the detector is determined using a geometry calibration

procedure. The most commonly adopted method is acquiring images of fiduciary markers,

which are typically made of high attenuating materials. Based on the position and/or shape

of the markers in the images, the focal spot position is calculated.[80]

In this section, a simple geometry calibration method using an in-house geometry cali-

bration phantom will be introduced. Methods to determine and optimize the position of the

focal spot will be covered. Some results will be provided.
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Figure 6.39: Illustration of the geometry calibration method. F denotes the position of the
focal spot. Metal beads (ideal point) A, B, C, D, H, I, J , and K are placed in the image
field, and projected images of the beads are at A′, B′, C ′, D′, H ′, I ′, J ′, and K ′, respectively.
Plane ABCD ‖ HIJK.

6.5.2: Geometry calibration method

The geometry calibration method is illustrated in Figure 6.39. In the coordinate system

x − y − z set up on the detector, the detector plane is the x − O − y plane. F denotes

the position of the focal spot. Metal beads (ideal point) A, B, C, D, H, I, J , and K are

placed in the image field, and projected image of the beads at A′, B′, C ′, D′, H ′, I ′, J ′,

and K ′, respectively. Plane ABCD ‖ HIJK ‖ x − O − y. JC, KD, IB, and HA are all

perpendicular (⊥) to the x− O − y plane. F ′ is the projected point of focal spot F on the

x−O− y plane. Clearly, the x and y coordinates of F ′ are the same for F . The position of
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F ′ is determined by finding the intersection point of line J ′C ′, K ′D′, I ′B′, and H ′A′.

The z coordinates of the focal spot F , can be found by:

z

zC
= C′D′

CD
= M1 (6.18)

z

zJ
= J ′K′

JK
= M2 (6.19)

Where the M1 and M2 are the magnification factors for the top and bottom plane of the

phantom. If we know the distance between the two planes in the phantom, d, then the z of

focal spot F can be determined as:

z =
M1 ·M2

|M1 −M2|
· d (6.20)

Therefore, the x, y, and z coordinates of the focal spot are determined.

In this method, it is important that the prerequisites of planes ABCD and HIJK being

parallel to plane x− O − y are satisfied. The flat panel detector can be seen as a good flat

surface. A geometry calibration phantom that can be placed parallel to the detector plane

should suffice for the calibration. Based on the principles of geometry calibration discussed

here, a phantom was constructed and tested.

6.5.3: Geometry calibration phantom

An in-house geometry calibration phantom was constructed. The phantom, as shown in

Figure 6.40, consists of two layers acrylic, eight 5 mm diameter stainless steel beads, and

four 35 mm long tungsten bars. The two sheets were connected using four tungsten bars of

the same length, so the two layers are parallel and the tungsten bars are perpendicular to

the acrylic. Four beads were embedded in each layer.

During the geometry calibration procedure, the phantom was placed on the detector.

Since both the detector and phantom were flat, the requirement of the phantom to be
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Figure 6.40: CAD drawing of the geometry calibration phantom. The phantom has two
acrylic sheets parallel to each other. Four tungsten bars were placed perpendicular to the
acrylic layer. Each acrylic plate had four metal beads embedded inside.

parallel to the detector was satisfied. X-ray images of the calibration phantom were acquired.

An example image is shown in Figure 6.41. The image went through standard gain and

offset corrections. A Matlab program using feature recognition was developed to identify

the beads and vertical bars in the projection images. The distances between metal beads

were measured. The magnification factors M1 and M2 were calculated using the measured

distances and actual distances between beads. Based on the measurements, the z coordinate

of the focal spot was calculated.

The centerline of the four projected tungsten bars were found, and the intersection point

of them gave the x and y coordinates of the focal spot. However, due to the uncertainties in

finding the centerline of the bars and the finite size of the focal spot,6 the four centerlines

do not guarantee intersection at one point. The four lines could intersect at up to 6 different

points. Therefore, we need to estimate the position of the intersection point based on the

6Due to the uncertainties in the edge detection algorithm. The identified centerline can have errors on the
orientation of the line.
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Figure 6.41: An example projection image of the geometry calibration phantom. Yellow
lines are the centerlines of the four vertical tungsten bars. The intersection point of these
four lines gives the x, and y coordinates of the focal spot. The distance between metal beads
can be used to calculate the magnification factor M1 and M2 for the top and bottom layer
of the phantom. Thus, the z coordinate of the focal spot can be calculated.

multiple intersections. One simple way to estimate the x and y coordinates is using the

average x and y coordinates of all intersection points. However, this straightforward method

does not always provide the best estimation of x and y.

Why is the average of the intersections not the best?

The main source of error causing multiple intersections is the uncertainty in determining

the orientation of the centerlines. Figure 6.42 illustrates one situation.7 Centerlines l1, l2, l3,

7This situation happens when the x-ray source is above or close to one or more vertical bars. Since the source
array contains multiple x-ray sources, it is hard to avoid this situation in geometry calibration. One example
is shown in Figure 6.41, the focal spot is close to the top left and top right bars, causing the projected
bars to have shorter lengths, which increases the uncertainties in determining the orientations of these two
centerlines.
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Figure 6.42: Illustration of the source of error using average coordinates of all intersection
points to estimate the focal spot’s x and y coordinates.

and l4 intersect at 6 points, and Pavg is the estimated location calculated using the averaged

x and y of all six points. Each centerline is determined by the two end points, assuming

the same uncertainty in determining each end point, as indicated by the green circle around

each end point. It is clear that the shorter the length of the bar, the larger error on its

orientation. Therefore, one would expect the best estimate of the intersection point P to

be closer to the lines with a smaller error in orientation, thus further away from the shorter

centerlines.

If two centerlines have a very small angle in between, using the average coordinates would

result in a large error when estimating the x and y coordinates of the focal spot.8 As illus-

trated in Figure 6.43, the intersection point of l1 and l2 is far away from the other intersection

points due to the small angle between l1 and l2. The estimate of the projected focal spot

using averaged coordinates of all the intersection points Pavg is close to the intersection with

larg error, degrading the accuracy of geometry calibration.

8This situation typically occurs with focal spots near the two ends of the source array, where the projection
angle is small for all vertical bars.
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Figure 6.43: Illustration of the source of error in an extreme case using average coordinates
of all intersection points as focal spot x and y positions. The intersection point of l1 and
l2 is far away from other intersection points due to the small angle between l1 and l2. The
averaged point, Pavg, produces a large error.

6.5.4: A statistical model based optimization method

Since there is always uncertainty when identifying features in an image, another way

to improve the accuracy of the geometry calibration procedure is to minimize errors when

estimating the location of intersections. A statistical model-based optimization method was

investigated for this purpose.

A(x1, y1) and B(x2, y2) are the two points used to determine one line in this geometry

calibration procedure. The point P (a, b) is the intersection point of all the lines. In principle,

P , A and B should be on the same line, therefore we have:

(b− y1) · (x2 − x1) = (a− x1) · (y2 − y1) (6.21)

The position of A and B can be measured, then this equation can be written as a linear
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equation to solve the unknown coordinates of intersection point P as:

a · (y1 − y2) + b · (x2 − x1) = x2y1 − x1y2 (6.22)

Ideally, two lines would be enough to solve the coordinates of the intersection point P . Due

to the measurement error in determining positions of A and B, the equation above is not

always true, and there will be a error term ε.

a · (y1 − y2) + b · (x2 − x1) = x2y1 − x1y2 + ε1 (6.23)

Two equations would not be enough to determine the coordinates of P , as the error terms

ε1 and ε2 would be unknown.

For a given image that we used to do geometry calibration, there are n lines used to

determine the intersection point P . Writing n linear equations, gives:



y
(1)
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(6.24)

where x
(k)
1 and y

(k)
1 are the x and y coordinates of the first point in the k-th line. We can

rewrite the equation array in matrix form:

X · β = Y + ε (6.25)

Due to the measurement error, the equation array above generally does not have a solution.

The aim is to find the best estimate of intersection point P (a, b) (vector β). By using a
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linear regression method, we can find the vector β such that the error is minimized.

minimize:
β

n∑
i=1

ε2i =

[
ε1 ε2 . . . εn

]
·



ε1

ε2
...

εn


= ε′ε (6.26)

which is equivalent to:

minimize:
β

ε′ε = (Xβ −Y)′(Xβ −Y) (6.27)

Take the first derivative with respect to β

d

dβ
(Xβ −Y)′(Xβ −Y) = 0 (6.28)

X′Xβ = X′Y (6.29)

Solve the above linear equation array to get vector β, then the best estimate of the intersec-

tion point P (a, b) is solved.

The physical meaning of the optimization method

The purpose of the optimization method above is to minimize the total error. The error

term is minimized to:

ε′ε =
n∑
i=1

ε2i (6.30)

=
n∑
i=1

[(
(x

(i)
2 − x(i)1 ) · b−

(
y
(i)
2 − y(i)1

)
· a
)
− (x

(i)
2 y

(i)
1 − x(i)1 y

(i)
2 )
]2

(6.31)

=
n∑
i=1

l2i h
2
i (6.32)

where li is the length of i-th line, and hi is the distance between the estimate of intersection

point P (a, b) and the i-th line. Equation 6.32 shows the physical meaning of this minimizing
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Figure 6.44: Illustration of the physical meaning of the optimization method.

method, as illustrated in Figure 6.44. Let points A(x1, y1) and B(x2, y2) be the two end

points of a bar, the length of AB is l. The first term in Equation 6.31 for n = 1 is:

(x2 − x1)b− (y2 − y1)a = 2S4OA′P (6.33)

where vector A′P is parallel to vector AB. Similarly, the second term in Equation 6.31 is:

x2y1 − x1y2 = 2S4OAB (6.34)

So Equation 6.31 is:

[(x2 − x1)b− (y2 − y1)a− (x2y1 − x1y2)]2 = 4(S4OA′P − S4OA′P )2 (6.35)

= 4 · (1

2
l · h)2 = l2h2 (6.36)

Therefore, the minimization of the error term ε′ε is equivalent to minimizing
∑n

i=1 l
2
i h

2
i ,
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Figure 6.45: The geometry calibration results of the x coordinates of focal spots in the s-
DCT source array, using mean value method and optimization method. The optimization
method shows better calibration accuracy.

where hi is a weighting factor. As shown in Figure 6.42, for the centerline with shorter length

we know the orientation error is large, thus the estimate of focal spot should be further away

from the centerline (larger hi), and vice versa. For the situation where two centerlines have

a small angle (Figure 6.43), moving away the intersection of these two lines dramatically

decreases the error term.

Using the optimization method was mainly discussed in the context of minimizing the

error when estimating the x and y coordinates of the focal spot. Similar models can be

applied to estimate the z coordinate of the focal spot, as well.

6.5.5: Comparison of the two calibration methods

Geometry calibration results using the optimization method were compared to results

using the average value method, as shown in Figures 6.45 and 6.46. Figure 6.45 shows the
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Figure 6.46: Comparison of the geometry calibration results of the y coordinates between
the mean value method and optimization method. The optimization method shows better
calibration accuracy.

comparison along the x direction, while Figure 6.46 shows the comparison along y direction.

The raw calibration results are fitted to a line because the source array was designed and

manufactured in a linear pattern. Since the source array is placed parallel to the y direction,

the relative y value instead of the absolute y value were compared. The results using the

optimization method shows better accuracy for the calibration of both x and y coordinates

of the focal spots in s-DCT source array.

6.5.6: Discussion

In this section, we introduced an in-house geometry calibration procedure for the s-DCT

system. The procedure utilizes a simple geometry calibration phantom and a statistical

model based optimization method to analyze the data. Reconstructed images using the

recovered coordinates of the focal spots using this procedure produces good image quality
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Figure 6.47: An image of a metal bead used in the geometry calibration procedure. The
blurred edge of the bead increases uncertainty in edge detection and feature recognition of
the image.

and spatial resolution, as well as a lack of image artifacts, suggesting the procedure can

provide an accurate geometry calibration for the s-DCT system. This procedure can be also

applied to other imaging systems, such as s-DBT system.

The main source of error of this procedure comes from the uncertainty in identifying

features from the projection images. Due to the finite size of the focal spot, instead of ideal

point, and the fact that metal beads can not block all x-rays, the image of the beads typically

have a blurred edge(Figure 6.47). The blurred edge increases uncertainty in finding the edges

or features of the fiduciary markers in the image. However, it is crucial to find the center

of the bead (or one focus of the ellipse) in the geometry calibration procedure.[81] A high

accuracy algorithm to identify features and edges from the image is desired.
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The introduced in this section gives a more accurate estimation of the focal spot positions.

This method provides a better estimate statistically, so it does not mean it is the best estimate

every time.
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CHAPTER 7: Evaluation of imaging geometries for the s-DCT system

Section 7.1: Overview

The feasibility of stationary digital chest tomosynthesis (s-DCT) using a distributed

carbon nanotube x-ray source array was demonstrated in Chapter 5. The technology has

the potential to increase the imaging resolution and speed by eliminating source motion.

In addition, the flexibility in the spatial configuration of the individual sources allows new

tomosynthesis imaging geometries beyond the linear scanning mode used in conventional

systems. In this chapter, we investigate the effects of tomosynthesis imaging geometry on the

image quality. The study was performed using the bench-top s-DCT prototype. System MTF

and ASF were used as a quantitative measurement of the in-plane and in-depth resolution,

respectively.

In this chapter, imaging geometries with the x-ray sources arranged in linear, square,

rectangular, and circular configurations were investigated using comparable imaging doses.

Anthropomorphic chest phantom images were acquired and reconstructed for image quality

assessment. It was found that wider angular coverage resulted in better in-depth resolution,

while the angular span had little impact on the in-plane resolution in the linear geometry.

Non-linear imaging geometry lead to more isotropic in-plane resolution and better in-depth

resolution compared to a linear imaging geometry with comparable angular coverage.

Section 7.2: Purpose

In Chapter 5, we have demonstrated the feasibility of a CNT-based s-DCT system using

the CNT source array. The CNT source array has been shown to deliver sufficient x-ray

output for chest tomosynthesis applications.
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The flexibility of the CNT source array also allows novel imaging configurations that

conventional DCT systems cannot easily achieve. In current DCT systems, one x-ray source

is moved in a linear path to acquire projection images.[1, 4] While the imaging configuration

has been optimized for linear imaging,[5, 71, 30] the impact of non-linear imaging geometries

on image quality has not been investigated, except in a few studies, due to the difficulties of

managing tube momentum of a moving X-ray source.[82–84]

The purpose of this study is to investigate the relationship between source configuration

and the tomosynthesis image quality using an s-DCT system.

Section 7.3: Methods

The same bench-top s-DCT system introduced in Chapter 5 was used for this study. Im-

ages were acquired using different x-ray source configurations. The system resolution, char-

acterized by reconstructed tomosynthesis modulation transfer function (MTF) and artifact

spread function (ASF), were measured for all imaging geometry configurations. Anthropo-

morphic chest phantom images were acquired and reconstructed for quality assessment.

7.3.1: System Descriptions

The bench-top s-DCT, as shown in Figure 7.1, consists of a CNT source array and a

flat panel detector mounted on a translation stage. Only a subset of 75 focal spots in the

source array were used to acquire projection images. The same CsI based detector (Model

DRX-1C) with 139µm × 139µm pixel size and 35cm × 43cm field of view was used. The

source-to-detector distance was 1100 mm.

7.3.2: Imaging Geometries

Since the source array used in this study has a relatively short tube length, the detector

and phantom were mounted on a stage that could be translated simultaneously to simulate
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Figure 7.1: The s-DCT system consists a linear CNT source array, a flat panel detector, a
phantom and translation stages. The detector and phantom can be simultaneously translated
to simulate various imaging geometries.

various imaging geometries. The SID was kept at 1100 mm. By translating the detector and

phantom along both the x direction and y direction, an effective source matrix relative to

the detector was emulated. Subsets of projection images from this effective source matrix

were selected to simulate all imaging geometries. Figure 7.2 shows the imaging geometries

studied. The effective source array of each imaging geometry was centered at the detector

center. By translating the detector and phantom along the scanning direction (x-direction),

three 1D linear geometries with different angular spans of 11.6◦, 23◦, and 34◦ were created.

Each had 29 projections which were acquired at 80 kVp and 0.5 mAs per projection.

Translation of the detector perpendicular to the scanning direction (y-direction) allowed

simulation of square, rectangular, and circular imaging geometries. All three 2D source array

imaging geometries included 32 projections. Each projection image was acquired at 80 kVp

and 0.5 mAs. All 6 geometries studied had comparable total imaging dose. The square

geometry had a length of 192 mm and 10◦ angular coverage on each side. The rectangular

geometry had a length of 256 mm (13.3◦ angular coverage) and a width of 192 mm (10◦

coverage) along x and y direction respectively. The circular geometry had a radius of 192

mm and 10◦ angular coverage.
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Figure 7.2: Imaging geometry configuration studied. All imaging configurations are using
same SID of 1100 mm. A linear imaging geometry with angular span of 11.6◦, 23◦,and
34◦, a square geometry centered with detector center and 10◦ angular span on each side, a
rectangular geometry with 13.3◦ and 10◦ angular coverage along x and y direction, and a
circular geometry with 10◦ angular coverage are studied. The x-direction is along the source
array scanning direction, which is also corresponding to the phantom spine direction, while
the y-direction is defined as perpendicular to the scanning direction, as noted in both figures.

7.3.3: Image Analysis

System MTF and ASF were used to quantify the tomosynthesis in-plane and in-depth (z-

axis) resolutions. They were measured using a 100 µm diameter tungsten cross-wire phantom.

Projection images of the phantom were acquired and reconstructed into tomosynthesis slices

using commercial software from Real Time Tomography (Villanova, PA). The data set was

reconstructed with 1 mm spacing.

7.3.4: Anthropomorphic Phantom Images

Projection images of an anthropomorphic chest phantom (Kyoto Kagaku Co. Ltd., Ky-

oto, Japan) were acquired and reconstructed into tomosynthesis slices for all the imaging

geometries studied. The phantom was positioned as shown in Figure 7.1, with spine direction

aligned along the source array scanning direction. The projection images were acquired at
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Table 7.1: MTFs and FWHM of ASF measurements for linear imaging geometries with
angular coverage varying form 11.6◦ to 34◦.

Angular Span 10% of MTFx [cycles/mm] 10% of MTFy [cycles/mm] FWHM of ASF [mm]

11.6◦ 1.7 3.4 9.5
23◦ 1.6 3.2 5.8
34◦ 1.5 3.2 5.2

80 kVp and 0.5 mAs per projection.

Section 7.4: Results

7.4.1: System MTF and ASF for All Imaging Geometries

Table 7.1 lists the measured system MTFs (in both x and y directions) and the FWHM

of the ASF for all linear imaging geometries. This particular source array has an elongated

focal spot size along the scanning direction (x-direction), which led to asymmetric MTFs.

The smaller focal spot size in the y direction results in better in-plane resolution of 3.4

cycles/mm. As the angular coverage increased from 11.6◦ to 34◦, the in-plane resolution

remained essentially the same in both directions, with 1.6 cycles/mm in the x-direction and

3.2 cycles/mm in the y direction. However, as the angular coverage increases, the in-depth

resolution improves significantly from 9.3 mm to 5.1 mm. These trends agree with previous

studies on imaging configurations for linear tomosynthesis. [5, 71, 30, 70]

Table 7.2 displays the MTFs and FWHM of ASF for the square, rectangular, and cir-

cular imaging geometries. The non-linear imaging geometries gave more symmetric MTFs

measured as 2.5 cycles/mm in the x-direction and 3.0 cycles/mm in the y direction. The

out-of-plane artifacts spread in both x and y directions in non-linear imaging geometries.

Therefore, the ASF was measured in both directions. For symmetric geometries, such as

square and circular, isotropic ASFs were found. The in-depth resolution for square geometry
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Table 7.2: MTFs and FWHM of ASF measurements for non-linear imaging geometries.

Imaging Geometry 10% of MTFx 10% of MTFy FWHM of ASF
[cycles/mm] [cycles/mm] [mm]

Square - 10◦ 2.5 3.0 5.6
Rectangular 2.5 2.9 4.9

Circular - 10◦ 2.5 2.9 6.35

was found to be better than circular due to the larger angular coverage of sources located at

the corners of the square.

7.4.2: Anthropomorphic phantom Imaging

Projections images were reconstructed into tomosynthesis slices with 4 mm spacing. Fig-

ure 7.3 shows tomosynthesis slices reconstructed from linear imaging geometries with 11.6◦

and 34◦ angular coverage. Both images clearly show multiple generations of airways and de-

tailed vascular structures inside the phantom. The slice with larger angular coverage shows

less out-of-plane artifacts of the ribs and other structures.

Figure 7.4 compares the linear imaging geometry with 11.6◦ angular coverage and the

square imaging geometry with similar 10◦ angular coverage. The images reconstructed from

the square imaging geometry show more fine structures in the x direction than the linear

imaging geometry. This is because the square geometry yields more isotropic MTFs and

better in-plane resolution in the x-direction, as shown in table 7.2. The visibility of the

out-of-plane ribs was also reduced due to better in-depth resolution.

Section 7.5: Discussion

The CNT tube operated reliably with consistent source-to-source output. System MTFs

and ASF measurements show that a wider angular coverage improves the system in-depth

resolution, but has little impact on the in-plane resolution in the linear imaging geometry.
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(a) linear 11.6� (b) linear 34�

1

Figure 7.3: Comparisons of tomosynthesis reconstructed using projection images acquired
with 11.6◦ and 34◦ angular coverage in linear geometry. Both slices clearly show airways and
detailed vascular structures inside the phantom. The wider (34◦) angular coverage results in
better reduction of out-of-plane artifacts of ribs.

The 2D source array imaging geometry shows more symmetric in-plane resolutions and better

in-depth resolution compared to the 1D linear source array geometry with similar angular

coverage. More geometries will be studied in the future and the optimum imaging geometry

for stationary chest tomosynthesis will be determined.

The source array used in this study was not originally designed for medical imaging.

Therefore, the asymmetric in-plane resolution (10% of MTFs) of the current system in both

1D linear and 2D imaging geometries was mainly due to the anisotropic focal spot size of

the source array. The system in-plane resolution of the s-DCT can be further improved with

a tube designed for chest tomosynthesis. The 2D source array imaging geometry has shown

better in-depth resolution (FWHM of ASF) when compared to 1D linear array geometry

with a similar tube footprint. This study suggests that a 2D source array would be more

compact than a 1D linear design and have comparable in-depth resolution.
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Figure 7.4: Comparison of tomosynthesis slices of linear imaging geometry and square
imaging geometry with comparable angular coverage. The slice of square imaging geometry
shows more fine structures along x direction and better reduction of artifacts of ribs from
other slices.
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CHAPTER 8: Prospectively Gated s-DCT

Section 8.1: Overview

The electronically controlled CNT x-ray source enables physiologically gated imaging,

which will minimize image blur due to the patients’ respiration motion. In this chapter,

we will investigate the feasibility of prospective gated chest tomosynthesis using a prototype

s-DCT system with a CNT source array, a high-speed flat panel detector and realistic patient

respiratory signals captured using a pressure sensor.

Tomosynthesis images of inflated pig lungs placed inside an anthropomorphic chest phan-

tom were acquired at different respiration rates, with and without gating for image quality

comparison. Metal beads of 2 mm diameter were placed on the pig lung for a quantitative

measure of image quality. Without gating, the beads blurred to 3.75 mm during a 3 s to-

mosynthesis acquisition. When gated to the end of the inhalation and exhalation phases the

detected bead size reduced to 2.25 mm, much closer to the actual bead size. With gating

the observed airway edges were sharper and there were more structural details visible in the

lung.

The results demonstrated the feasibility of prospective gating in s-DCT, which substan-

tially reduces image blur associated with lung motion.

Section 8.2: Purpose

Commercial digital chest tomosynthesis (DCT) systems mechanically moves an X-ray

source over a large distance to acquire projection images.[1, 3, 13] Typical scans last about

10 s, during which patients are required to hold their breath.[8, 12] Patient motion blur is

a main source of image degradation due to long scanning time, even if projection images

139



are acquired within one breath hold.[33] Respiration motion during the image acquisition

may cause severe artifacts.[14] A literature review by AAPM task group showed the motion

of nodules due to respiration can be up to 20 mm.[32] The feasibility of stationary chest

tomosynthesis system (s-DCT) using a CNT based distributed X-ray source array has been

demonstrated.[85, 86, 49] The s-DCT acquires projection images by switching individually

controllable CNT x-ray sources without moving the x-ray tube, saving the time to move

the source. The fast switching capability of the CNT x-ray source also allows prospectively

gated imaging using physiological signals, such as respiration signals.[45, 79]

The purpose of this chapter is to investigate the feasibility of physiologically gated s-DCT,

and to study the effect of gating on image quality.

Section 8.3: Methods

8.3.1: System Description

Figure 8.1 shows the prototype s-DCT system with a linearly distributed CNT x-ray

source array. The system consists of a CNT linear x-ray source array, a flat panel detector

(Varian 3030D, Varian Medical Systems Inc., CA) and an electronic control unit. The

detector has an effective imaging area of 30 cm × 30 cm with 1536 × 1536 pixels in full

resolution. The pixel size is 194 µm × 194 µm in full resolution mode. The detector can

be operated up to 12.5 fps in full resolution mode and 30 fps in 2× 2 binning mode. The

source to detector distance is 100 cm, and the tomosynthesis angular coverage is 16.9◦.

A switching system is used to control individual x-ray sources in the tube. Coupled with

a physiological signal sensor, the x-ray beams can be gated to a specific phase of the signal.

The timing graph of the gating scheme is shown in Figure 8.2. The detector was operated

in continuous mode. The ready to exposure signal was used as a master signal to trigger

the x-ray sources. A logical AND operation was applied between the master signal and the

physiological signal. A LabVIEW program automated the image acquisition. Tomosynthesis
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Figure 8.1: Stationary chest tomosynthesis system consisting of a CNT source array, a flat
panel detector and an anthropomorphic phantom mounted on the same translation stage.
The source array contains 75 focal spots, and has a 298 mm end-to-end length. The detector
is 30 cm× 30 cm, and can acquire images at up to 30 fps in the 2× 2 binning mode.

images were reconstructed using an adaptive fan-beam volume reconstruction algorithm,

where the 3D cone beam reconstruction was broken down into a series of 2D fan-beams to

accelerate the reconstruction.[87]
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Figure 8.2: Timing graph of physiologically gated s-DCT. In this study, the detector ready
to exposure signal is filtered by the physiological signal captured by the Bio Vet sensor. The
x-ray source only fires when the lung is in a certain respiration phase.

8.3.2: Dynamic Phantom

A dynamic phantom was constructed using porcine lungs, as shown in Figure 8.3. Pig

lungs and heart block was placed inside an anthropomorphic chest phantom (Model RS-320,

Radiology Support Devices, Long Beach, CA). The lungs were connected to a ventilator to

simulate the respiration motion with respiration cycles and volume comparable to human.

The lung motion was monitored using the Bio Vet sensor (m2m Imaging Corp., OH), the

sensor measured the maximum pressure when the lung reaches maximum volume (the end

of inhalation phase).

8.3.3: Physiologically Gated Tomosynthesis

Trigger signals gated to certain phase of respiration was sent to x-ray source array to

activate x-ray exposure, as illustrated in Figure 8.4. Based on the length of gating window,

one or more gated images were acquired per respiration cycle. To quantitatively measure

the image blur due to the respiration motion, small metal beads of 2 mm in diameter were

fixed on the surface of lungs. Anterior-posterior (AP) projection images were acquired at

various imaging acquisition speed, breath periods, respiration phases, and with or without

142



(a) (b)

Figure 8.3: (a) Mechanical ventilator used for the dynamic phantom. The ventilation speed
(bpm) and volume per ventilation (percentage of lung volume) can be adjusted to simulate
various respiration patterns. (b) The dynamic phantom. Porcine lung and heart block were
placed inside the anthropomorphic phantom. Lungs were pumped by the ventilator. The
respiration motion was monitored using the pressure based Bio Vet sensor.

Figure 8.4: Illustration of physiologically gated tomosynthesis. The red curve represents
the respiratory motion of the ventilated lungs captured by the Bio Vet sensor. The sensor
captures the maximum pressure at the end of inhalation phase. The green bar indicates the
gating window. A trigger signal (TTL) is sent to the switching electronics for each gating
window.

gating to investigate the effect of gating on image blur reduction.
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Figure 8.5: The anode current waveforms from 5 different sources during a tomosynthesis
scan at 30 fps. The pulse width was 12 ms, within a 16 ms detector integration window.
The waveforms show anode current consistency from source to source, and fast switching of
individual sources.

Section 8.4: Results

8.4.1: CNT X-ray Source Array

31 sources with a pitch of 8 mm were used for tomosynthesis scans in this study. Figure

8.5 shows the anode current waveform for 5 different sources at 30 fps acquisition speed. All

5 sources consistently output 5 mA anode current with a 12 ms pulse width. The waveform

shows the fast switching capability of the CNT x-ray sources and consistent x-ray output

from beam to beam.
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(a) Control (b) Motion (c) End of inhalation (d) End of exhalation (e) During inhalation

Figure 8.6: (a) Image of the inflated static lung as control. (b) Images of the ventilated lung
without gating, the size of the bead was measured to be 3.75 mm. (c) Image acquired gated
to the end of inhalation phase. (d) Image acquired at the end of exhalation phase. (e) Image
gated to the middle of inhalation. Motion blur was reduced by 85% using physiologically
gated tomosynthesis.

8.4.2: Physiologically Gated Tomosynthesis imaging

Images of lungs inside the anthropomorphic phantom were acquired at 80 kVp, 5 mA

anode current with 25 ms and 50 ms pulse width per projection. The detector was operated

at 10 fps in full resolution mode. The lung was ventilated at a respiration rate of 10 breaths

per minute (bpm), comparable to humans.[32] The incident air kerma per projection at the

beam entrance plane (25 cm away from detector) was measured to be 16.7 µGy and 33.3 µGy,

respectively,[49] which was sufficient compared to average per projection dose of 16.7 µGy

used in commercial DCT systems.[3]

Figure 8.6 shows the reconstructed tomosynthesis slices of the beads at different imaging

conditions. (a) shows one tomosynthesis slice of one bead with inflated but not ventilated

lungs. The motionless datasets shows sharp images of the bead and vascular structures in the

background. The diameter of the bead was measured to be 2 mm. (b) shows the slice of the

same bead on the ventilated lungs without physiological gating. The whole tomosynthesis

sequence was acquired in 3 s, which is less than the whole respiration cycle of 6 s. The

image quality was degraded due to respiratory motion of the lung. The metal bead was

blurred along the lung motion direction, and the blurred bead was measured as 3.75 mm.

(c) and (d) show the same tomosynthesis slices using projection images gated to the end of
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inhalation and end of exhalation phase, respectively. The gating window was set as 500 ms,

during which 5 projection images were acquired in one respiration cycle. The whole sequence

took 36 seconds that span across 6 respiration cycles. The gated image reduced the image

blur caused by the respiration motion, as seen by the sharper image of the bead and the

boundaries of the airways in the lung compared to non-gated images. The size of the metal

beads was measured as 2.25 mm for both cases, an 85.7% reduction in the motion blur. (e)

shows the image gated to the middle of the inhalation, where the respiration motion has

the largest speed. The gated window was 500 ms, and the whole tomosynthesis sequence

took 36 seconds. The image shows blur on the metal bead as the width was measured

as 2.75 mm. However, this image blur is smaller than the non-gated image, as the X-ray

acquisition window was only 0.5 second compared to 3 seconds of the non-gated dataset,

and the images were gated to a portion of the whole respiration motion. The images gated

to end of inhalation and end of exhalation phase are sharper due to the slower respiration

motion speeds in these two phases.

Figure 8.7 shows selected tomosynthesis images of the same region in the pig lung for

image quality comparison. Figure 8.7(a) shows the control image acquired without respira-

tory motion. The wall of airways and bronchus was clearly visible. Figure 8.7(b) shows the

image of the ventilated lung without physiological gating. The respiratory motion degraded

the image quality. Figure8.7(c)-(d) show the images gated to end of inhalation phase and

end of exhalation phase, respectively. Even though the image acquisition spans through sev-

eral respiration cycles, the gated images achieved comparable image quality as the control

set. The airways and other fine structures are more visible and sharper in the gated images

compare to the images acquired without gating.

Section 8.5: Discussion

A physiological gated stationary chest tomosynthesis system was demonstrated using a

CNT X-ray source array. Preliminary results have shown the method can greatly reduce
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Figure 8.7: Comparison of the image quality of the lungs on selected tomosynthesis slices
acquired under different conditions. (a) shows a bronchus of the inflated but not ventilated
pig lung. (b) shows the same region of the ventilated lung without physiological gating. The
airways were blurred due to the respiration motion. (c) and (d) show the same region gated
to the end of inhalation phase and end of exhalation phase, respectively. The gated images
show more fine features and better definition of the airways.

the image blur due to the respiration motion. Motion blur can be reduced up to 85% when

images are gated to end of inhalation and end of exhalation phase of respiration cycle, where

the motion speed is minimum.

The scanning time, however, was much longer than a conventional tomosynthesis due

to the projection images are acquired over several respiration cycles. Other patient motion
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during the long scanning time may become the main sources of image degradation. Using

longer gating window within each respiration cycle and/or acquiring images at higher speed

will reduce the total imaging time. The respiration pattern of a normal human has a short

pause (∼ 1 s) after each exhalation. During this pause, the respiration motion has a mini-

mum speed, suggesting a longer gating window would be feasible. Consider a tomosynthesis

sequence of 60 projection views with a 30 fps detector, and a gating window of 1 s per

respiration cycle. The whole sequence can be acquired in 2 respiration cycles, which would

be comparable to the scanning time of current conventional DCT system (10 s).

Section 8.6: Conclusion

The s-DCT system allows prospective gating to any phase of the respiration cycle, sub-

stantially reducing blur even with image acquisition over several respiration cycles. This

technique can be applied to improve tomosynthesis image quality for patients with trouble

holding their breaths.
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CHAPTER 9: Applications of s-DCT and Techniques to Improve Image
Quality

Section 9.1: Overview

This chapter will briefly discuss the applications of s-DCT and a scatter reduction method

to improve the image quality for s-DCT. Section 9.2 will investigate the feasibility of diagnosis

and monitoring of cystic fibrosis (CF) in pediatric patients using s-DCT. Section 9.3 will

evaluate the effect of scatter reduction using a primary sampling apparatus (PSA) for chest

tomosynthesis.

Section 9.2: Using s-DCT as Diagnosis and Monitoring Tools in Pediatric Cys-
tic Fibrosis Patients

9.2.1: Purpose

Cystic fibrosis is a chronic systemic disease that affects approximately 70,000 people

worldwide. About 75% of the patients are diagnosed by age of 2.[88, 89] The disease mainly

affects the lungs. As the disease progresses, patients suffer inflammation and infections in

the lungs. The accumulation of mucus in the lungs and airways also causes difficulties in

breathing. Since the disease is a genetic disorder, currently there is no cure. The focus of

care for CF patients is diagnosing the disease and any symptoms early, properly monitoring

the progress of disease and treating the symptoms as they emerge.

X-ray images allows the monitoring of structural changes inside lungs, such as mucus

plugging and airway thickening. Currently, CT is widely used to monitor the progress of the

disease.[88–91] The disadvantages of the CT as a monitoring tool are its high examination

cost and high dose to patient, especially to children that are more radiosensitive to radiations
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than adults. Digital chest tomosynthesis (DCT) is an alternative low dose 3D imaging

modality.[1] Multiple low dose x-ray projections are acquired over a limited angle. The

reconstructed tomosynthesis slices have high in-plane spatial resolution, which may identify

the symptoms better than CT. Vult Von Steyern et. al. have shown that DCT could be

useful for monitoring CF.[12, 92, 93] A scoring system using DCT to monitor the progress

of CF was developed.[94] Features such as mucus plugging and airway thickening are well

defined in DCT slices, while some other symptoms like air trapping cannot be sufficiently

viewed.

A conventional DCT scan typically lasts around 10 s as the result of moving single x-ray

tube to multiple locations.[1] However, in previous studies, children younger than 8 years

old were excluded due to their inability to steadily lay prone and perform a breath-hold up

to 10 s.[12] The s-DCT using CNT x-ray source array allows fast scanning when coupled

with a fast detector. The capability of performing respiratory gated tomosynthesis eases the

requirement for breath holding, which may improve the imaging outcome for patients that

are too young to hold their breath.

The purpose of this section is to investigate the feasibility of using s-DCT to identify CF

pathologies using an ex-vivo CF lung model.

9.2.2: Methods

Ex-vivo CF lung model

Porcine lungs were used to simulate a CF lung model. Lungs were cleaned and any visible

cuts on the surface were patched to allow inflation. A 0.5% agarose/water solution was used

to simulate the mucus. The solution was first heated to the melting point to allow injection

into the lungs. 10 - 15 mL of solution was injected into lungs. Then the lungs were stored

in a refrigerator overnight to allow the agarose to gel properly.
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System setup and imaging protocols

The processed lungs were placed in an anthropomorphic chest phantom (Model RS-320,

Radiology Support Devices, Long Beach, CA). The lungs were inflated with compressed air.

The imaging system was setup as Figure 8.1. The SID is set at 100 cm. 31 sources covering

16.9◦ were used for the tomosynthesis sequence. Images were acquired at 80 kVp with 5

mA tube current.[49] A flat panel detector (Varian 3030D) with 194µm × 194µm pixel size

was used. Projection images were reconstructed using a commercial software developed by

Real Time Tomography, LLC (Villanova, PA). The images were reconstructed with 3 mm

interslice spacing.

9.2.3: Results

Figure 9.1 shows a comparison images of the CF lungs acquired using s-DCT and CT.

The simulated mucus solution solidified in both lung lobes, as indicated by the red circles

in both images. The tomosynthesis images demonstrated the feasibility of using s-DCT to

identify mucus plugging in CF patients.

9.2.4: Discussion and Conclusion

An ex-vivo CF lung model was created to reasonably model some of the characterizations

and symptoms of CF. A direct comparison between s-DCT and CT were performed. To-

mosynthesis offers comparable image quality in terms of visualizing the build-ups of mucus

and detailed airway structures inside lungs, while at a considerably low dose compared to

CT. More CF lung models will be developed, and further studies evaluating the efficacy of

s-DCT for detecting other CF symptoms will be performed. S-DCTs can also be prospec-

tively gated to certain phase of respiration, allowing images for patients that are too young

to hold their breath.[95]

This initial work shows great promises for the further translation of this technology
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Figure 9.1: Comparison of the images of the CF lung model between s-DCT and CT. The
left shows a reconstructed slice of the lung using s-DCT, while the right shows one CT slice
of the lung. The red circles indicate the regions where the simulated mucus was injected.

towards CF diagnosis and care.

Section 9.3: A Scatter Reduction Technique for s-DCT

9.3.1: Purpose

Scatter is a well-known problem for many x-ray imaging modalities and applications.[96]

The scatter signal from other dense tissues and bones often obscure the details in the soft

tissues, especially for thoracic imaging, where the scatter-to-primary ratios can be up to

20.[96, 97] Traditionally, anti-scatter grid have been used in CXR, DTS, and CT for scatter

rejections. The anti-scatter grid is placed on the detector, by blocking the scatter signal,

the primary x-rays are blocked as well. In order to maintain the signal noise ratio (SNR),

additional dose is delivered to patients.

Our lab has proposed a new scatter correction method using a primary beam sampling

apparatus(PSA).[73] The methods allows effective scatter reduction with low dose. The
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Figure 9.2: Schematic of PSA. PSA only allows passage of a small port of incident x-ray,
enabling sampling of the primary beam.

technique has been implemented on the stationary digital breast tomosynthesis system. It

is found to be efficient in rejecting the scatter with only 3% dose increase. The purpose of

this section is to investigate the feasibility to apply the technology to s-DCT and study the

effectiveness of the scatter reduction.

9.3.2: Methods

Primary sampling apparatus

The PSA is a lead collimator that is placed before the imaging object. The plate, which

is made of 6 mm lead, contains an array of apertures, which are 6 mm in diameter and

separated 31 mm apart. This array of apertures only allows 3% of incident x-ray passing

through.
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The scatter correction procedure is briefly described as follows. A normal tomosynthesis

sequence is acquired without PSA. The value of each pixel in the image contains both the

primary signal and the scattering signal from other tissues. Then the PSA is placed on top

of the project, a second image is acquired, as shown in Figure 9.2. After the collimation of

PSA, pencil beams pass through the object with much less scattering. The primary beam is

then sampled from the PSA image. The whole procedure only results in 3% extra dose.

Scatter correction method

In the PSA images,1 the primary beam is evaluated by sampling the detector pixels

associated with the beam passing holes. The scatter signals at these positions are deduced

by subtracting the measured primary signal from the normal image.

Ss = St − Sp (9.1)

where the Ss, St, and Sp are the mean intensity of the scatter signal, total signal, and

primary signal in the sampled regions, respectively. Since most of the scattering signals

are low frequencies, the whole scatter map can be interpolated from the sparsely sampled

regions using a biharmonic spline interpolation method. Scatter-to-primary ratio (SPR) is

calculated for each pixel (x, y) using the interpolated signal and full field image as:

SPR(x, y) =
Ss(x, y)

St(x, y)− Ss(x, y)
(9.2)

The SPR map is then convoluted with a Gaussian filter to make it smoother and recomputed

as:

Ss spr = St ·
SPRf

1 + SPRf

(9.3)

1Images acquired with PSA in place.
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where the SPRf is the filtered SPR map, and the Ss spr is the recomputed scatter map. For

tomosynthesis scan, the SPR map is dependent on the image angle of each projection. The

scatter correct image is then calculated as:

Sp cal = St − Ss spr (9.4)

Phantom and cadaver imaging

A physical phantom was constructed to quantitatively evaluate the effectiveness of the

PSA. The phantom consists of a water-filled polyethylene container, 12cm × 20cm × 6cm,

polyethylene foam, polyethylene spheres, and stainless steel beads, as shown in Figure 9.3(a).

The physical phantom was placed inside an anthropomorphic chest phantom (Model RS-320,

Radiology Support Devices, Long Beach, CA) to simulate anatomic structures and more

scatters.

Figure 9.3: (a)Photo of the physical phantom. (b)Phantom setup with the PSA.

Cadaver sample was also imaged using PSA to assess the effectiveness of the technique

for human imaging. An adult female thoracic cadaver was obtained through collaboration

with colleagues in UNC School of Medicine. The thickness of the sample was 25 cm.
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Tomosynthesis images were acquired for both the physical phantom and cadavers with

and without PSA using the prototype s-DCT system describe in Chapter 5. Each scan

includes 31 projection images. Images were acquired at 80 kVp and 5 mA tube current

with various x-ray pulse width. Varian 3030D flat panel detector was used. A commercial

anti-scatter grid (Mitaya, Japan) was used for comparison. The grid has a grid ratio of 8:1,

80 lines/cm, 112 cm focal length.

For the physical phantom, the images were acquired with 25 ms and 50 ms pulse width

per projection, resulting in 3.86 mAs and 7.75 mAs per full scan, respectively. Scans were

performed at 112 cm SID for normal images, PSA images, and images with anti-scatter

grid. Cadaver images were acquired at 100 cm and 130 cm SID, with and without PSA.

Anti-scatter grid was not applied to cadaver samples.

Tomosynthesis reconstruction

Tomosynthesis images are reconstructed using an adaptive fan-beam volume reconstruc-

tion algorithm, where the 3D cone beam reconstruction was broken down to a series of

2D fan-beam to accelerate the reconstruction. The algorithm used Simultaneous Algebraic

Reconstruction Technique (SART) with 20 interactions.[87] The slice thickness of the to-

mosynthesis datasets was 3 mm.

Image analysis

Quantitative evaluation of the scatter reduction was performed for the physical phantom.

Signal-difference to noise ratio (SdNR) was used as the metric. The SdNR is defined as:

SdNR =
|µobj − µbkg|

(σobj + σbkg)/2
(9.5)

where µobj and µbkg are the mean intensities for object and background, respectively. Their

standard deviation are measured as σobj and σbkg. The analysis was not performed on cadaver
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Figure 9.4: (a) Scatter-corrected projection image of the phantom, with ROI depicted. (b)
Interpolated scatter map for projection image in (a). (c) Zoomed in image of ROI c. (d)
Zoomed in image of the ROI d.

sample due to its lack of the well-define feature.

9.3.3: Results

Physical phantom images

Projection images of the phantom were processed using the scatter reduction method. A

representative image is shown in Figure 9.4. The foams and metal beads were visible in all

images, while the polyethylene spheres were not due to their similar attenuation coefficient to

water. The SdNR for this four objects were analyzed for normal images of 7.75 mAs without
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Figure 9.5: SdNR analysis for ROIs in the physical phantom. The SdNR for PSA cor-
rected image increases significantly over that of the uncorrected images. The SdNR for PSA
corrected images also outperforms the anti-scatter grid technique.

scatter-correction, PSA corrected images at 3.86 mAs, PSA corrected images at 7.75 mAs,

and normal images with anti-scatter grid at 7.75 mAs. Figure 9.5 plots the measured SdNR

for all four objects with four imaging parameters. Both PSA corrected images with low

and high dose demonstrate improved SdNR over the uncorrected images and images with

anti-scatter grid.

Cadaver images

Cadaver images were corrected and reconstructed. The corrected images demonstrates a

significant increase in conspicuity of features compared to the uncorrected images. Selected

projection images and reconstructed slices are shown in Figure 9.6. The scatter corrected

images have improved histogram, which allowing visualization of subtle features.
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Figure 9.6: Comparison of PSA corrected images and uncorrected image for cadaver sample.
(a) Projection image without scatter correction, and (b) with correction. (c) Reconstruction
slice without correction, and (d) with correction.

9.3.4: Discussions and Conclusions

This study has successfully demonstrated the feasibility and effectiveness of the proposed

scatter reduction method using PSA.

The PSA plate in this study had a sampling geometry with 3% opening area, thus

resulting in 3% increase in patient radiation exposure. Effectiveness of this technique has
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been evaluated using a physical phantom and cadaver sample. It is found that the PSA

technique significantly increases image quality.

However, only one PSA configuration was explored in this study. PSA plate with more

and smaller sampling apertures or/and non-uniform sampling pattern may improve the ac-

curacy of the interpolated scatter map. One drawback of the technique is the doubled

scanning time due to the second image acquisition with PSA. Longer scanning time may

result in patient motion, causing degradation in image quality.

In summary, the scatter reduction method using PSA is effective at reducing scatters and

enhancing the visibility of small features. The less dose penalty compared to conventional

anti-scatter grid may be practical for clinical implementations.
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CHAPTER 10: Clinical Implementation of an s-DCT Prototype

Section 10.1: Overview

The s-DCT prototype was constructed for use in a clinical trial. The bench-top proof-

of-concept system was modified and mounted on a DR system. Initial construction was

completed in our lab. The system was transferred and installed at Marsico Hall. The system

underwent a series of electrical and radiation safety tests before patient trial to ensure the

safety of both patient and operator.

This chapter will briefly summarize the clinical implementation of the system.

Section 10.2: Construction of the Prototype s-DCT

An s-DCT prototype was constructed by retrofitting the source array onto an existing

DR system at the end of the 2013. The source array was mounted using a custom tube

holder, which allows rotation of the source array for various tube positions and orientations.

Besides the mounting structure, and x-ray source, a variety of equipments were needed

to for the system to be operational. The required components included an anode power

supply, gate power supply, a high voltage multi-beam switching system, a flat panel detector

and related electronics. Table 10.1 lists the power producing components and their ratings.

All components were installed and secured in an electric rack, with proper connection and

grounding for electric safety.1

The system was tested before moved to Marsico Hall for clinic evaluation. The system

was installed in the clinical trial site and the cart was attached to the floor. Side panels

and tube enclosures were made and attached to the system. Figure 10.1 shows the fully

1More details of preparing the system for electric safety test refer to Section 10.4.
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Table 10.1: List of the power generating components of the system.

Component Manufacturer Model Voltage Current Power
Rating(kV) Rating(mA) Rating(W)

Anode Power Supply Spellman XRV160P1800 160 30 1800
Gate Power Supply Heinzinger PNC3000-200ps 3 200 600
Switching System Xinran Systems MPE 3 20 60

Figure 10.1: Photo of the fully assembled s-DCT system in Marsico Hall.

assembled s-DCT prototype system.
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Section 10.3: Software for the s-DCT

A customized LabVIEW program was developed from scratch for the clinical trial, which

will be operated by a technician. The flowchart of the program is shown in Figure 10.2. The

program consists of two parallel parts, designed in modules. Three modules run parallel to

each other, one module controls the anode power supply, one module controls the switching

system MPE, and the last module communicates with the detector. Each module registers

to event observers at the beginning of the program. The modularized design pattern allows

easier maintenance and future expansions. The second thread of the program registers event

observers. Once the operator triggers a certain event, certain handlers in the modules are

called. The program ends when a full tomosynthesis sequence is acquired, or the operator

aborts the sequence due to unexpected situations.

The interface of the program is optimized so minimum operator input is needed. The

program also provides a step-by-step guide to the operator. The operator has to finish cer-

tain procedures before he/she can navigate through the program, which minimizes operator

errors.

Section 10.4: Patient and Operator Safety

The safety of both patient and operator were the highest concern during the system

construction. Since the system is an investigational system, it has not been approved or

certified by any agency. Therefore, a third party was requested to test the safety of the

equipment. MET Lab Inc. (MET southeast, Cary, NC) was employed to test and certificate

the electrical safety of the system. The Department of Environment, Health, and Safety

(EHS) at UNC tested and certified the radiation safety of the system.
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Figure 10.2: Flowchart of the s-DCT system program for clinical trial.
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10.4.1: Electrical Safety

In order to use the s-DCT system for clinical trial, the system needed to be electrically

safe. The electrical grounding scheme and the isolation of the high voltage generating units

were the key issues need to be addressed. The field office of MET Lab Inc in Cary carried

out the test and certification. The s-DCT system passed the test on January 22nd., 2015.

Grounding scheme

It is very important to ensure electrical grounding of the whole system be designed that

any electrical short (if happens) does not pass through the patient, operator, or the switching

electronics. High voltage or current passing through a human can be deadly. Therefore, all

electronics were grounded to the grounding bus, and the shortest path was between the anode

power supply and earth ground. Large diameter copper wires (gauges 4 and gauges 8) were

used to ground the equipment to ensure good conductance to the ground. All grounding

cables were coated with green insulator to distinguish them from other cables. Figure 10.3

shows a diagram of the grounding scheme of the system.

Proper isolation of the components

Power generating equipments are required to be certified for use on humans. However,

none of the power supplies used in the s-DCT prototype are properly certified. The system

can only be certified if these components are properly isolated and in-line ground fault

circuit interrupters (GFIC) are used for over current protection. The purpose is to protect

the system in fault conditions and prevent hazards from transmitting to the output of the

system. Two isolation transformers were placed between the wall power outlet and the

input of the power generating components. The transformers are selected based on the

apparent power of the equipment connected to them. Peak current draw from equipments

were measured when they are working in normal conditions. Table 10.2 list the measured

apparent power for all power generating parts in the system. All equipments except the
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Figure 10.3: The grounding scheme of the s-DCT system. All components are grounded to
the grounding bus.

Table 10.2: Measurement of apparent power for power generating equipments.

Equipment Input Voltage (V) Peak Current (A) Peak Apparent Power (Va)

Anode Power Supply 220 10 2200
Gate Power Supply + MPE 120 1.46 175.2

Volteq HY3030D Power Supply 120 0.65 78
Agilent E3612A Power Supply 120 0.4 48

LED Light Field 120 0.1 12

anode power supply are connected to a medical grade isolation transformer (Toroid ISB-

100W, input of 120 V) with a maximum power rating of 1000 Va. The total peak apparent

power of these components was measured to be 313.2 Va. Another isolation transformer

(Sola Hevi-Duty HS14F3BS) is used for the anode power supply. The peak apparent power

of the anode power supply was 2.2 kVa, while the isolation transformer was rated to 3 kVa.
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10.4.2: Radiation Safety

Radiation safety was evaluated by EHS. There were two main issues needing to be ad-

dressed by the radiation safety. The first one was beam collimation and off focal spot

radiation. The second was a field survey of the radiation levels. The off focal spot radia-

tion was evaluated and discussed in Chapter 6. This section will cover the collimation and

shielding. EHS passed the system for human use on February 13th., 2015.

X-ray collimation

Since the source array used in this s-DCT system was originally designed for other pur-

poses, it is not equipped with a collimator. In order to prevent overdosing to the patient

and remove extra scattered x-rays, proper collimation was required. However, because the

source pitch in the s-DCT tube was so small (8 mm), designing an external collimator for

each focal spot is impractical.

Alternative collimation was constructed, as shown in Figure 10.4. The new collimation

consists of two parts. The first part was a tungsten collimator mounted at the source array

to provide a beam collimation on the lateral direction. A collimator assembly, including

two 1 mm thickness tungsten sheets, was mounted outside the x-ray window. The width

between the tungsten blades was calculated based on the width of the detector and targeted

SID. This collimator has fixed width since the SID in the clinical trial will be fixed. The

black shadows in Figure 10.4 demonstrate the collimated regions in the detector plane by the

collimator. The second part included lead aprons, and face shielding for beam ”collimation”

along the superior-inferior (SI) direction. A photo is shown in Figure 10.5 of the radiation

shielding setup.

A light field was designed to facilitate positioning of the patient. The light field utilizes

an LED flash light and a mirror to provide a rectangular illuminated area, adjusted to align

with the collimated area and matched the size of the detector. The flux of the light was

measured, and found to be more than the 100 lumens required by IEC-60601. By positioning
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Figure 10.4: Illustration of the beam collimation. The black shadows demonstrate the
collimated regions by the tungsten collimator mounted on the tube. The blue shadows show
the face shielding and lead apron.

the detector and patient in the illuminated field, the collimated x-ray beam aligns with the

detector.

Radiation shielding of the room

A radiation field survey was performed by EHS. The purpose of the survey was to mea-

sure the radiation levels to the operator and other people in nearby rooms. The radiation

level must be below the regulatory levels. The survey measured the radiation levels at var-

168



Figure 10.5: A photo demonstrating the radiation shielding on the patient side. The head
shielding protects the patient’s head from unnecessary x-ray exposure. The lead apron
protects the patient’s lower body.

ious locations, including the area where the operator works, the corridors, and rooms next

to the imaging room, as shown in Figure 10.6. The regions marked by letters indicate where

the survey was conducted. Both the s-DCT and the digital radiography system were sur-

veyed. The survey was conducted using an ion chamber dosimeter (Inovision 451B). All

measurements were well below the annual limits for radiation exposure.

Section 10.5: Workflow of s-DCT

The s-DCT system will be evaluated and compared to a Carestream digital radiography

system. This section will discuss the workflow for the s-DCT image acquisition.

Figure 10.7 shows a diagram of the workflow.
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Figure 10.6: Room layout for the s-DCT system and the digital radiography system installed
in Marsico. Radiation levels at where operator stands and nearby corridors and rooms are
surveyed by EHS.

10.5.1: Patient Check-in

Beginning of each patient image, a system check will be performed to ensure every com-

ponent in the s-DCT is working properly. If the system fails the check, the study will be

postponed and the system will go through a troubleshooting process. If everything works

as intended, the technician will assign a unique patient ID to the patient. The patient

information will remain confidential throughout the study. Only the patient ID will be used.

The technician checks-in patients using the patient ID. All the images acquired will be

saved in a folder associated with the patient ID, and the data will be encrypted.
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Figure 10.7: The workflow of an s-DCT acquisition.

10.5.2: Patient Positioning

The flat panel detector will be connected and placed on the patient bed. Technician will

help the patient lie down on the detector, and adjust the position of detector or patient so

that the detector is below the chest.

The light field will be turned on, and the patient bed will be moved below the x-ray tube.

The technician needs to move the bed around to make sure the illuminated area is aimed at

the patient chest, and roughly aligned with the detector. The face shielding and lead apron

will be place on the patient for radiation protection.

During this step, technician needs to briefly go over the instructions for breath holding

with the patient. The technician will allow the patient to practice several times, and answer

any questions the patient may have. This step is crucial for the success of the imaging.
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Figure 10.8: Demonstration of technique calculateon using a scout view image of a phantom.

10.5.3: Acquiring the Scout View

A low dose scout view is acquired before acquiring the tomosynthesis sequence. The first

purpose of the scout view is to check patient positioning. If the patient is not aligned with

the detector, the technician needs to adjust the position of the detector or bed based on the

scout image. Another scout view may be acquired to check the positioning.

The second purpose is to calculate the radiation technique for the tomosynthesis. We

adopted the technique from conventional DCT systems. Instead of using AEC chambers,

two ROIs from the lung region in the scout view image will be selected, the mean pixel
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values of these two regions will be calculated. The calculated value will be compared to a

reference value. The reference value is calibrated in advance to reflect a detector entrance

dose (after passing through patient) of 3.2 µGy. The mAs needed for the reference value will

be scaled from the scout view mAs. This mAs is multiplied by 10 and distributed equally

over all projection views, determining the mAs per projection. Figure 10.8 demonstrates a

calculation of the technique using a scout view image of a phantom. Once the scout view

image is loaded, the technique is automatically calculated from two default ROIs. If the

ROIs are not satisfactory, the technician can use the mouse cursor to select two new regions

for measurement. Once the radiographic technique for tomosynthesis is determined, the

technician can proceed to acquire tomosynthesis images.

10.5.4: Acquiring Tomosynthesis Images

A sequence of tomosynthesis images including 31 projections will be acquired in this step.

The whole acquisition takes about 10 s. The patient needs to follow the instructions from

the technician and hold their breath for 10 s. Failure to do so would void that patient study.

10.5.5: Image Handling and Reconstruction

Images will be saved in the designated folder following a successful image acquisition.

Data will be stored on an encrypted hard drive and transported for image reconstruction

and analysis.

Section 10.6: Patient Imaging of s-DCT

The s-DCT system successfully imaged the first patient in March of 2015. Figure 10.9

shows the one projection image of the patient. Figure 10.10 shows the one reconstructed

slices of the patient.
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Figure 10.9: One projection image from the first patient.

Section 10.7: Conclusion

The s-DCT system was constructed and installed in Marsico Hall for clinical evaluation.

The system passed both the electrical and radiation safety tests. The system has successfully

imaged the first patient. More patient imaging will follow.
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Figure 10.10: A reconstruction slice from the first patient.
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CHAPTER 11: Summary and Future Directions

Section 11.1: Summary

A stationary digital chest tomosynthesis system prototype was developed using a CNT

x-ray source array. The key components of the system include a distributed x-ray source

array, a flat panel detector, and high voltage switching electronics. The source array was

retrofitted on a Carestream digital radiography system.

Key questions discussed in this study include the feasibility of s-DCT, imaging configu-

rations, and feasibility of prospective gated s-DCT. It was shown that the CNT source array

was capable of delivering sufficient x-ray flux for the purpose of DCT imaging. The source

array used in this prototype demonstrated good long term stability of the CNT emitters, sug-

gesting its ability to handle clinical imaging tasks. For the linear source array, it was found

that larger angular span is desired due to its improved in-depth resolution in tomosynthesis

images. For the conventional DCT systems utilizing a continuously moving x-ray source,

larger angular coverage in the DCT acquisition results in longer scanning time. In contrast,

the scanning time of s-DCT does not depend on the angular coverage. This advantage allows

s-DCT systems to cover a wider angular span for the given number of projections.

Tomosynthesis using other non-conventional shaped source geometry configurations have

been studied. It is shown that 2D source geometries such as the square and circle demon-

strated better in-depth resolution, and comparable in-plane resolution compared to conven-

tional 1D imaging geometry with a similar tube footprint. The flexibility of the CNT source

array and the fast switching capability allows a 2D source array configuration for stationary

chest tomosynthesis.

Conventional DCT requires patients to hold their breath for approximately 10 s. While
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this might be doable for a normal adult, it could be a hard task for people with lung conditions

and pediatric patients too young to hold their breath. The ability to switch individual x-ray

sources arbitrarily, allows tomosynthesis projection images to be acquired prospectively to

at certain phase of respiratory cycle. Respiration signals can be monitored by sensors and

synchronized with s-DCT. We have demonstrated the feasibility of physiologically gated s-

DCT. Our preliminary results using a dynamic phantom model show that prospective gated

tomosynthesis significantly reduces motion artifacts from respiration motion.

The s-DCT was installed in Marsico Hall for clinical evaluation. The system successfully

passed electrical and radiation safety tests. The clinical trial has been approved by the

Institutional Review Board (IRB) of UNC. Radiation technologists are being trained on the

use of the system. First patient was successfully imaged. More patient trials will start soon.

Section 11.2: Future Directions

This whole study marks the first step toward many applications of CNT based stationary

chest tomosynthesis. There still is a great deal of work for the future development and

implementation of the technology.

Even though the feasibility of s-DCT and relative applications have been demonstrated,[49,

95, 98, 99] the system is not yet optimized. Future investigations and improvements of the

system are needed.

The source array used in this study, is not optimized for the purpose of chest imaging.

The source array has a relatively short length and anisotropic focal spots. However, these

limitations are solvable. CNT x-ray source arrays with higher kVp, longer length, and

isotropic focal spots have been demonstrated. The future s-DCT system will be equipped

with an optimized source array.

The imaging time of s-DCT is determined by the dose and detector readout time. Cur-

rently, the main limiting factor is the detector acquisition (readout) speed. For the s-DCT

being evaluated under clinical trial, the flat panel detector can run up to 3 fps, resulting in
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a total 10 s scan time for 30 projection images. Using a faster detector can reduce the total

imaging time, resulting in better imaging quality due to less patient motion blur. Flat panel

detectors running up to 30 fps are commercially available. Future generations of s-DCT can

be implemented with faster detectors to improve the system performance.

Accurately locating the positions of focal spots relative to the detector is crucial for

tomosynthesis imaging reconstructions. Current geometry calibration methods utilize high

attenuating fiduciary markers. This method can be simple and effective for general purpose

in-room s-DCT systems, as the position of the source array and detector are relatively fixed.

Other geometry calibration methods without using fiduciary markers need to be investigated

in future as well.

The implementation of physiologically gated tomosynthesis also distinguishes s-DCT from

conventional x-ray imaging systems. Gated tomosynthesis greatly reduces the motion arti-

fact, and allows tomosynthesis acquisition without breath holding. An s-DCT with this

capability would improve the patient care and imaging outcome. For example, for patients

with severe lung conditions or traumas who cannot hold their breath easily, a tomosynthesis

with gating capability could be a very helpful to doctors.
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