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ABSTRACT 

Maria Agostina Santoro: Obesity, hyperinsulinemia, the insulin and insulin-like growth factor 1 receptors, 

and risk of colorectal cancer 

(Under the direction of P. Kay Lund)  

 

 Insulin resistance and hyperinsulinemia associated with obesity or type 2 diabetes are strongly 

associated with increased risk of colorectal cancer (CRC). Elevated plasma insulin can increase the levels 

of “free” insulin-like growth factor 1 (IGF1) in the circulation. Both insulin and IGF1 can bind and 

activate the insulin receptor (IR) or the related IGF1 receptor (IGF1R). IGF1R is traditionally viewed as a 

major mediator of growth and anti-apoptosis and has been linked to cancer. IR is expressed as two 

isoforms, IR-A and IR-B. IR-A promotes growth of fetal and possibly cancer cells, while IR-B mediates 

the metabolic actions of insulin and promotes differentiation in some tissues. However, the specific roles 

of IGF1R, IR-A, and IR-B in colon physiology and tumorigenesis are unclear. This dissertation combined 

translational and pre-clinical approaches to explore the roles of IGF1R and IR in colorectal adenoma risk, 

tumorigenesis, and reduced apoptosis of genetically damaged colonocytes during obesity and 

hyperinsulinemia. Our studies showed that increased IR-A:IR-B ratio due to decreased IR-B mRNA 

predicted colorectal adenomas in patients with elevated plasma insulin. In a mouse model of 

inflammation-induced CRC, genetic deletion of IR in colon epithelial cells (CECs) enhanced tumor 

number in vivo and tumor cell growth in vitro and this was associated with enhanced IGF1-induced AKT 

activation. Obesity/hyperinsulinemia resulted in reduced apoptosis of CECs in normal colon after 

radiation-induced DNA damage. Surprisingly, loss of IGF1R in CECs had no effects on apoptosis, but 

loss of IR dramatically increased apoptosis of genetically-damaged CECs. However, IR loss did not 

prevent the anti-apoptotic effects of obesity/hyperinsulinemia. Overall, this dissertation provides novel 

evidence that maintained IR expression and function may protect against early stage colon tumorigenesis.
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Since IR-B expression is reduced in colon tumors in mice and normal mucosa of hyperinsulinemic 

patients with adenomas, we propose that in the colon, IR-B normally attenuates the proliferative, anti-

apoptotic, or tumorigenic actions of IGF1R or IR-A. Our studies suggest that therapeutic strategies to 

increase or maintain IR-B expression may improve prevention of CRC, particularly when IR-B function 

is impaired as occurs during insulin resistance associated with obesity or type 2 diabetes. 
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CHAPTER 1: INTRODUCTION TO COLON PHYSIOLOGY, COLORECTAL CANCER, THE 

INSULIN/IGF SYSTEM, OBESITY, AND APOPTOSIS 

 

The colonic epithelium 

Structure and function 

In humans, the colon consists of ascending, transverse (proximal colon), and descending (distal 

colon) segments and the rectum 
1
. Absorption of fat, carbohydrates, and proteins occurs primarily in the 

small intestine and remaining luminal contents flow into the proximal colon which reabsorbs fluids and 

electrolytes 
1-3

. The proximal colon is also the primary site for absorption of short-chain fatty acids 

(SCFAs) synthesized by bacterial fermentation of carbohydrates that were not absorbed in the small 

intestine 
1,4

. The distal colon also produces SCFAs but at much lower levels due the decreased 

carbohydrate availability 
4
. The main function of the distal colon is to desiccate stool and store it until 

propelled into the rectum for expulsion 
1
.  

The colon has a tubular structure with an inner space called lumen. The wall of the colon is 

composed of four main layers: mucosa (which is the closest to the lumen), submucosa, muscle layer or 

muscularis propria, and serosa (Figure 1.1A). The latter constitutes the outer layer of the intestine but is 

difficult to visualize by histology. The mucosa consists of an epithelial layer known as the colonic 

epithelium, an underlying stromal connective tissue termed lamina propria, and the muscularis 

mucosa, a thin layer of smooth muscle cells (Figure 1.1A) 
1
. The colonic epithelium consists of a single 

layer of columnar epithelial cells, which form invaginations or “crypts” that extend down towards the 

muscularis mucosa. Current views indicate that the base of the crypts harbors stem and progenitors cells, 

which divide as they migrate up the crypt giving rise to three main terminally differentiated cell lineages:  

enteroendocrine cells, goblet cells, and colonocytes (Figure 1.1B) 
5
. Colonocytes and goblet cells are the
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most abundant cell types, constituting ~25% and ~75%, respectively, of the total cells per crypt 
6
. 

Enteroendocrine cells secrete various peptide hormones and goblet cells secrete mucus 
5
. Colonocytes are 

primarily absorptive but secrete chloride ions during diarrhea, which is accompanied by secretion of 

potassium ions by goblet cells leading to water release into the lumen 
7
. Once differentiated cells reach 

the surface epithelium, they undergo detachment-mediated cell death (anoikis) and are shed into the 

lumen 
5
.  

 

Colonic epithelial stem cells and their niche 

Renewal of the human colonic epithelium occurs every 3-8 days 
8
. Maintenance of the colon 

epithelial integrity and constant renewal requires highly active proliferation, which is driven by a small 

population of colonic epithelial stem cells (CESCs) located at the base of the crypts (Figure 1.1B). 

Current views indicate that a stem cell gives rise to two daughter cells in a process called asymmetric 

division, in order to renew itself and give rise to a transient amplifying progenitor cell that will continue 

to divide before they terminally differentiate 
9
. Therefore, stem cells are characterized by their ability to 

self-renew, give rise to all other differentiated cell types (multipotency), and live for very long periods of 

time (longevity) 
9
. In 1974, the existence of two intestinal stem cell (ISC) populations was proposed based 

on studies in the small intestine: crypt base columnar (CBC) cells which actively divide and reside at the 

very base of the crypt and a slowly-cycling, label-retaining cell (LRC) population located immediately 

above CBCs at approximately cell position 4 from the crypt base, termed “+4” 
10,11

. In the late 2000s, a 

number of putative markers for CBCs and +4 stem cells have been identified in the mouse small intestine, 

the first being the leucine-rich-repeat-containing G-protein-coupled receptor 5 (Lgr5) 
12

. However, the 

specificity of these markers appears to be complex, as studies showed that CBCs can express proposed 

markers of +4 and vice versa 
13

. Stem cells in the colon have been significantly less well characterized 

than in the small intestine. Proposed CESC markers include Lgr5 
12

, Musashi-1 (Msi-1) 
14

, aldehyde 

dehydrogenase 1 (Aldh) 
15

, leucine-rich repeats and immunoglobulin-like domains 1 (Lrig1) 
16

, and high 

levels of sex determining region Y-box 9 (Sox9) 
17

.    
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Surrounding the colonic crypts in the lamina propria are pericryptal myofibroblasts (Figure 1.1B), 

which are considered to be a key component of the stem cell niche 
18

. These mesenchymal myofibroblasts 

are thought to contribute to differentiation by secreting bone morphogenetic protein (Bmp) signals that 

are induced by Indian hedgehog (Ihh) signals from colonocytes (Figure 1.1B) 
19

. Myofibroblasts are also 

thought to provide CESCs with Wnt signals that are important for proliferation but this is based on the 

fact that mouse colon crypts need exogenous Wnt to grow in culture 
20,21

. Notch ligands produced by 

epithelial cells at the crypt base are also involved in maintaining the balance between proliferation and 

differentiation in the colon (Figure 1.1B) 
22,23

. This has been directly shown by a recent mouse study 

which indicated that a subpopulation of crypt goblet cells marked by cKit is regulated by Notch and 

secretes epidermal growth factor (EGF) to support Lgr5+ stem cells 
22

.  

 

Colorectal cancer (CRC) 

Colorectal cancer (CRC) is the third most common cancer in men and the second in women 

worldwide 
24

. In the United States, CRC is the second leading cause of cancer death despite the decline in 

incidence and mortality over the last 30 years 
16,17

. Risk factors include being a male, family history, 

inflammatory bowel disease, diabetes, obesity, and physical inactivity 
17

. Smokers and individuals who 

have one or more alcoholic drinks per day are at increased risk for CRC 
25,26

. A number of 

epidemiological studies have linked consumption of red and processed meats to CRC risk, but these 

associations remain weak and unclear 
27

 . CRC risk in the context of obesity and diabetes will be reviewed 

in more detail in later sections. The majority of CRCs are sporadic, but some can result from inherited 

germline mutations. The most common of these is a mutation in the adenomatous polyposis coli (APC) 

gene, which encodes a tumor suppressor protein that normally inhibits Wnt/β-catenin signaling 
28

. 

Patients with germline APC mutation develop familial adenomatous polyposis (FAP), a pre-cancerous 

disease that usually progresses to CRC. Other genes and pathways linked to CRC are reviewed below. 
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Models of CRC initiation and progression 

Aberrant crypt foci (ACF) are thought to be the earliest precursor of CRC, usually resulting from 

a mutation that causes inactivation APC 
29

. Mutated APC leads to genetic instability which favors the 

occurrence of mutations in other genes such as the oncogene KRAS and the tumor suppressor complex 

SMAD2/4 
30,31

, causing the formation of an adenoma. RAS protein is downstream of the growth-

promoting epidermal growth factor receptor (EGFR), and monoclonal antibodies against EGFR are 

currently being used in the clinic to treat advanced CRC 
32

. However, this therapy was shown to be 

ineffective in patients whose tumors carry mutated KRAS 
33

. Progression from adenoma to malignant 

adenocarcinoma is associated with loss-of-function mutations in other genes including the tumor 

suppressor p53 
34

. This model of genetic alterations during the progression from normal colonic mucosa 

to adenocarcinoma is illustrated in Figure 1.2 and was originally proposed by Fearon and Vogelstein in 

1990 
35

. However, it is now known that CRCs are much more heterogeneous and significant efforts are 

being made to define CRC subtypes based on the involvement of multiple pathways that lead to genomic 

instability 
36-40

. These include microsatellite instability (MSI), epigenetic modifications in genes involved 

in mismatch repair (MMR), CpG island methylator phenotype (CIMP), and mutations in the oncogenes 

KRAS and BRAF 
38-40

. These studies showed that MMR-proficient (unaltered MMR genes) tumors with 

mutations in KRAS or BRAF genes are associated with poorer survival outcome than MMR-proficient 

tumors without  KRAS and BRAF mutations 
40

.  In all these mechanisms of colorectal carcinogenesis, the 

common denominator is the accumulation of DNA damage that leads to mutations and allows the cell to 

acquire cancerous potential. 

 

Cancer stem cells 

Tumors are heterogeneous lesions containing cells of different phenotypes and genotypes. It was 

originally thought that any cell within a tumor is able to initiate and sustain growth of new tumors. The 

cancer stem cell (CSC) theory, on the other hand, proposes that only a small subset of cells within a tumor 

has the proliferative capability of tumor formation and propagation 
41

. Evidence for the existence of CSCs 
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was initially documented in leukemia 
42,43

. Presence of CSCs was later shown in solid tumors of the breast 

and the brain 
44,45

. These studies involved transplantation of human tumor cells in immunodeficient mice 

and the observation that only a small fraction of these cells was able to grow tumors or yield tumors when 

surgically transplanted 
44,45

. The growth characteristics of these cells resembled that of stem cells. CD133 

has been shown to mark CSCs in the brain given that CD133-positive cancer cells had the ability to 

originate tumors, while CD133-negative cells did not 
45

. In 2007, two studies provided evidence that 

CD133+ was a putative marker of cancer stem cells in the colon 
46,47

. In the same year, another study 

reported that a subpopulation of cells from primary CRC tissue which expressed high levels of epithelial 

cell adhesion molecule (EpCAM) and was positive for CD44 was able to initiate tumors in 

immunodeficient mice 
48

.   

More recently, the development of stem cell reporter models have permitted further identification 

of tumor-initiating stem cells in the intestine. Clevers’ group used an Lgr5-EGFP stem cell reporter 

mouse crossed with a conditional Apc knockout (KO) mouse to provide evidence that Lgr5-positive stem 

cells represent a tumor-initiating population 
49

. This study revealed that a subset of adenoma cells 

expressing Lgr5 was able to form adenomas and give rise to multiple cell types as well as additional 

Lgr5-positive cells 
49

. In line with this evidence, other reports showed that human colon carcinomas were 

enriched for a stem-like cell population that expressed Lgr5 
50,51

.  Furthermore, a recent study by Powell 

et al. demonstrated that loss of one Apc allele in colonic progenitors expressing the stem cell marker Lrig1 

led to formation of distal adenomas in mice 
52

. 

Additional evidence for the involvement of the stem cell niche in colorectal tumorigenesis is 

supported by studies linking regulators of crypt cell proliferation and differentiation such as Wnt, Notch, 

and BMP to CRC 
21,23

. Constitutive Wnt activation leads to accumulation of nuclear β-catenin, which 

activates transcription of mediators of cell proliferation such as cMyc and CyclinD1 
53,54

. Notch is highly 

expressed in human CRC cell lines and in mouse colon tumors and has been linked to metastasis, 

transepithelial migration, and tumor neovascularization 
23

. Interestingly, two recent studies showed that 
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BMP signaling, which normally inhibits proliferation to promote differentiation, acquires pro-tumorigenic 

and pro-invasive roles when SMAD4 expression is lost in CRC cells 
55,56

. 

Nevertheless, the cancer stem cell theory has been a topic of controversy due to the high degree 

of heterogeneity among patients and variation in laboratory assays, which hindered validation of cancer 

stem cell markers 
57,58

. In fact, a recent study showed that activation of intestinal NFκB, a transcription 

factor involved in cell survival and inflammation, causes differentiated cells to acquire a stem-like 

phenotype and tumorigenic properties 
59

. This “dedifferentiation” resulted from enhanced Wnt/β-catenin 

signaling induced by NFκB 
59

. This evidence does not disprove the CSC model but rather supports the 

concept of “bidirectional interconversion” between stem cells and non-stem cells that can initiate tumors 

57,59
.            

 

Inflammation and CRC 

 An important contributor to colorectal carcinogenesis is the presence of chronic inflammation. 

This has been established by numerous studies showing increased CRC risk in patients with inflammatory 

bowel disease (IBD) and accelerated tumor development in mouse models of CRC where mucosal 

inflammation is induced 
60

.    

During chronic inflammation, constant production of reactive oxygen species (ROS) can be 

mutagenic and lead to DNA damage favoring carcinogenesis 
61

. In humans, elevated levels of pro-

inflammatory interleukin-12 (IL-12) in normal rectal mucosa were associated with presence of colorectal 

adenomas 
62

. Cytokines or inflammatory mediators implicated in growth of colorectal tumors, metastasis, 

and poor prognosis are signal transducer and activator of transcription 3 (STAT3), cyclooxygenase-2 

(COX-2), tumor necrosis factor-α (TNF-α), NFκB, and the downstream interleukin-6 (IL-6) 
59,63,64

.  

 Obesity and high fat diet (HFD) have been strongly linked to inflammation. It is well established 

that adipocytes are a main source of pro-inflammatory cytokines such as TNF-α and IL-6 during obesity 

65
. However, there is increasing evidence that obesity-associated inflammation occurs in the intestine of 

mice and humans 
66

. For example, mice fed a HFD showed increased expression of TNF-α mRNA and 
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NFκB activation relative to mice fed a low fat diet 
67

. Particularly, TNF-α mRNA levels strongly and 

positively correlated with body weight gain, fat mass, and plasma glucose. Elevated intestinal TNF-α 

preceded weight gain and adverse metabolic consequences of obesity such as elevated plasma insulin 
67

. 

Similar results were obtained by a more recent study, where diet-induced obesity led to increased mRNA 

expression of TNF-α and interleukin-18 (IL-18) in the mouse colon 
68

.  

Current views support a role for the microbiota in inducing intestinal inflammation during 

obesity. Obesity induces changes in the gut microbial composition and promotes activation of the pro-

inflammatory toll-like receptor 4 (TLR4) 
69,70

. In germ-free mice, HFD feeding does not induce obesity 

and does not increase intestinal TNF-α 
67,71

. Colonization of germ-free NFκB-EGFP reporter mice with 

fecal slurries from HFD-fed mice activated the reporter, demonstrating that fecal contents, which include 

microbiota, were sufficient to induce inflammation 
67

. Furthermore, a recent study using mice with 

mutated K-ras showed that fecal transfer from HFD-fed donors with small intestinal tumors to healthy 

recipients fed a standard diet was sufficient to induce tumors in their small intestine 
72

. This effect was 

blocked by antibiotics, indicating that gut microbes play a key role in promoting obesity-associated 

cancer 
72

.   

Based on the links between obesity, inflammation, and colorectal tumorigenesis, a topic of 

interest to this dissertation is how signaling pathways that are altered during obesity play a role in CRC 

risk in the context of obesity-associated inflammation.      

                  

Mouse models of CRC 

  Both genetic and chemically-induced models of colorectal carcinogenesis are typically used in 

rodents. The Apc
Min/+

 mouse model carries a heterozygous mutation on the Apc gene and relates to FAP 

in humans. This genetic mouse model was discovered in 1990 by forward genetics, where ethyl-

nitrosoure-induced mutagenesis led to numerous intestinal adenomas, and this mutation was named 

multiple intestinal neoplasia (MIN) 
73

. Two years later, it was found that the MIN phenotype was caused 

by a nonsense mutation in one allele of the Apc gene, which resulted in a truncated protein 
74

. The 
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Apc
Min/+

 mouse represents a good animal model to study adenomas, since somatic mutations on the APC 

gene usually occur in human colorectal adenomas and CRC. However, a limitation of this mouse model is 

that it develops many adenomas in the small intestine and relatively few adenomas in the colon. This 

contrasts with human FAP, where polyposis occurs in the colon. There are also chemically-induced 

models of CRC (Figure 1.3). Administration of azoxymethane (AOM) in rodents offers one better 

system to study non-hereditary, sporadic CRC 
75

. AOM is a chemical agent which, when given to animals 

via 4-6 weekly intraperitoneal injections, can induce colon tumors (Figure 1.3 A). AOM travels through 

the bloodstream to the liver, where it gets hydroxylated and secreted into the bile for delivery in the 

intestine, where it gets further metabolized by the microbiota 
75

. The activated metabolite causes base 

mismatches in DNA which promotes formation of colorectal tumors, particularly on the mid to distal part 

of the colon 
75

. Unlike Apc
Min/+

 mice, AOM-treated animals develop tumors specifically in the colon and 

rectum, providing an advantage in terms of similarity to human disease. However, AOM-induced tumor 

formation can take as long as 5 months and susceptibility to AOM doses and number of injections 

required differ across different mouse strains. In our hands, the AOM model as applied to mice on the 

C57BL/6 background has proved problematic. Mice either do not develop tumors or develop very few 

tumors, making the model difficult to use if attempting to define interventions or genetic modifications 

that reduce tumorigenesis. Doses and numbers of AOM injections that yield tumors in C57BL/6 mice 

have resulted in liver toxicity and often unacceptable death rates. This has been particularly true in 

animals fed HFD, which was tested due to our interest in evaluating the role of obesity in colon 

tumorigenesis. Combined treatment with AOM and dextran sodium sulfate (DSS), a polysaccharide 

known to induce mucosal damage and inflammation in the colon, was shown to dramatically accelerate 

tumor development so that colon tumors are reliably observed at 2.5 months after AOM administration 
75

. 

This model consists of a single AOM injection and 3 DSS treatments (5-7 days long), each alternated 

with a 2-week recovery period (Figure 1.3 B). Like in the AOM model, tumors are seen primarily in the 

mid to distal colon and rectum, and rarely in the proximal colon. The AOM-DSS model was initially 

developed to model tumorigenesis in chronic inflammation as occurs in patients with ulcerative colitis 
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(UC) 
76

. However, because of its reliability, this model is widely used and is used in this dissertation to 

test the effects of loss of the insulin receptor (IR) on tumor development.   

 

The insulin/IGF system 

Ligands and receptors  

The insulin/insulin-like growth factor (IGF) system comprises three ligands, insulin, IGF1, and 

IGF2, and two receptors, insulin receptor (IR) and IGF1 receptor (IGF1R) (Figure 1.4 A). IGF1R is 

expressed at high levels in most, if not all, tissues in the body, while IR expression is most predominant in 

skeletal muscle, liver, and adipose tissues in adults 
77

. Traditional views consider IGF1R as a key 

mediator of the trophic and pro-tumorigenic actions of IGFs and IR as a mediator of the metabolic actions 

of insulin 
78-81

. Although it will not be further discussed here, a receptor specific for IGF2 (the IGF2R or 

mannose-6 phosphate receptor) also exists and it is thought to serve as a “sink” to clear IGF2 and 

attenuate its signaling 
82

. IR and IGF1R belong to the family of receptor tyrosine kinases, which are 

located at the cell membrane. These receptors consist of two extracellular or “α” subunits, which 

represent the ligand-binding domain, and two intracellular or “β” subunits, which have tyrosine kinase 

activity and auto-phosphorylate each other upon activation by ligand binding. In humans, the gene 

encoding IR (INSR) is located on chromosome 19 and the IGF1R gene in chromosome 15. Both genes 

derive from a common ancestor gene and their proteins share a high degree of structural homology: 64-

67% in the extracellular subunit and 84% in the intracellular tyrosine kinase subunit 
83

. As a result, insulin 

and IGF1 have the ability to bind both IR and IGF1R. IR has higher affinity for insulin than IGFs and 

IGF1R has higher affinity for IGFs than insulin. Therefore, at normal physiological concentrations, each 

ligand activates its “preferred” receptor 
84

. However, elevated concentrations of insulin can bind the 

IGF1R and elevated levels of IGFs or “free” IGFs (not bound to IGF binding proteins) can activate IR.   

During evolution of mammals, the IR gene acquired a 36-nucleotide exon and the ability to skip 

this exon by alternative pre-mRNA splicing 
85,86

. In 1985, the human IR cDNA was cloned by two 

different research groups and they each predicted the size of the protein to be 1,382 and 1,370 amino 
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acids 
87,88

. Four years later, it was found that this 12-amino acid difference corresponded to exon 11, 

which was present or absent depending on the tissue and the developmental stage 
89

.  These two IR 

isoforms resulting from alternative splicing were termed IR-A and IR-B (Figure 1.4 B). IR-A lacks exon 

11, is highly expressed in the fetus and in cancer cells, and is an isoform that binds IGF2 as well as 

insulin with high affinity 
90-92

. IR-B, which is only present in mammals, includes exon 11, binds primarily 

to insulin, and its highest expression has been reported in insulin target tissues such as liver, muscle, and 

adipose tissue 
93-95

. IR-B has therefore been associated with a major role in mediating the metabolic 

actions of insulin, and more recent evidence, including evidence from our laboratory, has linked IR-B to 

differentiation of some tissues 
86,96,97

. 

 

Hybrid receptors and ligand specificity 

 The high structural homology of IGF1R and IR can lead to the formation of hybrid receptors 

(HRs), which gives the insulin/IGF system an extra level of complexity 
98

. These HRs form when one 

hemireceptor (an α and a β subunit) of IGF1R heterodimerizes with a hemireceptor of IR. Both IR-A and 

IR-B can heterodimerize with IGF1R 
99

, making five possible combinations of receptors (Figure 1.5A). 

Significant efforts have been made to investigate the ligand binding affinities of these receptors in vitro 

and the data are summarized in Figure 1.5A 
99-103

. IGF1R and the hybrids HR-A and HR-B bind primarily 

to the IGFs but can bind to insulin at elevated concentrations. IR-A and IR-B have a similar binding 

affinity for their main ligand insulin, but IR-A binds much more strongly to the IGFs, especially IGF2, 

than does IR-B.  

 The function and signaling of HRs remain unclear, but their expression has been found to be 

elevated in cancer 
77

. The formation of HR-A or HR-B in a particular tissue depends on the abundance of 

IR-A and IR-B. As a result, during fetal development and carcinogenesis where IR-A is highly expressed, 

HR-A formation may allow insulin to crosstalk with IGF1R signaling 
77,99

. However, in normal 

differentiated cells where IR-B is more highly expressed, HR-B may attenuate IGF1 signaling through 

IGF1R to limit proliferative effects 
77,99

. Furthermore, signaling through HRs is thought to be dictated by 
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the type of HR that predominates. In vitro studies using a variety of cell lines showed that in cells 

expressing predominantly HR-A, IGFs promoted cell proliferation and migration more potently than in 

cells expressing primarily HR-B 
99

. Brierley et al. used a CRC cell line to demonstrate that knockdown of 

IR-A promoted formation and signaling through IGF1R homodimers, thus enhancing cell viability 
104

. 

Therefore, heterodimerization of IR and IGF1R may provide a mechanism to attenuate IGF1R receptor. 

 

Major downstream mediators 

 Insulin and IGF action can be mediated by receptor-induced activation of the insulin receptor 

substrates 1 and 2 (IRS-1 and IRS-2) or the Src homology 2 domain containing (Shc) proteins, which are 

immediately downstream of IGF1R and IR (Figure 1.5B). Tyrosine phosphorylation of IRS-1/2 can 

activate phosphoinositide 3-kinase (PI3K), which leads to phosphorylation of AKT and subsequent 

activation of molecules involved in glucose and lipid metabolism. Signaling through AKT can also favor 

cell differentiation 
96,105

 as well as cell growth and survival, for example, via inhibition of the pro-

apoptotic BAD 
106

. Shc proteins lead to activation of the RAS/MAPK pathway to promote proliferative 

and anti-apoptotic signals 
103,107

.   

IRS-1 knockout mice are about 50% smaller than their wild-type (WT) littermates and become 

mildly insulin resistant as they age 
108,109

. Loss of IRS-1 did not prevent insulin-induced phosphorylation 

of PI3K in liver and muscle and this residual insulin signaling was attributed to IRS-2 action 
108,109

. IRS-2 

knockout mice, on the other hand, are normal in size but develop peripheral insulin resistance and 

pancreatic β-cell dysfunction, consistent with a diabetic phenotype 
110

. Studies on fibroblasts isolated 

from IRS-1 knockout mice showed that IRS-1 deletion significantly decreased IGF1-induced proliferation 

and PI3K signaling 
111

 . Transfection of IRS-2 into these cells rescued activation of PI3K but had minimal 

effects on proliferation 
111

. In the mouse intestinal epithelium, IRS-1 was shown to be required for the 

anti-apoptotic actions of IGF1 and disruption of the IRS-1 gene dose-dependently increased apoptosis and 

reduced tumorigenesis 
112,113

. On the other hand, IRS-2 was shown to be induced by caudal-related 

homeobox protein 2 (CDX2) to promote differentiation in normal and tumor cells derived from human 
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colon 
114

. Together, these in vivo and in vitro data suggest that IRS-1 plays a larger role in mediating the 

mitogenic and anti-apoptotic effects of IGF1 while IRS-2 primarily mediates metabolic and 

differentiation signals. Overall, these studies lead to the concept that IR-B may signal preferentially 

through IRS-2 to mediate metabolic effects and differentiation, whereas IGF1R and IR-A may signal 

primarily via IRS-1 to promote cell proliferation, reduced apoptosis, and tumorigenesis (Figure 1.5 B).  

 

Impact of the insulin/IGF system on growth  

IGF1 is produced at highest levels in hepatocytes, but it is also expressed in several other tissues 

in the body, including the gut mesenchyme 
115,116

. IGF1 plays an important role in mediating the trophic 

actions of growth hormone (GH) to promote growth and development of various organs and is clinically 

used to treat children with growth failure due to genetic defects in the GH receptor 
117

. Mice deficient for 

IGF1R exhibit severe growth retardation and die shortly after birth 
118

. IGF2 is expressed in the fetus to 

regulate proliferation and apoptosis during embryonic development, while in human adults it is expressed 

mainly in the liver and exerts anti-apoptotic and proliferative actions through IR-A 
82,90

. In normal cells, 

the IGF2 gene is maternally imprinted and therefore the paternal allele is only expressed, and loss of 

imprinting has been found in many tumors 
82

.  

It is well established that IGF1 is a potent mediator of intestinal growth 
119

. IGF1 is produced in 

the mesenchyme and acts in a paracrine manner to induce mucosal growth and adaptation to surgical 

resection of the bowel 
116,120,121

. Local synthesis of IGF1 is stimulated by glucagon-like peptide 2 (GLP-

2), a gastrointestinal hormone that acts on GLP2 receptor in intestinal mesenchymal cells to stimulate 

IGF1 secretion
121

. GLP-2 exerts enterotrophic effects exclusively via IGF1 and a GLP-2 analog has been 

recently approved for treatment of short bowel syndrome 
122-125

. Mouse studies on the mechanisms of 

GLP-2 action to improve gut barrier function showed that signaling through IGF1R in intestinal epithelial 

cells was essential and this was associated with IGF1R-induced modulation of tight junction proteins 
126

. 

IGF1 produced in the liver and released into the circulation constitutes another source of IGF1 

that acts on the intestinal epithelium. In mice, circulating IGF1 increases intestinal mass and crypt cell 
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proliferation and survival during normal conditions, and infusion of IGF1 promotes growth of small 

intestinal epithelium during lack of luminal nutrients as occurs with total parenteral nutrition 
127,128

. 

Furthermore, exogenous IGF1 has been recently shown to enhance epithelial regeneration by expanding 

ISC following high-dose radiation 
129

. Studies performed in rats indicated that IGF1 treatment enhanced 

colonic mucosal growth and function and promoted healing after colonic anastomoses 
130,131

.  

Insulin is secreted into the bloodstream by the β-cells of the pancreatic islets after ingestion of a 

meal to regulate carbohydrate, lipid, or protein metabolism via IR 
132

. Mice deficient for IR are normal at 

birth but die of diabetic ketoacidosis 2-3 days after birth 
80,133

. In addition to the traditional actions of IR 

on metabolism, a role for IR in growth and development emerged from work by Dr. Efstratiadis’ group in 

1993 
118,134

. In these studies, the researchers observed that growth retardation was more dramatic in 

double mutant mice lacking IGF1 and IGF2 ligands or IGF2 and IGF1R than the respective single 

knockouts. Furthermore, in mice with intact IGF2 and null mutations in both IGF1 and IGF1R, residual 

growth was observed. These studies suggested the existence of some unknown receptor capable of 

mediating IGF2 signaling 
118,134

. In 1997, this unknown receptor was identified as IR and later found to be 

IR-A 
90,135

.   

Some studies have suggested that insulin can induce growth of the intestinal epithelium. In rat 

models of short bowel syndrome and mucosal damage, oral insulin treatment led to increases in overall 

small intestinal mass 
136,137

. These growth effects induced by insulin were associated with increased 

proliferation in the crypts and decreased apoptosis in the villi 
138

. It is important to note that despite these 

few studies, the impact of insulin in intestine has been under-investigated relative to studies of IGF1. 

Given the similarities in IGF1R and IR structure and the ability of IGFs and insulin to activate both 

receptors, the studies in this dissertation took the approach of genetic deletion of IGF1R or IR in mouse 

intestinal epithelium to better define their roles.  

IGF1R overexpression has been found in a number of tumors including colorectal 

adenocarcinomas and metastases 
139-141

. Furthermore, increased IGF1R signaling in tumor cells has been 

linked to resistance to chemotherapy and radiation treatments 
142,143

. IR-A is overexpressed relative to IR-
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B in tumors of the breast, thyroid, ovary, prostate, and colon 
90,107

. IR-A:IR-B mRNA ratio is increased in 

aggressive human colorectal cancer cell lines and in colon tumors of Apc
Min/+

 mice 
97

. This reflected 

primarily loss of IR-B rather than increased IR-A since total levels of IR mRNA were actually reduced in 

tumors relative to normal tissue 
97

. The ability of IR-A to mediate IGF1 and IGF2 action has presented a 

difficulty in the efficacy of anti-cancer drugs designed to block IGF1R. IGF1R inhibitors have been tested 

as anti-cancer therapies but in some tumors IR was able to confer resistance and support survival or 

growth despite IGF1R inhibition 
144-147

. This compensatory response of IR to IGF1R-targeted therapies 

led to development of dual IGF1R/IR inhibitors 
148-151

.  However, the concern with blocking IR is the 

potential for decreased insulin sensitivity and adverse metabolic consequences. Therefore, it is expected 

that therapies targeted to IGF1R and IR-A combined with insulin sensitizing agents would provide the 

most beneficial strategy 
151

. Defining risk factors for development of pre-cancerous adenomas and 

improved screening and prevention represent desirable goals to reduce CRC. One chapter of this 

dissertation undertook an epidemiologic study to assess whether levels of expressed IGF1R, IR, or IR-

A:IR-B mRNAs were associated with colorectal adenoma risk.     

 

Role of IGF binding proteins in regulating IGF action 

Normally, circulating IGFs are about 95% bound to IGF binding proteins (IGFBPs) 
152

. When IGFs are 

present in the unbound form, they become “free” to bind their receptors and initiate signaling. IGFBPs 

therefore limit “bioavailable” IGF for binding to IGF1R or IR. There are six IGFBPs that bind IGFs with 

high affinity. IGFBP-1 is synthesized by the liver and its production is known to be strongly suppressed 

by elevated plasma insulin. Human studies showed that IGFBP-1 is found at low levels in the plasma of 

obese, hyperinsulinemic individuals 
153,154

. Suppressed IGFBP-1 correlates with increased free IGF1 in 

serum, which was shown to be 50-70% higher in obese than in non-obese subjects 
154

. This increase in 

bioavailable IGF1 is associated with the adverse effects of obesity and hyperinsulinemia on cancer risk, 

including pre-cancerous colon adenomas 
155

. IGFBP-2 binds primarily to IGF2 and plays a role in 

regulating growth of a number of tissues during embryonic development 
156,157

. IGFBP-3 is the most 
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abundant in the circulation and is expressed in virtually all tissues in the body. Its major role is to 

modulate levels of free IGFs that signal through IGF1R to regulate cell proliferation, differentiation, and 

apoptosis 
158,159

. Although numerous studies investigated the roles of IGFBP-3 in cancer and metabolism, 

results have been inconsistent and whether IGFBP-3 promotes or protects against tumorigenesis and 

metabolic disorders remains unclear 
160,161

. In the intestine of rodents, IGFBP-3 mRNA is expressed 

mainly in the lamina propria and is decreased after small bowel resection, potentially facilitating the 

ability of IGF1 to promote mucosal growth 
162,163

. In human colon, IGFBP-3 protein expression is 

decreased in adenomas and adenocarcinomas, and low IGFBP-3 mRNA levels in normal mucosa have 

been associated with increased risk of colorectal adenomas 
164,165

. Consistent with this evidence, in vitro 

work has shown that IGFBP-3 is a transcriptional target of the tumor suppressor p53 and may promote 

apoptosis independent of IGF1 
166,167

. IGFBP-4 is expressed in several tissues including the intestine. A 

recent report using IGFBP4-KO mice concluded that circulating IGFBP-4 inhibits basal intestinal growth 

but is required to promote the trophic actions of GLP-2 on the intestinal epithelium 
168

. Another study 

using CRC cell lines overexpressing SOX9 and mice deficient for SOX9, an ISC marker 
169,170

, showed 

that IGFBP-4 mediates anti-proliferative actions of SOX9 on CRC cells and IEC 
171

. IGFBP-5 is also 

expressed in most tissues and, in the intestine, its expression is high in the muscularis layer and in 

mesenchymal cells of the lamina propria 
163

. Unlike IGFBP-3, local IGFBP-5 expression is thought to 

potentiate the trophic actions of IGF1 on the small intestine 
116,172

. In line with this concept, some 

evidence links IGFBP-5 to tumorigenesis in a number of cell types 
173

. IGFBP6 has a much higher 

binding affinity for IGF2 than IGF1 and may inhibit proliferative or anti-apoptotic actions of IGF2 

through IGF1R 
174,175

. A large body of data recently reviewed by Bach et al., 2013, indicate that IGFBP-6 

is a potential inhibitor of cancer, as its expression is reduced by β-catenin and increased by p53 in tumors 

175
. Additionally, studies have linked IGFBP-6 to decreased tumor growth and metastasis in a number of 

cancers, including colon cancer 
175

.  
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Obesity, hyperinsulinemia, and colorectal cancer 

 The World Health Organization (WHO) defines overweight and obesity as “abnormal or 

excessive fat accumulation that presents a risk to health”. Obesity is currently at epidemic levels, 

affecting 13% of the world population and 35% of the US population 
135,176

. Body mass index (BMI) is 

widely used to define obesity and is calculated using the formula (weight in kg)/(height in meters)^2. 

Normal or lean BMI ranges between 19.5 and 24.9 kg/m
2
, overweight corresponds to a BMI between 25.0 

and 29.9 kg/m
2
, and obese individuals have a BMI equal to or greater than 30.0 kg/m

2
.  Waist-to-hip ratio 

(WHR) is another measure of obesity that takes into account abdominal fat. WHR equal to or above 91 

and 99.5 cm in women and men, respectively, indicates abdominal or “central” obesity, which is one 

component of metabolic syndrome along with dyslipidemia, hypertension, and hyperglycemia 
177

. 

Insulin is produced by the β-cells of the islets of Langerhans in the pancreas and released into the 

circulation in response to a rise in blood glucose, aminoacids, and secretion of intestinal hormones after 

ingestion of a meal 
132

. Some of the effects of insulin include 1) glucose uptake in muscle and adipose, 2) 

decreased hepatic gluconeogenesis, 3) glycogen synthesis in muscle and liver, and 4) lipogenesis in liver 

and adipose tissue (Figure 1.6A) 
132,178

. To induce glucose uptake, insulin binding to IR recruits glucose 

transporters (GLUTs) to the cell membrane to facilitate glucose transport into the cell 
132

. Reduced blood 

glucose then signals to pancreatic β-cells to inhibit insulin production. Insulin resistance is a condition 

where peripheral tissues have a reduced ability to respond to circulating insulin at physiological levels 

and therefore glucose uptake is impaired (Figure 1.6B). The molecular basis of insulin resistance is not 

completely understood. Some proposed mechanisms include lipotoxicity, inflammation, hyperglycemia, 

mitochondrial dysfunction, and endoplasmic reticulum (ER) stress 
179

. All these mechanisms, which are 

reviewed in detail in Boucher et al., 2014, lead to phosphorylation of IR, IRS-1/2, or AKT at Ser/Thr 

residues that inhibit their kinase activity and therefore impair insulin signaling 
179

.  As a result of insulin 

resistance, blood glucose levels increase (hyperglycemia) and the pancreas therefore secretes more 

insulin to maintain normal glycemic levels and glucose metabolism 
180

. This compensatory response to 

insulin resistance leads to elevated plasma insulin, known as hyperinsulinemia (Figure 1.6B). Some 
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obese patients have hyperinsulinemia but whether this is a cause or a consequence of obesity remains 

unclear
 153,181

. In mouse models of diet induced obesity, hyperinsulinemia typically develops after 

increases in fat mass, indicating a role for obesity or functional consequences of obesity in driving insulin 

resistance and hyperinsulinemia 
67

. Insulin resistance and the inability to uptake glucose result in hepatic 

glycogen breakdown and conversion into glucose, which increases glucose output and further exacerbates 

hyperglycemia (Figure 1.6B) 
132,178

. Lipolysis occurs in adipose tissue, which leads to lipid accumulation 

in muscle 
178

. When increased insulin production is not sufficient to overcome insulin resistance and 

maintain normal glucose levels, fasting hyperglycemia and hyperinsulinemia occur, marking the onset of 

type 2 diabetes. At later stages in the progression of the disease, pancreatic β-cells become exhausted and 

dysfunctional, resulting in partial or complete insulin deficiency (Figure 1.6C) 
132

. Therefore, obesity, 

hyperinsulinemia, and type 2 diabetes are strongly linked and can lead to long-term complications such as 

metabolic syndrome, cardiovascular disease, and cancer.   

     

Evidence for the link between obesity and CRC 

 Obesity and type 2 diabetes have been widely associated with increased risk of multiple cancers, 

including CRC 
182-185

. Hyperinsulinemia and insulin resistance have been linked to increased risk of 

colorectal adenomas and cancer 
155,186-188

. Interestingly, those patients with elevated plasma insulin and 

adenomas had significanlty reduced apoptosis in their normal rectal mucosa, suggesting a potential 

mechanism by which insulin may promote formation of pre-cancerous lesions 
155,186

. In colorectal cancer 

patients treated with chemotherapy and EGFR inhibitors, elevated blood glucose and high BMI predicted 

accelerated disease progression 
189

. Additionally, rectal cancer patients with type 2 diabetes showed a lack 

of response to chemoradiotherapy 
190

. Obesity has been associated with increased recurrence and 

mortality following CRC treatment, as obese and morbidly obese patients with colon cancer appear to 

have increased recurrence and poorer survival after chemoradiotherapy 
191,192

. In contrast, some 

epidemiological studies suggested that weight loss decreases CRC risk 
193,194

. 
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 In the last years, there has been growing evidence supporting the concept that cancer risk 

associatd with type 2 diabetes may be influenced by anti-diabetic treatments. Human studies have shown 

a positive relationship between insulin therpies and cancer 
195,196

. Insulin analogs such as insulin glargine 

have also been associated with increased cancer risk, but results have been inconsistent 
196-198

. In contrast, 

use of biguanides such as metformin has been suggested to decrease cancer incidence in a number of 

organs via increased activation of adenosine monophosphate -activated protein kinase (AMPK) 

180,196,199,200
. AMPK is activated when energy levels in the cell are low and therefore stimulates catabolic 

pathways to produce energy 
200,201

. Thus, metformin-induced AMPK activation leads to increased glucose 

uptake and glycolysis and decreased hepatic gluconeogenesis, which attenuate hyperglycemia and 

hyperinsulinemia 
200,201

. Interestingly, AMPK activation is mediated by the tumor suppressor liver kinase 

B1 (LKB1), which is deficient in patients with Peutz-Jeghers syndrome, a hereditary polyposis disease 

that increases susceptibility to CRC 
202

. The signaling pathways downstream of AMPK that are involved 

in the anti-tumor effects of metformin are reviewed in Perncova and Korbonits, 2014 
200

. These 

mechanistic studies were performed mainly in cell lines and mice with the limitation that the doses of 

metformin used were much higher than those clinically used in humans.  

Together, elevated levels of plasma insulin associated with metabolic disease or anti-diabetic 

therapies represent a risk factor for colorectal carcinogenesis, poor CRC treatment efficacy, or increased 

moratlity after CRC treatment (Figure 1.7).       

 

Mediators and mechanisms of colorectal cancer risk during obesity 

 There are many proposed mechanisms of increased intestinal cancer risk associated with obesity 

and are summarized in Figure 1.8. The insulin/IGF1 pathway is likely to play a role in carcinogenesis 

given that obese individuals tend to have elevated plasma insulin and free IGF1 as well as decreased 

IGFBP1, which allows more free IGF1 in the circulation 
153,181

. Numerous human studies have found 

associations between IGF1 and IGF1R overexpression and CRC 
139-141,203,204

. IGF1 promotes activation of 

the oncogenic RAS/MAPK pathway, and constant exposure of tissues to IGF1 can therefore enhance 
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proliferation and tumor growth.  In vitro studies reported that inhibition of IRS-1 decreased proliferation 

of colorectal cancer cells 
205

. Furthermore, stabilization of β-catenin and phosphorylation of IRS-1 were 

induced by IGF1treatment, and Wnt/β-catenin signaling is an important transcriptional regulator of the 

IRS1 gene 
206,207

.  β-catenin stabilization results in nuclear translocation and activation of Wnt targets 

genes such as the stem cell marker Lgr5 
208

. In fact, a human study reported that LGR5 mRNA levels were 

increased in colorectal tumors relative to normal mucosa and this correlated with mRNA up-regulation of 

oncogenic cMYC 
209

. Furthermore, patients with high tumor LGR5 expression had decreased disease-free 

survival 
209

. Together, these studies suggest that mediators downstream of IGF1R/IR promote 

tumorigenesis but whether IGF1R or IR mediates these effects in the colon has not been directly tested. 

Hyperinsulinemia associated with obesity and diabetes is caused by hyperglycemia, as pancreatic 

β-cells attempt to lower blood glucose when glucose uptake is impaired. Hyperglycemia facilitates 

consumption of glucose by cancer cells, which obtain energy from glycolysis and lactate production in the 

cytosol rather than by oxidative phosphorylation in the mitochondria 
210,211

. This metabolic switch in 

cancer cells is called the Warburg effect and is thought to provide cancer cells with metabolites that favor 

cell proliferation 
211

. In line with this concept, hyperglycemia has been associated with increased cancer 

risk by positively influencing pathways that enhance proliferation, migration, and anti-apoptosis 
212

. 

  Adipokines are hormones that are produced mainly in adipose tissue and are also thought to 

contribute to the mechanisms of tumor growth during obesity 
210

. Leptin is secreted by adipocytes during 

the fed state and acts on the hypothalamus to suppress appetite, but it has also been implicated in tumor 

cell growth in the mouse colon 
213

. Proliferative effects of leptin on colon cancer cells appeared to be 

mediated by the signal transducer and activator of transcription 3 (STAT3) 
213

. In humans, obesity is 

linked to leptin resistance at the level of the leptin receptor, but epidemiological studies linking serum 

leptin concentrations to cancer risk remain inconclusive 
210

. On the other hand, adiponectin, which is 

another hormone released by adipose tissue, is found at low levels in the plasma of obese and diabetic 

patients 
214

. In the mouse colon, adiponectin deficiency led to increased polyp number and colon cell 

proliferation only during diet-induced obesity, and administration of adiponectin inhibited colon tumor 
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growth in obese animals 
215,216

. In vitro experiments in a mouse colon adenocarcinoma cell line showed 

that adiponectin exerts anti-proliferative actions via decreased STAT3 phosphorylation 
217

.  

 As mentioned earlier, chronic inflammation associated with obesity has been widely implicated in 

CRC development. Elevated plasma concentrations of the pro-inflammatory cytokine IL-6 have been 

found in patients with colorectal adenomas and cancer and were associated with high BMI and abdominal 

obesity 
218,219

. Moreover, number and size of tumors were reduced in AOM-DSS treated mice lacking IL-

6 
220

. In Apc
Min/+

 mice, HFD feeding led to increased expression of markers of inflammation such as IL-

12, IL-6 and TNF-α in adipose and intestinal tumor tissue 
221

. In vitro studies in CRC cells lines have 

shown that IL-6 and TNF-α act via STAT3 to promote expression of TNF receptor 2 (TNFR2) and 

proliferation 
222

. In summary, a large body evidence exists to support the contributions of insulin/IGF1 

signaling, hyperglycemia, adipokines, and inflammation to the mechanisms underlying increased CRC 

risk during obesity and insulin resistance (Figure 1.8).   

 

Overview of apoptosis 

Intrinsic apoptosis pathway 

 Apoptosis is a programmed cell death that the body uses to eliminate unwanted cells and is 

essential during tissue development, regeneration, and maintenance. In adult tissues, apoptosis generally 

occurs in order to remove cells with damaged and unrepaired DNA, which may otherwise accumulate 

mutations and acquire cancerous potential.  Stimuli that trigger apoptosis include growth factor 

withdrawal and DNA damage caused by toxins, infection, or ionizing radiation 
223

. The balance between 

apoptosis and survival is critical to tissue homeostasis, as excessive apoptosis can lead to degenerative 

diseases and insufficient apoptosis can lead to the development of cancer 
223

.  

 Depending upon whether the pro-apoptotic signals are intracellular or extracellular, apoptosis 

occurs via the intrinsic or extrinsic pathway, respectively, which are reviewed in detail by Ashkenazi, 

2008 
223

. Both forms of apoptosis involve cysteinyl aspartate-specific proteases called caspases, which 
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are activated by proteolytic cleavage in a process known as the caspase cascade, leading to DNA 

fragmentation in the nucleus and execution of apoptosis 
224

.  

The intrinsic pathway, also known as the mitochondrial pathway, is initiated by intracellular 

events such as DNA damage and is illustrated in Figure 1.10. Radiation, chemotherapy, UV light, and 

other types of cellular stresses cause double-stranded breaks (DSB) in DNA. DSBs are recognized by the 

kinase ataxia telangiectasia mutated (ATM) 
225

, which initiates the DNA damage response by activating 

p53 
226,227

, a tumor suppressor that is critical to mediating death and survival signals. As a consequence, 

p53 translocates to the nucleus to initiate transcription of genes encoding pro-apoptotic proteins such as 

NOXA, PUMA, and PERP, as well as genes encoding mediators of cell cycle arrest such as p21 
228

. Pro-

apoptotic targets of p53 inhibit anti-apoptotic BCL-2 and BCL-XL and activate pro-apoptotic BAX and 

BAK. BAX and BAK directly promote permeabilization of the mitochondrial membrane which causes the 

release of Cytochrome C and Smac/DIABLO from the mitochondrion into the cytosol 
223

. Cytochrome C 

binds to apoptotic protease activating factor 1 (APAF-1) to recruit the initiator caspase-9 into the 

apoptosome complex. The apoptosome stimulates cleavage and activation of caspase-9, which in turn 

cleaves and activates effector caspases such as caspase-3. Smac/DIABLO further contributes to the 

caspase cascade by inactivating the inhibitor of apoptosis proteins (IAPs) 
223

. Cleaved caspase-3 is a 

critical mediator of chromatin condensation, DNA fragmentation, and membrane blebbing, which result 

in the formation of apoptotic bodies that are engulfed by phagocytosis 
229

.       

The extrinsic pathway is triggered by cytotoxic immune cells which release pro-apoptotic ligands 

that belong to the TNF superfamily such as TNF-related apoptosis-inducing ligand (TRAIL) and Fas 

ligand (FasL) 
223

. TRAIL binds to death receptors 4 or 5 (DR4/5) and FasL signals through Fas receptor 

(FasR), which are located at the surface of the target cell. This promotes activation of initiator caspases 8 

and 10 and subsequent activation of downstream effector caspases (Figure 1.9) 
223

. The current studies 

have used cleaved caspase-3 as a major readout for radiation/genetic damage-induced apoptosis. 
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Apoptosis in the colonic crypts 

 Cell death in the colonic epithelium occurs at two main sites: 1) in the bottom half of the crypts 

by apoptosis in order to remove genetically damaged stem or progenitor cells that could initiate neoplastic 

lesions and 2) at the luminal surface where differentiated cells are detached and shed into the lumen by a 

process known as anoikis, which is related to apoptosis and part of normal intestinal epithelial renewal. 

Levels of spontaneous apoptosis in the intestinal crypts are low and much lower in the colon than in the 

small intestine 
230

. The particularly low rates of apoptosis in the colon are attributed to decreased basal 

expression of p53 and increased BCL-2, and this may contribute to the higher incidence of tumors in the 

colon than in the small intestine 
231,232

.   Another difference between the two bowel regions is that while in 

the small intestine basal and induced apoptosis occurs primarily within the stem cell zone at the crypt 

base, in the colon apoptotic cells are present throughout the length of the crypt 
230,233

.  

During homeostasis, the major mediator of apoptosis in colonic crypts is BCL-2, as Bcl2 

knockout mice exhibited increased levels of apoptosis relative to WT mice 
232

. However, p53 and BAX 

appear to have little role in spontaneous apoptosis since mice deficient for these proteins showed similar 

apoptosis levels to those in WT animals in the basal state 
234

. To better study the apoptotic response in the 

intestinal crypts, models of DNA damage induced by 1-6 Gy radiation have been widely used 
113,233,235,236

. 

Studies in rodents showed that following radiation, there two large waves of apoptosis 
237

. The first one 

occurs 3-6 hours after radiation and requires p53, as mice lacking p53 showed significantly reduced 

apoptosis at 3-4.5 hours post-radiation 
231,238

. The second wave of apoptosis, also known as “mitotic 

catastrophe” 
231

, occurs 24 hours later and is thought to result from genetically damaged cells with 

unrepaired DNA that re-enter the cell cycle and attempt to undergo mitosis but die due to chromosomal 

aberrations. This later wave of apoptosis has been shown to be p53-independent 
231

. BCL-2 was also 

reported to play an important role in regulating colon crypt cell apoptosis within the initial hours after 

DNA damage, whereas BAX was shown to have little impact on p53-dependent apoptosis 
234

. Whether 

obesity, IGF1R, or IR affects apoptosis of genetically damaged colon epithelial cells has not been 
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explored and could provide mechanistic insight into early events that promote survival of aberrant cells 

that could initiate tumors.   

 

Research hypotheses     

Distinguishing the specific functions of the IGF1R versus the IR in situations of elevated insulin 

has been a long standing challenge due to the high degree of crosstalk between both receptors. 

Understanding the individual contributions of each receptor to CRC risk and initiation is critical to 

developing and improving strategies for CRC prevention, diagnosis, and treatment, especially in the 

current epidemic of obesity and insulin resistance. This work has used human biopsies and genetic mouse 

models to investigate the specific roles of IGF1R and IR in colon adenoma risk, tumorigenesis, and 

epithelial cell survival after DNA damage during hyperinsulinemia, obesity, or inflammation. The 

following hypotheses have been tested (Figure 1.10): 

1. Increased IGF1R relative to IR mRNA or increased IR-A:IR-B ratio in normal mucosa 

predicts colorectal adenomas in humans, and this is associated with elevated plasma insulin. 

2. IGF1R is the main mediator of colorectal tumorigenesis while IR exerts protective effects by 

attenuating IGF1R signaling. Therefore, IR loss favors formation of tumors. 

3. Diet-induced obesity and hyperinsulinemia lead to decreased apoptosis of genetically 

damaged colon epithelial cells. 

4. IGF1R is a critical mediator of the anti-apoptotic actions of obesity and hyperinsulinemia. 
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Figures  

 

 

Figure 1.1: Tissue layers and crypt cell types in the mammalian large intestine. 

(A) The colon epithelium consists of three main layers that can be visualized by histology. The mucosa 

consists of (i) a single layer of columnar epithelial cells that forms the crypts, (ii) stromal connective 

tissue surrounding the crypts (lamina propria) that contains immune cells important for defense, and (iii) 

an underlying layer of smooth muscle cells (muscularis mucosa). The submucosa is a thin layer of 

connective tissue containing small blood vessels. The muscle layer, or muscularis propria, is composed 

of circular and longitudinal smooth muscle tissues. Although not visible in this figure, two neural plexi 

exist: the submucosal plexus and the myenteric plexus between the two muscle layers of the muscularis 

propria. (B) Histological image (left) and schematic representation (right) of the colonic crypt. Stem cells 

residing at the base of the crypts give rise to progenitor cells which actively divide and migrate upwards 

as they differentiate into colonocytes, goblet cells, or enteroendocrine cells. Mesenchymal myofibroblasts 

surround the crypts and may provide Wnt ligands to regulate proliferation. Indian hedgehog (Ihh) 
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produced by differentiated cells stimulate myofibroblasts to secrete Bmp to attenuate proliferation and 

promote differentiation. Notch and EGF secreted by epithelial cells also help maintain stem cell function. 

(References: van Dop et al., 2009; Sato et al., 2011, Krausova et al., 2014; Rothenberg et al., 2012. Crypt 

diagram modified from Medema and Vermeulen, 2011).    
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Figure 1.2: Progression from normal colon epithelium to adenocarcinoma. 

A loss of function mutation in the APC gene and microsatellite instability can lead to the formation of 

aberrant crypt foci (ACF). Progression to adenoma can involve mutations that lead to overexpression of 

KRAS and loss of SMAD2/4 as well as altered epigenetic modifications in DNA repair genes. Mutations 

on the gene encoding the tumor suppressor p53 cause progression to malignancy and development of 

invasive adenocarcinoma. (Diagram modified from Davies et al., 2005, and Markowitz and Bertagnolli, 

2009).  
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Figure 1.3: Chemically-induced models of colorectal cancer (CRC). 

(A) The AOM model of CRC consists of 4-6 weekly injections with AOM with not further treatment. 

Animals tend to develop colorectal tumors approximately 20 weeks after the last AOM injection. (B) The 

AOM-DSS model of CRC involves a single intraperitoneal injection of AOM followed by three DSS 

treatments for 5-7 days. A recovery period consisting of water drinking occurs between each DSS cycle.  

This model allows numerous colorectal tumors to develop by 2-2.5 months as a result of chronic 

inflammation and mucosal damage induced by multiple exposures to DSS. 
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Figure 1.4: The insulin and IGF1 receptors. 

(A) The insulin-like growth factor 1 receptor (IGF1R) and the insulin receptor (IR) belong to the receptor 

tyrosine kinase family. They are composed of two α-subunits (ligand binding domain) and two β-subunits 

(tyrosine kinase domain). Although they bind preferentially to their own ligand, both receptors can be 

activated by IGF1, IGF2, or insulin when present at high levels in the circulation. (B) Traditional views 

associate IGF1R with growth, anti-apoptotic, and tumorigenic actions of IGFs. IR is expressed as two 

isoforms resulting from alternative pre-mRNA splicing. IR-A lacks exon 11, binds strongly to insulin and 

IGF2, and is overexpressed in fetal and cancer cells. IR-B includes exon 11, binds primarily to insulin, 

mediates glucose and lipid metabolism in insulin-target tissues, and may play a role in cell differentiation.  
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Figure 1.5: Ligand binding affinities and proposed downstream signaling pathways of IGF1R, IR-

A, and IR-B. 

(A) IGF1R and both hybrid IGF1R:IR-A (HR-A) and IGF1R:IR-B (HR-B) receptors bind to the IGFs 

with higher affinity than to insulin. Both IR isoforms bind preferentially to insulin, but IR-A has a high 

affinity for IGFs and IR-B does not. In the diagram, closer proximity of a ligand to a receptor indicates 

increased binding affinity. (B) Growing evidence suggests that IGF1R and IR-A share a common 
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signaling pathway in which Shc and IRS-1 proteins are phosphorylated following ligand binding. Shc 

activates the MAPK pathway via phosphorylation of RAS and ERK, while IRS-1 activates PI3K/AKT 

signaling, leading to cell growth, survival, and cancer. IR-B likely signals through IRS-2 to activate 

PI3K/AKT and mediate the metabolic effects of insulin in insulin-target tissues or promote cell 

differentiation. IRS-2 actions on differentiation are positively regulated by CDX2, as suggested by 

Modica et al., 2009. (Adapted and modified from Frasca et al., 2008, and Belfiore and Malaguarnera, 

2011).          

  



    

31 
 

 

Figure 1.6: Glucose metabolism during healthy conditions and insulin resistance. 

(A) After a carbohydrate-rich meal, glucose is sensed by the β-cells of the pancreatic islets which secrete 

insulin into the circulation to decrease hepatic gluconeogenesis and promote glucose uptake in skeletal 

muscle and adipose, glycogen synthesis in liver and muscle, and lipogenesis in liver and adipose tissue. 

As a result, blood glucose levels decline and the pancreas ceases to secrete insulin. (B) During insulin 

resistance, tissues are insensitive to circulating insulin. This causes hyperglycemia, which in turn causes 

the pancreas to secrete more insulin, leading to hyperinsulinemia. The inability of tissues to uptake 

glucose causes the liver to increase glycogen breakdown, gluconeogenesis and glucose secretion, which 

further increases blood glucose levels. Additionally, lipogenesis is increased in adipose tissue, leading to 

lipid accumulation in muscle. (C) When the pancreatic β-cells can no longer secrete enough insulin to 

maintain homeostatic glucose levels, they become dysfunctional and die, resulting in insulin deficiency 

and type 2 diabetes. (References: Samuel and Shulman 2012 and Lippincotts' Illustrated Reviews, 

Biochemistry. 3rd ed).  
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Figure 1.7: Adverse consequences of hyperinsulinemia on the colon. 

Hyperinsulinemia caused by obesity, insulin resistance, type 2 diabetes, and/or insulin therapies can have 

implications in increased risk of colorectal adenomas or cancer, decreased response to treatments, and 

increased recurrence and mortality following treatment. (References: Keku et al., 2005; Vidal et al., 2012; 

Giovannucci, 2007; Tsai  and Giovannucci, 2012; Pantano et al., 2013; Caudle et al., 2008; Dignam et al., 

2006; Sinicrope et al., 2013).    
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Figure 1.8: Suggested mechanisms of obesity-induced colorectal cancer risk. 

Excess adiposity during obesity leads to enhanced production of inflammatory cytokines and leptin, 

which induce STAT3 activation to increase proliferation and reduce apoptosis in the colonic mucosa. 

Production of adiponectin, which normally inhibits STAT3, is reduced during obesity. Hyperinsulinemia 

decreases hepatic production of IGFBP1, allowing more free IGF1 in the circulation. IGF1, as well as 

insulin, can activate IGF1R or IR in colon epithelial cells to exert proliferative and anti-apoptotic actions. 

Finally, hyperglycemia associated with obesity or hyperinsulinemia promotes the switch from aerobic to 

anaerobic glycolysis, known as the “Warburg effect”, which favors production of metabolites and 

nutrients that are utilized by tumor cells. (See section “Mediators and mechanisms of colorectal cancer 

risk during obesity” of this dissertation for references).        

  



    

34 
 

 

Figure 1.9: Apoptosis pathways. 

Intrinsic pathway: DNA damage caused by cellular stressors such as radiation is sensed by p53, which 

translocates to the nucleus to induce transcription of apoptotic mediators PUMA, NOXA, and PERP. 

These mediators inhibit anti-apoptotic BCL-2 and BCL-XL, thereby allowing activation of pro-apoptotic 

BAX and BAK, which cause permeabilization of the mitochondrial membrane and efflux of Cytochrome 

C and Smac/DIABLO. Cytochrome C promotes formation of the apoptosome where the apoptotic 

protease activating factor 1 (APAF-1) cleaves and activates caspase-9, which in turn cleaves and activates 

caspase-3. Smac/DIABLO released by the mitochondrion negatively regulates the inhibitor of apoptosis 

protein (IAP) complex, further allowing caspase activation. Extrinsic pathway: Extracellular factors such 

as TNF-related apoptosis-inducing ligand (TRAIL) and Fas ligand (FasL) are secreted from cytotoxic 

immune cells. TRAIL binds to death receptor 4 or 5 (DR4/5) and FasL to Fas receptor (FasR) in order to 

activate caspases 8 and 10, which subsequently activate caspase-3. Cleaved caspase-3 moves to the 

nucleus to fragment DNA and execute apoptosis, which ultimately results in the formation of apoptotic 

bodies that are phagocytized by macrophages. (References: Attardi and DePinho, 2004, diagram modified 

from Ashkenazi, 2008).    
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Figure 1.10: Research aims and hypotheses. 

This dissertation tested the central hypothesis that IGF1R is an essential mediator of the adverse effects of 

obesity, hyperinsulinemia, and inflammation that favor risk of CRC. Aim 1 in Chapter 2 used normal 

rectal biopsies from human patients to examine whether increased IGF1R mRNA, decreased IR mRNA, 

or elevated IR-A:IR-B ratio predicted colorectal adenoma risk, especially during obesity or 

hyperinsulinemia. Aim 2 in Chapter 3 used a genetic mouse model of IR deletion in the intestinal 

epithelium to test the hypothesis that IR protects against inflammation-induced CRC and its loss leads to 

increased tumorigenesis by enhancing IGF1R action. Finally, Aim 3 in Chapter 4 evaluated the roles of 

IGF1R and IR in apoptosis of colon epithelial cells that underwent DNA damage, which is considered an 

early step in the initiation of neoplastic lesions. This final aim tested the hypothesis that obesity or 

hyperinsulinemia decreases apoptosis of genetically damaged colon epithelial cells and IGF1R is the main 

mediator of these anti-apoptotic effects in mice.       
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CHAPTER 2: REDUCED INSULIN-LIKE GROWTH FACTOR 1 RECEPTOR AND ALTERED 

INSULIN RECEPTOR ISOFORM mRNAs IN NORMAL MUCOSA PREDICT COLORECTAL 

ADENOMA RISK
1
 

 

Introduction 

 Despite increased colonoscopy-based screening and improved treatment strategies 
239

, colorectal 

cancer (CRC) remains the second leading cause of cancer-related deaths in the United States 
3
. Obesity, 

insulin resistance and type 2 diabetes are considered risk factors for CRC 
187,240,241

. Previous work by our 

group has linked elevated plasma insulin and low apoptosis in normal rectal mucosa to increased 

adenoma risk 
155,165,186

. Elevated plasma insulin (hyperinsulinemia) can increase levels of free insulin-like 

growth factor 1 (IGF1) in the circulation by inhibiting the production of IGF binding protein 1 (IGFBP1) 

153,242
. In recent years, there has been increasing interest in targeting the insulin/IGF pathway for cancer 

treatment, as a large body of evidence links insulin/IGF1-mediated activation of insulin receptor (IR) or 

IGF1 receptor (IGF1R) to cancer of multiple organs 
86,107,112,180,243,244

. Furthermore, a number of studies 

have shown that IGF1R confers resistance to radiation therapy and chemotherapy 
245,246

, and clinical 

evidence links IGF1R over-expression to colorectal tumor formation and progression 
140,247

. Although 

IGF1R inhibitors showed a potential to reduce tumor growth 
144,145

, recent reports suggested that IR may 

permit tumors to resist IGF1R inhibition, which led to the development of dual IGF1R/IR inhibitors
146-149

.  

Considerable evidence has highlighted the potential significance of different IR isoforms in 

growth and cancer 
90,92,107

. The IR gene yields two distinct IR isoforms due to alternate pre-mRNA 

splicing. IR-B is encoded by an mRNA that includes exon 11 and is the primary mediator of the 

metabolic actions of insulin 
86,96

. IR-A is encoded by an mRNA that lacks exon 11, plays a role in fetal

                                                           
1
 This chapter was published in the journal Cancer Epidemiology, Biomarkers & Prevention. The citation for this article is 

as follows: M.A. Santoro, S.F. Andres, J.A Galanko, R.S. Sandler, T.O. Keku, and P.K. Lund. Reduced Insulin-like 

Growth Factor I Receptor and Altered Insulin Receptor Isoform mRNAs in Normal Mucosa Predict Colorectal Adenoma 

Risk. Cancer Epidemiol Biomarkers Prev. 2014 Oct;23(10):2093-100. 
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growth and may mediate proliferative or anti-apoptotic actions of insulin or the IGFs 
90,92

. Evidence that 

IR-A may be the predominant IR isoform in tumors or tumor cells 
86,90-92,107

, including colon tumors 
97,104

, 

has increased attention on this isoform as a possible mediator of cancer development or growth. However, 

the finding that IR-A knockdown increased viability of a colon cancer cell line via enhanced IGF1R 

activation indicates that when IGF1R signaling is intact, IR may limit IGF1R signaling 
104

. Thus, the roles 

of IGF1R vs. IR in promoting colorectal tumorigenesis are not defined.   

Little attention has been given to IGF1R and IR mRNA expression patterns during pre-neoplastic 

stages of malignancy, including whether IGF1R or IR levels in normal colorectal tissue differ between 

patients with adenomas and patients without adenomas. We hypothesized that elevated mRNA levels of 

IGF1R vs. IR or elevated IR-A:IR-B ratio in normal mucosa are associated with increased colorectal 

adenoma risk, elevated plasma insulin, and overweight/obese body mass index (BMI). To address this 

hypothesis, biopsies from normal rectal mucosa were obtained from adenoma or adenoma-free patients 

undergoing routine colonoscopy. Levels of mRNAs encoding IGF1R, IR and IR isoforms were quantified 

and the relationship between their expression, adenoma status, BMI and plasma insulin was evaluated.  

 

Materials and methods 

Participants  

Participants were randomly selected from eligible subjects enrolled in the Diet and Health Study 

V (DHS V) who provided written informed consent and underwent routine colonoscopy at the University 

of North Carolina Hospitals, Chapel Hill, NC. The DHS V cohort has been described in previous studies 

62,248-250
. For the present study, a subset of 100 cases and 98 controls were selected so that the two groups 

were matched based on age, gender and BMI. Patients were excluded from the study if they had cancer, 

colitis, 100 or more polyps (polyposis), prior resection of the colon, or history of colorectal adenomas. 

Colonoscopy was performed by certified gastroenterologists and all polyps were removed for pathological 

examination and were not available for research purposes. Adenomas were confirmed and defined 

according to standard pathological criteria. Subjects with one or more adenomas were classified as 
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“cases” and those without adenomas as “controls”. The study was approved by the School of Medicine 

Institutional Review Board at the University of North Carolina, Chapel Hill. 

 

Data collection 

Methods for data collection were previously described 
62,248-250

. Briefly, participants fasted 

overnight and body weight, height, and waist and hip circumference were measured at the time of 

colonoscopy. Within 3 months after colonoscopy, patients were interviewed by telephone to provide 

information about their lifestyle, diet and demographics. BMI between 18.5-24.9 kg/m
2
 (lean) was 

defined as “normal” and BMI equal to or higher than 25 kg/m
2
 (overweight/obese) was defined as 

“Ovt/Ob”. 

 

Biological specimens and laboratory assays 

Prior to the endoscopic procedure, normal mucosal pinch biopsies were obtained 8-12 cm from 

the anal verge using standard disposable, fenestrated forceps. Sampling site was the same in all patients. 

Two biopsies were pooled for RNA extraction and immediately flash frozen in liquid nitrogen and later 

transferred to -80ºC. Another biopsy was fixed in 10% buffered formalin for histology and evaluation of 

apoptosis. Blood was collected via an intravenous catheter prior to administration of medication. Plasma 

was separated and insulin levels assayed for 95 controls and 79 cases by ELISA (Diagnostic Systems 

Laboratory, Webster, TX) as previously described 
186

. Plasma insulin levels below or above the median 

were defined as “low” or “high”, respectively.  

 

Assays for apoptosis  

Formalin fixed rectal biopsies were embedded in paraffin. Apoptosis was scored by terminal 

deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) using ApopTag Peroxidase In Situ 

Apoptosis Detection Kit (Millipore, Billerica, MA). This technology detects apoptotic cells by 

incorporating digoxigenin-conjugated nucleotides to the 3’OH termini of DNA fragments utilizing 
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terminal deoxynucleotidyl transferase (TdT). Briefly, samples were deparaffinized in 100%, 95% and 

70% ethanol, digested in proteinase K and blocked in 2% hydrogen peroxide. TdT reaction was 

performed for 1.5 hours at 37ºC. Anti-digoxigenin conjugate was applied to the slides for 30 minutes, 

followed by a DAB (3, 3'-Diaminobenzidine) reaction for 1 minute. Samples were counterstained with 

hematoxylin and dehydrated with 95% and 100% ethanol and xylene. Slides were coverslipped using 

Eukitt mounting medium (Sigma-Aldrich, St. Louis, MO) and visualized with a bright-field microscope. 

Open crypts with good orientation were selected for scoring. The mean number of TdT-labeled apoptotic 

cells per crypt was calculated for each patient sample by investigators blinded to adenoma status. Due to 

the low number of samples available for apoptosis scoring (21 controls and 68 cases), it was only possible 

to compare apoptosis in cases versus controls without further stratification.  

 

RNA Extraction, Reverse Transcription (RT), and PCR  

RNA was extracted from biopsies using RNeasy Kit (Qiaen, Valencia, CA) and reverse 

transcribed with High Capacity cDNA Reverse Transcription Kit, including RNase inhibitor (Applied 

Biosystems, Carlsbad, CA) according to manufacturer’s protocol. Quantitative real-time polymerase 

chain reaction (qRT-PCR) used the 7500 Real-Time PCR System (Applied Biosystems, Carlsbad, CA) to 

quantify IGF1R and IR mRNA levels. Hydroxymethylbilane synthase (HMBS), which we have found to 

be invariant across rectal biopsy mRNAs, was used as the housekeeping gene for normalization. The 

following TaqMan primer/probes (Applied Biosystems, Carlsbad, CA) were used: Hs00951562_m1 

(IGF1R), Hs00961550_m1 (IR), and Hs00609297_m1 (HMBS). Pooled cDNA from colorectal cancer cell 

lines (Caco-2, SW480, Colo205) was run in all assays as a positive, internal control to account for inter-

run variability. Samples were run in duplicate and water was run as a negative control. Reaction cycles 

consisted of initial denaturation at 95°C for 5 minutes, 45 cycles of 95°C denaturation for 15 seconds and 

60°C annealing for 45 seconds. Data were analyzed using the Applied Biosystems 7500 software v2.0.1 

and expression levels were calculated using the standard curve method. These values were then 

normalized to HMBS and to the internal control.  
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IR isoforms A and B were assessed by traditional, semi-quantitative PCR using 150 ng of cDNA 

template. Forward primer 5’-GAATGCTGCTCCTGTCCAAA -3’ and reverse primer 5’- 

TCGTGGGCACGCTGGTCGAG -3’ (Integrated DNA Technologies, Coralville, IA) were designed to 

flank exon 11, resulting in 250 bp (IR-B) and 214 bp (IR-A) amplified fragments. PCR protocol was 

modified from Brierley et al.
104

 and consisted of initial denaturation at 92°C for 5 minutes followed by 40 

cycles of 92°C denaturation for 30 seconds, 60°C annealing for 30 seconds and 72°C extension step for 

30 seconds. Water and the internal control cDNA mentioned above were included in every assay. PCR 

products were run and visualized in a 2.5% agarose gel and band intensities were measured using Image J 

software (National Institutes of Health). Ratios of IR-A to IR-B were calculated for each patient sample 

and normalized to the internal control. All PCR assays were performed by an investigator blinded to case-

control and BMI status, and samples were randomly organized by another investigator so that all the 

groups were represented in each assay run.  

 

Statistical analysis  

Means and standard errors were computed for continuous variables. Differences in continuous or 

categorical variables between adenoma cases and adenoma-free controls were compared by Student’s t-

test or Chi-square test, respectively. BMI was divided into “normal” and “Ovt/Ob” (overweight/obese) 

and plasma insulin levels into “low” (below the median) and “high” (above the median) subgroups as 

described above. For each receptor mRNA, the levels in controls were used to generate quartiles, and the 

lowest quartile was considered as reference. Logistic regression models were used to compute odds ratios 

(ORs) and 95% confidence intervals (CIs) to examine the association between mRNA quartiles 

(predictors) and adenoma status (response). We also calculated P-values for interactions between mRNA 

variables and BMI/insulin subgroups in a model testing for an association with case status. The 

relationship between plasma insulin and receptor mRNA levels was evaluated by Spearman’s correlation 

coefficient. P-values less than 0.05 were considered statistically significant. All analyses were performed 

using SAS Version 9.3 (SAS Institute, Cary, NC).  
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Results 

Patient samples in this study were selected so that cases and controls were matched on age, sex 

and BMI. Subject characteristics are summarized in Table 2.1. Race was not associated with control or 

case status, and no differences in WHR, reported calorie intake or reported physical activity were 

observed between cases and controls. Consistent with previous studies from our group 
155,165

, adenoma 

cases showed lower apoptosis (P = 0.008) and a trend towards increased plasma insulin (P = 0.055) 

relative to adenoma-free controls.  

IGF1R and IR mRNA levels in normal rectal mucosa were quantified by qRT-PCR. IR-A and IR-

B mRNAs were assessed by standard PCR, where amplification of both isoforms by identical primers 

allowed us to calculate the ratio of IR-A:IR-B amplicon in each patient sample. We first compared mean 

mRNA levels between controls and cases overall and after stratifying for BMI and plasma insulin (Table 

2.2). Overall, cases had significantly lower IGF1R mRNA levels (P = 0.0003) than controls. This 

reduction in IGF1R mRNA was statistically significant in both normal (P = 0.02) and Ovt/Ob (P = 0.01) 

BMI subgroups and in subjects in the lower half of plasma insulin (P = 0.007). Since cases had slightly 

higher plasma insulin levels than controls, and elevated insulin can down-regulate IGF1R as a 

consequence of increased free IGF1 in the circulation 
251,252

, we asked if the lower IGF1R mRNA 

observed in cases could be associated with higher plasma insulin. Therefore, we examined IGF1R mRNA 

levels in controls versus cases after adjusting for plasma insulin. This analysis showed that even after 

controlling for insulin, cases still had lower IGF1R than controls (P = 0.005). Total IR mRNA levels did 

not differ between cases and controls in any subgroup categorized for BMI or plasma insulin. IR-A:IR-B 

ratio was 1.96 ± 0.04 in controls and 1.96 ± 0.03 in cases, demonstrating approximately 2 fold higher IR-

A mRNA expression in human rectum compared with IR-B, but no significant difference in cases and 

controls as a whole or when stratified for BMI (Table 2.2). Interestingly, among patients with high plasma 

insulin, adenoma cases had small but significant increases in IR-A:IR-B ratios relative to controls (P = 

0.006), which qualitatively reflected reduced IR-B mRNA (Figure 2.1).  
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To further evaluate the potential relationship between mRNA levels and colorectal adenoma risk, 

we studied the association between quartiles of IGF1R, IR and IR-A:IR-B mRNA expression and the 

odds of being a case, with the lowest quartile set as the reference (Table 2.3). Subjects in the highest two 

quartiles for IGF1R mRNA were significantly less likely to be cases. There were no significant 

associations between IR mRNA, IR-A:IR-B ratio and case status. To explore the association between 

receptor mRNA expression and adenoma risk in each subgroup, we used a logistic regression model to 

test for interactions between mRNA levels and BMI or plasma insulin status (Table 2.4). We found no 

interactions between BMI or plasma insulin and either IGF1R or IR mRNA levels. We did, however, 

observe a significant interaction between plasma insulin and IR-A:IR-B ratio (P = 0.005). With increasing 

IR-A:IR-B mRNA ratios, patients with high plasma insulin were more likely to have adenomas than were 

patients with low plasma insulin (Figure 2.2).  

We next compared mRNA expression between subgroups in controls and cases separately. We 

found that in the control group, subjects with high plasma insulin had reduced mean IGF1R, IR and IR-

A:IR-B mRNA levels (P = 0.048, P = 0.02, P = 0.01, respectively) relative to subjects with low plasma 

insulin. This association was not found in cases. Qualitative evaluation of the IR isoforms suggested that 

the reduced IR-A:IR-B ratio observed in controls with high insulin reflected higher IR-B (Figure 2.1). To 

further examine the possible effect of elevated insulin on gene expression, we calculated the correlation 

coefficients between plasma insulin and IGF1R, IR and IR-A:IR-B mRNA levels (Table 2.5). We indeed 

found significant negative correlations between plasma insulin and all three mRNA variables in controls, 

while in cases this relationship was significant only for IGF1R mRNA. In fact, in cases there was a non-

significant trend for a positive correlation between IR-A:IR-B ratio and plasma insulin (P = 0.06).       

 

Discussion 

This case-control study provides novel evidence that, compared to adenoma-free controls, rectal 

biopsies from grossly normal mucosa of patients with adenomas are likely to have i) significantly lower 

levels of IGF1R mRNA, ii) unaltered IR mRNA, and iii) higher ratios of IR-A:IR-B isoforms in those 
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individuals with elevated plasma insulin. Consistent with our previous findings in three different patient 

groups 
155,165,186

, the presence of adenomas was associated with reduced apoptosis in normal appearing 

rectal mucosa and increased plasma insulin, although the latter was borderline significant in this smaller 

study population. 

Identifying molecular biomarkers that predict early pre-cancerous lesions could significantly 

improve our understanding of factors that promote CRC risk, which could eventually contribute to better 

CRC prevention or screening. This study aimed to establish whether elevated mRNA expression of 

IGF1R, IR or relative expression of isoforms IR-A and IR-B in normal rectal mucosa predicts adenomas 

and whether this is influenced by BMI or plasma insulin levels. IGF1R signaling can be activated during 

elevated insulin and has been linked to reduced apoptosis and cancer progression in a number of organs, 

including the intestine 
77,112,243

. Thus, we hypothesized that patients with adenomas would have up-

regulated IGF1R mRNA expression in their normal rectal mucosa, particularly in those with high plasma 

insulin. Unexpectedly, we found that cases had significantly lower IGF1R mRNA levels than controls, 

and the odds of having colorectal adenomas diminished with increasing IGF1R mRNA expression. We 

considered whether elevated insulin could be linked to the reduced IGF1R mRNA in cases, since elevated 

insulin is known to down-regulate IGFBP1 resulting in higher levels of free circulating IGF1 that can 

down-regulate IGF1R 
153,242,252

. However, the association between decreased IGF1R mRNA and presence 

of adenomas persisted even after adjusting for plasma insulin, suggesting that the reduced IGF1R mRNA 

observed in cases was not merely a result of elevated plasma insulin in this group. We next tested for 

interactions between mRNA levels and BMI or plasma insulin that may impact case status. We found a 

significant interaction between IR-A:IR-B ratio and plasma insulin, where increased IR-A:IR-B ratio was 

associated with increased colorectal adenoma risk in patients with high plasma insulin compared to those 

with low plasma insulin. This suggests that circulating insulin levels may play an important role in 

influencing tumor risk associated with high IR-A:IR-B expression, and that more attention should be 

given to the impact of hyperinsulinemia on relative tissue expression of these IR isoforms.   
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Insulin has long been known to down-regulate its own receptor by negative feedback to properly 

regulate glucose uptake in a number of tissues 
253-257

, and some evidence suggests that hyperinsulinemia 

and insulin resistance can impact isoform expression 
258-261

. Insulin can also down-regulate IGF1R, 

potentially by increasing levels of free IGF1 in plasma 
244,251,252

. Down-regulation of IGF1R transcript in 

situations of high insulin has been described in skeletal muscle of diabetic db/db mice, where reduced 

Igf1r mRNA relative to normoglycemic littermates was associated with increased Igf1r promoter 

methylation 
262

. These numerous lines of evidence for negative feedback effects of elevated insulin are 

supported by the present study showing that in adenoma-free controls, levels of IGF1R and IR mRNAs, 

and IR-A:IR-B ratios each negatively and significantly correlated with plasma insulin. Qualitative 

analysis of IR isoforms suggested that reduced IR-A:IR-B ratio in controls with high plasma insulin 

appeared to be due primarily to increased IR-B. Patients with adenoma differed from controls in that only 

IGF1R mRNA levels significantly and negatively correlated with insulin, and for IR-A:IR-B mRNA 

ratios there was actually a trend for a positive correlation with insulin. This suggests a difference in the 

relationship between plasma insulin and IR mRNA levels or IR-A:IR-B mRNA ratios in cases versus 

controls that may be relevant to mechanisms underlying adenoma risk.  

IR isoforms in humans have been studied primarily in breast and prostate cancers and it is well 

established that IR-A exerts proliferative actions and is overexpressed in tumor tissue 
90,92,101,107

. However, 

little is known about the relative expression of IR isoforms in normal gastrointestinal organs including the 

colorectum. Our findings that mean levels of IR-A mRNA are about 2 fold higher than IR-B mRNA in 

the human rectal mucosa are relevant to normal and aberrant growth of colon epithelium. A predominance 

of IR-A might contribute to the relatively low levels of spontaneous colonocyte apoptosis
232

 and increased 

susceptibility to insulin-mediated reductions in apoptosis. Our recent publication demonstrated a switch 

from predominance of IR-A in proliferative intestinal stem or progenitor cells to IR-B predominance in 

differentiated enterocytes 
97

. Furthermore, IR-B expression was reduced in mouse pre-cancerous 

adenomas versus normal colon and was dramatically reduced in aggressive, poorly differentiated human 

CRC cell lines versus differentiated CRC cells 
97

. Consistent with this finding, other studies have recently 
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shown that the relative mRNA levels of IR-A versus IR-B are elevated in both tumor and grossly normal 

adjacent tissue of human breast and prostate, compared to purely benign tissue 
263,264

. However, whether 

IR isoform expression is altered in normal colorectum in the presence or absence of pre-malignant lesions 

had not to our knowledge been investigated previously. Our study suggests that among patients in the 

upper half of plasma insulin, those with adenomas had higher mean IR-A:IR-B ratio in their normal rectal 

mucosa compared to controls, which appeared to result from decreased IR-B and maintained IR-A as 

observed by qualitative examination. These data were supported by logistic regression analyses, which 

showed that increasing IR-A:IR-B ratios predicted adenomas in patients with elevated plasma insulin. A 

limitation of these findings is that they resulted from a subgroup comparison, in a relatively small number 

of patients. However, they do suggest that the relationship between plasma insulin and relative IR-A:IR-B 

expression in normal tissues should be further explored, as they may be relevant to improved 

understanding of the roles of hyperinsulinemia and impact of IR isoforms on colorectal tumorigenesis. 

A limitation of this study is that alterations in receptor mRNA levels do not necessarily reflect 

changes in protein expression and phosphorylation, as increased activation of IGF1R and IR has been 

reported in cancer 
265,266

. This is particularly difficult to address for IR-A due to the lack of available 

antibodies to permit immunohistochemistry or western immunoblot for this isoform. We chose to analyze 

RNA because sufficient RNA for evaluation of receptor levels is readily obtained from biopsies but we 

recognize the limitation with regard to predicting protein expression or activation. Another limitation of 

our study is the lack of access to actual adenomas as these are considered clinical specimens and were not 

available to us for research. Recent findings from our group using pre-clinical adenoma models provided 

evidence for increased IR-A:IR-B ratios in colon adenomas relative to normal colon mucosa in mice 
97

, 

but whether this is altered in humans and in the context of elevated plasma insulin needs further 

investigation. An additional limitation is that the differences in mean receptor mRNA expression across 

patient groups in this study are relatively small. Despite these limitations, the potential significance of our 

observations is highlighted by the growing interest in the role of the insulin/IGF pathway in cancer and 

IR/IGF1R inhibitors as potential therapies 
145,148,149

. To date, IR and IR isoforms have been understudied 
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in the gastrointestinal tract, and our work suggests that further studies focusing on these receptors and 

relative IR-A and IR-B expression are needed to better understand their roles in initiation and 

pathophysiology of colorectal pre-cancerous lesions. Therefore, our previous and current work indicates 

that additional attention to the relative expression levels and biological roles of IR-A and IR-B is 

warranted.    

Overall, this is to our knowledge the first study to show that the presence of colorectal adenomas 

is associated with decreased IGF1R mRNA and, during elevated plasma insulin, increased IR-A:IR-B 

mRNA ratio in normal rectal mucosa. Particularly, our data raise the important possibility that high IR-

A:IR-B mRNA ratio may contribute to colorectal adenoma initiation during elevated plasma insulin. In 

addition, reduced IGF1R expression and increased relative expression of IR-A:IR-B in normal mucosa 

should be further investigated as potential predictive biomarkers of pre-malignant colorectal lesions.  
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Tables and Figures 

Table 2.1: Descriptive characteristics of study participants. 

 Variable Control Case P* 

Age (mean (se)) 55.4 (0.7) 55.5 (0.7) 0.92 

Race (n (%)) 
   

     White 76 (92) 79 (84) 0.17 

     Black 7 (8) 15 (16) 
 

Sex (n (%)) 
   

     Female 41 (48) 43 (45) 0.66 

     Male 44 (52) 53 (55) 
 

BMI (n (%)) 
   

     Normal 45 (48) 49 (49) 0.98 

     Overweight 29 (31) 29 (29) 
 

     Obese 20 (21) 21 (21) 
 

Physical Activity in MET-minutes 

per week (mean (se)) 
2,981 (341) 2,485 (263) 0.25 

Apoptosis (mean (se)) 1.42 (0.12) 1.08 (0.06) 0.008
†

 

Plasma insulin (mean μU/ml (se)) 7.1 (0.8) 10.8 (1.7) 0.055 

Calories (mean (se)) 2,101 (88) 1,949 (79) 0.20 

Waist / Hip ratio (mean (se)) 0.908 (0.01) 0.915 (0.01) 0.54 

BMI: body mass index 

MET: metabolic equivalent of task 

*Chi square for age, race and gender and student’s t-test for remaining variables 
†Significant at P < 0.05 
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Table 2.2: Mean expression of IGF1R, IR, and IR-A:IR-B mRNAs in controls versus cases overall 

and grouped by BMI and plasma insulin status. 

 Variable Subgroup n 
Control 

 mean (se)  n 
Case 

mean (se) 
P* 

IGF1R 

Everyone 98 1.04 (0.03) 
 

100 0.90 (0.02) 0.0003
†

 

BMI 
Normal 

Ovt/Ob 

45 

49 

1.06 (0.05) 

1.00 (0.04)  

49 

50 

0.91 (0.04) 

0.88 (0.03) 

0.02
†

 

0.01
†

 

Insulin 
Low 

High 

48 

47 

1.09 (0.05) 

0.97 (0.04)  

36 

43 

0.93 (0.03) 

0.88 (0.03) 

0.007
†

 

0.09 

IR 

Everyone 98 1.17 (0.03) 
 

100 1.17 (0.06) 0.94 

BMI 
Normal 

Ovt/Ob 

45 

49 

1.14 (0.05) 

1.17 (0.04)  

49 

50 

1.18 (0.11) 

1.15 (0.04) 

0.78 

0.82 

Insulin 
Low 

High 

48 

47 

1.24 (0.05) 

1.08 (0.04)  

36 

43 

1.12 (0.05) 

1.12 (0.04) 

0.10 

0.51 

IR-A:IR-B 

Everyone 98 1.96 (0.04) 
 

100 1.96 (0.03) 0.94 

BMI 
Normal 

Ovt/Ob 

45 

49 

2.01 (0.07) 

1.91 (0.04)  

49 

50 

1.96 (0.05) 

1.95 (0.03) 

0.52 

0.48 

Insulin 
Low 

High 

48 

47 

2.07 (0.07) 

1.85 (0.04)  

36 

43 

1.95 (0.05) 

2.01 (0.04) 

0.18 

0.006
†

 

*Student’s t-test 
†Significant at P < 0.05 
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Figure 2.1: Representative gels showing IR-A and IR-B mRNAs in cases and controls with low and 

high plasma insulin. 

Controls with high insulin have decreased IR-A:IR-B ratios compared to controls with low insulin, 

potentially due to increased IR-B and maintained IR-A. Among patients with high insulin, cases have 

higher IR-A:IR-B ratios than controls, and this appears to result from decreased IR-B and unaltered IR-A. 

Samples were run in groups of 19 per gel, and representative images were obtained from different 

originals or multiple fields from the same image.    
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Table 2.3: ORs and 95% CIs for the association between colorectal adenomas and IGF1R, IR, and 

IR-A:IR-B mRNA expression. 

 Variable n (Control/Case)  OR* (95% CI) P* 

IGF1R 
   

Q1 25/46 1.0 (Reference) - 
Q2 25/23 0.5 (0.2-1.1) 0.07 
Q3 25/19 0.4 (0.2-0.9) 0.02

†

 
Q4 23/12 0.3 (0.1-0.7) 0.004

†

 
IR 

   
Q1 25/26 1.0 (Reference) - 
Q2 24/28 1.1 (0.5-2.4) 0.77 
Q3 25/30 1.2 (0.5-2.5) 0.71 
Q4 24/16 0.6 (0.3-1.5) 0.30 

IR-A:IR-B 
   

Q1 25/29 1.0 (Reference) - 

Q2 24/20 0.7 (0.3-1.6) 0.42 
Q3 25/23 0.8 (0.4-1.7) 0.56 
Q4 24/28 1.0 (0.5-2.2) 0.99 

 *Odds of being a case 
 †Significant at P < 0.05 
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Table 2.4: Association between colorectal adenomas and IGF1R, IR, and IR-A:IR-B mRNA 

expression influenced by BMI and plasma insulin. 

   P for interaction 

Variable BMI  
(Normal vs. Ovt/Ob) 

Insulin 
(Low vs. High) 

IGF1R 0.78 0.47 
IR 0.74 0.11 
IR-A:IR-B 0.34 0.005

†

 
 †Significant at P < 0.05 
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Figure 2.2: Increased IR-A:IR-B ratios predicts adenomas in patients with high plasma insulin. 

As IR-A:IR-B ratios increase, patients with high plasma insulin are more likely to have colorectal 

adenomas than patients with low plasma insulin. 

  

0

1

2

3

4

5

6

7

8

1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5

O
d
d
s
 o

f 
s
u
b
je

c
ts

 w
it
h
 h

ig
h
 p

la
s
m

a
 

in
s
u
lin

 h
a
v
in

g
 a

d
e
n
o
m

a
s
 r

e
la

ti
v
e
 t

o
 

s
u
b
je

c
ts

 w
it
h
 l
o
w

 p
la

s
m

a
 i
n
s
u
lin

 

IR-A:IR-B mRNA ratio 

High plasma insulin

Low plasma insulin



    

53 

 

Table 2.5: Correlation between plasma insulin and IGF1R, IR, and IR-A:IR-B mRNA expression. 

 Plasma insulin 

  Variable 
Controls (n=95)  Cases (n=79) 

r* P  r* P 
IGF1R -0.21 0.045

†

 
 

-0.30 0.01
†

 
IR -0.26 0.01

†

 
 

-0.14 0.21 
IR-A:IR-B -0.31 0.002

†

 
 

0.21 0.06 
 *Spearman’s correlation coefficient  
 †Significant at P < 0.05 
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CHAPTER 3: IMPACT OF INTESTINAL EPITHELIAL INSULIN RECEPTOR LOSS ON 

AOM-DSS INDUCED COLON TUMORIGENESIS 

 

Introduction 

Colorectal cancer (CRC) is the second most common cause of cancer death in the United 

States
146

. A growing body of evidence links increased risk of colorectal carcinogenesis to chronic 

inflammation resulting from inflammatory bowel disease (IBD) and to obesity and insulin resistance 
60,210

. 

The insulin and insulin-like growth factor (IGF) signaling pathway has been implicated in risk of CRC 
243

, 

but a major unanswered question is whether the insulin receptor (IR) or the related IGF1 receptor 

(IGF1R) mediates this risk. IR exists as IR-B and IR-A isoforms. IR-B is considered the primary mediator 

of the metabolic actions of insulin, although growing evidence in mammary epithelium and our recent 

findings in colon epithelial cells or cancer cell lines indicate that IR-B induces cell differentiation 
96,97

. IR-

A binds IGFs as well as insulin and shares proliferative and anti-apoptotic roles with IGF1R 
90,91,107

. 

IGF1R mediates anti-apoptotic and trophic actions of IGF1 or IGF2 and has been implicated in cancer of 

many organs, including the colon 
78,118,140,141,145,265

. Due to reports of elevated IR-A expression in cancer 

cells and findings that IR-A promotes tumor progression when IGF1R is pharmacologically inhibited or 

deleted, IR has been viewed as a culprit in promoting cancer growth 
90,97,146,147,263,264,267

. Opposing this 

evidence is a study showing that knockdown of IR-A in SW480 colon cancer cells increased viability and 

enhanced activation of the related oncogenic IGF1R 
104

. This raises the intriguing possibility that IR may 

limit oncogenic IGF1R signaling.  

Insulin resistance during hyperinsulinemia, obesity, or type 2 diabetes involves impaired insulin 

signaling through IR-B in insulin-target organs such as liver, skeletal muscle, and adipose tissue, which 

show higher expression of IR-B relative to IR-A 
93,107

. In multiple human cohorts, we and others have 

linked hyperinsulinemia to increased risk of colorectal adenomas and cancer 
155,186,187,268,269

. Whether this 
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risk involves insulin acting on IGF1R or IR-A when IR-B signaling is impaired, as occurs in insulin 

resistance, is unknown. The goal of the current study was to evaluate the impact of loss of IR function in 

the intestinal epithelium on colon tumorigenesis. We hypothesized that intact IR signaling normally 

attenuates the tumor-promoting actions of IGF1R, and IR loss would therefore favor tumor formation. 

Here, we used a mouse model of disrupted insulin signaling in all intestinal epithelial cells (IEC) of small 

intestine and colon via villin-Cre (VC) recombinase-mediated deletion of the IR gene (VC-IR
Δ/Δ

) 
270

. 

These mice and littermate controls with loxP-modified but intact IR (WT-IR
fl/fl

) were subjected to 

azoxymethane (AOM) and dextran sodium sulfate (DSS) treatment which lead to inflammation-induced 

colon cancer. In this preliminary study performed in two independent cohorts of WT-IR
fl/fl

 and VC-IR
Δ/Δ

 

mice, we found that deletion of IR in colon epithelial cells (CECs) dramatically increases tumor number 

in vivo and enhances growth of tumor-derived CECs in a matrigel culture system. This novel evidence 

that loss of IR promotes colon tumorigenesis indicates that maintained IR signaling may be essential for 

CRC prevention. 

 

Materials and methods 

Animals 

Mice with loxP sites flanking exon 4 of the Insr gene (IR
fl/fl

) were provided and described by Dr. 

Ronald Kahn’s group 
271

. Mice with IEC-specific IR deletion were generated by crossing IR
fl/fl

 mice with 

transgenic mice expressing Cre recombinase under the control of the villin promoter (The Jackson 

Laboratory, Bar Harbor, ME) 
272

. All mice were on a C57BL/6 background and co-housed littermate pairs 

with intact but floxed IR (WT-IR
fl/fl

) or villin-Cre (VC)-mediate disruption of IR (VC-IR
Δ/Δ

) were used in 

this study. Genotyping on tail DNA was performed using published protocols 
273

.  All mice were housed 

in a pathogen-free animal facility at the University of North Carolina (Chapel Hill, NC) and given food 

and water ad libitum. All animal experiments were approved by the Institutional Animal Care and Use 

Committee (IACUC) of the University of North Carolina. 
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AOM-DSS treatment, tissue harvest, and histology 

The experimental design is illustrated in Figure 3.1 and was adapted from previously published 

protocols, which reproducibly induce colon tumors in C57BL6 mice 
75,274

. Male and female WT-IR
fl/fl

 and 

VC-IR
Δ/Δ

 mice were given a single intraperitoneal (i.p.) injection of AOM (10 mg/kg body weight, MRI 

Chemical Carcinogen Repository). A week later, a subset of mice were subjected to 3 cycles of 2% DSS 

(TbD Consultancy AB) in water for 5 days followed by a 14-day recovery period where mice were given 

water. At the end of the 3
rd

 recovery period, all animals were euthanized with isoflurane (Baxter) and 

cervical dislocation. Colons were removed and flushed with cold 1x phosphate-buffered saline (PBS) pH 

7.4 and opened longitudinally. The number of tumors was quantified by two researchers blinded to animal 

genotype. Individual tumors from the middle portion of the distal colon were collected for RNA 

extraction or culture experiments. The remaining regions of the distal colon were fixed in 10% zinc 

formalin overnight for histology. Fixed colon tissue was embedded in paraffin and longitudinal sections 

were stained with hematoxylin and eosin (H&E). Histological sections were visualized with an Axio 

Imager.A2 bright field microscope (Zeiss) and a ProgRes CF Scan camera (Jenoptik). 

 

Conditional reprogramming of colon tumor epithelial cells (CR-CTEC) 

Protocols for preparation and maintenance of CR-CTEC were adapted from Liu et al., 2012 
64

. 

Dispersed CECs obtained from WT-IR
fl/fl

 and VC-IR
Δ/∆

 tumors were plated on mitotically inactive 3T3-J2 

feeder cells in F-medium containing 10 μM Y27532 and Sato growth factors (Noggin, EGF, and R-

Spondin) 
275

. Sato additives were withdrawn 1 day after plating or passage and CR-CTEC were 

maintained in regular F medium thereafter. 

 

3D matrigel culture 

Feeders were removed from the wells using TrypLE Express Enzyme (Life Technologies) and 

discarded. CR-CTEC were removed by a second incubation in TrypLE Express, washed in F medium, 

and resuspended in 50 μl of Matrigel Matrix Growth Factor Reduced (BD Biosciences) at a density of 
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5,000 cells per well of a 24-well plate. The same plating and maintenance conditions described above 

were used. Plates were imaged using a using an inverted bright field microscope with an incubation 

chamber (Olympus IX83). Cells started to form spheroids/tumorspheres on day 2 after plating. Diameter 

was measured on day 8 using Image J software (National Institutes of Health). Tumorspheres continued to 

grow and started to form organoids with crypt-like structures on days 10-11 post-plating. The number of 

organoids formed was quantified on day 15 and organoids were harvested for RNA and DNA extraction. 

Genotyping on organoid DNA for floxed and VC-recombined IR gene was performed as previously 

described 
273

. Organoids were passaged and treated with 0 or 10 mM metformin (Aurobindo Pharma) the 

following day. Metformin was added in F medium, which was replaced every two days. Tumorspheres 

were imaged at days 2 and 4 after the start of metformin treatment and diameter was measured as 

described above.    

 

IGF1 treatment of tumor CEC monolayers and western blot 

CR-CTECs were plated on 12-well transwell plates with F medium plus 10 µM Y-27632 and 

with feeders at the bottom. Cells were allowed to grow for 2 days. Prior to signaling, cells were 

transferred to feeder-free wells and serum-starved for 4 hours in DMEM plus 10 µM Y-27632. 

Stimulation with IGF1 (20 ng/ml, Tercica, Inc) in serum-free DMEM was performed for 20 minutes. An 

IGF1 concentration of 20 ng/ml (2.8 nM) is only able to activate IGF1R and not IR 
103

. Hot Laemmli blue 

buffer was added to treated and untreated transwell filters and protein samples were collected, vortexed, 

and run on a NuPAGE 4–12% Bis-Tris 1.0 mm gel (Life Technologies). Gel was transferred to a 0.45 mm 

pore PVDF membrane (Millipore), which was blocked with Blocker Casein in TBS (Thermo Fisher 

Scientific) for 1 hour. Primary antibodies used were phospho-AKT1 (Ser 473, Cell Signaling), AKT (Cell 

Signaling), and β-actin (Sigma Aldrich). Secondary antibody used was Dylight 800 goat anti-rabbit IgG 

(Thermo Scientific). Protein was visualized with an Odyssey CLx Infrared Imager (Version 3, LI-COR) 

and band intensity was measured by densitometry with ImageJ software (National Institutes of Health). 
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RNA extraction, reverse transcription, and quantitative real-time PCR 

RNA was isolated from colon tumors and organoids using the RNeasy kit (Qiagen) and cDNA 

was synthesized using the High Capacity cDNA Reverse Transcription Kit and RNase inhibitor (Applied 

Biosystems) according to the manufacturer’s protocol. Quantitative real-time polymerase chain reaction 

(qRT-PCR) was performed using the 7500 Real-Time PCR System (Applied Biosystems) and 

primer/probes for Igf1 (Mm00439560_m1), Igf2 (Mm00439564_m1), Stat3 (Mm01219775_m1), Tnf 

(Mm00443258_m1), and Actb as the invariant control (Mm00607939_s1). Samples were run in 

duplicates and concentrations were determined based on a standard curve made with cDNA pooled from 

all samples studied.  

 

Statistical analysis 

Data were collected from two independent experiments and expressed as mean ± SEM. For WT-

IR
fl/fl

 and VC-IR
Δ/Δ

 groups, n ≥ 7 for survival and tumor number, and n = 7 for tumor gene expression 

data. Tumorspheres and organoids used during in vitro experiments were prepared from tumor cells from 

only 1 pair of animas (n = 1), but replicate studies were performed on lines established from these tumors. 

Ongoing studies aim to increase the sample size for the cell culture experiments. Survival data were 

analyzed using the Log-rank (Mantel-Cox) test. Tumor number in WT-IR
fl/fl

 versus VC-IR
Δ/Δ

 groups were 

compared using unpaired t-test.  Gene expression in tumor tissue was analyzed by paired t-test. All 

analyses were performed using GraphPad Prism 6 software (La Jolla, CA) and P < 0.05 was considered 

statistically significant. 

 

Results 

Loss of IR in CECs leads to decreased survival and increased number of colon tumors after AOM-

DSS treatment 

WT-IR
fl/fl

 and VC-IR
Δ/∆

 mice were given a single AOM injection followed by three DSS cycles, 

each separated by 14 days of water drinking, and euthanized 14 days after the last DSS cycle. Survival 
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was significantly decreased in the VC-IR
Δ/∆

 group (P = 0.03), particularly during the last two weeks of the 

experiment (Figure 3.2A). Consistent with our hypothesis, VC-IR
Δ/∆

 mice had significantly more tumors 

than WT-IR
fl/fl 

littermates (18.3 ± 1.4 versus 9.3 ± 1.6, P = 0.002, Figure 3.2B-D). These data indicate that 

loss of IR in CECs promotes colorectal tumorigenesis and decreases survival following AOM-DSS 

treatment.  

 

Preliminary data indicate that loss of IR in CECs promotes tumorsphere and organoid formation 

and IGF1-induced activation of AKT in vitro 

Confluent WT-IR
fl/fl

 and VC-IR
Δ/∆

 CR-CTEC colonies were removed from feeders and plated in 

matrigel. Spheroid/tumorsphere diameter was measured on day 8 and the number of organoids formed 

was quantified on day 15 post-plating. Compared with the WT-IR
fl/fl

 group, VC- IR
Δ/∆ 

tumorspheres had a 

much larger mean diameter (686.2 ± 81.6 μm versus 334.8 ± 45.6 μm) and formed more organoids (19 

versus 6, Figure 3.3A-C). Importantly, organoids from VC-IR
Δ/∆

 mice retained complete VC-induced IR 

gene disruption, validating stability and epithelial phenotype (Figure 3.3D). We next asked if the 

remaining IGF1R would cause VC-IR
Δ/∆

 CECs to be more responsive to IGF1 stimulation. To address 

this question, we plated CR-CTEC onto transwells and added 20 ng/ml IGF1. After 20 minutes, IGF1 

treatment induced an increase in AKT phosphorylation of WT-IR
fl/fl

 tumor cells. Interestingly, IGF1-

induced AKT phosphorylation was further increased in VC-IR
Δ/∆

 tumor cells (Figure 3.3E-F). Together, 

these preliminary in vitro data indicate that tumor CECs lacking IR have an intrinsic increase in growth 

capacity and enhanced sensitivity to IGF1-induced activation of AKT relative to tumor CECs with intact 

IR. 

 

Preliminary results show that treatment with the insulin-sensitizing agent metformin decreases 

growth rate of VC-IR
Δ/∆

 tumorspheres to basal levels observed in the WT-IR
fl/fl

 group  

Tumor CECs in matrigel were treated with 0 or 10 mM metformin and diameter of tumorspheres 

formed were measured 2 and 4 days after the start of treatment (Figure 3.4). Metformin is an insulin-
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sensitizing drug widely used for the treatment of diabetes and multiple studies have reported that 

metformin has strong anti-tumorigenic effects 
200

. Metformin treatment on WT-IR
fl/fl

 tumor CECs reduced 

tumorsphere diameter by 2.1 ± 0.4 fold on day 4. In the VC-IR
Δ/∆

 group, tumorsphere diameter was 

dramatically decreased by 2.7 ± 0.4 fold and growth rate was comparable to that observed in the untreated 

WT-IR
fl/fl

 group (Figure 3.4). These preliminary data indicate that when IR signaling is lost, metformin 

may be able to reduce tumor cell growth rate to that of cells with intact IR.   

 

Igf1 and Igf2 mRNAs in tumor tissue are increased in VC-IR
Δ/∆

 versus WT-IR
fl/fl

 mice and tumor 

organoids show a similar expression pattern   

Quantitative real-time PCR was performed on colon tumor tissue and organoids from WT-IR
fl/fl

 

and VC-IR
Δ/∆

 mice. Igf1 and Igf2 are known to be overexpressed in cancer 
82,243

. Tumor tissue from VC-

IR
Δ/∆

 mice had significantly higher Igf2 and a non-significant trend towards increased Igf1 mRNA levels 

relative to WT-IR
fl/fl

 animals (Figure 3.5A-B). Levels of the pro-inflammatory mediators Stat3 and Tnf 

(which encodes for TNF-α) did not change across genotypes (Figure 3.5C-D). This gene expression 

profile appeared to be recapitulated in organoids derived from tumor cells. Our data suggest that increased 

local production of IGF1 and IGF2 may contribute to enhanced colon tumor growth in VC-IR
Δ/∆

 mice 

likely via IGF1R signaling. 

 

Discussion 

This study aimed to directly define the role of IR in colorectal tumorigenesis using mice with 

IEC-specific deletion of IR and the AOM-DSS model of inflammation-associated CRC. Our novel data 

showed that loss of IR in CECs dramatically enhanced colon tumor development in vivo and preliminary 

data indicated that IR loss promotes growth of tumor cells in vitro. Defining mechanisms linked to the 

tumor-promoting effects of IR loss is highly relevant to understanding whether and how diminished 

insulin signaling in CECs may impact risk of colon adenomas or cancer in humans. 

Numerous studies have reported increased expression of the IR-A isoform in cancer and linked 
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IR-A to tumor growth 
90,92,107,267,276

. However, it is important to note that a majority of reports use 

traditional non-quantitative PCR to demonstrate that IR-A is the primary IR isoform expressed and less 

evidence (e.g. by qRT-PCR or assays at the protein levels) confirms quantitative increases in IR or IR-A 

expression. Our recent findings demonstrated reduced expression of total IR mRNA in small intestine and 

colon tumors of Apc
Min/+

 mice was due to decreased IR-B 
97

. In addition, we demonstrated that IR-B 

expression is low or barely detectable in aggressively growing human colon cancer cell lines which 

express IR-A 
97

. In a recent human study, we also showed that reduced IR-B predicts increased colorectal 

adenoma risk in humans with elevated plasma insulin 
269

.  Brierley et al. found that knockdown of IR-A in 

a CRC cell line that does not express IR-B potentiated IGF1R signaling and cancer cell viability 
104

. 

These data, our current data that deletion of IR in CECs promotes colon tumorigenesis in vivo, and our 

previous findings that reductions in IR-B accompany and predict risk of pre-cancerous adenomas
269

 

strongly support a protective effect of IR against colon tumor growth. Furthermore, our preliminary in 

vitro data showed that tumor CECs with deleted IR had enhanced growth in matrigel relative to CECs 

with intact IR, indicating that loss of IR confers an intrinsic growth advantage to colon tumor epithelial 

cells.   

To directly test if IR loss enhanced IGF1R activation, we treated WT-IR
fl/fl

 and VC-IR
Δ/∆

 tumor 

cells grown on transwells with a dose of IGF1 considered sufficient to activate IGF1R but not IR
103

. This 

preliminary experiment showed that phosphorylation of AKT, a key downstream mediator of IGF1R and 

IR signaling, was increased in VC-IR
Δ/∆

 versus WT-IR
fl/fl

 tumor CECs treated with IGF1. This suggests 

that tumor cells lacking IR are more responsive to IGF1 treatment, which likely reflects enhanced 

signaling through the remaining IGF1R. Furthermore, gene expression analyses in tumor tissue showed 

that, by a yet unclear mechanism, mRNA levels of Igf1 and Igf2 were up-regulated in VC-IR
Δ/∆

 tumors 

relative to WT-IR
fl/fl

 tumors. Therefore, increased local expression of Igf1 and Igf2 could further 

contribute to enhanced activation of IGF1R when IR signaling is lost. The increase in Igf2 is of particular 

interest because the maternal allele of the IGF2 gene is usually silenced by imprinting, and increased 

IGF2 expression due to loss of imprinting is a common event in CRC 
277,278

. Importantly, WT-IR
fl/fl

 and 
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VC-IR
Δ/∆

 organoids showed a similar gene expression pattern, suggesting that the matrigel tumor culture 

system used here may represent a useful tool to study mechanisms of tumor growth in vitro that are 

difficult to address in the intestine in vivo. Together, IGF1R may be hyperactivated due to IR deletion, 

leading to enhanced cell growth and tumorigenesis. Future studies will test whether tumors from VC-

IR
Δ/Δ

 mice exhibit increased proliferation, reduced apoptosis, or activation of other mediators linked to 

IGF1R signaling and test directly if re-expression of IR-B or IR-A or inhibition of IGF1R reduces growth 

of VC-IR
Δ/Δ

 tumor cells. 

Insulin resistance and obesity are associated with impaired activation of AMP kinase (AMPK) 

which is improved by metformin, a widely used anti-diabetic drug with promising protective roles against 

CRC 
279-281

. Our preliminary data demonstrated that metformin decreased growth of both WT-IR
fl/fl

 and 

VC-IR
Δ/Δ

 tumorspheres and restored growth of VC-IR
Δ/Δ

 tumor cells to similar levels as in WT-IR
fl/fl

 

cells. These data suggest that altered AMPK signaling may contribute to enhanced tumor growth when IR 

is dysfunctional. The ability of metformin to reverse enhanced tumor growth due to loss of IR signaling 

has implications for cancer-protective roles in type 2 diabetes.  

In summary, our work provided novel evidence that loss of IR promotes colon tumorigenesis and 

tumor growth in vivo and in vitro. These findings add direct support for a growing body of evidence that 

robust IR signaling may be crucial for improved prevention of colorectal cancer and therefore have major 

clinical relevance. Confirmation that loss of IR promotes colon tumors would highlight the clinical 

significance of strategies to preserve and better monitor IR signaling. Further studies aimed at defining 

mediators of enhanced tumorigenesis due to loss of IR will improve our ability to study the impact of 

impaired IR signaling on risk of pre-cancerous or cancerous lesions in the colon. 
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Figures 

 

Figure 3.1: Experimental design. 

Animals were given a single intraperitoneal injection of AOM followed by 3 treatments consisting of 2% 

DSS for 5 days. Between each DSS treatment, there was a recovery period of 14 days in which the mice 

were given water. Mice were sacrificed 14 days after the third DSS cycle.  
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Figure 3.2: VC-IR
Δ/∆

 mice showed increased mortality and number of colon tumors resulting from 

AOM-DSS treatment. 

(A) Survival curve showing the percent survival for each group over time. Data were analyzed using the 

log-rank (Mantel-Cox) test, P = 0.03. (B) Quantification of colonic tumors in WT-IR
fl/fl

 and VC-IR
Δ/Δ

 

animals. Data expressed as mean ± SEM (n ≥ 7), *P < 0.05, unpaired t-test. C-D: Representative images 

of (C) tumors in fresh colon specimens and (D) H&E images of tumor histology from WT-IR
fl/fl

 and VC-

IR
Δ/Δ

 mice after AOM-DSS treatment (for panel D, 4x objective, black scale bar = 500 μm). 
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Figure 3.3: Loss of IR enhances tumorsphere growth and organoid formation in matrigel and 

promotes IGF1-induced AKT phosphorylation of tumor CECs. 

(A) Representative images showing tumorspheres on day 8 (top row) and organoids on day 15 (bottom 

row) after plating tumor-derived CECs in matrigel (white scale bars = 200 μm, black scale bars = 100 

μm). B-C: Graphs with data for (B) tumorsphere diameter on day 8 and (C) number of organoids formed 

on day 15 post-plating. Data in panel B are representative of 10 tumorspheres per mouse and expressed as 

mean ± SEM. (D) Gel image showing complete villin-Cre-induced recombination of the IR gene in VC-

IR
Δ/Δ

 and not WT-IR
fl/fl

 organoids after passage. E-F: (E) Western blot and (F) protein quantification by 

densitometry indicating enhanced AKT phosphorylation in VC-IR
Δ/Δ

 tumor CECs 20 minutes after 

treatment with 20 ng/ml IGF1.  
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Figure 3.4: Metformin treatment restores growth of VC-IR
Δ/Δ

 tumorspheres to levels observed in 

WT-IR
fl/fl 

tumorspheres. 

(A) Representative images of tumorspheres treated with 0 or 10 mM metformin (Met) for 2 or 4 days (10x 

objective, scale bars = 100 μm). (B) Diameter measured in untreated and treated WT-IR
fl/fl

 and VC-IR
Δ/Δ

 

tumorspheres on days 2 and 4 after the start of metformin treatment. Data are representative of ≥ 7 

tumorspheres per group and are expressed as mean ± SEM.  
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Figure 3.5: Colon tumors and organoids from VC-IR
Δ/∆

 mice show increases in Igf1 and Igf2 mRNA 

levels and no change in Stat3 or Tnf mRNAs relative to WT-IR
fl/fl

 mice. 

Gene expression data obtained by qRT-PCR showing mRNA levels of (A) Igf1, (B) Igf2, and the pro-

inflammatory mediators (C) Stat3 and (D) Tnf  in tumor tissue and organoids (harvested 15 days post-

plating) from WT-IR
fl/fl

 and VC-IR
Δ/Δ

 mice. Data for tumor tissue were expressed as mean ± SEM (n = 4), 

*P < 0.05, n.s.: no significance, paired t-test.  
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CHAPTER 4: OBESITY AND THE INSULIN RECEPTOR, BUT NOT THE IGF1 RECEPTOR, 

PROMOTE RESISTANCE OF COLON EPITHELIAL CELLS TO RADIATION-INDUCED 

APOPTOSIS 

 

Introduction  

Obesity affects 35% of the adult population of the United States and 600 million adults 

worldwide 
176,282

. Obesity can lead to hyperinsulinemia and insulin resistance, which can progress to type 

2 diabetes (T2D), and these metabolic disorders have been strongly linked to risk of a number of cancers 

210,244,283,284
, including colorectal cancer (CRC) 

187,241,285,286
. Hyperinsulinemia is a compensatory response 

to impaired insulin signaling and may contribute to increased CRC risk, decreased response to 

chemotherapy or radiotherapy, and increased CRC recurrence and mortality associated with obesity and 

T2D 
189-192,287

. However, the mechanisms underlying CRC risk and poor treatment outcome during obesity 

or hyperinsulinemia remain unclear.  

Current views support the concept that tumors can arise due to survival and subsequent expansion 

of genetically damaged stem or progenitor cells 
288,289

. Apoptosis is a programmed cell death that is used 

by the body to eliminate unwanted cells with DNA damage, which may otherwise contribute to neoplasia. 

The frequency of basal, spontaneous apoptosis in the non-challenged small intestinal epithelium is very 

low 
230,233,235

. Spontaneous apoptosis in the colonic epithelium is even rarer, consistent with relatively 

high levels of the anti-apoptotic protein BCL-2 and low levels of the pro-apoptotic p53 
231-234

. Therefore, 

models of DNA damage induced by low-dose ionizing radiation (1-6 Gy) with evaluation of maximal 

apoptosis at 3-4.5 hours post-radiation have served as useful systems to study apoptosis in the intestinal 

epithelium 
113,230,235,290

. Whereas in the small intestine both spontaneous and radiation-induced apoptosis 

occur primarily at the crypt base where stem cells reside, apoptosis in the colon is scattered along the 

crypt and is not associated with the position of putative stem cells 
230,233

.
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   Our group and others have reported that insulin-like growth factor 1 (IGF1) inhibits radiation-

induced apoptosis in the intestinal crypts 
113,235,290

. IGFs potently stimulate intestinal growth 
112,119,123,127

 

and are widely considered mediators of survival or proliferation of cancer cells 
180,243

. Levels of 

bioavailable IGF1 can be increased by elevated plasma insulin, which inhibits hepatic production of IGF 

binding protein 1 (IGFBP1) 
153,291

. Both insulin and IGF1 can exert mitogenic and anti-apoptotic actions 

in normal and cancer cells via the insulin receptor (IR) or the IGF1 receptor (IGF1R) 
77,86,119,243

, which 

belong to the receptor tyrosine kinase family and are highly homologous in structure 
83

. Studies on the 

specific roles of IGF1R versus IR in proliferation and anti-apoptosis in the context of elevated insulin 

have been challenging because dependent on their levels, IGF1 and insulin can each activate both IGF1R 

and IR. 

Traditionally, IGF1R has been viewed as the main mediator of the trophic, anti-apoptotic, and 

pro-tumorigenic actions of IGFs and IGF1R overexpression has been reported in colorectal 

adenocarcinomas 
78,79,141,142,292

. In contrast, IR has been considered to play a larger role in mediating the 

metabolic actions of insulin 
80,271,293

. However, the IR gene undergoes pre-mRNA splicing that leads to 

expression of two functionally-distinct IR isoforms, IR-A and IR-B. IR-A lacks exon 11, mediates growth 

of fetal and tumor cells, and binds both insulin and IGFs, particularly IGF2, with high affinity 
90,92

. IR-B 

contains exon 11 which alters the structure of the ligand binding α-subunit and confers high affinity for 

insulin versus IGFs 
90,107

. IR-B is considered the major mediator of insulin action on nutrient storage and 

metabolism 
77,107

. A concept that IR may promote tumor growth is based on evidence that IR-A is highly 

expressed in cancer cells or tumors and studies showing that IR promoted tumor cell survival or growth 

when IGF1R was inhibited 
97,107,146,147,263,264

. In contrast, knockdown of IR-A in the colon cancer cell line 

SW480 promoted cell viability and this was associated with enhanced IGF1R phosphorylation 
104

.  

Our prior human studies found that high plasma insulin and low apoptosis in normal rectal 

mucosa were consistently associated with colorectal adenomas in multiple patient cohorts 
155,165,186,294

. 

Therefore, defining the roles of obesity-associated hyperinsulinemia and IGF1R versus IR in promoting 

survival of genetically damaged colon epithelial cells (CECs) is relevant to mechanisms by which obesity 
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may promote risk of early stage colon tumors. In this study, we used a model of high fat diet (HFD)-

induced obesity and hyperinsulinemia challenged with DNA damage caused by low-dose radiation to 

directly evaluate the impact of obesity on apoptosis of genetically damaged CECs. These studies were 

performed in mice with genetic disruption of IGF1R or IR in intestinal epithelial cells (IEC) and 

littermate controls to more directly define the roles of IGF1R or IR in radiation-induced CEC apoptosis 

during obesity and hyperinsulinemia. We hypothesized that obesity/hyperinsulinemia would lead to 

decreased apoptosis of genetically damaged CECs. We also hypothesized that any anti-apoptotic effects 

of obesity and hyperinsulinemia would be prevented or attenuated by IGF1R deletion and not IR deletion. 

Our results provide novel evidence that obesity and hyperinsulinemia promote reduced apoptosis of CECs 

following DNA damage. Surprisingly, IR but not IGF1R deletion increased apoptosis in lean and obese 

mice but did not prevent the reduction in apoptosis observed during obesity.   

 

Materials and methods  

Animals 

Mice with loxP sites flanking exon 3 of the Igf1r gene (IGF1R
fl/fl

) were obtained from Dr. Argiri 

Efstratiadis (Columbia University, NY) and have been described by Xuan et al. and Zhang et al. 
295,296

. 

Mice with loxP sites flanking exon 4 of the Insr gene (IR
fl/fl

) were provided by Dr. Ronald Kahn and 

described by Brüning et al. 
271

. To generate mice with IEC-specific IGF1R or IR gene disruption, 

IGF1R
fl/fl

 and IR
fl/fl

 mice were crossed with villin-Cre (VC) mice expressing a Cre recombinase transgene 

driven by the villin promoter (The Jackson Laboratory, Bar Harbor, ME) 
272

. The VC transgene is 

expressed throughout both small intestinal and colonic epithelium. All mice were on a C57BL/6 

background. Study animals were derived by cross-breeding WT-IGF1R
fl/fl

 and VC-IGF1R
Δ/Δ

 mice or WT-

IR
fl/fl

 and VC-IR
Δ/Δ

 mice. Genotyping on tail DNA was performed as previously described 
273,296

. Animals 

were housed in a pathogen-free facility at the University of North Carolina (Chapel Hill, NC), and food 

and water were provided ad libitum. All animal experiments were approved by the Institutional Animal 

Care and Use Committee (IACUC) of the University of North Carolina. 
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Diet-induced obesity 

WT-IGF1R
fl/fl

 and VC-IGF1R
∆/∆

 mice or WT-IR
fl/fl

 and VC-IR
∆/∆

 male mice (10-12 week old) 

were assigned to either a standard rodent chow control (CTL) diet (14% Kcal from fat) or high fat diet 

(HFD, 45% Kcal from fat, Research Diets, New Brunswick, NJ). In C57BL/6 mice this HFD leads to 

obesity, hyperinsulinemia, and insulin resistance within 14-16 weeks of onset of diet 
67,297

. Male mice 

were used because our prior studies have demonstrated more reproducible and consistent development of 

obesity and hyperinsulinemia in males versus females on C57BL/6 background. In the current study, after 

16 weeks on CTL diet or HFD, blood was collected from the tail vein after an overnight fast and plasma 

was isolated by centrifugation at 600 rcf for 6 minutes. Fasting blood glucose levels were measured using 

a OneTouch Ultra 2 glucometer (LifeScan, Milpitas, CA). Mice were given CTL diet or HFD for two 

additional weeks before radiation and euthanasia.  

 

Radiation and tissue harvest 

After 18 weeks on diets, mice were anesthetized with isoflurane (Baxter, Deerfield, IL) and 

abdominally irradiated with a single dose of 5 Gy using an XRad 320 (Precision X-Ray, North Branford, 

CT) at a rate of 1.07 Gy/min. Euthanasia was carried out with a lethal dose of Nembutal (150 μg/g) given 

via intraperitoneal injection 4 hours post-radiation, a time corresponding to maximal apoptosis of (IEC) 

after radiation-induced DNA damage 
12,113,237,298,299

. The colon was collected and flushed with cold 1x 

phosphate-buffered saline pH 7.4. All mesentery fat was removed and discarded. Length and weight of 

entire colon were recorded. As illustrated in Figure 4.1, for the first group of mice (n ≥ 5), entire colon 

was splayed open and fixed in 4% paraformaldehyde (PFA) overnight for histological scoring of 

apoptosis. For the second group (n ≥ 3), the most proximal and distal ~1-cm segments of the colon were 

fixed in 10% zinc formalin overnight to confirm histological apoptosis data obtained in the first group. 

The remaining of the tissue was splayed opened and 3-4 cm of the distal colon were used for CEC 

isolation for gene and protein expression experiments. The distal colon was used for histological and 
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biochemical analyses because in mouse models of CRC, tumors develop mainly in the distal colon and 

very rarely in the proximal portion.  

 

Blood and plasma measurements 

Fasting plasma insulin was measured by ELISA (Mercodia, Uppsala, Sweden). Insulin sensitivity 

was estimated by calculating homeostatic model assessment (HOMA) values using the formula Fasting 

Glucose (mmol/L) × Fasting Insulin (mU/L) / 22.5. Higher HOMA values indicate decreased insulin 

sensitivity. Blood was collected by cardiac puncture at the time of euthanasia and the plasma was acid-

ethanol extracted to remove IGF binding proteins as previously described 
300

. IGF1 levels in plasma were 

measured by ELISA (R&D, Minneapolis, MN). 

 

Immunohistochemistry and histological analyses  

Histological sections were visualized with an Axio Imager.A2 bright field microscope (Zeiss; 

Thornwood, NY, USA) and a ProgRes CF Scan camera (Jenoptik; Jena, Thuringia, Germany). Following 

overnight fixation in 10% zinc formalin, closed, cross sections were embedded in paraffin for 

hematoxylin and eosin (H&E) staining. Crypt depth was measured in 20 well-oriented crypts for each 

animal using the software ProgRes Capture Pro 2.7. Splayed opened colons fixed in 4% PFA were 

cryopreserved by two subsequent overnight incubations in 10% and 30% sucrose at 4ºC. Tissues were 

embedded in Optimal Cutting Temperature compound (Sakura, Torrance, CA) and allowed to freeze on 

dry ice. Six-µm thick sections were placed on microscope slides and baked at 37ºC overnight and then at 

60ºC for 2 hours. Heat-induced epitope retrieval (HIER) was performed using HIER Buffer L pH 6.0 

(Thermo Scientific, TA-135-HBL). Slides were washed in distilled water and incubated in 3% hydrogen 

peroxide for 10 min at room temperature, and blocked with 10% normal goat serum for 1 hr. Slides were 

incubated with a cleaved caspase-3 antibody (Cell Signaling Technology, Danvers, MA) at 4ºC overnight. 

Incubation in Biotinylated Goat Anti-Rabbit antibody (Jackson Immunoresearch, West Grove, PA) was 

performed for 1 hour at room temperature. Apoptosis was assessed by quantifying cells positive for 
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cleaved caspase-3 staining in 40 well-oriented crypts for each mouse. The total number of cells per crypt 

was quantified based on hematoxylin-stained nuclei. The apoptotic indexes were determined for each 

crypt by calculating the percentage of cleaved caspase-3 positive cells relative to the total number of cells.  

 

Colon epithelial cell isolation  

Distal colon segments were placed in a solution containing 30mM EDTA/1.5mM DTT/1xPBS for 

20 minutes on ice. The tissues were transferred to a 30mM EDTA/1x PBS solution and incubated in a 

37ºC water bath for 10 minutes. Samples were shaken vigorously for 1 minute to separate the epithelium 

from the submucosal and muscularis layers and were centrifuged at 1,750 rpm for 5 minutes. Following 

two washes with 1x PBS, samples were pelleted and resuspended in RLT buffer (Qiagen, Valencia, CA) 

containing 1:100 2-mercaptoethanol (Gibco, Grand Island, NY) for RNA extraction or flash frozen for 

protein extraction. 

 

Protein extraction and Western blot 

Isolated CECs were lysed with hot Laemmli buffer, boiled, and sonicated. Protein samples were 

run on NuPAGE 4–12% Bis-Tris 1.0 mm gels (Life Technologies, Carlsbad, CA) and transferred to a 

0.45 mm pore PVDF membrane (Millipore, Billerica, MA). Membranes were blocked with Blocker 

Casein in TBS (Thermo Fisher Scientific, Waltham, MA) for 1 hour and incubated in primary antibodies 

at 4ºC overnight. Primary antibodies used were IR-β (Santa Cruz Biotechnology, Santa Cruz, CA), 

IGF1R-β, p53 and pH2AX (Cell Signaling Technologies, Danvers, MA), and β-actin (Sigma Aldrich, St. 

Louis, MO) as the loading control. Membranes were washed with 1x TBS, 0.1% Tween buffer and 

incubated in Dylight 800 goat anti-rabbit or anti-mouse IgG secondary antibodies (1:15,000, Pierce, 

ThermoScientific, Rockford, IL) at room temperature for 2 hours. Protein was visualized with an Odyssey 

CLx Infrared Imager (Version 3, LI-COR, Lincoln, NE) and band intensity was measured with ImageJ 

software (National Institutes of Health). 
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RNA isolation and high throughput real time PCR 

RNA was isolated from CECs using the RNeasy kit (Qiagen, Valencia, CA) according to 

manufacturer’s instructions. High quality RNA as determined by the 2100 Bioanalyzer (Agilent 

Technologies, Santa Clara, CA) was utilized for high throughput gene expression analyses using the 

BioMark HD System (Fluidigm, San Francisco, CA) as previously described
301

 based on the 

manufacturer’s protocol. An RNA pool derived from pooling equal amounts of all samples studied was 

used as the reference sample. All test mRNAs were normalized to the mRNA encoding the housekeeping 

gene hydroxymethylbilane synthase (Hmbs). TaqMan primer/probes for data presented here include 

Mm01143545_m1 (Hmbs), Mm00432051_m1 (Bax), Mm00477631_m1 (Bcl2), Mm00480750_m1 

(Perp), and Mm00438168_m1 (Cdkn1b) and were purchased from Applied Biosystems (Carlsbad, CA). 

 

Statistical analysis 

Data were collected from multiple independent experiments, each consisting of 4-8 mice. Subsets 

of mice were used for different experiments. Data were expressed as mean ± SEM. Morphological 

measurements and quantification of apoptosis, protein, and mRNA levels were analyzed by two-way 

analysis of variance (ANOVA) for main effects of diet or genotype and interactions between diet and 

genotype. Multiple comparisons were performed by Tukey’s test. All analyses were performed using 

GraphPad Prism 6 software (La Jolla, CA) and P < 0.05 was considered statistically significant. 

 

Results 

Complete genetic disruption of IGF1R or IR in IEC of VC-IGF1R
Δ/Δ

 and VC-IR
Δ/Δ

 mice 

Figure 4.2 shows a PCR gel confirming that VC-IGF1R
Δ/Δ

 and VC-IR
Δ/Δ

 mice are homozygous 

for the recombined allele of IGF1R or IR, respectively, specifically in IEC. Only floxed but intact alleles 

are observed in serosa and liver of VC mutants and IEC of WT-IGF1R
fl/fl

 and WT-IR
fl/fl

 controls.  
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IGF1R or IR loss in IEC does not impact weight gain, hyperinsulinemia, hyperglycemia, or insulin 

insensitivity resulting from long term HFD feeding  

Table 4.1 demonstrates that HFD-fed animals had increased body weight gain and fasting levels 

of blood glucose and plasma insulin compared to controls. Animals on HFD also had higher HOMA 

values, indicating decreased insulin sensitivity. There were no significant differences across genotypes in 

any of these metabolic consequences of HFD. Plasma IGF1 levels did not differ between diet groups or 

genotypes. Our data therefore demonstrate that IEC loss of IGF1R or IR had no significant effects on the 

metabolic phenotype associated with HFD feeding for 18 weeks. It should be noted that body weight gain 

in HFD-fed mice versus controls differs between the IGF1R and IR mouse colonies. However, values for 

body weight gain within control and HFD animals of the same colony were very consistent.    

  

Loss of IGF1R in CECs does not impact basal colon phenotype in obese or lean mice 

We next examined the effects of obesity and IGF1R receptor deletion on colon morphology and 

morphometry. Western immunoblot on isolated CECs confirmed complete absence of IGF1R protein in 

VC-IGF1R
∆/∆

 animals and no change in IGF1R levels during obesity (Figure 4.3A). Obese mice had 

lighter and shorter colons, and disruption of IGF1R did not impact this phenotype (Figure 4.3B-C). Colon 

crypt depth was unaffected by either obesity or loss of IGF1R (Figure 4.3D). These data suggest that 

morphology and morphometry of the colon is not altered by epithelial loss of IGF1R in lean or obese 

mice.  

 

IGF1R loss in CECs does not cause a compensatory increase in IR protein  

Since no differences were observed in gross or histological morphology of colons lacking 

epithelial IGF1R, we asked if IR protein levels were increased in response to IGF1R loss. Expression of 

IR was similar in both obese and lean WT-IGF1R
fl/fl 

mice and IGF1R loss did not significantly affect IR 

protein levels in either diet group (Figure 4.4).  

 



   

76 

 

Obesity promotes decreases in radiation-induced apoptosis of CECs and this is unaffected by 

IGF1R deletion 

We hypothesized that diet-induced obesity and hyperinsulinemia would decrease the ability of 

colonic epithelial cells to undergo apoptosis following DNA damage, and these effects would be mediated 

by IGF1R. Quantification of cleaved caspase-3 positive cells in colon crypts revealed that obese WT-

IGF1R
fl/fl

 animals had significantly lower apoptosis than their lean counterparts at 4 hours after 5 Gy 

radiation (Figure 4.5A-B). Surprisingly, no difference in the apoptotic index was observed between WT-

IGF1R
fl/fl

 and VC-IGF1R
Δ/Δ

 mice in either lean or obese groups (Figure 4.5A-B). Phospho-H2AX, a well-

established biomarker of DNA damage, was assessed by western immunoblot to verify that obesity or 

IGF1R deletion did not affect DNA damage. Levels of pH2AX were similar in all groups (Figure 4.5C-

D). Together, these findings indicate that obesity and hyperinsulinemia promote resistance of CECs to 

apoptosis after radiation-induced DNA damage and, surprisingly, IGF1R loss did not affect these results. 

 

Loss of IR in CECs does not affect basal colon phenotype and does not alter IGF1R protein 

expression in obese or lean mice  

Figure 4.6A confirms IR deletion in CECs from VC-IR
∆/∆

 mice and shows that IR protein levels 

in WT-IR
fl/fl

 animals are unaltered during obesity. Consistent with findings in the IGF1R mouse colony, 

obesity was associated with lighter and shorter colons in both WT-IR
fl/fl 

and VC-IR
∆/∆

 mice (Figure 4.6B-

C). Colon crypt depth was similar across all groups (Figure 4.6D) and neither obesity nor IR loss affected 

IGF1R protein levels (Figure 4.7). These data indicate that loss of IR in CECs has no detectable effects on 

colon morphology or morphometry and does not lead to a compensatory increase in IGF1R protein.  

 

IR loss promotes apoptosis of genetically damaged CECs in lean and obese animals 

We next examined if the anti-apoptotic effects of obesity or hyperinsulinemia on CECs with 

DNA damage were mediated by IR rather than IGF1R. Obese WT-IR
fl/fl

 mice had lower levels of 

apoptosis than lean WT-IR
fl/fl

 mice (Figure 4.8A-B), consistent with findings in the IGF1R group. 
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Interestingly, lean VC-IR
Δ/Δ

 mice had significantly higher levels of apoptosis than lean WT-IR
fl/fl

 mice, 

providing evidence that IR loss increases CEC apoptosis. In the obese group, VC-IR
Δ/Δ

 mice also had 

higher apoptosis than WT-IR
fl/fl

 animals, further indicating anti-apoptotic roles of IR. However, apoptosis 

levels in obese VC-IR
Δ/Δ 

mice remained significantly lower than in lean VC-IR
Δ/Δ 

mice (Figure 4.8A-B). 

Levels of the DNA damage marker pH2AX were not affected by diet or genotype (Figure 4.8C-D). 

Overall, our results show that disruption of IR promotes apoptosis of genetically damaged CECs in both 

lean and obese mice. However, obesity is still associated with reductions in apoptosis in mice lacking IR.   

 

Obesity and IR loss impact protein expression of p53 and mRNA levels of Perp and Cdkn1b in 

genetically damaged CECs 

We next sought to investigate potential molecular mediators influenced by obesity and IR that 

may contribute to resistance of CECs to apoptosis after DNA damage. CECs were isolated from WT-IR
fl/fl

 

and VC-IR
Δ/Δ

 mice and levels of pro-apoptotic and anti-apoptotic regulators were assessed. We first 

examined p53, a key sensor of DNA damage that is a required mediator of apoptosis in the intestinal 

crypts within the initial hours following radiation 
231,238

. At 4 hours after 5 Gy radiation, we observed a 

non-significant trend (P = 0.08) for reduced p53 in CECs of obese versus lean WT-IR
fl/fl

 animals (Figure 

4.9A-B). Both lean and obese VC-IR
∆/∆

 mice had significantly increased p53 protein levels compared 

with their WT-IR
fl/fl

 counterparts (Figure 4.9A-B). Next, we performed high throughput qRT-PCR on 

regulators of apoptosis and cell cycle progression. We found no changes in mRNA levels of pro-apoptotic 

Bax or anti-apoptotic Bcl2 in obese versus lean mice across genotypes (Figure 4.9C-D). However, mRNA 

levels of the pro-apoptotic Perp (p53 apoptosis effector related to PMP-22) and the tumor suppressor 

Cdkn1b (which encodes for p27) were significantly down-regulated in CECs of obese WT-IR
fl/fl 

and VC-

IR
∆/∆

 mice versus lean mice of the same genotype (Figure 4.9E-F). Both Perp and Cdkn1b mRNAs were 

significantly higher in lean VC-IR
∆/∆

 mice than in lean WT-IR
fl/fl

 controls. These data show a potential 

contribution of p53 and p53-regulated genes to the differential apoptosis response of CECs during obesity 

and IR deletion. 
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Discussion 

This study aimed to investigate the effects of obesity on apoptosis of colonic epithelial cells 

(CECs) after radiation-induced DNA damage and test our original hypothesis that IGF1R loss would have 

an impact on these effects. We used a mouse model of HFD-induced obesity and hyperinsulinemia with 

genetic deletion of IGF1R specifically in intestinal epithelial cells (IEC). We found that 4 hours after 

DNA damage induced by 5 Gy radiation, obesity led to reduced CEC apoptosis and this was unaffected 

by IGF1R loss. Given this surprising result, we next studied mice with IEC-specific deletion of IR to test 

if IR contributed to the anti-apoptotic effects of obesity. We found that IR loss significantly increased 

apoptosis of genetically damaged CECs in both lean and obese mice but did not prevent the reduction in 

apoptosis in obese animals. Together, our studies on two independent mouse colonies showed that obesity 

and hyperinsulinemia decrease apoptosis of CECs after radiation-induced DNA damage. Furthermore, we 

provide novel and unexpected evidence that loss of IR, but not IGF1R, increases apoptosis of genetically 

damaged CECs in lean or obese mice, indicating novel anti-apoptotic roles of IR in the colon.   

A large body of clinical data strongly links obesity, hyperinsulinemia, insulin therapies, and 

diabetes to CRC risk 
155,187,285,286,294,302

, and considerable interest in the role of the insulin/IGF system in 

mediating this risk has emerged. Due to the structural similarities and overlapping functions of IGF1R 

and IR, defining their individual roles in growth and cell death in different tissues has been challenging. 

We therefore generated mice with IEC-specific disruption of IGF1R or IR in the intestinal epithelium. 

The colons of these mice show no obvious basal phenotype, as demonstrated by the lack of effects on 

colon length, weight and crypt depth with loss of either receptor. These mouse models were first used to 

evaluate the early effects of obesity on apoptosis of genetically damaged cells in normal colonic 

epithelium which may reflect an important mechanism to remove cells that could harbor potentially 

oncogenic mutations. Our findings in two independent experiments on two independent colonies of mice 

with diet-induced obesity and hyperinsulinemia provide, to our knowledge, new, direct evidence that 

obesity and hyperinsulinemia are associated with reduced apoptosis of genetically damaged cells. This 
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preclinical evidence supports our findings in humans linking increased plasma insulin to reduced 

apoptosis in normal rectal mucosa, which in fact predicted risk of colorectal polyps 
155,165

.  

The role of IR in the gut epithelium has been largely ignored, and significantly more attention has 

been focused on IGF1R due to its known role in growth and cancer 
119,180,292

. Circulating “free” IGF1, 

which increases during elevated plasma insulin due to inhibition of hepatic production of IGFBPs 
153

, has 

been associated with normal and aberrant growth of colon 
112,303,304

. In line with this concept, IGF1R has 

been considered a critical mediator of the proliferative and anti-apoptotic effects of elevated insulin or 

IGF1. Our findings that loss of IGF1R did not impact radiation-induced apoptosis of CECs are therefore 

unexpected and may suggest that, in the colon, IGF1R is not essential for anti-apoptotic actions. Loss of 

IR, however, led to a dramatic increase in apoptosis of genetically damaged CECs. A direct role for IR in 

apoptosis has been previously described in primary hepatocypes of newborn mice and in mouse embryo 

fibroblasts 
305,306

. Here, we provide the first direct evidence that IR exerts anti-apoptotic actions in the 

adult colon epithelium.   

Our studies indicated that the increase in apoptosis associated with IR deletion occurred 

regardless of whether animals were lean or obese, since apoptosis levels in obese VC-IR
Δ/Δ

 mice still 

remained lower than in lean VC-IR
Δ/Δ

 littermates. This suggests that factors other than insulin signaling 

may mediate the anti-apoptotic effects of obesity. When we examined protein expression in CECs of WT-

IR
fl/fl 

animals, we found a non-significant, consistent decrease in p53 with obesity. Relative to WT-IR
fl/fl

 

mice, loss of IR led to a slight but significant increase in p53 protein in both obese and lean groups. These 

small differences in protein expression may reflect the fact that the apoptosis phenotype we observed 

histologically is restricted to a few cells per crypt (2-4 cells in lean mice and 1-2 cells in obese mice) and 

examining total CECs may therefore mask any changes in protein levels in crypt cells undergoing 

apoptosis. A study on mouse embryonic fibroblasts showed that, after DNA damage, IGF1 treatment 

induced p53 protein degradation via the MAPK pathway 
307

. However, whether these effects were 

mediated by IGF1R or IR-A was not investigated. It could therefore be speculated that in the colon 

epithelium, where IR-A is the predominant isoform 
294

, increased protein levels of p53 in VC-IR
Δ/Δ

 mice 
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may result from loss of IR-A signaling. Analyses of CEC mRNA revealed that Perp and Cdkn1b were 

increased in lean mice lacking IR and decreased in obese mice regardless of genotype. Perp is 

transcriptionally induced by p53 in normal and cancer cells specifically during apoptosis 
308-310

. Cdkn1b 

encodes the tumor suppressor p27, which promotes cell cycle arrest at G1 by inhibiting cyclin-dependent 

kinases, is down-regulated in tumors from p53 null mice, and can be up-regulated by p53 to protect 

normal IEC from the cytotoxic effects of chemotherapy 
311-313

. These data showing changes in Perp and 

Cdkn1b mRNA levels in genetically damaged CECs of obese and lean VC-IR
Δ/Δ

 mice are consistent with 

the anti-apoptotic effects of obesity and IR observed by histology. We note that in mice lacking IR, Perp 

and Cdkn1b mRNAs are significantly decreased with obesity, but p53 protein is not. This discrepancy 

could be due to the fact that the western blot experiments used whole cell lysates and therefore do not 

provide information on p53 nuclear translocation, which is required to activate gene transcription after 

DNA damage. Alternatively, elevated p53 may reflect a mechanism by which loss of IR increases 

apoptosis while reduced Perp and Cdkn1b mRNAs reflect other pathways that maintain apoptosis at low 

levels during obesity. This would cause obese VC-IR
Δ/Δ

 mice to have higher apoptosis than obese WT-

IR
fl/fl

 mice but lower apoptosis than their lean VC-IR
Δ/Δ

 counterparts.  

Our study is to our knowledge the first to directly show that obesity and hyperinsulinemia 

promote resistance of CECs to apoptosis after DNA damage. Furthermore, we provide novel evidence 

that IR and not IGF1R normally protects genetically damaged CECs from apoptosis. Overall, our work 

suggests that: (i) the mediators of obesity-associated reductions in apoptosis should be further explored as 

they may represent a potential early mechanism driving colon tumorigenesis and (ii) more attention 

should be given to the physiological roles of IR in cell death and survival in the colon crypts to better 

understand the mechanisms underlying normal or aberrant colon growth.       
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Figures and Tables 

 

 

 

Figure 4.1: Colon tissue harvest. 

First group of animals: the entire colon was splayed opened and fixed in 4% paraformaldehyde (PFA) for 

histological assessment of apoptosis. Second group of mice: one closed piece of proximal and one closed 

piece of distal colon (~1cm each) were fixed in 10% Zn formalin to confirm apoptosis scoring, and 3-4 

cm of the distal colon were splayed opened and used for epithelial cell isolation. 
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Figure 4.2: Intestinal epithelial cell (IEC)-specific villin-Cre mediated recombination of Igf1r and 

Insr genes in VC-IGF1R
Δ/Δ

 and VC-IR
Δ/Δ

 mice, respectively. 

PCR gels for floxed regions in exon 3 of the Igf1r gene and exon 4 of the Insr gene in IEC, intestinal 

serosa, and liver DNA from (A) WT-IGF1R
fl/fl

 and VC-IGF1R
∆/∆

 mice and (B) WT-IR
fl/fl

 and VC-IR
∆/∆

 

mice. Only mice carrying the villin-Cre recombinase are homozygous for the recombined (recomb.) 

alleles specifically in IEC and not in other tissues. 
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Table 4.1: IEC-specific loss of IGF1R or IR does not affect obesity-associated changes in body 

weight, blood glucose, plasma insulin, and insulin sensitivity. 

 WT-IGF1R
fl/fl

 VC-IGF1R
Δ/Δ

  WT-IR
fl/fl

 VC-IR
Δ/Δ

 

 
CTL HFD CTL HFD 

 
CTL HFD CTL HFD 

Body weight 

gain (%) 

39.5  

±10.0 

101.6 

±4.2
a
 

31.2  

±8.1 

93.9 

±10.5
a
  

24.9  

±1.7 

70.4 

±6.2
a
 

25.7  

±3.2 

71.0 

±5.8
a
 

Fasting blood 

glucose (mg/dl) 

127.1 

±11.3 

164.6 

±16.4 

127.6 

±17.3 

167.1 

±13.8  

108.2 

±2.3 

151.8 

±11.3
a
 

108.7 

±8.8 

167.5 

±10.4
a
 

Fasting plasma 

insulin (μg/l) 

0.2  

±0.03 

1.1 

±0.2
a
 

0.3 

±0.1 

1.3 

±0.3
a
  

0.27 

±0.03 

1.16 

±0.23
a
 

0.27 

±0.07 

1.14 

±0.19
a
 

HOMA 
2.3  

±0.4 

13.9 

±3.0
a
 

2.5 

±0.9 

15.0 

±3.89
a
  

2.0 

±0.2 

12.6 

±2.7
a
 

2.2 

±0.8 

15.4 

±2.8
a
 

Plasma 

IGF1(ng/ml) 

31.8  

±11.2  

46.7 

±3.8 

40.8 

±4.0 

37.1 

±6.6  

49.3 

±2.6 

52.2 

±4.5   

49.7 

±3.3  

51.2 

±2.2 

a: P < 0.05 vs. CTL same genotype  

Two-way ANOVA, Tukey’s multiple comparisons test 

n ≥ 5  
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Figure 4.3: Obesity does not affect IGF1R protein expression in CECs of WT-IGF1R
fl/fl

 mice and 

IGF1R loss does not alter colon weight, length, or crypt depth in lean or obese mice. 

(A) Representative western blot for IGF1R protein in isolated CECs of lean and obese WT-IGF1R
fl/fl

 and 

VC-IGF1R
∆/∆

 mice. B-D: Measurements of colon (B) weight, (C) length and (D) crypt depth in each 

group. Western blot is representative of n ≥ 3. Data in bar graphs represent mean ± SEM (n ≥ 4). a: P < 

0.05 versus lean same genotype, n.s.: no significance, two-way ANOVA with Tukey’s multiple 

comparisons test.  
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Figure 4.4: Neither obesity nor IGF1R deletion impact IR protein levels in CECs. 

(A) Representative western blot showing IR protein in isolated CECs of lean and obese WT-IGF1R
fl/fl

 and 

VC-IGF1R
∆/∆

 animals. (B) Quantification of IR protein levels relative to β-actin expressed as mean ± 

SEM (n ≥ 3), n.s.: no significance, two-way ANOVA. 
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Figure 4.5: Reduced apoptosis of genetically damaged CECs in obese mice with intact IGF1R or 

IGF1R deletion and no changes in levels of the DNA damage marker pH2AX across groups. 

(A) Representative images showing cleaved caspase-3 staining in distal colon of lean and obese WT-

IGF1R
fl/fl

 and VC-IGF1R
∆/∆

 mice (40x objective, scale bar = 50 μm). (B) Apoptotic index calculated 

using the formula: number of cleaved caspase-3 positive cells/total number of cells x 100. Data represent 

mean ± SEM (n ≥ 5). (C) Representative western blot showing pH2AX protein in isolated CECs of lean 

and obese WT-IGF1R
fl/fl

 and VC-IGF1R
∆/∆

 animals. (D) Quantification of pH2AX levels relative to β-

actin expressed as mean ± SEM (n ≥ 3). a: P < 0.05 versus lean same genotype, n.s.: no significance, two-

way ANOVA with Tukey’s multiple comparisons test.  
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Figure 4.6: Obesity does not affect IR protein expression in CECs of WT-IR
fl/fl

 mice and IR deletion 

does not affect measures of colon growth. 

(A) Representative western blot for IR in isolated CECs of lean and obese WT-IR
fl/fl

 and VC-IR
∆/∆

 mice. 

B-D: Measurements of colon (B) weight, (C) length and (D) crypt depth in each group.  Western blot is 

representative of n = 4. Quantitative data were expressed as mean ± SEM (n ≥ 4). a: P < 0.05 versus lean 

same genotype, n.s.: no significance, two-way ANOVA with Tukey’s multiple comparisons test.  
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Figure 4.7: IR loss does not impact IGF1R protein levels in CECs of lean or obese mice. 

(A) Representative western blot showing IGF1R protein levels in isolated CECs of lean and obese WT-

IR
fl/fl

 and VC-IR
∆/∆

 animals. (B) Quantification of IGF1R protein relative to β-actin expressed as mean ± 

SEM (n = 4), n.s.: no significance, two-way ANOVA with Tukey’s multiple comparisons test.  

  



   

89 

 

 

Figure 4.8: IR loss increases apoptosis of genetically damaged CECs in lean and obese mice and 

levels of pH2AX do no change across groups. 

(A) Representative images showing cleaved caspase-3 staining in distal colon of lean and obese WT-IR
fl/fl

 

and VC-IR
∆/∆

 mice (40x objective, scale bar = 50 μm). (B) Apoptotic index calculated using the formula: 

number of cleaved caspase-3 positive cells/total number of cells x 100. Data were expressed as mean ± 

SEM (n ≥ 5). (C) Representative western blot showing pH2AX protein in isolated CECs of lean and obese 

WT-IR
fl/fl

 and VC-IR
∆/∆

 animals. (D) Quantification of pH2AX expression relative to β-actin expressed as 

mean ± SEM (n = 4). a: P < 0.05 versus lean same genotype, b: P < 0.05 versus WT same diet group, 

two-way ANOVA with Tukey’s multiple comparisons test. 
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Figure 4.9: Obesity and IR deletion alter levels of p53 protein and p53-regulated mRNAs. 

(A) Western blot showing p53 protein expression in isolated CECs of lean and obese WT-IR
fl/fl

 and VC-

IR
∆/∆

 mice. (B) Quantification of p53 protein levels relative to β-Actin by densitometry. C-F: mRNA 

levels of (C) anti-apoptotic Bcl-2, (D) pro-apoptotic Bax, (E) pro-apoptotic Perp, and (F) tumor 

suppressor Cdkn1b. Bar graphs in panels B-F show fold change versus lean WT-IR
fl/fl

 control. Data were 

expressed as mean ± SEM (n = 4 in duplicates for protein data and n ≥ 4 for mRNA data). a: P < 0.05 

versus lean same genotype, b: P < 0.05 versus WT same diet group, two-way ANOVA with Tukey’s 

multiple comparisons test. 

  



   

91 

 

CHAPTER 5: NOVEL ROLES FOR IR IN CRC RISK AND COLON APOPTOSIS: 

SIGNIFICANCE AND FUTURE AREAS OF INVESTIGATION 

 

 The first evidence for presence of insulin receptors in the mammalian colon was reported in 

1985
314

. However, the function of IR in the intestine has been largely ignored, probably because the 

intestine does not rely on insulin for carbohydrate metabolism 
315

. Thus, IR has been primarily studied in 

‘traditional’ targets of the metabolic actions of insulin such as skeletal muscle, adipose tissue, and liver, 

as well as in the insulin-producing β-cells of the pancreas 
273,316-318

. In contrast, significant attention has 

been given to intestinal IGF1R since it is generally considered the major mediator of the effects of IGF1, 

IGF2, or elevated insulin on growth, anti-apoptosis, regeneration, and cancer 
78,112,120,129,130,203,235

.  

However, it is only recently that we and others have been able to generate mouse models with genetic 

deletion of IR or IGF1R in intestinal epithelial cells to more directly define the roles of these two related 

receptors.  

In 1999, Frasca et al. provided evidence for increased IR-A expression in human colon cancer 

tissues 
90

. Additionally, human studies have found positive correlations between elevated plasma insulin 

and risk of colorectal adenomas and cancer 
155,186,187

. These lines of evidence and the fact that both IGF1 

and insulin can signal through either IGF1R or IR prompted us to investigate the specific roles of each 

receptor in the early stages of colorectal carcinogenesis. Distinguishing functional roles of IGF1R and IR 

in vivo has been a challenge due to their structural and functional similarities. The mouse models with 

IEC-specific deletion of IGF1R or IR used in our studies are therefore powerful tools to directly define in 

vivo contributions of each receptor in distinct physiological and pathophysiological contexts. The fact that 

the IEC-IGF1R and IEC-IR deletion mutants had no detectable basal phenotype permitted us to challenge 

them with damage or tumor inducing stimuli to define their roles in disease-relevant situations.  
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This dissertation aimed to first define the expression levels of IGF1R, IR, and IR isoforms in the 

normal mucosa of patients with or without colorectal adenomas, in order to establish whether mRNA 

levels of these receptors could predict adenoma risk, particularly during elevated plasma insulin. In the 

second portion of this dissertation, IEC-specific IR knockout mice treated with AOM-DSS were used to 

determine the impact of IR loss on tumorigenesis. The third part of this work examined DNA damage, the 

earliest step in tumor initiation. The goal was to evaluate the effects of loss of IGF1R or IR on apoptosis 

of genetically damaged colon epithelial cells (CECs) during diet-induced obesity or hyperinsulinemia. 

This final chapter will discuss the overall findings, future directions for research, and the clinical 

significance of this work.  

 

Hyperinsulinemia and colorectal adenoma risk 

IR-A and IR-B isoforms or IGF1R as predictive biomarkers 

 The human study in the first part of this dissertation reported two main novel findings (Figure 

5.1): (i) IGF1R mRNA is modestly but significantly down-regulated in the normal mucosa of adenoma 

cases compared with adenoma-free controls and (ii) increased IR-A:IR-B ratio is associated with 

increased risk of adenomas in patients in the upper half of plasma insulin. The latter appeared to be due to 

reduced IR-B and maintained IR-A expression, as observed semi-quantitatively based on RT-PCR. These 

results provide evidence that IR-B protects against early stage colon tumorigenesis in humans with 

elevated plasma insulin. 

 The findings that low IGF1R mRNA predicted adenoma risk were unexpected and may suggest 

that overexpression of IGF1R in carcinogenesis may become more relevant at later stages in the 

adenoma-cancer sequence. Since IGF1 is known to negatively feedback on IGF1R receptor expression in 

a number of cell types and its production is elevated in colon adenomas in preclinical models 
97,319-321

, it is 

possible that local IGF1 secreted by adenomas act in a paracrine manner on the surrounding normal 

mucosa to down-regulate IGF1R in cases. Increased circulating levels of free IGF1 could also contribute 
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to this down-regulation, but plasma IGF1 was not measured in this study and prior studies did not report 

elevated plasma IGF1 in adenoma patients 
155

. We considered that high insulin may drive reduced IGF1R 

but IGF1R levels were elevated regardless of plasma insulin 
269

. Thus the mechanism and significance of 

low IGF1R mRNA in adenoma cases remains to be further evaluated.  

 Interestingly, IR-A:IR-B ratios were increased in cases versus controls with high plasma insulin. 

This relationship was strengthened by logistic regression analyses showing that as IR-A:IR-B ratios 

increased, patients with elevated insulin were more likely to have adenomas than patients with low 

insulin. Rather than increased IR-A, these alterations in IR-A:IR-B ratios seemed to be dictated by 

reductions in IR-B. This suggests that insulin-induced regulation of IR isoform expression may be 

relevant to the mechanisms underlying adenoma risk. Total IR mRNA did not differ between cases and 

controls, suggesting that the relative amounts of IR isoforms should be the focus of future studies 

examining IR. 

 One question that remained unanswered by this study is whether adenomas express higher IR-

A:IR-B ratios during normal or high plasma insulin. This is unknown in humans, but our recent 

publication showed increased IR-A:IR-B ratio in adenomas from Apc
Min/+

 mice due to reduced IR-B 
97

. 

Consistent with these findings, preliminary data obtained during this work showed that, compared with 

normal colon epithelium from untreated mice, adenomas from AOM-DSS mice had increased IR-A:IR-B 

ratio resulting from decreased IR-B (Figure 5.2).  

 Together, this work leads to a new area in colorectal cancer prevention research that should be 

further explored to define if altered IR-A, IR-B, or IGF1R expression in normal colon biopsies better 

predict colorectal adenoma risk, particularly in patients with hyperinsulinemia or insulin resistance. Thus, 

identification of those patients at greatest risk for CRC who would benefit from more frequent 

colonoscopy-based surveillance could help decrease CRC morbidity and mortality. 
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Regulation of IR isoform pre-mRNA splicing 

There is currently limited information on the mechanisms controlling pre-mRNA splicing of IR 

isoforms. It is well established, however, that CUG RNA binding protein 1 (CUGBP1), muscleblind 

proteins (MBNL), and serine/arginine-rich splicing factors (SRSFs) regulate IR alternative splicing in 

muscle (Figure 5.3), and more recently we found that they also play a role in the intestine 
97

. Most of the 

evidence for roles of these proteins in IR isoform expression resulted from studies on myotonic dystrophy 

(DM), an autosomal dominant muscle disease that is characterized by expanded CUG repeats in the RNA 

encoding DM protein kinase (DMPK) 
322

. Patients show insulin resistance in skeletal muscle and this has 

been associated with increases in CUGBP1 that favor IR-A expression 
322

. In contrast, MBNL1 and 

MBNL2 favor generation of IR-B (Figure 5.3), and this is inhibited by CUGBP1 
323

. In vitro studies 

demonstrated that MBNL1 and SRSF3 promote exon 11 inclusion and expression of IR-B by binding to 

intronic and exonic splicing enhancers, respectively 
324,325

. CUGBP1 promotes exon 11 exclusion and 

expression of IR-A by binding to intronic and exonic splicing silencers 
325

. Consistent with this evidence, 

our recent work showed that in differentiated Caco2 colorectal cancer cells, which express higher IR-B 

than in the undifferentiated state, CUGBP1 transcript levels were decreased and MBNL2 levels were 

increased 
97

. In contrast, in colon and small intestinal adenomas from Apc
Min/+

 mice where IR-A 

predominates, MBNL2 expression was reduced 
97

. Studies on human liver recently demonstrated that 

compared with normal hepatocytes where IR-B is by far the predominant isoform, hepatocellular 

carcinomas showed increased relative expression of IR-A, which correlated with increased CUGBP1 

levels 
276

. Interestingly, CUGBP1-induced expression of IR-A was regulated by the oncogenic 

EGFR/MAPK pathway 
276

.     

Expression patterns of these splicing factors in human intestine have not been examined. 

Measuring the levels of splicing factor mRNAs in the human biopsies used in our studies could provide 

insight into mechanisms by which high plasma insulin up-regulates IR-A:IR-B ratio to promote adenoma 

risk. In biopsies from cases with elevated insulin, which show increased IR-A:IR-B ratio due to reduced 

IR-B, we would anticipate decreased MNLBs and increased or maintained CUGBP1. More direct 
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mechanistic studies on whether elevated insulin itself or insulin resistance affects IR isoform splicing 

could be addressed in vivo or in vitro. Using the conditional reprogramming method described in Chapter 

3, cells from normal colon mucosa of patients with or without adenomas, or human adenoma cells, if 

available, could be plated on feeders or matrigel to evaluate their proliferative capacity and the relative 

abundance of IR isoforms with or without insulin treatment. Knockdown of IR by shRNA and re-

expression of IR-A or IR-B would test whether insulin-mediated cell growth and survival are enhanced by 

IR-A or attenuated by IR-B. Alternatively, splicing factors could be modulated by transfecting cells with 

lentiviral constructs expressing shRNAs for MBNL2 and CUGBP1, which are available in our laboratory. 

If increased IR-A levels relative to IR-B prove to be a driver of adenoma cell growth and anti-apoptosis, 

treatment with EGFR inhibitors to reduce IR-A expression and favor IR-B would be of interest. EGFR 

inhibitors are currently used in combination with chemotherapy for the treatment of CRC
32

, and an effect 

on IR splicing in colonocytes or cells from adenomas would provide insight into mechanisms by which 

EGFR inhibitors may prevent or treat CRC. Additionally, given the role of EGFR in IR splicing in liver
276

 

and our previous studies demonstrating synergistic proliferative effects of EGF and IGF in intestinal 

epithelial cells 
326

, it would be of interest to test EGF and IGF in combination to assess if they more 

potently down-regulate IR-B or affect splicing factors.      

 

Mechanisms of decreased colon epithelial cell apoptosis during obesity/hyperinsulinemia 

 Chapter 4 of this dissertation described the impact of obesity and IR on apoptosis of CECs after 

radiation-induced DNA damage. We provided evidence that obesity and hyperinsulinemia were 

associated with decreased apoptosis in the colonic crypts and, importantly, this was confirmed in two 

independent mouse colonies. This supports a previous human study where elevated plasma insulin 

correlated with decreased apoptosis in normal rectal mucosa 
155

. A somewhat similar finding in mice was 

reported after 5 injections of AOM, where AOM-induced apoptosis was decreased in animals that had 

been on high fat diet (HFD) for 7 or 15 weeks before the last AOM dose 
327

. However, mice did not 
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appear to be obese or hyperinsulinemic, and the authors attributed reduced AOM-induced apoptosis to the 

lower per-body-weight dose of AOM that the obese mice had received 
327

.  

We originally hypothesized that the growth-promoting IGF1R would be required for any anti-

apoptotic effects of obesity/hyperinsulinemia. Unexpectedly, genetic deletion of IGF1R in CECs did not 

impact apoptosis in lean or obese mice. We then asked if IR played a role in mediating these effects. 

Although IR loss did increase apoptosis in both lean and obese animals, which was an exciting and novel 

finding, apoptosis remained lower in obese mice relative to lean mice lacking IR. These data imply that 

IR is not required for the reductions in apoptosis associated with obesity/hyperinsulinemia. The current 

section will discuss potential mechanisms that may explain lower radiation-induced apoptosis in obese 

versus lean mice whether or not IR is present, as summarized in Figure 5.4. 

 

IGF1R hyperactivation due to IR deletion 

One hypothesis we could formulate is that in the absence of IR, elevated insulin as occurs in our 

obese model exerts anti-apoptotic signals through the remaining IGF1R (Figure 5.4). Although IGF1R 

protein levels did not increase to compensate for IR loss, we cannot rule out a compensatory mechanism 

by increased IGF1R activation rather than expression. This could be possible given that IR deletion 

enhanced tumor cell growth and increased IGF1-induced AKT activation as suggested in our studies in 

Chapter 3. Evaluating phosphorylation of IGF1R or downstream mediators in the intestinal epithelium in 

vivo is difficult because signaling pathways are activated during handling and harvest of the intestine and 

almost certainly affected by epithelial cell isolation methods. In vitro studies in conditionally 

reprogrammed CECs isolated from WT-IR
fl/fl

 and VC-IR
∆/∆

 provide an alternate approach. 

 

AMP-activated protein kinase  

 AMP-activated protein kinase (AMPK) is a key metabolic sensor that is activated in response to 

increased intracellular AMP/ATP ratios, when energy in the cell is low 
328

. AMPK activation induces 

energy-producing processes such as glucose uptake, glycolysis, and fatty acid oxidation, and inhibits 
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energy-consuming processes such as gluconeogenesis, lipogenesis, and glycogen synthesis as well as, in 

some organs, cell proliferation 
201,329

. It is well known that AMPK action is decreased in situations of 

insulin resistance and obesity 
330

, and activation of AMPK by drugs such as metformin improves glucose 

uptake in muscle and inhibits hepatic gluconeogenesis during type 2 diabetes 
200

.  

Moreover, a role for AMPK in modulating the DNA damage response has been reported 
329

. In 

vitro studies suggest that AMPK activation sensitizes cancer cells to chemotherapy or radiation by 

blocking cell cycle progression via p53, p21, and p27 induction as well as inhibiting the pro-survival 

mammalian target of rapamycin (mTOR) pathway 
329

. Therefore, AMPK has been implicated in cell cycle 

arrest and apoptosis following DNA damage 
329

. These mechanisms should be examined in our studies, as 

AMPK activity in the intestine could be reduced as a consequence of obesity and insulin resistance, 

thereby contributing to decreased radiation-induced apoptosis of CECs in obese mice (Figure 5.4). It 

should be noted that AMPK activates the cell cycle inhibitor p27, and we found p27 mRNA to be down-

regulated in CECs from obese mice. However, no significant changes were observed in markers of S-

phase (5-ethynyl-2'-deoxyuridine, EdU) or M-phase (phospho-histone 3, pH3) in obese mice (Figure 5.5). 

The role of AMPK in the colon has not been well explored, but a study reported that in mice fed a high-

energy diet, AMPK activation by metformin decreased tumor growth of xenografts derived from a CRC 

cell line 
279

. This was associated with decreased phosphorylation of AKT signaling and increased 

expression of apoptosis markers in tumors cells 
279

. Moreover, activation of AMPK was associated with 

reductions in AOM-induced ACF in the db/db mouse model of obesity and diabetes treated with the anti-

oxidant curcumin or the cholesterol-lowering drug pitavastatin 
331,332

. Therefore, metformin treatment 

prior to radiation may sensitize CECs of obese animals to radiation-induced apoptosis, as was previously 

shown in cancer cells 
200

. If in obese mice metformin-induced AMPK activation increased apoptosis of 

genetically damaged CECs back to levels observed in lean mice, this would be exciting mechanistic 

evidence for roles of impaired AMPK action. Furthermore, these experiments would support a potential 

mechanism for the anti-tumor effects of metformin, specifically, an effect to prevent genetically damaged 

cells from expanding and forming pre-neoplastic lesions in the colon.  
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Microbiota  

The gut microbiota is an important regulator of energy balance and a key factor contributing to 

development of obesity, as demonstrated by the fact that germ-free (GF) mice do not become obese after 

HFD feeding 
71

. An increase in the proportion of Firmicutes relative to Bacteroidetes phyla during obesity 

has been well documented in both mice and humans 
69,333

.  Firmicutes consist mostly of gram-positive 

bacteria, while Bacteroidetes belong to the category of gram-negative bacteria 
334

. Gram-positive bacteria 

are known to produce the short-chain fatty acid butyrate, which can prevent apoptosis of colonocytes 

335,336
. Therefore, a shift to increased abundance of butyrate-producing bacteria as a result of obesity could 

contribute to reduced colonocyte apoptosis after genetic damage, independently of IR (Figure 5.4). 

Butyrate levels in the feces could be measured to determine if they differ between lean and obese animals. 

If a shift towards butyrate-producing bacteria correlated with decreased apoptosis during obesity, the 

microbiota could be manipulated in obese mice so that the Firmicutes-to-Bacteroidetes ratio is restored to 

values observed in lean mice prior to radiation. Monitoring butyrate in the feces would provide 

information on the time point at which butyrate levels are comparable between the two groups, and 

animals would then be irradiated to evaluate effects on apoptosis. We would predict that normalization of 

the Firmicutes-to-Bacteroidetes ratios would increase levels of radiation-induced apoptosis in obese mice 

to levels observed in lean mice. An alternate approach would be to colonize germ-free mice with 

microbiota from lean or obese mice before or after irradiation and test if the microbiota from obese mice 

is sufficient to confer reduced apoptosis.  

 

Linking the anti-tumorigenic and anti-apoptotic roles of IR in the colon 

 The work described in our AOM-DSS study in Chapter 3 provided novel evidence that IR 

protects against colon tumorigenesis by enhancing the oncogenic actions of IGF1R. In line with this 

evidence, it would be reasonable to hypothesize that IGF1R and not IR is the main mediator of CEC 

survival after genetic damage, which may favor initiation of colonic pre-cancerous lesions. Surprisingly, 

IR but not IGF1R deletion was found to result in higher apoptosis, as shown in Chapter 4, suggesting 
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anti-apoptotic roles of IR at least in the context of early radiation-induced apoptosis. The counterintuitive 

results that IR loss in CECs leads to enhanced tumorigenesis in the AOM-DSS model but enhanced 

apoptosis in a genetic damage model raise two important questions for future consideration: (i) what is the 

significance of apoptosis in the colon epithelium after radiation-induced DNA damage with respect to 

tumor development and (ii) what is the role of colon epithelial IGF1R during DNA damage and 

tumorigenesis and does this depend on whether IR expression or signaling is intact? These questions will 

be addressed below. 

 

Apoptosis: A beneficial or detrimental response to radiation-induced DNA damage? 

 One interpretation of enhanced apoptosis of genetically damaged CECs due to IR loss is that IR 

has anti-apoptotic roles that may favor tumorigenesis by allowing genetically damaged cells to escape 

apoptosis. This interpretation assumes that apoptosis is a beneficial response to DNA damage that reduces 

tumor risk. This is based on the well-established concept that apoptosis occurs to eradicate genetically 

damaged cells that accumulate mutations or chromosomal aberrations and could survive and expand to 

initiate cancer 
288,289

. However, our observations indicate that IR normally limits radiation-induced 

apoptosis and limits tumor development at least in the AOM-DSS model. Therefore, these findings 

suggest that apoptosis may have no role in the AOM-DSS model or, alternatively, increased apoptosis in 

the absence of IR might have unfavorable consequences for tumorigenesis which may be dependent on 

inflammation. Massive DNA damage and apoptosis can have adverse effects on the regenerative capacity 

of stem cells or progenitors, thus compromising epithelial renewal 
289

. Increased apoptosis can disrupt the 

integrity of the epithelial barrier, allowing penetration of luminal bacteria into the mucosa which triggers 

an inflammatory response (Figure 5.6) 
337-339

. It is well known that inflammation causes DNA damage, 

but emerging evidence has led to a new concept that DNA damage can in fact trigger inflammation 
340

. 

This process, which is reviewed in detail by McCool and Miyamoto, 2012, appears to involve activation 

of NF-κB by ATM-induced phosphorylation of NEMO (NF-κB essential modulator) 
341-343

. Therefore, IR 

loss could favor tumor initiation by increasing apoptosis and secondarily exacerbating inflammation after 
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DNA damage (Figure 5.6). We have in hand NF-κB
EGFP

 mice, which express EGFP upon NF-κB 

activation 
67

. Generating NF-κB
EGFP

 mice with IEC-specific IR deletion (NF-κB
EGFP

/VC-IR
Δ/Δ

) would 

allow us to test if loss of IR favors enhanced NF-κB
 
activation as a biomarker of inflammation in the 

colon epithelium after DNA damage. Evaluating inflammatory markers in VC-IR
∆/∆

 CECs would provide 

information on the extent of inflammation resulting from DNA damage in the absence of IR. Moreover, 

additional time points and higher radiation doses would allow us to assess if IR loss affects later waves of 

apoptosis that follow the initial wave at ~4 hours after radiation or impairs epithelial regeneration. 

Whether loss of IR in the colon epithelium affects barrier function or permeability is unknown, but our 

previous in vitro findings provided evidence that IR-B promotes barrier function in differentiated Caco2 

cells 
97

. Assessing colon epithelial permeability in WT-IR
fl/fl

 versus VC-IR
Δ/Δ

 mice would be possible by 

rectal administration of the fluorescent probe FITC-dextran 
344

. We would predict that VC-IR
Δ/Δ

 animals 

would have elevated levels of FITC-dextran in serum and increased FITC immunofluorescence within the 

colonic mucosa, reflecting increased epithelial permeability. In summary, our work supports a model 

where increased apoptosis caused by IR loss may contribute to barrier dysfunction and increased 

permeability that enhances inflammation after DNA damage, which could explain the increased 

inflammation-associated colon tumorigenesis observed in mice lacking IR (Figure 5.6).                   

 

Contributions of IGF1R to apoptosis and tumorigenesis in the absence of IR 

 In order to understand the consequences of IR loss on radiation-induced apoptosis and tumor 

initiation, it is necessary to understand what roles IGF1R plays during these events. IGF1R has previously 

been linked to resistance to apoptosis induced by DNA damage. Inhibition of IGF1R was shown to 

sensitize multiple cancer cells lines to apoptosis induced by radiation and chemotherapeutic agents 
345-348

. 

In vivo work using breast, gastric, and pancreatic xenografts provided further evidence that combining 

radiation and IGF1R inhibition more effectively reduced tumor growth 
349-351

. Nevertheless, the role of 

IGF1R in modulating apoptosis of non-cancerous cells in animal models has not been well explored. In 

the normal intestine, the concept that IGF1R may exert anti-apoptotic actions is supported by findings 
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that apoptosis was decreased in mice overexpressing IGF1 and increased in mice lacking IRS-1 
112,113,235

. 

However, these studies did not specifically address whether these effects were mediated by IGF1R or IR. 

Our work demonstrated that in colon, IR loss rather than IGF1R loss increased radiation-induced 

apoptosis of CECs. It is therefore possible that in the normal colon, preventing apoptosis is a 

physiological function of IR and not IGF1R. Since previous work by our group showed that local 

production of IGF1 is increased in the colon of DSS-treated mice 
352

, it could be speculated that colon 

epithelial IGF1R may, instead, play a larger role in mediating the regenerative and proliferative actions of 

IGF1 following mucosal injury 
131

. We have in hand colon histology samples from WT-IGF1R
fl/fl

 and 

VC-IGF1R
Δ/Δ

 treated with exogenous IGF1 for 5 days after 14-Gy radiation. Evaluating the degree of 

IGF1-induced crypt regeneration in the presence or absence of IGF1R should provide insight into the role 

of IGF1R in mediating colon mucosal repair. These experiments could also be performed on WT-IR
fl/fl

 

and VC-IR
Δ/Δ

 mice to define whether IGF1 signals primarily through IGF1R or IR to promote colon 

epithelial regeneration. If IGF1R is found to be essential for repair after injury caused by high dose 

radiation, the same could be true for injury caused by inflammation. Therefore, in the context of 

inflammation-induced mucosal damage, IGF1R hyperactivation in VC-IR
Δ/Δ

 mice may occur in an effort 

to heal the damaged tissue and compensate for loss of the anti-apoptotic IR. Hyperactive IGF1R 

combined with exposure to a carcinogen, like AOM, would lead to enhanced proliferation of aberrant 

cells, which will eventually favor colon tumorigenesis (Figure 5.7).    

 

Additional future studies addressing the roles of colon epithelial IR in vivo 

Generation of IEC-specific IR-B knockout mice 

 IR has been understudied in the intestine and our previous and current studies indicate that further 

research on the roles of IR in the gut are critical to understanding mechanisms of intestinal physiology 

and disease. To confirm our findings that deletion of IR in IEC enhances colon tumorigenesis, future 

studies will use WT-IR
fl/fl

 and VC-IR
Δ/Δ

 mice crossed with Apc
Min/+

 mice to test if IR loss also promotes 

formation of spontaneous colon tumors driven by a mutation that increases CRC risk in humans.  
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IR isoforms have attracted significant interest in recent years because of their potential roles in 

metabolism and cancer. To date, the availability of resources to study the individual isoforms is limited 

due to the very small difference in their mRNA and protein sequences (36 base pairs and 12 aminoacids, 

respectively). Our mouse studies on colon cancer and apoptosis suggested novel roles for IR, but the 

individual contributions of IR-A and IR-B remain unknown. In vivo or in vitro models targeting exclusive 

expression or deletion of IR-B or IR-A will be very useful to specifically delineate their roles. Transgene-

mediated expression of IR-B is one approach, potentially using the villin promoter. Disruption of only IR-

B by deleting exon 11 would directly test if expression of IR-B protects against tumors. Re-introduction 

of IR-A or IR-B in cultured VC-IR
Δ/Δ

 tumor cells is another approach, assuming we can transduce these 

cells with sufficient efficiency.  

 

Modeling obesity-associated colorectal cancer  

 Because of the current obesity epidemic and its link to increased CRC risk, the need for a good 

model of obesity-associated CRC is critical. To date, there are no animal models that successfully 

combine obesity and colon cancer. Since obesity is associated with intestinal inflammation 
66

, we used the 

DSS-AOM approach in an effort to mimic tumorigenesis that occurs in a setting of chronic inflammation, 

as occurs in obesity. However, this model is not optimal. 

Researchers have used multiple AOM injections in combination with HFD feeding, but a major 

problem with this model is that in the standard 20-week time point after the last AOM injection, animals 

do not become obese 
327,353

. Other groups used AOM treatment in the db/db genetic model of obesity and 

type 2 diabetes but chose earlier time points to assess the impact of obesity on pre-cancerous ACF and did 

not report on tumor development 
331,332

. In order to achieve obesity and significant weight gain, Tuominen 

et al. maintained mice on HFD for 9-10 months, allowing them to recover the weight they had lost 

between the start of the AOM treatment and the fourth week after the end of AOM 
327

. However, the 

authors did not measure fasting blood glucose or plasma insulin, so the insulin resistance status in these 
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mice was not clear. Furthermore, a concern about such long-term experiments is the confounding factors 

that may result from ageing.  

Genetic models of intestinal adenomas and obesity/diabetes have previously been generated by 

crossbreeding db/db mice with Apc
Min/+

 mice 
354,355

. Although animals with db/db-Apc
Min/+

 mutations 

develop significantly more small intestinal adenomas than those with Apc
Min/+ 

alone, the number of colon 

adenomas ranged between 0 and 2 per mouse 
354,355

. In a report by Algire et al., animals were fed a “high-

energy diet” and given a subcutaneous injection with a mouse colon carcinoma cell line, in order to study 

the impact of diet-induced hyperinsulinemia on tumorigenesis and, also, the beneficial effects of 

metformin 
279

. However, an important limitation of xenograft models is that tumor growth does not occur 

in the colon and the tumor microenvironment is therefore different 
356

. To overcome this issue, 

“orthotopic” models of CRC have been described, where cancer cell lines or cells from previously grown 

tumors are implanted in the submucosa of the cecum or rectum 
356-359

. Although technically challenging, 

the authors of these studies argued that these models permit rapid cancer formation and mimic human 

CRC better than subcutaneous implantation 
356-359

. Although the orthotopic approach has never been 

implemented in models of obesity, it may represent a possible option for studying obesity-associated 

CRC. A less invasive and more feasible alternative would be to colonize germ-free Apc
Min/+

 mice with gut 

microbiota from obese mice or humans and test whether microbes from obese donors increase tumors. 

Transfer of gut microbes from an obese donor to a lean host was previously shown to induce metabolic 

changes characteristic of an obese phenotype within 2-6 weeks 
360,361

. This would provide an experimental 

design that is time effective and would overcome the problem of body weight loss resulting from the 

AOM treatment. However, the problem this colonization model may face is the low tumor incidence in 

the colon.  

Overall, development of a reliable animal model of obesity-associated CRC combined with IEC-

specific deletion of IR will be a critical step in our future studies. These models would significantly 

contribute to improving our ability to study mechanisms of increased CRC risk in the growing obese 

population and should therefore be a priority in the field of gastroenterology research.  
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Conclusions and overall significance     

 The work presented in this dissertation highlights the importance of IR or IR isoforms in CRC 

risk, which have been under-emphasized as major focus has been centered on IGF1R. As described 

above, the larger attention given to IGF1R resulted from findings that this receptor is overexpressed in 

colon tumors and provides resistance to cancer treatments. However, our studies suggest that more 

attention should be focused on the roles of these receptors in earlier stages of colorectal neoplasia to 

better understand their contributions to CRC risk. This would ultimately lead to improved diagnosis and 

prevent progression to malignant lesions.  

A major concept emerging from the current research is that decreased IR function, particularly 

IR-B, may promote colon tumors by enhancing oncogenic actions of IGF1R, and this may be a particular 

problem during elevated insulin as occurs in obesity. The reduced IR-B expression in mouse colon tumors 

and in normal rectal mucosa of patients with adenomas and elevated plasma insulin suggest that strategies 

to maintain IR-B signaling may be beneficial preventive measures. Therefore, insulin-sensitizing drugs 

may represent good candidates for CRC prevention in obesity even before type 2 diabetes occurs. Loss of 

IR-B signaling during insulin resistance may promote compensatory IGF1R activation and predispose to 

cancer. Generation of animal models lacking IR-B will provide information on whether IR-B loss 

promotes tumorigenesis by enhancing both IGF1R and IR-A action or if the remaining IR-A is sufficient 

to attenuate IGF1R signaling. Based on our in vivo evidence that IR favors decreased apoptosis in normal 

colon epithelium, we speculate that this effect results from IR-A action, which may normally protect cells 

from apoptosis induced by environmental factors that cause DNA damage. We therefore hypothesize that, 

during colon homeostasis, IGF1R may be primarily proliferative and IR-A anti-apoptotic, while IR-B 

may act as a rheostat to attenuate the growth and anti-apoptotic actions of IGF1R and IR-A, respectively, 

and favor differentiation (Figure 5.8). During carcinogenesis in the context of obesity or insulin 

resistance, IR-B signaling may be impaired and therefore cannot limit the proliferative and anti-apoptotic 

actions of IGF1R and IR-A (Figure 5.8). This would lead to the conclusion that both IR-A and IGF1R are 

likely to contribute to tumor growth, and inhibitors targeting specifically these receptors without affecting 
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IR-B may represent an effective therapy for CRC 
151

. If IR-B is dysfunctional as a result of insulin 

resistance, combined IGF1R/IR-A inhibitors and insulin-sensitizing medications such as metformin 

would successfully block IGF1R/IR-A activity and promote IR-B signaling 
151

.         

     To date, most of our knowledge of the impact of the insulin/IGF pathway on intestinal growth 

come from studies focused on the small intestine 
113,129,137,138,235,290

. Our research strongly suggests that 

more studies on colon are critical in order to understand the mechanisms of colon responses to genotoxic 

stimuli, regeneration after injury, or cancer. Findings from such studies are relevant to improving 

prevention strategies or therapeutic interventions for the increased risk of CRC associated with obesity 

and type 2 diabetes. Further studies validating reduced IR-B expression in normal mucosa as a predictive 

biomarker of CRC risk could have important implications in CRC prevention and early diagnosis. Our 

epidemiological and pre-clinical work supports development of new approaches to maintain IR-B 

expression and signaling in the colonic epithelium to prevent or treat CRC, especially in obese and 

diabetic individuals who are at increased risk of CRC. 

  



   

106 

 

Figures 

 

 

Figure 5.1: Summary of key findings in the human study described in Chapter 2. 

Decreased levels of IGF1R mRNA predicted increased risk of colorectal adenomas. This may be due to 

increased endocrine or paracrine effects of IGF1, which would down-regulate IGF1R by negative 

feedback. Increased IR-A:IR-B ratio was associated with increased likelihood of having adenomas in 

patients with high plasma insulin.     
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Figure 5.2: IR-A:IR-B ratio is increased in colon tumors versus normal colon epithelium, and this is 

due to reduced IR-B mRNA. 

IR-A and IR-B mRNA levels were assessed as described in Andres et al., 2013, in normal colon epithelial 

cells (CEC) from untreated and tumors from AOM-DSS treated WT-IR
fl/fl

 mice. IR-A:IR-B ratio was 

significantly increased in tumors relative to normal CECs (26 ± 7%, P = 0.03). Qualitative analyses show 

a reduction in IR-B and maintained IR-A expression. Data are expressed as mean ± SEM (n = 4), *P < 

0.05, unpaired t-test. 
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Figure 5.3: Regulation of IR isoform pre-mRNA splicing. 

IR isoforms result from alternative pre-mRNA splicing. CUG binding protein 1 (CUGBP1) promotes 

exclusion of exon 11 and expression of IR-A. Muscleblind proteins (MBLNs) and serine/arginine-rich 

splicing factors (SRSFs) favor inclusion of exon 11 and expression of IR-B. (References: Savkur et al., 

2001, Dansithong et al., 2005, Sen et al., 2009 and 2010, Andres et al., 2013).    
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Figure 5.4: Possible mechanisms of decreased radiation-induced apoptosis during obesity, 

hyperinsulinemia, and insulin resistance. 

IGF1R activation may be enhanced in the absence of IR and mediate anti-apoptotic signals associated 

with hyperinsulinemia via increased phosphorylation of ERK or AKT. During the DNA damage response, 

AMP-activated protein kinase (AMPK) suppresses the anti-apoptotic actions of mammalian target of 

rapamycin (mTOR). However, AMPK action is decreased during insulin resistance and the resulting lack 

of mTOR inhibition may play a role in decreasing apoptosis of genetically damaged colon epithelial cells 

(CECs). It is well-established that during obesity there is a switch in the microbiota composition towards 

increased Firmicutes relative to Bacteroidetes. Firmicutes produce butyrate, which can decrease apoptosis 

in the colonic mucosa. An increase in butyrate-producer bacteria could therefore contribute to reduced 

apoptosis in obese mice. (References: Ruderman et al., 2013, Sanli et al., 2014, Pernicova et al., 2014, 

Ley et al. 2005 and 2006, Louis et al., 2009, Hass et al., 1997, Claus et al., 2003). 
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Figure 5.5: Markers of S- and M-phase are not altered by diet or IR loss 4 hours after radiation-

induced DNA damage. 

The number of cells in S-phase or M-phase in lean and obese WT-IR
fl/fl

 and VC-IR
Δ/Δ

 mice was assessed 

by histology using EdU (5-ethynyl-2'-deoxyuridine) or pH3 (phospho-histone 3) markers, respectively. 

No significant changes in the number of (A) EdU or (B) pH3 positive cells were found across groups. 

Data represent mean ± SEM (n ≥ 3 for EdU and n ≥ 4 for pH3), n.s.: no significance, two-way ANOVA.    
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Figure 5.6: Proposed model of enhanced colon tumor susceptibility resulting from increased 

apoptosis after DNA damage. 

Loss of IR leading to increased apoptosis could compromise the epithelial integrity of the colon, making 

it more permeable. This would allow components of the microbiota to penetrate the mucosa and cause 

inflammation. DNA damage in itself has been suggested to lead to inflammation via NFκB, which is 

activated by ATM (ataxia telangiectasia mutated) in response to DNA damage. Thus, inflammation as a 

result of DNA damage could be further exacerbated by IR loss. Whether IR plays a role in activation of 

NFκB is unknown. (References: Bojarski et al., 2001, Schulzke et al., 2006, Nenci et al., 2007, Kidane et 

al., 2014, Piret et al., 1999, Wu et al., 2006). 
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Figure 5.7: Proposed roles of IGF1R during inflammation-induced CRC in the absence of IR. 

In response to inflammation-induced damage to the colonic mucosa, levels of local of IGF1 are increased 

and IGF1R may be activated to initiate proliferation that leads to repair. In the absence of IR signaling, 

IGF1R becomes further activated to compensate for the loss of the anti-apoptotic actions of IR. As a 

result, colon epithelial cells acquire a hyperproliferative phenotype which, in the presence of a mutagen 

such as AOM, will enhance formation of tumors.       
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Figure 5.8: Proposed model of the roles of IGF1R, IR-A, and IR-B in normal colon physiology and 

CRC risk associated with obesity and insulin resistance. 

In order to maintain a homeostatic balance between proliferation and differentiation in the normal colon 

epithelium, IGF1R may exert primarily proliferative actions and IR-A may primarily prevent apoptosis, 

thereby favoring normal mucosal growth. On the other hand, IR-B may limit the growth-promoting and 

anti-apoptotic actions of IGF1R and IR-A to promote differentiation. During CRC risk associated with 

obesity or insulin resistance, impaired IR-B signaling may lead to a compensatory increase in 

proliferation and decrease in apoptosis through IGF1R and IR-A, respectively.  
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