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Abstract

Maria S. Minakova: Advanced Computer Simulations Of Nanomaterials And Stochastic

Biological Processes

(Under the direction of Dr. Garegin A. Papoian and Dr. John Papanikolas)

This dissertation consists of several parts. The first two chapters are devoted to of study

of dynamic processes in cellular organelles called filopodia. A stochastic kinetics approach

is used to describe non-equilibrium evolution of the filopodial system from nano- to micro

scales. Dynamic coupling between chemistry and mechanics is also taken into account in

order to investigate the influence of focal adhesions on cell motility.

The second chapter explores the possibilities and effects of motor enhanced delivery of

actin monomers to the polymerizing tips of filopodia, and how the steady-state filopodial length

can exceed the limit set by pure diffusion. Finally, we also challenge the currently existing view

of active transport and propose a new theoretical model that accurately describes the motor

dynamics and concentration profiles seen in experiments in a physically meaningful way.

The third chapter is a result of collaboration between three laboratories, as a part of En-

ergy Frontier Research Center at the University of North Carolina at Chapel Hill. The work

presented here unified the fields of synthetic chemistry, photochemistry, and computational

physical chemistry in order to investigate a novel bio-synthetic compound and its energy trans-

fer capabilities. This particular peptide-based design has never been studied via Molecular

Dynamics with high precision, and it is the first attempt known to us to simulate the whole

chromophore-peptide complex in solution in order to gain detailed information about its struc-
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tural and dynamic features.

The fourth chapter deals with the non-equilibrium relaxation induced transport of water

molecules in a microemulsion. This problem required a different set of methodologies and

a more detailed, all-atomistic treatment of the system. We found interesting water clustering

effects and elucidated the most probable mechanism of water transfer through oil under the

condition of saturated Langmuir monolayers.

Together these computational and theoretical studies compose a powerful and diverse set of

physical approaches and both analytical and numerical methodologies, that can be successfully

applied in the fields of biology, chemistry and biophysics.
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Chapter 1

Introduction

Computational chemistry and biophysics are relatively modern fields in natural sciences,

and they are slowly becoming powerful and indispensable parts of theoretical investigations in

the corresponding fields. The invention of computing machines not only allowed theoretical

scientists to successfully perform incredibly complicated calculations, but also, for the first

time in history, design and run numeric experiments, e.g. modeling of a process evolving

in time. We can construct numerical experiments that are yet unfeasible experimentally, and

(dis)proof new and existing concepts of how the world works. Nowadays modeling is neither

a fancy toy for privileged minds, nor it is sophisticated exotic decoration for the experimental

data. Simulations and analytical theory compose an essential scientific approach to answer

”what?” and ”why?” questions rising in various research projects.

Having said that, we have to acknowledge the fact simulations should necessarily be per-

formed in conjunctions with experimental studies of the same process in order to be relevant

and verifiable. To achieve consistency, the design of a numerical experiment should be accu-

rate and efficient [1]. Given the variety of accessible simulation methods, one should carefully

choose an approach that can provide us with the most precise information within the reasonable

amount of time.

Several theoretical and modeling methods are placed on the time and length scale plot, as

shown in Figure 1.1 along with the names of the research projects in parentheses, including



those applied for the research projects presented herein (see Figure 1.1).

Figure 1.1: Quantum Mechanics provides a variety of ab initio calculation methods, including
Density Functional Theory (DFT) utilized for the parametrization of Ruthenium-based chro-
mophores (see, Chapter 4), and even hybrid methods that include both all-atom molecular
dynamics and quantum mechanics. All-atom Molecular dynamics is based on propagation of
Newton Laws time and space. All-atom MD has been unitilized to study microemulsions sys-
tem in Chapter 5 and new peptide grafter chromophore system in Chapter 4. All-atom can also
include additional constructs imposing proper temperature, pressure and structural constraints
on the system. When all-atom representation becomes inefficient a simplified Coarse-grain
models can be derived from All-atom MD and extend the dynamics studies to larger sizes
and longer timescales. Probabilistic methods majority of which are based on Monte Carlo-
Metropolis algorithm can not provide detailed information about kinetics and dynamics, but
allow extensive sampling of the phase space with correct statistical distributions. A Monte-
Carlo derived approach was utilized in Chapters 1-2 to study various aspects of cell motility.
At some point when the system size is large enough it can be treated via self-consistent field
theories with possible use of perturbations or other non-equilibrium techniques, as was done in
Chapter 1 to compare analytical theory with detailed stochastic simulations.

First, note that these blocks are distributed mainly along the diagonal. This happens to be
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so, because the majority of chemical and biological processes that we can observe and study

have an internal correlation in space and time. Events happening on smaller length scales

occur in shorter time periods, and the larger the system size is, the longer the time period will

be for the transformations to take place. The exact form of the functional dependence between

propagation in space and time depends on the process, for example, for the diffusion-based

processes it is t ∝ L2.

Second, the applicability of these methods to other regions of time-length scale plot works

only in one direction: from the bottom to the top. While approximate methods, such as coarse-

grained and continuum dynamics, are essentially derived form higher resolution methods, they

omit significant amount of information and contain drastic simplifications. If it was computa-

tionally feasible to apply brute force and run higher resolution simulations for larger time and

length scales, it would be done so.

The detailed introduction into the computational methods showed in Figure 1.1 and their

comparative analysis can be found in several excellent books [1–3]. The variety of computa-

tional and analytical approaches that is presented in this dissertation is based on the specific

research questions. For example, when a microemulsion slab is undergoing non-equilibrium

relaxation, the transport of matter is often observed on a micro- and mesoscopic scales (see

Chapter 5). The macroscopic experimental measurements are unable to explicitly show, how

such transport is facilitated. Meanwhile all-atom Molecular Dynamics (MD) can study this mi-

croscopic transport down to the level of following one water molecule through the surfactant

and consequently oil layers. It can provide data to elucidate specific water-surfactant interac-

tions responsible for molecules association and migration through the hydrophobic medium.

Another good candidate for all-atom MD is a new synthetic compound, for which exact

structural and dynamic properties are often unknown. Ruthenium-based chromophores planted

on coiled coils is an example of a new semi-biological and semi-synthetic molecular system,

which aims to have precisely controllable energy and electron transfer properties, as discussed
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further in Chapter 3. Ability to maintain such control requires detailed knowledge of how

chromophores move in space under normal conditions, how they interact with each other and

the underlying peptide scaffold. All this information is extremely difficult to obtain from ex-

periments, but it is directly accessible in visual and statistical forms from all-atom MD (see

Chapter 3). Although all-atom MD can not simulate energy and electron transfer directly, the

observed chromophore packing conformations can be plugged in Quantum Mechanical (QM)

calculations to study electron structure coupling and estimate energy transfer propensity for

each packing conformation.

If we consider dynamics of biological systems and microorganisms, the naturally rising

length scale range is between the size of one protein and the size of the whole cell or a micro-

organism. For instance, when a cell samples environment around it, it grows long needle-like

protrusions, called filopodia. The size and lifetime of these organelles are largely determined

by their function. Filopodial growth and retraction is assisted by a variety of regulatory proteins

and molecular proteins, and it also depends on the mechanical properties of both the cell and

its environment (see more details in Chapters 1-2).

Moreover, the dynamics of a filopodium is dissipative in energy through consumption of

the “energy molecule” ATP and is essentially a non- equilibrium (de) polymerization of the

globular protein actin. Therefore the smallest piece in the system is one actin monomer and

the fastest event is diffusion. This particular system presents a challenge of integrating the

fields of stochastic dynamics, chemistry, biology and mechanics, and can be successfully de-

scribed using Monte-Carlo type of simulations, that coarse grains some of the nano-scopic

dynamics and accounts for many body effects and the uncertainty about initial conditions via

implementing random variables into the system evolution (see Chapters 1-2). If such system is

capable of reaching a steady-state within the time scale of observation, a self-consistent field

approach can be used to create a qualitative model of the process and compare it with the nu-

meric experiments, as was done in Chapter 2. This approach ignores microscopic details and
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fluctuations in the dynamics, but it can elucidate main and secondary factors defining specific

dynamic behavior and allows us to better understand the first design principles of the biological

systems.
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Chapter 2

Mechanochemistry of Nascent Adhesions in Filopodia ∗

2.1 Introduction

Focal Adhesions (FAs) play an important role in cell motility and sometimes have lethal

impact on the whole cell cycle [4,5]. They have been extensively studied experimentally [6–8]

and recently gained significant interest from computational and theoretical scientists as well

[9, 10]. Since Focal Adhesions is effectively an ”umbrella” term, and it may imply different

complexes from nascent nanoscale protein aggregations that link cell cytoskeleton with the

extra cellular matrix (ECM) to the large micron size protein conglomerations that include stress

fibers and dynamic multi protein complexes that function in a cooperative fashion [11, 12], we

are going to use the term Nascent Adhesions (NAs) to describe the small cytoskeletal links to

ECM inside filopodia. The properties of different kinds of NAs differ on many levels, including

chemical composition, topology, structural arrangement, mechanical properties and dynamic

behavior. No single model can describe all these different structures, however the majority of

NAs appear to share a lot in common, if they are considered at a certain moment of the cell

cycle. For example, nascent NAs formed at the cell frontier have a specific purpose to let the

cell grow or move forward to a certain point in order to decide, if that direction is preferable.

Therefore these structures should have such strength and longevity that would allow poly-

∗Maria Minakova, Garegin A. Papoian



merization and other migration related processes to take place within the NAs lifetime. Si-

multaneously NAs have to be highly responsive to both the intra- and extracellular signals to

allow the cell to adapt to the dynamically changing environment. Indeed, NA breakage can

dramatically affect the direction and speed of motion. It has been proposed that nascent NAs

form at the cell front in both lamellipodia and filopodia [13]. NAs embedded in lamellipodia

are thought to be responsible for the mobility of the cell front and contribute to the activation

of pulling the rest of the cell body forward, toward the chosen direction [13]. The role of NAs

in filopodia is more elusive. Since filopodia are very thin, long and highly mobile, the contri-

bution of NAs formed on their tips is likely a not very significant factor in the mechanics of

the cell’s body. However, nascent NAs clearly play an important role for the filopodial dynam-

ics, that in turn affect the cell sensing ability and consequently the cell motility activation or

inhibition.

Moreover, the question of filopodial growth up to the lengths observed experimentally is

still open. Competition of diffusion and retrograde flow sets a limit on how far a filopodium

system can grow, given the G-actin concentration in the bulk and the average speed of retro-

grade flow [14]. Indeed, the equality between the diffusional flux of G-actin monomers toward

the tip and the retrograde flow flux that pulls polymerized filamentous actin (F-actin) back to

the cell bulk (see Figure 2.1) determines the steady-state filopodial length [14]. Given the ex-

perimentally measured model parameters, this approach yields a steady-state filopodial length

≈ 1µm. On the other hand, certain cells can grow filopodia up to ≈ 15 − 100µm [15–17]

with speeds, that exceed the growth velocity given by diffusion alone. In order to address

this discrepancy, several plausible hypotheses have been offered in the biophysical community,

including active transport by tip-directed motors [18] and actively modulated hydrodynamic

flows [19].

In this study we would like to explore a different mechanism that can significantly con-

tribute to the filopodial growth and retraction dynamics, and it involves retrograde flow mod-
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ulation by NAs. The retrograde flow is an active flux counteracting diffusion and consequent

actin polymerization. It is created by clusters of myosin II motors that bind to two filaments

and pull them against each other, creating an effective sliding motion [20–22]. However classic

kinetic models do not contain any mechanic components that could affect the force balance,

slow down such sliding motion, and hence diminish the retrograde flow itself. It has to be

mentioned that membrane tension contributes to the retrograde flow as well, but an average

force generated by the membrane pulled away from the cell has been measured to be ≈ 10

pN [23, 24], while a cluster of 5-50 myosin motors can generate forces on the order of 100-

1000 pN [25, 26].

We have developed a highly detailed model of a filopodium organelle with an explicit two-

dimensional (2D) substrate and NAs that are both chemically active species and elastic springs,

that store and transfer stress from the substrate across the membrane to the filopodial bundle.

We coupled the kinetic rates to the mechanical stress and implemented energy minimization

and force balance calculations in the filopodial system. Such integrated approach allowed us

to study in detail the filopodial dynamics in the presence of a substrate and NAs, extensively

sample the parameter phase space, and compose a diagram of dynamic regimes exhibited by

this system.

2.2 Methods

2.2.1 Filopodial system composition and setup

A schematic representation of our filopodial system is shown in Figure 2.1. It consists of

N=16 actin filaments (F-actin), while the monomeric actin (G-actin) bound to ATP can diffuse

inside a filopodial tube from the bulk (the left boundary) to the tip (the right boundary).

The enveloping membrane is represented by a fluctuating force at the tip, that can slow

8



Figure 2.1: Illustration of the filopodial system containing 16 actin filaments, diffusing G-
actin; Fluctuating membrane that affects polymerization at the tip, Nascent Adhesions (NAs)
that have dual nature of chemically active species and elastic springs if attached to substrate
and filaments (discussed in detail further); Retrograde flow contribution by myosin motors is
modeled as a constant force Fretr; and 2D substrate consisting of beads connected by elastic
springs.
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down the polymerization. This type of mechanochemical coupling corresponds to the ”brown-

ian ratchet model” [27]. Since actin filaments have a persistence length 10 µm [28] and are

also bundled by regulatory proteins, we assume them to have a linear conformation and behave

as incompressible rods.

The activity of myosin motors on the base (the left boundary) is modeled as a constant

pulling force Fretr, which contributes to the net retrograde flow along with the membrane sur-

face tension Fm pushing toward the filopodial base. It is possible to make both contributions

stochastic, however there is no reliable information on their probability distributions or cor-

relation functions. Therefore we take into account only average values of Fretr and assume

Gaussian probability distribution for Fm.

NAs are in reality membrane bound protein complexes that can bind to F-actin and to the

substrate through the cell membrane. Therefore the formation of NA is a multi-step process. In

our coarse-grained model we assume NAs formation to be an one-step kinetic reaction, where

the kon rate is given by the slowest binding and koff rate corresponds to the weakest bond in

the whole complex, which is between NA and F-actin. It has been shown that the extra cellular

bonds mediated by integrins can be very strong, and in many cases it is easier to pull the integrin

complex out of the cell membrane, than to break a bond between NA and the substrate [12,29].

Therefore, when NA formation reaction happens, we assume that the extra cellular end of the

NA is already bound to a bead on the substrate. When NA is active, i.e. bound to F-actin, it

acts as an elastic spring and contributes to the force balance inside the filopodium and potential

energy of the substrate as well.

The filopodium model shown in Figure 2.1 also contains an explicit 2D substrate, that is

represented by a network of beads, connected by elastic springs. It is discussed in more detail

in the corresponding methods section.
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2.2.2 Simulation scheme of the stochastic processes involved

In order to optimize the performance of our simulations, we coarse-grain our dynamics to

avoid spending the majority of time simulating brownian dynamics. The mechanical events

were considered to be the fastest to occur, so all mechanical components have enough time to

equilibrate in between the reactions.

The filopodial tube is divided into compartments, each lc=54 nm long, so that the furthest

distance between two species in the neighboring compartments is on the order of 100 nm. It

corresponds to a mean free path for a protein species in the cytosol, before it can meet and

react with another species. This quantity is also called Kuramoto length [30]. Therefore, we do

not simulate diffusion of species inside one compartment and consider the events on the larger

time scales, assuming fast equilibrium within one compartment. Species inside one compart-

ment can participate in chemical reactions with probabilities given by the corresponding kinetic

rates.

The main circuit of our computational modeling is a Monte Carlo approach spatially re-

solved in 1D, which is also called the direct Gillespie algorithm [31,32]. During the simulation

we iteratively perform the following steps:

a) the first random number is thrown to determine ∆t time interval between the previous

and next events, taking into consideration all possible chemical and diffusion events;

b) all reaction rates that depend on the mechanical properties are updated;

c) the second random number is thrown to choose a particular event for realization;

d) if the chosen reaction is potentially force-generating (polymerization or involving NAs)

potential energy is minimized and force balance is calculated;

e) retrograde flow is calculated from the force balance inside a filopodium, and the filopo-

dial system is shifted back by ∼ vr · ∆t. It should be mentioned that the center of mass of

the substrate is not affected by the retrograde flow. However the retrograde flow affects the

positions of active NAs, which in turn create additional pulling forces on the NA-connected
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substrate beads. By the end of each simulation we have records of concentrations for all species

including NAs, filament lengths, retrograde flow speed, substrate bead positions.

2.2.3 Bundle relaxation due to polymerization

What happens with the filopodial bundle, if it elongates by the length of one monomer in

the presence of pushing membrane and pulling back myosin motors? In more microscopic view

this setup corresponds to all N filaments getting polymerized by one monomer and becoming

(M+1) monomers long. Let us consider a more coarse-grained view of a filopodium, shown in

Figure 2.2, and look at this system at three moments of time, where a) and c) show the bundle

at equilibrium before and after the elongation event correspondingly.

The polymerization of individual filaments can occur due to the membrane fluctuating away

from the bundle, so monomers can diffuse into the free space and polymerize. At some inter-

mediate step b) one can assume that elongated bundle of consisting of (M+1) monomers is

compressed at its initial lengthM ·δ, where δ = 2.7 nm is the monomer size, andM � 1 . As-

suming the bundle to behave as an elastic rod, we can estimate its elastic force ≈ κbun ·∆lbun,

that pushes equally against lamellipodial actin network at the base (left boundary xn) and mem-

brane at the tip (right boundary xm). Both the membrane and the lamellipodial network resist

such sliding motion and produce net drag forces, opposing the motion of each boundary xm

and xn.

Strictly speaking, neither membrane at the tip nor actin network at the base are continu-

ous viscous media with well-defined friction coefficients. In the first order approximation we

are going to assume, similar to [10], that both membrane and actin network have effective

friction coefficients ξm and ξn respectively. Exact values for these parameters are not avail-

able, however we estimated the appropriate order of magnitude from physical considerations,

as discussed further in section 2.2.4. We assume that the actin network shows higher viscous
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Figure 2.2: A coarse-grained view the filopodial system at three moments of time: a) the bundle
of M monomers long before the elongation; b) intermediate step after the elongation by one
monomer has happened. For simplicity the bundle is considered to be M monomers long, but to
contain (M+1) monomers. It create elastic force pushing the tip forward against the membrane,
and pushing pointed end back against lamellipodial network. c) the bundle after the relaxation,
where the bundle length is (M+1), and both tip and back coordinates are shifted according to
the force balance in the system.
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resistivity to bundle pushing, than the membrane. We set ξn = γ · ξm, where γ = 4 is the ratio

between membrane and network friction coefficients (see section 2.2.4).

Let us write equations of motion for the bundle end, which is network attached, with the

coordinate xn, and membrane attached tip of the bundle with the coordinate xm:


∑
F |n = −ξnẋn − fr + κbun∆lbun(t) = 0,∑
F |m = −ξmẋm − fm +

∑
i

kfa∆lfa,i − κbun∆lbun(t) = 0.
(2.1)

The first terms in equations 2.1 are viscous drag forces for the bundle pushing the network

and the membrane, fm and fr are magnitudes of membrane pushing and retrograde flow pulling

forces; and we also add the elastic contribution from all active NAs that resist the sliding motion

of the bundle. Bundle length at all times can be written as ∆lbun(t) = (xm(t)−xn(t))− (M +

1) · δ, and our equations take the following form:


γξmẋn − fretr + kbun((xm − xn)− (M + 1)δ) = 0,

−ξmẋm − fm +
∑
i

kfa∆lfa,i − kbun((xm − xn)− (M + 1)δ) = 0.
(2.2)

System of equations 2.2 can be solved numerically at each moment of time, if the NAs

number and individual displacements are known. Meanwhile, we can solve the system of

equations 2.2 analytically in the absence of NAs, with the following boundary conditions:


xm(0) = M · δ,

xn(0) = 0.

(2.3)
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And the solutions take the form:
xm(t) = γ

γ+1

(
γ·fmem−fretr
kbun·(γ+1)

− δ
)
exp

(
−γ+1

γ
kbun
ξm
· t
)
− fretr+fmem

ξm(γ+1)
· t+M · δ,

xn(t) = −1
γ+1

(
γ·fmem−fretr
kbun·(γ+1)

− δ
)
exp

(
−γ+1

γ
kbun
ξm
· t
)
− fretr+fmem

ξm(γ+1)
· t

(2.4)

The analytical solutions 2.4 are plotted in Figure 2.3 and have two time dependent terms:

exponential decay corresponding to the bundle relaxation due to the elongation by one monomer,

and a linear shift with time, that is given by the balance of forces acting on the bundle. It should

be noted, that the speed of relaxation depends only on the bundle rigidity and membrane ver-

sus network friction coefficients: γ+1
γ

kbun
ξm

. Also time τrelax required for bundle to reach its new

equilibrium length is ≈ 0.01 s.

If the average time required for the bundle elongation 〈τ〉 by one monomer is less than

this estimate, the bundle would not be able to fully equilibrate between the elongation events.

Since the bundle should be at equilibrium when the filopodium reaches a steady-state, we can

estimate 〈τ〉 from the simulations without NAs that reach a steady-state regime: 〈τ〉 ≈ 0.04 s.

We can also evaluate the maximum number of elongation events per second, given by

the polymerization reaction rates (kpolca,0− kdepol), where ca,0 is bulk concentration of G-actin

monomers. This yields τ elongmin = 1/(kpolca,0−kdepol)≈ 0.01 s. Since the G-actin concentration at

the tip is always much smaller than ca,0, τ elongmin � 0.01 s. Therefore the filopodial bundle should

have enough time to equilibrate between elongation events. This conclusion allows us avoid

solving the problem of bundle relaxation dynamically, and rather adjust bundle’s bottom and

top coordinates by the corresponding fraction of a monomer size to account for the relaxation

between the elongation events.

It should be noted that this adjustment showed to be a minor correction to the filopodial

dynamics and did not significantly change the observed behavior in the presence of NAs.
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Figure 2.3: Time evolution of the bundle tip and pointed end coordinates: a) normalized filopo-
dial length Lfil(t) = xm(t) − xn(t); b) filopodial tip coordinate xm close to the enveloping
membrane; c) filopodial base coordinate xn attached to the lamellipodial network.
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2.2.4 Model parameters

The majority of the parameters used in this work is taken from the experimental literature,

and the rest is estimated using simple physical considerations. All parameters are shown in the

section 2.2.4 with corresponding references.

Friction coefficient ξm was estimated using the following logic. Since at steady-state filopo-

dial length is constant, between two consecutive bundle elongations by δ, retrograde flow speed

vr,0 = 70 nm/s should pull filaments back by δ = 2.7 nm (no NAs). Therefore tip coordinate

xm is going to be a periodic function with the same value every τ ′ = δ/vr,0 time steps. This

condition xm(τ ′)− xn(0) = 0 gives us the equation for ξm, shown in Equation 2.5.

λ1 · (e(λ2· 1
ξm

) − 1)− λ3 ·
1

ξm
= 0,

where (2.5)

λ1 =
γ

γ + 1
(
γ · fmem − fretr
kbun · (γ + 1)

− δ),

λ2 = −γ + 1

γ
· kbunτ,

λ3 = −fretr + fmem
γ + 1

· τ.

Solving this nonlinear equation we obtain ξm ' 0.379 (pN· s/ nm) and ξn ' 1.52 (pN· s/

nm), which is in the same range as other reported estimates [10, 38].

2.2.5 Modeling the Nascent Adhesions

Model parameters for the nascent NAs are summarized in section 2.2.4. The NA unbinding

rate koff depends on the amount of stress applied on it, according to the ”slip bond” model,

that is characterized by exponential growth of unbinding rate with a loading force shown in
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Table 2.1: Model parameters
Parameter Value Reference/Note

Filopodium diameter, df 150 [nm] [14, 33]
Actin monomer size, lactin 2.7 [nm] [14]
Number of filaments, N 16 [14]

Actin polymerization rate, kpol 11.6 [1/µM · s] [14]
Actin depolymerization rate, kdepol 1.4 [1/s] [14]
Membrane friction coefficient, ξm 0.0397 [pN · s/nm] *

Friction coefficient ratio, γ 4
Bundle rigidity, κbun 128 [pN/nm] estimated as for a

semi-flexible rod
similar to [28]

NA spring constant , κadh 5 [pN/nm] [10, 34]
Retrograde flow force, fretr 100 [pN ] set to satisfy

experimentally
measured vr ≤
100 nm/s

Membrane surface tension force, fsurf 10 [pN ] [23, 35]
Default retrograde flow speed, vr,0 72 nm/s [14]

NA binding rate, kon 0.09 - 1.8 [1/µM · s] [9]
NA unbinding rate (no stress), koff,0 0.01 [1/s] [29]

NA rupture force, Frupt 2 - 17 [pN] [34, 36]
NA equilibrium spring length, lfa,0 30 [nm] [37]

Total number of NAs (active and inactive) 6 number of acti-
vated integrins is
often suggested
to be small at the
filopodial tips

Substrate equilibrium spring length 4.5 [nm] set so each NA
at the tip has
enough substrate
beads to attach to

Substrate spring constant, κsub 1-200 [pN/nm]
Substrate bending constant, κsub,θ 1-200 [pN/rad]
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section 2.2.5 [12, 39].

koff = koff,0 · exp
(
kfa · |lfa − lfa,0|

Frupt

)
(2.6)

We have varied the typical rupture force Frupt in order to study, how the filopodial dynamics is

going to change, if individual NAs become stronger or weaker. Since NAs are thought to form

at the tip [13], the question raises, how inactive NAs are transported to the front, after breaking

somewhere along the bundle. Moreover, if we allow spontaneous formation of NAs without

restricting the overall NA number, the bundle eventually gets ”glued” to the substrate even for

very low NA binding rate kon, and retrograde flow stalls irreversibly.

It seems reasonable to assume that NAs deactivate after breaking, and new ones are acti-

vated at the tip, but the pathways involved and their quantitative characteristics are not fully

known to allow the explicit implementation of the NA activation and deactivation processes.

Therefore we conserve the total number of NAs (see section 2.2.4) and introduce fast diffusion-

like hopping of inactive NAs toward the tip, where they can bind to the filament tips again. The

rate of this process should be large enough to avoid artificial delay in NA formation, and we

found that rates ≥ diffusion rate (D = 5 µm2/s) satisfy this condition.

2.2.6 Modeling the cell substrate

The underlying substrate in our setup can be a tissue, a hydrogel , or any gel or solid

medium. In our model it is a 2D network of beads connected by springs. Different types

of network connectivity can be simulated using our modeling software, that would allow to

study the dependence of network elastic moduli on the filopodial dynamics coupled via NAs.

The specific stress distribution inside the substrate is not critically important for the filopodial
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growth however, and the net elastic force acting on few individual NAs is the factor affect-

ing NA longevity and hence filopodial length through the magnitude of retrograde flow speed

vr. Nevertheless, stress distribution and network topology would become significant for NAs

embedded in 3D partitions of the cell, such as lamellipodia and lamella. Here we present the

simplest topology, which is a rectangular network without defects. We account to two ba-

sic types of deformation: compression/stretching and shear. Harmonic interaction potentials

between the connected beads are shown in Equations 2.7:


Ustretch =

∑
i

κsub · (lsub,i − lsub,0)2,

Ubend =
∑
j

κsub,θ ·
(
θj −

π

2

)2

.

(2.7)

Each bead can be connected to a NA, and we chose the bead density so there are plenty

beads available for NA formation. We assume that when a NA forms, it is in a state close to

equilibrium with minimum stress applied on it. Therefore in order to find an appropriate bead

for NA binding, we assured that the distance between NA attachment on the filament tip and a

bead position was ≈ lfa,0 (see section 2.2.4).

2.3 Results and discussion

Each simulation is a single stochastic trajectory for one specific point in a multidimen-

sional phase space of model parameters, which provides detailed information about various

observables on micro-, meso- and macro- length scales. We have access to the microscopic

observables, such as NA number, retrograde flow speed at all times, and the substrate network

conformation. From those we calculate or measure a number of mesoscopic quantities, such

as distributions of the retrograde flow speed and concentrations of chemical species, as well as
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distribution of stresses. In addition to that, we measure various macroscopic characteristics for

our system, such as lengths of individual filaments, the filopodial length,the speed of growth

or retraction, and potential energy of the system. Beside the intricate coupling between these

observables for each particular trajectory, our main interest lies in the exploration of how the

modulation of mechanical properties or chemical propensities can influence the dynamics of

the system.

2.3.1 Retrograde flow dependence on NA binding rate

Cell motility processes, including nascent NAs in filopodia, are undoubtedly dependent on

how actively the NAs form. From the simplest mass law considerations, NA number should be

a hyperbolic function of the binding constant: cfa ∝ kon/(kon+koff ). It is also straightforward

to expect a linear decrease in the retrograde flow speed if the net NA number increases, since

〈vr〉 ∝ (fr + fm - cfa · κfa · 〈∆lfa〉) / ξn. Therefore the average retrograde flow should have

a hyperbolic form in general as a function of kon. However there is no easy analytical way to

predict how this dependence is going to change when individual NAs become stronger.

Figure 2.4a shows a typical probability distribution for the retrograde flow speed vr for

several values of NA rupture force Frupt. It clearly demonstrates that the distribution shifts

dramatically toward lower vr when Frupt raises, including bimodal phase as well. We use

these distributions to compute the average 〈vr〉 along with the standard deviations in order to

denote the amount of fluctuations. Figure 2.4b shows the 〈vr〉 dependence on NA binding

rate kon for several Frupt. Let’s note that the forms of all curves look hyperbolic, however the

magnitude is very different. For weak NAs characterized by low values of Frupt retrograde

flow does not significantly depend on the formation probability, and so it does for very strong

NAs. The strongest sensitivity to kon is exhibited in the medium range of Frupt values, which

is an interesting result.
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Figure 2.4: Retrograde flow speed vr dependence on NA binding rate kon: a) Probability dis-
tributions P(vr) shown for several values of NA strength, characterized by the typical rupture
force Frupt. Note significant shift of max(P(vr)) toward smaller vr, when individual NAs be-
come stronger (larger Frupt). b) Average values of vr shown with corresponding standard
deviations as a function of the NA binding rate kon. 〈vr〉 decreases with rising NA binding
constant kon. However this dependence is mild for weak and strong NAs (see Frupt=2, 15 pN),
and it is more pronounced for medium range of Frupt. Note the magnitude of fluctuations raises
when individual NA become stronger (error bars from top to bottom).
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If NA formation is a rare event, one should anticipate increased fluctuations in their number

and the retrograde flow speed vr consequently. This trend can be clearly seen in Figure 2.4b,

if we follow as the error bar size changes from top to the bottom curves. It is an intriguing

question, what is more beneficial: to have fewer, but stronger NAs, that produce large discrete

noise in the system dynamics, or larger number of weaker NAs introducing less noise in the

retrograde flow speed and possibly the length fluctuations as well.

2.3.2 Retrograde flow dependence on NA rupture force

Since the individual NA strength introduced via NA rupture force Frupt showed to be an

important factor defining the dynamics in the system, we have sampled a physically plausible

range of Frupt.

Figure 2.5: Retrograde flow speed vr dependence on NA rupture force Frupt: Average values
of vr shown with corresponding standard deviations as a function of the NA binding rate Frupt,
shown for several values of the NA binding constant kon. 〈vr〉 decreases dramatically with
rising strength of individual NAs.
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The results are shown in Figure 2.5 for several binding constants kon. Both decrease of 〈vr〉

and raise of fluctuations can be clearly seen from this picture, as well as the fact, that kon does

not define the value of vr as much as Frupt does, but it affects how quickly vr decays with the

increase in NA strength. It should be mentioned that the error bars in Figure 2.5 can include

not only the widely spread vr probability distributions , but also bimodal distributions of vr ,

one example of which can be seen in Figure 2.4a. Such bimodal distributions would produce

large standard deviations for the mean 〈vr〉. The presence of bimodal probability distributions

for vr is an indirect evidence for oscillatory regimes, and is going to be discussed in more detail

below.

2.3.3 Retrograde flow dependence on substrate stiffness

Now let’s look at how retrograde flow speed vr depends on the rigidity of the substrate.

If we gradually move in the parameter phase space toward higher values of {κsub, κsub,θ} we

can see that not only the average 〈vr〉 shifts toward higher values, but also the change in how

〈vr〉 and Lmax (maximum filopodial length achieved during 100 s simulation) depend on the

model parameters. To promptly correct for the general shift in 〈vr〉 , we have divided measured

〈vr〉 by 〈vr,∞〉 on an infinitely stiff substrate, which in our model would be the stiffest substrate

simulated {κsub = 50 ·κfa,κsub,θ = 50 ·κfa}, when all other kinetic and mechanical parameters

are fixed. The similar normalization was done to the maximum reached filopodial length Lmax.

The dependence of these normalized values is shown in Figure 2.6.

In previously reported models [9, 10] it was shown that dynamic response of the system

should be highly sensitive to the substrate rigidity, and retrograde flow speed 〈vr〉 should rise

with the substrate stiffness. It can be seen in Figure 2.6a that vr does have a general tendency

to increase along with the substrate stiffness, however this dependence is close to negligible

for weak NAs and is highly affected by noise for strong NAs. The most sensitive response of
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Figure 2.6: a) Retrograde flow speed vr dependence on substrate stiffness κsub. The measured
values of vr were normalized to the ones on the stiffest substrate simulated, which is a nu-
meric approximation for the asymptotic value vr,∞ on an infinitely rigid substrate; b) Maximum
reached filopodial length Lmax as a function of substrate stiffness ksub, normalized in similar
manner as vr. We do not show the error bars on these dependences for the sake of clarity of
the picture, Note that fluctuations in the measured vr for large Frupt values were significantly
high. In such cases different trajectories can be in different states by the end of the simulation,
and large ensembles should be simulated for each point in order to obtain smooth dependences
for vr and Lmax. All simulations were made for the low NA binding rate kon=0.174 1/µM · s.
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filopodial system lies in the medium values of Frupt and intensifies if NA formation becomes

a rate event. Unfortunately, at the same time as kon decreases the noise in the vr increases

dramatically and affects the smoothness of the tendencies shown in Figure 2.6. The maximum

length Lmax which filopodium can grow up to within first 100 s is also sensitive to substrate

stiffness in the same region of the parameter phase space as vr. This similarity in dynamic

response can be rationalized by using the mean-field model of filopodial growth developed

in [14]. No impact from NA is considered in that model, but luckily it depends only on the

actin involved kinetic processes, which NAs do not affect in a direct way. By modulating vr the

the original model we can still use the functional dependence of steady-state filopodial length

on vr, shown in ??.

L =
πR2D2

N
·
(
δ

vr

(
ca,0 −

k−

k+

)
− 1

k+

)
. (2.8)

Therefore, as the first order approximation Lmax should depend on vr in a hyperbolic man-

ner, which qualitatively agrees with the trends demonstrated in Figure 2.6.

It is important to notice that the sensitivity of the filopodium system to the substrate stiffness

is not a general property, but rather raises in a confined region of parameter phase space, which

differs our model from the previous efforts [9, 10]. In addition to that, our model clearly

shows the importance of noise in this system, which can dramatically affect the output of the

simulation and should create a significant variation among an ensemble of filopodia.
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Figure 2.7: Diagram of filopodial dynamic states as a function of Frupt and kon on a soft sub-
strate. At low Frupt and wide range of kon a filopodium quickly reaches its steady-state (colored
in blue). At intermediate Frupt and a wide range of values of kon a new stepwise growth pat-
tern emerges (colored in green). For large values of Frupt and various kon the stepwise grows
smoothes out to be a steady growth and low fluctuations, despite the fact that vr fluctuations
rise tremendously.

27



2.3.4 Different regimes in growth dynamics: what causes oscillations and

stepwise growth

Moving up to the macro-scale observable in our simulations, the length of the filopodium

as a whole, we can see a variety of dynamic regimes, exhibited by the system (see Figure 2.7).

The softer is the substrate the more likely we are to find a special growth regime, which we

are going to call as ”stepwise growth” in this manuscript. It is colored in green on our diagram

of states and is often referred to as ”stick-slip” behavior. This regime also includes oscillating

steady-state in the narrow region of low binding constant kon and medium-large rupture forces

Frupt. It should be mentioned that we have not observed the stepwise growth regime on stiff

substrates.

Stepwise growth (green region in Figure 2.7) slowly emerges from the NAst steady-state

regime (blue region in Figure 2.7), sometimes through a special case of oscillating steady

state (for very low kon values), when Frupt raises. For even larger values of Frupt stepwise

growth regime smoothly morphs into a NA enhanced steady filopodial growth (orange region

in Figure 2.7).

We have not observed any sharp boundaries between the dynamic regimes, and they smoothly

transition one to another, and it is a nontrivial problem to mark the regimes in the transition re-

gions of the state digram, which is highlighted by different colors displayed on top of each other

in the diagram. As an example of typical dynamics regimes, let us consider a few representa-

tive trajectories, shown in Figure 2.8. In case of very strong NAs (red curve) we characterize

this type of growth as steady, enhanced due to the presence of NAs. However one can easily

see residual step structure that is however much less notable, that for the cases of Frupt = 9, 12

pN.

Indeed, if there is no well defined order parameter in the system that would exhibit a jump,

the process of distinguishing different states becomes a challenging task. Our separation be-
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Figure 2.8: Examples of various dynamic regimes in the filopodial system on a soft substrate
for several rupture forces Frupt. All curves show filopodial length evolution with time and
illustrate NAst steady-state regime (blue curve), an oscillating steady-state (green curve), an
stepwise growth (orange curve), and steady Fa enhanced growth (red curve).
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tween oscillating and non-oscillating steady state, as well as stepwise versus enhanced growth

was based on the quantitative condition that steps or oscillations in a time period ∆t should

be much larger than the length fluctuations in the pure actin system without NA and have a

magnitude of at least 10% of the length 〈L〉∆t. The majority of time this condition corresponds

to length fluctuations ≥ 100 nm.

Another fundamentally important result is the non-trivial self-averaging of fluctuations in

the filopodial system. Note, that for strong NAs, i.e. large values of Frupt, retrograde flow

speed exhibits significantly large fluctuations, which are sometimes on the order of the value

〈vr〉 itself (see Figure 2.5). However, if we look at the filopodial length, our macroscopic ob-

servable, it has minor fluctuations for large Frupt and is exhibiting stepwise behavior only for

very low kon values. Therefore the high level of micro- and mesoscopic fluctuations may not

directly translate onto the macroscopic fluctuations, when there are several sources of micro-

scopic noise.

2.4 Conclusions

We have developed a self-consistent stochastic model for filopodial dynamics that inte-

grates a number of mechanical properties and an extracellular substrate. This model has a

complex multi-component nature, similar in structure to [9], but does not contain additional

phenomenological relations or synergistic connections between variables. We employed the

approach that is similar to [10] with explicit energy minimization and force balance calcu-

lation. Furthermore, we describe the system of interest on much greater level of detail that

reported in [9, 10], and couple mechanic response with discrete stochastic chemical reactions.

This model allowed us to explore and uncover a variety of dynamic behaviors of the filopodial

system in a multidimensional phase space of model parameters. Our method allows not only

tracing the general dependences of the observable averages, but provides full information about
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their probability distributions and their coupling.

We have shown that retrograde flow modulation is strongly affected by individual mechan-

ical NA properties and less by the kinetic rates. Also there are regions in the phase space

of parameters where fluctuations raising in the system can not be ignored, and the ensemble

averages should be considered rather than time averages for active growth and retraction pro-

cesses. That is, if maximum or steady-state values of 〈vr〉 or 〈L〉 are of main interest, filopodial

systems can show significant deviations from sample to sample.

However when the main interest lies in how that steady-state is achieved (with oscillations

or not), there can be a significant noise reduction between meso- and macroscopic variables in

the system. Such noise self-averaging leads to a more homogeneous type (regime) of dynamic

behavior for a particular set of system parameters. Note that not only the number of NAs

and thus retrograde flow are stochastic variables, but the polymerization kinetics are sources of

discrete noise as well. This brings us to an important conclusion. When all sources of stochastic

noise are considered, previously reported synergetic response [9] may easily disappear due to

the self-averaging of fluctuations.

It appears that intermediate values of NA strength and binding rate are the most beneficial

for the unusual stepwise growth, and that regime is present on soft substrates, while on stiffer

substrates we can treat our system as one with pure actin and just rescale the retrograde pulling

force to a lower value due to the presence of NAs.
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Chapter 3

Theory of Active Transport in Filopodia and Stereocilia ∗

3.1 Introduction

Molecular motor transport in a living cell is one of the most fascinating processes in cellular

biophysics. Molecular motors play crucial roles in many elongated organelles, such as neuronal

axons [40], flagella [41], filopodia [42], stereocilia [43,44] and microvilli [43]. A naive view of

cellular motor transport is that of motor molecules orderly following each other on the substrate

and carrying cargo, which they unload at a destination point. However, in reality motors not

only walk, but also diffuse around the cell, randomly binding and unbinding to their substrate

filaments and/or cargo. To a large extent these processes are governed by molecular noise. To

understand how the motors perform their functions – be it cargo delivery to the growing end

of an organelle or creating stresses in a flagellum, or even in artificial systems [45, 46] – it is

necessary to know their spatial distribution in these systems.

The spatial distribution of the motors could influence the delivery of building material to-

wards the growing end of a dynamic elongated organelle, such as a filopodium or a stereocil-

ium. In the absence of motors, the length of such organelle is expected to be limited by the slow

diffusional delivery of the material to the tip [47]. Furthermore, prior computational modeling

of simple, conveyor-belt-like transport of monomeric species by molecular motors indicated
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that specially designed cooperative mechanisms are needed to achieve any appreciable active

transport flux [48]. Two main reasons for the transport inefficiency are sequestration of cargo

by motors and diminution of motor speeds due to clogging of the filamentous bundle by walk-

ing motors [48]. These “traffic jams” may also be inferred from the corresponding spatial

distributions of motors, as discussed below. Another intriguing experimental observation is the

localization of the myosin motors at the tips of filopodia [42] and stereocilia [44]. All of these

findings provide sufficient motivation to look deeper into the spatial distributions of motors

and their cargo in actin based protrusions, and, in particular, to better understand the physical

mechanisms which control the delivery of the building materials to the protrusion tips.

The goal of the current work is to find the stationary distributions of motors and their re-

spective G-actin cargo inside cellular protrusions, such as filopodia or stereocilia. We also

investigate the way these distributions ultimately regulate the lengths of the corresponding pro-

trusions. In stereocilia, for example, fine regulation of length is important and is clearly coupled

to function [49]. One expects the lengths of filopodia to also be controlled by cell’s mechano-

chemical machinery, as seen, for example, in very long filopodia in sea urchin cells [50]. Prior

calculations showed that diffusional transport is unlikely to provide sufficient G-actin flux to

produce such long filopodia [47, 48]. In our detailed computational models of motor and G-

actin transport in filopodia and stereocilia, the main processes that determine the spatial dis-

tributions of motors are: 1) directed walking of bound motors on the filaments driven by ATP

hydrolysis; 2) diffusion of free motors in the cytosol, and 3) the chemical exchange between

the bound and free motors. In this work, we have developed an analytical mean-field the-

ory to obtain the stationary concentrations of bound and free motors. It turns out, that the

mean-field equations for motor profiles are highly non-linear and cannot be solved numerically

using most common approaches, requiring instead a special phase portrait analysis to construct

the solution. The resulting motor distributions are in quantitative agreement with our detailed

stochastic simulations of growing filopodia and in qualitative agreement with experimental
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data for Myosin IIIa in stereocilia and filopodia [44]. Furthermore, since the motor proteins

may carry cargo such as G-actins, we also derived the corresponding mean-field equations for

the G-actin stationary dynamics. Since G-actin’s availability at the protrusion tip determines

the corresponding speed of polymerization, the motor driven G-actin transport may critically

influence and, hence, regulate the steady state lengths of filopodia or stereocilia.

Surprisingly, our mean-field equations indicate that there exists a universal stationary motor

profile, which does not depend on the protrusion length and is robust with respect to model

parameters or even nature of the elongated enclosed cylindrical environment. We provide a

simple explanation for the observed universality of motor concentration profiles. Furthermore,

detailed stochastic simulations show that the G-actin concentration profile in filopodium to be

non-monotonic, with a minimum, followed by a maximum, which is an interesting, non-trivial

result [51]. Using our mean-field analyses, we suggest a physical explanation that gives rise

to the observed non-monotonic G-actin distributions. Finally, the stationary motor and cargo

distributions may be kinetically difficult to reach for longer filopodia or stereocilia, hence, in

the end we discuss the issue of sensitivity to the initial conditions.

3.2 Methods

3.2.1 Model parameters

We employ the following computational setup (Fig. ??). There are N = 16 actin filaments

in the cylindrical filopodial tube with radius R = 75 nm) [52]. There are two protofilaments in

each filament, so we use half a monomer size δ = 2.7 nm. These values yield a concentration

of F-actin monomers in a filopodium cs = N/πR2δ ≈ 560µM. G-actin is diffusing along the

filopodium (D = 5µm2/s) [53] while its concentration at the filopodial base is maintained

by the cell at a constant bulk level a(0) = 10µM) [48, 54, 55]. At the tip, G-actin monomers

can react with the N barbed ends with the rate k+ = 11.6µM−1s−1 and depolymerize with
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rate k− = 1.4 s−1 [55]. Retrograde flow moves the filaments backwards with a constant speed

vr = 70 nm/s [56]. Myosin motors also diffuse along the filopodium (D = 5µm2/s), but

in addition they can bind to a filament with the rate kon(for all the binding and on-rates we

use the diffusion-limited value of 10 µM−1s−1), unbind with the rate koff (10 – 100 s−1) and

perform forward and back steps on filaments with the rates k→ = 50 s−1 and k← = 5 s−1. In

the continuous analytical model these rates translate into v = (k→− k←)lss ≈ 1400 nm/s (with

motor step size lss = 32.4 nm). If a motor is bound to a filament, it can also load actin with the

rate kl = 10µM−1s−1 and unload it with the rate kul (10 – 30 s−1). To prevent sequestration,

when a loaded motor unbinds from a filament, it simultaneously releases its G-actin cargo.

Motors cannot step on or bind to an F-actin monomer unit occupied by another motor. Like

with G-actin, the unbound motors concentration at the base cf(0) was kept constant at the bulk

value (0.1 – 1 µM).

3.2.2 Stochastic simulations

Polymerization, depolymerization, motor stepping, binding and unbinding, actin loading

and unloading and diffusion are treated like chemical reactions with set rates, based on the

algorithms elaborated in our prior works [47, 48, 51].

3.2.3 Retrograde flow

The retrograde flow plays an important role in setting up the stationary length, as it defines

the actin flux through the filopodial cross-section (or, rather two equal fluxes with opposite

signs). In the model reported in this work, we use a constant retrograde flow speed, which

depends neither on polymerization, nor on various protein concentrations. In reality, the ret-

rograde flow rate can be influenced by many factors both in the cell bulk (active machinery

pulling filaments back; rearrangements and filament degradation in lamellipodia) or in filopo-

dia itself, like focal adhesions [57], or force from the membrane acting on a filament which is

35



polymerizing against it. We investigated the coupling between the retrograde flow and poly-

merization in our previous work (reported in the Appendix A) [48]. This coupling can be easily

taken into account in the mean-field sense, where the results are in close agreement with more

detailed stochastic simulations that allow for the retrograde flow fluctuations. In this work we

focused on the phenomena brought in by molecular motors inside the filopodium, and, hence,

chose in favor of a simpler model where the retrograde flow is simply held constant and does

not depend on other parameters and processes. This assumption can be released in a straight-

forward manner, if needed.

3.2.4 The boundary conditions

The choice of the third boundary condition for the equations describing the motor profiles

is a subtle issue and depends on the particular question one has in mind. This choice only

has a slight effect on the solution of the equations, so it is not very important. However, it is

worthwhile to discuss it for clarity purposes.

For the purely mathematical, continuous problem, where the filaments don’t exist outside

the tube, the appropriate boundary condition is cb(0) = 0 (from which follows the A(0) = 0

in the actin part) and no additional assumptions (like detailed balance) are required. Indeed, if

the filaments do not cross the z = 0 point, neither can bound motors, hence Jb(0) = 0, and

as Jb = v(cb)cb, cb(0) = 0. This argument can be presented in a more detailed way. Let us

consider a small (going to infinitesimal later) volume of the tube near the base. Integrating the

second of the motor equations over this volume one gets:

∂Jb

∂z
= −koffcb + koncf , (3.1)

δz∫
0

∂Jb

∂z
dxdydz =

δz∫
0

(−koffcb + koncf)dxdydz, (3.2)
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(Jb(0 + δz)− Jb(0+))Sf = (−koffcb(αδz) + koncf(αδz))Sfδz, (3.3)

where Sf is cross-section of the filopodium and 0 ≤ α ≤ 1.

Since Jb(0+) = 0,

Jb(0 + δz)Sf = (−koffcb(αδz) + koncf(αδz))Sfδz, (3.4)

lim
δz→0

Jb(δz) = lim
δz→0

(−koffcb(αδz) + koncf(αδz))δz = 0, (3.5)

and as Jb = v(cb)cb, one can conclude that lim
δz→0

cb(δz) = 0 and use the boundary condition

cb(0) = 0. (3.6)

In our simulations, however, the space is split into compartments, and the concentration

profiles are not continuous, and the first point corresponds to the first compartment, which

spans 54 nm starting from z = 0. It is not obvious how to directly compare the simulation

results with continuous analytical curves at z = 0. To compare one should take average of

the analytical curve over the first 54 nm and using it as cb(0) and solve the equations again.

Alternatively, one can assume detailed balance between cf and cb at z = 0 (and between cb and

A in the actin equations), which turns out to be a good approximation.

In real filopodia the filaments continue into the cell bulk (unlike our simulations), making

the cb = 0 condition of the formal problem less relevant. Detailed balance in the cell bulk,

on the other hand, is a plausible assumption as a first approximation. The next approximation

would require modeling of the filaments with motors in the bulk (the lamellipodium) explicitly.

Thus, the detailed balance BCs are more interesting and relevant for the physical problem,

so they are the ones used in the paper. However, it turns out that both alternative BCs lead

to almost indistinguishable results, except for the very beginning of the concentration profiles.

37



To demonstrate this, we plotted below the graphs corresponding to the solution of the formal

mathematical problem, with no additional assumptions, and the cb(0) = 0 boundary condition

(Figs. 3.2-3.6).

3.3 Results and discussion

This section is organized in two parts: the “motor” part and the “actin” part. In the “motor”

part, we present three increasingly realistic mean-field models of motor stationary profile along

the tube. By gradually adding complexity we reproduce the results of the stochastic simulations

of growing filopodia with Gillespie algorithm, which is the most comprehensive representation

of the complex system dynamics in our work, and thus serves as a check for our mean-field

model. Since the resulting motor distribution does not depend on the filopodial length, we use

it in the “actin” part to find the G-actin flux due to active transport, the G-actin concentration

profile and the stationary filopodial length set up by the balance of actin fluxes.

Structurally, a filopodium is a bundle of 10 – 30 actin filaments enveloped by the cell’s

plasma membrane (Fig.3.1). Filaments are growing at the filopodial tip consuming G-actin

monomers [58] delivered from the bulk of the cell by diffusion and possibly motor trans-

port [48]. The filaments are pulled back into the cell bulk by special mechanisms inside the cell,

in addition, the barbed ends at the tip are pushed by membrane elastic resistance, resulting in a

gradual motion of the filaments backwards known as retrograde flow [56]. We do not include

other regulatory proteins or filament elasticity into the baseline scenario for motor distribution

and filopodial growth.

3.3.1 Motor distributions

In the “motor” part of the problem, we consider a cylindrical tube with two types of motors

– free and bound – that are subject to two different mechanisms of transport – diffusional and

38



motor (un)binding

stepping

kl

+

stepping
vr

filopodial
base

actin diffusion

kulkoff kon
koff

k+

k–

motor diffusion

z

Figure 3.1: A representation of the filopodial model is shown with kinetics scheme of chemical
reactions. A filopodium is a cylindrical tube with a bundle of parallel actin filaments inside
enveloped by cell’s membrane. The motors can walk on filaments (with speed v determined
by forward and backward stepping rates) or diffuse in the solution (with diffusion constant of
5 µm2/s). They can bind and unbind to the filaments (with rates kon and koff) and, when on
filaments, load and unload G-actin (with rates kl and kul). A loaded motor can detach from the
filament simultaneously releasing G-actin. Thus, there is no G-actin bound to motors in the
solution, fulfilling the non-sequestrating regime condition.

active – respectively. The problem is, therefore, one-dimensional, and we introduce concentra-

tions of free and bound motors, cf(z) and cb(z) and write the continuity equations [59]:

∂cf

∂t
+
∂Jf

∂z
= koffcb − koncf = −

(
∂cb

∂t
+
∂Jb

∂z

)
, (3.7)

where Jf(z) and Jb(z) are forward fluxes for free and bound motors respectively, and koff is the

unbinding rate of a motor from a site on a filament. For the rate constant of binding between

a motor molecule and an F-actin monomer unit, we use the diffusion-limited rate constant,

kdl
on = 10µM−1s−1, which translates into kon = kdl

oncs rate for a motor to bind to any monomer

unit, cs being the concentration of F-actin monomer units, which are the binding sites, inside

the filopodium. To calculate cs we count F-actin monomer units in the filopodial volume 1

monomer unit thick, yielding cs = N/Sδ, where N is number of filaments, δ is monomer half-

size, and S is filopodial cross-section. Fick’s law defines Jf(z) = −D∂zcf . We assume there
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are plenty of motors in the cell bulk, which sets a fixed cf(0) as a BC at the filopodial base.

We can also assume that there is detailed balance between free and bound motors in the cell

bulk, and, therefore, at the base, and obtain the third BC, koncf(0) = koffcb(0). Interestingly, an

alternative BC may be adopted without relying on this assumption in case when filaments cease

to exist outside of the tube and when comparison with discrete stochastic simulation results is

not needed. This BC, which turns out to be cb(0) = 0, is elaborated in the Appendix A,

where it is also shown that the choice between the two alternative BCs leads to almost identical

results. For the stationary solution of Eq.3.7, the total motor flux through a cross-section,

corresponding to the integral, Jf +Jb = const, turns out to be zero, Jf +Jb = 0, because of the

reflecting BC at the tip. Interestingly, this is the only time the filopodial tip enters the solution

for the motors, and it does not introduce the filopodial length as a parameter. Consequently,

the stationary motor concentration profiles do not depend on the length. Such universality

of motor profile is robust, because it will be also present in other elongated organelles and

enclosed cylindrical environments, as long as the system is governed by diffusion and directed

random walk, yielding equations of the form Eq.3.7 with these BCs. This is a surprising and

important result.

3.3.2 Phantom motors model failure

The simplest expression for the bound motor flux is Jb = (v − vr)cb, where v is average

motor speed generated by ATP hydrolysis steps, and vr is the retrograde flow speed. Now

we have a closed system of equations for the concentrations with stationary solution defined

by Dc′′f (z) = −koncf(z) + koffcb(z) = (v − vr)c
′
b(z). This linear set of homogenous ODE

(phantom motors model, or PMM) has been solved analytically (but with different BCs) to

find a motor concentration profile in a stereocilium [59]. Our BCs yield an exponential growth

of both free and bound motor concentrations towards the tip of a filopodium (dashed lines on

Fig.3.2). The PMM solution strongly disagrees with the stochastic simulations of the same

40



system. The reason for the failure is that in the PMM motors do not interact with each other

and can bind onto filaments unlimitedly, regardless of the finite number of binding sites. In

reality, cb(z) is capped by the concentration of binding sites, which in our simulations equals

F-actin monomer unit concentration cs.

3.3.3 Finite filament capacity

In order to account for the saturation of binding sites, one has to make kon = kdl
on(cs −

cb) = k0
on(1− cb/cs) dependent on the number of available binding sites [60]. The mean-field

equations (FFC) become non-linear and can be solved numerically. The results are in a much

better agreement with the stochastic simulations (solid lines in Fig.3.2). Still, the discrepancies

are rather notable, especially, for the concentration of free motors (Fig.3.2 (inset)).

3.3.4 Jammed motors

To improve the accuracy of the mean-field model, one has to take clogging into account.

The binding site occupancy prevents a motor from stepping on that site, which leads to the

slowdown of the active transport, or traffic jamming. To obtain the new equations in a compar-

atively rigorous fashion, we start with a picture of 1D-lattice with biased random walk obeying

the Fermi – Dirac statistics (i.e. a motor can not step to an occupied lattice site) [60]. The dy-

namics of the system (assuming no correlations between lattice site occupancies) are described

by an equation similar to the master equation:

ḃn = k→bn−1(1− bn) + k←bn+1(1− bn)−

−k→(1− bn+1)bn − k←(1− bn−1)bn − (3.8)

−koffbn + kdl
on(1− bn)cf(zn),
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Figure 3.2: Comparison of the mean field analytical models with the stochastic simulation
results. The dashed line is the phantom motors model, the solid line is the FFC model, where
limited number of binding sites on the filaments is taken into account. Circles are simulation
results for cb, and squares for cf . Inset zooms into low concentration region to show curves for
cf .
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where bn is the probability that the n-th site is occupied, zn is the spatial location of the n-

th site, and k→, k← are the rates for the forward and the backward steps. The terms for the

fluxes resulting from motor steps are obtained by the product of probability that the source

site is occupied and probability that the destination site is free multiplied by the step rate.

Although the length of motor step is equal to 12 monomers, and there are several filaments

inside a filopodium, these subtleties do not influence the continuum limit (cb(z) = csbn). The

continuum version of Eq.3.8 coincides with Eq.3.7 where Jb = vcb(1 − cb/cs) where v =

(k→ − k←)lss and lss is motor step size. The difference of this expression from the FFC model

can be perceived as the modification of the motor speed by the probability that the next site

is free. After including the retrograde flow into the final expression for the bound motor flux

(Jb = cb(v(1− cb/cs)− vr)), we get the equations for the jammed motor model(JMM):


−Dc′′f = koffcb − koncf (1− cb/cs) ,

[cb (v (1− cb/cs)− vr)]
′ = koncf (1− cb/cs)− koffcb.

(3.9)

The JMM equations considerably strain the mean field approach, for instance, they have

regions of instability. They cannot be solved with finite differences methods (at least, in a

physically meaningful way), but for biologically reasonable parameter values, the mean-field

treatment can be saved through the phase portrait analysis of the JMM equations. After using

the integral Jf + Jb with the BC, we can rewrite the JMM equations as a set of two first order

ODEs and investigate it as an evolving dynamical system (with z treated as “time”):

c′f = − v

Dcs

c2
b +

v − vr

D
cb, c

′
b =
−koffcb + kon(cb)cf

v − vr − 2vcb/cs

. (3.10)

We see that c′b goes to infinity on the singular line c∗b = (1 − vr/v)/2cs except at the

point (P ) where the numerator in Eq.3.10 is also zero. P is therefore the only point where the
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Figure 3.3: Motor concentration profiles inside a filopodium are shown according to stochastic
simulations and jammed motors model for various parameter sets (motor affinity to filaments,
motor speed, motor concentration). For each set of parameters, the simulations points con-
tinue up to the filopodial length from the corresponding simulation. Theoretical curves were
computed for all lengths. Inset zooms into low concentration region to show curves for cf .
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trajectory can cross the singular line with a physically meaningful result. Still, c′b is undefined

in P and will take an arbitrary value when calculated numerically. However, we notice that

the system has a non-trivial saddle fixed point Q, when cf(Q) = koff/k
0
on(v/vr − 1)cs and

cb(Q) = (1 − vr/v)cs. The point Q corresponds to almost fully saturated filaments (allowing

just enough directed motor flux, so that it is fully compensated by retrograde flow) and free

motors in chemical equilibrium with the filaments – a situation one would expect far from

the filopodial base. This situation is actually observed in the FFC model and the simulations.

Thus, as “time” approaches infinity, a physically meaningful solution should be approaching

the point Q along its stable eigenvector, similar to the FFC solution. Shooting backward in

“time” from Q along its stable manifold we recover the solution down to the singular line of

cb = c∗b. To finish the construction of the solution for the JMM we integrate the Eq.3.10 up to

the singular line and combine the two parts, thus avoiding the need to cross the singular line.

The solutions for various sets of parameters – koff , cf(0), and v – are given in Fig.3.3.

The JMM gives a very good approximation to the stochastic simulations. We confirmed these

stationary solutions, by numerical integration of the time-dependent JMM PDEs.

Our results are in qualitative agreement with experiments on delivering of espin1 by Myosin

IIIa (M3a) in stereocilia and filopodia, which show gradually growing and saturating M3a

concentration profiles, called “drop-like” by the authors due to the characteristic form of their

appearance in fluorescence images [44]. Similar fluorescence shapes would be expected from

the curves in Fig.3.3. In particular, the M3a profiles in longer stereocilia have longer saturated

regions (bright appearance), which can be explained by our proposed universality of the JMM

profiles with respect to organelle length. Indeed, in a longer organelle, a larger part of the

same concentration profile would be above the visibility threshold, thus, showing up as a larger

saturated region.

In our model, traffic jams build up rather close to the organelle base(Fig.3.3), which com-

promises the transport role played by motors if it requires them to be walking far from the
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base in large numbers. A cell might employ special mechanisms to prevent early jamming,

for instance, it could immobilize motors at the organelle tip, effectively removing them from

the picture, while they would still show in fluorescence. Localization at the tips is sometimes

observed in fluorescence experiments [42, 61]. Whirlin, a scaffolding protein, would be one

possible candidate for a motor immobilizer. Whirlin was suggested to form complexes with

several Eps8 and myosins [61], so if these complexes are anchored at the tip, they could act as

a myosin sink and prevent jamming.

Apart from jamming, the efficiency of transport may be also decreased by sequestration

of the delivered material by motors. Thus, when very fast or very long protrusion is required,

alternative processes may be needed. For example, in Drosophila S2 cells, preformed micro-

tubules are pushed from the center of the cell by kinesins and protrude the membrane forming

long processes [62]. In axons, cytoskeletal proteins have to be synthesized locally in the growth

cone [40,63], possibly because the need for their consumption is exceeding the active transport

delivery limit.

Mathematically, the “motor” problem is a good example of the need for preliminary quali-

tative knowledge of the behavior of the system. Solving the FFC model allowed us to construct

the JMM solutions, and the simulations provided a consistent check for the mean field model,

as well as motivation to challenge the PM model, which turned out to be inapplicable at greater

protrusion lengths.

To put the problem in a larger context, it is well known, that stochastic chemical kinetics

can be directly mapped onto quantum field theory [64, 65]. In this language, the JMM corre-

sponds to coupled bosonic (diffusing motors) and fermionic (walking motors) fields. Earlier

works on the problem of motors in a tube have used bosonic-bosonic(PMM) [59] or fermionic-

fermionic [66] theories, which in a mean-field approximation yield equations similar to Eq.3.9.

Our work is the first to solve the bosonic-fermionic model, yielding a solution rather different

from these prior solutions, and one which matches most closely the physical reality of active
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transport in protrusions such as filopodia or stereocilia.

Concluding this part with the most important finding, the stationary distribution of mo-

tors in filopodia is universal for all filopodial lengths. This universality is not filopodia- or

stereocilia-specific, but generic for enclosed cylindrical environments with diffusion and active

transport that have the same BCs. This powerful model can now be used, for instance, to cal-

culate the rate of focal adhesion formation or the flux of actin monomers that can be delivered

for polymerization and growth. Luckily, since this flux is independent of the overall length, it

is now straightforward to find how the length is modified by active transport using mean-field

equations that couple actin transport to filament polymerization dynamics, which is discussed

next.
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Figure 3.4: G-actin concentration profiles for different parameter values are shown. Circles
represent the results of stochastic simulations and lines are the solutions of Eq.3.13 for a(z).
All the profiles end when the concentration drops below atip (Eq.3.12) which is about 2.3 µM
for our parameter values.

3.3.5 Transport of actin

To model the active transport of G-actin we allow, in addition to the scheme described

above, for motors to load and unload G-actin molecules. We consider the case when motors

can only load G-actin when they are bound to the filaments, and not when they are free in

cytosol. In this way, the problem of sequestration of G-actin by motors [48] mentioned above

is avoided. The requirement is not completely artificial, as similar mechanisms are known

in other motor systems. For instance, kinesin tail can interact with its head domain in an

auto-inhibitory way [67], possibly preventing important interactions between the head and the
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microtubule [68]. One possible reason for that is saving ATP, but it could also serve to prevent

sequestration of the cargo by freely floating motors.

We will now find the filopodial stationary length along with actin concentration profiles.

The length is set by the balance of actin fluxes, which should hold in stationary case just

like the balance of motor fluxes discussed above [47]. There are three transport fluxes of

actin: diffusional flux JD = −D∂za (where a(z) is the concentration of freely diffusing actin),

retrograde flow flux Jr = −Nvr/Sδ = −vrcs and active transport flux JAT . The stationary

condition is JD + Jr + JAT = 0. In addition, at the tip, polymerization converts G-actin to

F-actin, directing the sum of all G-actin transport fluxes (JD +JAT ) to the retrograde flow. The

polymerization flux is JP = N(k+atip − k−)/S, where k± are the (de)polymerization rates,

and in the stationary case

JP = −Jr = JD + JAT . (3.11)

In other words, the growth (or retraction) stops, when the concentration of G-actin at the tip

atip provides polymerization flux JP equal to the retrograde flow flux Jr [47]. This condition

yields

atip =
(
vr/δ + k−

)
/k+. (3.12)

We proceed to finding the stationary length by finding the whole profile a(z) and seeing where

a(z) reaches atip. G-actin can diffuse, load to the motors-on-filaments and unload, and also be

carried forward by them in directed fashion. As discussed in the first section, the stationary

motor concentration profile is independent of actin cargo or diffusing G-actin, or of the filopo-

dial length. Therefore, from the actin dynamics viewpoint, cb(z) is just an external stationary

field, not a variable. Thus, after taking into account binding site saturation and traffic jamming,

the equations for actin yield a set very similar to Eq.3.9:
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
−Da′′ + kla(cb − A)− kulA = 0,

[(v (1− cb/cs)− vr)A]′ − kla(cb − A) + kulA = 0,

(3.13)

where A(z) is the concentration of actin carried by motors. The first equation describes

the balance of G-actin in solution. In addition to diffusion, the G-actin in cytosol can be

loaded on the motors-on-filaments with the loading rate kl and unloaded with the rate kul.

The factor (cb − A) is the concentration of unoccupied motors-on-filaments. The term in

square brackets in the second equation, which describes the fluxes of G-actin bound to the

motors, is equal to active transport flux JAT (and differs from Jb in the “motor problem”

only by having the factor A instead of cb). The BCs are also similar to those for motors: 1)

at the filopodial base the concentration of G-actin is equal to the bulk concentration in the

cell, a(0); 2) assuming detailed balance of the loading reaction in the bulk and at the base,

A(0) = kla(0)cb(0)/(kla(0) + kul) (see Appendix A for additional discussion); and 3) like

before, we have a conservation law rather than a boundary condition. Finding an integral by

summing Eqs.3.13, we obtain JD + JAT = const = −Jr = −vrcs, (after applying Eq.3.11 to

find the constant).

Knowing the motors-on-filaments concentration cb(z) one is able to solve Eq.3.13 numer-

ically. Here we use the solution of Eq.3.9, but cb(z) could in principle be estimated from

fluorescence experiments [42, 44, 61] or detailed stochastic computer simulations. Since all

the BCs for Eq.3.13 are related to the filopodial base (z = 0), the solution can be constructed

starting from zero in a straightforward process. The location of the filopodial tip ztip at the

stationary length is the point is set by the condition a(ztip) = atip (Eq. 3.12) is reached is

the filopodial tip position at stationary length. To summarize the protocol for our analysis, we

first compute the motor profile distribution cb(z) from Eq.3.9, followed by the G-actin profile

distribution, a(z), from Eq.3.13, and finally we determine the steady-state filopodial length by
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finding the position ztip, where a(z) intersects with a horizontal line drawn at the height atip.

From Eq.3.13, we predict that the G-actin distribution in a filopodium growing with the help

of non-sequestering molecular motor transport is non-monotonic. This result (also supported

by stochastic simulations) is far from obvious, but it can be rationalized through the following

arguments. First, assuming JAT is small at the filopodial base, which is often the case, the

slope of a(z) has to be negative there, because of the conservation law given by Eq.3.11, which

requires balancing of JD + JAT and Jr at the base. On the other hand, one would expect

motors to pump the concentration in the tube, so that it grows as a function of distance from

the base, as does cb(z) itself. Thus, empty motors “vacuum up” the diffusing G-actin near the

base, creating the negative slope of a(z) and transporting these bound molecules farther into

the tube. Hence, at some point, a(z) starts to increase, so the slope changes to positive, thus

creating a minimum (the minimum may nearly dissappear at higher JAT values at the base, as

seen for a red curve in Fig.3.13). However, at the same time, traffic jam builds up, decreasing

the efficiency of G-actin pumping forward, so after reaching a maximum a(z) starts to drop

once again (Fig.3.4). Alternatively, the slope of a(z) at the tip has to be negative as well:

a(z) > atip everywhere inside the filopodium, or it would not be able to grow past the point

where a(z) < atip. With the requirement of the negative slope both at the base and the tip,

it could either be a monotonic decrease, or at least one minimum followed by one maximum.

In the absence (or inefficiency) of active transport, we observe the former situation, a nearly

linear decrease (Fig. S1). When motors do pump G-actin forward, they create a minimum

by sucking up G-actin, and then a maximum, after they jam and slow down the pumping of

G-actin. Fig.3.5 shows the magnitude of active G-actin flux JAT which starts to drop sharply

after the region of jamming build up. Interestingly, in some cases JAT may be higher at the

tip when the unbinding rate, koff , is increased, which may seem counterintuitive, as motors in

this case are less processive and spend less time on filaments. On the other hand, the jamming

starts further in the tube, increasing transport efficiency in these specific cases.

51



On the left hand side of the broad maximum in Fig.3.4, the JD is negative and works

against the positive JAT (Fig.3.5). After the motor jam builds up, JAT decreases, so JD has to

increase correspondingly because of Eq.3.11. Thus the burden of actin delivery transfers from

motors to diffusion, so at the tip JAT can be almost negligible compared to JD (for one of the

parameter sets in Fig.3.5 it is 53 molecules/second vs. 360 molecules/second). Interestingly,

JAT is still considerable far from its maximum which is very close to the base due to the quick

jam development. One of the factors sustaining JAT is the high value of unjammed motors

speed, on the order of micron per second, which can still deliver noticeable flux even when

diminished by an order of magnitude due to jamming. However, it turns out it is still mainly

the diffusion that delivers monomers to the tips of long filopodia for the most of their lengths.

The role of active transport can be formulated as that of increasing the concentration gradient

for diffusion through locally increasing the concentration near the base, or in the middle of the

filopodial tube. From the point of view of actin flux balance, the latter is the same as having a

higher “effective” bulk concentration of G-actin in a filopodium with no active transport.

The mean-field model for actin is either in quantitative or semi-quantitative agreement with

the stochastic simulations, depending on model parameters (Fig.3.4-3.6). The filopodial sta-

tionary length is reached when the G-actin concentration drops below atip (Eq. 3.12), equal

to 2.3 µM for the retrograde flow rate of vr = 70 nm/s. The profiles in Fig.3.4 end when

they reach this value. In terms of stationary length, and positions and heights of G-actin con-

centration peaks, the discrepancy between the analytical mean-field solution (solid lines) and

stochastic simulations (circles) is less than 20 – 25%. The shapes of the corresponding curves

are almost identical, and the discrepancy amounts to scaling the mean-field curves down in

both axes. Interestingly, the agreement between mean-field results and stochastic simulations

is very accurate for bound species, cb(z) and A(z), as seen in Fig.3.6, as well as between

various transport fluxes (Fig.3.5). Hence, barely noticeable discrepancies for bound species

profiles and corresponding fluxes amplify into noticeably larger errors for the cytosolic actin
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Figure 3.5: Active transport fluxes for different parameter values are calculated as JAT (z) =
(v (1− cb(z)/cs)− vr)A(z). Symbols correspond to A(z) and cb(z) taken from the results of
stochastic simulations, and lines are plotted by taking cb(z) and A(z) from the solutions of
Eqs.3.9 and 3.13. Active transport flux decreases after the traffic jam is formed. The retrograde
flow flux Jr of 415 molecules/s determines the flux of G-actin monomers which need to be
delivered to the tip at steady state. Dashed line shows the diffusional forward flux of G-actin
for kul = 30 s−1, koff = 10 s−1, [M]= 0.3µM (corresponding to the black curve on Fig.3.4).
Active flux is still significant even far from the start of the jam, however, starts to vanish near
the tip.
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concentration profiles, which in turn determines the filopodial length. This amplification may

be understood as a result of pumping current created by motors, which is highly nonlinear.

The trend of seeing better agreement for shorter filopodia supports this point of view. Yet

another way to formulate the quantitative correspondence between mean-field and simulation

results as simple scaling of axes is that noise and fluctuations renormalize the parameters in the

mean-field theory [47]. In general, if molecular fluctuations are very strong at small protein

copy numbers and couple to nonlinear chemical kinetics, the resulting dynamical behaviors

might be rather different from the corresponding mean-field predictions [69,70]. In the context

of active transport in filopodia, the fluctuations are moderate within certain regime of model

parameters, however, the mean-field picture is destroyed when fluctuations become too large

in case of other model parameters, as we have seen in the “motors” part of the problem. In

simulations, reaching the steady-state length predicted by the mean-field theory may be a very

slow process, taking up to 15 min, sometimes showing more than one distinct stationary or

quasi-stationary state [51]. Even within the mean-field theory two different steady states for

the same set of parameters are possible (when the first minimum in G-actin profile is lower

than atip (Eq. 3.12)). In such cases the filopodial evolution (and length in particular) can be

largely defined by the initial conditions for its growth or retraction. Paralleling the stochastic

dynamics of a filopodium to navigating an energy landscape [71], one may suggest that this

energy landscape is somewhat rugged, similar to that of spin-glasses or heteropolymers, with

many kinetic traps appearing as quasi-stationary states.

3.4 Conclusions

We have constructed a comprehensive set of mean field models to describe a possible mech-

anism of G-actin active transport inside filopodium or stereocilia. The predictions of these

equations quantitatively reproduce most of detailed stochastic simulation results and are con-
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Figure 3.6: Concentration profiles for actin-on-the-motors A(z) and motors cb(z) are shown
for kul = 30 s−1, koff = 10 s−1, [M]= 0.3µM (corresponding to the black curve on Fig.3.4)
from analytical solution. The concentration of F-actin binding sites cs = N/Sδ = 558µM
caps cb(z), while A(z) is in turn capped by cb(z). Symbols correspond to A(z) and cb(z)
taken from the results of stochastic simulations, and lines are plotted by taking cb(z) and A(z)
from the solutions of Eqs. 3.9 and 3.13.
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sistent with a number of experiments on measuring motor fluorescence in actin based protru-

sions. The concentration profiles of molecular motors are universal, independent of the protru-

sion length. This is a fundamental property of the problem of motors in a tube, independent of

parameters or even the actin-bundle nature of the tubes considered in this work.

According to our model, motors form a traffic jam relatively close to the base of the filopo-

dial tube, which greatly slows down their walking further into the tube. However, local pump-

ing of G-actin up to the jamming region can create enough G-actin concentration gradient for

diffusion to be able to sustain filopodia several times longer than in the absence of active trans-

port. The pumping is manifested as a non-trivial concentration profile of diffusing G-actin,

with a minimum followed by a maximum. Hence, despite jamming, motor transport can be

quite efficient in producing much longer protrusions. Interestingly, multiple steady state solu-

tions seem possible under certain combinations of rate constants and species concentrations,

which is an issue that should be explored further both experimentally and theoretically. We

also observed that kinetic barriers may slow down the approach to the steady state for longer

filopodia and stereocilia, hence, finite-time observations may sensitively depend on the initial

conditions, and could explain some of the variability seen among neighboring protrusions of

the same cell.

This chapter is reproduced with permission from Pavel I. Zhuravlev, Yueheng Lan, Maria S.

Minakova, and Garegin A. Papoian, Theory of Active Transport in Filopodia and Stereocilia,

PNAS, in press. Contributions: Maria, Pavel and Garegin have developed three mean-field

models; Pavel and Maria have run stochastic simulations; Pavel and Garegin have worked on

the discrete description of bound motor dynamics and actin fluxes and spacial profiles;

Yueheng characterized and solved the non-linear system of equations for the Jammed Motor

Model.

56



Chapter 4

Position-Dependent Energy Transfer between Ruthenium(II)

and Osmium(II) Modified Coiled-Coil α-Helical Peptide

Dimers ∗

4.1 Introduction

The design of molecular materials capable of performing complex functions is pivotal to

bottom-up approaches in molecular electronics [72–75], sensing [72, 76, 77] and solar energy

conversion [78–84]. The most common strategy for building artificial assemblies uses co-

valent bond formation to connect molecular components with rigid linkers that dictate both

distance and orientation. While this approach provides exquisite control over spatial parame-

ters [85–88], the optimization of functional performance often requires the development of new

synthetic routes making the implementation very difficult, especially as the number of molecu-

lar components increases. Alternatively, chromophores have been placed on easily synthesized

scaffolds such as polymers [89–95], dendrimers [72, 80, 96–107] and organogels [108–111].

However this approach can yield assemblies that are not mono-disperse in molecular weight

or chemical composition and incorporate many different morphological constituents. While

large systems are readily made and some control over the primary structure is possible, the
∗Maria Minakova, Christopher K. Materese, Garegin A. Papoian



flexible scaffolds result in solution structures that vary from one assembly to the next. Another

approach to achieve functional architectures draws inspiration from natural systems, which

combine simple molecular building-blocks to form highly complex functional systems. Na-

ture exploits relatively weak non-covalent interactions to achieve functional architectures with

a hierarchical control, in which sequence defines structure, which defines function. Proteins,

lipids, and oligonucleotides form the structural framework that organize functional elements

in spatial proximity and with well-defined orientations [112]. To this end, functionalized bio-

logical molecules such as oligonucleotides [113–116], amyloid-like peptide fibrils [117], and

even derivatized virus coated proteins have been designed and investigated as functional mate-

rials [118]. These types of designed systems [117,119–125,125–131] that mimic the organiza-

tional strategies of biomolecules provide a number of advantages, including design flexibility,

ease of synthesis, and spatial control of functionality through supramolecular architectures that

allow for fine-tuning of materials properties.

Herein we report the design of an artificial polypeptide system based on a heterodimeric

coiled-coil architecture in which the primary sequence defines both the secondary and tertiary

structure, which provides fine control of the positioning of octahedral tris(bipyridyl) transi-

tion metal complexes [MII(bpy)3]2+ (M = Ru or Os, bpy = 2,2-bipyridyl). Coiled-coils are a

common protein motif and provide structural architecture for many important protein scaffolds

including α-keratin [132] and tropomyosin [133, 134]. Moreover, the sequence-structure rules

are well defined, allowing for the design of highly tunable molecular architectures by control

of the primary sequence.18a In this study we demonstrate the ability of the peptide secondary

structure to control relative positioning of the octahedral complexes, resulting in systematic

tuning of the energy transfer properties of the system. The Ru(II) and Os(II) metal complexes

are positioned near the midpoints of two complementary peptide chains, each consisting of

28 residues (Figure 4.1). The primary sequence of each chain is chosen such that they adopt

a dimeric supramolecular structure consisting of two α-helical coils, in which the hydropho-
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bic residues are shielded from the aqueous environment and the hydrogen bonding and ionic

interactions are maximized. Photo excitation of the Ru(II) complex in the folded assembly

results in energy transfer to the lower energy Os(II) acceptor on the opposing chain. Since the

metal complexes are placed on different peptide chains, energy transfer is only possible if the

two chains associate in solution, making this system particularly sensitive to the secondary and

tertiary structure of the peptide scaffold.

Figure 4.1: (a) Illustration of metallopeptide system containing the α-helical coiled-coil scaf-
fold and metal complexes (coiled coil: pdb 2AHP). (b) Structure of the metal complex and its
attachment to the α-helix.
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A set of peptide structures that systematically vary the positions of the two metal com-

plexes was studied by taking advantage of two flexible synthetic methodologies: solid-phase

peptide synthesis (SPPS) and the copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC or

click reaction). SPPS is advantageous as it allows for exact positioning of the chromophores in

the primary sequence. The use of click chemistry as an orthogonal linkage strategy between

the chromophores and peptides has several advantages. First, it avoids issues with formation

of statistical mixtures of species, as was obtained in the electron transfer coiled-coil systems

developed by Ogawa, in which the chromophore linkage was accomplished via non-specific

coordination chemistry [126–131]. Secondly, click chemistry provides advantages over the

direct amide linkage used in the electron-transfer oligoproline systems reported by Meyer, in

which orthogonal protecting group strategies had to be employed [123–125]. Variation in the

placement of the complexes along the peptide backbone as shown in Figure 4.2 results in pre-

dictable changes in the energy transfer rate, which are measured using time-resolved emission

methods.

Variation in the rate by almost an order of magnitude across the series, as well as denat-

uration studies, confirm that energy transfer is the direct result of folding into a well-defined

tertiary structure. All-atom molecular dynamics simulations provide insight into the micro-

scopic environment, revealing an assembly with a dynamic, yet robust, tertiary structure that

effectively controls the relative positioning of the two complexes.

4.2 Methods

4.2.1 MD Simulation Protocol

Since no crystal structure was available for the system, the initial structure was generated

using PyMOL [135], which is a molecular visualization tool capable of constructing simple
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Figure 4.2: (a) Primary sequences of the P1 and P2 peptides using the single letter amino acid
code (in capitals). Each 28-residue peptide has four heptad repeat units. The common letter
designations for the heptad positions (a-b-c-d-e-f-g) are shown above the first heptad repeat
unit for P1. The hydrophobic interactions are shown as blue lines, the hydrogen bonding
interaction between Asn side-chains is shown as a cyan line, and the complementary ionic
interactions between the two peptides are shown as red dashed lines. (b) A helical-wheel
diagram displaying the potential points for attachment when viewed down helix axis from the
N-terminus. The P1 peptide is modified with Os(II) at the f, c, or g position within the second
heptad. The P2 peptide is modified with Ru(II) at the f, b, or c position within the second
heptad.
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peptides. The P1 and P2 peptides were initially generated independently using PyMOL’s he-

lical parameters and were then manually aligned with care taken to avoid steric clashes, while

satisfying the key hydrophobic contacts at the interface. The tris-(triazolylmethyl)amine ligand

segment was constructed using Gaussview, part of the Gaussian 03 suite [136]. Ruthenium(II)

and osmium(II) are very similar from an MD perspective. Since the primary focus of these

simulations is peptide dynamics, ruthenium was used as the central atom in both complexes

and osmium was not explicitly included. This is not expected to have any significant impact

on the simulations, since the metal atoms are nearly completely shielded from the rest of the

system by the the bipyridyl ligands, and metals formal charge, which is the sane for Ru(II) and

Os(II), plays the most important role. In order to examine the effect of linker positioning on the

complexes, the following three systems were created: System 1, which corresponds to the 2f-

Os/2f-Ru metallopeptide pair, System 2 which corresponds to the 2c-Os/2b-Ru metallopeptide

pair, and System 3 which corresponds to the 2g-Os/2e-Ru metallopeptide pair.

The simulations were prepared using the AMBER [137] force field with the ff99SB [138]

parameter set. Since the AMBER libraries do not possess parameters for the artificial amino

acids used as tethers, or for the chromophores themselves, these values needed to be collected

from literature or obtained through quantum calculations. Partial charges for the linker and

chromophores were obtained through Gaussian calculations using the restricted B3LYP [139]

with the LANL2DZ [140] basis set. Charges derived using the restricted electrostatic potential

(RESP) technique [141] gave spurious results for the ruthenium and the chelating nitrogen

atoms in the bipyridyl ligands. RESP has difficulty predicting the correct charge for buried

atoms since the charges are assigned in an effort to reproduce the external electrostatic potential

[141]. Because of this, Mulliken charges were used in lieu of RESP charges. In general,

Mulliken charges tend to be slightly more exaggerated than RESP charges with an average

difference in predicted charge of 0.1(±0.1)e for all atom excluding the ruthenium and those

atoms immediately surrounding it. There was insufficient memory to compute partial charges
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for the entire linker and complex. In order to deal with this issue, the partial charges for the

base of the peptide up to the γ-carbon of the side chain were extracted from the standard lysine

amino acid residue. Force constants for Ru-N stretches, N-Ru-N (cis/trans) bends, C-C-N-Ru

dihedrals, H-C-N-Ru dihedrals and van der Waals parameters were obtained from Brandt et

al. [142]

Since AMBER does not explicitly support Octahedral geometry, chelating nitrogen atoms

were divided into three distinctly named but chemically identical types in order to establish

different bending force constants for cis and trans positions. Each of the three simulations were

performed with 13000 explicit TIP3P water molecules in a box with the dimensions ≈ 75 ×

75 × 75Å under periodic boundary conditions. The charge of each system was neutralized by

the addition of sodium counter ions, followed by the subsequent introduction of an additional

10mM NaCl. Each system was held at constant volume, and the peptides were frozen in place

while the water and ions were minimized for 200,000 steps. Subsequently, all constraints were

removed from the systems and they were minimized for an additional 200,000 steps. The

systems were gradually heated via Langevin temperature control to 300 K in the incremental

steps of 5 K every 50 ps.

The production runs proceeded under the constant pressure, moderated by Langevin piston

(set to 1 atm), with 2 fs time steps using the SHAKE algorithm and Ewald summation for

long-range interactions. Short-range non-bonded interactions were calculated at each step,

while long-range interactions were only calculated on even steps and the pair list was updated

every 10 steps. System coordinates were saved every 2000 steps (4 ps) for analysis for a total

simulation length of 300 ns for each system.
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4.3 Results and discussion

All atom molecular dynamics simulations were performed on each of the three coiled-coils

to gain insight into the molecular level interactions in these systems. Since Ru(II) and Os(II),

when enveloped by the bipyridyl ligands, are practically identical from a molecular dynamics

perspective, Ru(II) was used as the central atom for simulation in both bipyridyl complexes.

For the sake of concise comparisons with experiments, we retain the same nomenclature for

the metallopeptide pairs. It is important to mention that since a single metal-metal distance can

map into a variety of different conformational arrangements between two metal complexes,

we present below detailed trajectory analysis, with supplementary movies providing additional

structural information (see Appendix B).

4.3.1 2f-Os/2f-Ru Heterodimer

Both bipyridyl complexes in the 2f-Os/2f-Ru system start from a distal position relative to

the peptide backbone. During the equilibration phase the complexes were frequently found

in the proximity of the coiled-coil peptide backbone, likely driven by favorable hydrophobic

interactions. To overcome the bias of the deliberately chosen initial conditions, the first 250

ns of the simulation were not included when calculating the distance distributions. The subse-

quent data collection phase was run for approximately 500 ns. The dynamics of the bipyridyl

complexes and their unnatural side chains can be described by two regimes. First, there are

large-scale conformational rearrangements during which the tethered complexes escape from

their states bound to the coiled-coil and are free to explore the phase space to find new col-

lapsed conformations. Secondly, there are small-scale oscillations within these conformations,

which occur on a much faster timescale, but do not result in significant displacement of the

metal complexes.

The attachment points for the bipyridyl complexes in the 2f-Os/2f-Ru system are far enough
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Table 4.1: Dependence of the Coiled-coil Secondary Structure and Metal-Center Displacement
on Substitution Position.

Helicity index α,
X-Os-P1

Helicity index α,
Y-Ru-P2

Ru-Os average distance

X=2f, Y=2f 0.458 ± 0.097 0.559 ± 0.079 3.100 ± 0.336
X=2c, Y=2b 0.631 ± 0.139 0.593 ± 0.124 1.444 ± 0.319
X=2g, Y=2e 0.249 ± 0.097 0.070 ± 0.116 1.195 ± 0.048

away from each other that the two complexes do not come into direct contact during the entire

course of the simulation. The corresponding metal-center displacement distributions and the

trajectories from which they were derived are shown in Figure 4.3.

The inter-metal distance distribution is broad (over a 3 nm range) and non-Gaussian. Through-

out the course of the simulation, the metal-center displacements observed for the 2f-Os/2f-Ru

system are relatively large and would be expected to limit the efficiency of energy transfer. As

discussed above, these simulations indicate that the Frster energy transfer mechanism may play

an important role for this complex.

Interestingly, the bipyridyl complexes appear to influence the stability of the 2f-Os/2f-Ru

coiled-coil structure as illustrated in the Appendix B Movie 6. α-Helical peptides have an

increased propensity toward fraying near the termini, and when the metal complex and the

2f-Os/2f-Ru peptide terminus approach each other, the complex can entrain the ends of the

peptides by providing competing hydrophobic interactions which result in further fraying. This

partial folding and unfolding can be observed in the timeline plot of the helicity index α which

is equal to the ratio of the number of residues in the α-helical conformation compared to the

total number of residues in a sequence (see Figure 4.4 and Table 4.1). The implications of this

observation are elaborated below.
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Figure 4.3: (a) Comparative plot of Ru-Os distance histograms (normalized) for different chro-
mophore placements, including 2f-Os/2f-Ru, 2c-Os/2b-Ru, and 2g-Os/2e-Ru. (b) Ru-Os dis-
tance evolution in time for the 2f-Os/2f-Ru, 2c-Os/2b-Ru, and 2g-Os/2e-Ru metallopeptide
pairs.
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4.3.2 2c-Os/2b-Ru Heterodimer

After extensive equilibration for approximately 300 ns, the initial conformation for the data

collection corresponded to spatially separated bipyridyl complexes with relaxed linkers and a

slightly perturbed structure for the coiled-coil scaffold. During the first 20 ns of the production

run, the bipyridyl complexes do not form any stable close contact, with one complex actively

exploring the surface of the peptide scaffold. At 25 ns the two complexes contact each other

and form a loose association, in which a single bipyridyl ring aligns with the triazole ring of

the complementary peptide linker (see Figure 4.5a). This was followed by closer stacking of

the metal complexes, and resulted in characteristic parallel alignment of bipyridine rings (see

Figure 4.5b). The metal complexes showed relatively fast ( 0.2 ns) conformational rearrange-

ment of the bipyridine rings between them, often including a non- parallel, 45 meta-stable

stacking (see Appendix B Movie 1 and 2). The comparative graph of distance distributions in

Figure 4.3 shows that 2c-Os/2b-Ru system has a roughly bimodal distribution dominated by the

close-packed geometry. The timeline of Ru-Os distance has a feature of switching from one

basin with more closely packed state(s), in which bipyridine rings align in a mostly parallel

fashion (Figure 4.5b), to another, where the complexes are in close proximity to one another,

yet not in direct contact. These conformations correspond to the 2c-Os bipyridine ring stacking

with the triazole ring of 2b-Ru linker, as shown in Figure 4.5a. In this system, we did not ob-

serve a similar perturbation of the peptide scaffold by the bipyridyl complexes as was seen in

the 2f-Os/2f-Ru system. The peptide termini dynamically unfold and refold during the course

of simulations (see Appendix B Movies 2 and 3), but not due to association with the bipyridyl

complexes in this case. The helicity index of the 2c-Os-P1 and 2b-Ru-P2 peptides is shown

in Figure 4.4. Interestingly, the standard deviation of the helicity index is approximately twice

that of the 2c-Os/2b-Ru system, indicating that peptides are more dynamic and actively explore

their phase space (see Table 4.1).
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Figure 4.4: Fraction of α-helical content in each peptide as a function of time shown for the 2f-
Os/2f-Ru (top), 2c-Os/2b-Ru (middle), and 2g-Os/2e-Ru (bottom) metallopeptide pairs. Each
peptide actively explores its conformational space, while predominantly staying in an α-helical
state. The exception is 2g-Os/2e-Ru system (see bottom graph), where an unfolding event is
caught during MD. Visualization of the trajectory showed that peptide termini started interact-
ing with the bipyridyl complexes and significantly disrupted the overall coiled-coil ternary and
secondary structure.
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4.3.3 2g-Os/2e-Ru Heterodimer

In a manner very similar to the two previous systems, the bipyridyl complexes in the 2g-

Os/2e-Ru system quickly collapsed onto the coiled-coil peptide scaffold during the equilibra-

tion phase 250 ns. The two metal complexes came into Van der Waals contact with each other

in a conformation very similar to the intermediate stacking arrangement that was observed in

the 2c-Os/2b-Ru system (Figure 4.5a). For 30 ns the bipyridyl complexes fluctuate between

the tight and loose ligand stacking state, as shown in Figure 4.3b. Finally, we observe one

more major conformational rearrangement where a tight neck stacking is achieved, which is

characterized by the bipyridyl ring and a part of the connected linker of one complex aligning

with the corresponding structural parts of the other. As a result, the complexes are facing away

from each other (see Figure 4.5c and Appendix B Movie 4). This conformation, which was

not observed in the 2c-Os/2b-Ru system, persists until the end of the simulation. As shown in

Figure 4.5c and Appendix B Movie 5, the bipyridyl complexes in the 2g-Os/2e-Ru system also

maintain a close proximity with the bipyridyl ligands spending most of their time in van der

Waals contact.

This neck stacking creates a significant amount of strain for the peptide scaffold, as well

as an additional hydrophobic surface consisting of the linker side chains pulled together. We

show in Figure 4.5c and Appendix B Movie 5 that the pep-tide termini closest to the bipyridyl

complex detach from the coiled-coil interface and bind to the groove between linkers or wrap

around the bipyridyl complexes themselves, leading to more disruption of the coiled-coil struc-

ture, compared with the other two systems (see Figure 4.5). The analyses of the simulation data

for all three systems suggest that the various placements of the complexes lead to a variety of

ways in which chromophores interact with the underlying peptide scaffold and influence the

corresponding coiled-coil stabilities (see Table 4.1).

Furthermore, the trends predicted from the MD simulations are qualitatively consistent with
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Figure 4.5: (a) Loose stacking arrangement of the bipyridyl complexes ( 2 nm feature) is a
stable basin of conformations with characteristic parallel alignment of one of bipyridine rings
and the triazole ring of the linker. This tightly stacked conformation is observed consistently
in the 2c-Os/2b-Ru system and briefly in 2g-Os/2e-Ru system. This stacking is transitory to
closer inter complex stacking conformations. (b) Close stacking arrangement where bipyridyl
rings of two complexes are in Van der Waals contact and parallel to each other ( 1 nm feature).
(c) Bipyridyl ligands arranged in a neck conformation, facing away from each other (1.2 nm
feature). This conformation was only observed in the 2g-Os/2e-Ru system.

Table 4.2: Thermodynamic Stability of the Metallopeptide Heterodimers determined using
Guanidinium denaturation.

Peptide Pair ∆Gunfold Kd α-Helicity index
2f-Os/2f-Ru 8.6 0.49 ± 0.09 80%
2c-Os/2b-Ru 8.2 0.97 ± 0.2 74 %
2g-Os/ 2e-Ru 8.0 1.4 ± 0.3 72 %

the corresponding thermodynamic measurements done by our collaborators from Dr. Waters

group (see Table 4.2). They have studied peptides thermodynamic stability using guanidinium

denaturation. This method has been used to compare small structural variations within families

of similarly designed coiled-coils.

In those experiments, Gibbs free energy change of unfolding (∆Gunfold) was measured

for each of the metallopeptide dimers using the method of linear extrapolation. As may be

expected, the 2f-Os/2f-Ru pair formed the most thermodynamically favorable heterodimer (Ta-
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ble 4.2). The value of ∆Gunfold measured for the 2f-Os/2f-Ru pair, 8.6 ± 0.10 kcal/mol ,

corresponds to a dissociation constant (Kd) equal to 0.49 ±0.09µM . The α-helicity of the

fully folded 2f-Os/2f-Ru dimer was calculated to be 80 %, based on molar ellipticity measure-

ments at 222 nm (-28,600 ±800deg · cm2 · dmol−1). The α-helical content determined for

the 2f-Os/2f-Ru dimer falls within the range reported for similar sequences, since values from

69-96% are common for three to five heptad repeat coiled-coils [126–131]. The fact that it is

less than 100% helical likely arises from end-fraying, which agrees with what we see in the

all-atom MD simulations. Also the overall trend of close stacking of chromophores leading to

a slight disruption of the peptide secondary structure is also in qualitative agreement with our

simulation results.

However the quantitative extents of the coiled-coil disruption seen in simulations are likely

overestimated. The following possibilities could have contributed to producing extra fraying

in our MD simulations: 1) overestimating the metalcomplex-peptide interactions, 2) underes-

timating the strength of the inter-peptide bonding, or 3) preparing the initial coiled-coil con-

formations in an imperfect way, which did not allow tight enough packing of side-chains or

accurate enough alignment of hydrophobic interactions.

In summary, comparison of the dynamics for all three metallopeptide systems shows that

the 2g-Os/2e-Ru pair has the narrowest Ru(II) to Os(II) distance distribution with the smallest

probable separation ( 1 nm), and would therefore be the best promoter for energy transfer. A

metal-metal distance of 1 nm suggests that the complexes are in close contact with each other

and would imply efficient energy transfer, regardless of the mechanism considered. This is

in agreement with the photo-physical measurements made on the metallopeptide systems by

our collaborators in Dr. Papanikolas’s group (see Figure 4.6 and Table 4.3). They compared

the Ru(II) emission quenching for the three coiled-coil metallopeptide pairs: 2f-Os/2f-Ru, 2c-

Os/2b-Ru, and 2g-Os/2e-Ru (Figure 4.6), along with the transients from three coiled-coils con-

taining the Ru(II) metallopeptides paired to the P1 apopeptide. All three of the P1/Ru(II) sys-
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Table 4.3: Results of the global analysis showing the dependence of the energy transfer rate on
the position.

Ka, µM
−1(Kd, µM) kRu,×106s−1

(lifetime, ns)
kEnT ,×106s−1

(lifetime, ns)
2f-Os/2f-Ru 0.908 ± 0.005

(1.101± 0.006)
2.900 ± 0.002
(478.7± 0.5)

1.00 ± 0.02
(816± 14)

2c-Os/2b-Ru 0.919 ± 0.001
(1.008± 0.002)

2.200 ± 0.002
(450.0± 0.5)

3.00 ± 0.02
(304± 2)

2g-Os/2e-Ru 0.887 ± 0.001
(1.127± 0.001)

2.100 ± 0.002
(468.2± 0.4)

23.0 ± 0.1
(42.0± 0.2)

tems exhibit qualitatively similar mono-exponential decay kinetics (Table 3). Each transient in

the mixed Ru(II)/Os(II) systems is bi-exponential, where the slow component arises from the

free Ru chains in solution and the fast component reflects Ru quenching due to energy transfer.

The peptide pair that places the complexes the farthest apart, 2f-Os/2f-Ru (see the blue line in

Figure 4.6), has the largest distance between alpha carbons (14.0-14.9 Å), and results in the

slowest energy transfer. The 2g-Os/2e-Ru peptide pair (see the green line in Figure 4.6) places

the complexes the closest to each other with an α-carbon distance of 9.6-10.3 Å, and has the

fastest energy transfer. Lastly, the 2c-Os/2b-Ru peptide pair has an intermediate spacing (12.7-

13.5 Å) and its energy transfer rate falls in the middle (see the red line in Figure 4.6). The

trend of the quenching rates indicates that the peptide assembly influences the relative posi-

tions of the Ru(II) and Os(II) complexes, and thus their ability to undergo energy transfer, in

a predictable manner. These results combined together indicate the 2g-Os/2e-Ru pair to be the

most efficient energy transfer promoter.

Importantly, we have not observed unfolding of the coiled-coil near the linker attachment

points for any of the three systems. This suggests that the dynamics of the bipyridyl complexes

themselves do not impose a significant stress along the peptide backbone in our scaffold design.

To gain deeper insights into the mechanisms of energy transfer in these systems, subsequent
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Figure 4.6: Time-resolved emission transients showing the distance dependence of the energy
transfer rate for the 2f-Os/2f-Ru (blue: 25 µM 2f-Ru and 50 µM 2f-Os), 2c-Os/2b-Ru (red:
25 µM 2b-Ru and 50 µM 2c-Os), and 2g-Os/2e-Ru (green: 25 µM 2e-Ru and 50 µM 2g-Os)
peptide pairs in 10 mM phosphate buffer solution at pH 7 and 25 ◦C. The P1/2e-Ru peptide
(grey: 25 µM 2e-Ru and 50 µM P1) is shown for comparison. From the transients it is clear
that the energy transfer rate is faster the closer the metal complexes are placed to one another.
The time-resolved emission data were collected at 660 nm with an excitation wavelength of
444 nm.
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quantum mechanical calculations can be carried out on selected structural snapshots of stable

stacking conformations observed in the MD simulations. This, in turn, may help to improve the

design of peptide scaffolds, allowing for more precise control over the molecular components.

4.4 Conclusions

The ability to control the positioning and organization of molecular components is central

to the design of functional molecular-based materials [78–81]. However, architectures that rely

solely on covalent bonding for structure (e.g. polymers, dendrimers) have limited control over

the assembly geometry and higher-order spatial control. Using peptides as scaffolds, our team

of three laboratories have designed an artificial self-assembling system that utilizes weak forces

to control the relative placement of Ru(II) and Os(II) complexes. The assemblies incorporate an

α-helical coiled-coil peptide scaffold consisting of α-helical heterodimers in which each coil

is functionalized with either a Ru(II)-containing energy donor or with an Os(II)-containing

energy acceptor. This architecture differs from many other types of molecular assemblies in

that it uses both intra- and intermolecular non-covalent interactions to adopt well-defined sec-

ondary and tertiary structures that control the placement of the energy transfer complexes. We

performed extensive and detailed all-atom MD simulations of this novel compound for several

topological placements of the chromophores and combined our observations with the experi-

mental results obtained by groups of Dr. John Papanikolas and Dr. Marcey Waters. Circular

dichroism spectroscopy in conjunction with time-resolved emission spectroscopy confirms the

importance of the heterodimeric α-helical coiled-coil structure for modulating energy transfer.

Ru(II) to Os(II) energy transfer is only observed in the folded structures, and energy transfer

rates measured across a series of structures are consistent with a systematic variation of the

metal complex separation.

Molecular dynamics simulations show Ru(II)-Os(II) distance distributions that are consis-
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tent with the order of the experimentally measured energy transfer rates. In addition, the sim-

ulations suggest that the assemblies maintain their α-helical character, but are dynamic in na-

ture, with stable cores but multiple conformations inter-changing on the nanosecond timescale.

These studies demonstrate the sequence-structure-function paradigm found in natural proteins

in a robust artificial self-assembling system and provide a promising new scaffold for func-

tional materials that couples straightforward synthesis with a fine control of three dimensional

structure.

This chapter is partially reproduced with permission from Dale J. Wilger, Stephanie E.

Bettis, Christopher K. Materese, Maria Minakova, Garegin A. Papoian, John M. Papanikolas,

and Marcey L. Waters, Position-Dependent Energy Transfer between Ruthenium(II) and Os-

mium(II) Modified Coiled-Coil α-Helical Peptide Dimers, Inorganic Chemistry, Article ASAP,

June 8, 2012. Contributions: Dale under supervision of Marcey has made the complexes,

performed structural experiments and provided samples for the photophysical experiments;

Stephanie under supervision of John performed photophysical measurements; Christopher un-

der supervision of Garegin has run DFT, equilibration and the beginning of the productive runs

for the computational study. Maria under supervision of Garegin has worked on various alterna-

tive designs (not reported herein), structure corrections to the initial setup and following equi-

libration and production runs. Christopher and Maria analyzed chromophore-chromophores

distance distributions. Maria has studied visual dynamics and elucidated chromophore pack-

ing conformations and analyzed peptide secondary structure dynamics.
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Chapter 5

Non-equilibrium Water Transport in a Nonionic

Microemulsion System ∗

5.1 Introduction

Microemulsions have been of great fundamental and industrial interest for many decades

[143]. In addition to the rich morphological behavior, microemulsions have a valuable property

to store and transport small and macro- molecules, allowing a wide range of applications, in-

cluding drug storage and release, oil recovery, textile cleaning, preparation of various cosmetic

products and perfumes, and food industry [143].

Water transport as a particular example of mass transport has great importance in membrane

and microemulsion science, especially for biological systems. Although, water transfer has

been more extensively studied in application to synthetic and biological membranes [144–153],

passive (diffusive) and active (usually osmotic) water transport in various emulsions and mi-

croemulsions has also been investigated [146, 154–162]. On the macroscopic scale, in ab-

sence of osmotic pressure, coalescence is believed to be a major transport mechanism [163].

On the mesoscopic scale, it was suggested that water transport could occur through the for-

mation of reverse micelles [146, 156], spontaneous emulsification [158, 159], hydrated sur-

factants [154], and diffusion of single molecules [160]. All these mechanisms have been
∗Maria Minakova, Alexey Savelyev, Garegin A. Papoian



observed under different conditions, but no unified picture has been created so far. Conse-

quently, most of the available knowledge on molecular transport in microemulsions was ob-

tained mainly from the macroscopic scale measurements, which do not provide direct atomistic

insight [146, 154, 159, 164].

To shed light on the microscopic mechanisms of water transport, Molecular Dynamics

(MD) simulations with All-Atom (AA) resolution can be used. Although, it is challenging

to study long time scales phenomena with AA MD simulations, they give more detailed and

thorough view on the dynamical behavior of a system. In particular, they do not contain strong

simplifications that are characteristic of coarse-grained computational models. In this work,

we used atomistic Replica Exchange Molecular Dynamics (REMD) simulations to investigate

a non-ionic ternary mixture of water/octane/C9 E3 [nonyl tri(ethylene oxide)] at various tem-

peratures, with an oil thickness of the nanoscale size.

The main goal of our work was to examine how water permeation occurs in a system with

surfactant rich phases. Since there is a high energetic cost to increase the area per amphiphilic

molecule at equilibrium, complex formation and transport can not be observed in equilibrated

systems on the timescales available for the MD simulations, unless there is a biased force acting

perpendicular to the leaflets [165–169] or a concentration gradient of a solute (ions, surfactant

molecules and etc.) in the system [169, 170]. In particular, the compression or saturation

of surfactant leaflets is a useful technique, allowing to create a difference of the surfactant

chemical potential inside and outside the leaflet and to initiate active transport [171–173].

We chose the approach similar to the latter due to its implementational simplicity and con-

ceptual correspondence to many experimental setups. The difference in composition creates a

difference in chemical potentials of the dispersed molecules, which in turns generates osmotic

pressure and a compound flux. The necessary time to achieve an equilibrium state can be

quite long, however this simulation setup allows studying microscopic details about transport

phenomena and relaxation dynamics in the initial response of the system.
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One of our particular goals was to investigate the way surfactants mediate such water trans-

port, since it could go through independent diffusion, inverse micelles, hydrated surfactants, or

even channel formation processes. We also studied water-surfactant complexes’ statistics (clus-

tering combined with number fraction distributions) and chemical interactions (visual analysis

combined with radial distribution functions). We highlight our findings in the context of prior

models of water transport.

5.2 Methods

5.2.1 MD Simulation Protocol

We have built an atomistic ternary system of water/octane/C9 E3 [nonyl tri(ethylene oxide)],

with constituents placed in a desired geometry of 5 alternating layers: water/surfactant/octane/surfactant/water

(see Figure 5.1). The AMBER10 [174] suit of programs was used for system initialization and

all-atom MD simulations. First, we prepared octane and surfactant molecules since they do not

enter the standard molecular database of AMBER10 package. To generate topology files and

also to assign the general AMBER force-field (GAFF) parameters [175] for these molecules,

we used the Antechamber module [176] of the AMBER10 package. Water molecules were

parametrized according to the TIP3P model [177]. Initial structure of a five-layer system, with

octane and surfactant molecules being perfectly aligned along z-direction, was built using the

Biochemical algorithm library (BALL) [178]. The composition of the ternary mixture has been

chosen to be %weight water ≈ 0.301, %weight surfactant ≈ 0.327, %weight oil ≈ 0.372. Specifi-

cally, the system was comprised of 5776 water molecules, 338 surfactant molecules and 1125

oil molecules. The the average area per surfactant molecule is ≈ 21.3 Å2, which is smallers

than the equilibrium range 40− 50 Å2 for similar surfactants. This setup allows us to observe

fast response of the system, once the relaxation dynamics is started. The total number of atoms

is 63,816, and the system is placed in a rectangular box having dimensions 60× 60× 160 Å3.
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This is the largest all-atomistic ternary microemulsion system simulated to date [179–181].

The initial conformation was first equilibrated at T = 500 ◦ K in the NPT ensemble in order

to melt the oil layers and the surfactant tails, followed by the graduate temperature decrease

to 300◦ K and subsequent switch to the NVT ensemble with total equilibration time ≈ 30

ns . Periodic boundary conditions were imposed in all directions. The productive run was

performed by replica exchange molecular dynamics (REMD) for 42 replicas of the system

in the temperature range 280 - 361 ◦K ( 7 - 88 ◦C). The temperature difference between

neighboring replicas was 1.93 ◦C, which set an average probability of an exchange to 0.33

[182]. A time range between switches was chosen to be 0.8 ps [183]. The total simulation time

was ≈ 26 ns for each replica, which summed up to 1 µs for all replicas. Because of the large

system size, the UNC Topsail supercomputer was used to perform simulations in the parallel

regime with the 4 nodes usage per replica.

5.2.2 Cluster Analysis

To characterize water and surfactant association into the complexes of varying sizes, we

implemented two clustering algorithms based on reiterative sorting procedure applied to wa-

ter and surfactant molecules participating in hydrogen bonds. The first one-dimensional 1D

clustering approach considered “water-water” connectivity only. Two water molecules were

considered to form a link (hydrogen bond) if the distance between the oxygen (any hydrogen)

of the first molecule and any hydrogen (the oxygen) of the second molecule was less or equal

to a certain threshold value lcl,ww. The second approach is technically similar yet has a dif-

ferent topological concept. It accounts not only for the water-water contacts, but also for the

water-surfactant and surfactant-surfactant contacts, taking into account inter-molecular con-

nectivity in the clusters. In such a way, if the distance between any two heavy atoms (oxygen

or carbon) of water and surfactant or surfactant and surfactant molecules was less than lcl,ws,

the corresponding molecules were considered to be associated with each other.
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The numerical values of these thresholds were set to the size of the first solvation shell for

each pair of molecules (lcl,ww = 3.1 Å, lcl,ws = 3.8 Å). The latter was determined, in turn,

from the corresponding water-water, water-surfactant, surfactant-surfactant atomistic Radial

Distribution Functions (RDF).

After that, lists of links between water and surfactant molecules were used in the recursive

iterations, which are briefly described below. At the first sorting, one arbitrary molecule is put

to the first cluster, then all molecules linked with the chosen one (neighbors) are also added into

the first cluster. At the second and the subsequent sorting cycles, all neighbors of neighbors

are added into the cluster. Sorting is preformed until the cluster size stops increasing. Then

one of the molecules not added to the first cluster is included into the second cluster and the

procedure is subsequently repeated until all water and surfactant molecules have been sorted.

As a result, the cluster size probability distribution function P(M,N) was obtained by his-

togramming clusters with respect to their sizes (M - number of water molecules and N - number

of surfactant molecules involved) and averaging this distribution over all simulation snapshots

for the corresponding temperature.

We also checked how the cluster size P(M,N) depends on the value of the link parameter

lcl,ww, since it was particularly important due to the relation to the “inverse micelle” water

transport mechanism. Namely, if the marginal distribution of water cluster sizes P ′(M) =∑
N P (M,N) showed a maximum at the M > 1 , it would indicate that the dense water

core formation commonly occurs. This, in turn, would provide strong support for the “inverse

micelle” water transport model.

Clustering analysis was, therefore, performed for the following set of lcl: 2.5, 2.7, 3, 3.5,

4, 5, 6, and 7 Å, at the temperature 25 ◦C. All resulting cluster size probability distributions

P’(M) have a maximum value around the unity, although, for 7 Å P ′(M) showed low broad

peaks (probability value less than 0.1) for some values M > 5. With growing value of lcl,ww,

P ′(M) becomes wider, but preserves its shape.
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In addition to that, we calculated the average ratio 〈M/N〉 which shows how many surfac-

tant molecules per water molecule are in a cluster. We compared 〈M/N〉 for all temperatures

and found that 〈M/N〉 is conserved within the 2− 3 range. At the same time, the maximum of

P (M,N) (most probable value) was found for 〈M/N〉 within the 1 − 2 range for any M and

all temperatures.

5.3 Results and discussion

The preparation of the initial configuration was performed in a such way that there would

be an excess of surfactant molecules in the leaflets, thus providing no energetic penalty for the

surfactants to leave the layers of residence. At such circumstances it would be straightforward

to expect active surfactant permeation of the oil layer, which might cause passive water trans-

port as well. It should be noted that at the equilibrium surfactant density in the leaflets one can

not observe the formation of “water-surfactant” complexes at the sub-microsecond timescales.

To verify that, we constructed a microemulsion system containing a very similar C10E4 surfac-

tant, water and octane with the same volume fractions, but the equilibrium value of the area per

surfactant A0 ≈ 44 Å2. Nor significant water permeation into the oil layer, neither the “water-

surfactant” complex formation were observed in this system for a wide range of temperatures

during ≈ 2µs of the REMD simulations. Therefore, we suggest that the formation of such

aggregates at the timescales smaller than a microsecond is provided by the non-equilibrium

effects in the microemulsion system containing C9E3 surfactant. Accordingly, the focus of the

current paper is on the C9E3 microemulsion system, and the extensive analysis of the equilib-

rium C10E4 microemulsion system will be presented elsewhere.

A typical MD simulation snapshot along with various water-surfactant complexes is shown

in Figure 5.1. The central observation of the present study is the formation of the water-

surfactant complexes in the surfactant/oil layer, as a results of relaxation dynamics of the
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surfactant-rich leaflets, that primarily contain surfactant molecules along with oil molecules

penetrating from the oil slab and water molecules dragged in by the surfactant molecules. We

observed such aggregates at all stages of the MD simulation. Additionally, visual inspection

suggested that water-surfactant complexes actively permeate surfactant and oil layers of the

ternary mixture and vary in sizes.

b) c) d)

Figure 5.1: (a) A snapshot of the system in a box at T1=25 ◦C. Color scheme: water molecules
are red, surfactant molecules are green, and oil molecules are grey. The water-surfactant com-
plexes formed at the boundary of/in the oil layer can be seen. (b) A snapshot of a single
surfactant molecule solvating one water molecule. Color scheme: green spheres are surfactant
carbons and hydrogens; ruby spheres are surfactant oxygens; red spheres are water hydrogens
and oxygens. (c) A snapshot of several surfactant molecules solvating several water molecules.
The color scheme is the same as in (b). (d) A snapshot of a micellar-like aggregate, including
surfactant molecules (green) and water (red). Oil molecules in (b)-(d) are removed for the lucid
demonstration of the water-surfactant complexes.

Therefore, for more quantitative description of the water permeation process, we imple-
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mented two clustering algorithms. First approach was based on statistical histogramming of

all water clusters in the system with respect to their sizes. Two water molecules were treated

as belonging to one cluster if the oxygen-hydrogen distance was less than a size of the first

solvation shell, taken from corresponding radial distribution functions (see Figure 5.4). After

the clustering procedure they were histogrammed by number of water molecules in a cluster,

thus providing a probability distribution function P (M) at a particular temperature (see Fig-

ure 5.2). It is important to mention that such one-dimensional (1D) water clustering algorithm

accounts only for the water complexes that are directly connected through hydrogen bonding

and does not take into account the role of surfactant molecules in these processes. As shown

in Figure 5.2, the most probable size of water clusters is one, which means that the number of

larger clusters is insufficient and water penetration happens mostly without dense water core

formation. This observation needed further investigation to elucidate whether a single wa-

ter molecule diffusion or the surfactant mediated permeation was the most probable transport

mechanism.

For this reason, the second clustering algorithm has been implemented to obtain 2-dimensional

cluster size probability distribution P (M,N), where P is a probability to find a cluster with

M waters and N surfactants. We found that P (M,N) reaches a maximum for N/M ratio in

the range ≈ 1 − 2 for all M . Yet the average number of surfactants per water molecule in

a cluster is 〈N/M〉 ≈ 2 − 3, indicating that water sharing of a surfactant polar cage com-

monly occurs in the complexes. Nevertheless, the marginal distribution of water cluster sizes

P ′(M) =
∑

n P (M,N) peaks around unity as shown in Figure 5.3, hence, most of the water

molecules in the oil layer prefer to aggregate with surfactant molecules (hydrated surfactants)

instead of forming water clusters (dense core), surrounded by a shell of surfactant molecules,

where the latter structure would correspond to inverse micelles.

To further characterize the formation of the water-surfactant complexes, we tested whether
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Figure 5.2: Probability distribution function P (M) for one-dimensional (1D) clustering of wa-
ter molecules shown for several temperatures T = 7, 25, and 88◦C. Most probable cluster size
is given by the maximum of P(M) and is equal to 1 for all temperatures. With the temperature
increase, probability distribution becomes wider, suggesting that larger clusters are permitted
in the hydrophobic region. This effect is partially due to the overall increase of the the water
density on the oil slab. The change in the clusters’ distribution with temperature provided by
the visual analysis is schematically shown in the inset. Color scheme: water molecules are red,
surfactant molecules are green, and oil molecules are grey. Note the difference between the
clusters obtained from 1D clustering and 2D clustering (see Figure 5.3).

any specific chemical interactions are responsible for the solvation of water by surfactant

molecules. We calculated a set of RDFs among various atoms of the water and surfactant

molecules (e.g., water oxygens and surfactant head’s terminal hydrogens). Since there can be

a significant number of possible hydrogen-oxygen atom pairs in this system, we show only

RDFs with the most pronounced first and second solvation peaks (see Figure 5.4).

The comparison among various RDFs revealed an interesting structural property of water -
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Figure 5.3: Marginal probability distribution function P ′(M) for two-dimensional (2D) clus-
tering of water molecules shown for several temperatures T = 7, 25, and 88◦C. Most probable
cluster size is given by the maximum of P’(M) and is equal to 1 for all temperatures. With
the temperature increase, probability distribution becomes narrower, suggesting that clusters
dissociate into smaller ones in the hydrophobic region. The change in the clusters’ distribution
with temperature provided by the visual analysis is schematically shown in the inset. Color
scheme: water molecules are red, surfactant molecules are green, and oil molecules are grey.
Note the difference between the clusters obtained from 1D clustering and 2D clustering (see
Figure 5.2).

surfactant complexes, namely, the hydrogen bond formation between the water oxygen and the

terminal surfactant hydrogen is much more common than any other possible hydrogen bonding

in the oil-surfactant layer. This is confirmed by the significantly higher first solvation peak of

the “water oxygen - surfactant terminal hydrogen” RDF compared to that of all possible“water

hydrogen - surfactant oxygen” RDFs in the surfactant/oil layer. This point is illustrated in the

Figure 5.4 inset as well, where a typical water-surfactant complex is shown.
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Figure 5.4: Radial Distribution Function(RDF) of various atom pairs of water and surfactant
that can potentially contribute to hydrogen bond formation in the oil slab. Since our main
interest is the “water-surfactant” complexes in oil, these RDFs has been computed for the
molecules located in the oil layer. The notations for RDF atom pairs are shown in the inset,
which is a snapshot of a “water-surfactant” complex taken from the simulations.

A discussion above suggests that the main stabilizing mechanism for the water solvation by

surfactants is a hydrogen bond formation among water oxygens and the terminal hydrogens of

the surfactant head groups. It is important, that the water “solvation cage” is highly dynamic, so

single water molecule can be solvated by multiple surfactants or move from one polar cage to

another within an aggregate, as well as share one “solvation cage” with other water molecules

(see Figure 5.1 (c) and (d)).

Visual analysis of the MD simulation movie revealed another compelling observation, that

large water-surfactant complexes are found at the surfactant-oil interface and do not travel
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Figure 5.5: Number fraction distributions (NFD) for (a) oil, (b) surfactant, and (c) water for
10 temperatures chosen from 42 available. The subplot in (c) shows full profile of water NFD,
whereas the main plot (c) shows the water profile only at low concentrations, since water
presence in the oil layer is still quite low comparing to the rest of the system. The abscissa is
a coordinate along the layers normal, which corresponds to a horizontal axis in Figure 5.1 (a).
The ordinate is a number fraction calculated from Eq. ??.
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through the oil layer unless the temperature is very high (70-80 ◦C). There was seemingly

a two-step process of the water transportation in the microemulsion system, where at first

water molecules were accumulated in water pockets located within the surfactant layers, and

at second, one to several water molecules wrapped by surfactants were transported through oil

to a water pocket at the opposite side. To investigate the character of water penetration into

the oil-surfactant interface, the number fraction distributions (NFD) along the layer normal

(z-axis) were calculated for all components:

φj(z) =
N j(z)

Nwat(z) +N surf (z) +N oil(z)
, j = (water, surfactant, oil) (5.1)

Oil, water and surfactant NFDs are plotted for several temperatures in the Figure 5.5. It is

seen that for all temperatures there is a local increase in the water number fraction at positions

z = 50Å and z = 110Å, as well as an appearance of a “plateau” in surfactant concentration

gradient in the range of z ∈ (40-60) Å and z ∈ (110-130) Å [see Figure 5.5(a),(b)]. Oil NFD has

local minima at the same regions, where most large water-surfactant aggregates are situated

(see Figure 5.1 (a),(c)).

With increasing temperature, surfactant NFD spreads out, and surfactant layers become

more friable to water and oil intrusions (see Figure 5.5 (b)). The presence of the surfac-

tant molecules in the oil layer significantly grows as expected, since non-ionic surfactants are

known to become more oleophilic with the temperature increase [184]. At the same time, as

temperature gets elevated, water concentration in oil increases, which is accompanied by the

spreading of the “water-surfactant” complexes traveling through bulk oil (see Figure 5.5 (c)).

As for oil distribution profile, it spreads out as well, and oil actively penetrates through the

surfactant layers creating more direct “water-oil” contacts (see Figure 5.5 (a)) .
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5.4 Conclusions

MD simulations help to provide detailed microscopic information, which otherwise is quite

difficult to extract from experimental or theoretical studies. In the current paper, we reported

results obtained from extensive atomistic REMD simulations on a non-ionic ternary mixture

water/octane/C9E3. The total simulation time in this work was near 1 microsecond, which

represents by far the largest atomistic simulation of a microemulsion system to date.

We observed the non-equilibrium relaxation dynamics of the ternary system in a wide range

of temperatures ( 7 - 88 ◦C) and studied the formation and transport of the water-surfactant

complexes. We showed, that surfactants play a role of an effective solvent for water molecules,

facilitating water transport through the oil slab. We also found that a “polar solvation cage”

created by surfactant molecules is highly dynamic, so there is no specificity in hydrogen bond

formation with respect to any particular surfactant oxygens. However, majority of water oxy-

gens form a hydrogen bond with the terminal hydrogen of a surfactant head (see Figure 5.4).

One of the fascinating observations in this work is that the major amount of water solubi-

lized by surfactant is situated in pockets on at the border between surfactant and oil layers and

is not homogeneously distributed in the surfactant-oil slab (see Figure 5.5). We also detected

that with increasing the temperature the larger aggregates detach from the interface and travel

through the oil layer, raising overall water presence in oil.

Despite the fact that water-surfactant complexes vary in topology and sizes, our cluster

analysis showed that the majority of these complexes do not form dense water cores, thus,

providing evidence for the alternative “hydrated surfactants” transport mechanism [154, 158,

159] (see Figure 5.2).

It will be interesting to investigate the transport mechanisms of other species in the future

work, such as weak acids or small ions, as well as their effects on water permeation. Also,

calculation of such important characteristics as the diffusion, partition and permeability coeffi-

cients and their dependences on temperature would be of great fundamental as well as applied
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biological and industrial interest.

Reproduced with permission from Maria Minakova, Alexey Savelyev, Garegin A Papoian,

Nonequilibrium Water Transport in a Nonionic Microemulsion System,The Journal of

Physical Chemistry B (2011) ,115 (20), 6503-6508
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Appendix A

Supplementary information for the manuscript ”Theory of

Active Transport in Filopodia and Stereocilia”

A.1 Efficiency of active transport and non-monotonic profile

As mentioned in the main text, the maximum in the actin profile is pumped up by the

motors, and should gradually disappear if the transport becomes less and less efficient. The

actin profiles for different values of the loading rate, kl, (binding between a motor on filament

and a G-actin monomer) are plotted Fig.A.1, clearly illustrating this effect.

A.2 The boundary conditions

The choice of the third boundary condition for the equations describing the motor profiles

is a subtle issue and depends on the particular question one has in mind. This choice only

has a slight effect on the solution of the equations, so it is not very important. However, it is

worthwhile to discuss it for clarity purposes.

For the purely mathematical, continuous problem, where the filaments don’t exist outside

the tube, the appropriate boundary condition is cb(0) = 0 (from which follows the A(0) = 0
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Figure A.1: One of the possible ways to influence the efficiency of transport is to change
binding rate of G-actin to motors. Concentration profile changes to a monotonic when transport
becomes completely inefficient.

in the actin part) and no additional assumptions (like detailed balance) are required. Indeed, if

the filaments do not cross the z = 0 point, neither can bound motors, hence Jb(0) = 0, and

as Jb = v(cb)cb, cb(0) = 0. This argument can be presented in a more detailed way. Let us

consider a small (going to infinitesimal later) volume of the tube near the base. Integrating the

second of the motor equations over this volume one gets:

∂Jb

∂z
= −koffcb + koncf , figur (A.1)

δz∫
0

∂Jb

∂z
dxdydz =

δz∫
0

(−koffcb + koncf)dxdydz, (A.2)

(Jb(0 + δz)− Jb(0+))Sf = (−koffcb(αδz) + koncf(αδz))Sfδz, (A.3)
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where Sf is cross-section of the filopodium and 0 ≤ α ≤ 1.

Since Jb(0+) = 0,

Jb(0 + δz)Sf = (−koffcb(αδz) + koncf(αδz))Sfδz, (A.4)

lim
δz→0

Jb(δz) = lim
δz→0

(−koffcb(αδz) + koncf(αδz))δz = 0, (A.5)

and as Jb = v(cb)cb, one can conclude that lim
δz→0

cb(δz) = 0 and use the boundary condition

cb(0) = 0. (A.6)

In our simulations, however, the space is split into compartments, and the concentration

profiles are not continuous, and the first point corresponds to the first compartment, which

spans 54 nm starting from z = 0. It is not obvious how to directly compare the simulation

results with continuous analytical curves at z = 0. To compare one should take average of

the analytical curve over the first 54 nm and using it as cb(0) and solve the equations again.

Alternatively, one can assume detailed balance between cf and cb at z = 0 (and between cb and

A in the actin equations), which turns out to be a good approximation.

In real filopodia the filaments continue into the cell bulk (unlike our simulations), making

the cb = 0 condition of the formal problem less relevant. Detailed balance in the cell bulk,

on the other hand, is a plausible assumption as a first approximation. The next approximation

would require modeling of the filaments with motors in the bulk (the lamellipodium) explicitly.

Thus, the detailed balance BCs are more interesting and relevant for the physical problem,

so they are the ones used in the paper. However, it turns out that both alternative BCs lead

to almost indistinguishable results, except for the very beginning of the concentration profiles.

To demonstrate this, we plotted below the graphs corresponding to the solution of the formal
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mathematical problem, with no additional assumptions, and the cb(0) = 0 boundary condition

(Figs. S3.2-S3.6).

A.3 Detailed balance in the motor part

Seeing how soon the detailed balance is established with the cb(0) = 0 boundary condition,

one may be prompted to see what will happen, if one assumes detailed balance between motor

binding to the filaments and falling off along the whole tuve, that is

koffcb = kon(1− cb/cs)cf (A.7)

for all z. In this case, both JMM equations trivialize and uncouple, which does not make much

physical sense. However, the conservation law for the total flux, Jb +Jf = 0 turns out to retain

its meaning, and after substituting cf from the detailed balance condition yields an equation for

cb:

−Dc′f + cb(v(1− cb/cs)− vr) = 0, (A.8)

cf =
koff

kon

cb

1− cb/cs

, c′f =
koff

kon

c′b
(1− cb/cs)

2 (A.9)

c′b =
kon

koffD
cb(1− cb/cs)

2(v(1− cb/cs)− vr). (A.10)

Using notation b = cb/cs, r = vr/v, we rewrite the equation as

b′ =
konv

koffD
b(1− b)2(1− b− r). (A.11)
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The variables are separated, so one can integrate the equation:

z + C =
koffD

konvr

 log br
2
(1−b)(1−r

2)

1−r−b

r(1− r)
− 1

1− b

 . (A.12)

Taking into account the boundary condition

b(z)
∣∣∣
z=0

= b0 = cb(0)/cs =
koncf(0)

koffcs + koncf(0)
, (A.13)

one obtains the solution:

z =
koffD

konvr

 log

[(
b(1−b0)
b0(1−b)

)r2
(1−b)(1−r−b0)
(1−b0)(1−r−b)

]
r(1− r)

− b− b0

(1− b)(1− b0)

 . (A.14)

A.4 G-actin profiles and experiments

While motor profiles within our model are universal (independent of length), G-actin pro-

files will obviously be different for different lengths. In fact, G-actin profile sets up the sta-

tionary length. However, at stationary length, they will have common features (provided there

is no special mechanisms additional to those we consider in this work): negative slopes at the

base and at the tip, concentration at the tip such that polymerization balances the retrograde

flow. The (de)polymerization rates k+ and k− depend on the membrane stress, which can de-

pend on the length, adding a correction to the Eq. 6 in the main text. However, to the first

approximation of the straight tube, the membrane force does not depend on the length [185]

Experimental observation of G-actin profiles in filopodia is complicated, mainly, because

of the presence of large amounts of F-actin. There are techniques to discriminate between

the two, like labeling only small fraction of actin or labeling DNAse I, which only binds to

G-actin but not F-actin [186]. Hopefully, the latter can achieve sufficient spatial resolution for
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obtaining the profiles in the narrow tube full of F-actin like a filopodium or a stereocilium.

A.5 More connections to experiments

Apart from the decrease in the effective motor speed due to traffic jamming, the ATP hy-

drolysis rate itself (by an individual motor) can decrease due to autophosphorylation, as the

local motor concentration increases [44, 187].

There is no direct experimental evidence of G-actin monomers being transported by either

Myosin III or Myosin X, but these motors do carry espin1 and Ena/VASP respectively. Both

espin1 and Ena/VASP have actin-binding domains, which prompts a plausible suggestion that

they may be serving as “delivery devices”, or adaptors, or scaffolds, between the motor and G-

actin. We investigated this possibility in our previous work on active transport in filopodia, for

Ena/VASP and Myosin X (the framework is general, however, and equally applies to espin1 and

Myosin IIIa) [48]. Presence of espin1 promotes elongation of the filopodia [44, 188], although

it may be due to its anti-capping and polymerization-promoting functionality rather than active

G-actin delivery. Ena/VASP is known to have an anti-capping role.

A.6 Retrograde flow

The retrograde flow plays an important role in setting up the stationary length, as it de-

fines the actin flux through the filopodial cross-section (or, rather two equal fluxes with op-

posite signs). In the model reported in this work, we use a constant retrograde flow speed,

which depends neither on polymerization, nor on various protein concentrations. In reality,

the retrograde flow rate can be influenced by many factors both in the cell bulk (active ma-

chinery pulling filaments back; rearrangements and filament degradation in lamellipodia) or

in filopodia itself, like focal adhesions [57], or force from the membrane acting on a filament
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which is polymerizing against it. We investigated the coupling between the retrograde flow

and polymerization in our previous work (reported in the corresponding Supplemental Infor-

mation) [48]. This coupling can be easily taken into account in the mean-field sense, where the

results are in close agreement with more detailed stochastic simulations that allow for the ret-

rograde flow fluctuations. In this work we focused on the phenomena brought in by molecular

motors inside the filopodium, and, hence, chose in favor of a simpler model where the retro-

grade flow is simply held constant and does not depend on other parameters and processes.

This assumption can be released in a straightforward manner, if needed.
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Appendix B

Supplementary videos for Chapter 4

Movie 1: https : //www.sugarsync.com/pf/D74789016551373560706

Movie 2: https : //www.sugarsync.com/pf/D74789016551373560709

Movie 3: https : //www.sugarsync.com/pf/D74789016551373560703

Movie 4: https : //www.sugarsync.com/pf/D74789016551373560717

Movie 5: https : //www.sugarsync.com/pf/D74789016551373560719
Movie 6: https : //www.sugarsync.com/pf/D74789016551373560711
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