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ABSTRACT

JUSTIN CONTAT: Political Lobbying With Private Information.
(Under the direction of Sergio Parreiras)

This dissertation presents original research on a game theoretic model of political lobbying.

I model political lobbying as an all-pay auction with two players and private information, where

each player/lobbyist submits a campaign contribution and the highest contribution wins political

favor. In the first chapter I defend the use of using finite types in the lobbying game by showing

that equilibrium behavior in a continuous type all-pay auction can be approximated (to any degree

of accuracy) by equilibrium behavior in a finite-type all-pay auction, provided that the distributions

of both games are close enough. In the second chapter I next show that introducing asymmetry

between lobbyists in the private information game has unusual and counter-intuitive effects on

the total campaign contributions. In particular, while the equilibrium behavior is robust to small

changes in the information structure, the comparative statics of asymmetry are not. Introducing

an arbitrarily small amount of private information can completely reverse the comparative statics

conclusions of the complete information game. Finally in the third chapter I introduce maximum

contribution limits on total campaign contributions. Contribution limits work to reverse the effects

of asymmetry and change the relative probabilities of winning political favor. Since asymmetry

may decrease total expected contributions, it is possible that by reversing these effects that impos-

ing maximum contribution limits can increase total expected contributions. With complete infor-

mation lobbying imposing maximum limits will increase total expected contributions if and only

if lobbyists are asymmetric. With private information, however, it is possible that in expectation

maximum contribution limits will not increase total expected contributions. Intuitively maximum

contribution limits hurt lobbyists who are likely to donate a lot, but benefit lobbyists who normally

do not contribute much. Total campaign contributions will increase only if the decrease in total
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contributions from the stronger lobbyist is outweighed by the increase in contributions from the

weaker lobbyist.

iv



ACKNOWLEDGMENTS

First I would like to thank my advisor Sergio Parreiras, my committee members Gary Biglaiser,

Fei Li, Peter Norman, Andrew Yates, and my colleague Ken Reddix for all of their patience, en-

couragement, and invaluable advice. I would also like to thank the entire faculty of the economics

department at the University of North Carolina at Chapel Hill, in particular Helen Tauchen for all

of her support throughout the years. I would like to thank the graduate students of the microeco-

nomic theory graduate seminar for their feedback during my presentations. Lastly I would like to

thank the graduate school at the University of North Carolina at Chapel Hill for the opportunity to

pursue graduate studies in economics.

v



TABLE OF CONTENTS

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Equilibrium Convergence in the All-Pay Auction . . . . . . . . . . . . . . . . . . . . 4

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Information Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.2 Payoffs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.3 Equilibrium Characterization . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Convergence of Equilibria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Symmetric Convergence of Equilibria . . . . . . . . . . . . . . . . . . . . 14

2.3.2 Asymmetric Convergence of Equilibria . . . . . . . . . . . . . . . . . . . 16

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Comparative Statics in the All-Pay Auction . . . . . . . . . . . . . . . . . . . . . . . 20

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Complete Information Comparative Statics . . . . . . . . . . . . . . . . . . . . . . 23

3.2.1 Symmetric Equilibrium Benchmark . . . . . . . . . . . . . . . . . . . . . 23

3.2.2 The Assimilation Effect: A First Look . . . . . . . . . . . . . . . . . . . . 23

3.3 Private Information Comparative Statics (Valuations) . . . . . . . . . . . . . . . . 26

3.3.1 Review of Equilibrium Structure . . . . . . . . . . . . . . . . . . . . . . . 27

vi



3.3.2 Symmetric Equilibrium Benchmark . . . . . . . . . . . . . . . . . . . . . 28

3.3.3 Asymmetric Equilibrium: The Assimilation and Stacking Effects . . . . . . 28

3.4 Private Information Comparative Statics (Probabilities) . . . . . . . . . . . . . . . 43

3.4.1 Two Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4.2 Three Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4.3 Summary of Changing Probabilities . . . . . . . . . . . . . . . . . . . . . 49

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 Maximum Contribution Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Model and Equilibrium Characterization without Contribution Limits . . . . . . . . 53

4.3 Maximum Limits with Complete Information . . . . . . . . . . . . . . . . . . . . 56

4.4 Maximum Limits with Private Information . . . . . . . . . . . . . . . . . . . . . . 60

4.4.1 Symmetric Lobbyists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4.2 Asymmetric Lobbyists . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

vii



LIST OF FIGURES

2.1 Finite-Type Space Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Concavity of Ui(a|µj,n, ti) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Concavity of σi(ai|·) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Convergence of Equilibrium Supports . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Complete Information Equilibrium and Revenues . . . . . . . . . . . . . . . . . . 26

3.2 ∆Rev: p1,1 = p1 − ε and p1,3 = p3 + ε . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1 Complete Information Equilibrium, C =∞ . . . . . . . . . . . . . . . . . . . . . 57

4.2 Che and Gale (1998)’s Complete Information Revenues . . . . . . . . . . . . . . . 58

4.3 Expected Contributions for Symmetric Lobbyists . . . . . . . . . . . . . . . . . . 68

4.4 Expected Contributions with Asymmetric Lobbyists . . . . . . . . . . . . . . . . . 70

viii



CHAPTER 1

SUMMARY

1.1 Introduction

In the past decades there has been growing concern about the influence of money in politics.

Most recently in 2010, The Supreme Court of the United States of America ruled in Citizens

United vs. Federal Elections Commission that as long as contributions are made to an independent

third party (such as a Super PAC) that the contributions are expressions of free speech and thus

protected by the First Amendment to the Constitution of the United States of America. Thus in

certain circumstances, individuals are allowed to contribute unlimited amounts of money as long

as the contribution is not direct. The main goal of this dissertation is to understand the impact

of maximum contribution limits on the behavior of lobbyists relative to a lobbying environment

without contribution limits.

Political lobbying has been studied in the economics literature for several years, often referred to

as rent-seeking. Early examples include Becker (1983) and Baye, Kovenock, and de Vries (1993)

among others. Most commonly political lobbying is modeled as a contest between lobbyists,

each of whom submits a non-refundable contribution. It is commonly understood that the highest

contribution is granted political favor by a local politician. Politicians cannot grant refunds to

lobbyists, as this would clearly signal that the politician was in the business of selling political

favors. Accusations of corruption, graft, and bribery would hastily be thrown. The politician is

assumed to view the lobbyists as perfect substitutes in that it is only the lobbyist who contributes

most that is the favorite of the politician. It is in this environment that we analyze political lobbying.

Formally the lobbyists are risk-neutral players in an all-pay auction, where each valuations is drawn

independently of the other from some probability distribution.



I show that the combined effects of private information and asymmetry between lobbyists are

needed to fully understand changes in lobbying behavior and total contributions when contribution

limits are enacted. Lobbyists have private information about the value of political favor. Each

lobbyist does not exactly know the valuation of the other lobbyist, only the relative likelihoods

of different valuations (i.e. the probability distribution of valuations). The lobbyists may differ

in the relative likelihoods they place on each other’s valuations. In other words, they are ex-ante

asymmetric because their type space and type space distributions may differ. Relaxing either pri-

vate information or asymmetry between the lobbyists will lead to different qualitative conclusions

regarding lobbying behavior.

The first chapter of this dissertation provides a technical result that justifies the use of finite types

in the lobbying game. With types drawn from an absolutely continuous distribution, equilibrium

behavior is characterized as a solution to system of non-linear first-order differential equations. In

all but the simplest distributions, an analytical solution is not possible. In contrast, equilibria under

finite types are much easier to describe. The main result of the first chapter is to show that the

equilibrium correspondence (in fact it is a function) is continuous with respect to the information

structure. Small changes in the type space distribution lead to small changes in equilibrium be-

havior. While this result is known to hold in games with continuous payoff functions, the all-pay

auction has payoff functions that are neither upper-semicontinuous nor lower-semicontinuous and

so that standard results do not apply. The key driver of the results is the monotonicity of the all-pay

auction: higher types contribute more with certainty.

Additionally this approach provides some insight for the equilibrium and its key properties that

are more difficult to discover with continuous types: equilibrium strategies are increasing in val-

uation and there are decreasing returns to contributing more. What matters is not the modeling

choice of the researcher (finite types or continuous types), but rather the distribution of types that

each lobbyist faces. In the first chapter we introduce the model and notation that will be used in

subsequent chapters. This includes the payoff functions, information structure (i.e. type spaces

and probability distributions over type spaces), and equilibrium definition and characterization.
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The second chapter provides another technical result. It demonstrates the complexity that arises

when even a small amount of asymmetry is introduced into the game. In particular, total contri-

butions can increase or decrease depending upon how a lobbyist is made stronger relative to the

other. Nevertheless we provide conditions under which asymmetry will increase total contribu-

tions. Two effects capture the intuition of the results. The first effect, the assimilation effect ,

shows that lobbyists always play to the level of their competition. Weaker competition means less

contributions while stronger competition means more contributions. The second effect, the stack-

ing effect, exploits the monotonicity of the lobbying game. Whenever a type of a lobbyist would

want to contribute more, so too must all of the lobbyists higher types. Monotonicity is the most

important property of the lobbying game.

The third and final chapter is the main focus of the dissertation. Building on the results of the first

two chapters, we show that contribution limits essentially work to reverse the effects of asymmetry.

Thus to understand contribution limits, it is first necessary to understand how asymmetry changes

equilibrium behavior. Lowering the maximal allowed contribution means that stronger lobbyists

will not be able to contribute as much as they were previously (without the limit). Weaker lobbyists

will see greater returns from contributing and these contribute more. The tension between these

two effects determines whether revenues will increase or decrease. After proving existence of

equilibrium in the private information environment, which is a natural extension of the complete

information construction, I demonstrate that asymmetry is necessary for a maximum limit to be

able to increase total expected contributions relative to the case with no-limits. Reversing the order,

we see that unlimited contributions may not be revenue maximizing if the playing field is not level

between lobbyists. However when lobbyists are evenly matched, unlimited contribution limits

allow more surplus extraction by politicians by creating an arms race between political donors.

This behavior is echoed in modern political life with wealthy donors on both sides of the politician

spectrum trying to outspend each other to the benefit of the politician.
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CHAPTER 2

EQUILIBRIUM CONVERGENCE IN THE ALL-PAY AUCTION

2.1 Introduction

In an all-pay auction (APA), each player chooses a costly action for a chance to win an indivisible

prize. The player with the largest action wins the prize, but all players must pay a cost equal to

their own action irrespective of who wins. Payments1 are totally unconditional in that each player’s

payment does not depend on the actions of others or the allocation of the prize. In this paper I

restrict attention to the standard2 all-pay auction with two players.

My main result shows that despite the inherent payoff discontinuities in the APA, the equilib-

rium correspondence is continuous3 with respect the information structure of the game. In fact,

since each information structure generates a unique equilibrium it would be more appropriate to

use the terminology “equilibrium function” instead of equilibrium correspondence. I show that as a

sequence of finite type space distributions converge to a continuous distribution, then the sequence

of unique equilibria in the finite games converge to the unique equilibrium of the continous-type

game. This implies the equilibrium correspondence is both upper and lower hemi-continuous4. In

particular, the main result implies that any equilibrium in a continuous-type APA can be approx-

imated with an equilibrium of a finite-type APA, provided the type space distributions of the two

1Payments can also be interpreted as costs of acquiring effort, political donations, or investment in R&D for
example. See Konrad (2009) for a more detailed introduction to the theory and application of APA’s.

2In this dissertation the standard all-pay auction means risk neutral players with independent private values.

3It is possible to assign a metric to measure the distance between two probability distributions. The notion of
continuity here would then correspond to the usual ε− δ definition, where distance between two distributions is given
by the information metric (such as the Levy-Prokhorov metric). See Shiryaev (1996) Chapter III Section 7 for a
detailed definition.

4 A correspondence Γ : X ⇒ Y is upper hemi-continuous if for any xn → x and yn ∈ Γ(xn) for each n, then there
exists a subsequence of ym that converges to some y ∈ Γ(x). A correspondence Γ : X ⇒ Y is lower hemi-continuous
if for any xn → x and y ∈ Γ(x), then there exists a sequence yn ∈ Γ(xn) such that yn → y.



games are close. The mixed strategy equilibria of the finite-type game converge to the pure strategy

equilibria of the continuous-type game as the type space becomes finer.

With complete information it is straightforward to show that APA equilibria converge as the

valuations converge. In this sense we can say that the equilibrium correspondence is upper hemi-

continuous in the information structure when there is complete information. The equilibrium cor-

respondence is also trivially lower hemi-continuous. This chapter extends both of these results to

the incomplete information APA in a very natural way. Siegel (2013) has the closest result to ours.

He shows that for any sequence of distributions for player 1 there exist some sequence of distribu-

tions for player 2 such that the sequence of equilibria converge to that of the continuum game. In

contrast I show that any sequence of equilibria converge provided their distributions converge as

well.

In general it is not true that the Nash equilibrium correspondence is continuous (i.e. both lower

and upper hemi-continuous), even for games of complete information. Engl (1995) shows that the

equilibrium correspondence is in general not lower hemi-continuous, but is asymptotically lower

hemi-continuous in that an equilibrium in the limit game can be approached by a sequence of εn

equilibria. Milgrom and Weber (1985) show upper hemi-continuity of the equilibrium correspon-

dence in a class of games with uncountable state spaces, though their results require uniformly

continuous payoffs for all players, a condition which is not satisfied by the APA. Additionally they

provide an example to show that in general continuity cannot be dropped.

A large insight of Milgrom and Weber (1985) is that it is only the expected distribution of

players’ actions that matters. In fact, the underlying monotonicity of the game means that in equi-

librium players experience decreasing returns to their actions. This ensures concavity of what I

label as “interim payoffs”, which in turn ensures upper hemi-continuity. I also use their concept

of distributional strategies as the appropriate object of convergence. This allows me to embed any

incomplete information APA (finite-type or continuous-type), as well as the complete informa-

tion APA, into a single environment. A distributional strategy for a player is a joint probability

5



distribution over actions and types that agrees 5 with the player’s type-space distribution.

This result complements the literature on equilibrium convergence in the APA. While others

have focused on equilibria change as a finite action set is enlarged to that of the continuum, I

study how equilibria change as a finite type set is enlarged. For a class of games which includes

the complete information APA, Dasgupta and Maskin (1986) show that the limit of equilibria, as

action sets become finer, is the equilibria of the limit. Similarly Athey (2001) shows that in a

class of incomplete information games with certain monotonicity properties6 (which includes the

APA), equilibria in finite-action games converge to equilibria in continuous-action games when the

action sets are made finer and finer and the type space is held fixed. My results, like those of Athey

(2001), crucially depend upon the underlying monotonicity of the game.

Amann and Leininger (1996) have shown for continuum types and 2 players that the if the type

spaces converge to a single point (i.e. complete information APA) then the associated sequence of

equilibria converge as well. This paper complements theirs in that I show that for type spaces “in

between” continuum types and a single type (i.e. complete information) the sequence of equilibria

converge as well.

2.2 Model

2.2.1 Information Structure

There are two risk-neutral players who compete for a chance to win an indivisible prize worth

ti > 0 to player i. We restrict attention to strictly positive valuations, but this is without loss of

generality because all zero-valuation types will not participate in equilibrium and hence will not

affect any of the results. Each ti ∈ Ti,n ≡ {t1i,n, t2i,n, . . . , tmi,n} ⊂ R++ is private information and

independently distributed according to c.d.f. Fi,n. A typical finite-type distribution is shown on the

left in Figure 2.1. Let pki,n ≡ Fi,n(tki,n)−Fi,n(tk−1
i,n ) denote the probability that i will have valuation

tki,n. Hence each Fi,n(·) is an increasing piece-wise constant function (i.e. a step function) that is

5The marginal on the distributional strategy must be equal to the probability distribution of type space.

6Her Single Crossing Condition (SCC) states that each player’s best response is increasing in type whenever his
opponents use increasing strategies themselves
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discontinuous on Ti,n, a countable set. There will also be a limiting space Ti,∞ = limn→∞ Ti,n,

described in detail in the next paragraph, which we will assume exists. This limiting space Ti,∞

will be dense in some interval of strictly positive types Ti,∗ ≡ [vi, vi]. Hence the sequences of Ti,n

will converge and form a countable dense subset of some closed interval Ti,∗.

Consider any sequence of finite-type c.d.f.’s {Fi,n}n that converges in distribution7 to an ab-

solutely continuous8 distribution Fi,∗ as in Figure 1. In general, each new term in the sequence

{Fi,n}n of finite-type c.d.f.’s may have more or fewer types, where types may be the same or

different. For example it could be the case that Ti,n = {1, 2, 3, 4, 5}, Ti,n+1 = {2.1, 4.8}, and

Ti,n+2 = {2, 2.1, 3, 4, 4.8, 5, 7}. In addition, the probability of each type typically changes for ev-

ery term in the sequence. Since I am interested in converging sequences of type spaces and their

distributions, I will assume that |Ti,n| = n for notational convenience9. We require the limiting

c.d.f. Fi,∗ to represent a continuous distribution. Though my result holds for any sequence of dis-

tributions, in particular we can think of adding types to a finite-type space, where at each iteration

after a new type is added the probabilities are adjusted to make the new distribution closer to Fi,∗.

In this way continuous-type spaces (i.e. those with absolutely continuous distributions) can

be approximated to any desired degree of accuracy with finite-type spaces by choosing a large

enough index in the sequence. The approximation procedure is analogous to the approximation

of a measurable function by a sequence of simple functions. Take an absolutely continuous in-

creasing function Fi,∗ with bounded support [ ti, ti ]. One sequence that approximates Fi,∗ can be

constructed by repeated bisection: for k = 1, . . . , n

7{Fi,n}n converges in distribution to Fi,∗, written Fi,n →d Fi,∗, if Fi,n(x) → Fi,∗(x) pointwise for all x where
Fi,∗(x) is continuous. Since Fi,∗(x) is continuous, this means pointwise convergence (in fact uniform convergence)
for all x.

8Absolutely continuous with respect to Lebesgue measure. The Radon-Nikodym Theorem then asserts the exis-
tence of a density function fi,∗ such that Fi,∗(x) =

´ x
−∞ fi,∗(t)dt, where the integral is with respect to the Lebesgue

measure.

9Though all that is needed is that limn→∞ Ti,n = Ti,∞
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t

1
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Figure 2.1: Finite-Type Space Distribution

Fi,n(x) =


Fi,∗(ti) = 0 if x ≤ ti

Fi,∗

(
ti + 2k

2n
(ti − ti)

)
if x ∈

(
ti + 2k

2n
(ti − ti), ti + 2k+1

2n
(ti − ti)

)
Fi,∗(ti) = 1 if x ≥ ti.

(2.1)

2.2.2 Payoffs

Each player i submits action ai ∈ Ai ≡ [0, āi] for some āi sufficiently large10. The player with

the highest action wins the prize, but each player i must incur a playing cost equal to ai regardless

of the allocation of the prize. Hence each player’s ex-post payoffs ui(ai, aj|ti) are discontinuous

when the actions are equal:

ui(ai, aj|ti) ≡


ti − ai if ai > aj

ti
2
− ai if ai = aj

−ai if ai < aj.

(2.2)

10 Letting āi be greater than player i’s largest possible valuation is sufficient. This is just to ensure that there are
actions large enough that no player will choose. See Contat (2014) and Chapter 3 for a discussion of equilibrium
existence and characterization when minimum and/or maximum constraints on the action space are imposed.
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In fact payoffs are neither upper semi-continuous nor lower semi-continuous in each player’s

action ai. I show later that despite this fact the equilibrium correspondence is in fact continuous

for the APA.

With finite types, we can define a mixed strategy for player i as a finite vector of functions, where

each coordinate corresponds to a different probability distributions used by a type: Gi,n(x) ≡(
Gi,n(x|t1i,n), . . . , Gi,n(x|tni,n)

)
. Here Gi,n(x|ti) is the probability that type ti chooses an action

less than or equal to x.

Defining mixed strategies in this way introduces measurability problems for uncountable state

spaces, where it is not clear how to define a mixed strategy in such an environment.11 Additionally,

in the APA equilibria with finite-types are in mixed strategies while equilibria with continuous-

types will use pure strategies. To circumvent these technical difficulties, I use distributional strate-

gies to embed both type spaces and strategies into a common environment. Formally, a distri-

butional strategy µi,n for player i is a joint probability measure on Ai × Ti,n with the restric-

tion that the marginal over the type space agrees with the player’s type distribution: for all x,

µi,n(Ai, (−∞, x]) ≡ lima→∞ µi,n((−∞, a], (−∞, x]) = Fi,n(x). In other words, µi,n(B, S) is the

probability that player i will both place an action in B ⊂ Ai and also have a type that is located in

the set S ⊂ Ti,n, where it is understood that B and S are measurable sets.

The equilibrium construction with finite types is characterized in terms of c.d.f. behavior Gi,n.

It is straightforward to translate this same behavior into the form of distributional strategies. I say

that a distributional strategy µi,n and finite-type behavior Gi,n are consistent with each other if for

each measurable set T ,

µi,n((−∞, x], T ) =
∑

t∈T∩Ti,n

pti,nGi,n(x|t), (2.3)

11 See Aumann (1964) for a more detailed and thorough discussion of this idea.
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where the measure is 0 if T ∩ Ti,n = ∅. If µi,n is consistent with Gi,n for each i, let σi,n(ai|µj,n) ≡

µj,n((−∞, ai], Tj,n) be the associated probability that i wins with action ai when player j 6= i uses

mixed strategies Gj,n. That is, it is the probability that all of j’s types together (in expectation) will

place an action less than ai. This is the fundamental equilibrium object for the APA. We will see

that monotonicity of the game ensures that this is a concave function, and hence continuous.

If each i uses distributional strategy µi,n consistent with some Gi,n then i’s interim payoffs

Ui(ai|µj,n, ti) are what i would expect to receive in payoffs given that j is using µj,n:

Ui(ai|µj,n, ti) ≡ ti σi,n(ai|µj,n)− ai. (2.4)

2.2.3 Equilibrium Characterization

Now I define an equilibrium for this game. The notion of equilibrium is the standard Bayesian

Nash Equilibrium. I define the support of each Gi,n(·|ti) as the closure of the actions where the

c.d.f. is increasing.

Definition 1 A pair of strategy profiles (G1,n, G2,n) consistent with (µ1,n, µ2,n) is an equilibrium

for the APA with type-distributions (F1,n, F2,n) if for all i, for all ti ∈ Ti,n, for all âti in ti’s support,

and all a ∈ Ai,

Ui(âti |µj,n, ti) ≥ Ui(a|µj,n, ti) (2.5)

With a finite number of types, Siegel (2013) has shown that there exists a unique equilibrium

in mixed strategies where types mix over disjoint intervals. This equilibrium is monotonic in that

higher types mix over higher intervals and hence place higher actions with probability 1. My main

result shows that these intervals shrink to single point for each type and monotonicity is preserved.

I present his equilibrium existence result for completeness:
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Proposition 1 (Siegel (2013)) For every pair of finite-type distributions (F1,n, F2,n), there exists a

unique equilibrium in mixed strategies (G1,n, G2,n), that is consistent with some (µ1,n, µ2,n), with

the following properties:

• Monotonicity: If ti > t′i, then Gi(·|ti) ≤ Gi(·|t′i), with equality only if both are equal to 0 or

1.

• Absolute Continuity: for each ti ∈ Ti,n, Gi,n(x|ti) is absolutely continuous and piecewise-

linear in x for all x. This implies Ui(ai|µj,n, ti) is continuous in ai.

• Concavity: for all i, σi,n(ai|µj,n) is an increasing concave function of ai. This implies

Ui(ai|µj,n, ti) is concave in ai and that Ui(ai|µj,n, ti) is strictly decreasing for large enough

ai.

Note that for each type ti, Ui(ai|µj,n, ti) either has a maximum at 0 or attains its maximum over

an interval. In the limit the interim payoffs will be maximized either at 0 or a single action.

If types are independently drawn from some absolutely continuous Fi,∗, Amann and Leininger

(1996) have shown that there exists a unique equilibrium in pure strategies. Further, the equilibrium

is monotonic in that higher types place higher actions with probability 1.

Proposition 2 Amann and Leininger (1996) For every pair of absolutely continuous (with re-

spect to Lebegsue measure) distributions (F ∗1 , F
∗
2 ), if there is an equilibrium, then it is unique and

in pure strategies (a∗1(·), a∗2(·)) with the following properties:

• Monotonicity: if t < t′ then a∗i (t) ≤ a∗i (t
′) with equality only possible if a∗i (t) = a∗i (t

′) = 0.

• Concavity: the probability that i wins with ai is strictly concave in ai. Hence interim payoffs

Ui(ai|µj,n, ti) are continuous in ai.

My main result shows that the equilibrium described in Proposition 1 converges to the equilib-

rium described in Proposition 2.
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Ui(ai|µj,n, ti)

ai

1

supp(ti)

Ui(ai|µj,∗, ti)

ai

1

a∗i (ti)

Figure 2.2: Concavity of Ui(a|µj,n, ti)

Indifference conditions require that for all actions ai in ti’s support where σi,n(ai|µj,n) is dif-

ferentiable that dσi,n(ai|µj,n)

dai
= 1

ti
. Monotonicity ensures that higher actions are chosen by higher

types. Concavity of σi,n(ai|µj,n) follows immediately for both finite types and continuous types.

Concavity implies that each type’s marginal gain of increasing ai is decreasing function, so that

eventually the marginal cost of increasing ai will be larger. The concavity of interim payoffs im-

plies that interim payoffs are maximized over an interval for finite types and over a single point for

continuous types. This is illustrated in Figure 2.

Hence each player’s equilibrium distribution of behavior is determined in such a way as to

make the other player indifferent in equilibrium. Suppose player j adopts equilibrium strategy

Gj,n consistent with some µj,n. The problem player i then faces is to choose the a ≥ 0 that

maximizes the concave function Ui,n(a|µj,n). Since this function is continuous, and the domain

for a is compact, a maximum exists. There are many Gj,n functions that can accomplish this. An

equilibrium will require that the Gj,n will be chosen in such a way that the induced behavior of

player i, Gi,n, will simultaneously make j indifferent.

Using the insight of Milgrom and Weber (1985), we see that from player i’s perspective it does

not matter whether player j has a finite number of types or a continuum of types. What does matter

for i is the expected distribution of j’s actions, specifically the probability that i can expect to win

with action a. Recall this is exactly the definition of σi,n(a, µj,n). Each type ti of i compares the

marginal expected benefit from increasing his action ti
dσi(ai|·)
dai

with the marginal expected cost of

−1. The previous two propositions show that the cardinality of j’s type space only affects how
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“smooth” σi(ai|·) is. Figure 3 below illustrates this point. The left graph illustrates the finite-

type APA while the right graph is the continuous-type case. In equilibrium type ti maximizes his

payoffs by choosing an a∗i where ti
dσi(a

∗
i |·)

dai
− 1 = 0, or equivalently, where dσi(a

∗
i |·)

dai
= 1

ti
.

σi(ai|µj,n)

ai

σi(ai|µj,∗)

ai

Figure 2.3: Concavity of σi(ai|·)

2.3 Convergence of Equilibria

Recall that a measure µi,n defined on measurable subsets of R2 converges in distribution to µi,∗

(also defined on measurable subsets of R2), written µi,n →d µi,∗, if µi,n((−∞, x1], (−∞, x2]) →

µi,∗((−∞, x1], (−∞, x2]) for all (x1, x2) where µi,∗((−∞, x1], (−∞, x2]) is continuous. In other

words convergence in distribution means that the c.d.f.’s converge point-wise everywhere the lim-

iting probability distribution is continuous.

For the finite game, define the equilibrium support of type tki,n as suppn(tki ) ≡ {a ∈ Ai :

gki,n(a) 6= 0}. For finite type spaces in the APA this is well defined. This is just the equilibrium

interval where tai,n places weight. In practice this depends upon the type space c.d.f.’s, but we

suppress the notation as {Fi,n}n and {Fj,n}n are taken as given. Below is a graph that illustrates

the equilibrium supports with the thick shaded lines. The support for each type has a piece-wise

constant density associated with it. I later argue that the support in the limit is just a single point,

which matches the equilibrium characterization given by Amann and Leininger (1996).
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ti
t∗i

suppn(t∗i )

ai

ti
t∗i

supp∞(t∗i )

Figure 2.4: Convergence of Equilibrium Supports

2.3.1 Symmetric Convergence of Equilibria

Before moving to the general asymmetric case, I start with the simple case of symmetric players

to illustrate the main features of the convergence. With symmetric type spaces, the kth type of

both players will mix uniformly with density gk1,n(x) = gk2,n(x) = gkn(x) = 1
pknv

k
n

over the interval

[bk−1
n , bkn], where b0

n = 0 and bkn =
∑k

r=1 p
k
nv

k
n. As the number of types increases, necessarily we

will have that pkn → 0 and hence gkn → ∞. This implies that each type’s equilibrium support, if

it converges, will converge to single point. Also note that for each n, types tki,n and tkj,n are the

only ones that are matched. Each player faces his mirror type in competition. This only holds with

symmetric players. Thus monotonicity ensures that the probability that tki,n wins is the probability

that tki,n meets types t1j,1n, . . . , t
k
j,n.

Note that previously I have indexed types in order of greatest valuation, where tki,n is the kth

lowest valuation for player i. It will be more useful to describe the upper boundary of each type’s

equilibrium support in a slightly different manner. For each t ∈ Ti,n, define T≤ti,n = {t′ ∈ Ti,n|t′ ≤

t, t ∈ R+} as the set of all types less than or equal to t. Then define ci,n(t) as the upper bound of

the support for type t under type space T n:

ci,n(t) =
∑
t′∈T≤t

i,n

t′pnt′ . (2.6)
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If t 6∈ Ti,n, define ci,n(t) = inf{ci,n(τ) : τ ≥ t, t ∈ T≤ti,n}. For symmetric types, if t ∈ T≤ti,n then

ci,n(t) =
´ t

0
xdF n(x).

Fixing a type, we can construct the sequence of corresponding upper bounds for that type’s

equilibrium behavior, i.e. the upper bound of the interval. This sequence must have at least one

convergent subsequence by the Bolzano-Weierstrauss Theorem. Hence it is possible to construct a

sequence of type spaces so that equilibrium behavior does converge, as Siegel (2013) shows. One

would just have to choose the right sub-sequence of type spaces for one of the players given the

other. We prove the stronger statement that every subsequence (of the upper bounds for each type)

converges to the same limit. In other words, for any sequence of type spaces the corresponding

equilibria converge as well.

The first Helly-Bray Theorem12 implies that for all continuous and bounded functions h : R →

R that
´
h(x)dF n(x)→

´
h(x)dF ∗(x). Note that we can write ci,n(t) as the integral (with respect

to Lebesgue-Stieltjes measure13) of a continuous function, namely the identity function, and so the

Helly-Bray Theorem implies convergence since the measure of all types less than t converges:

ci,n(t) =
∑
t′∈T≤t

i,n

t′pnt′ =

ˆ t

0

xdF n(x)→
ˆ t

0

xdF ∗(x).

Hence each ci,n(t) converges, so that in the limit each type ti ∈ T∞ ≡ ∪∞n=1T
n chooses action

ci,∗(t) ≡ limn→∞ ci,n(t) = a∗i (ti) with probability 1. By construction this also extends ci,∗(t) to

types in T ∗ \ T∞, since Ti,∞ is dense in Ti,∞. Monotonicity pins down the behavior of all types in

Ti,∗ from the behavior of just types in Ti,∞. Formally, there exists a unique continuous extension

which is monotonic.

All that remains to be shown is that the limiting behavior is in fact an equilibrium. Recall that for

each n, “equilibrium payoffs” are concave and hence continuous in each player’s actions, meaning

12See Athreya and Lahiri (2010) Theorem 9.2.2 for a detailed statement and proof of this theorem.

13See Athreya and Lahiri (2010) pg. 25-27 for a more detailed discussion.
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that fixing the strategies of the other players’ to be the equilibrium strategies, each player has

continuous payoffs. The limit of a sequence of concave functions is concave. Further, in the limit

we have shown that each type has a unique maximizer meaning in the limit interim payoffs are

strictly concave. Hence it is an equilibrium, and since the equilibrium is unique is the limit game,

it is THE equilibrium.

The asymmetric equilibrium converges in a similar manner, though the proof requires careful

attention to detail. With symmetric types, each type is matched with only one type on equilibrium,

namely its mirror image type of the other player. Further the matchups do not change over time.

With asymmetric equilibrium, I must account for both of these possibilities. However in the limit

I show later that each type must be matched up with exactly one opposing type of the other player

due to monotonicity.

2.3.2 Asymmetric Convergence of Equilibria

We now prove the more general case for asymmetric type spaces. The result follows from three

lemmas. The first lemma shows that for each type ti ∈ Ti,∞ ≡ ∪n≥1Ti,n = Q∩Ti,∗, the equilibrium

support converges to a single point.

Lemma 1 Fix a sequence of {F1,n, F2,n}n. For each ti ∈ Ti,∞, supp∞(ti) ≡ limn→∞ suppn(ti) =

{a} for some a ∈ R+.

The proof of Lemma 1 is somewhat involved due to the number of possible equilibrium con-

figurations. Similar to the symmetric case proof, I know that the measure of the interval each type

mixes over shrinks to 0. I also show that the support of each type can be written as an integral of

a continuous function with respect to the type space distribution Fi,n. Convergence in distribution

implies that these integrals converge. The sequence of upper bounds for each types interval is a

bounded sequence and hence has a convergent subsequence. I show that in fact the sequence itself

is convergent by showing whenever the type space is iterated each type’s upper bound changes by

at most ε. This precludes two different sub-sequential limits.

Proof 1 This proof builds on the example in the online appendix of Siegel (2013), who shows there
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exist some sequence of finite-type space distributions. that converges to a continuous type equi-

librium of Amann and Leininger (1996). I complete his proof by showing that for any sequence

(F1,n, F2,n) of type space distributions, the associated equilibrium converge as well. The key prop-

erty is the monotonicity of the equilibrium.

Let Fi,n →d Fi,∗, where Fi,∗ is absolutely continuous with respect to the Lebesgue measure.

Further let the support of Fi,∗ be [ti, ti], where ti > 0. Thus there exists a density fi,∗ such that

Fi,∗(x) =
´ x
ti
fi,∗(v)dv. Using the insights of Siegel (2013) and Athey (2001), we can partition

[ti, ti], with {qi,n(k)}nk=0, where qi,n(0) = ti and qi,n(n) = ti, such that

ˆ qi,n(k)

qi,n(k−1)

fi,∗(v)dv = pki,n. (2.7)

Note that for each ti ∈ Ti,∗ and for each n, there is exactly one k such that ti ∈ [qi,n(k −

1), qi,n(k)]. Note that ti need not be a member of Ti,n. Hence with each ti ∈ Ti,∗ there exists a

unique sequence of upper bounds of [qi,n(k−1), qi,n(k)] which we denote by {qi,n(kn)}∞n=1. Further

this sequence must converge for any sequence of Fi,n since limn→∞ Ti,n ≡ Ti,∞ is dense in Ti,∗.

Additionally, for all ti ∈ [qi,n(k− 1), qi,n(k)], which includes tki,n, we associate the upper bound

of tki,n’s support of actions as ai,n(k). Forming a new sequence {ai,n(kn)}∞n=1 , we see that there

is a one-to-one correspondence between qi,n(kn) and ai,n(kn). Since each ti ∈ [ti, ti] is associated

with a unique limit limn→∞ qi,n(kn), we see that limn→∞ ai,n(kn) exists and is unique for each ti.

Hence each ti is associated with a unique action in the limit.

The second lemma shows that for each type ti ∈ Ti,∞ interim payoffs are maximized at the

limiting action when the other player j’s types are drawn from Tj,∞ according to Fi,∞ = Fi,∗.

Lemma 2 Let a∞i (ti) denote the action chosen with probability 1 in the limit for each ti ∈ Ti,∞.

Then for all a ∈ Ai,

Ui(a
∞
i (ti)|µj,∞, ti) ≥ Ui(a|µj,∞, ti) (2.8)
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Proof 2 The limit of a sequence of concave functions is concave. Further, we can say the function

Ui(a
∞
i (ti)|µj,∞, ti) is strictly concave since we know it has a unique maximizer from Lemma 1.

Thus the limit of both the upper and lower bound of suppn(Gk
i,n) converge to a single point. The

continuity of the maximum follows from th Berge-Debreu Theorem of the Maximum. See Ok (2007)

pg. 306 for a formal description and proof.

The final lemma argues that since Ti,∞ is dense in Ti,∗, behavior for all types in ti ∈ Ti,∗ \ Ti,∞

is pinned down and constitutes equilibrium behavior.

Lemma 3 For all types t ∈ Ti,∗ define a∗i (t) ≡ inf{a∞i (t′)|t ≥ t′ ∈ Ti,∞} and let σi,∗(a|µj,∗) be

the associated winning probability for i when Then a∗i (t) is the equilibrium of the APA with type

spaces F1,∗ and F2,∗. Specifically we have for all t ∈ Ti,∗ and all a ∈ Ai that:

Ui(a
∗
i (t)|µj,∗, t) ≥ Ui(a|µj,∗, t). (2.9)

Proof 3 Note that Ti,∞ is dense in Ti,∗ so there exists a unique continuous extension of a∞i (t)

defined on all of Ti,∗. Since ai∞(t) is increasing, so too will be ai∗(t). In fact, for each ti,∞ ∈ Ti,∞

and each ti,∗ ∈ Ti,∗ the measures µj,∗ and µj,∞ are indistinguishable for player i.

My main result, Theorem 1, now follows from the 3 Lemmas.

Theorem 1 If Fi,n(x) →d Fi,∗(x) for all i, then the unique equilibrium distributional strategies

µi,n →d µi,∗ .

Proof 4 Let A ⊂ Ai and T ⊂ Ti be measurable subsets with respect to Lebesgue measure on

R. Define the the c.d.f. of µi,n(A, T ) as Hi,n(a, t) = µi,n((∞, a], (∞, t]). To show µi,n(A, t) →d

µdi,∗(A, T ), we need to show that for every fixed (a, t) that Hi,n(a, t) → Hi,∗(a, t) , where the

convergence is the usual notion of point-wise convergence. Since Fi,n(x)→ Fi,∗(x), we know that

Hi,n(a, t) → Hi,∗(a, t) for sufficiently large a above the equilibrium support. We now extend the

result to lower values of a.
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By assumption F,i,n(t) → Fi,∗(t) for all t. Further this convergence is uniform since Fi,∗ is

absolutely continuous (and hence continuous) in t.

Note that (with slight abuse of notation) I can rewrite Hi,n(a, t) using conditional probability

as

Hi,n(a, t) =
µi,n((∞, a]|ti ∈ (∞, t])

µi,n((∞, t])
=

∑
t̂∈Ti,n∩(∞,t] p

t̂
i,nGi,n(a|t̂)

Fi,n(t)
(2.10)

The denominator in the above expression converges by the assumption of converging type space

distribution. The numerator converges from Lemmas 1-3.

2.4 Conclusion

There is no qualitative difference between using finite types or continuum types. With the appro-

priate measures of the “closeness” of information structures, as long as a finite-type distribution is

close to a continuous-type distribution, the differences in equilibrium behavior are negligible. In-

teresting future research might extend the results to more general classes of monotonic games with

finite types. The technique adapted in the proof would require minor modifications. Additionally

a simple extension would include showing that the finite-type to finite-type,and continuous-type to

continuous-type convergence holds as well.
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CHAPTER 3

COMPARATIVE STATICS IN THE ALL-PAY AUCTION

3.1 Introduction

In this chapter I show that asymmetry has different qualitative effects on equilibrium behavior,

even when an arbitrarily small amount of incomplete information is introduced. Here asymme-

try means differences in the distributions over the players’ type spaces. These differences can be

thought of as differences in valuations or differences in probabilities over those valuations. I pro-

vide a characterization when revenues will increase for these different comparative statics. With

complete information, Hillman and Riley (1989) show that similar asymmetry must decrease rev-

enues. Hence asymmetry has different effects of behavior when there is private information. The

main focus of this chapter is on understanding this discontinuity of revenues with respect to the

information structure.

Adding asymmetry in valuations induces what I label an assimilation effect: players bid more

when facing tougher competition and bid less when facing weaker competition. Asymmetry

changes the competition that every type faces with incomplete information while with complete

information the matchup is fixed. Asymmetry in probabilities induces slightly different compara-

tive statics. I do not focus heavily on this type of comparative static because the next chapter uses

the intuition gained from valuation comparative statics only. Generally speaking, for both types

of asymmetry the auctioneer will collect more from higher types and less from lower types. In a

sense, lower types are discouraged from bidding as much while higher types are encouraged to bid

more when equality between the players is lessened. If the revenue-increasing high types are more

likely than the revenue-decreasing low types, then expected revenues will tend to increase. Each

player bids to the level of his opponent and no more.



The assimilation effect is present in the complete information game, though in partial form.

Asymmetry in the complete information game is analogous to asymmetry in the lowest possible

valuation for the players. In both cases revenues must decrease because no matchups between the

players can change. Only in the incomplete information game does there exist a stacking effect,

whereby monotonicity of the equilibrium implies that ceteris paribus if low types bid more on

average than so must high types. Alternatively stated, if lower types bid more on average than the

bids of higher players are bumped up.

This chapter also contributes to a small literature on the comparative statics of APAs. In this

chapter, I slightly perturb symmetric type spaces and determine the effect on each player’s ex-

pected bid. Kirkegaard (2013) and Fibich, Gavious, and Sela (2004) perform similar comparative

statics. Both find that revenues must increase when one player is made stronger. Kirkegaard (2013)

considers a perturbation that increases the support of valuations1. We show that his assumption of

the lower bound of the support being zero is important in determining comparative statics, as a

negative term in the change in revenues disappears, making revenues increase.

Fibich et al. (2004) considers perturbations where the upper support of valuations is fixed2. In

contrast, with finite types I show that performing the same comparative static may actually de-

crease revenues, as in the complete information case. I show in Section 3.4 that even with two

types, performing the same comparative statics as Fibich et al. (2004) gives the opposite predic-

tions. I conjecture the discrepancy arises because of differentiability assumptions3. This is a sur-

prising result since recently Contat (2013b) (and also Chapter 1 of this dissertation) has shown that

equilibrium bidding behavior in any continuum type model (including those of Kirkegaard (2013)

and Fibich et al. (2004)) can be approximated to any degree of accuracy by finite-type equilibrium

where type spaces are sufficiently close.

1Specifically the type space of a bidder is changed by a particular first order stochastic shift: Fi(v) = F ( v
v̄i

) for
some F common to both players. The comparative static is on v̄i.

2Specifically, each has CDF type distribution of the form Fi(v) = F (v) + εHi(v), where F and Fi are both over
a common support [v, v̄].

3We only require right differentiability, but Fibich et al. (2004) requires differentiability.
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I also show that the comparative statics of APAs are not robust to incomplete information, de-

spite the equilibrium strategies themselves being robust. Our notion of robustness requires that

adding any small amount of incomplete information not change equilibrium strategies too much4.

Kirkegaard (2013) finds a similar result, where asymmetry always causes revenues to increase,

the opposite conclusion of the complete information case. I show there always exists arbitrarily

small amounts of information where revenues decrease. Unlike Kirkegaard (2013) however, we

show that there always exist type spaces where revenues may decrease as well. This shows the

incomplete information case is not always a ”knife-edge” case. The way in which incomplete in-

formation is added matters. I show that if the players believe higher types are more likely than

lower types, incomplete information has qualitatively similar results to the complete information

case. Incomplete information will generate more revenue as long as bidders are optimistic, in the

sense that adding incomplete information lowers the expected valuation of each player. For exam-

ple, suppose both bidders have valuation vm with probability 1−ε for some arbitrarily small ε > 0.

Depending upon how bidders assign valuations to the remaining weight ε, an auctioneer might be

hurt or helped by asymmetry in vm between the bidders. If the remaining weight ε is placed on

some vh > vm common to both bidders, asymmetry in vm will always reduce revenues. However

if the weight ε is placed on some vl < vm, asymmetry in vm can increase revenues. Hence the ef-

fects of asymmetry on incomplete information games depend very crucially upon the information

structure.

The general finding is that while asymmetry always reduces revenues when there is complete

information, asymmetry can actually increase revenues when there is incomplete information. The

reason is that it matters in which direction one goes when one introduces small amounts of uncer-

tainty. Alternatively stated, it matters which sequence of type space distributions you approach the

complete information game with. Despite the fact that equilibrium behavior will converge for all

such sequences, it is not the case that the changes in revenues due to asymmetry will converge.

4 See Kajii and Morris (1997) for a more detailed motivation for this definition. A game is robust if adding
arbitrarily small amounts of uncertainty ensures equilibrium behavior doesn’t vary too much, for any way incomplete
information can be added.
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3.2 Complete Information Comparative Statics

First I present and further develop the results of the seminal paper Hillman and Riley (1989),

who analyze the complete information APA. There are two risk neutral players, each of whom

submits a non-refundable bid. The highest bid wins the indivisible prize. The valuations of the

prize for both players are common knowledge.

3.2.1 Symmetric Equilibrium Benchmark

If the players have the same valuation v, then Hillman and Riley (1989) show that in equilibrium

each player mixes uniformly with density g(x) = 1
v

over the interval [0, v]. The auctioneer expects

to collect
´ v

0
1
v
xdx = v

2
from each player, and hence v overall. There will be full surplus extraction

by running an APA when there are symmetric players and complete information. Relaxing either

symmetry between players or complete information5 will cause this result not to hold. Additionally

the APA is trivially ex-post efficient since both players are identical and one of them receives the

prize with certainty.

3.2.2 The Assimilation Effect: A First Look

Now I introduce asymmetry into the complete information environment. Now the valuation of

player i is vi (i = 1, 2), where without loss of generality let v1 < v2. Hillman and Riley (1989)

were the first to show that in equilibrium players 1 and 2 will both mix uniformly over [0, v1] with

densities g1(x) = 1
v2

and g2(x) = 1
v1

respectively. Exactly like the all-pay auction where types

are drawn from some absolutely continuous distribution, in the all-pay auction with finite types

asymmetry between the players causes inefficiencies. With positive probability the player with

the lower valuation wins, though the probability of this happening converges to 0 as asymmetry is

increased.

In equilibrium, each player i’s mixing density is set equal to the reciprocal of the opponent’s

valuation vj: gi(x) = 1
vj

. This ensures that player i is indifferent between increasing or decreasing

his bid over the equilibrium support [0,min{v1, v2}]. The marginal benefit of bidding more is equal

5With private information, the auctioneer will collect an ex-ante full surplus, i.e. the total expected revenues will
be the sum of each player’s expected valuation. However, ex-post there will be types that are paid positive information
rents with positive probability.
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to the marginal cost for bids over this region. When a player becomes stronger, he will not change

his behavior but his opponent will change her behavior. I will later show that with incomplete

information asymmetry will cause both player’s lower types to face different competition. So with

incomplete information, there also exist feedback effects that change behavior for both players.

Note that the total weight expended by the weaker player (i.e. player 1) is strictly less than 1.

Hence player 1 has “leftover” weight of (1−v1)× 1
v2

= v2−v1
v2

. This residual weight must be placed

as an atom at 0 in equilibrium. Increasing the degree of asymmetry between the players causes

the weaker player to shift more weight from an interval over positive bids to an atom at 0. I say

that in this case, due to the presence of increased competition one of the players is discouraged

from bidding as much as before. This will be precisely the opposite intuition as the incomplete

information case, where stronger competition induces players to bid more. The reason is that with

only one type a piece, equilibrium matchups (there is only one) are fixed. The stronger player

realizes that the weaker player is not willing to bid more and hence leaves his behavior unchanged.

The weaker player therefore cannot bid more and is thus forced to not bid at all with positive

probability.

There are slightly different comparative statics if one of the players is made weaker ceteris

paribus. The equilibrium support decreases. Not only will the weaker player increase the size

of her atom at 0 (thus decreasing revenues), but the stronger player will also on average bid less

since he is mixing uniformly over a smaller interval. In this paper I focus on the less intuitive

comparative static of making one player stronger, though the case of making a player weaker

follows easily from my results.

It follows from the above that asymmetry of any form, meaning an increase in v2 − v1 keeping

one of the valuations fixed, will decrease expected revenues. The weaker player (with valuation

v1) will generate revenues of RevC2 ≡ v2−v1
v2
× 0 +

´ v1
0

1
v2
xdx =

v21
2v2

< v1
2

. The stronger player

(with valuation v2 > v1 ) will generate revenues of RevC1 ≡
´ v1

0
1
v1
xdx = v1

2
< v2

2
. Hence for any

valuations v1 and v2, with 0 < v1 < v2, the total expected revenues collected from both players

under a complete information all-pay auction is RevC(v1, v2) ≡ RevC1 (v1, v2) + RevC2 (v1, v2) =
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v21
2v2

+ v1
2

= v1(v1+v2)
2v2

.

Note that RevC(v1, v2) < v1+v2
2

, meaning that the auctioneer will not be able to extract full sur-

plus out of the APA when there is asymmetry between the players. Also note that RevC(v1, v2) <

v2, where v2 would be the expected revenues collected if both players have identical valuations of

v2. Hence if one of two identical players with valuation v2 is made weaker (i.e. now has valuation

v1 < v2), then ceteris paribus total expected revenues must decrease. This is not a surprising result

as lower valuations would suggest the player is not willing to exert as much costly effort and so

will bid less on average. The surprising result is that RevC(v1, v2) < v1 as well, meaning if one

of two identical players with valuation v1 is made stronger (i.e. one now has valuation v2 > v1),

revenues will actually decrease. I collect these results in the following proposition.

Proposition 3 Let players have valuations v1 = v and v2 = v + a, where a ∈ R. Then as a

function of a, total expected revenues RevC(v, v + a) have a global maximum at a = 0. Further

RevC(v, v + a) is increasing in v for a fixed a.

Proof 5 Suppose first that initially that both players have valuation v, and then player 2’s valua-

tion increases from v → v + a for some a > 0, holding v1 constant at v1 = v. The equilibrium

support will not change for both players. Only the density for the weaker player will change,

namely it will decrease. The residual weight will of course be placed as an atom at 0. Total rev-

enues in this case can be computed from to be RevC(v, v + a) = v2

2(v+a)
+ v

2
, which are strictly

decreasing and convex in a when a ∈ [0,∞]. If on the other hand player 2 is made weaker by

a > 0, i.e. v1 = v but v2 = v− a, revenues will be RevC(v, v− a) = v−a
2

+ (v−a)2

2v
, which are also

in strictly decreasing and convex when a > 0. Hence revenues decrease at an increasing rate in a.

These results are illustrated in Figure 3.1 . Also note from Figure 3.1 that revenues are not

differentiable at ε = 0. It is precisely this “kink” in the revenues that leads to unusual compar-

ative statics when incomplete information is added. Kirkegaard (2013) has pointed out the fact

a similar “knife-edge” feature of information: adding a small amount of incomplete information

may sharply change the comparative statics of revenues. Here holding information constant, we
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Figure 3.1: Complete Information Equilibrium and Revenues

see that asymmetry in the value of a causes a sharp change in revenues. Adding incomplete infor-

mation may also sharply change expected revenues, but in a different way. There exist families of

type space distributions , arbitrarily close to the (degenerate) complete information distributions,

such that the change in revenues in the family of these distributions is uniformly bounded above

some positive constant. Yet with complete information distributions, asymmetry must mean that

the change in revenues is negative. Hence it is possible to construct a sequence of type space dis-

tributions that converge to the complete information distribution, yet the effects of asymmetry on

revenues do not converge. It is in this sense that I mean the comparative statics are not continuous

with respect to information. Small amounts of incomplete information may completely change

how the auctioneer feels about asymmetry.

In summary, asymmetry is unambiguously bad for revenues in the complete information APA.

Making the weaker player even weaker discourages the player from placing weight on positive

bids. With positive probability asymmetry causes the weaker player to “give up”, i.e. bid nothing.

The stronger player never increases his bid because he will only bid up to what his opponent is

willing to bid. Asymmetry may actually reduce the expected bid of the stronger player.

3.3 Private Information Comparative Statics (Valuations)

Now consider the private information environment as presented in Chapter 2. I present the

easier symmetric case first to highlight the general characteristics of equilibria before moving on

to the equilibrium and comparative statics of the more general asymmetric case. The equilibrium

characterization with private information is a simple extension of the complete information case.

The key property, as was mentioned in Chapter 2, is the monotonicity of equilibria: higher types
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mix over higher disjoint intervals. This implies that if a lower type’s interval is shifted up, and

hence bids more on average, then a higher type’s interval is also shifted up and hence bids higher,

ceteris paribus.

Without loss of generality order the types of player i from smallest to largest: Ti ≡ {ti,1, ti,2, . . . , ti,n}

with corresponding probabilities {pi,1, pi,2, . . . , pi,n}. In other words, ti,1 ≤ ti,2 ≤ . . . ≤ ti,n. Note

that I assume players that can have an equal number of types, but this has no bearing on the results.

As long as each player has a finite number of types, which includes the complete information case,

all of the qualitative results will go through. I can also assume that each player can have only

strictly positive valuation (i.e. ti,1 > 0) because any type with a valuation of zero has a strictly

dominant strategy to bid 0 with probability 1. These types will have no bearing on the behavior of

the other types nor the comparative statics which we develop later.

3.3.1 Review of Equilibrium Structure

Recall from chapter 1 that in equilibrium each type of each player will mix (piecewise) uniformly

over an interval. Each change in uniform density corresponds to a new matchup, i.e. a new type of

the other player that is mixing over the type’s interval. If type v1,k is matched up with type v2,m,

the equilibrium densities are pinned down so that each type is indifferent over their interval of bids.

The density of player 1 is chosen so that player 2 is indifferent and vice-versa. In equilibrium these

densities are

g1,k(x) =
1

p1,kv2,m

g2,m(x) =
1

p2,mv1,k

. (3.1)

A player’s density changes only when either his opponent’s valuation changes or the player’s

own probability changes. Thus it will matter whether a player becomes stronger by means of an in-

creased valuation (which will not directly affect his bidding behavior) or by means of an increased

valuation (which has a direct effect). Recall that these densities are part of a larger equilibrium

construction. Increasing the level of asymmetry between the players will also change equilibrium

matchups, which will change both player’s densities. One density will increase, though this density
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is not always the stronger player’s density. The other density must decrease. If a density increases,

the length of the interval over which the player is mixing must compensate and decrease in order

that probability is well defined. This is ultimately the cause of the assimilation effect, whereby

a player responds to asymmetry by increasing his density and ultimately “compressing” his equi-

librium interval of bids. Since the lower bound of bids is fixed at 0, this effect tends to decrease

revenues. If a density decrease, the player must “stretch” his interval of equilibrium bids, thus

increasing expected bids.

3.3.2 Symmetric Equilibrium Benchmark

Suppose that players are symmetric, i.e. that v1,k = v2,k = vk and p1,k = p2,k = pk for all

k = 1, . . . , n. If player i’s realized type is vk, then he will mix uniformly over [bk−1, bk] with

density gk(x) = 1
pkvk

, where b0 = 0 and bk =
∑k

r=1 prvr. Expected revenues from each player are

then
∑n

k=1 pk

(´ bk
bk−1

gk(x)xdx
)

=
∑n

k=1 pk

(
bk+bk−1

2

)
=
∑n

k=1 pk

(
pkvk

2
+
∑k−1

r=1 prvr

)
.

3.3.3 Asymmetric Equilibrium: The Assimilation and Stacking Effects

With asymmetric players the (unique) equilibrium in an incomplete information APA will not

have a neatly written closed form in general. Fortunately the equilibrium construction is easy

to describe. Szech (2012) was among the first to extend Hillman and Riley (1989) to private

information games, though only with two types. Later Siegel (2013) extended the results for an

arbitrary number of finite types (and also inter-dependent valuations, which are not considered

here). I use the equilibrium construction of Siegel (2013) to study the comparative statics of the

underlying type spaces.

As in chapter 2, we say that type v1,k of player 1 and type v2,m of player 2 are matched up if

the intersection of their equilibrium supports is non-empty. More easily stated, each type mixes

over an interval in equilibrium. If the intervals of v1,k and v2,m overlap we say they are matched

up. The equilibrium is constructed in the following manner. The highest types of both players

are matched up. This pins down their densities. Typically one type will be able to “fill up their

weight” first. The densities can be thought of as the rate that each type fills weight/probability.

With different rates, the total length required to expend a probability weight of 1 will vary, so that
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in general one type fills up before another (with probability 1). Since each type cannot expend

more than 1 in weight/probability, there is nothing more this type can do. Thus one highest type

will typically have residual weight that is used against the second highest type of the other player.

When a matchup is formed one type has exactly a weight of 1 to fill and the other has a weight less

than or equal to 1. The distribution of the type space pins down the densities for the matched up

types, where in general types will have different densities and hence “fill” at different rates. One

type (say ti,k) fills up its weight first6, then a new matchup is formed with the filling player’s next

highest type (ti,k−1 and tj,m) , now ti,k−1 has a weight of 1 to fill and tj,m has some weight strictly

less than one to fill, etc. Monotonicity is crucial to the construction, and as I show later, to the

comparative statics of the equilibrium.

A comparative static in this chapter means a change in a type space distribution, specifically a

shift in the c.d.f. Fi of a player’s type space. In this dissertation I restrict attention to changes in

Fi where one player is made unambiguously stronger in a first-order stochastic dominance7 sense.

Thus I rule out situations where a player’s minimum valuation is increased ( and hence made

stronger) but also the same player’s maximum valuation is decreased ( and hence made weaker).

With finite types, there are only three ways that a player can experience a first order stochastic

shift in his type space (and hence be made stronger) ceteris paribus : (1) a player’s valuation

may increase, (2) the probability of the player having high valuations may increase(and thus the

probability of having a low valuation decreases), or (3) some combination or compounding of

the first two effects. In the upcoming sections, I consider each of these comparative statics on type

space distributions that are initially identical. I show that even the simplest of asymmetries between

players can have complex effects on behavior. In a later section I will discuss the qualitative

changes that will take place when more than one parameter in the type space has changed.

6It could be that the types fill up exactly together, though this happens with probability 0. Even if this were to
happen the construction can still be applied though.

7Thus I consider only F̂i’s where F̂i(x) ≤ Fi(x) for all x, or for the weaker player F̂j(x) ≥ Fj(x) for all x.
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First I consider changes in equilibrium behavior when one of a player’s valuations is increased,

ceteris paribus. It is useful to separate the cases into increasing the lowest valuation and increasing

any other valuation. Increasing a player’s lowest valuation in the private information environment,

ceteris paribus, will have qualitatively the same features as the complete information environment.

Increasing other (higher) valuations, however, will introduce new features that are not seen in the

complete information environment.

Increased Lowest Valuation ≈ Complete Information Comparative Statics

Suppose that the players are initially symmetric but then v1,1 is increased by some small ε > 0

ceteris paribus, so that v1,1 = v1 + ε while v2,1 = v1. Following the equilibrium construction, the

matchups and densities (and hence interval lengths) will remain unchanged for all but the lowest

types of both players. The densities for the lowest types will be g1,1(x) = 1
plvl

and g2,1(x) = 1
pl(vl+ε)

for players 1 and 2 respectively. The length of the interval corresponding to this matchup does not

change (since v1,1 can still fill up his weight first with the same length of p1v1), and hence the

bidding intervals for all types do not change. Since no more (lower) types of player 1 remain with

which v2,1 can be matched, v2,1’s extra weight must be placed as an atom at 0.

Hence all types of both players behave exactly the same after the asymmetry is introduced with

the exception of the lowest type of the weaker player (v2,1), who bids strictly less. Overall total

expected revenues decrease, as in the complete information case. The stronger player does not

increase his bidding even though he desires the object more because he doesn’t have to. The

weaker player is unwilling to bid more as well and so in equilibrium the stronger player will not

bid more. Revenues also decrease when one of the players is made weaker. I summarize these

results in the following proposition.

Proposition 4 Let bidders be symmetric except that v1,1 = v1 + a and v2,1 = v1, where a ∈

[−v1, v1]. Then as a function of a, total expected revenues are strictly increasing in a when a < 0

and strictly decreasing when a > 0. Hence as a function of a, where a ∈ [−v1, v1], total expected

revenues are maximized when a = 0.
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Increased Non-Lowest Valuation 6≈ Complete Information Comparative Statics

Now consider the more general case of increasing a valuation for a type that is not the lowest for a

player. Suppose that players are symmetric except that v1,k is increased by ε > 0 for player 1 ceteris

paribus, where k > 1. Using the equilibrium construction, none of the matchups and interval

lengths for the types greater than v1,k will be changed. However, it will be the case that even though

the lengths of the intervals for these larger types is unchanged, their absolute position will be

changed8. Now consider the matchup of v1,k against v2,k. The densities for this matchup are again

pinned down to be g1,k(x) = 1
pkvk

and g2,k(x) = 1
pk(vk+ε)

. Type v1,k will be able to fill his weight in

an interval of length pkvk. Now v2,k will have some leftover weight of 1− (pkvk)
1

pk(vk+ε)
= ε

vk+ε
.

Unlike the previous case however, there is a type of player 1, namely v1,k−1, towards which v2,k

can apply her remaining weight in a new matchup.

Before proceeding further in the equilibrium construction, some notation is needed. If type k of

player 1 and type m of player 2 are matched up, the length of the interval where they are matched

up will be denoted as Lk,m. Hence so far in the equilibrium construction we know that Lr,r = prvr

for all r ≥ k.

A new matchup is now formed between v1,k−1 and v2,k. Previously only each type’s mirrored

image was his matchup. As we will shortly see, the pattern now will be that all of player 1’s

remaining types face the mirrored type and also the next largest type. In other words, type v1,r

will face v2,r and v2,r+1 when r < k. Hence all of player 1’s remaining types are matched up with

stronger competition. Similarly each type of player 2 now faces the same mirror type, and also

weaker competition.

I consider a few iterations of the equilibrium construction to emphasize the changing matchups.

This is crucial to understanding the encouragement and discouragement effects. The densities

for this new matchup are g1,k−1(x) = 1
pk−1vk

and g2,k(x) = 1
pkvk−1

. As before, the length of

the interval corresponding to this matchup will depend upon how long of an interval v2,k needs

8This is analogous to the two intervals [1, 2] and [5, 6]. But have length 1, but the lower and upper bounds have
changed.
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to fill the remaining weight from the v1,k matchup 9. To fill a weight of ε
vk+ε

with a density of

g2,k(x) = 1
pkvk−1

, a length of εpkvk−1

vk+ε
is needed. Hence the length of the new interval from the

matchup of v1,k−1 and v2,k is Lk−1,k = εpkvk−1

vk+ε
.

In the next matchup of v1,k−1 and v2,k−1, it will be the case that v1,k−1 has expended some of his

weight. He has weight of 1− εpkvk−1

vk+ε
1

pk−1vk
when he faces v2,k−1. Since these types have the same

densities g1,k−1(x) = g2,k−1(x) = 1
pk−1vk−1

, but v1,k−1 has less weight to fill, v1,k−1 will be able to

fill first. The length of the interval required for this matchup is Lk−1,k−1 = pk−1vk−1 − εpk(vk−1)2

(vk+ε)vk
.

The first term represents the length of the interval in the symmetric case. Hence the length of this

interval for the matchup of v1,k−1 and v2,k−1 has been decreased (since v1,k−1 has already used up

some of his weight).

We consider one more iteration of this process before generalizing the results. Now that v1,k−1

has filled up his weight against v2,k−1, a new matchup of v1,k−2 and v2,k−1 is formed. Now v2,k−1

has remaining weight of 1 − Lk−1,k−1 × 1
pk−1vk−1

= εpkvk−1

(vk+ε)pk−1vk
. Densities for this new matchup

are pinned down to be g1,k−2 = 1
pk−2vk−1

and g2,k−1 = 1
pk−1vk−2

, where we have suppressed the

argument (x) of the density because the density is constant. If ε is small enough, then v2,k−1 will

indeed be able to fill up her weight before v1,k−2 does. This will require a length of Lk−2,k−1 =

εpkvk−1vk−2

(vk+ε)vk
.

Now v1,k−2 will be matched up with v2,k−2, where v1,k−2 has a weight of 1 − Lk−2,k−1 ×
1

pk−2vk−1
= 1 − εpkvk−2

(vk+ε)vkpk−2
. Both densities are the same at g1,k−2 = g2,k−2 = 1

pk−2vk−2
. Of

course v1,k−2 will be able to fill up his weight first since they have the same density but v1,k−2

has weight strictly less than 1 to fill. The length required to fill up his weight against v2,k−2 is

Lk−2,k−2 = pk−2vk−2 − εpk(vk−2)2

(vk+ε)vk
.

Continuing in this manner for all the rest of the types we see that the asymmetry will have an

effect that ripples through all of the remaining (i.e. lower) types matchups and densities. The

equilibrium construction will continue until v1,1 fills up his weight against v2,1, leaving v2,1 with

9For very small values in ε, v2,k will be able to fill her weight since the weight will also be arbitrarily small
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leftover weight to be placed as an atom at zero. In general, if r < k then type v1,r will be matched

up with types v2,r+1 and v2,r. The lengths of these intervals will be Lr,r+1 = εpkvrvr+1

(vk+ε)vk
and Lr,r =

prvr − εpk(vr)2

(vk+ε)vk
. Intuitively a small asymmetry changes the equilibrium in a small manner in that

the size of the interval of the new matchups are Lr,r+1 < ε. Since there are a finite number of types,

this implies that for small enough ε > 0 the change in revenues can be made arbitrarily small. One

final piece of notation is required before generalizing the change in the stronger player’s behavior.

For types r < k, define br =
∑r

t=1 Lt,t + Lt,t+1 as the upper bound of type v1,r’s equilibrium

support.

Corollary 1 For r < k,

d

dε
Lr,r(ε) = − pk(vr)

2

(vk + ε)2
< 0 (3.2)

d

dε
Lr,r+1(ε) =

vrvr+1pk
(vk + ε)2

> 0 (3.3)

d

dε
br(ε) =

pk
(vk + ε)2

r∑
t=1

vt(vt+1 − vt) > 0. (3.4)

The above corollary shows that the interval over which all of player 1’s types mix is shifted

upwards while only the intervals of player 2’s highest types are shifted upwards. The lowest types

of player 2 compress their equilibrium intervals. I now summarize the behavior of the stronger

player after the asymmetry is introduced.

Proposition 5 Let players be symmetric except v1,k = vk + ε and v2,k = v)k, where k > 1 and

ε > 0. Equilibrium behavior of player 1 (the stronger player) is characterized by:

Types r < k Type v1,r will mix over [br−1, br−1 + Lr,r] with density g1,r = 1
prvr

and over [br−1 +

Lr,r, br] with density g1,r = 1
prvr+1

.

Type k The perturbed type, v1,k, will mix over [bk−1, bk−1 + pkvk] with density g1,k = 1
pkvk

.

Types r > k Type v1,r will mix over [bk−1 +
∑r−1

t=k ptvt, bk−1 +
∑r

t=k ptvt] with density g1,t = 1
ptvt

.
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Calculation of expected revenues for each type of player 1 is tedious but straightforward. Sim-

ilar to the complete information environment, revenues are not differentiable at ε = 0, so we

focus instead on the right hand side derivative, which does exist. Since ε > 0, by construc-

tion we are implicitly considering comparative statics when players become stronger. If ε < 0

the equilibrium would be qualitatively different in that there would be different matchups, inter-

val lengths (Lk,m’s), and densities. When I write the derivative of revenues, dRevi,r(0)

dε
, I mean

dRevi,r(0)

dε
≡ limε↘0

Revi,r(ε)−Revi,r(0)

ε
. In this context, it is equivalent to differentiating the revenues

with respect to ε and then take the limit as ε→ 0.

Let Revi,r(ε) be the product of the conditional expected revenue collected (conditional on type

r realized for player 1) and the probability of the type. In other words, Revi,r(ε) is type vi,r’s

contribution to expected revenues. The sum
∑n

t=1Rev1,t(ε) then represents the total expected

revenues collected from player 1. All of the comparative statics for the strong player are collected

in the following proposition.

Proposition 6 Let players be symmetric except that v1,k = vk + ε and v2,k = vk for some ε > 0.

The rate of changes in revenues for player 1 are

dRev1,t(ε)

dε
=
pkpt
v2
k

t−1∑
r=1

vr(vr+1 − vr) > 0 if t ≤ k (3.5)

dRev1,t(0)

dε
=
ptpk
v2
k

k−1∑
r=1

vr(vr+1 − vr) > 0 if t > k (3.6)
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Proof 6

Rev1,r(ε) =pr

(ˆ b1,r−1+Lr,r

b1,r−1

1

prvr
xdx+

ˆ b1,r

b1,r−1+Lr,r

1

prvr+1

xdx

)
(3.7)

=
Lr,r(2b1,r−1 + Lr,r)

2vr
+
Lr,r+1(2b1,r − Lr,r+1)

2vr+1

(3.8)

dRev1,r(ε)

dε
=

1

vr

[
Lr,r

dbr−1

dε
+ br−1

dLr,r
dε

+ Lr,r
dLr,r
dε

]
(3.9)

+
1

vr+1

[
Lr,r+1

dbr
dε

+ br
dLr,r+1

dε
− Lr,r+1

dLr,r+1

dε

]
(3.10)

dRev1,r(0)

dε
=

1

vr

[
prvr(

pk
v2
k

)
r−1∑
t=1

vt(vt+1 − vt) + (
r−1∑
t=1

ptvt)(−
pkv

2
r

v2
k

) + prvr(−
pkv

2
r

v2
k

)

]
(3.11)

+
1

vr+1

[
0 + (

r∑
t=1

ptvt)
vrvr+1pk

v2
k

− 0

]
(3.12)

=
prpk
v2
k

r−1∑
t=1

vt(vt+1 − vt)−
pkvr
v2
k

(
r∑
t=1

ptvt − prvr

)
− prpkv

2
r

v2
k

+
vrpk
v2
k

(
r∑
t=1

ptvt

)
(3.13)

=
pkpr
v2
k

r−1∑
t=1

vt(vt+1 − vt) > 0 (3.14)

Now consider the revenues of the perturbed type v1,k, who mixes over [bk−1, bk−1 + pkvk] with

density g1,k = 1
pkvk

. Revenues (again premultiplied by the probability) for this type are

Rev1,k(ε) = pk

ˆ bk−1+pkvk

bk−1

1

pkvk
xdx =

p2
kvk
2

+ pkbk−1 (3.15)

Directly differentiating we get

dRev1,k(ε)

dε
= pk

dbk−1

dε
= pk

(
pk

(vk + ε)2

k−1∑
t=1

vt(vt+1 − vt)

)
> 0. (3.16)

For the higher types r > k, revenues will increase because the densities are the same, but the
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lower and upper bounds of the intervals are both increased:

Rev1,r(ε) =pr

ˆ bk−1+
∑r

t=k ptvt

bk−1+
∑r−1

t=k ptvt

1

prvr
xdx =

1

2vr
prvr(2bk−1 + 2

r−1∑
t=k

ptvt + prvr) (3.17)

dRev1,r(0)

dε
=pr

dbk−1

dε
=
prpk
v2
k

k−1∑
t=1

vr(vr+1 − vr) > 0. (3.18)

Hence the lower types of the player that is made stronger all bid more on average. This is the

assimilation effect. Player 1’s lower types see tougher competition and respond by stretching their

equilibrium intervals and ultimate bidding more. In contrast player 1’s higher types see the same

competition but bid more because of the stacking effect. Since the lower types are bidding more,

the higher types must bid more as well. Hence we can say that expected revenues collected from

every type of the stronger player (i.e. player 1) will increase, but for different reasons.

Now consider the weaker player, i.e. player 2. Following a similar approach we partition the

types of player 2 into the kth type, types below k, and types above k. The matchups and densities

for types above k will not change for bidder 2. Hence all of the results that are true for bidder 1’s

types above k are also true for bidder 2’s types above k. The largest types of the weaker player

will bid more also because of the stacking effect. The first matchup to change will be type v2,k.

In response to v1,k becoming stronger, v2,k responds by decreasing her density to g2,k = 1
pk(vk+ε)

.

In equilibrium, type v2,k will mix over [bk−1 − Lk−1,k, bk−1] with density g2,k = 1
pkvk−1

and over

[bk−1, bk−1 + Lk,k] with density g2,k = 1
pk(vk+ε)

.

Proposition 7 Suppose initially that bidders are symmetric, i.e. v1,t = v2,t = vt and p1,t = p2,t =

pt for all t = 1, . . . , n. If for some k, v1,k is increased by ε > 0 to v1,k = vk + ε, then the lowest

types generate less revenue while the highest types generate more revenues. In particular, the right

hand side derivatives are given by:
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dRev2,t(0)

dε
=
ptpk
v2
k

(
t−1∑
r=1

vr(vr+1 − vr)− v2
t

)
< 0 if t < k (3.19)

dRev2,t(0)

dε
=
p2
k

v2
k

(
k−1∑
r=1

vr(vr+1 − vr)−
v2
k

2

)
< 0 if t = k (3.20)

dRev2,t(0)

dε
=
ptpk
v2
k

(
k−1∑
r=1

vr(vr+1 − vr)

)
> 0 if t > k (3.21)

We present a useful Lemma before characterizing revenues for player 2.

Lemma 4 Let 0 ≤ v1 < v2 < · · · < vm, wherem ≥ 2. For a fixed vm, the sum
∑m−1

r=1 vr(vr+1−vr)

is maximized when vr = r
m
vm for r = 1, . . . ,m − 1. Further, at the maximum

∑m−1
r=1 vr(vr+1 −

vr) ≤ v2m
2

.

Proof 7 To show that
∑m−1

r=1 vr(vr+1 − vr) is maximized when vr = r
m
vm for r = 1, . . . ,m− 1, I

show that the sum has a strict local maximum by taking first and second order conditions, showing

that all of the leading principal minors of the Hessian matrix alternate in sign, with the first being

negative. The first order conditions of the sum are

v1 : v2 − 2v1 = 0 (3.22)

v2 : v1 + v3 − 2v2 = 0 (3.23)

v3 : v2 + v4 − 2v3 = 0 (3.24)

... (3.25)

vr : vr−1 + vr+1 − 2vr = 0 (3.26)

... (3.27)

vm−1 : vm−1 + vm+1 − 2vm = 0 (3.28)

Solving this system of equations yields solutions of the form vr = r
m
vk. The Hessian matrix is

given by
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

−2 1 0 0 · · · 0 0 0

1 −2 1 0 · · · 0 0 0

0 1 −2 1 · · · 0 0 0

... . . . ...
...

...

0 · · · · · · 0 1 0

0 · · · · · · 1 −2 1

0 · · · · · · 0 1 −2


The first leading principal minor is -2, the second is 3, the third is -4, and so on. Hence we

have a strict local maximum and the largest the sum could be is

max
m−1∑
r=1

vr(vr+1 − vr) =
m−1∑
r=1

( r
m
vm

)
(
vm
m

) =
v2
m

m2

m−1∑
r=1

r =
v2
m

m2

(m− 1)m

2
=
v2
m

2

m− 1

m
≤ v2

m

2
.

(3.29)
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Proof 8 (Proof of Proposition 7) Elementary calculus is tedious, but directly yields the results.

Rev2,k(ε) =pk

ˆ bk−1

bk−1−Lk−1,k

1

pkvk−1

xdx+ pk

ˆ bk−1+Lk,k

bk−1

1

pk(vk + ε)
xdx (3.30)

=
1

vk−1

ˆ bk−1

bk−1−Lk−1,k

xdx+
1

vk + ε

ˆ bk−1+Lk,k

bk−1

xdx (3.31)

=
1

2vk−1

(Lk−1,k)(2bk−1 − Lk−1,k) +
1

2(vk + ε)
(Lk,k)(2bk−1 + Lk,k) (3.32)

=
1

2vk−1

(
2Lk−1,kbk−1 − (Lk−1,k)

2
)

+
1

2(vk + ε)

(
2Lk,kbk−1 + (Lk,k)

2
)

(3.33)

dRev2,k

dε
(ε) =

1

2vk−1

(
2Lk−1,k

dbk−1

dε
+ 2

dLk−1,k

dε
bk−1 − 2Lk−1,k

dLk−1,k

dε

)
(3.34)

+
1

2(vk + ε)

(
2Lk,k

dbk−1

dε
+ 2

dLk,k
dε

bk−1 + 2Lk,k
dLk,k
dε

)
(3.35)

− 1

2(vk + ε)2

(
2Lk,kbk−1 + (Lk,k)

2
)

(3.36)

dRev2,k

dε
(0) =

1

2vk−1

(
0 + 2

(
vk−1vkpk

v2
k

)(k−1∑
t=1

ptvt

)
− 0

)
(3.37)

+
1

2vk

[
2pkvk

(
pk
v2
k

k−1∑
t=1

vt(vt+1 − vt)

)
+ 0 + 0

]
− 1

2v2
k

(
2pkvk

(
k−1∑
t=1

ptvt

)
+ p2

kv
2
k

)
(3.38)

=
pk
vk

(
k−1∑
t=1

ptvt

)
+
p2
k

v2
k

(
k−1∑
t=1

vt(vt+1 − vt)

)
− pk
vk

(
k−1∑
t=1

ptvt

)
− p2

k

2
(3.39)

=
p2
k

v2
k

(
k−1∑
t=1

vt(vt+1 − vt)

)
− p2

k

2
=
p2
k

v2
k

(
k−1∑
t=1

vt(vt+1 − vt)−
v2
k

2

)
< 0, (3.40)

where the last inequality follows from Lemma 1.

Hence the revenues collected from the kth type will decrease. Now we consider the revenues

collected from type r < k, which can be written as
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Rev2,r(ε) =pr

ˆ br−1

br−1−Lr−1,r

1

prvr−1

xdx+ pr

ˆ br−1+Lr,r

br−1

1

prvr
xdx (3.41)

=
1

2vr−1

Lr−1,r(2br−1 − Lr−1,r) +
1

2vr
Lr,r(2br−1 + Lr,r) (3.42)

=
1

2vr−1

(
2Lr−1,rbr−1 − (Lr−1,r)

2
)

+
1

2vr

(
2Lr,rbr−1 + (Lr,r)

2
)

(3.43)

dRev2,r(ε)

dε
=

1

vr−1

(
Lr−1,r

dbr−1

dε
+
dLr−1,r

dε
br−1 − Lr−1,r

dLr−1,r

dε

)
(3.44)

+
1

vr

(
Lr,r

dbr−1

dε
+
dLr,r
dε

br−1 + Lr,r
dLr,r
dε

)
(3.45)

dRev2,r(0)

dε
=

1

vr−1

(
0 + (

r−1∑
t=1

ptvt)
vr−1vrpk

v2
k

− 0

)
(3.46)

+
1

vr

(
prvr

pk
v2
k

r−1∑
t=1

vt(vt+1 − vt) + (
r−1∑
t=1

ptvt)(−
pkv

2
r

v2
k

) + prvr(−
pkv

2
r

v2
k

)

)
(3.47)

=
prpk
v2
k

(
r−1∑
t=1

vt(vt+1 − vt)− v2
r

)
< 0. (3.48)

As with the type k case, the last inequality above follows from Lemma 1. Hence revenues

collected from bidder 2’s lower types also contribute less. We now collect the results of the changes

in bidder 2’s revenues.

Combining the results of the previous propositions, I now characterize changes in total expected

revenues due to the asymmetry.

Proposition 8 Suppose that players are initially symmetric and then player 1’s kth valuation is

increased by some small ε > 0 ceteris paribus . The changes in revenues ∆Rev for each type and

each player are given in the table below.

∆Rev types t < k type t = k types t > k all types

Player 1 ↑ ↑ ↑ ↑

Player 2 ↓ ↓ ↑ ↑,=, ↓

Both Players ↓ ↑,=, ↓ ↑ ↑,=, ↓
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Specifically the (right-handed) derivative of total expected revenues is given by:

n∑
t=1

dRev1,t(0)

dε
+
dRev2,t(0)

dε
=

2pk
v2
k

[
k−1∑
t=1

pt

(
−v

2
t

2
+

t−1∑
r=1

vr(vr+1 − vr)

)
(3.49)

+ pk

(
−v

2
k

4
+

k−1∑
r=1

vr(vr+1 − vr)

)
(3.50)

+
n∑

t=k+1

pt

(
k−1∑
r=1

vr(vr+1 − vr)

)]
. (3.51)

Proof 9

n∑
t=1

dRev1,t(0)

dε
=

k−1∑
t=1

ptpk
v2
k

(
t−1∑
r=1

vr(vr+1 − vr)

)
+

n∑
t=k

ptpk
v2
k

(
k−1∑
r=1

vr(vr+1 − vr)

)
(3.52)

n∑
t=1

dRev2,t(0)

dε
=

k−1∑
t=1

ptpk
v2
k

(
−v2

t +
t−1∑
r=1

vr(vr+1 − vr)

)
+
p2
k

v2
k

(
−v

2
k

2
+

k−1∑
r=1

vr(vr+1 − vr)

)
(3.53)

+
n∑

t=k+1

ptpk
v2
k

(
k−1∑
r=1

vr(vr+1 − vr)

)
(3.54)

Hence

n∑
t=1

dRev1,t(0)

dε
+
dRev2,t(0)

dε
=

k−1∑
t=1

ptpk
v2
k

(
−v2

t + 2
t−1∑
r=1

vr(vr+1 − vr)

)
(3.55)

+
p2
k

v2
k

(
−v

2
k

2
+ 2

k−1∑
r=1

vr(vr+1 − vr)

)
(3.56)

+
n∑

t=k+1

ptpk
v2
k

(
2
k−1∑
r=1

vr(vr+1 − vr)

)
(3.57)

=
2pk
v2
k

[
k−1∑
t=1

pt

(
−v

2
t

2
+

t−1∑
r=1

vr(vr+1 − vr)

)
(3.58)

+ pk

(
−v

2
k

4
+

k−1∑
r=1

vr(vr+1 − vr)

)
(3.59)

+
n∑

t=k+1

pt

(
k−1∑
r=1

vr(vr+1 − vr)

)]
(3.60)
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The net change in the revenues can be broken apart into 3 groups of types. The higher types of

both players will all generate more revenue, conditional on their type being realized. This is due

to monotonicity. The lower types of the stronger player will bid more due to the encouragement

effect. The lower types of the weaker player will bid less due to the discouragement effect. There

is thus a tension between the first two groups of types and the third group of types. Ultimately the

likelihood of being a high type versus a low type determines which type has the greater magnitude.

Informally, if there are more revenue increasing types than revenue decreasing types then expected

revenues will increase.

Before moving on to the other type of comparative static (changing probabilities), it is useful to

briefly introduce the comparative statics on type spaces that are already asymmetric. These types

of comparative statics will either reverse the asymmetry or exacerbate the asymmetry, depending

upon whether the asymmetry causes the atom at 0 of the weaker player to increase or decrease. I

postpone this discussion until Chapter 4, where I show that maximal limits on bids are a type of

“asymmetry-reversing” comparative static. For now I will just note that asymmetry is a bit like

bending an elastic rod at different lengths and then measuring the total length of the rod. Bending

the rod in different directions may cancel the effects of each other while twice bending the rod in

the same direction serves to amplify the effect of the initial asymmetry.

Generally speaking, the same pattern will hold for other types of asymmetry rather than just

asymmetry relative to the symmetric type space. Suppose that players are initially symmetric and

then type k is increased for player 1. My previous results show that revenues will be increased

only if the probability of types above k is sufficiently large enough. Now suppose that player 1’s

m-type, where m is WLOG smaller than k. This means that player 1 is even more likely to see

tougher competition, so that the intuition from the assimilation and stacking effects carry over.

If the probability of high types is great enough, revenues will be increased. If however instead

of player 1’s mth type it is player 2’s mth type that is increased, then relative to symmetric type

space revenues can increase if the probability of high types is small enough, since this change

would allow player 2 to remove some of her atom at 0 and reverse the asymmetry. Other forms of
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asymmetry can be stacked upon in this way.

Corollary 2 For more than one comparative static,

• If player 1 is stronger in more than 1 type, the assimilation and stacking effects will be

amplified so that revenues will increase only if the probability of high types is large enough.

• If player 1 is stronger in one type, but player 2 in another, revenues will tend to be closer to

the symmetric case because the effects tend to cancel each other out. It depends upon the

relative size of the asymmetries and the relative size of the types above the asymmetric types.

3.4 Private Information Comparative Statics (Probabilities)

Changing valuations are just one of the ways in which a player can experience a first order

stochastic shift in his or her type space distribution. A player may also become stronger by means

of increasing the probability of his being a higher type. In this section the set of possible valuations

Ti is fixed for each player but the the probabilities over these types are changing. The difficulty

in such a comparative static is that there are too many ways probability weight can be taken from

lower types and transferred to higher types. For example, with 3 types (v1, v2, v3) there are 7

cases10, and each of these cases has sub-cases depending upon the relative amounts of probability

taken from each lower type. With n possible types it is infeasible to describe, as the number of

cases would be on the order of n! . As a result I consider the comparative statics of type spaces

with two and three types and then proceed to generalize qualitatively to larger type spaces. I show

that it is necessary to consider at least 3 types to fully capture the effects of changing probabilities

on behavior.

With changing probabilities, there is a type of dis-assimilation effect whereby stronger player’s

high types increase their densities, compress their equilibrium interval, and tend to bid less. Weaker

types tend to decrease their densities and bid more. These two effects almost nullify the stacking

effect, but tend to produce an increased equilibrium support. However it is possible for this type of

comparative static to increase or decrease total expected revenues.

10For example probability from type 1 could be transferred to type 2 only, or to type 3 only, to both other types, or
to none. In the first of these 3 cases, probability from type 2 may or may not be transferred to type 3.
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3.4.1 Two Types

When each player has only two types, there is only one way in which the probability of a

player’s high type can be increased: weight must be equaled transferred from p1 to p2. Specifically

let players initially be symmetric so that v1,1 = v2,1 = v1, v1,2 = v2,2 = v2, p1,1 = p2,1 = p1,

and p1,2 = p2,2 = p2 = 1 − p1. Now increase the probability of player 1 being a high type by ε:

p1,1 = p1 − ε and p1,2 = p2 + ε. Applying the equilibrium construction, the matchup between the

highest types will furnish densities g1,2 = 1
(p2+ε)v2

and g2,2 = 1
p2v2

. After v2,2 fills her weight in an

interval of length L2,2 = p2v2, then v1,2 will have remaining weight of 1− (L2,2× 1
(p2+ε)v2

) = ε
p2+ε

.

This will force a new matchup of v1,2 and v2,1 with densities g1,2 = 1
(p2+ε)v1

and g2,1 = 1
p1v2

. If ε

is small enough, then v1,2 will be able to fill his weight in an interval of length L2,1 = εv1. This

will cause v2,1 to have remaining weight of 1 − εv1
p1v2

. Now v1,1 and v2,1’s matchup will generate

densities of g1,1 = 1
(p1−ε)v1 and g2,1 = 1

p1v1
respectively. Since v1 < v2 by assumption, it will be the

case that v1,1 will be able to fill his weight first, despite v2,1 starting the matchup already having

expended some weight. This is because v1,1 has increased his density and will fill at a faster rate.

The length required for this last/lowest interval is L1,1 = (p1 − ε)v1.

Define the equilibrium interval bounds as b1 ≡ p1−ε, b2 ≡ b1+L2,1 = p1v1, and b̄ ≡ p1v1+p2v2.

Notice that the total equilibrium support of bids is the same since b̄ does not depend upon ε. What

does change is the distribution of bids over the equilibrium support. Asymmetry in this form

actually causes the stronger player to mix using a distribution that is first order stochastically dom-

inated by his previous (symmetric) density. Hence becoming stronger has decreased the expected

amount of bidding. Then the expected revenues collected by each type (again multiplied by their

probabilities) are summarized by the following proposition.

Proposition 9 Suppose that there are two symmetric players with two possible types. Now suppose

that p2 is increased by ε and p1 is decreased by ε for one of the players. Then the associated

comparative statics (in terms of ε) are
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dRev1,1(ε)

dε
=− v1(p1 − ε) < 0, (3.61)

dRev1,2(ε)

dε
=v1(p1 − ε) > 0, (3.62)

dRev2,1(ε)

dε
=(p1 − ε)v1(−1 + 2

v1

v2

) T 0, (3.63)

dRev2,2(ε)

dε
=0. (3.64)

Proof 10 The resulting revenues are given by:

Rev1,1(ε) =(p1 − ε)
ˆ b1

0

1

(p1 − ε)v1

xdx =
v1

2
(p1 − ε)2, (3.65)

Rev1,2(ε) =(p2 + ε)

ˆ b2

b1

1

(p2 + ε)v1

xdx+ (p2 + ε)

ˆ b̄

b2

1

(p2 + ε)v2

xdx = εp1v1 −
ε2v1

2
, (3.66)

Rev2,1(ε) =p1

ˆ b1

0

1

p1v1

xdx+ p2

ˆ b2

b1

1

p1v2

xdx =
(p1 − ε)2v1

2
+
εv1

v2

(2p1v1 − εv1), (3.67)

Rev2,2(ε) =p2

ˆ b̄

b2

1

p2v2

xdx =
p2

2
(2p1v1 + p2v2). (3.68)

Elementary calculus yields the result.

Corollary 3 For small ε > 0, total expected revenues are strictly increasing in ε iff v1
v2
> 1

2
.

Recall thatRevi,k is the probability of player i being a k type multiplied by the expected revenues

conditional on that type being realized. The above proposition shows that this product is decreasing

for v1,1 but increasing for v1,2. However, conditional on type, both types of player 1 generate less

revenue. Informally, there are less v1,1’s around and more v1,2’s around. Both types bid less on

average. But since there are more v1,2’s, the overall contribution to revenues from these types will

increase. This explains why dRev1,2(ε)

dε
> 0. Despite experiencing a first order stochastic shift where

he is unambiguously made stronger, each type of player 1 bids less on average. This feature is

absent in complete information, where the stronger player will always bid the same on average.

With incomplete information, this example shows that the stronger player may actually bid less on

average.
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While the auctioneer will expect to collect less from the lower type of player 1, the higher type

of player 1 will generate more revenues on average. These two effects will exactly offset so that

player 1, on average, will bid the same amount. In contrast the high type of player 2 will contribute

the same amount, but the change in revenues for the lower type can be positive or negative. If

v1
v2
> 1

2
, so that the two different possible types of the players are not too dissimilar, then expected

revenues will increase.

Note that this result does not at all depend upon the values of p1 and p2. Therefore, adding even

arbitrarily small amounts of incomplete information to the game may yield qualitatively different

effects on the changes in revenues (when asymmetry is introduced). If both players valuations are

common knowledge, then asymmetry lowers total expected revenues for all pairs of valuations. If,

however, it is common knowledge that the players have the same valuations as the previous sen-

tence with probability 0.99 and with probability 0.01 have some other valuation, then asymmetry

can increases revenues if each player’s types are sufficiently close to each other. This represents a

type of discontinuity in the information structure. Even though small changes in the information

structure change equilibrium behavior by a small amount, the rates of change of expected revenues

may change discontinuously.

Proposition 10 There exists a family of symmetric type space distributions arbitrarily close to the

complete information (degenerate) distribution where asymmetry strictly increases revenues.

Proof 11 Let ε > 0 and v1
v2
> 1

2
. Also let both players have valuation v2 with probability 1 − ε

and v1 with probability ε. Then if p1,2 is increased by any arbitrarily small δ > 0, revenues strictly

increase for any ε > 0.

My results agree with Kirkegaard (2013), who was the first to point out the “knife-edge” case of

complete information in determining comparative statics. His comparative static involves taking

weight from all existing types and placing the weight on new higher types. This comparative

static will increase revenues. My results imply his. Additionally, our results imply those of Fibich

et al. (2004), who considers a similar comparative static and shows that revenues must increase.
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However the comparative static they perform holds the support of the type space fixed. My results

allow for changing supports. Both of these papers investigate comparative statics where infinite

numbers of valuations and probabilities are changed simultaneously. My results help disentangle

the effects of changing valuations and changing probabilities. Ultimately my results can explain

any type of by properly choosing the order of successive comparative statics. I postpone this

discussion until the more general 3 types case.

3.4.2 Three Types

With three types, there are several ways that a player can be made stronger by way of increasing

the probability of higher types. I consider only one type of comparative static to bring out the dif-

ferences between changing valuations and changing probabilities. Suppose first that weight from

the lowest type is transferred to the highest type. Specifically, let there be two ex-ante symmetric

players with n = 3 types each. The comparative static I perform is analyzing changes in revenues

when weight is passed from the lowest type only to the highest type. This corresponds to changing

player 1’s prior probabilities to p1,1 = p1 − ε and p1,3 = p3 + ε for some small ε > 0. Qualita-

tively, what is important about this case is the fact that there is a middle type (whose probability is

unchanged) over whom weight is transferred.

Hence I do not consider other cases such as having weight is moved from the middle type to the

high type or having weight added from the low type to the middle type. In the conclusion section

I will discuss the qualitative aspects of other comparative statics. The general intuition from the

single case is enough to understand this type of comparative static.

Here is a sketch of the equilibrium construction of the first of our three cases. Let p1,1 = p1 − ε

and p1,3 = p3 + ε for some small ε > 0. Starting with the matchup between the two highest types,

the equilibrium densities will be g1,3 = 1
(p3+ε)v3

and g2,3 = 1
p3v3

. Now it is the stronger player

who is unable to fill his weight. After a length of L3,3 = p3v3, v1,3 will have remaining weight of

1− (L3,3× 1
(p3+ε)v3

). Hence v2,2 will now face stronger competition and increase her density. After

v1,3 fills up his weight in a new interval, v2,2 will face v1,2 where the former is able to fill up first.

The pattern continues until the type where weight was removed from. In this case, the stronger
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player’s density actually increases in such a way so that the total bidding support remains constant.

What is qualitatively different is that it is primarily the stronger player’s behavior that is changed.

His densities are decreases for larger types, thus expanding the interval he requires to fill all of

his weight. On the other hand the densities for smaller types are increased, thus contracting the

intervals required for filling all of his weight.

Proposition 11 Let n = 3 and players be symmetric. Then let p1,3 is increased by some small

ε > 0 and p1,1 is decreased by ε. The table below summarizes the changes in “expected revenues”,

where expected revenues are the probability of each type multiplied by the expected revenue con-

ditional on that type.

v1 v2 v3 Total
Player 1 ↓ ↓ ↑ ↑
Player 2 ↓ ↓ ↑ ↑↓

Both Players ↓ ↓ ↑ ↑↓

Figure 3.2: ∆Rev: p1,1 = p1 − ε and p1,3 = p3 + ε

Conditional on type all types of both players except for v2,3 will bid less on average. Note the

table above gives revenues conditional on type multiplied by probabilities.

This type of type space distribution change may or may not increase revenues. With changing

probabilities the ratios of the valuations is the key factor. When either v1
v2

, v1
v3

, or v2
v3

is large (ceteris

paribus) revenues will be more likely to decrease. Else revenues are more likely to increase when

valuations increase at an increasing rate: v3 >> v2 >> v1. For types spaces with a sufficiently

large n, this result suggests that revenues will be likely to be decreasing as the ratio between

consecutive types approaches 1.

As weight is transferred from the lowest type to the highest type, then the stronger player as

a whole will contribute more to revenues while the weaker player’s effect is ambiguous. Overall

revenues will be likely to increase if types are far away from one another with respect to the

Euclidean metric.
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3.4.3 Summary of Changing Probabilities

When weight is transferred from the lowest type to the highest type, revenues may increase or

decrease. Consider first the stronger player. There exists a cutoff type such that prior probability

from types below the cutoff is transferred to types above the cutoff. For the higher types, there

will be stretching due to smaller densities. This will increase revenues. For the lower types, there

will be compressing due to larger densities. This will decrease revenues. The net effect will

be positive. Similarly the weaker player will stretch at the top and compress on the bottom but

the overall effect on revenues is ambiguous. Hence it is possible for asymmetry in the form of

probabilities to decrease revenues. This result stands in contrast to Fibich et al. (2004), who find

that the same comparative static must increase revenues for small changes.

3.5 Conclusion

With complete information, there is only one way to make a player stronger relative to another

(i.e. increase asymmetry between players). One of the player’s known valuations must change.

Even if the asymmetry is in the form of player 1 having arbitrarily large (but finite) valuation,

asymmetry will always decrease revenues. Thus any auctioneer interested in maximizing total

expected revenues must ultimately eliminate all asymmetry when valuations of both players are

common knowledge. In the next chapter we will see one such way to equalize the players: impos-

ing maximum bidding limits.

With incomplete information (i.e. private information in our context), comparative statics are

not so clear. First it matters how a player is made stronger. A player can become stronger by either

increasing the valuation associated with one of his types ceteris paribus, or by increasing the

probability of a high valuation ceteris paribus. These two changes have qualitatively very different

effects on revenues. In some instances, some of the “stronger” player’s types may actually bid less

on average.

Additionally, the underlying shape of the type space distribution determines whether asymmetry

will increase or decrease revenues. Specifically the relative likelihoods of lower types versus higher

types are the key determinant for valuation-comparative statics. The relative ratios of the types are
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the key determinant for probability-comparative statics. In the next chapter of the dissertation, I

show that maximum bidding limits have similar effects as valuation comparative statics, so I will

focus on those here. The comparative statics of the private information APA can be summarized by

two effects, the assimilation effect and the stacking effect. Only the assimilation effect is present

in the complete information game, though only partially. The comparative statics of asymmetry on

revenues are not robust to incomplete information.

Asymmetry alters the equilibrium because it changes the matchups between the players. When

a player meets tougher competition, he will respond by randomizing over a larger set of bids. This

tends to increase the total expected bid ceteris paribus since the lower bound of bids is fixed at 0.

When a player meets weaker competition, she will respond by randomizing over a smaller set of

bids and bid less on average. Hence each player tends to assimilate to the level of their competition.

Stronger competition induces players to bid more while weaker competition induces players to bid

less. This is the assimilation effect. Each player only bids as much as their competition is willing

to bid.

The “stacking effect” is a direct consequence of monotonicity. When lower types bid more, then

ceteris paribus higher types will bid more as well because higher types must bid more than the

lower types. This effect is trivially absent from the complete information case since each player

has only 1 type. These two effects determine whether revenues will increase or not. In short, the

auctioneer makes money off the high types and loses money off of the low types. If high types are

sufficiently more likely, the auctioneer will expect to collect more money. The single type in the

complete information game is treated as a low type, and hence revenues can never increase with

asymmetry.
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CHAPTER 4

MAXIMUM CONTRIBUTION LIMITS

4.1 Introduction

In 2010 the Supreme Court of the United States (SCOTUS) ruled in Citizens United v. FEC that

certain types of political spending should be unlimited. After the decision contributions increased

dramatically. This has been the concern of citizens of all political affiliations as it seems that special

interests now have an even larger voice and influence with politicians. That this concern is credible

is due to the fact1 that the average time spent campaigning and talking with donors and lobbyists

by a senator, representative, or federal official with authority is 60%. This chapter provides a

theoretical understanding of this decision and of contribution limits in general. I consider the

problem in reverse, first assuming no limits and then seeing the changes the maximum limits create

in the equilibrium behavior. My results imply that enacting a policy with no contribution limits

will increase the total expected contribution as long as the likelihood of people who are willing to

donate more than the maximum, and ultimately the amounts which each person is willing to donate

more than the maximum, is great enough. I use the words lobbyist and donor interchangeably.

Maximum limits reverse the effects of asymmetry in the lobbying game. Trivially if the max-

imum limits is 0, then all donors are equal as no influence-garnering contributions are allowed.

Increasing the maximum limit from 0 dissuades low valuation donors from contributing because

they know they will be out-contributed by higher valuation donors.

At the heart of my analysis is the importance of both private information and asymmetry be-

tween the lobbyists. To illustrate the individual effects of each, I compare and contrast 4 different

environments: 1) complete information with symmetric lobbyists, 2) complete information with

1See Baumgartner, Berry, Hojnacki, Kimball, and Leech (2009) for more summary statistics of this type.



asymmetric lobbyists, 3) private information with symmetric lobbyists, and 4) private information

with asymmetric lobbyists. Regardless of the information structure, complete or private, maxi-

mum contribution limits can increase total expected revenues (relative to the no limit case) when

lobbyists are asymmetric.

Che and Gale (1998) have shown that with complete information between lobbyists it may be

possible to have total expected contributions be larger when maximum limits are imposed pre-

cisely because the low valuation donor will be induced to contribute a larger amount so much that

it offsets the loss in revenues from high valuation donors. My main result is the private informa-

tion extension of their environment, i.e. the all-pay auction with risk-neutral 2 players who have

independently drawn types.

The closest known work to this one is Sahuget (2006), who shows that with uniform distributions

that there exist maximum limits that can increase total expected revenues only if the players are

symmetric. The drawback of his approach is that he uses types drawn from absolutely continuous

distributions. The equilibria in these games are characterized by the solutions of a system of a first

order ordinary differential equations and do not lend themselves well to comparative statics. Fur-

ther, tractable solutions exist only for trivial type space distributions like the uniform distributions.

I use finite types to circumvent this difficulty and directly illustrate the effects of contribution limits

on all types of both players, thus enabling me to keep track of how the distribution of contributions

changes with the maximum allowed contribution. The first chapter of this dissertation justifies the

use of finite types.

My main result says that imposing maximum limits may or may not increase total expected

contributions. What matters is the likelihood of each lobbyist being a low versus a high valuation

types. If high types are likely, then contribution limits will decrease total expected contributions.

Intuitively if all lobbyists are willing to contribute more than a million dollars with probability

99%, then a maximum limit below a million dollars will only increase contributions in the event

of a low valuation donor existing, which happens with probability 1%.
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The plan of this chapter is as follows. First I introduce the notation and characterize the equi-

librium when contributions are unrestricted, i.e. when no maximum limit is imposed. I briefly

consider the complete information lobbying game, which is a special case2 of the private informa-

tion environment. I then move on to private information games, starting with symmetric lobbyists

and then ending with asymmetric lobbyists. I will be able to disentangle the effects of asymmetry

and the effects of private information by proceeding in this way. Finally I conclude and provide

suggestions for future research.

4.2 Model and Equilibrium Characterization without Contribution Limits

I model political lobbying as an all-pay auction between two risk-neutral players. Each lobbyist,

unaware of his opponent’s value of political clout, pledges a non-refundable contribution towards

a politician’s campaign. It is understood that the highest contributor wins political clout with the

politician. The key feature of this game is that contributions are non-refundable. A lobbyist cannot

ask for a donation back if he or she did not receive political favor.

There are two lobbyists indexed by i = 1, 2. Lobbyist i has valuation vi drawn from some

finite set Vi = {vi,1, vi,2, . . . , vi,n} according to some cumulative distribution function Fi with

corresponding probabilities {pi,1, pi,2, . . . , pi,n} ∈ ∆n. Note that I assume the number of types to

be the same for both lobbyists. Allowing different cardinality of type spaces does not qualitatively

change any of the main results. Without loss of generality I can assume that all types are strictly

positive and that types are ordered from smallest to largest: 0 < vi,1 < vi,2 < . . . < vi,n.

Lobbyist i contributes ci ∈ [0, C], the maximum allowable contributionC is common knowledge

and the same for both players. The lobbyist with the highest contribution wins political favor, but

each lobbyist must consider the contributions as sunk costs. Cast in terms of auction theory, the

transfers from the players to the auctioneer are unconditional in that they do not depend upon the

realization of the allocation. Note that each lobbyist i’s ex-post payoffs, i 6= j, ui(ci, cj|vi) are

discontinuous when the actions are equal. For ci ∈ [0, C],

2The complete information game is equivalent to n = 1 in my model, where the notation is introduced in the next
section.

53



ui(ci, cj|vi) =


vi − ci if ci > cj

vi
2
− ci if ci = cj

−ci if ci < cj.

(4.1)

In fact ex-post payoffs are neither upper semi-continuous nor lower semi-continuous. A final

note of clarification is needed. The above payoffs are valid only if the contributions fall in the

allowed set. If lobbyist i contributes ci > C, we set ui(ci, cj|vi) = −1 for all cj , to ensure

contributing nothing would strictly dominate this strategy. Hence we assume some legal structure

sufficient enough to monitor contribution limits so that that the politician cannot accept very large

contributions (ci 6> C).

Each type vi,k randomizes over contributions using c.d.f. Gi,k(x). Let the support3 of this

distribution be denoted supp(Gi,k). A strategy profile for lobbyist i is then a vector of c.d.f.’s

Gi = (Gi,1, . . . , Gi,n), where each Gi,k is the c.d.f. that describes type vi,k’s behavior. Note that

this description of a strategy profile is quite general. In particular, it allows for smooth mixing over

intervals as well as atoms to be placed anywhere. With contribution limits both of these features

are present in equilibrium behavior. If j uses strategy profile Gj , we can then write i’s interim

expected payoffs Ui(ci, Gj|vi) if he has type vi and contributes ci as

Ui(ci, Gj|vi) = viσi(ci)− ci , (4.2)

where σi(ci) ≡
∑nj

m=1 pj,mGj,m(ci) is the probability that lobbyist i wins against lobbyist j

with contribution ci. I now define an equilibrium of this game, which is the standard Bayesian

3In equilibrium, each Gi,k will be absolutely continuous (with respect to the Lebesgue measure) so that we can
write its corresponding density gi,k. I define the support of a set S is closure of the set of points with positive density:
supp(G) = cl({x|g(x) > 0}). Since the players mix over an interval (and hence a connected set), the closure of the
equilibrium contributions will simply be the interval itself. The endpoints are probability 0 events and do not factor
into payoff considerations.
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Nash Equilibrium definition.

Definition 2 An equilibrium is a pair (G1, G2) s.t. ∀i, ∀vi,k ∈ Vi, ∀ĉ ∈ supp(Gi,k), and for all

c ∈ [0, C]

Ui(ĉ, Gj|vi,k) ≥ Ui(c,Gj|vi,k).

Siegel (2013) has shown unique existence if lobbyists are free to contribute any non-negative

amount, i.e. if C = ∞. Existence of equilibria for all type spaces and for all C will be proved

later by construction. The proof I present builds off of the results of the no-limit case. I present the

no-limit results of Siegel (2013) in the following lemma to highlight the key features of the game

that are present with or without maximum limits imposed.

Lemma 5 Siegel (2013): Let C = ∞. For all finite type distributions F1 and F2, there exists a

unique equilibrium (G1, G2) in mixed strategies such that for all lobbyists i and types k:

• no non-zero atoms: Gi,k(x) is continuous for all x > 0 (and is of course right continuous

at x = 0),

• piecewise-uniformity: Gi,k(x) is piecewise linear over some interval, where

gi,k(x) =


1

pi,kvj,m
if x ∈ supp(Gi,k) ∩ supp(Gj,m)

0 else
(4.3)

• monotonicity: k < k′ ⇒ sup supp(Gi,k) ≤ inf supp(Gi,k′), with equality only possible

if Gi,k = 0.

An immediate consequence of monotonicity is that the probability that a lobbyist wins is in-

creasing in the amount of the contribution, but at a decreasing rate.

Corollary 4 σi(ci) ≡
∑nj

m=1 pj,mGj,m(ci) is a (continuous) concave function of ci for all i, and

hence differentiable at all but a countable number of points. Where it is differentiable, the deriva-

tive is given by
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dσi(ci)

dci
=

1

vi,k
, (4.4)

if ci ∈ supp(Gi,k).

From the perspective of each lobbyist, lobbying is a lottery. Each lobbyist makes a non-

refundable payment for a chance to win political favor. Unknown to each lobbyist is the valuation

or contribution of the other lobbyist. All that is known is the distribution of the other lobbyist.

Monotonicity implies that in equilibrium larger donations have greater chances of winning ceteris

paribus, but the gains from doing so decrease as the donation is made larger. Only lobbyists who

value political favor sufficiently much will contribute large amounts. The reason is that the extra

likelihood in winning is only desirable to lobbyists who stand to gain a lot from winning. This

feature is present in the equilibrium with limits as well.

4.3 Maximum Limits with Complete Information

The complete information environment is a special case of the private information environment

in which n = 1. Thus equilibrium existence (when there are no maximum or minimum limits)

follows immediately, as does all of the other equilibrium properties. For completeness I summarize

the equilibrium in the following Proposition and then illustrate the equilibrium in Figure 4.1. Note

this is the equilibrium existence result without limits as first presented by Hillman and Riley (1989).

Proposition 12 (Hillman and Riley (1989)) In the complete information all-pay auction with

valuations v1 > 0 and v2 > v1, there exists a unique equilibrium (G1, G2), which is in mixed

strategies, where players mix uniformly over [0, v1], with densities g1(x) = 1
v2

and g2(x) = 1
v1

respectively, and the weaker player (player 1) contributes 0 with probability v2−v1
v2

.

Proof 12 See Hillman and Riley (1989) or take n = 1 in Lemma 5.

Let v > 0 be the valuation of lobbyist 2 and v + ε be the valuation of lobbyist 1, for some

ε > 0. Hence ε is measure of the asymmetry between the players. Increasing ε results in the
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Figure 4.1: Complete Information Equilibrium, C =∞

weaker lobbyist contributing 0 with greater probability while the stronger lobbyist is unaffected.

Thus total expected contributions collected between the players must decrease. A similar result

holds when ε is lowered below 0: both players will randomize their donation over a set of smaller

possible contributions. Hence for a fixed v, total expected contributions are maximized when

ε = 0.

Corollary 5 Let v1 = v + a and v2 = v for some a ∈ R. Then total expected revenues are

maximized at a = 0.

Proof 13 See Hillman and Riley (1989).

Hence a politician interested in maximizing total expected contributions will prefer a more level

playing field for the lobbyists for a given minimum valuation between the two lobbyists. This is

the intuition behind the exclusion principle of Baye et al. (1993), where it is shown that excluding

strong bidders from an n > 2 player game from participating may increase total expected revenues.

In the all-pay auction large expected contributions will not be possible unless both players are

willing to contribute a lot. The reason is that the stronger lobbyist only has to contribute what

the weaker lobbyist is willing to contribute. In the previous chapter this was referred to as the

assimilation effect.

Che and Gale (1998) were the first to point that in the complete information environment, im-

posing maximum limits may actually increase total expected contributions precisely because they

reduce the asymmetry between the players. For large limits C, behavior will be largely unaffected
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Figure 4.2: Che and Gale (1998)’s Complete Information Revenues

and so revenues will trivially remain the same. For example if C > v , behavior will be unaffected

by the imposition of the limit since no lobbyist is willing to contribute more than his valuation. If,

on the other hand, the maximum limit is very small, then behavior will change. For example, if

C = 0 then revenues will trivially be zero as lobbyists are effectively banned from contributing.

The surprising result is that intermediate values of maximum limits must increase total expected

revenues if and only if the players are asymmetric. Here the increase should be clarified as an

increase relative to the total expected contributions with no limit. If lobbyist 1 has valuation v + ε

and lobbyist 2 has valuation v, then ε is a measure of the asymmetry between the players. When

ε 6= 0, Che and Gale (1998) pointed out an important kink in the total expected contributions.

Formally let π(v1, v2|C) be the total expected contributions collected from players with valuations

v1 and v2 with maximum limit C. Figure 4.2 illustrates pi as a function of C, for a fixed v1 and v2.

Proposition 13 (Che and Gale (1998)). Suppose that v1 = v + ε and v2 = v, where ε > 0, and

C = 0.

(Large Maximum Limits) If C ∈ (v
2
, v], both lobbyists will mix over some subinterval [0, C ′] and

place an atom of positive weight at C, where C ′ = 2C̄ − v < C. Behavior over [0, C ′] is

given by

G1(c) =
c

v
and G2(c) =

ε

v + ε
+

c

v + ε
. (4.5)
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(Smaller Maximum Limits) If C ∈ [0, v
2
], both lobbyists will contribute C with probability 1.

Proof 14 See Che and Gale (1998).

Note the equilibrium switches form once the maximum limit is lowered past the threshold of v
2
.

For C above the threshold, players substitute the weight formerly at the top of their equilibrium

interval as an atom at the maximum bid. There must be a gap between C ′ and C in order to

make the lobbyists indifferent between the two contributions as placing any positive weight on

C causes the player to experience a discontinuous change in payoffs. The value C ′ is chosen

precisely to make this change just acceptable for each player. As the corollary shows below, this is

a revenue neutral change in behavior from the politician’s standpoint. With private information the

associated change in C will not be revenue neutral. But with complete information, both lobbyists

contribute the same amount (on average) they did before the maximum limit was enacted, though

the shape of the distribution is different. Specifically total expected revenues experience a second-

order stochastic shift4. Alternatively stated, the distribution of bids without a maximum limit is a

mean-preserving spread of the distribution of bids with large maximum limits. Thus a risk-averse

politician would benefit from imposing a maximum limit while a risk-neutral politician would be

indifferent.

If on the other hand C < v
2
, the politician will collect 2C with certainty. Without any limits,

total expected revenues are π(v, v + ε|0,∞) = v
2

+ v(2v+ε)
2(v+ε)

. Simple algebra shows that for values

of C ∈ (v(2v+ε)
4(v+ε)

, v
2
), total expected contributions will be increased (relative to the game with no

limits) as long as ε > 0. If ε = 0, so that the lobbyists are symmetric, then when C is lowered past

the threshold total expected revenues will start to strictly decrease.

Corollary 6 Let v1 = v + ε, and v2 = v. If ε = 0, then total expected revenues are (weakly)

increasing in C for all C. If ε > 0, then total expected revenues are strictly increasing in C for

C ∈ [0, v
2
], and then take a discontinuous jump downward where they remain constant for all

C ≥ v
2
.

4If F (x) is the distribution for revenues when C > v and G(x) is the distribution when C ∈ ( v
2 , v], then G

second-order stochastic dominates F in that
´
u(x)dG(x) ≥

´
u(x)dF (x) for every concave u(x).
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Proof 15 See Che and Gale (1998)and Figure 4.2.

Thus imposing maximum contribution limits will increase the total expected contributions of

the politician if and only if the maximum limit is neither too small nor too large and the lobbyists

are asymmetric. If the lobbyists are symmetric, then full surplus extraction is already taking place

without maximum limits. Lowering C can only decrease total expected revenues in this case.

However, if the lobbyists are asymmetric then full surplus extraction is generally not possible with

or without maximum limits. But imposing a maximum contribution limit allows the politician to

get closer to full surplus extraction by partially reversing the effects of asymmetry between the

lobbyists. The politician can expect to collect v in total expected contributions, which is less than

full surplus extraction. Thus, when valuations are commonly known, maximum limits can be used

as an instrument of the politician to increase revenues when there are asymmetric lobbyists.

Before moving on to the private information environment, I should note that the maximum

limits tend to equalize the winning probabilities of the lobbyists. Suppose that v1 = v + ε and

v2 = v. If C > v
2
, which includes the case of no maximum limit, the stronger lobbyist wins with

probability 1 − v
2(v+ε)

> 1
2
. Asymmetry between lobbyists implies that the stronger lobbyist will

win more often than the weaker lobbyist. Once the maximum limit is lowered enough (C < v
2
),

the winning probabilities for both lobbyists are the same. Thus not only would the the mean of

total expected contributions increase and the risk associated with expected contributions decrease,

maximum limits would allow the politician to appear more fair in that the weaker lobbyist gains

influence more often.

4.4 Maximum Limits with Private Information

Before moving on to the more general asymmetric case I characterize the symmetric case to

illustrate the importance of asymmetry on the ability of the politician to increase total expected

contributions by imposing a maximum limit.

4.4.1 Symmetric Lobbyists

Suppose now that the valuations for political favor are private information to each lobbyist ac-

cording to the model presented in Section 4.2 . In this section I further assume the distributions are
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identical for the players, i.e. that V1 = V2 and p1,k = p2,k for each type k. If the maximum limit

C is sufficiently high, the unique equilibrium is unaffected by its imposition and is hence given

from Lemma 5 . This symmetric equilibrium G = (G1, . . . , Gn) has each type vk mixing over

[Bk−1, Bk] with density gk(x) = 1
pkvk

, where B0 = 0 and Bk =
∑k

r=1 prvr. Thus any C > Bn has

no effect on the equilibrium. However, once C is lowered to a value slightly smaller than Bn, the

equilibrium behavior changes qualitatively. I now construct the unique equilibrium of this game

for all C.

If C ∈ (Bn−1+Bn

2
, Bn), then type vn will mix over [Bn−1, C

′
n] for some C ′n ∈ [Bn−1, Bn] . This

is similar to the complete information case where the player mixes over a smaller sub-interval

and places positive weight as an atom at the maximum limit C. This will be a revenue neutral

change. Once C < Bn−1+Bn

2
, then types vn will contribute C with probability 1. I repeat that this

is analogous to the complete information case.

AsC is lowered even further, this pattern continues for all of the remaining (lower) types, though

with slight different cutoff values for the changes in behavior. For each type there corresponds

three intervals which I call “large”, “intermediate”, and “small”. In general, for “large” values of

C, behavior for types vk is unaffected. That is, types vk behave as if there was no maximum limit,

even though larger types behavior is affected by the imposition of the limit. For “intermediate”

values of C, types vk shift the weight at top of the interval from which they were previously

mixing and place it as an atom at the maximum limit. Specifically, they will mix over a smaller

sub-interval [Bk−1, C
′
k], for someC ′k ∈ (Bk−1, Bk) which depends uponC, and place some positive

weight at C. For “small” values of C, types vk will simply contribute C with probability 1. Now I

summarize the equilibrium characterization with symmetric lobbyists.

Proposition 14 Let lobbyists be symmetric and define Bk =
∑k

r=1 prvr and C ′k = 2C − Bk −

vk(
∑n

r=k+1 pr) for each k = 1, . . . , n. Recall the no-limit equilibrium mixing density and

c.d.f. gk(x) = 1
pkvk

and Gi,k(x) = x−Bn−1

pkvk
respectively for each k. Also let Lk = Bk−1+Bk

2
+

vk
2

(
∑n

r=k+1 pr) and Uk = Bk + vk
2

(
∑n

r=k+1 pr). I say behavior is unaffected if it is the same

behavior as the no-limit (C =∞) equilibrium. Then there is a unique equilibrium given by:
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• If C > Bn, then behavior is unaffected for all types.

• if C ∈ (Uk, Lk+1)

– types v > vk contribute C with probability 1

– types v ≤ vk are unaffected

• if C ∈ (Lk, Uk)

– types v > vk contribute C with probability 1

– type vk mixes over [Bk−1, C
′
k] with density gk and places an atom at C of size 1 −

Gk(C
′
k) =

2Bk−2C+vk(
∑n

r=k+1 pr)

pkvk

– types v < vk are unaffected

• if C ∈ (Uk−1, Lk)

– types v ≥ vk contribute C with probability 1

– types v < vk are unaffected

Proof 16 First note that monotonicity of equilibrium ensures that when type vk places an atom at

C, then so too will all types v > vk since this is the highest possible contribution and types v earn

positive payoffs. Define Bk =
∑k

r=1 prvr. Define gk(c) = 1
pkvk

and Gk(c) = c−Bk−1

pkvk
. The proof

here just uses simple indifference conditions and monotonicity to derive densities and argue that

they are optimal.

For type vn, we can mimic the complete information construction. I claim that types v < vn

will be unaffected for values of C > Bn−1+Bn

2
. I prove this later when constructing the behavior

for vn−1 by showing that vn−1 would earn higher payoffs by not changing behavior. Now vn

will mix over [Bn−1+Bn

2
, C ′n] and place an atom at C. Indifference conditions force that for all

c ∈ [Bn−1, C
′
n]:
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vn

(
n−1∑
r=1

pr ∗ 1 + pnGn(c)

)
− c = vn

(
n−1∑
r=1

pr + pnGn(C ′n) + pn(1−Gn(C ′n)) ∗ 1

2

)
− C (4.6)

C − c =
pnvn

2
(−2Gn(c) + 1 +Gn(C ′n)) . (4.7)

The value 1−Gn(c′n) is the size of the atom that in places at C. Evaluating this at c = C ′n pins

down C ′n:

C − C ′n =
pnvn

2
(1−Gn(C ′n)) (4.8)

2(C − C ′n) = pnvn

(
1− C ′n −

∑n−1
r=1 prvr

pnvn

)
(4.9)

2(C − C ′n) = pnvn − C ′n +
n−1∑
r=1

prvr (4.10)

C ′n = 2C −
n∑
r=1

prvr = 2C −Bn (4.11)

This is only defined when C ′n ≥ Bn−1, which is equivalent to C ≥ Bn−1+Bn

2
. Thus whenever

C is in the upper half of n’s regular (i.e. without maximum limits) interval, he will mix over

[Bn−1, C
′
n] with density gn(c) = 1

pnvn
and place an atom of size 1−Gn(C ′n) = 2(Bn−C)

pnvn
at C. Once

C < Bn−1+Bn

2
, type vn will contribute C with probability 1.

Now consider vn−1 types. I now solve for the value of C where the vn−1 types start mixing over

[Bn−2, C
′
n−1] and placing an atom at C. Let both players adopt this strategy when they are vn−1

types.

Indifference conditions are
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vn−1

(
n−2∑
r=1

pr + pn−1Gn−1(c)

)
− c (4.12)

= (4.13)

vn−1

(
n−2∑
r=1

pr + pn−1

(
Gn−1(C ′n−1) + (1−Gn−1(C ′n−1)) ∗ 1

2

)
+

1

2
pn

)
− C (4.14)

C ′n−1 = 2C −Bn−1 − pnvn−1 (4.15)

Note that this is defined only when C ′n−1 ≥ Bn−2, which is equivalent to C ≥ Bn−2+Bn−1

2
+

1
2
pnvn−1. Additionally it is only defined when C ′n−1 ≤ Bn−1, which is equivalent to C ≤ Bn−1 +

1
2
pnvn−1. These are the boundaries for which behavior changes for the vn−1 types. Hence when

C ≥ Bn−1+1
2
pnvn−1, behavior for vn−1 types is unaffected. WhenC ∈ (Bn−2+Bn−1

2
+1

2
pnvn−1, Bn−1+

1
2
pnvn−1), then vn−1 types will mix over [Bn−2, C

′
n−1] and place an atom at C. Once C <

Bn−2+Bn−1

2
+ 1

2
pnvn−1, then vn−1 types will contribute C with probability 1.

By construction, vn−1 will not want to place any weight on until C until C < Bn−1 + 1
2
pnvn−1,

provided the other vn−1 type of the other player does the same. Thus this is an equilibrium strategy.

We can generalize this for lower values of C. Adapting the previous steps, we see that type

vk < vn will mix over [Bk−1, Bk], i.e. not change his behavior from the no-limit case, when C

is sufficiently high. Once C is low enough (I provide the exact value shortly), then vk will be

indifferent between mixing over [Bk−1, C
′
k] and placing an atom at C if

vk

(
k−1∑
r=1

pr + pkGk(c)

)
− c (4.16)

= vk

(
k−1∑
r=1

pr + pk

[
Gk(C

′
k) +

1

2
(1−Gk(C

′
k))

]
+

1

2

n∑
r=k+1

pr

)
− C (4.17)

C ′k = 2C −Bk − vk(
n∑

r=k+1

pr) (4.18)
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Using the fact that C ′k ∈ [Bk−1, Bk], we get that C ∈ [Bk−1+Bk

2
+ 1

2
vk(
∑n

r=k+1 pr) , Bk +

1
2
vk(
∑n

r=k+1 pr)].

All types who contribute C with probability 1 will continue to do so if C is lowered. Hence

there is always a force from higher types that tends to lower total expected contributions when the

maximum limit is lowered. If imposing maximum limits is to be profitable for the politician, it

must be the case that there is some opposing force on contributions from the lower types that is

larger in magnitude. With symmetric lobbyists I show that this opposite force is not enough to raise

total expected contributions. With asymmetric lobbyists, a new opposing force exists. This force

is that of reversing the asymmetry that higher types impose upon lower types through changing the

matchups of these lower types.

To see this note that once C is lowered past Uk, there will be a discontinuous change in behavior

from the vk type. Weight is transferred from [C ′k, Bn] to an atom of size 2Bk−2C+vk(
∑n

r=k+1 pr)

pkvk
at

C. When C is just slightly lower than Uk, then C > Bk. In other words, with positive probability

type vk will contribute an amount (i.e. C) that was previously larger than the upper bound of vk’s

no-limit equilibrium support (i.e. Bk). Necessarily this increases expected contributions collected

from vk types. From Proposition 14 we see that the lower types v < vk will be unaffected and hence

revenue neutral. What I show later is that the rate at which total expected contributions increase

from vk transferring his atom to C > Bk is exactly the rate at which total expected contributions

decrease from types v > vk contributing a lower C with probability 1.

Intuitively, lowering C limits the ability of high types to win as often as they would without

limits. For low enough C, high types v > vk will eventually donate the maximum amount with

certainty. At this contribution level, the marginal benefit of contributing exceeds the marginal

costs, but the high types are not permitted to donate more. The reduced competition from higher

types allows middle types to see higher returns from contributing the maximum amount. Hence

the middle type vk responds by contributing the maximum amount, provided it is low enough. Low

types do not change their behavior. In expectation I show below that these two effects offset so

that net contributions are the same whenever C ∈ (Lk, Uk). However once this transferring stops
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taking place, total expected contributions must decrease. Hence total expected contributions can

never be increased by imposing a maximum limit.

With private information, we can define π(C;F ) ≡
∑n

k=1 pkπk(C;F ) as the total expected

contributions collected from each lobbyist when maximum limit C is imposed and both lobbyists

have type space distribution F . Here πk(C;F ) is the contribution collected from type vk, i.e.

expected contributions conditional upon a type realization of vk. Proposition 15 below summarizes

this discussion. First I summarize the effect that C has on each type’s total expected contributions

in Lemma 6.

Lemma 6 As a function of C, each πk(C;F ) is continuous. Further πk(C;F ) strictly increasing

when C ∈ [0, Lk], strictly decreasing when C ∈ (Lk, Uk), and constant when C ≥ Uk.

Proof 17 Using Proposition 14, when C ≤ Lk type vk contributes C with certainty and hence

contributes more when C increases. When C ∈ (Lk, Uk), type vk will remove weight from C and

mix over a smaller interval with that weight. Hence contributions must decrease in this range.

Once C > Uk, type vk is unaffected by the maximum limit and hence contributes the same amount.

Hence πk(C;F ) is strictly increasing, then strictly decreasing, then constant. To show continuity

note that the size of the atom at C is a continuous function of C.

Hence there does exist a region (Lk, Uk) where lower types can be induced to contribute more

by limiting the ability of higher types to contribute a lot. However this increase in total expected

contributions will exactly be offset by the loss of total expected contributions of the high types.

Thus, the ability of maximum limits to increase total expected contributions (relative to contribu-

tions without any limits) is intimately linked with the ability of the maximum limit to change the

matchups of the lower types. With symmetric lobbyists, matchups are always the same for lower

types and so cannot be changed by a maximum limit. With asymmetric lobbyists, we will see that

the matchups will be affected. This ultimately will allow the politician to potentially increase by

imposing a limit, though this need always be the case.
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Proposition 15 Define Bk, Uk, and Lk as in Proposition 14. Holding the symmetric type space

c.d.f. F fixed, π(C;F ) is (weakly) increasing and continuous in C. Specifically π(C;F ) is strictly

increasing when C ∈ (Uk−1, Lk) and constant when C ∈ [Lk, Uk] for each k = 1, . . . , n.

Proof 18 Using Lemma 6, we see that monotonicity simplifies the behavior of π(C;F ). Note that

lobbyists are symmetric and so too is the equilibrium. I focus on the behavior of just a single

lobbyist. Recall vk’s no-limit equilibrium behavior is summarized by the c.d.f., Gk, where

Gk(c) =


0 if c < Bk−1

c−Bk−1

pkvk
if c ∈ [Bk−1, Bk]

1 if c > Bk

(4.19)

Let C = Uk − δ for some positive δ > 0. The net contribution from all of the types v > vk

to total expected revenues will be −δC
∑n

r=k+1 pr. The net contribution for type vk will be

pk

(
(1−Gk(Ck′))C −

´ Bk

C′k

1
pkvk

xdx
)

= δ(
∑n

r=k+1 pr). The first term represents the extra ex-

pected contributions from contributing C > Bk with positive probability. Since types v < vk

do not change their behavior, the overall change in total expected contributions is

∆π(C,F )|C∈[Lk,Uk] δ(
n∑

r=k+1

pr)︸ ︷︷ ︸
type vk

− δ(
n∑

r=k+1

pr)︸ ︷︷ ︸
types v > vk

= 0 (4.20)

This shows that π(C;F ) is constant when C ∈ [Lk, Uk] for each k. Using Lemma 6 we see

that when C ∈ (Uk, Lk+1) we see that all types v ≤ vk are unaffected, but increasing C will allow

types v > vk to contribute more since they are contributing C with probability 1 in this range. The

result follows.

Corollary 7 Lowering C can never increase the total expected contributions π(C;F ) if lobbyists

are symmetric.
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Figure 4.3 illustrates the results of Proposition 15 for the case of n = 3 types. Compare Fig-

ure 4.2, which illustrates total expected contributions with complete information, with Figure 4.3,

which illustrates the private information case with symmetric lobbyists. There is smooth concave

pattern of expected contributions: increasing C will increase π(C,F ) continuously, but at a de-

creasing rate. With asymmetric lobbyists there will “saw-tooth” shape, where π(C, ·) is increasing

locally over sub-intervals, but then has discontinuous gains and drops when C crosses one of a

finite number of thresholds.

C

π(C;F )

Figure 4.3: Expected Contributions for Symmetric Lobbyists

4.4.2 Asymmetric Lobbyists

Recall that in the complete information case, lowering the maximum contribution limit will al-

low the politician to increase total expected contributions only if the lobbyists are asymmetric.

Asymmetry is detrimental to total expected contributions. Maximum contribution limits level the

playing field and partially offset the effects of asymmetry. In fact, lowering the maximum limit to

intermediate levels must increase total expected contributions. When private information is intro-

duced we see that lowering the maximum limit must increase the expected contribution of some

type, but also decreases the expected contribution of other types. Since total expected contributions

are weighted by the prior probabilities of these types, the net effect of lowering the contribution

may be that total expected contributions decrease. This happens if the probability or “weight”

of the revenue decreasing types is larger than that of the revenue increasing types. This section

characterizes the revenue increasing and revenue decrease types in terms of the asymmetry of the
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underlying type space. In general, the ability of a maximum limit to raise revenues is reduced as C

is reduced further and further. This is because the increase in revenue from the revenue increasing

types must offset a great mass of types that contribute a smaller C with probability 1.

The equilibrium construction closely follows the complete information construction given by

Che and Gale (1998). Since I have already characterized this equilibrium in an earlier section,

here I just review the most salient properties. A full derivation of Che and Gale (1998)’s results

are provided in the Appendix. Trivially when C is sufficiently large, equilibrium behavior will

be unaffected since the set of all possible contributions without limits is bounded. With private

information, this true only for values of C in the upper half of the largest types’ equilibrium sup-

ports. Lowering C well above type vi,k’s support will in general affect the behavior of vi,k. This

highlights the importance of introducing asymmetry, as this feature is not present with symmetric

lobbyists.

Further, when C is low enough, both players will contribute C with probability 1. With private

information there will exist cutoffs Lk such that if C < Lk both player’s kth largest types will

contribute C with probability 1. However for intermediate values of C, lobbyists will contribute

more on average if and only if the lobbyists are asymmetric. There will be a discontinuous increase

in total expected contributions when C is lowered past the midpoint of the normal equilibrium

support. With private information, lowering C below Lk will cause a discontinuous change in

payoffs that is proportional to the probability of vk for each lobbyist. Hence there will be a “saw-

tooth” graph as illustrated in Figure 4.4, which illustrates a typical equilibrium. Note however that

whether the maximum of π(C,F1, F2) is larger or greater than π(∞, F1, F2) is determined by the

underlying type space. In other words it can vary. I formally state this later. If player i has type

space c.d.f. Fi, let π(C,F1, F2) be the total revenues the politician would expect to collect from

both lobbyists when maximum limit C is imposed.

With arbitrary type space distributions, there are simply too many possible equilibrium matchups.

Hence I present my results only in terms of the possibilities of what contribution limits can affect.
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C

π(C;F1, F2)

L̂1 Û1 L̂2 Û2 L̂3 Û3

Figure 4.4: Expected Contributions with Asymmetric Lobbyists

The key insight is that for a low enough C, types above v1,k and v2,k will contribute C with cer-

tainty. Thus using the equilibrium construction it is as if the lobbyists had only types v1,1, . . . , v1,k

and v2,1, . . . , v2,k for low enough C.

In other words, both types v1,k and v2,k start with fresh weight. Normally one of these types

would face up against one of the other lobbyist’s higher types. Now the weight must be expended

on lower types as well. This causes the equilibrium support to decrease overall for these types

since one of the k-types meets weaker competition. Whether or not this effect increases revenues

depends upon whether the asymmetry from the (k + 1)-types originally increased or decreased

revenues.

Hence with asymmetric types there are three tensions affecting total expected revenues. The

first tension is that by lowering C, the politician will trivially lower the revenues collected from

the high types who are contributing C with certainty. The second tension is that by lowering C, the

largest types not already contributing C (i.e. the k types in the previous paragraph) will contribute

more. These two effects cancel with symmetric types .

The third tension of total expected revenues, which is unique to asymmetric lobbyists, is that by

lowering C , the matchups of the remaining lower types change. Suppose that C is low enough

so that both players’ k + 1, k + 2, . . . , n types contribute C with probability 1. Then v1,k will be
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matched up with v2,k, and in general one of the these types will fill up its weight faster than the

other. Suppose WLOG that v1,k fills up his weight first, so that v2,k will need to use her remaining

weight on v1,k−1 and possibly other lower types of player 1. The chapter on comparative statics in

my dissertation illustrates that this asymmetry will increase total expected revenues if and only if

the probability of types higher than k is large enough. Hence the third tension will be positive if

the probability of types higher than k is low enough, since the limit effectively makes types above

k symmetric.

The following proposition characterizes the equilibrium with maximum limits. The construction

is very similar to the symmetric case, though with care taken for the fact that the behavior of the

lower types is continually changing as C is lowered.

Proposition 16 Let F1 and F2 be any finite type c.d.f.’s for lobbyists 1 and 2 respectively. WLOG5

assume that if only types 1, . . . , k existed, p2,kv1,k < p1,kv2,k so that type v2,k would be able to

fill up her weight first against v1,k if both start an equilibrium construction. If k-types are the

largest type, define Bk,k−1 and Bk,k as the lower and upper bound of the interval where they

are matched up, where the length of this interval is given by Lk,k ≡ Bk,k − Bk,k−1 = p2,kv1,k.

Define L̂k =
Bk,k−1+Bk,k

2
+ 1

2
v1,k

∑n
r=k+1 p2,r and Ûk = Bk,k + 1

2
v1,k

∑n
r=k+1 p2,r. Lastly define

C ′k = 2C − Bk,k − v1,k

∑n
r=k+1 p2,r. Then there is a unique equilibrium characterized in the

following manner as a function of C:

• If C > Bn,n = Ûn, then the equilibrium is unaffected by the imposition of the maximum limit

C.

• If C ∈ (Ûk, Lk+1), then all k + 1, k + 2, . . . , n types for both players contribute C with

probability 1. Types 1, . . . , k behave as if the largest types were v1,k and v2,k and there is no

limit.

• If C ∈ (L̂k, Ûk), then types k + 1, . . . , n contribute C with probability 1. Types v1,k and v2,k

5This simply pins down the interval over which k-types are matched up to be [Bk,k−1, Bk,k] rather than
[Bk−1,k, Bk,k].
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mix over (Bk,k−1, C
′
k), with densities g1,k(c) = 1

p1,kv2,k
and g2,k(c) = 1

p2,kv1,k
respectively,

and place an atom at C. Types 1, . . . , k − 1 behave as if the largest types were v1,k and v2,k

and there is no limit.

• If C ∈ (Ûk−1, L̂k), then types k, k + 1, . . . , n for both players contribute C with probability

1. Types 1, . . . , k − 1 behave as if there is no maximum limit and k − 1-types are the largest

type.

Proof 19 The construction of the equilibrium will proceed by starting with the largest types. If

types v1,k and v2,k are matched up in equilibrium, define Bk,m as the upper bound of the interval

where the types are matched and Lk,m as the corresponding length of that interval. Asymmetry

introduced a new problem not seen with symmetric types. At each iteration in the equilibrium

construction the matchups, and hence the values of Bk,m and Lk,m change. During the proof we

will only need to note that both of these variables decrease.

LetB be the upper bound of v1,n’s (and hence also that of v2,n) equilibrium interval when there

are no limits (i.e. the value of Bn,n in the equilibrium without limits). If C ≥ C, then the maximum

limit has no effect.

If C < B, then the equilibrium behavior must change. Replicating the construction for the

complete information case, we see that both players will mix over a smaller subinterval and then

place an atom at the maximum limit. Behavior of types 1, . . . , n − 1 is unaffected since the atom

of the weaker player is unchanged when C ∈ (Bn,n − 1
2
Ln,n, Bn,n) , i.e. when the maximum limit

is in the top half of the top (v1,n vs. v2,n) interval. When C is in this range, types v1,n and v2,n

will mix over [Bn,n − Ln,n, C ′n] with densities g1,n(c) = 1
p1,nv2,n

and g2,n(c) = 1
p2,nv1,n

. Both types

will also place an atom at C. In addition, one of the two players will have extra weight which

is used on lower types. As mentioned earlier, this leftover weight does not vary with C when

C ∈ (Bn,n − 1
2
Ln,n, Bn,n). This ensures the intuition for the complete information case can be

used. This will be a revenue neutral change. The indifference conditions for v1,n is
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v1,n

(
n−1∑
r=1

p2,r + p2,nG2,n(c)

)
(4.21)

= v1,n

(
n−1∑
r=1

p2,r + p2,n

[
G2,n(C ′n) +

1

2
(1−G2,n(C ′n))

])
− C, (4.22)

with an analogous equality for v2,n. Suppose without loss of generality that g1,n(c) = 1
p1,nv2,n

<

1
p2,nv1,n

= g2,n(c) so that player 2 fills up her weight first. This ensures that Ln,n = p2,nv1,n and

Bn,n−1 + Ln,n = Bn,n, which implies G2,n(c) = c−Bn,n−1

p2,nv1,n
. The indifference condition reduces to

C ′n =2C −Bn,n−1 − Ln,n (4.23)

=2C −Bn,n−1 − p2,nv1,n. (4.24)

This is defined only when C ′n ∈ (Bn,n−1, Bn,n) which is equivalent to to C ∈ (Bn,n−1 +

1
2
p2,nv1,n, Bn,n). Once C < Bn,n−1 + 1

2
p2,nv1,n, then both v1,n and v2,n will start contributing

C with probability 1. This of course means that v1,n is no longer matched up with v2,n. Now the

equilibrium is as if v1,n−1 and v2,n−1 were the largest types. In particular, from v2,n−1’s perspective,

v2,n−1 now faces weaker competition for more of her weight, so that v2,n−1 responds by increasing

her density and contracting the overall size of her interval. In other words, although Bn−1,n−1 will

increase when the n-types start contributing C with probability 1, Ln,n−1 → 0 so that the overall

length of the equilibrium of all types up to and including (n− 1)-types must decrease.

The significance of the above statement is that it ensures there is a gap between the mixing in-

terval of the (n−1)-types (and hence all lower types) and the contributing behavior of the n-types,

who contribute C with probability 1. This gap is necessary for the equilibrium construction in or-

der to make the lower types not want to enjoy the discontinuous gain in payoff from contributing

C.

This general pattern is continued for all lower types. Once C is low enough, both players’
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k + 1, k + 2, . . . , n-types will contribute C with probability 1. This means v1,k and v2,k are first

matched up with each other. Lowering C slightly from the threshold where (k + 1)-types starting

contributing C will not change the behavior of the newly matched up v1,k and v2,k. There is a thus

a small range of C where behavior will not change. However eventually C will be low enough so

that k-types will both mix over [Bk,k−Lk,k, C ′k] and place positive weight atC, while all remaining

lower types are unaffected. Further lowering C will eventually have both k-types contributing C

with probability 1. Once this takes place, a new matchup of v1,k−1 and v2,k−1 takes place. The

process continues until the lowest type of one of the players expends all weight.

Specifically, types v1,k and v2,k will be indifferent contributing c ∈ (Bk,k − Lk,k, C ′k) when

v1,k

(
k−1∑
r=1

p2,r + p2,kG2,k(c)

)
− c (4.25)

= v1,k

(
k−1∑
r=1

p2,r + p2,k

[
G2,k(C

′
k) +

1

2
(1−G2,k(C

′
k))

]
+

1

2

n∑
r=k+1

p2,r

)
− C (4.26)

Suppose without loss of generality that player 2 would normally be the one to fill up weight first.

In other words suppose that g1,k(c) = 1
p1,kv2,k

< 1
p2,kv1,k

= g2,k(c). This means that Lk,k = p2,kv1,k

and also Bk,k−1 + Lk,k = Bk,k. This implies that G2,k(c) =
c−Bk,k−1

p2,kv1,k
in this region of c. Hence the

indifference condition for v1,k pins down the value of C ′k:

C ′k = 2C −Bk,k − v1,k

n∑
r=k+1

p2,r (4.27)

which is defined only when C ′k ∈ (Bk,k−1, Bk,k). Using the definition of C ′k this is equivalent to

C ∈
(
Bk,k−1+Bk,k

2
+ 1

2
v1,k

∑n
r=k+1 p2,r, Bk,k + 1

2
v1,k

∑n
r=k+1 p2,r

)
≡ (L̂k, Ûk).

Hence when C > Ûk, types v1,k and v2,k will mix over [Bk,k−1, Bk,k] with player 2 being able

to fill all her weight up here but v1,k needing to be matched up against v2,k−1. All types above

k for both players contribute C with probability 1. When C ∈ (L̂k, Ûk), lower types (< k) will

again be unaffected while the k-types mix over (Bk,k−1, C
′
k) and place some weight at C. Higher
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types (> k) continue to contribute C with probability 1. When C < L̂k, then both k-types (and all

higher types) will contribute C with probability 1. Once this change in behavior occurs, matchups

will change for the lower types, but the length of the interval that types 1, . . . , k− 1 mix over must

shrink in response. The pattern then continues for all remaining lower types.

Note that this is the same qualitative equilibrium behavior as displayed in Sahuget (2006), who

considers asymmetric lobbyists with types continuously drawn from uniform distributions. My

result is the finite type version that allows for any type space distributions (not just uniform distri-

butions).

Lowering C will eventually cause all types to contribute C with probability 1. As it is lowered

from an arbitrarily large value, first the n-types start shifting weight from the top half of their inter-

val to an atom atC, while all other types are unaffected. LoweringC further will have both n-types

contributing C with probability 1. Note that means that matchups (and hence equilibrium behav-

ior) for the lower types is changed. This will contract the length of the interval that lower types

contribute over. This has a discontinuous effect on behavior. Hence the asymmetric equilibrium

has nearly the same form as the symmetric equilibrium.

The key difference is that with symmetric types, once the k-types start contributing C with

probability 1, k-types will contribute more on average while all higher types contribute less. These

two effects exactly offset. With asymmetric types, these two tensions can increase or decrease total

expected contributions. The reasoning is that the behavior of the lower types change only when

C = Ûk for every k < n. When C ∈ (Uk, Uk+1), the atom of the weakest k type doesn’t change

from the same reasoning as the complete information game. Hence equilibrium behavior will be

unaffected when C is in this range. At C = Ûk , the asymmetry imposed upon the 1, . . . , k − 1

types from the k-types will disappear, thus increasing or decreasing total expected revenues for the

same reasoning as the complete information case. The proposition below summarizes this fact.

Proposition 17 Consider the game with types k + 1, . . . , n removed and C = ∞. Total expected

contributions have a discontinuous decrease at C = Ûk if the asymmetry in the k-types in the
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modified game decreased total expected revenues. Thus π(C,F1, F2) is increasing at C = Ûk if

the probability of types larger than k is relatively large compared to p1,k and p2,k.

Corollary 8 The size of the discontinuous changes in π(C,F1, F2) approaches 0 as n→∞. Thus

total expected contributions will be continuous and potentially non-monotonic when n→∞

Proof 20 When C ∈ (L̂k, Ûk) using the same logic as the complete information case and the sym-

metric private information, we se that total expected contributions are the same since the behavior

of the lower types is unaffected. When C ∈ ( ˆUk−1, L̂k, contributions will strictly decrease when C

is lowered as behavior of the lower types is the same but all higher types contribute a smaller C

with probability 1. When C = Uk−1, π(C,F1, F2) is discontinuous and can increase or decrease.

Hence depending upon the form of asymmetry, imposing maximum contribution limits may

or may not increase total expected contributions. This contrasts with the complete information

lobbying game, where intermediate values of maximum limits must increase total expected contri-

butions. The intuition is simple. With private information, the gains in total expected contributions

can only come from the lower types contributing more. These gains are discounted by the measure

of these types, so that if the measure of the revenue-increasing types is larger than the measure of

the revenue-decreasing types, total expected revenues increase. As the maximum limit is further

lowered, the measure of revenue-decreasing types gets larger so that for low enough values of the

maximum limit total expected revenues must decrease.

It may also be the case that in reversing the effects of asymmetry, lowering the maximum

contribution limit may never increase the total expected contributions relative to the no limit case.

While there must be local increases in total expected contributions when C is lowered, it may not

be the case that global total expected revenues increase.

4.5 Conclusion

Contribution limits can limit the influence of large donors. Lowering the maximum limit will

change the behavior of all the types for both lobbyists. Using the results from Chapter 2, we see that

asymmetry in a particular type may serve to increase or decrease the total contributions collected

from the lobbyists relative to the total contributions the politician can expect to collect when no
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limit is present. The higher types will contribute less, the medium types contribute more, and the

lower types may contribute more or less as the maximum limit is decreased. Private information

allows for the possibility that no maximum limit can increase total expected revenues, something

which is impossible with complete information. In general, imposing a maximum contribution

limit. Hence the perverse result of Che and Gale (1998) disappears when private information

is added. Total expected contributions can increase after imposing a maximum limit only if the

probability of low types is large enough.

Intuitively, when the limit is lowered the lower types are given a greater chance of winning and

respond by increasing their contributions. Higher types contribute a smaller maximum allowable

amount when the limit is lowered. The net effect ultimately depends upon the relative likelihood of

the types. While equalizing the probability of winning between the lobbyists, maximum limits also

equalize the probability of winning across types of the same lobbyist. If fairness is a concern, where

fairness could mean equal winning probabilities, then settingC = 0 is optimal. If maximizing total

expected contributions is instead the goal, either no limits or some intermediate limit is optimal.

To apply this work to the real world, it is useful to consider a world with contribution limits that is

suddenly changed by eliminating those limits. Typically total expected contributions will increase

unless the likelihood of large donors is very small. Since this is not the case, my model can explain

the increase in total expected contributions as due to the likely presence of high valuation donors.

Thus one would expect the Citizen’s United vs. FEC decision, which eliminated contribution

limits, to increase due to the presence of lobbyists with lots of money to spend. The average

citizen, with a low valuation for donating, is effectively displaced from the political conversation.

Future work might incorporate ideological bias of the politician, who might favor one of the

lobbyist’s policies ext-ante that would come with political favor. It might not be in the best interest

of the politician to award political favor to the unpopular lobbyist if the unpopular lobbyist was

able to donate more because doing so would alienate many voters in the politician’s constituency.

In other words the politician might trade off the benefit of a larger contribution with the ability

of the contribution to generate more votes . This might be an interesting avenue to investigate
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transparency and the role of voters knowing the politician’s political dispositions. Alternatively,

the politician has a limited attention span and must decide which issues to let lobbyists compete

over. It is not clear that issues with the most importance to the voters would always get priority as

a minor issue might induce more contributions if the asymmetry between the players wills it so.

Designing the optimal contribution mechanism seems promising, where optimal can be defined

in several ways (revenue maximizing, efficient, fair, etc.). This dissertation assumes that the con-

tribution limits are the same for both lobbyists for example, but this may not be optimal for the

politician. It would be interesting to investigate whether implementation of the optimal mechanism

involves some of the typical contest designs found in practice: the use of head-starts, handicaps,

reserve prices, and quotas. The optimal lobbying mechanism is an indirect mechanism with a re-

port to mechanism designer being the payment. Essentially it would provide a converse approach,

which is necessarily less optimal in terms of revenue maximizing, to the Myerson optimal auction

(MOA). Recall in the MOA that only the winner pays and the payment is determined by the alloca-

tion rule. In my context, I would take the payments as given, where everyone pays, and determine

the allocation rule that maximizes the payments.
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