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Abstract

We present a scheme that propagates a reference skeletal model (s-rep) into a particular case of an 

object, thereby propagating the initial shape-related layout of the skeleton-to-boundary vectors, 

called spokes. The scheme represents the surfaces of the template as well as the target objects by 

spherical harmonics and computes a warp between these via a thin plate spline. To form the 

propagated s-rep, it applies the warp to the spokes of the template s-rep and then statistically 

refines. This automatic approach promises to make s-rep fitting robust for complicated objects, 

which allows s-rep based statistics to be available to all. The improvement in fitting and statistics 

is significant compared with the previous methods and in statistics compared with a state-of-the-

art boundary based method.
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Index Terms—
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I. INTRODUCTION

The ability to accurately and robustly represent sets of similar objects is an important and 

well-studied problem in computer vision [1], [2] and medical image analysis applications 

[3], [4]. Skeletal models for representing objects have shown particular strengths. As a result 

of their property of providing a shape-based coordinate system for the object interior and 

near exterior, they provide special capabilities for mechanical modeling [5]–[8] and for the 

image match term used in segmentation [9], [10]. Because they capture not only global 

boundary locations but also local object width properties and boundary directional 

properties, they have provided stronger statistical summaries of object populations, and these 

have led to improved prior terms needed for segmentation, which together with the 

advantages for the image match term have yielded superior segmentations [9].

A particular form of quasi-medial skeletal model called the s-rep[11] has been shown in 

numerous recent papers to be more powerful for various statistical pattern recognition 

objectives, e.g., in classification (diagnosis) [12], hypothesis testing [13] and in the general 

probability distribution properties of specificity, generalization, and compactness [14] as 

compared to boundary point distribution models (PDMs) [15]. This s-rep consists of a grid 

of spoke vectors proceeding from the skeletal surface to the object boundary (Fig. 1).

To gain this expanded capability, s-reps must be fit tightly to the training objects in a way 

producing correspondence. Methods previously available [11], [13], [16] to obtain such fits 

can be summarized as 1) define a template s-rep (denoted as 𝒯srep); 2) solve an optimization 

problem that fits the interpolated form of 𝒯srep to each target object; 3) compute the mean 

of the generated s-reps; 4) repeat this fitting process by replacing 𝒯srep with the mean. This 

standard fitting process has been tedious to use and has required much manual intervention, 

leading to weaknesses in correspondence as well as limited use of this representation by 

others than those in or closely collaborating with our laboratory. Moreover, it performs 

poorly for more complex objects with variable bending and twisting.

Means of propagating a reference model into a particular object have been applied to PDMs. 

Cootes et al. presented such a method based on PDM statistics, active shape models [17]. 

Davies et al. [18] proposed a method for improving such statistical shape models by putting 

them into inter-object correspondence based on minimum description length. Styner et al. 
[19] demonstrated a thin plate spline (TPS) warping that maps objects to a common medial 

branching topology while matching their PDM boundaries perfectly.

In this letter we improve s-rep fitting by initializing the optimization in steps 2–4 above with 

a TPS-based propagation of 𝒯srep into the target object. For complicated objects this leads 
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to much more automatic fits with good correspondence. This promises to make the 

advantages of s-reps described above available to all users of shape statistics.

The propagation uses the spherical harmonics point distribution model (SPHARM-PDM) [3] 

representing both 𝒯srep and the target object as the basis for computing the TPS warp and 

then applies that warp to the skeleton-to-boundary spoke vectors of 𝒯srep.

Our main contribution is two-fold: 1) a novel scheme for fitting significantly improved s-

reps via TPS warping; 2) an effective way to propagate the correspondence provided by the 

initial shape model.

The remainder of this letter is organized as follows. Section II describes the input and related 

formulations. Section III presents our proposed method. Experimental results are given in 

Section IV, followed by a discussion in Section V.

II. INITIAL SHAPE MODEL AND SPHARM SURFACE

The input to the proposed method is a predefined template s-rep 𝒯srep (see Fig. 1(a)), which 

is iteratively fitted to the object using the standard pipeline discussed in Section I under 

supervision; and a population of target PDMs sampled from each object. These PDMs can 

be those extended from any 3D surface detection method (e.g., [20], [21]). As 

aforementioned, here we use the SPHARM-PDM which is an up-to-date, open source, 

public available framework that has been extensively used in shape statistics [14], [18], 

[22]–[25] and medical image applications [26]–[29] to describe binary segmented magnetic 

resonance (MR) images. Spherical harmonics (SPHARM) describes a surface x(θ, φ) using

x(θ, φ) = ∑
l = 0

∞
∑

m = − l

l
cl

mY l
m(θ, φ), (1)

where the basis functions Y l
m(θ, φ), −l ≤ m ≤ l and order m are defined on θ ∈ [0, π] × φ ∈ [0, 

2π] and where the 3D coefficients cl
m are obtained by solving the least-squares problems in 

each spatial coordinate directions.

Every point pi on the surface is one-to-one mapped to a parameter vector (θi, φi) on the unit 

sphere. The bijective mapping of the surface to the sphere is done by modifying the 

parameter vectors in a constrained optimization procedure considering minimal quadrilateral 

distortion and area preservation that is used to force every object region to map to a region 

of proportional area in parameter space. Each object’s optimization is preceded by a setting 

of its axis and prime meridian using second moments of its {pi}.

A homogeneous sampling of the spherical parameter space uses a linear, uniform 

icosahedron subdivision along each edge of the original icosahedron. Suppose we get a set 

of parameter vectors (θi, φi) through the homogeneous sampling on the spherical parameter 
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space. The PDM of the object surface can be obtained directly by putting the coefficients 

into Eq. (1), thus a sampled point p i at location (θi, φi) takes on the form:

p i = ∑
l = 0

K
∑

m = − l

l
cl

mY l
m θi, φi , (2)

where K is a linear subdivision level of the icosahedron, which was selected depending on 

the complexity of the objects.

In this letter each lateral ventricle was sampled by a linear subdivision level K = 10, which 

composes a PDM consisting of 1002 points. All PDMs were normalized to the unit space.

III. METHOD

The main issue addressed in this letter is the automatic and robust TPS-based propagation of 

a reference s-rep into unseen target objects. The following sections present the main 

components of our novel scheme: 1) get TPS deformations from 𝒯srep to each of the target 

PDMs; 2) warp 𝒯srep by each TPS deformation; 3) refine the warped target s-reps.

A. Thin Plate Spline Deformation

Given landmarks {pk = (xk, yk, zk), k = 1, …, m} that must map into target landmarks {pk′ 
= (xk′, yk′, zk′), k = 1, …, m}, the TPS [30] provides the deformation that minimizes the 

bending energy

∬
ℝ3

f xx
2 + f yy

2 + f zz
2 + 2 f xy

2 + 2 f yz
2 + 2 f zx

2 dxdydz (3)

where f i j
2 , i, j ∈ x, y, z  denotes the squares of the second-order partial derivatives. That 

deformation maps any point p = (x, y, z) into the target point p′ = (x′, y′, z′) by the 

equation

p′ = Δx + Ap + ∑
k = 1

m
ωkU p − pk (4)

where U(s) = s2ln(s) and the three values in the translation Δx, the nine values in the 3 × 3 

matrix A, and the 3m values of the weights ωk of the warp basis functions U(|p − pk|) are 

computed by solving linear equations involving vectors connecting corresponding landmarks 

in {pk} and {pk′}.
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B. Deriving the Warps for Target PDMs

The process starts from getting the SPHARM boundary for 𝒯srep (Fig. 1(a)), which is 

achieved by applying the same formula as for the target PDMs presented in Section II. The 

resulting PDM acts as the template PDM (see Fig. 1(b)).

The calculation of the warp Tj for each target PDM j can be done by solving the linear 

equations discussed in Section III-A, where the landmarks {pk} are the boundary points in 

the SPHARM-PDM derived from 𝒯srep and the landmarks {pk′} are analogous points in 

each of the target PDMs. Applying Tj to spoke’s two endpoints p yields the corresponding 

spoke endpoints p′.

For a population of N target objects, we get a set of mapping functions {Tj,j = 1,…,N} each 

defining a warp Tj that can be applied to deform the spoke endpoint pairs in 𝒯srep to get its 

warped target s-rep.

C. Creating Initializing Warped S-Reps

The process of creating a warped target s-rep (denoted as 𝒲srep) is summarized in Table I. 

The set of transforms {Tj} are applied to the “landmark pairs” (the tail and tip of each 

spoke) of the template s-rep. The resulting “landmark pairs” are used to produce the jth 

target s-rep. Each spoke has a position (the coordinate of the spoke tail), a direction (a unit 

vector pointing from tail to tip) and a radius (the length of the spoke vector).

These warped s-reps can be refined by slightly modifying each spoke’s length and direction 

to optimize the fit to the binary image. The refinement process is beyond the scope of this 

letter. The evaluations described in the next section are all based on the warped s-reps 

without refinement.

IV. EXPERIMENTAL RESULTS

The proposed method was evaluated on a set of real world lateral ventricle objects semi-

automatically segmented from MR images in neonate datasets [31]. We selected 94 lateral 

ventricles for our tests presented here. The program was implemented in C++, all 

experiments were done on a 64-bit 3.20 GHz Intel Quad Core PC with 8 GB RAM. It takes 

about 11 minutes to get the SPHARM-PDM surface, 5 minutes to get the TPS propagated s-

rep, and 29 minutes to get the standardly fitted s-rep for one object.

We first investigated the smoothness of the surfaces implied by the propagated s-reps 

resulting from the proposed approach. Then we compared these s-reps with those from the 

standard method. Following this we evaluated the statistics of these s-reps via three 

commonly used measurements: generalization G(M), specificity S(M) and compactness 

C(M), which were first introduced by Davies [32] and have been widely used in previous 

literature [18], [26], [33]. Briefly, a lower value is desirable for all three metrics. Finally, we 

studied the shape variability captured by the proposed method and the baseline.
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As described in Section II, our input objects were described by the SPHARM-PDMs, which 

also provide the ground truth to evaluate if our warped s-reps imply the correct object 

boundaries (similar to the input surfaces). Fig. 2 shows two example objects described by 

SPHARM-PDMs with the corresponding warped target s-reps shown inside.

In Figs. 2(a),(b) we can see that all the spokes (magenta lines) located in the object interior 

(bounded by the yellow points). All the spoke tips (magenta points in Figs. 2(c), (d) lie 

approximately on the baseline surface (yellow points, the SPHARMPDM). These tell us that 

our warped target s-reps achieve a rather smooth surface.

To further evaluate the propagated fitting, we compared the implied boundary of the s-reps 

resulting from the proposed method with those from the aforementioned standard fitting 

process that was extensively used for fitting relatively simple objects (e.g., [12], [13], [15], 

[34]). Results show that the proposed method achieves reasonable smooth surfaces with 

improved overlap with the target object, while there are error regions from their methods 

(e.g., Fig. 3).

The erroneous bumps in Figs. 3(a), (d) show the surface implied by a standardly fitted s-rep. 

These bumps need to be adjusted manually followed by redoing of the fitting; even this 

doesn’t guarantee better fit for complicated objects. But our method (Figs. 3(c), (e)) 

automatically yields significantly improved s-reps with smooth surfaces. This is because the 

TPS warps are globally smooth and robust to narrow/thin regions, unlike the previous 

method for matching the s-rep model to the objects. Also, problems of poor convergence of 

the previous optimization method when initialized poorly are avoided.

To evaluate the statistics of the resulting propagated s-reps, a Procrustes alignment was 

performed to remove the translation, scaling and rotation variances introduced by each 

model. Figs. 4(a), (b) display all the 94 samples in the population together; each was 

represented by the SPHARM-PDMs and the s-reps. The alignment brings the shapes closer 

(Figs. 4(c), (d)).

The correspondence quality among our propagated s-reps, the standardly fitted s-reps and 

the baseline are compared in Fig. 5. We collected two types of PDMs implied by s-rep 

spokes: B-PDM, which has 106 points (only spoke tip points) and BS-PDM, which has 212 

points (spoke tail-and-tip points). Fig. 5 tells us that the proposed method achieves lower 

values than other methods in all three measurements, which means that our warped s-reps 

are superior.

Table II lists the contribution of the first six eigenmodes for B-PDM and BS-PDM from our 

warped s-reps and the baseline; we can see that the total shape variances captured by these 

eigenmodes are 83.5%, 83.9% and 80.4% respectively. This suggests that the proposed 

model captures more shape variance even if we only consider the object boundaries implied 

by s-reps (B-PDM) and describes the object with lower dimension. On inspection, all three 

types of PDMs appear to be of good quality; each main eigenmode describes a plausible 

pattern of variation observed in the population (see Fig. 6 for a visualization of the first 

eigenmode).
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V. CONCLUSION

We presented a novel scheme that propagates a reference skeletal model (𝒯srep) to a set of 

biomedical objects to obtain their fitted s-reps. This is done by representing the surfaces of 

𝒯srep as well as the target objects by spherical harmonics and computing a thin plate spline 

warp between these, and applying this warp to 𝒯srep. Experimental results proved that 1) 

this automatic scheme creates stable s-reps that are robust for complicated objects; 2) the 

propagated s-reps have significantly improved fitting and model properties as compared with 

the standardly fitted s-reps; 3) the propagated s-reps in the presence of considerable shape 

variability gain over the baseline. The resulting s-reps can be further statistically improved in 

spoke correspondence (e.g., [14]). In the future, we expect to obtain better fits by using 

shape change statistics in the refinement step. The resulting s-reps can be applied to achieve 

better results on classification, hypothesis testing and probability distribution estimation, as 

well as a variety of medical image applications dependent on these statistical analyses.
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Fig. 1. 
(a) The template lateral ventricle s-rep; (b) that s-rep with its SPHARM boundary shown as 

yellow points. The magenta lines proceeding from the skeletal surface (cyan) to the object’s 

boundary are spokes.
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Fig. 2. 
Visualization of two example objects (each column is an object) with the propagated s-reps 

shown inside of their own baseline (SPHARM-PDM). (a) and (b) are the s-reps fitted into 

the baseline (yellow points); (c) and (d) are the spokes ends (spoke tail (white), spoke tip 

(magenta)) fitted into the baseline.
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Fig. 3. 
(a) The surface for the standardly fitted s-rep; (b) the surface for the SPHARM-PDM (which 

is the baseline); (c) the surface for our propagated s-rep; (d) and (e) are the overlap of the 

baseline onto (a) and (c), respectively. The red frames indicate the approximate 

corresponding positions. The blue arrows indicate the significant differences of the two 

methods in comparison. (a) standard fitting (b) SPHARM-PDM (c) proposed method.
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Fig. 4. 
All the 94 training shapes overlaid on top of each other. Each shape is described by the 

SPHARM-PDM (a) and the s-rep (b). After applying the Procrustes alignment, the shapes 

described by both shape models get close and tight as (c) and (d). Colors indicate different 

shapes in the population.
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Fig. 5. 
Comparisons of correspondence quality among different PDMs. M is the shape parameters 

used for constructing new instances.
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Fig. 6. 
From left to right column: B-PDM, BS-PDM and SPHARM-PDM. The middle row is the 

mean shape resulting from different point sets; the top and bottom rows are ± λ1
respectively.
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TABLE I

PROCESS FOR THE CREATION OF TARGET S-REPS

Input: Tsrep and {Tj, j = 1, … , N.}

Output: {𝒲srep}

for the jth TPS transformation Tj

 for each spoke of Tsrep

  tpsSpokeTail = applyTPS(Tj, spokeTail);

  tpsSpokeTip = applyTPS(Tj, spokeTip);

  spokeRadius = calculateSpokeRadius(tpsSpokeTail, tpsSpokeTip);

  spokeDirection = calculateUnitDir(tpsSpokeTail, tpsSpokeTip);

  saveNewSpoke(tpsSpokeTail, spokeRadiu, spokeDirection);

 end

 saveNewSrep();

end
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TABLE II

SHAPE VARIANCES OF DIFFERENT METHODS (%)

Point set λ1 λ2 λ3 λ4 λ5 λ6 Sum

B-PDM 42.7 15.3 11.3 6.2 5.0 3.0 83.5

BS-PDM 37.8 18.6 11.8 7.1 5.5 3.1 83.9

SPHARM-PDM 40.4 15.7 10.5 6.0 5.1 2.9 80.4
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