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ABSTRACT

Eugene Urrutia: The Statistical Analysis of Genetic Sequencing and Rare Variant

Association Studies

(Under the direction of Michael Wu)

Understanding the role of genetic variability in complex traits is a central goal of modern

human genetics research. So far, genome wide association tests have not been able to discover

SNPs that explain a large proportion of the heritability of disease. It is hoped that with

the advent of accessible DNA sequencing data, investigators can uncover more of the so-

called missing heritability. The added information contained in sequencing data includes rare

variants, that is, minor alleles whose population frequency is low.

We examine several existing region based rare variant association tests including burden

based tests and similarity based tests and show that each is most powerful under a certain

set of conditions which is unknown to the investigator. While some have proposed tests that

combine the features of several existing tests, none as yet has provided a test to combine

the features of all existing tests. Here, we propose one such test under the framework of the

SKAT test, and show that it is nearly as powerful as the most appropriately chosen test under

a range of scenarios.

Existing methods do not allow for missing values in the covariates. Standard use of

complete case analysis may yield misleading results, including false positives and biased

parameter estimates. To address this problem, we extend an existing maximum likelihood

strategy for accommodating partially missing covariates to the SKAT framework for rare

variant association testing. This results in a test with high power to identify genetic regions

associated with quantitative traits while still providing unbiased estimation and correct

control of type I error when covariates are missing at random. Since the framework is generic,

we also consider the application of this approach to epigenetic data.
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A wide range of variable selection approaches can be applied to isolate individual rare

variants within a region, yet there has been little evaluation of these approaches. We examine

key methods for prioritizing individual variants and examine how these procedures perform

with respect to false positives and power via application to simulated data and real data.
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Chapter 1

Introduction and Overview

In modern human genetics, it is desired to know whether genetics play a role in phenotype,

for example the presence or absence of a disease. So far, genome wide association tests

have not been able to discover SNPs that explain a large proportion of the heritability of

disease. It is hoped that with the advent of accessible DNA sequencing data, investigators

can uncover more of the so-called missing heritability. The added information contained in

sequencing data includes rare variants, that is, minor alleles whose population frequency is

low. This is in contrast to microarray technology which typically includes common single

nucleotide polymorphisms whose minor allele frequency (MAF) are relatively high. Rare

variants associated with disease have already been reported.

Statistical considerations need to be made to adjust to rare variant association testing.

Power decreases substantially when applying common variant methodology to rare variants.

The signal is lower due to fewer minor alleles present in a given study. Also, multiple

comparison corrections are a concern since the number of variants is increased dramatically.

To address these concerns, investigators have adapted a region based approach to rare

variant association testing. In this approach, all variants of a region, such as a single genomic

exome, are tested as a group. Collapsing the data and testing only the cumulative effect,

this addresses the low signal concern by amplifying over several variants and the multiple

comparison correction concern by substantially decreasing the number of tests performed. In

paper 1, we examine several existing methods including burden based tests and similarity

based tests and show that each is most powerful under a certain set of conditions which is



unknown to the investigator. While some have proposed tests that combine the features of

several existing tests, none as yet has provided a test to combine the features of all existing

tests. Here, we propose one such test under the framework of the SKAT test, and show that

it is nearly as powerful as the most appropriately chosen test under a range of scenarios.

It is of prime importance for investigators to consider important covariate information

when performing genetic sequencing studies. If individual characteristics such as demographics,

age, gender, or lifestyle, is ignored, many false positive results may be discovered which will not

hold up under subsequent study. Fortunately, most of the widely used statistical procedures

for rare variants are able to accommodate covariates. Methods have been developed to account

for missing genotype via imputation or allele dosages. However, existing methods do not

allow for missing covariates. In the case of missing covariates, misleading results may be

obtained if proper adjustments are not provided. For example, if the data are missing at

random, and only complete observations are used in the analysis, then there is a great danger

of biased parameter estimation. In paper 2, we examine the properties of complete case,

single/multiple imputation, and maximum likelihood when covariates are MCAR and MAR.

We use an existing maximum likelihood strategy via iteratively reweighted least squares and

apply it to the SKAT framework for rare variant association testing. This results in a test

that maximizes power while still providing unbiased estimation and correct control of type I

error under the condition of missing covariates under MAR.

Finally, once a region of interest has been identified, subsequent analysis is required to

prioritize and select the individual variants that drive the association. By restricting analysis

to a single region, the problem of finding individual associated variants becomes much less

high-dimensional and much more tractable. While most rare variant tests can only identify

regions associated with complex traits, variable selection procedures are well adapted to the

identification of specific variants that are responsible for the regional association. We discuss

several methods of variable selection, including univariable linear regression, multivariable

linear regression with backward/forward selection, penalized linear regression, and stability

selection. In paper 3, we examine key methods for prioritizing individual variants and examine

how these procedures perform with respect to false positives and power via application to
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simulated data and real data. Furthermore, we consider the direct use of forward selection

in conjunction with SKAT and show that this method is highly competitive and can often

select truly causal variants.

In the review of the current literature, we describe the following:

1. Statistical methods of testing whole genetic sequencing regions

2. Statistical methods for working with missing covariates

3. Statistical methods of selecting rare genetic variants within a specific genetic region

We follow with our own contributions to rare variant association testing:

1. Multiple kernel SKAT unified framework for rare variant association testing

2. Maximum likelihood based procedure for rare variant sequencing data with missing

covariates

3. Evaluation of variable selection methods for selection of individual rare variants in

sequencing studies

3



Chapter 2

Literature Review

2.1 Statistical methods of testing whole genetic sequencing regions

2.1.1 Heritability of disease

In genetic association testing, it is desired to know whether genetics play a role in

phenotype, for example the presence or absence of a disease. Heritability, the inheritance of

phenotypes such as disease resulting from genetic information alone, can be estimated using

family based studies (McNeill et al., 2004; Dwyer et al., 1999). For example, identical twins

separated at birth have identical genetic information and randomly associated environmental

factors, while random pairs of persons have random genetic similarity and randomly associated

environmental factors. Linear mixed modeling of an outcome can estimate the variance due

to heretability versus that due to environment.

Over the past two decades, genome wide association studies (GWAS) have used DNA and

RNA microarray technology to find specific genetic variants that represent the heritability

of disease. Microarrays today typically measure the DNA/RNA concentration of 100,000-

1,000,000 single nucleotide polymorphisms (SNPs), that is, common genetic variants with a

minor allele frequency of 5% or greater. However, so far, genome wide association tests have

not been able to discover SNPs explaining a large proportion of the expected heritability

of disease (Eichler et al., 2010; Kaiser, 2012). Scientists have theorized that items such as

interactions between genetic variants, prior biological information, gene pathway information,

and better use of demographics could lead to better elucidation of heritability (Manolio et al.,

2009; Zuk et al., 2012) . In this paper, we discuss another potential gain in the search for the



missing heritability: the technological advance of whole genome DNA sequencing.

The added information contained in DNA sequencing data includes rare variants, that

is, minor alleles whose population frequency is low, well below the 5% threshold of common

variants used in microarray studies. Already, rare variants associated with disease have been

reported (Cohen et al., 2006; Walsh et al., 2008; Nejentsev et al., 2009).

We begin by briefly discussing the methods previously used in GWAS and then discuss

the adaptations used in sequencing association studies.

2.1.2 Statistical methods of testing genome-wide association studies

The most popular statistical method of GWAS is regression applied to case-control or

quantitative trait data (Hunter et al., 2007; Yeager et al., 2007; Thomas et al., 2008; Scott

et al., 2007). Demographics such as gender, race, and age are controlled for and p-values

are adjusted for multiple comparisons. Chi-squared test stratified for discrete covariates can

be used but is impractical for covariates in comparison to logistic regression. For continuous

phenotypes such as blood pressure, linear regression with the identity link is used similarly

to logistic regression.

However, statistical considerations need to be made to adjust to rare variant association

testing. Power decreases substantially when applying common variant methodology to rare

variants. The signal is lower due to less minor alleles present in a given study. Also, multiple

comparison corrections are a concern since the number of variants is increased dramatically,

from the order of thousands to the order of billions. To address these concerns, investigators

have adapted a region based approach to rare variant association testing. In this approach,

all variants of a region, such as a single genomic exome, are tested as a group. Collapsing the

data and testing only the cumulative effect addresses the low signal concern by amplifying over

several variants, and the multiple comparison correction concern by substantially decreasing

the number of tests performed.
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2.1.3 Burden based sequence association tests

One class of region based methods is the burden-based class of tests. In the cohort allelic

sum test and combined multivariate collapsing test (CAST/CMC) the genetic information of

a region for an individual is collapsed to a single binary variable which takes the value 1 if

the person has at least one rare variant present in the region and 0 otherwise (Morgenthaler

and Thilly, 2007; Li and Leal, 2008). In a slight variation, the count collapsing method, the

summary variable takes the value of the total number of rare variants present in the region

of an individual (Morris and Zeggini, 2010). Additionally, one may wish to place a higher

weight on variants which are rarer, and this is done in the weighted count collapsing method

(Madsen and Browning, 2009). The burden-based rare variant association tests are similar in

that they sum over the rare variant genetic information. Thus, they are most powerful when

the effects of the variants are all in the same direction, that is, all are deleterious or all are

protective. Power is decreased when effects are in opposite directions.

Assuming continuous outcome (yi) , the above models are described below and solved

using linear regression:

CAST/CMC:

yi = αXi + βI(

p∑
j=1

zij > 0) + εi

Count Collapsing:

yi = αXi + β

p∑
j=1

zij + εi

Weighted Count Collapsing:

yi = αXi + β

p∑
j=1

zijwj + εi

where Xi are covariates including intercept; zij is the number of rare alleles present at locus

j in individual i and takes the value 0, 1, or 2; and wj is an assigned weight, typically higher

for the rarer variables.

Additionally, several tests within the burden-based class have been proposed to address

specific concerns. Liu and Leal (2010) have proposed the kernel-based adaptive cluster

6



(KBAC) to address statistical problems associated with misclassification of variant functionality,

causality, and polymorphism status, and also with gene interactions. Using the cumulative

minor-allele test (CMAT), Zawistowski et al. (2010) have broadened the scope to the application

of low-coverage sequencing and imputation data, as well as population stratification. Bhatia

(2009) proposed RARECOVER in order to take advantage of a subset within a region being

more associated with a phenotype. Still, though, none of the methods mentioned yet address

the concern of variants within a region having both deleterious and protective effects.

Investigators have developed and adapted new strategies to address this concern. Han

and Pan (2010a) introduced the data-adapted sum (aSum) test which incorporates both

marginal (univariable) analysis and common association strength to detect both protective

and deleterious effects. Ionita-Laza et al. (2011) introduced another novel strategy, the

replication-based strategy, to achieve the same. Li et al. (2010a), with their weighted haplotype

and imputation-based tests (WHaIT), added imputation capabilities to the protective/deleterious

model.

2.1.4 Similarity based sequence association tests

Others have proposed another set of tests called similarity-based methods. In this class

the question is asked whether individuals who are genetically similar are also phenotypically

similar. Neale et al. (2011) adapted the C-alpha score test to evaluate change in variance of

the allele frequency rather than change in the mean of the allele frequency in cases compared

to controls. Under the null hypothesis of no genetic association with outcome, distribution of

counts of rare alleles should follow the binomial distribution. By testing variance rather than

net effect, the test is powerful to detect genetic association when the effects of the variants

are not all in the same direction.

For each of m variants, the C-alpha test statistic contrasts the observed variance with the

expected variance of rare allele count in cases. The test assumes the binomial distribution
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and null hypothesis of equal distribution among cases and controls:

T =
1√
c

m∑
j=1

[
(zj − njp0)2 − njp0(1− p0)

]
where zj is the total rare allele count for variant j in cases only, nj is the total rare allele count

for variant j in both cases and controls, p0 is the proportion of cases out of total subjects,

and c is a standardization term.

2.1.5 Sequence Kernel Assocation Test

Another similarity-based method, the sequence kernel association test (SKAT), includes

the flexibility to custom define what is genetic similarity through a kernel function (Wu et al.,

2011). The result is an n by n matrix of pair wise genetic similarity which appears very

much like a correlation matrix. SKAT is our preferred method because it offers a general

framework that is adaptable to almost any scenario while retaining power when the kernel is

chosen appropriately. It is also flexible in that covariates can be accomodated without the

use of permutation.

SKAT is based on a semi-parametric model:

yi = xiβ + h(zi) + εi

h(.) is defined by the kernel function K(., .). In general two popular kernel functions are the

dth polynomial kernel and the gaussian kernel.

Dth polynomial kernel:

K(z1, z2) = (zT1 z2 + ρ)d

where d indexes the order of polynomial and ρ is an index parameter

When d = 1, this is equivalent to a linear function space with first-order basis functions:

{z1, z2, . . . , zm}. When d = 2, this is equivalent to a quadratic function space with second-

order basis functions: {zj , zjzj′}(j, j′ = 1, . . . ,m).
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Gaussian kernel:

K(z1, z2) = exp{−||z1 − z2||2/ρ}

where ρ is the scale parameter.

The Gaussian kernel is equivalent to the radial basis functions.

The kernel for the default SKAT test uses weights equal to the β(1,25) distribution

evaluated at the study-wide frequency of the particular minor allele. This produces greater

power when the rarest alleles have the most effect on the outcome:

Default SKAT kernel:

K = ZW (ZW )T

where Z is the full genetic design matrix and W is a diagonal matrix of weights

Expanded, the default SKAT kernel takes the form:

KSKAT =



w1z11 w2z12 . . . wmz1m

w1z21 w2z22 . . . wmz2m

...
...

...
...

w1zn1 w2zn2 . . . wmznm





w1z11 w2z12 . . . wmz1m

w1z21 w2z22 . . . wmz2m

...
...

...
...

w1zn1 w2zn2 . . . wmznm



T

Thus, K(z1, z2) =
∑m

j=1w
2
j z1jz2j . It is clear that K(z1, z2) approaches 1 when there is high

genetic similarity, approaches -1 when there is great genetic dissimilarity, and is close to 0

otherwise. This similarity is weighted toward rare variants.

There are several ways to estimate the parameters β and h. LSKM estimates by minimizing

a scaled penalized likelihood function.

LSKM minimizes:

J(h, β) = −1

2

n∑
i=1

{yi − xTi β − h(zi)}2 −
1

2
λ||h||2

where λ is a tuning parameter which determines the flexibility of the model. When λ=0, the

model interpolates the data, while when λ =∞, the model fits the linear model without h(z).

By the representer theorem, h(z) can be represented by
∑n

i=1 αiK(·, zi) so that the likelihood
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function can be written:

J(α, β) = −1

2

n∑
i=1

{yi − xTi β −
n∑
j=1

αiK(zi, zj)}2 −
1

2
λαTKα

with solutions

β̂ = {XT (I + λ−1K)−1X}−1XT (I + λ−1K)−1y

α̂ = λ−1(I + λ−1K)(y −Xβ̂)

However, Liu et al. (2007a) argue that the usefulness of the LSKM is limited due to the high

computing cost of estimating λ and lack of literature on estimating ρ and σ2. Thus, it is

preferable to use the linear mixed model.

Linear mixed model:

y = xβ + h+ ε

where h are random effects with distribution N(0, τK) and ε are residuals with distribution

N(0, σ2I). It is clear that this model is equivalent to LSKM because β and h can be derived

equivalent to those from LSKM using a standard linear mixed model estimating procedure:

 XTR−1X XTR−1

R−1X R−1 + (τK)−1


 β

h

 =

 XTR−1y

R−1y


where R = σ2I and τ = λ−1σ2

When we apply the kernel machine to genetic sequencing data, we are primarily interested

in whether or not the entire genetic region has an effect on the outcome. This test is:

H0 : h(z) = 0 vs. Ha : h(z) 6= 0. Using the linear model framework, we can equivalently test

H0 : τ = 0 vs. Ha : τ > 0. The test falls on the boundary. Also, because K is not block

diagonal, τ is not distributed as a mixture of χ2
0 and χ2

1.

Liu et al. (2007a) propose testing the hypothesis by score test using REML of linear mixed

model at fixed ρ:
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SKAT score test statistic:

Qτ (β̂, σ2, ρ)− tr{P0K(ρ)}

where

Qτ (β̂, σ2, ρ) =
(y − xβ̂)TK(y − xβ̂)

2σ̂2

and

P0 = I −X(XTX)−1X

where β̂ and σ̂ are estimated under the standard linear model with covariates only.

Under the null hypothesis, the quantity (y−xβ̂) converges to a standard normal, thus Q,

quadratic in (y − xβ̂), is distributed κχ2
ν , a scaled mixture of χ2, and κ and ν are calculated

using one of several methods. We typically use the moment matching method described by Liu

et al. (2009), although other chi-square approximation methods are available (Satterthwaite,

1946; Davies, 1980; Duchesne and Lafaye De Micheaux, 2010).

Satterthwaite approximates the null distribution with the following:

κ = Ĩττ/2ε̃

ν̃ = 2ε̃2/Ĩττ

where

Ĩττ = Iττ − Iτσ2I−1
σ2σ2I

T
τσ2

Iττ = tr{P0K(ρ)}2/2

Iτσ2 = tr{P0K(ρ)P0}/2

Iσ2σ2 = tr{P 2
0 }/2

ε̃ = tr{P0K(ρ)}/2

Liu uses moment matching to approximate a non-central chi square χ2
l (δ), while the Davies

method inverts the characteristic fuction.
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To generate the p-value, Q is compared the null distribution of

P
1/2
0 KP

1/2
0

2

When the outcome is continuous:

P0 = I − X̃(X̃T X̃)−1X̃T

When the outcome is case/control:

P0 = D0 −D0X̃(X̃TD0X̃)−1X̃TD0

Where X is a matrix of covariates including intercept; and D0 is a diagonal matrix of p̂j(1−p̂j),

where p̂j is the predicted proportion of rare alleles for variant j and is estimated from logistic

regression of X on Y.

2.1.6 Combination based sequence association tests

We have thus far described 5 tests used for rare variant association testing, and there are

numerously many more to choose from as well. The investigator must choose one from these

many options before testing the data. A second choice that the investigator must make is

what will be defined as a rare variant. Choices of rare variants thresholds include variants 3%

MAF, 1% MAF, or 0.5% MAF. Additionally, the investigator may want to restrict to a set

of only non-synonymous mutations, or those that are biologically predicted to be ”harmful”

by Polyphen-2 or other software. The result is that the investigator has many tests to choose

from and many groupings to choose from as well, creating a very large set of combinations.

The necessary questions are: 1) Which is the most powerful test to use for a given data

set, and 2) Which is the best grouping to test? The answer to those questions requires a priori

knowledge of which variants are causal and what is their effect size and direction. However,

knowing this information would make testing unnecessary. As a solution, one may choose to

apply all tests and grouping and report the best p-value, but this clearly leads to inflated
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type I error.

A final class of gene sequence association tests attemps to solve the problem by combining

several tests at once in order to have power in a range of scenarios. The variable threshold

test (Price et al., 2010), for example, starts with a foundation of the score test based on

the likelihood function. However, instead of picking a fixed threshold of say 3% minor allele

frequency, they select a range of different minor allele frequency thresholds. The score test is

computed at each threshold, and a final p-value is found through permutation, so that type

I error is conserved.

Optimal tests for rare variant effects in sequencing association studies (SKAT-O) (Lee

et al., 2012), on the other hand, tests over a range of tests that spans from the count test to

the SKAT test. That is, it tests on one hand that effect sizes and directions of the various

rare alleles are perfectly corrlelated, and also the other hand that there is no correlation in

effect sizes. Scenarios in between are tested as well. Thus, while KSKAT may be written:

KSKAT = ZwZ
T
w

SKAT-O can be expanded as:

KSKAT−O = ZwRρZ
T
w

Where Zw is the weighted minor allele frequency design matrix, and Rρ is the corellation

matrix indexed by ρ where:

Rρ = (1− ρ)I + ρ11T

Lee et. al use the minimum p-value as the test statistic and the final p-value is found by

integrating the distribution function of the null mixture of χ2 distribution.

An additional combination test was introduced by Lin and Tang (2011). The general

framework allows not only test a range of MAF thresholds, but is also capable of handling

covariates without the need for permutation.

Lin’s score statistic is:

Uk =

n∑
i=1

(
Yi −

eŶi

1 + eŶi

)
ξTk ZiV

−1/2
k
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Method Comments

CAST/CMC powerful when effects of equal size/direction

Count powerful when effects of equal size/direction

Weighted Sum Test powerful when effects of equal size/direction

C-Alpha best when effects of different size/direction

SKAT best when effects of different size/direction

VT powerful over range of MAF thresholds

SKAT-O powerful for both equal or different size/direction

EREC powerful for both equal or different size/direction

Table 2.1: Summary of commonly used statistical methods of testing whole genetic sequencing
regions

where Ŷi is estimated under the null (covariates only), ξk is a kernel specific weight function,

and Vk is the kernel specific variance of the score statistic.

Lin shows that the for the optimal kernel choice, ξj = βj . To attempt to achieve optimality,

he introduced estimated regression coefficients (EREC).

EREC:

ξj = β̂j ± δ

Where δ is a given constant, and β̂j is the regression coefficient estimated from the data.

ξj will converge to βj if δ decreases to 0 as the sample size n increases to N

2.2 Statistical methods for working with missing covariates

2.2.1 Mechanisms of missingness

Covariates are important to all statistical anlaysis. They can increase power when properly

used, and can lead to inflated type I error when improperly used or ignored. In this section,

we discuss the methods used to address partially missing covariates.

Assume we have the following data set where x2 but not x1 has missingness. It is
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convenient to assign the value ri to 1 if x2i is observed and to 0 if x2i is unobserved (N/A) .

Y X1 X2 R

y1 x11 x21 1

y2 x12 x22 1

y3 x13 N/A 0

y4 x14 x24 1

y5 x15 N/A 0

...
...

...
...

yn x1n x2n 1

There are, in general, three missing data mechanisms, that is, three underlying models which

predict which data points are missing. Data missing completely at random (MCAR) is

randomly missing, that is, not predictable by any observed or unobserved data points. Data

missing at random (MAR) may be missing in a way predictable by observed data points, but

is not predictible by unobserved data points. Data not missing at random (NMAR) may be

predictable by data observed or unobserved.

To summarize with our data set, again assuming x2 but not x1 has missingness:

Missing completely at random:

R ⊥ f(y, x1, x2)

Missing at random:

R ⊥ f(x2|y, x1)

Not missing at random:

R = f(x2|y, x1)

where f(x2|y, x1) is a non-trival function
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2.2.2 Complete case

Complete case is a very simple method used where all observations with at least one

missing covariate are excluded from analysis. Complete case transforms the incomplete data

set to a complete data set which is more convenient to work with:

Complete case:

Y X1 X2 R

y1 x11 x21 1

y2 x12 x22 1

y3 x13 N/A 0

y4 x14 x24 1

y5 x15 N/A 0

...
...

...
...

yn x1n x2n 1

−→

Y X1 X2

y1 x11 x21

y2 x12 x22

y4 x14 x24

...
...

...

yn x1n x2n

It is clear, however, that complete case will result in reduced power due to the decrease in

sample size. Additionally, statistical inference on the full data using only the complete case is

invalid under MAR and NMAR. Bias is likely to result (Little and Rubin, 1987; Knol et al.,

2010).

2.2.3 Single and multiple imputation

Single imputation (SI) attempts to recover observations by filling in the missing covariate

with any number of prespecified pseudo-observations. The fill-in may be the mean or it may

be a random value based on the empirical distribution of the covariates. A posterior mean

may also be used conditional upon observation specific data and covariates.
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Single imputation using mean to fill in missing observations:

Y X1 X2 R

y1 x11 x21 1

y2 x12 x22 1

y3 x13 N/A 0

y4 x14 x24 1

y5 x15 N/A 0

...
...

...
...

yn x1n x2n 1

−→

Y X1 X2

y1 x11 x21

y2 x12 x22

y3 x13 x2

y4 x14 x24

y5 x15 x2

...
...

...

yn x1n x2n

Multiple imputation (MI) is a variation on single imputation. In multiple imputation, many

data sets are generated from the one original set, and in each set, missing values are replaced

with random values based on the emperical distribution. The statistical model is applied

independently to each created set. Finally, the predicted coefficients are averaged across the

imputed data sets to generate the final coefficients.
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Multiple imputation using random values based on the empirical distribution:

Y X1 X2 R

y1 x11 x21 1

y2 x12 x22 1

y3 x13 N/A 0

y4 x14 x24 1

y5 x15 N/A 0

...
...

...
...

yn x1n x2n 1

−→

Y X1 X2 R

y1 x11 x21 1

y2 x12 x22 1

y3 x13 x2 + ε 0

y4 x14 x24 1

y5 x15 x2 + ε 0

...
...

...
...

yn x1n x2n 1

Y X1 X2 R

y1 x11 x21 1

y2 x12 x22 1

y3 x13 x2 + ε 0

y4 x14 x24 1

y5 x15 x2 + ε 0

...
...

...
...

yn x1n x2n 1

Where ε ∼ N(0, σ̂2
x2) assuming x2 is normally distributed.

Imputation has an advantage over complete case in that data is not thrown away. This

clearly will increase power simply due to increased sample size. The two examples shown are

valid under MCAR (Little and Rubin, 1987). Imputation is unbiased under MAR only when

full likelihood posterior distribution used to fill-in missing data.

2.2.4 Maximum likelihood

Maximum likelihood (ML) can also be used to avoid the problem of discarding data. Here,

a distribution is given to the missing data and the resulting likelihood is integrated across all
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possible values of the missing covariate.

Maximum likelihood:

when x2 is observed:

p(yi, x2i, ri|x1i, β, α, ω) = p(yi|x1i, x2i, β)p(x2i|x1i, α)p(ri|yi, x1i, ω)

while for missing x2 (continuous):

p(yi, ri|x1i, β, α, ω) = p(ri|yi, x1i, ω)

∫
x2i

p(yi|x1i, x2i, β)f(x2i|x1i, α)dzi

or for missing x2 (discrete):

p(yi, ri|x1i, β, α, ω) = p(ri|yi, x1i, ω)
∑
x2i

p(yi|x1i, x2i, β)p(x2i|x1i, α)

In summary, the log-likelihood is:

ri log [p(yi, x2i, ri|x1i, β, α, ω)] + (1− ri) log [p(yi, ri|x1i, β, α, ω)]

which can be solved throught either the Newton-Raphson method or by the Expectation-

Maximization (EM) algorithm.

ML leads to unbiased results under MAR if the model is correctly specified. This is a clear

advantage over complete case and over most cases of imputation. An additional advantage of

ML over imputation is that ML produces the same result each time, while MI (as well as SI

with errors) leads to differing results because of the variability of the imputed data.

2.2.5 Weighted maximum likelihood for data with missing covariates

Ibrahim (1990) proposed a weighted maximum likelihood to solve the above problem.

This is very helpful when the above likelihood does not lend itself to a closed form. In

Ibrahim’s method, missing observation are expanded to multiple pseudo-observed observations

and weighted according to their posterior probability of being observed. In the following
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simple example, the covariate is dichotomous:

Y X1 X2 R

y1 x11 x21 1

y2 x12 x22 1

y3 x13 N/A 0

y4 x14 x24 1

y5 x15 N/A 0

...
...

...
...

yn x1n x2n 1

−→

Y X1 X2 w

y1 x11 x21 1

y2 x12 x22 1

y3 x13 0 pi0

y3 x13 1 pi1

y4 x14 x24 1

y5 x15 0 pi0

y5 x15 1 pi1
...

...
...

...

yn x1n x2n 1

where pi0 = 1− pi1 = P (x2 = 0|yi, x1i); and generally for missing x2i:

wi =
p(yi|x1i, x2i, β)p(x2i|x1i, α)∑
x2i
p(yi|x1i, x2i, β)p(x2i|x1i, α)

while wi = 1 for non-missing x2i.

Following Ibrahim, the expressions take the form of a weighted complete data log-likelihood

based on N =
∑n

i=1 ki observations, where ki is the number of distinct covariate patterns for

observation i. Thus, iteratively reweighted least squares (IRLS) is used in conjunction with

the Newton Raphson algorithm to solve for β and α. This Newton-Raphson algorithm is

considerably more convenient when maximum likelihood cannot be solved in closed form;

there is no sum or integral.

When the missing covariate is continuous, Ibrahim et al. (2004) suggest approximating

f(x2i|x1i) by a discrete distribution and then monte carlo is used to select L distinct points

from the distribution along with the corresponding probabilities. Weights are then generated

similar to the discrete method, and the weighted complete data log-likelihood is evaluated in

the same way.
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Method Missingness Advantage

Complete Case MCAR simple to implement

Imputation MCAR, MAR simple to implement,
uses all data

Maximum likelihood MCAR, MAR consistent results with correctly specified model
uses all data

Weighted ML MCAR, MAR consistent results with correctly specified model
by IRLS convenient form

uses all data

Table 2.2: Summary of methods to account for missing covariates. Imupation valid under
MAR only when full likelihood posterior distribution used to fill-in missing data.

2.3 Statistical methods of selecting rare genetic variants within a genetic region

2.3.1 Variable Selection

Variable selection is the practice of selecting the subset of variables which best predicts

the outcome. In most situations, this is beneficial to simplify a statistical model for a number

of reasons. It is a simpler model to explain to others. The best and simplest model has

the least variabilty in a subsequent data set. Also, during data collection, it is less costly to

record fewer variables.

In our particular setting, we first discover a genomic region that is believed to be associated

with the outcome by utilizing a region-based tests. It has now become necessary to find which

of the specific variants within the region are the ones responsible for the association. It is the

general inherent belief that some genetic variants are detrimental, some fewer are protective,

and that many have absolutely no effect at all. Because of the prior belief that many variants

have zero effect, we practice variable selection to find the variants that do have an effect or

association and that are predictive of the outcome in a future data set. This is the second

step in genetic sequence association testing.

Assuming exponential family:

g(y) = αX + βZ

zj ∈ S ⇔ βj 6= 0

We wish to identify all zj : zj ∈ S because they are the variants that are predictive
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of the outcome in a future data set. It is true that some variants not belonging to S may

be associated with the outcome through colinearity with predictive variants. These variants

would also be helpful in pointing us toward a true biological phenomenon.

Many variable selection procedures are particularly well suited, as they assume most of

the variables have no effect and a small subset of variable may have a non-zero effect on the

outcome. This leads to easier model interpretation and greater power to detect effects.

Common examples of variable selection procedures include the Lasso (Tibshirani, 1996)

and forward or backward stepwise subset selection. Many other simple statistical procedures

could be applied toward variable selection as well. For example, one could apply a standard

procedure and apply a pre-specified cutoff for effect size or p-value.

2.3.2 Univariable linear model

The simplest variable selection procedure is the univariable model. Here each genetic

variant is tested for marginal association independently of the other variants. One may use

generalized linear model or generalized linear mixed model to generate a p-value associated

with each variant and then apply a multiple comparison correction to generate a list of

statistically significant associations.

2.3.3 Multivariable linear model

Another classic way of testing is the multivariable model where all variants are tested

together in a single model and then multiple comparison correction is applied to each of the

p-values. One main difference between univariate and multivariate is that the multivariate

may miss some variants that are masked due to high corellation with another variant in the

model. The univariate does not suffer from this problem.

The advantage of the multivariate model, though, is that it is possible to use forward

and backward stepwise selection. However, forward and backward stepwise selection should

be used with caution as the theory is not developed. P-values and coefficients should be

interpreted liberally.
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2.3.4 Penalized linear regressions

A special class within the multivariable linear model are the penalized regressions. Among

these, the Lasso is particularly attractive because it inherently sets the effect size of most the

variables to zero, and the remaining few to non-zero. It is also computationally fast. The

penalization term is customarily optimized by 10-fold cross-validation.

Lasso penalizes the sum of absolute values of regression coefficients:

n∑
i=1

||g(yi)−Xiβ||2 + λ

m∑
j=1

||βj ||1

The following are other penalized regressions, which also tend to limit the number of variables

in the model:

1. Akaike information criterion (AIC) (Akaike, 1974), and Bayesian information criterion

(BIC) (Schwarz, 1978) penalize the number of parameters in the model, thus clearly performs

variable selection:
n∑
i=1

||g(yi)−Xiβ||2 + λ

m∑
j=1

||βj ||0

where λ is a constant for AIC, and λ is proportional to the sample size for BIC.

2. Ridge regression (Hoerl and Kennard, 1970) penalizes the sum of squares of regression

coefficients and thus scales parameters instead of scaling to zero.

n∑
i=1

||g(yi)−Xiβ||2 + λ
m∑
j=1

||βj ||2

3. Elastic Net (Zou and Hastie, 2005), a combination of ridge and lasso, penalizes both the

the absolute value and square of regression coefficients, thus can perform both selection and

scaling depending on weight of λ1 and λ2:

n∑
i=1

||g(yi)−Xiβ||2 + λ1

m∑
j=1

||βj ||2 + λ2

m∑
j=1

||βj ||1
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2.3.5 Consistent LASSO-based procedures

Fan and Li (2001) contend that a good penalty function should should produce an

estimator with the following properties : Unbiasedness, sparsity, and continuity. The Lasso

estimates are sparse and continuous, and Lasso is in fact the only sparse and continuous

penalty within the family of λ|β|q, for some q. That is, q=1 is the only q which produces

sparse and continuous estimates. AIC and BIC achieve sparsity but are not continuous in β.

Ridge regression is continuous but do not achieve sparsity. However, Lasso is not unbiased,

as large coefficients are estimated with a biased shift toward 0 equal to a constant. Fan and

Li (2001) in turn propose the smoothly clipped absolute deviation (SCAD) penalty that has

all three of the desirable qualities.

SCAD:

pλ(β; a) =


λ|β|, |β| <= λ

−(β2 − 2aλ|β|+ λ2)/[2(a− 1)], λ < |β| <= aλ

(a+ 1)λ2/2, |β| > aλ


for some a > 2 and λ > 0

Additionally, the adaptive Lasso by Zou (2006), through adaptive weighting, achieves

consitent, unbiased estimates.

Adaptive Lasso

pλ(θ) = λ
m∑
j=1

wj ||βj ||1

with wj = 1/|β̂j |γ estimated under ordinary least squares with γ > 0.

Finally, Bolasso, through bootstrap (Bach, 2008; Chatterjee and Lahiri, 2011), achieves

asymptotically consistent, unbiased estimates. The algorithm begins by applying Lasso to m

bootstraped samples of the data. The union of variables with non-zero coefficients in at least

one bootrapped Lasso are compiled. These variables only are modeled using non-penalized

regression for final parameter estimation.
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2.3.6 Stability Selection

Although Lasso has the attractive property of shrinking coefficients to 0, it has a disadvantage

in that there is no way to control type I error. Meinshausen and Bühlmann (2010) proposed

stability selection to address this concern. In their procedure, B bn/2c subsamples out of n

total observations are selected and applied to Lasso.

p̂k,n/2,B =
1

B

B∑
b=1

I(k ∈ Ŝn/2,b)

The variable is selected as significant if p̂k,n/2,B ≥ πthr (we set to 0.75) proportion of the B

subsamples applied to Lasso.

They obtain a bound on family-wise error by making two assumptions: 1. Selection

procedure no worse than guessing; and 2. All non-associated variants selected with equal

likelihood.

FWER =
1

2πthr − 1

q2
Λ

m2

where qΛ is the number of variables selected by Lasso. The weak assumptions result in a

bound that is quite conservative. Current research (Shah and Samworth, 2012) is directed

toward tightening this bound.
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Method Comments

Univariate well developed theory

Multivariate well developed theory, possible masking due to correlation

Forward/Backward Selection undeveloped theory

AIC/BIC variable selection

Lasso inherently shrinks many effects to zero, but no type I error

Ridge Regression scales parameters

Ridge Regression scales and shrinks parameters

Adaptive Lasso asymptotically consistent

SCAD asymptotically consistent

Bolasso asymptotically consistent

Stability Selection type I error with Lasso

Table 2.3: Summary of methods of variable selection
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Chapter 3

Rare Variant Testing Across Methods and Thresholds Using the Multi-Kernel
Sequence Kernel Association Test (MK-SKAT)

3.1 Introduction

Identification of genetic variants influencing complex phenotypes and disease is a major

goal of modern human genetics research. So far, despite the success of genome wide association

studies (GWAS)(Hindorff et al., 2009), newly discovered trait-associated genetic variants

still fail to explain a large proportion of the heritability of complex traits (Eichler et al.,

2010). It is hoped that with the advent of accessible DNA sequencing technology (Margulies

et al., 2005; Mardis, 2008; Ansorge, 2009), investigators can uncover more of the so-called

missing heritability. Some of the added information contained in sequencing data includes

rare variants, that is variants with minor alleles whose population frequency is low. This

contrasts with microarray technology which typically focuses on common variants that have

relatively high minor allele frequency (MAF). Rare variants associated with disease have

already been reported (Cohen et al., 2006; Walsh et al., 2008; Nejentsev et al., 2009). However,

important distinctions between the analysis of common variants and rare variants must be

made (Carvajal-Carmona, 2010). Most importantly, the standard analysis of common variants

focuses on analysis of each individual variant, one-by-one. Yet, power decreases with lower

MAF such that standard approaches for common variants are vastly underpowered for analysis

of rare variants. Also, multiple comparison corrections are a concern since the number of

variants is dramatically larger.

To address the limitations of using standard analytical approaches for variants, investigators



have turned to region based approaches for rare variant association testing. In this class of

approaches, all variants within a region, typically a biologically meaningful unit such as a

single gene or an exon, are simultaneously considered together. The cummulative effect of

the entire group of variants, or more often a subgroup of the variants (e.g. those with MAF

<1%), is assessed for association with the phenotype. Grouping the variants and testing only

the cumulative effect addresses the low signal concern by amplifying across several variants.

It also addresses the multiple comparison correction concern by substantially decreasing the

number of tests performed. A wide range of methods have beeen developed with varying

characteristics and underlying principles (Morgenthaler and Thilly, 2007; Li and Leal, 2008;

Morris and Zeggini, 2010; Madsen and Browning, 2009; Neale et al., 2011; Wu et al., 2011).

Despite the sucess of current approaches for rare variant testing (Cohen et al., 2006; Walsh

et al., 2008; Nejentsev et al., 2009), a number of practical concerns have arisen. In particular,

given the wide range of testing approaches which are optimized toward different scenarios, it

is unclear which method to use for any particular data set. Furthermore, it is unclear which

strategy to use for grouping variants, e.g. grouping variants with MAF <3% vs <1%, within

a region. Unfortunately, the answer to both questions depends on the underlying true state

of nature which is unknown prior to analysis. Knowledge on this would preclude need for

analysis. Selecting the “best” (often most significant) result after conducting analyses using

multiple methods or multiple group strategies would lead to severely inflated type I error

and increased false positives. Although some recent work has been done on omnibus testing

across different grouping strategies (Price et al., 2010; Lin and Tang, 2011) or across different

testing approaches (Lee et al., 2012), few methods consider both the testing approach and

the grouping strategy simultaneously.

To address this problem, we propose the multi-kernel sequence kernel association test

(MK-SKAT). In this article, we show that many commonly used testing approaches are

equivalent to particular cases of the sequence kernel association test (SKAT). SKAT is

a similiarity based analysis approach for rare variant testing wherein pair-wise similarity

between individuals based on their rare variant profiles is measured via a kernel function and

then compared to pair-wise similarity in phenotype. Specifically, the currently used methods
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are equivalent to versions of SKAT using different kernel functions. We further show that

different choices of grouping strategies are also equivalent to using the SKAT with different

kernel functions. Consequently, the question of selecting a test to use as well as selecting a

grouping strategy reduces to the problem of selecting an appropriate kernel function. This

equivalence then leads to natural application of perturbation based procedures for omnibus

testing across multiple kernels (and accordingly multiple grouping and rare variant testing

approaches) (Wu et al., 2013). We conduct computer simulations and a real data applicaton

to validate our approach and show that our proposed method loses a small amount of power

when compared to the optimal grouping and testing approach, but offers considerably more

power over poor choices.

The remainder of this paper is organized as follows. In the next section, we first review the

generic SKAT method and describe how different testing approaches and different groupings

all correspond to SKAT under different kernels. We then present the proposed MK-SKAT

approach for testing across different tests and groupings. We show results from some representative

simulation studies and from an illustration of our approach on real data. We conclude with

a brief discussion.

3.2 Methods

Within this article, we describe our methodology within the context of analyzing a single

gene region. However, the approach can be applied to multiple regions separately, with

appropriate control for multiple comparisons. We let yi denote the phenotype for the ith

individual in the study (i = 1, . . . , n), and Xi be a vector of environmental or demographic

variables for which we would like to adjust. For dichotomous phenotypes we let yi = 0 or 1

for controls and cases, respectively. For each given region, we let Zi be the vector of genetic

variants within the region coded under the additive model. The objective is to test for an

association between y and all the variants in Z or a subset of the variants in Z while adjusting

for X. We let G denote the indices of the variants within Z that we would like to test. For

instance G may be the indices of the variants with MAF < 1% or the nonsynonymous variants.

In doing so, one may select a subset of the variants in the region to test or one may test a
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subset of the variants. Clearly, restricting attention to the truly causal variants would result

in the higest power; however, which variants are causal is unknown. At the same time, there

are a range of tests to choose from. Determining which group of variants to test and which

test to use poses a grand challenge for geneticists.

In this section, we first review the SKAT method and draw connections between SKAT

and several other important tests. We describe how the questions of which test to use and

which variants to test can be recast as a question of kernel choice. We then develop the

MK-SKAT to construct an omnibus test that simultaneously considers multiple tests and

grouping strategies.

3.2.1 Connections between SKAT and other Methods

SKAT

SKAT is a similarity based test that operates by comparing pair-wise genotypic similarity

between individuals to pair-wise phenotypic similarity, with correlation suggestive of association.

Mathematically, SKAT uses the linear model for quantitative traits

yi = α0 + X′iα+ h(ZGi) + εi

and the logistic model for case/control studies

logitP (yi = 1) = α0 + X′iα+ h(ZGi)

where α0 is an intercept term, α is the vector of regression coefficients for the covariates,

and εi has mean zero and variance σ2. The variants of interest ZGi for the i-th individual

are related to the outcome only through the function h(·) which is a general function lying

in a functional space generated by a positive definite kernel function K(·, ·). Intuitively,

K(ZGi ,ZGi′ ) measures similarity between i-th and i′-th individuals in the study based on ZG ,

the variants of interest. This function fully specifies the relationship between the variants and

the outcome. If one sets K(ZGi ,ZGi′ ) = Z′GiZGi′ , which is the linear kernel, then this implies
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that the function h(ZGi) =
∑

j∈G βjZij , i.e. h(·) is linear and the outcome depends on the

variants in a linear manner. By specifying a different kernel, one may specify an alternative

model. Under the default SKAT parameters, K(ZGi ,ZGi′ ) =
∑

j∈G w
2
jZijZi′j where wj is

equal to a the beta probability density function with parameters 1 and 25 evaluated at the

MAF for the j-th variant. Also by default, G is set to be the entire group of both common

and rare variants within a region. This corresponds to a linear model but with additional

up-weighting for the effect of rarer variants.

To test the effect of the rare variants under SKAT corresponds to testing H0 : h(ZG) = 0.

Defining the kernel matrix, K, to be the n-by-n matrix with i, i′-th term equal to K(ZGi ,ZGi′ ),

for quantitative traits, we construct the variance component score statistic

Q =
(y − ŷ)′K(y − ŷ)

σ̂2

where ŷ = α̂0 + Xα̂ with α̂0, α̂, and σ̂ estimated under H0. For dichotomous traits, we can

construct a similar score statistic

Q = (y − ŷ)′K(y − ŷ)

where ŷ = logit−1(α̂0 + Xα̂) and α̂0, α̂ are again estimated under H0. To obtain a p-value

for significance, asymptotically, Q ∼
∑
λjχ

2
1 is a mixture of chi-squared distributions, with

weights λj equal to the eigenvalues of P
1/2
0 KP

1/2
0 where P0 = D−DX(X′DX)−1X′D with

D = I for quantitative traits and D = diag{ŷi(1 − ŷi)} for dichotomous traits. This null

distribution can be approximated using moment matching approaches (Liu et al., 2009) or

exact methods (Davies, 1980).

Existing Methods and Grouping Strategies as Special Cases of the SKAT

A wide range of region-based analysis approaches of rare variants have been proposed.

Generally, however, they tend to fall within two classes: burden-based approaches and

similarity-based approaches. Burden-based tests generally operate by collapsing the rare

variants within a region into a single value using (possibly weighted) averaging and then
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testing for association by regressing the phenotype on the collapsed variable or applying

appropriate permutation-based approaches. Letting G denote the indices of the rare variants

over which we would like to collapse, then the cohort allelic sum test (CAST) and combined

multivariate collapsing (CMC) collapses the genetic variants within a region to a single binary

variable

Ci = I

 p∑
j∈G

Zij > 0


which is an indicator for whether the ith individual has any rare variants within the region.

In a slight variation, the count-based collapsing method computes the collapsed variable as

Ci =

p∑
j∈G

Zij

which is the total number of rare variants within the region. To place a higher weight on

variants which are rarer, the weighted count collapsing method collapses the variants in G

into

Ci =

p∑
j∈G

wjZij

where wj is a weight for the jth variant which is inversely related to the MAF for the jth

variant. To test whether the rare variants are related to the phenotype, the outcome is

regressed on the collapsed variable and possible covariates using the models

yi = α0 + X′iα+ βCCi + εi

or

logitP (yi = 1) = α0 + X′iα+ βCCi

for quantitative and dichotomous traits, respectively. Testing for the rare variant effect then

corresponds to testing H0 : βC = 0 which can be done using a standard 1-df test. The burden-

based rare variant association tests are similar in that they sum over all of the rare variant

genetic information. Thus, they are most powerful when the effects of the variants are truly

32



associated with the outcome and with common direction of effect, that is, all variants are

deleterious or all variants are protective. Power is lost when effects are opposite in directions

or non-causal variants are included in G.

Similarity-based tests were proposed to address the power loss due to variants with

opposing effects. This class includes SKAT, and compares pair-wise similarity between

individuals in terms of their genotype values to pair-wise similarity in phenotype, with

correlation suggestive of association. Also included within this class is the C-alpha test which

tests for an over-dispersion of the variance resulting from a rare variant effect rather than a

change in the mean effect. By testing variance rather than net effect, the test is powerful to

detect genetic association when the effects of the variants are not all in the same direction.

It has been previously noted that individual tests are equivalent to SKAT under particular

kernel functions(Wu et al., 2011; Lee et al., 2012). For example, the C-alpha test is equivalent

to SKAT using the kernel function K(ZGi ,ZGi′ ) =
∑

j∈G ZijZi′j . Further, each of the burden

based methods operate by using a univariable summary of the rare variants in G such that

the outcome is a simple linear function of the collapsed variable Ci. Therefore, each of the

CAST/CMC, count-based collapsing, and weighted count-based collapsing can be viewed as

SKAT with a linear kernel constructed based on the collapsed variable. Thus we have the

following tests and corresponding kernels:

• (Default) SKAT: K(ZGi ,ZGi′ ) =
∑

j∈G wjZijZi′j

• C-alpha: K(ZGi ,ZGi′ ) =
∑

j∈G ZijZi′j

• CAST (Binary Collapsing): K(ZGi ,ZGi′ ) = I
(∑p

j∈G Zij > 0
)
I
(∑p

j∈G Zi′j > 0
)

• Count-Based Collapsing: K(ZGi ,ZGi′ ) =
{∑p

j∈G Zij

}{∑p
j∈G Zi′j

}
• Weighted Count-Based Collapsing: K(ZGi ,ZGi′ ) =

{∑p
j∈G wjZij

}{∑p
j∈G wjZi′j

}
Given that many individual tests reduce to SKAT under different kernel, then the problem

of choosing a particular test reduces to the problem of choosing a particular kernel.

We have, thus far, focused on testing the variants in a particular group, G. In practice

however, one must also choose, a priori, a group of variants to test. For example, one may
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apply each of the tests to all of the variants in the region or one could restrict the variants

of interest to just the variants with <3% MAF, < 1% MAF, or <0.5% MAF, depending on

how one wishes to define “rare”. Additionally the investigator may want to restrict to a set

of only non-synonymous variants or those that are predicted to be “harmful” by Polyphen-2

(Adzhubei et al., 2010) or other software for predicting function. Use of different choices of

variants can easily be translated into a problem of kernel choice by simply restricting G to

be different sets of variants. For example, we can define G3% to be the variants with MAF <

3% and G0.5% to be the variants with MAF < 0.5%. Then if we are interested in the C-alpha

test, we can apply it to the variants with MAF < 3% or < 0.5% by constructing the kernels

K(ZG3%i
,ZG3%

i′
) =

∑
j∈G3% ZijZi′j and K(ZG0.5%i

,ZG0.5%
i′

) =
∑

j∈G0.5% ZijZi′j , respectively and

test using the usual SKAT procedure. Therefore, it follows that the problem of choosing

which group of variants to test also reduces to the problem of choosing a particular kernel.

3.2.2 Multi-Kernel Sequence Kernel Association Test

The questions facing researchers interested in rare variant analysis are first, which is

the most powerful test to use for a given data set, and second, which is the best group of

variants to test within a particular region? As noted earlier, these questions can be reduced

to a question of kernel choice: which kernel, from among a group of candidates, will yield

highest power? Despite transforming the problem, the answer to this question requires prior

knowledge of which variants are causal and what is their effect size and direction, knowledge

which is rarely available (since this would preclude the need for analysis). As a solution, one

may choose to test under all candidate kernels and report the best p-value, but this clearly

leads to inflated type I error. However, by exploiting the connections between SKAT and

other tests, we propose a solution that incorporates many tests and groupings but conserves

type I error through the use of perturbation.

Our proposed unifying method, the multiple kernel SKAT (MK-SKAT), simultaneously

several test and variant grouping choices at once and constructs an omnibus test. The idea

behind the approach is that it constructs kernels based on each candidate test and grouping

approach. For example, one may test using CAST, count-based collapsing, C-alpha, and the
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defaul SKAT with 3 grouping strategies per test (MAF <3%, <1%, or <0.5%) for a total of

12 combinations corresponding then to 12 candidate kernels. MK-SKAT then conducts an

omnibus test across all of the candidate kernels, by applying SKAT with each of the kernels,

taking the minimum p-value, and then applying perturbation base techniques to correct for

having taking the minimum p-value. A single p-value is reported. This represents a simplified

version of the omnibus testing strategy of Wu et al. (2013).

The intuition behind the procedure is that asymptotically σ̂−1(yi−ŷi) will be approximately

normal such that we can replace it with a simulated normal random variable. Using the same

simulated normals for each candidate kernel allows for capture of the correlation between

tests. The full MK-SKAT procedure is as follows:

1. For each combination of candidate testing procedure and each candidate grouping

procedure, construct a corresponding kernel matrix, K`, to obtain a total of L candidate

kernels.

2. Using each candidate kernel, K`, obtain a corresponding score statistic as Q` and p-value

for significance p`.

3. Find the minimum p-value: pmin = min1≤`≤L p`

4. For ` ∈ 1, . . . , L, compute Λ` = diag(λ`,1, . . . , λ`,m`
), and V` = [v`,1,v`,2, . . . ,v`,m`

]

where λ`,1 ≥ λ`,2 ≥ . . . ≥ λ`,m`
are the m` positive eigenvalues of P

1/2
0 K`P

1/2
0 with

corresponding eigenvectors v`,1,v`,2, . . . ,v`,m`

5. Generate r∗ = [r∗1, r
∗
2, . . . , r

∗
m]′ with each r∗j ∼ N(0, 1). Note that m = max1≤`≤Lm` is

the maximum number of nonzero eigenvalues across the candidate kernels and may be

less than n.

6. For each ` ∈ 1, . . . , L, rotate r∗ using the eigenvectors to generate r∗` = V`r
∗.

7. Can then compute Q∗` = r∗`
′Λ`r

∗
` for each ` and obtain a corresponding p-value, p∗` , by

comparing Q∗` to the distribution function estimated for Q` and obtain the upper tail

probability exceeding Q∗` . We set p∗ = min1≤`≤L p
∗
` .

35



8. Repeat (5)-(7) B times to obtain p∗(1), p
∗
(2), . . . , p

∗
(B) for some large number B.

9. The final p-value for significance is estimated as

p = B−1
B∑
b=1

I(p∗(b) ≤ pmlin)

It is important to note that direct use of the p-value is necessary rather than using the

maximum score statistic since the raw score statistics have different degrees of freedom.

Although this strategy also generates a monte carlo p-value, there are two advantages.

First, covariates and variants can be correlated. In contrast, in order for permutation to be

valid, the variants must be uncorrelated with the covariates. Second, the MK-SKAT procedure

is more computationally efficient since the computation now relies only on generating and

then rotating m normal random variables while all other parameters remain the same. In

contrast, permutation requires complete re-estimation of the kernel matrices, P0 matrices,

eigendecompositions, and distribution parameters.

This method assumes nested kernels. Although CAST is not nested, being non-linear

in nature, the rarity of genetic variants being considered allows the kernel to be considered

approximately linear. Additionally, MK-SKAT is conservative, so any anit-conservativeness

resulting from the approximation is mitigated.

We note that this procedure is closely related to the general perturbation procedure

previously used for testing across multiple kernels Wu et al. (2013). However, because each

of the kernels used in this scenario for rare variant analysis is essentially a generalization of

a weighted linear kernel, then they all lie within a common column space thereby simplifying

the procedure.

3.2.3 Simulations

We conducted a series of computer simulations to verify that the proposed MK-SKAT

procedure is valid in terms of controling type I error and has reasonable power compared to

the individual tests across which the MK-SKAT is combining.
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Type I Error

To demonstrate that the proposed methods are valid tests, in terms of protecting type

I error, we conducted a series of simulations under null models for both continuous and

dichotomous traits. We used a coalescent model to simulate a region with 100 variants in

104 haplotypes with LD structure representative of a European population (Schaffner et al.,

2005). Eighty-five of the simulated variants had a true MAF less than 3% and 80 had a MAF

less than 1%. We then paired haplotypes to simulate n = 1000 or 2000 diploid individuals.

For type I error simulations, we simulated quantitative outcomes for each individual without

regard to the genotype values under the null model:

yi = 0.5Xi1 + 0.03Xi2 + εi

where Xi1 ∼ ber(0.506), Xi2 ∼ N(29.2, 21.1), and εi ∼ N(0, 1). For dichotomous outcomes,

we simulated n/2 cases and n/2 controls from the null logistic model:

logitP (yi = 1) = −4.2 + 0.5Xi1 + 0.03Xi2

where Xi1 ∼ ber(0.506) but Xi2 ∼ N(0, 1).

In total, we simulated 105 data sets as described. We applied the MK-SKAT testing

procedure to each data set. Specifically, we considered four different testing procedures:

CAST, count-based collapsing, the C-alpha, and SKAT tests. We also considerd three

different grouping strategies: we set the rare variant grouping, G, equal to the variants with

MAF < 0.5%, variants with MAF < 1%, and variants with MAF < 3%. Under the equivalence

with SKAT, this yielded a total of 12 different candidate kernels. We estimated the type I

error rate at the 0.05 level of 1) SKAT with each individual kernel, 2) MK-SKAT conditional

on a particular testing procedure (i.e. we assumed a fixed test while considering multiple

groupings), 3) MK-SKAT conditional on a particular grouping strategy (i.e. we assumed a

fixed grouping while considering multiple tests), and 4) MK-SKAT testing across all twelve

candidate kernels.
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Power

We also assessed the power of the MK-SKAT procedure under three different simulation

settings. For each setting, we again simulated haplotypes for a region containing 100 variants

as in the type I error simulations. These were then paired to generate n = 1000 individuals.

Then we simulated outcomes under the alternative model for quantitative traits:

yi = 0.5Xi1 + 0.03Xi2 + β′Zci + εi

and for dichotomous traits:

logitP (yi = 1) = −4.2 + 0.5Xi1 + 0.03Xi2 + β′Zci

Xi1, Xi2 and εi were as before, but Zci were the genotypes of the causal variants and β

were the corresponding regression coefficients which varied across simulation settings. For

dichotomous outcomes n/2 subjects were sampled as cases with the remaining n/2 set as

controls.

Under Setting 1, we considered a quantitative outcome with 50% of the variants with true

population MAF < 1% randomly selected to be causal. All causal variants were given the

same effect with β = 0.5. Since a large proportion of the variants were causal and they all

had the same effect, this scenario favored the burden approaches and particularly count based

collapsing.

Setting 2 again examined quantitative traits and was identical to Setting 1 except the

effects of the causal variants were equal to -0.5 and 0.5 with equal probability. Since the

causal variants had opposing effects, this scenario favored the similarity based tests.

Setting 3 differed from Settings 1 and 2 in that it examineed the case where the outcome

was dichotomous. Of the variants with true MAF < 3%, 20% were randomly selected to be

causal. All causal variants were again given equal effect size of β = 0.5.

We emphasize that these simulations were not intended to serve as a comprehensive

comparison of the methods across scenarios nor to understand when individual tests and
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C-alpha SKAT CAST Count MK-SKAT

n = 1000 0.5% 0.048 0.047 0.050 0.049 0.048
1% 0.048 0.049 0.049 0.050 0.050
3% 0.048 0.049 0.051 0.051 0.051

MK-SKAT 0.050 0.051 0.051 0.051 0.051

n = 2000 0.5% 0.049 0.049 0.050 0.050 0.052
1% 0.047 0.047 0.050 0.050 0.051
3% 0.047 0.047 0.050 0.049 0.051

MK-SKAT 0.052 0.051 0.052 0.051 0.050

Table 3.1: Type I error simulation results for quantitative traits. Each cell in the table
corresponds to the type I error of SKAT using a kernel constructed based on the testing
procedure at the top of the table and the grouping strategy at the left of the table. Rows
and columns labeled MK-SKAT correspond to the omnibus tests across tests (with fixed
group) and across groupings (with fixed test). The cells with both rows and columns labeled
MK-SKAT correspond to the omnibus test across all test and groupings.

grouping strategies are optimal (since this depends on the true state of nature, which is

unknown in any real data). Instead, these simulations serve to understand how MK-SKAT

behaves relative to the best method and grouping strategy.

3.3 Results

3.3.1 Type I Error and Power

Type I error simulation results for quantitative traits and dichotomous traits are shown

in Table 3.1 and Table 3.2, respectively. For quantitative traits, individual methods as well

as MK-SKAT appropriately controlled the type I error at the α = 0.05 level. However, for

dichotomous traits, the C-alpha test and SKAT test tended to be conservative, reflectiing

previous results (Wu et al., 2011). Thus, MK-SKAT tests were conservative as well.

Results of the power analysis for the 3 settings are shown in Tables 3.3 through 3.5. In

Setting 1 (Table 3.3), the count kernel applied to the variants with MAF <1% performed

the best, followed closely by the CAST kernel applied to the same grouping. This was not

surprising considering they were best adapted to the true model in which all effects have the

same size and direction, and only rare variants with MAF <1% are sampled to be causative.

The MK-SKAT which tested over all 12 kernels had power slightly less than the most powerful

single kernel. The results of the MK-SKAT testing across all 4 tests at the 1% MAF threshold
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C-alpha SKAT CAST Count MK-SKAT

n = 1000 0.5% 0.033 0.032 0.051 0.050 0.042
1% 0.042 0.040 0.050 0.049 0.045
3% 0.046 0.044 0.050 0.050 0.046

MK-SKAT 0.039 0.037 0.052 0.051 0.044

n = 2000 0.5% 0.041 0.041 0.050 0.050 0.047
1% 0.046 0.046 0.050 0.050 0.049
3% 0.047 0.047 0.050 0.050 0.050

MK-SKAT 0.047 0.045 0.051 0.051 0.047

Table 3.2: Type I error simulation results for dichotomous traits. Each cell in the table
corresponds to the type I error of SKAT using a kernel constructed based on the testing
procedure at the top of the table and the grouping strategy at the left of the table. Rows
and columns labeled MK-SKAT correspond to the omnibus tests across tests (with fixed
group) and across groupings (with fixed test). The cells with both rows and columns labeled
MK-SKAT correspond to the omnibus test across all test and groupings.

group showed power would be nearly equivalent to the most powerful single kernel as well.

Also, if one tested the count kernel over the 3 groupings, power would be conserved.

In Setting 2, power was dramatically decreased for the count and CAST kernels compared

to Setting 1 (Table 3.4). This was due to the true model having bidirectional genetic effect on

the outcome. Some rare variants increased the outcome, while some decreased the outcome.

Compared to Setting 1, power was reduced for C-alpha and linear weighted kernels, but

not to the same extent as count and CAST. C-alpha and linear weighted kernels applied to

the variants with MAF <1% performed the best in Setting 2. MK-SKAT testing over all 12

kernels displayed power somewhat less than the most powerful single kernel, but much greater

than any of the CAST or count kernels. If one applied MK-SKAT over the three groupings

of the linear weighted kernel, power would be nearly equivalent to the most powerful single

kernel. This setting clearly showed the adaptability of the MK-SKAT method under variation

in the genotype/phenotype structure.

Setting 3 compared power between methods for a dichotomous outcome (Table 3.5). The

linear weighted kernel applied to the variants with MAF <3% performed the best. They were

best adapted to the true model where only 20% of the variants were truly causal, and rare

variants with MAF <3% were sampled as causative. MK-SKAT testing over all 12 kernels had

power slightly greater than the most powerful single kernel, though this is likely to be within
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C-alpha SKAT CAST Count MK-SKAT

n = 1000 0.5% 0.43 0.43 0.64 0.66 0.64
1% 0.74 0.76 0.84 0.85 0.86
3% 0.47 0.64 0.63 0.63 0.71

MK-SKAT 0.69 0.72 0.81 0.85 0.84

n = 2000 0.5% 0.70 0.71 0.85 0.87 0.87
1% 0.92 0.93 0.98 0.98 0.98
3% 0.76 0.89 0.88 0.88 0.92

MK-SKAT 0.92 0.93 0.97 0.98 0.97

Table 3.3: Power results for Setting 1. Each cell in the table corresponds to the power of
SKAT using a kernel constructed based on the testing procedure at the top of the table and the
grouping strategy at the left of the table. Rows and columns labeled MK-SKAT correspond
to the omnibus tests across tests (with fixed group) and across groupings (with fixed test).
The cells with both rows and columns labeled MK-SKAT correspond to the omnibus test
across all test and groupings.

C-alpha SKAT CAST Count MK-SKAT

n = 1000 0.5% 0.37 0.37 0.10 0.12 0.32
1% 0.63 0.65 0.17 0.23 0.57
3% 0.39 0.54 0.13 0.16 0.46

MK-SKAT 0.60 0.63 0.16 0.23 0.55

n = 2000 0.5% 0.68 0.69 0.15 0.17 0.61
1% 0.87 0.88 0.26 0.36 0.84
3% 0.63 0.80 0.17 0.23 0.72

MK-SKAT 0.87 0.89 0.27 0.36 0.83

Table 3.4: Power results for Setting 2. Each cell in the table corresponds to the power of
SKAT using a kernel constructed based on the testing procedure at the top of the table and the
grouping strategy at the left of the table. Rows and columns labeled MK-SKAT correspond
to the omnibus tests across tests (with fixed group) and across groupings (with fixed test).
The cells with both rows and columns labeled MK-SKAT correspond to the omnibus test
across all test and groupings.
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C-alpha SKAT CAST Count MK-SKAT

n = 1000 0.5% 0.26 0.26 0.31 0.32 0.33
1% 0.53 0.55 0.52 0.50 0.59
3% 0.73 0.78 0.69 0.69 0.78

MK-SKAT 0.77 0.79 0.72 0.73 0.80

n = 2000 0.5% 0.52 0.53 0.47 0.48 0.57
1% 0.75 0.77 0.70 0.69 0.78
3% 0.84 0.88 0.82 0.80 0.88

MK-SKAT 0.90 0.91 0.85 0.86 0.91

Table 3.5: Power results for Setting 3. Each cell in the table corresponds to the power of
SKAT using a kernel constructed based on the testing procedure at the top of the table and the
grouping strategy at the left of the table. Rows and columns labeled MK-SKAT correspond
to the omnibus tests across tests (with fixed group) and across groupings (with fixed test).
The cells with both rows and columns labeled MK-SKAT correspond to the omnibus test
across all test and groupings.

the range of monte carlo error. If one applied MK-SKAT to the three groupings using either

the linear weighted or C-alpha kernel, power would nearly equivalent to the most powerful

single kernel.

Overall, results show that while protecting type I error, the MK-SKAT can achieve power

close to using the optimal test and grouping strategy. While there is generally some modest

loss in power relative to the best choice, the proposed omnibus tests offer considerably better

power than poor choices and represent a reasonable compromise. If one is able to restrict

attention to a particular group of variants based on prior information or to a particular testing

procedure based on hypotheses of the underlying model, then power can be further increased

by restricting the MK-SKAT to fewer tests or fewer groupings.

3.3.2 Data Analysis

We examined the performance of our proposed method on a real data set. Briefly, we

examined a single candidate gene containing 86 variants of which the majority had allele

frequency less than 3%. Eight variants were non-synomymous and two were predicted to be

harmful. The candidate gene was sequenced in 2000 individuals. In addition to genotype

information, we had 42 separate outcomes traits and additional demographic covariates

including age, gender and the top five eigenvalues of genetic variability. We performed analysis
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to find whether our candidate gene had association with any of the 42 outcome traits.

To illustrate our method, we considered testing using CAST, count based collapsing,

weighted count based collapsing, the C-alpha, and the default SKAT. For groupings, we

considered using all of the variants in the region, the variants with MAF <3%, variants with

MAF <1%, variants with MAF <0.5%, nonsynonymous variants, and variants predicted to

be harmful. In total we considered 27 different kernels based on combinations of the test

choice and grouping choice — the CAST, count based collapsing, and weighted count based

collapsing were not applied to all of the variants. In addition to applying SKAT with each of

the candidate kernels, we also applied the MK-SKAT testing across all 27 kernels.

Analysis results are presented in Figure 3.1. Overall, for many traits, using different

methods and different groupings resulted in very different results in terms of significance. In

general, MK-SKAT tended to yield results slightly less significant than those using the best

kernel (choice of test and grouping strategy), but MK-SKAT still performed considerably

better than poor choices of kernels.

3.4 Discussion

In analysis of genetic rare variants, given the difficulties associated with selecting a test and

selecting a particular group of variants to test, MK-SKAT allows investigators to agnostically

consider several different, popular, testing approaches as well as several different ways of

thresholding the variants. Although there is some loss of power compared to the best single

test and best grouping, the power is still considerably higher than when using a poor choice

of test or a poor choice of grouping strategy. And type I error is conserved.

Restriction of the MK-SKAT to a smaller set of possible kernels (i.e. smaller set of tests

or groupings) can yield higher power if the considered kernels are closer to the best test

and grouping strategy. If such information is available, such as through previous studies

of common variants within the region or through bioinformatics knowledge, we strongly

encourage investigators to directly restrict interest to a smaller group of candidate kernels.

On the other hand, in the absence of reliable prior knowledge, we recommend consideration

of a wide range of kernels. Importantly, if kernels are very similar to one another, then the
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Figure 3.1: Real data analysis results. Each column of circles corresponds to the p-values
from analyzing a different trait while each circle represents the p-value from a different kernel.
The triangle indicates the p-value from applying MK-SKAT to all of the kernels. p-values
have been truncated at 10−6. The blue line indicates the bonferroni significance level.
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perturbation procedure will accomodate the correlation and will not penalize the significance

as much as if the considered kernels are more different.

Interestingly, while several methods are special cases of SKAT, some other methods are

special cases of the MK-SKAT. The variable threshold test (Price et al., 2010) is equivalent

to MK-SKAT when the kernels under consideration are based on a single testing approach

with only the variable grouping being varied. However, we note that use of perturbation still

offers computational advantage over the threshold test. Similarly, the SKAT-O method (Lee

et al., 2012) is equivalent to MK-SKAT in which the variable grouping is fixed but one is

considering a range of linear combinations of SKAT and collapsing kernels.

Further methods may also fall within the MK-SKAT framework, but although many

popular tests can be considered using MK-SKAT, there are certainly many useful tests that

fall outside. For example, tests that use the outcome information in order to estimate weights

for variants (Ionita-Laza et al., 2011; Hoffmann et al., 2010; Han and Pan, 2010b) cannot be

applied. While these tests still can be considered special cases of SKAT, the kernel is now

estimated using the outcome such that standard asymptotics for SKAT and the perturbation

based techniques for MK-SKAT cannot be used to obtain p-values. Further statistical work

is needed in order to allow the MK-SKAT procedure to encompass these methods.
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Chapter 4

Accommodating Partially Missing Covariates in the Sequence Kernel
Association Test for Rare Variants

4.1 Introduction

A major focus of current human genetic research lies in the identification of genetic variants

which influence disease and other complex phenotypes. Although genome wide association

studies (GWAS) have found important associations between individual genetic variants and

complex traits (Hindorff et al., 2009), much of the heritability is still left to be discovered

(Eichler et al., 2010). DNA sequencing data promises to uncover a greater proportion of the

herditability of complex traits (Margulies et al., 2005; Mardis, 2008; Ansorge, 2009), since

sequencing allows for genotyping of not only the common single nucleatide polymorphisms

(SNP) but also rarer genetic variants, that is genetic variants with minor alleles whose

population frequency is lower. There is belief that rare variants can have larger effects on

traits and a number of rare variants associated with disease have been reported (Cohen et al.,

2006; Walsh et al., 2008; Nejentsev et al., 2009).

The interest in rare variants has spurred considerable research into new statistical and

computational methods for testing the association between rare variants and complex traits.

Since approaches for testing individual variants are often underpowered, region based testing,

wherein the cumulative effect of multiple rare variants (such as within a gene) on an outcome

is evaluated, has become the standard strategy. A wide range of region based tests have

been developed with varying attributes. A key feature of many of these tests is the ability

to accommodate covariate information. Within the context of genetic association studies, for



both common and rare variants, adjustment for covariates such as ancestry, age, gender, and

environmental variables (Laird et al., 2000; Gauderman, 2003; Lunetta et al., 2000; Purcell

et al., 2007) is essential in order to gaurd against confounding and prevent identification of

spurious findings (Little and Rubin, 1987). Covariate adjustment can also result in improved

power through reduction of the residual standard error.

While many popular rare variant association methods can control for potential confounders,

difficulties arise if one or some of the covariates are partially missing on some individuals.

Missing covariate information can arise through a range of processes including issues with

the data collection process or due to design considerations, e.g. when a variable is measured

on only a subset of individuals due to cost. Currently, a common approach for dealing

with missing covariate information in rare variant studies is complete case analysis through

case deletion, in which individuals with missing covariates are dropped from the analysis.

Unfortunately, such approaches are problematic. In particular, using complete case observations

only for partially missing covariates results in loss of power due to reduction in sample size.

This is particularly troublesome for studies of rare variants if the subject with missing

covariate information also is one of the few indviduals who have the particular variant.

Furthermore, if the data are missing at random (MAR), such that missingness depends on

the observed covariates, and only complete observations are used in the analysis, then there

is a great danger of biased parameter estimation and potential difficulties in controlling type

I error (Little and Rubin, 1987; Knol et al., 2010).

Recognizing the potential for misleading results or reduced power due to missing covariate

information, in this paper, we consider the problem of partially missing covariates within the

context of genetic sequencing studies of rare variants and develop an approach for testing the

effect of rare genetic variants on a quantitative trait in the pressence of covariates that are

MAR. Specifically, we focus attention on the popular sequence kernel association test (SKAT)

(Wu et al., 2011), a region based test of rare variant effects in which pair-wise similarity in

trait value between study subjects is compared to pair-wise similarity in rare variant profiles,

with correlation suggestive of association. We extend SKAT accommodate missing data via

use of a standard maximum likelihood based strategy for missing data based on the approach
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of Ibrahim (1990). In particular, maximization of the likelihood can proceed via iteratively re-

weighted least squares (IRLS) such that we can use the weighted linear model at convergence

and apply those weights to SKAT.

Our objectives for gene sequence association study when covariates are partially missing

and MAR are threefold: First, we would like to estimate the effects of covariates without bias

and with high efficiency (low variance estimator). Second we would like to conserve SKAT

type I error. Finally we are interested in maximizing SKAT power. Results of our simulation

studies we show that complete case fails to estimate the effects of covariates unbiasedly and

loses power as the proportion of missingess increases. In comparison, maximum likelihood

acheives unbiased estimation of the effects of covariates, controls type I error, and retains

power in comparison to oracle. Power is particularly improved in scenarios where the missingness

proportion is large.

Our work restricts attention to the scenario in which only covariates may be partially

missing at random. We do not consider the case in which variant information is missing

— standard imputation techniques can accurately impute genotypes or at least dosages.

Furthermore, we restrict attention to the MAR case and do not consider the case of not

missing at random (NMAR) as general solutions for accommodating NMAR data remain

elusive and require examination on a study-by-study basis. We also note that although our

work focuses on SKAT, due to the close relationship between SKAT and other method such

as burden tests or the C-alpha method, our approach can be seamlessly used for other testing

procedures as well.

The remainder of this chapter is organized as follows. In the next section, we review the

general SKAT method and then review the likelihood based approach for accommodating

missing covariate information. We then describe how one can adapt SKAT to accommodate

missing covariates. We examine the type I error rate and power of our approach, in comparison

to complete case analysis, through a series of computer simulations. We conclude with a brief

discussion.
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4.2 Methods

For simplicity, we describe our work within the context of testing the association between

the rare variants within a single region on a quantitative (continuous) trait, with the understanding

that the approach can be applied genome-wide with appropriate adjustment for multiple

comparisons. We denote the quantitative outcome for the ith individual in the study as yi

(i = 1, . . . , n). The p variants within the region are in Zi = [Zi1, Zi2, . . . , Zip]
′ and the vector

of covariates are denoted by Xi. The objective is test for the effect of Zi on yi while adjusting

for Xi with the additional complexity that variables within Xi may be missing for some

individuals.

Here, we first describe the SKAT method for association testing in the scenario in which

there is no missingness in X and then describe the likelihood based framework we are operating

under. We then present our proposed extension of SKAT that accommodates missingness,

focusing on the scenario in which only a single dichotomous covariate has missingness.

4.2.1 SKAT

SKAT is a similarity based test that operates by comparing pair-wise genotypic similarity

between individuals to pair-wise phenotypic similarity, with correlation suggestive of association.

To relate the variants and the covariates to the outcome, SKAT uses the semiparametric model

yi = β0 + X′iβ + h(Zi) + εi

where β0 is an intercept, β is a vector of regression coefficients for the covariates, and εi is

an error term with mean zero and variance σ2. Within the kernel machine framework, the

variants of interest Zi for the i-th individual are related to the outcome only through the

function h(·) which is a general function lying in a functional space generated by a positive

definite kernel function K(·, ·). Intuitively, K(Zi,Zi′) measures similarity between i-th and

i′-th individuals in the study based on Z, the variants of interest.

The function h(·) fully specifies the relationship between the variants and the outcome:
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if one sets K(Zi,Zi′) = Z′iZi′ , which is the linear kernel, then this implies that the function

h(Zi) =
∑p

j=1 αjZij for some coefficients αj , i.e. h(·) is linear and the outcome depends on the

variants in a linear manner. By specifying a different kernel, one may specify an alternative

model.

Under the default SKAT parameters, K(Zi,Zi′) =
∑p

j=1 θjZijZi′j where θj is equal to a

the beta probability density function with parameters 1 and 25 evaluated at the MAF for

the j-th variant. This corresponds to a linear model but with additional up-weighting for the

effect of rarer variants.

To test the effect of the rare variants under SKAT corresponds to testing H0 : h(Z) = 0.

This can be done by exploiting the connection between kernel machine methods and linear

mixed models. In particular, defining the kernel matrix, K, to be the n-by-n matrix with

i, i′-th term equal to K(Zi,Zi′), we can treat h(Z) as a vector of subject specific random

effects with mean 0 and variance τK. Then whether h(Z) = 0 corresponds exactly to testing

whether τ = 0. This is done by construction of the variance component score statistic

Q =
(y − ŷ)′K(y − ŷ)

σ̂2

where ŷ = β̂0 + Xβ̂ with β̂0, β̂, and σ̂ estimated under H0.

To obtain a p-value for significance, asymptotically under the null, Q ∼
∑
λjχ

2
1 which is

a mixture of chi-squares distributions, with weights λj equal to the eigenvalues of P
1/2
0 KP

1/2
0

where P0 = I−X(X′X)−1X′. This null distribution can be easily approximated using moment

matching approaches or exact methods allowing for rapid p-value computation.

SKAT has been successfully applied in many studies, but unfortunately, it cannot accommodate

missing covariates. Further developments are necessary.

4.2.2 Regression with Partially Missing Covariates

In many genetic association studies, including studies of rare variants, study subjects with

missing covariate information are simply omitted from the analysis through complete case

(CC) analysis which restricts analysis to a smaller subset of individuals on which complete
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covariate information is observed. Although CC analysis is operationally simple, and in

some studies the proportion and mechanisms of missingness do not dramatically influence the

results, CC has the disadvantage of lower power due to reduced sample size (Little and Rubin,

1987). It is also biased under MAR scenarios and has decreased power compared to full-data

methods (Knol et al., 2010). Thus, we consider the use of a full maximum likelihood based

approach which is fitted via iteratively re-weighted least squares (IRLS). We will compare

both CC analysis and our proposed strategy to an oracle procedure, that is an idealized

scenario where the missing covariates are known.

As earlier, we again assume that the quantitative outcome for each individual is given as

yi and Xi are the covariates. However, without loss of generality and for ease of notation

in our exposition, we assume that there are only two covariates Xi1 and Xi2 and that Xi2

is a dichotomous variable that may be missing in some individuals but that Xi1 is observed

for all i = 1, . . . , n subjects. We further let Ri be an indicator for whether or not Xi2 is

observed for the ith subjects (Ri = 1 if Xi2 is observed). We will later describe extensions and

accommodation of multiple missing covariates and continuous covariates. As noted previously,

we assume that Zi is observed without missingness.

Under the null model, in which the variants do not influence the outcome, we have

yi = β0 + β1Xi1 + β2Xi2 + εi

where εi is again a normal error term with mean zero and variance σ2. Furthermore, we

assume that

logitP (Xi2 = 1) = logitµi = α0 +Xi2α

for some coefficients α0 and α and the indicator of missingness is related to the outcome and

the covariates through the logistic model

logitP (Ri = 1) = logitηi = ω0 +Xi1ω1 + yiωy

for some coefficients ω0 and ω1 and ωy. This way X2 is MAR since R|y,X1 is independent
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of X2. Under this model, we can then use maximum likelihood to accommodate the missing

covariates without omission of samples.

Full-data Maximum likelihood

Maximum likelihood (ML) can be used to avoid the problem of discarding data which leads

to reduced power and possible bias. Here, a distribution is given to the missing data and the

resulting likelihood is integrated across all possible values of the missing covariate. When Xi2

is observed, the full likelihood can be written as a product of conditional likelihoods.

p(yi, Xi2, Ri|Xi1, β, α, ω) = p(yi|Xi1, Xi2, β)p(Xi2|Xi1, α)p(Ri|yi, Xi1, ω)

If Xi2 is continuous, the probability must be integrated across all possible values of the missing

Xi2. The probability for R can be evaluated outside the integral when the missingness occurs

at random.

p(yi, Ri|Xi1, β, α, ω) = p(Ri|yi, xi1, ω)

∫
xi

p(yi|Xi1, Xi2, β)fXi2(xi|Xi1, α)dxi

If Xi2 is discrete, the probability must be summed across all possible values of the missing

Xi2. Again, the probability for R can be evaluated outside the integral when missingness

occurs at random.

p(yi, Ri|Xi1, β, α, ω) = p(Ri|yi, Xi1, ω)
∑
xi

p(yi|Xi1, Xi2, β)p(Xi2 = xi|Xi1, α)

In summary, the full-data log-likelihood is:

n∑
i=1

Ri log [p(yi, Xi2, Ri|Xi1, β, α, ω)] + (1−Ri) log [p(yi, Ri|Xi1, β, α, ω)]

which can be solved throught either the Newton-Raphson method or by the Expectation-

Maximization (EM) algorithm.

ML leads to unbiased results under MAR if the model is correctly specified. This is a clear
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Y X1 X2 R

y1 X11 X12 1
y2 X21 X22 1
y3 X31 N/A 0
y4 X41 X42 1
y5 X51 N/A 0
...

...
...

...
yn Xn1 Xn2 1

−→

Y X1 X2 w

y1 X11 X12 1
y2 X21 X22 1
y3 X31 0 pi0
y3 X31 1 pi1
y4 X41 X42 1
y5 X51 0 pi0
y5 X51 1 pi1
...

...
...

...
yn Xn1 Xn2 1

Figure 4.1: Data augmentation using the approach of Ibrahim (1990) involves expanding each
observation with missingness based on values that the missing variable can take. Here we
assume that X2 is dichotomous.

advantage over complete case and over most cases of imputation. An additional advantage

of ML over imputation is that ML produces the same result each time, while most cases of

imputation lead to differing results because of the variability of the imputed data.

Full-data maximum likelihood by Iteratively Reweighted Least Squares

Ibrahim (1990) proposed a weighted maximum likelihood to solve the above maximum

likelihood. This is very helpful when the above likelihood does not lend itself to a closed form.

Under Ibrahim’s method, missing observation are expanded to multiple pseudo-observed

observations and weighted according to their posterior probability of being observed (Fig.

4.1).

Following Ibrahim, the expressions take the form of a weighted complete data log-likelihood

based on N =
∑n

i=1 ki observations, where ki is the number of distinct covariate patterns for

observation i. Thus, iteratively reweighted least squares (IRLS) is used in conjuction with the

Newton Raphson algorithm to solve for covariate effects (β) and parameters of the distribution

of missing covariate (α). This Newton-Raphson algorithm is considerably more convenient

than the previous because it lacks the sum or integral.

The algorithm described by Ibrahim is as follows:

1. Augment missing data to weighted pseudo-observed data as described above. Each

missing observation is augmented so that each possible realization of X2 is represented

53



by one psuedo-observation. Those pseudo-observations are weighted (w) according the

thier posterior probability of being observed.

where pi0 = 1− pi1 = P (Xi2 = 0|yi, Xi1); and generally for missing Xi2:

wi = P (Xi2|yi, Xi1) =
p(yi|Xi1, Xi2,β, σ

2)p(Xi2|Xi1,α)∑
Xi2

p(yi|Xi1, Xi2,β, σ2)p(Xi2|Xi1,α)

while wi = 1 for non-missing Xi2

2. Use Newton Raphson on augmented psuedo-complete data, using complete case estimates

as starting estimates. This form of Newton-Raphson with a pseudo full-likelihood

provide tractible iterations in comparison with the difficult iterations involved with

missing data. There are no sums or integrals to differentiate.

 β(t+1)

σ2(t+1)

 =

 β(t)

σ2(t)

+

 ∑
XT
i wiXi

∑
XT

i wi(yi−Xiβ)

σ2∑
XT

i wi(yi−Xiβ)

σ2
−

∑
wi

2σ2 +
∑
wi(yi−Xiβ)2

(σ2)2


−1  ∑

XT
i wi(yi −Xiβ)

−
∑
wi

2 +
∑
wi(yi−Xiβ)2

2(σ2)


α(t+1) = α(t) +

[∑
XT
i wiXiµi(1− µi)

]−1∑
XT
i wi(Xi2 − µi)

3. Update w. With each subsequent iteration, the posterior probability of observating a

psuedo-observation converges toward a more probable full-information estimate. The

initial posterior probability is based on complete case only, which is biased assuming

MAR.

w
(t+1)
i =

p(yi|Xi1, Xi2, β
(t+1), σ2,(t+1))p(Xi2|Xi1, α

(t+1))∑
Xi2

p(yi|Xi1, Xi2, β(t+1), σ2,(t+1))p(Xi2|Xi1, α(t+1))

4. Repeat 2 and 3 until convergence. Under MAR, the estimates at convergence are

unbiased.

The objective then is to adapt this approach within the context of SKAT in order to
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accommodate missing covariates for rare variant association testing. Since the likelihood is

fit using a sequence of weighted linear regressions, the idea will be to use augment the data

(including rare variants) and then using the working linear model at convergence and we

apply the weights to SKAT and assess the significance of the rare variants.

4.2.3 Accommodating Missing Covariate Information in Tests of Rare Variants

The objective of our work is to allow for inclusion of subjects with partially missing

covariates in studies of rare variants, in contrast to current strategies which focus on complete

case analysis. To do this, we will employ the maximum likelihood approach implemented via

the IRLS approach of Ibrahim (1990) within the context of rare variant analysis. We do

this primarily within the context of SKAT, but we also discuss extensions to alternative rare

variant testing procedures.

SKAT with Missing Covariates

Original development of the kernel machine testing framework using mixed models, the

overaraching framework for SKAT, was done within the context of quantitative outcomes.

Analysis of dichotomous and other types of outcome variables was done by using likelihood

based models which can be fit via a sequence of weighted linear models, IRLS. Testing for non-

quantitative outcomes then proceeds by utilization of the working linear model at convergence.

Since we are proposing to use a full likelihood based approach for accommodation of missing

covariates which can be fitted using IRLS, we also see that, at convergence, the working model

is essentially just a weighted least squares regression. Thus, SKAT can also be applied using

this working linear model.

Using the augmented versions of y, X and Z containingN instead of n observations, we can

again generate a kernel matrix K with (i, i′)-th element equal to K(Zi,Zi′) =
∑p

j=1 θjZijZi′j

where θj is as defined earlier and Z now denotes the augmented matrix of genotype values.

Then K is now N × N since it is generated from the augmented Z. Using the augmented
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data, we can construct a SKAT score statistic

Qw =
(y −Xβ̂)TWKW(y −Xβ̂)

σ̂2
w

where β̂ is estimated under the null model which is fit via IRLS and W = diag(wi). The

estimate for σ2 is given by

σ̂2
w =

1

n− p

n∑
i=1

 ∑
Xi2=0,1

(wi|Xi2)(yi −Xiβ)

2

.

Overall, Qw is similar in form to the original SKAT score statistic except the augmented

observations are weighted by their contribution to the model based on the probability of the

missing value.

To obtain a p-value for significance, asymptotically, Qw is a mixture of chi-squares distributions,

with weights λjw equal to the eigenvalues of P
1/2
0WKP

1/2
0W ; where P0W = W−WX(X′WX)−1X′W

for quantitative traits. Again, this can be approximated using moment matching approaches

(Satterthwaite, 1946; Liu et al., 2009) or exact methods (Davies, 1980).

As noted, the idea behind our approach is that we are simply using the weighted linear

model at convergence from maximization of the likelihood function for accommodating missing

covariates. More intuitively, the original SKAT statistic essentially boils down to a quadratic

form of the residuals estimated under the null model. Missing covariates prevent estimation

of the null residuals, consequently we are simply obtaining unbiased estimates of the results

using a likelihood based approach and then plugging these into the SKAT score statistic with

accommodation for the correlation between residuals and for the weighted augmentation.

Othere Rare Variant Testing Approaches with Missing Covariates

Although the emphasis of our work is on using SKAT for rare variant testing, our framework

can also be easily applied to other rare variant tests. In particular, we have noted in the

previous Chapter that many other tests are equivalent to SKAT using particular kernels. For

example, the count based collapsing method for testing rare variants corresponds to SKAT

56



using the kernel function

K(Zi,Zi′) =

 p∑
j=1

Zij

 p∑
j=1

Zi′j


were the Z are again assumed to have been augmented. Then to allow for missing covariates

under the count based collapsing method, we need only replace the usual SKAT kernel matrix

in Qw with a kernel matrix constructed based on the collapsing method. To use a different

test which is equivalent to SKAT under a particular kernel, we need only change the kernel

matrix.

4.2.4 Continuous Missing Covariates and Multiple Missing Covariates

For simplicity, we have presented our method under a simple scenario in which we have

only two covariates of which one is completely observed and the other is partially missing.

If we have multiple covariates which are completely observed, then the earlier results hold

except we simply treat Xi1 as a vector. However, we have further assumed that the missing

covariate is dichotomous and that only one of the covariates is partially missing. In this

section we discuss how we can relax these assumptions. We emphasize that this only reflects

the estimation under the null model and thus the overall rare variant testing procedure remains

the same except that we need to use an alternative approach to estimate the weights for the

observations with missing covariates and then everything else remains as earlier.

When the missing covariate is continuous, we can still use the same approach as earlier

except that f(Xi2|Xi1) is approximated by a discrete distribution and monte carlo is used

to select L distinct points from the distribution along with the corresponding probability

Ibrahim et al. (2004). Weights are then generated similar to the dichotomous case, and the

weighted complete data log-likelihood is evaluated in the same way as before with

wi = P (Xi2|yi, Xi1) =
p(yi|Xi1, Xi2, β, σ

2
y)f(Xi2|Xi1, α, σ

2
x)∫

p(yi|Xi1, Xi2, β, σ2
y)f(Xi2|Xi1, α, σ2

x)dXi2
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 α(t+1)

σ
2(t+1)
x

 =

 α(t)

σ
2(t)
x

+

 ∑
XT
i1wiXi1

∑
XT

i1wi(Xi2−Xi1α)

σ2
x∑

XT
i1wi(Xi2−Xi1α)

σ2
x

−
∑
wi

2σ2
x

+
∑
wi(Xi2−Xi1α)2

(σ2
x)2


−1  ∑

XT
i1wi(Xi2 −Xi1α)

−
∑
wi

2 +
∑
wi(Xi2−Xi1α)2

2(σ2
x)

 .
These values can be plugged in to obtain the SKAT score statistic again and a corresponding

p-value.

The approach can also be easily extended to the scenario in which there are multiple

missing covariates. For example, suppose that there are three covariates X1, X2 and X3 and

that X2 and X3 are missing for some individuals in the study. Under our assumptions, we

can extend the likelihood such that the distribution of X3 is conditional upon X1 and X2. In

particular, we use the null model

y1 = β0 + β1Xi1 + β2Xi2 + β3Xi3 + εi

where all variables are as before except that we have an additional covariate Xi3 which is

missing in some individuals. Then we assume that

X2|X1, α ∼ Ber
(
µ =

eXα

1 + eXα

)
; r2|y, x1, ω ∼ Ber

(
η =

eXω

1 + eXω

)

x3|x1, x2, δ ∼ Ber
(
µ =

eXδ

1 + eXδ

)
; r3|y, x1, x2, γ ∼ Ber

(
η =

eXγ

1 + eXγ

)
.

Weights are then generated in the same way as before using the likelihood with the additional

covariates and correspond to the posterior probability of being observed at a particular value.

wi = P (Xi2, Xi3|yi, Xi1) =
p(yi|Xi1, Xi2, Xi3, β, σ

2)p(Xi2|Xi1, α)p(Xi3|Xi1, X2i, δ)∑
Xi2

p(yi|Xi1, Xi2, Xi3, β, σ2)p(Xi2|Xi1, α)p(Xi3|Xi1, Xi2, δ)
.
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4.3 Results

4.3.1 Type I Error Simulations

We conducted a series of simulations to assess the type I error of our method as compared

to complete case analysis using scenarios similar to those of Wu et al. (2011). Specifically, we

simulated a population of 10,000 haplotypes on a region of approximately 5 kb long containing

100 genetic variants using a coalescent model (Schaffner et al., 2005) with parameters set to

mimic real genetic data from a population of European ancestry.

To generate a single simulated data set, we then randomly selected and paired haplotypes

to generate genetic information on n diploid individuals. For each individual, we simulated

two covariates with X1 ∼ N(0, 1) and X2 ∼ Ber(µi) with µi = 0.5Xi1. Then the outcome for

each individual was generated as

yi = 1 + 0.5Xi1 + 0.5Xi2 + εi

where εi ∼ N(0, 1). Note that the outcome does not depend on Z. Each Xi2 was set to be

missing with probability ηi, where

logitηi = ω0 + ω1yi + ω2Xi1

with ω tuned to achieve a particular degree of total missingness.

We considered scenarios in whichX2 was missing in 5%, 15%, 30% or 60% of the individuals.

We also allowed n to vary as 500, 1000, and 2500. For each percentage of missingness in X2

and sample size, we simulated 1000 data sets. We applied SKAT using complete case analysis

and SKAT using IRLS to each simulated data set. We also considered applying SKAT under

the oracle: that is we applied SKAT assuming that we knew the true value of X2. While this

is impossible in practice, it provides a reference to which we can compare our results. For

each method, the type I error was estimated as the proportion of p-values less than 0.05.

The estimated type I error results are given in Table 4.1. Overall, each method controls
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Percent Missing
Method n 60% 30% 15% 5%

CC 500 0.042 0.050 0.031 0.051
1000 0.040 0.050 0.056 0.049
2500 0.054 0.054 0.055 0.043

Oracle 500 0.046 0.046 0.046 0.046
1000 0.040 0.040 0.040 0.040
2500 0.053 0.053 0.053 0.053

IRLS 500 0.047 0.045 0.045 0.048
1000 0.039 0.040 0.042 0.037
2500 0.052 0.055 0.050 0.057

Table 4.1: Type I error simulation results at the α = 0.05 level comparing SKAT using
complete case (CC), SKAT with IRLS to accommodating missing values (IRLS), or SKAT
assuming that the missing values are known (Oracle).

the type I error rate. We also found that the coefficients for the covariates were estimated

with no bias under the oracle and maximum likelihood based methods (not shown), though

this was not the case for the complete case analysis. That the type I error rate is nearly

controlled for the complete case approach is surprising, given the bias, but may be due to the

fact that the SKAT method tends to be conservative in many cases.

4.3.2 Power Simulations

We also examined the power of the proposed approach in comparison to the oracle

procedure and to complete case analysis.

Using the same strategy as before, we simulated genotype information and covariates

in the same manner as in the type I error simulations. However, since we then simulated

outcomes under the alternative model in which the rare variants within the region influence

the outcome. Specifically, we simulated the outcome yi as

yi == 1 + 0.5Xi1 + 0.5Xi2 + βcZciεi

where Zci denotes the genotypes of the causal variants and βc are the regression coefficients

for the causal variants. Here, the causal variants were randomly selected as 5% of the variants

with true MAF < 3%. The effect for the jth causal variant was given as βcj0.4| log1 0qj |, where
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Figure 4.2: Power simulation results comparing SKAT using complete case (CC), SKAT with
IRLS to accommodating missing values (IRLS), or SKAT assuming that the missing values
are known (Oracle).

qj is the true MAF of the jth causal variant. This allows rarer variants to have strong effects

on the outcome. Other parameters within the model are as before: we again considered n =

500, 1000, and 2500 and missingness percentages for X2 of 5%, 15%, 30% or 60%, and for each

sample size and proportion of missingness, we again simulated 1000 data sets. We applied the

SKAT under complete case, under the oracle, and under our proposed IRLS based approach

to each data set and estimated the power in each scenario as the proportion of p-values less

than the stringent α = 10−6 which reflects a level on the order of genome-wide significance.

The power results are shown in Figure 4.2. Results show that total power increases

for all methods as sample size increases. However, for fixed sample size, as the proportion of

missingness increases, complete case analysis loses power due to reduction in sample size (60%

missingness when n = 1000 leads to power that is comparable to no missingness and with

n = 500). On the otherhand, the proposed application of SKAT under the IRLS framework

to accommodate missingness maintains power that is close to the oracle procedure, even

when the missingness proportion is high. Interestingly, when the proportion of missingness

is modest, e.g. 5%, the loss in power is not large for complete case analysis, suggesting that

under some scenarios complete case analysis may not be terrible. Though, as the proportion

of missingness goes up, the relative performance is much worse.
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4.4 Discussion

Controlling for potential confounders and the effects of demographic and environmental

covariates is important for sequencing association studies of rare variants in order to prevent

spurious associations and can also improve power through reduction of the standard error.

However, missing covariate data sometimes occurs and little has been done to accommodate

the missing covariates. We have proposed a strategy based on full maximum likelihood using

IRLS that can accommodate rare variants within the context of SKAT. We show through

simulations that the approach conserves type I error while maintaining power close to the

oracle. In contrast, complete case analysis, a standard approach for treatment of partially

missing covariates, results in reduced power as the proportion of missingness gets large. These

properties support the use of IRLS when SKAT is to be used in the presence of partially

missing covarates.

Our proposed strategy shares many of the advantages of SKAT based tests. In particular,

as a score test, the null model, which is where all adjustments for missingness are made, needs

to be fit only once. This reduces the computational expense in genome wide experiments.

Similarly, a p-value can be directly estimated without the need for monte carlo methods.

However, since SKAT is closely related to several different methods, the proposed approach

can also be directly applied to conduct several other tests including the CAST method, the

count based collapsing method, and the C-alpha test, by simply switching the kernel function

used to measure similarity between subjects based on their rare variants. Using IRLS and

maximum likelihood to accommodate rare variants with still preserve the properties of each

of these tests such that collapsing approaches will still be more powerful when the majority

of variants function unidirectionally and SKAT and C-alpha will still be more powerful when

the variants function bi-directionally. The approach can also be easily used within the context

of other tests which are not exactly equivalent to SKAT under a single kernel, such as the

variable threshold test (Price et al., 2010) and SKAT-O (Lee et al., 2012).

In our current work, we have focused on scenarios where there is only a single dichotomous

covariate with considerable missingness. We have discussed the inclusion of continuous
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covariates and multiple missing covariates, but all of this is within the context of quantitative

outcomes. The approach can, in principle, be applied within the context of dichotomous (i.e.

case-control) outcomes, but further development is needed. Another area requiring further

research is inclusion of missing data within the variants; we find that this is, generally,

less problematic since current imputation techniques are comparable to likelihood based

procedures for common variants, but whether this still holds for rare variants is unclear

and warrants more research.
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Chapter 5

Kernel Machine Testing using Maximum Likelihood by IRLS for Gene Level
Analysis of Methylation Data with Missing Covariates

5.1 Introduction

Large scale epigenome wide association studies (EWAS) Rakyan et al. (2011), in which the

DNA methylation at hundreds of thousands of CpGs along the genome can be simultaneously

measured across a large number of samples Bibikova et al. (2011); Sandoval et al. (2011), have

resulted in the identification of differentially methylated CpGs associated with differences with

a range of outcomes and contions Joubert et al. (2012); Shen et al. (2013); Heyn et al. (2013,

2012). These discoveries can provide a breadth of information from fundamental insights

into the mechanisms underlying complex disease and to potential biomarkers for diagnosis or

prognosis Laird et al. (2003); Attar (2012). However, despite the successes, analysis of EWAS

remains challenging Bock (2012).

Standard analysis of EWAS proceeds via individual CpG analysis wherein the association

between each CpG and an outcome variable (e.g. disease state, environmental exposure,

etc.) is assessed one-by-one, followed by adjustment for multiple comparisons. Any CpGs

surviving this correction are called differentially methylated and followed for validation and

interpretation. However, this approach suffers a number of limitations (Subramanian et al.,

2005; Wu and Lin, 2009). First, the need to correct for large number of multiple corrections

can lead to low power such that nothing meets the criteria for signifiance. Alternatively, too

many features are called significant leading to difficulties in interpretation. Individual feature

analysis also fails to allow for capture of multi-feature or interactive effects. More generally,



such approaches have been found to yield poor reproducibility. An alternative to individual

CpG analysis is to use multi-CpG analysis in which we group multiple CpGs together, such as

those lying within a gene region, and test their cumulative effect on the outcome. Following

similar principles as in gene expression and genetic association studies (Subramanian et al.,

2005; Goeman et al., 2005; Wessel and Schork, 2006; Liu et al., 2007b, 2008; Tzeng and

Zhang, 2007; Wang et al., 2007, 2010; Schaid et al., 2011), multi-CpG analysis can be used

to overcome many of the limitations surrounding individual CpG analysis.

A particular approach that can be used for multi-CpG analysis is the kernel machine

regression test which was initially proposed for gene expression data (Liu et al., 2007b, 2008)

but has been also extended to analysis of SNPs (Kwee et al., 2008; Wu et al., 2010) and

rare variants (Wu et al., 2011). Briefly, the approach is built upon a semi-parametric model

within the kernel machine framework (Cristianini and Shawe-Taylor, 2000) in which the effects

of a group of features of interest (e.g. genes in a pathway, SNPs in a region, etc.) are

modeled nonparametrically and while some simple confounding covariates are adjusted for

parametrically. A score test is used to test for an association between the outcome and the

nonparametrically modeled group of features while linearly adjusting for the covariates. A

key advantage of the kernel machine framework is the non-parametric modeling of the multi-

feature effects. The approach can be directly applied to EWAS data in which the CpGs are

grouped at the gene level.

An example of a study in which kernel machine regression based multi-CpG testing is

useful is a recently conducted study of child birth weight in which epigenetic profiling of

cord blood from approximately 1000 new-born infants was conducted within the Norwegian

Mother and Child Birth Cohort (MoBa). In addition to methylation measurements at

485,000 CpG sites within 20,000 genes, for each subject in the study, a wide range of

potential confounders including demographic variables and maternal behavior, diet, and

environmental exposure data during pregnancy were collected. The goal was to identify

associations between methylation at the gene level and birth weight while adjusting for the

confounding variables. One particular confounder of interest is maternal vitamin D exposure

which has been hypothesized to be linked to a range of birth outcomes and is a potential
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confounder for birth weight. Unfortunately, vitamin D was measured in only a subset of the

individuals such that the value is missing for a substantial number of subjects. Since each

of the genes contains multiple CpG sites and the outcome is continuous, least square kernel

machine regression is a natural analytic strategy, but the inability of kernel machine methods

(as well as other multi-CpG tests) to accommodate partially missing covariate information

poses a significant challenge.

To overcome the difficulties associated with gene level analysis of the MoBa epigenetic

study of birth weight, we will consider using the method developed within the previous

chapter. Although the development of the work was within the context of rare variant

analysis, the overarching framework is generic and can also be applied in the present setting

where we are interested in testing the effect of multiple CpGs instead of multiple rare variants.

Despite this, there are a number of important differences between methylation values and rare

variants. For example, methylation is typically measured as a continuous percentage (which

is often logit transformed to be approximately normal), the number of CpGs within a gene is

typically modest, and the correlation between adjacent CpGs is higher (whereas rare variants

have low correlation due to their rarity). Therefore, this chapter involves investigation of the

utility of the previous work on kernel machine testing with missing covariate information for

gene level analysis of DNA methylation data.

The remainder of the chapter is organized as follows. Since the methods have been

presented within the previous chapter, we do not repeat that here. Instead, in the next

section, we directly proceed with simulation studies to examine the use of kernel machine test

with missing covariates within the context of DNA methylation analysis. Specifically, we will

compare the use of complete case analysis with the proposed method in terms of controling

type I error and power. We then apply the proposed method to the motivating MoBa study

of birth weight. We conclude with a very brief discussion.

5.2 Simulations

Since the structure of DNA methylation data is inherently different from rare variant data,

we conducted simulations to ensure that the approach is also valid for continuous predictors
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(the CpGs within a gene) and to examine the empirical power of our approach in comparison

to the simpler complete case analysis strategy. We compare both complete case analysis and

our proposed approach to the oracle procedure, i.e. kernel machine testing with the covariate

value treated as known.

For our simulations, we let yi be a continuous outcome for the ith subject in the study

(i = 1, . . . , n) and is simulated as

yi = −3 + 0.5Xi1 − 0.5Xi2 + Z′iξ + εi

where Zi is the vector of CpG methylation values within the gene with corresponding coefficients

ξ and εi ∼ N(0, 1). Here, we let covariate Xi1 follow a standard normal and covariate Xi2

follow a normal distribution with mean equal to 0.5Xi1 and variance σ2
x. Since our interest is

in examining missingness in the covariates, we allow Xi2 to be missing for some individuals

— for simplicity we assume that missingness is restricted to Xi2. We let ri be the indicator of

whether Xi2 is observed and we assume that the probability that Xi2 is observed (i.e. ri = 1)

depends on yi and Xi1 such that we have

logitP (ri = 1) = η = ω0 + ωXi1

Thus, Xi2 is considered to be missing at random (MAR) since ri|yi, Xi1 is independent of

Xi2.

5.2.1 Type I Error

We first test type I error by applying SKAT to simulated data sets where methylation

within the gene (Z) has no effect on the outcome, i.e. ξ = 0.

For each individual, we simulated methylation data as a vector of 30, possibly correlated,

normal random variables: Zi ∼MVN(0,Σ). Although methylation is measured as a proportion

between 0 and 1, it is often logit transformed to approximate normality. We considered

five different correlation structures for the methylation values: independence, compound

symmetry with ρ = 0.15, autoregressive with ρ = 0.9, block autoregressive with 10 blocks
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with ρ = 0.9 within each block, and block compound symmetry with 10 blocks and ρ = 0.15

within each block. We tuned ω such that percent of missing covariate X2 was 5%, 15%, 30%

or 60%. We also considered sample sizes of n = 500 and n = 1000.

For each choice of correlation structure, sample size, and percent missingness, we simulated

10,000 data sets. For each data set, we conducted a complete case analysis using kernel

machine testing under a linear kernel to assess the cumulative effects of the simulated CpGs

on the outcome. We also applied the proposed kernel machine method with accommodating

for missing covariates to each data set and for comparison, we also considered the oracle

procedure in which we pretend that we knew the missing value. The type I error rate for

each method was the proportion of p-values less than α level, where we considered several

diffferent possible levels.

Table 5.1 shows type I error for the case of independent methylation data. Type I

error was conserved for all 3 methods. However Figure 5.1 shows that type I error is not

conserved for complete case analysis under certain correlation structures in methylation data.

Specifically, type I error is well beyond acceptable limits when methylation is correlated

in an autoregressive or compound symmetric fashion. Type I error inflation increases as

missingness increases. Interestingly, under a block correlation structure improves type I error,

but complete case still exceed limits in some cases. Type I error is conserved by using the

oracle procedure or by using maximum likelihood by IRLS for all methylation correlation

structures and sample sizes, even at more modest α levels. These results are different from

what we observed with regard to rare variant analysis where type I error appeared to be

conserved for complete case analysis, but this may be due to the fact that rare variants have

near spherical correlation due to their low allele frequencies.

5.2.2 Power Simulations

We further assessed the power of the proposed kernel machine test using ML with IRLS

to accommodate missing covariates. We also compared the usage of complete case analysis

and the oracle procedure. As in the type I error simulations, we considered the same

correlation structures and sample sizes. We also simulated covariates as in the type I error
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n=500

%mis 5% 5% 5% 15% 15% 15%

α level: 0.0500 0.0050 0.0005 0.0500 0.0050 0.0005
cc 0.0442 0.0030 0.0002 0.0434 0.0035 0.0005
oracle 0.0447 0.0028 0.0004 0.0447 0.0028 0.0004
irls 0.0444 0.0027 0.0004 0.0443 0.0030 0.0003

%mis 30% 30% 30% 60% 60% 60%

α level 0.0500 0.0050 0.0005 0.0500 0.0050 0.0005
cc 0.0426 0.0031 0.0003 0.0422 0.0029 0.0002
oracle 0.0447 0.0028 0.0004 0.0447 0.0028 0.0004
irls 0.0441 0.0031 0.0004 0.0412 0.0030 0.0002

n=1000

%mis 5% 5% 5% 15% 15% 15%

α level 0.0500 0.0050 0.0005 0.0500 0.0050 0.0005
cc 0.0464 0.0046 0.0002 0.0539 0.0044 0.0004
oracle 0.0467 0.0045 0.0004 0.0467 0.0045 0.0004
irls 0.0475 0.0041 0.0004 0.0478 0.0042 0.0004

%mis 30% 30% 30% 60% 60% 60%

alpha 0.0500 0.0050 0.0005 0.0500 0.0050 0.0005
cc 0.0538 0.0055 0.0005 0.0559 0.0054 0.0006
oracle 0.0467 0.0045 0.0004 0.0467 0.0045 0.0004
irls 0.0460 0.0046 0.0003 0.0473 0.0044 0.0004

Table 5.1: Estimates of type I error in the application of kernel machine testing with complete
case (cc) treatment of missing data, with oracle knowledge of the missing covariate values,
and with ML by IRLS based analysis. Estimates are based on 10,000 simulated null model
data sets under different sample sizes (n), signifiance levels (α), and percentage missingness
(%mis). CpGs are uncorrelated here.
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Figure 5.1: Scaled estimates of type I error in the application of kernel machine testing with
complete case (cc) treatment of missing data, with oracle knowledge of the missing covariate
values, and with ML by IRLS based analysis. Horizontal line indexes the ideal type I error
level (alpha) and scaled to 100. Estimates are based on 10,000 simulated null model data sets
under different signifiance levels, percentage missingness, and correlation structures. Sample
size is fixed at n = 500.
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simulations including missingness patterns, but now we allow the outcome yi to depend

on the methylation markers Z. In particular, we randomly selected a single CpG to be

causal with effect size ξ which differed depending the correlation structure: ξ = 0.045 when

we used an independent or block compound symmetric correlation structure, ξ = 0.025

when we used a block autoregressive structure, and ξ = 0.015 when we used a compound

symmetric or autoregressive structure. Power was estimated based on 10,000 simulations for

each correlation structure and missingness pattern.

Power results are presented in Figure 5.2 and show that power of complete case decreases

substantially as percent missingness increases, falling to zero as missingness approaches 60%.

On the contrary, oracle and using kernel machine testing using ML with IRLS to accommodate

missingness exhibit power that is very similar throughout levels of missingness. Using ML with

IRLS does exhibit a modest decrease in power compared to oracle but this is considerably

better than complete case analysis, despite the fact that complete case analysis does not

well control type I error under some scenarios. These results are generally consistent across

the different correlation structures in methylation data. Qualitatively similar results were

observed for n = 500 and are not presented.

5.3 Application to Epigenetic Study of Birth Weight

We applied the kernel machine testing approach with ML by IRLS to accommodate missing

covariate data and also kernel machine testing under complete case analysis to the motivating

epigenetic study of birth weight.

Infant birth weight is an important variable related a child’s subsequent development and

health. Consequently, it is of great interest to understand the factors influencing a child’s

birth weight, including genomic factors. The MoBa epigenetic study of birth weight aimed to

identify genes with methylation levels associated with differences in birth weight in infants.

To this end, cord blood from over 1100 Norwegian infants in the MoBa cohort was obtained.

The cohort has been described elsewhere. Following quality control, birth weight, covariates,

and CpG methylation information was available on 1069 individuals. CpGs within 20,631

genes were available for analysis. The objective of the analysis is to examine each gene, one-
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Figure 5.2: Scaled power estimates for kernel machine testing with complete case (cc)
treatment of missing data, with oracle knowledge of the missing covariate values, and with ML
by IRLS based analysis. Estimates are based on 10,000 simulated null model data sets under
different signifiance levels, percentage missingness, and correlation structures. The effect size
depended on the correlation structure to avoid saturation. Sample size is fixed at n = 1000.
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at-a-time, and test for the cumulative effect of the CpGs within the gene on birth weight

while adjusting for possible confounders.

Twelve different covariates related to birth weight were included in the analysis as possible

confounders. Five of the twelve were partially missing in some individuals, but four of these

five had 6 or fewer missing observations and so subjects missing in any of these four variables

were removed from analysis, resulting in 9 total observations removed. The fifth covariate,

vitamin D, had 123 missing values (11.6%) among the remaining 1060 observations which

resulted from failure to collect this information due to expense. Our simulations show power

loss when using complete case analysis coinciding with such a high percent of missingness.

Thus, we apply our maximum likelihood by IRLS methodology to this partially missing

covartiate. Vitamin D is a continuous covariate, thus we discretize the distribution, with 15

evenly spaced breaks. We standardized each of the covariates as well as the birth weight

outcome prior to analysis.

We first estimated the covariate effects, comparing complete case to ML without consideration

for the epigenetic data (i.e. under the null). Estimates of covariate effects were similar overall

for the two methods (Table 5.2). Gestastional age showed the largest difference since it had

the largest effect on the outcome.

We then conducted our primary analysis by applying kernel machine testing with ML by

IRLS to accommodate the missing vitamin D levels to each of the 20,631 groups of CpGs,

defined based on being in the same gene. Overall, following Bonferroni correction, 12 genes

were associated with birth weight. In contrast, if we were to apply complete case analysis,

reducing the sample size, then only three genes would have been found to be associated

with birth weight. The genes are show in Table 5.3. All genes discovered by complete case

analysis were also included in the list found by ML by IRLS reinforcing our simulation results

indicating that complete case analysis often leads to reduced power.

5.4 Discussion

Our results have showed that using maximum likelihood by iteratively reweighted least

squares is an attractive approach for multi-CpG association testing in the presence of partially
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CC ML

Intercept -0.01 0.00
Infant Sex -0.14 -0.14
Cotinine -0.05 -0.06
Gest. Age 2.19 2.46
Gest. Age2 -1.69 -1.96
Parity = 1 0.19 0.19
Parity = 2 0.18 0.18
Parity ≥ 3 0.11 0.11
Maternal Age -0.11 -0.09
log1 0 Folate 0.08 0.08
Asthma 0.03 0.03
Preeclampsia -0.06 -0.07
Vitamin D 0.01 0.01

Table 5.2: Estimates of covariate effects on birth weight. The two procedures used are
complete case and maximum likelihood by iteratively reweighted least squares

Raw p Corrected p
CC IRLS CC IRLS

COBRA1 7.48E-05 2.20E-06 1.000 0.045
ENDOD1 7.37E-05 1.85E-06 1.000 0.038
FADS2 1.32E-05 4.24E-07 0.272 0.009
GRK6 1.54E-04 1.35E-06 1.000 0.028
GUCY1B2 1.13E-06 4.07E-07 0.023 0.008
KLF9 1.05E-06 2.08E-06 0.022 0.043
MBOAT4 9.19E-08 1.06E-08 0.002 <0.001
MNDA 1.43E-04 1.55E-06 1.000 0.032
SDPR 2.53E-06 2.76E-07 0.052 0.006
STAR 3.88E-06 7.50E-08 0.080 0.002
TRIM8 6.14E-05 1.37E-07 1.000 0.003
ZNF498 3.35E-05 5.96E-08 0.690 0.001

Table 5.3: Raw and Bonferroni Corrected p-values for the top results from the real data
analysis. Kernel machine testing with maximum likelihood via IRLS is denoted by IRLS.
Complete case analysis with kernel machine testing is denoted by CC.
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observed covariates. When compared to a hypothetical oracle procedure where the covariates

are not missing, power is only modestly decreased while type I error is conserved. On the

contrary, our results confirm previous studies showing that complete case can lead to biased

results and loss of power. Under certain correlation structures, complete case analysis can also

lead to substantially inflated type I error, though this was not observed within our analysis

of the MoBa epigenetic study of birth weight.
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Chapter 6

Evaluation of Statistical Methods for Prioritization and Selection of Individual
Rare Variants in Sequence Association Studies

6.1 Introduction

Despite the success of array based genome wide association studies (GWAS) of common

variants in identifying genetic variants associated with a range of traits and diseases, such as

Crohn’s diseaseWTCCC (2007), type I and type II diabetesWTCCC (2007), lung cancerLandi

et al. (2009); Li et al. (2010b), as well as many other traits (Hindorff et al., 2009), discovered

variants explain only a modest proportion of heritability (Eichler et al., 2010). A portion

of the missing heritability may be explained by rare genetic variants, that is variants with

low minor allele frequencies (MAF) which were difficult to study in the past. However,

recent advances in high-throughput sequencing technologySchuster (2008) have now enabled

large scale studies examining uncommon gene variants through sequencing association studies

which promise to identify rare genetic variants that further explain the heritability of complex

traits.

Achieving the promises of sequencing studies has proven challenging. In particular, it

is believed that analysis of these studies has been hindered by the low power of existing

analysis methods for GWAS when applied to study rare variants. Consequently, a range of

statistical methods have been developed for association testing in sequencing studiesLi and

Leal (2008, 2009); Madsen and Browning (2009); Price et al. (2010); Neale et al. (2011); Yi

and Zhi (2011); Wu et al. (2011). While there are important differences among the methods,

they generally share the common strategy of focusing on region based testing which aims to



assess the cumulative effect of multiple rare variants in a region on the trait value. “Region”

generally refers to a group of variants within a particular region of the genome (e.g. a

gene), but the definition can be expanded to encompass any group of variants of interest.

Aggregating information across multiple variants improves the power to identify regions that

are associated with particular traits. However, because the tests focus on examining the

joint effect of multiple uncommon variants, current methods cannot be used to conduct fine

mapping to identify individual causal variants.

While detecting trait associated regions is important, subsequent evaluation of the contributions

of individual causal variants within a gene region is crucial to achieving a comprehensive

understanding of how genetic variation affects disease etiology and complex trait architecture.

Pinpointing, or even prioritizing, individual variants would aid researchers interested in

conducting in-depth functional analyses to interpret association results biologically. This is

necessary to obtain clues as to the biological mechanisms underlying the relationship between

the genetic factors and the observed trait phenotypes and better identify possible diagnostic

and therapeutic options.

Although there has only been limited development of statistical methods for prioritizing

individual variants, many methods commonly used for common variants can also be applied

within the context of rare variants. Currently, the most common statistical tool used in

the identification of individual common variants is marginal regression analysis in which the

association between the trait value and each variant is examined, one-by-one. The method is

ubiquitous in GWAS and other high dimensional data types with individual variants surviving

some corrections for multiple comparisons considered to be of interest. An advantage of the

approach is that method includes ability to control type I error when used in conjuction with

multiple comparison correction. However, marginal analysis does not allow for the assessment

of the individual variants while in the pressence of other variants. Furthermore, the power

of standard tests for individual variants is tied to the MAF such that these methods may be

underpowered for testing individual rare variants, though there has been some recent evidence

that this power loss is over-stated.

As an alternative to marginal analysis, one may also consider methods that are built on
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multivariable regression models such as sparse penalized regression approaches. In particular,

variable selection procedures such as the Lasso (Tibshirani, 1996) operate under the multivariable

regression framework but have the ability to performing simultaneous estimation and variable

selection through inclusion of a penalty in the regression loss function. Sparse penalized

regression methods have been widely applied within the context of analyzing common genetic

variants for the purposes of fine mapping (Wu et al., 2009; Hoggart et al., 2008; He and Lin,

2010) and have also been proposed for analyzing rare genetic variants Zhou et al. (2010).

Unfortunately, the main drawback of Lasso and its derivatives (Fan and Li, 2001; Zou, 2006)

is that type I error control has not yet been established and some of these methods may

over-select such that non-trait related loci are also included within the final models.

Due to the irregularity of the limiting distribution, standard methods for inference may

not be appropriate within the context of sparse regression models. However, split sample

resampling based methods such as stability selection (Meinshausen and Bühlmann, 2010)

and a number of other related approaches (Valdar et al., 2012) have been proposed to enable

error control. These methods have been applied within the context of analyzing common

genetic variants (Alexander and Lange, 2011; Eleftherohorinou et al., 2011) and may also be

useful for rare variants.

Although the properties of these procedures have been well studied, they have not been

evaluated in the context of sequencing data and rare variant selection. In this paper we

compare several of these methods in terms of their ability to correctly identify specific variants

within a region that are associated with the disease status or other outcome while minimizing

false positives. We also consider a simple approach which is based on forward selection in a

multvariable regression model in which we sequentially add variants to the model and generate

p-values conditional upon covariates and previously selected variants. Within these methods,

we can also consider weighting by MAF, and the use of prior biological information on the

ability to detect predictive genetic variants. Polyphen-2 (Adzhubei et al., 2010) and SIFT

(Ng and Henikoff, 2003), for example, are becoming increasingly useful biological predictive

tools. We compare the performance of each of these methods under three different criteria.

First, we compare the methods with respect to selection of truly trait associated variants
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(true positives) and incorrect selection of non-associated variants (false positives). Second we

compare the ability to detect true postives indexed by minor allele frequency (MAF). Some

methods may have better ability to identify associated variants that are relatively common

or that are relatively rare. Finally, we compare ability of each method to rank order the

individual variants into a relative list of importance.

6.2 Methods

In this paper, we focus on sequencing studies considering continuous traits. We assume

that the study population consists of n unrelated subjects and we further assume that we are

interested in identifying the causal variants within a single region.

For the ith subject (i = 1, · · · , n), let yi denote the value of the quantitative trait. Xi =

(xi1, xi2, · · · , xiq)T denotes the covariates which can be either continuous or discrete and

Zi = (zi1, zi2, · · · , zip)T denotes the genotype values of the p variants within the sequenced

regions. We will assume an additive genetic model such that zij is the number of the minor

alleles of the jth SNP, but we emphasize that our approach can also easily accommodate a

dominant or recessive genetic model by simply changing the coding for zij .

Since we are focusing on quantitative traits, we employ a linear model defined by

yi = β0 + βTXi + γTZi + εi (6.1)

where β0 is the intercept, β is the coefficient vector for the covariates, and γ = (γ1, γ2, · · · , γp)T

is the coefficient vector for the p variants. The error term εi is assumed to have mean 0 and

variance σ2.

Since not all of the variants within the region are anticipated to be related to the outcome,

the objective is to identify the variants Zij with corresponding γj 6= 0 such that the variant

influences the outcome. In this section, we examine several different approaches that can be

used to do this.
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6.2.1 Marginal Analysis

The most commonly used method in genetic association studies is the marginal analysis

such as by ordinary least squares for quantitative traits. Under this approach, each variant

is tested separately for association with an outcome such as a disease while accomodating

covariates such as environment or demographics. In particular, the effect of the jth variant is

evaluated assuming the model

yi = β0 + β′Xi + γjzij + εi.

A 1-df test can be used to test whether γj differs from zero. Then to achieve variable selection,

the p-value for the association of the individual variant can be compared to a prespecified

level. If it is below the level, then it is selected. If one wishes to control the type I error,

then the threshold can be based on a pre-specified α-level to control family wise error rate

(FWER) or adjusted to control the Benjamini-Hochberg false discovery rate (FDR) or some

other criterion.

A common belief is that rare variants are more likely to influence trait values. Similarly,

bioinformatics tools are now able to provide some prediction as to whether individual variants

influence trait values. Weighting can be used to incorporate this prior knowledge and belief

within this setting. One possible approach is to use the weighted FDR approach of Genovese

et al. (2006). For example, if one wishes to incorporate MAF information into the selection

process, using FDR we can multiple the p-value for each variant by the MAF of the corresponding

variant which has been normalized by the total MAF to generate a weighted p-value

pw,k = pk ∗ wk = pk ∗ (

p∑
k=1

MAFk)
−1MAFk.

Since the arithmetic mean of the weights is equal 1, then FDR is conserved.
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6.2.2 Lasso Based Methods

Another popular tool in variable selection in genetic association studies is the Lasso.

Briefly, the Lasso operates under Model 6.1 and estimates the regression coefficients for the

covariates β and the variants γ using the L1 penalized loss function

β̂, γ̂ = argmin
β,γ

||y − β0 −Xβ − Zγ||22 + λ

p∑
j=1

|γj |.

The inclusion of the L1 penalty allows for sparse estimation of the γs, i.e. for some of the

γs to be estimated as exactly zero, when λ is large. λ is typically selected by grid search

combined with cross validation or optimization of some criterion such as generalized cross

validation (GCV) or BIC. For the purposes of this article, we use the AIC criterion (Akaike,

1974) for selection of λ.

Since all of the variants are considered simultaneously, it allows for some accommodating

of correlation between variants and evaluation of the variants in the pressence of others. In

the Lasso, there are no p-values to report, but rather simply the estimate of the variants’

effect.

Within the context of the Lasso, it is also possible to use weighting to incorporate prior

biological knowledge as with marginal analysis. In particular, we can use variant specific

weights to adjust the penalty for each individual variant such that we estimate β and γ as

β̂, γ̂ = argmin
β,γ

||y − β0 −Xβ − Zγ||22 + λ

p∑
j=1

wj |γj |

where wj is a prior weight that is related to the prior belief of the importance of the jth

variant. Larger values of wj effectively increase the penalty for the jth variant such that it is

more likely to be shrunken to zero. Under the adaptive Lasso (Zou, 2006) sets wj to |γ̂j |−1

where γ̂j is some prior estimate for γj usually unpenalized least squares estimate, which

allows for consistent variable selection under some conditions. Instead of using an initial

estimate, we can also incorporate prior knowledge based on which variants are more likely to

be causal. Thus, we can use weights that make it more likely for rare variants to be selected.
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Specifically, for the jth variant, we set the weight to be equal to the MAF for the jth variant:

since we believe variants with lower MAF are more likely to be important, this reduces the

corresponding penalty for the variant making it more likely to be selected.

6.2.3 Stability Selection

In part because the Lasso does not control type I error and is believed to often over-

select (leading to many false positives), Meinshausen and Bühlmann (2010) have proposed

the stability selection procedure which is based on resampling the data and applying Lasso to

allow for control of the expected number of false positives (the Per-Family Error Rate, PFER).

Variants that are frequent selected across resamples are more likely to be true associated with

the trait.

Operationally, stability selection proceeds by:

1. Randomly sample n/2 subjects from the total of n subjects in the study.

2. Apply the Lasso (or the weighted Lasso) using only the sampled n/2 subjects to select

variants related to the outcome, but instead of optimizing a particular criterion, we

select q, a prespecified number, of variants. Let Sn/2 denote the set of selected variants

in the particular subsample.

3. Repeat the previous two steps B times for some large number B.

4. For each variant k, compute the selection probability as the proportion of times that

the variant is selected across subsamples

p̂k,n/2,B =
1

B

B∑
b=1

I(k ∈ Ŝn/2,b)

5. Variants whose selection probability is greater than a prespecified threshold (τ) are

reported as selected.

By choosing different values of τ , stability selection can control the PFER by making two

generally reasonable assumptions: 1) exchangeability, that is, all noncausal variants have
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equal chance of selection; and 2) the using Lasso procedure is no worse than guessing. The

PFER increases as the number of selected variables per subsample increases, and decreases

with increasing total variables and increasing the threshold τ at which to accept a variable.

The specific bound is given as

PFER ≤ 1

2τ − 1

q2

p
.

We note that this is an upper bound and that in practice, the observed PFER is usually

substantially lower if the data and procedure are adequate due to the assumptions used in

developing the bound.

6.2.4 Forward Selection

The final method we examine is based on simple forward selection. Although penalized

regression methods have become quite popular in the statistical literature, forward selection

is stll commonly used within many applied scenarios. Forward selection is applied by first

testing individual variants for association with the outcome in the presence of all covariates.

The single variant most highly associated with the outcome is then selected. We then include

the selected variant as a covariate and then test each of the remaining variants for association

with the outcome. The single variant most highly associated with the outcome, conditional

on the covariates and the first selected variant, is again selected. This is repeated until all

variants that are at all significantly associated with the outcome is added to the model.

Operationally, for testing the effect of additional variants while conditioning on previously

selected variants and covariates, we use the score test implemented within SKAT. Since we

are only testing a single variant, this score test is essentially equivalent to a standard 1-df

score test within a multivariable regression model.

6.3 Simulations

We conducted a series of simulation studies to examine the relative performance of the

considered methods for prioritizing and selecting individual variants that may be responsible

for driving region level associations.
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To simulate real sequencing data, we first generated a population of 10,000 haplotypes on

a region of approximately 10 kb in length, containing 200 variants, using a coalescent model

(Schaffner et al., 2005) calibrated to reflect a population of European ancestry. Using this

population of haplotypes, we randomly selected 2n haplotypes and paired them to generate n

diploid individuals. The vector of additively coded genotypes for the ith simulated individual

are given as Zi. We then simulated an outcomes for each of the i = 1, . . . , n individuals using

the model

yi = 0.5xi1 + 0.5xi2 + γ ′Zci + εi

where xi1 ∼ N(0, 1), xi2 ∼ ber(0.5) and εi. Zci are the genotypes of the causal variants which

were randomly selected as 20% of the variants with true MAF less than 1% in the simulated

population. The coefficients for the causal variants are γ with γj , the coefficient for the jth

causal variant, set equal to rj0.4|log10MAFj | where rj is -1 and 1 with probabilities 0.2 and

0.8, respectively.

Since we are sometimes provided with prior biological knowledge concerning whether

individual variants are actually causal, we also considerd simulation of scores reflecting prior

knowledge. To mimic scenarios in which we have informative prior knowledge, we simulated

scores from a Beta(2.5, 0.25) distribution for causal variants and we simulated scores from

a Beta(0.25, 2.5) distribution for non-causal variants. These scores are meant to behave

similarly to scores from Polyphen-2 or SIFT. We also considered some scenarios in which the

prior knowledge is of poor quality and in these anti-informative settings, the distributions for

causal and non-causal variants were reversed.

We considered several different scenarios based on different sample sizes and whether or

not prior knowledge was useful. For each scenario, we simulated 1000 data sets. We applied

each of the considered methods to each of the data sets to try to identify the individual causal

variants. A number of different metrics for assessing the methods were considered.
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6.3.1 Evaluative Metrics

We compare the methods in three ways. First, we examine number of true positives and

false positives in relation to the total number of causal variants which which observed to

have at least one minor allele in the data set. It is desirable to capture a large proportion

of observed causal rare variants, but also to have a low number of false positives. Second

we examine the number of true positives broken down by the minor allele frequency of the

population from which the samples are drawn. This will give a picture of relative advatage

by method with respect to the rarity of the variant. It may be helpful for the investigator to

know the relative advantages of the methods prior to analysis. For example, the invistagor

may be interested in more common variants because of higher population penetration. Or,

contrarily, the investigator may be interested in rarer variants because they may be more

potent.

Finally, we compare the methods in their ability to prioritize the variants in order of

importance. Suppose further investigation requires a list of 5, 10 or 20 candidate variants.

Analysis which automatically prioritizes will be ready to generate an imformative list. For

our study, we use p-values to rank marginal anlaysis and SKAT forward ranks. We rank by

magnitude of effect estimate for the Lasso. Stability selection ranks by the estimated selection

probability. The formula we use produces a ”rankscore” which ranges from 0 (none of the top

20 ranked variants are causal) to 1 (all top 20 ranked variants are causal). The formula gives

higher priority to top ranked variants by weighting the top ranked variant 20, second 19, until

the lowest 1, with the final score scaled to produce range 0 to 1. Rankscore is calculated as:

c

l∑
r=1

(l + 1− r)I(zr ∈ S)

where zr represents the r ranked variant. l is the length of the list and S is the group of true

associated variants. c is the scaling factor (
∑l

r=1 r)
−1 which ensures a score between 0 and 1.

85



6.3.2 Results

Table 6.1 displays results with under the scenario in which set let n = 1000 and no prior

knowledge was available beyond allele frequency. From the table, we see that Lasso methods

captured a greater proportion of the causal variants. Here there were an average of 15.5

observed causal rare variants across simulations, representing the maximum number of true

positives that any approach can find. The Lasso methods captured on average close to 11 of

these, while any other methods failed to catch more than 5. However the drawback is that

Lasso methods have no way to control type I error and tend to vastly over-select. This was

clearly seen in the high number of false positives selected through AIC.

Examination of true postives by MAF shows that gains in power were more prevalent in

the lower range of MAF for the Lasso method, especially the very rare variants with MAF less

than 0.1% where Lasso based methods capture 8 to 9 compared to 2 to 3 in the other methods.

Finally, Lasso based methods, and also SKAT forward selection, showed the greatest ability

to correctly arrange variants by level of importance, since the rank score was high.

Now, among the Lasso methods, adaptive and naive Lasso show better ability than

weighted Lasso. This may have been partially due to the fact that the LASSO requires

standardization of the design, and thus since standard deviation is clearly already related to

MAF, is automatically adjusted for MAF. Further weighting is unecessary or perhaps harmful

according to these results.

Among methods which had lower false positive rates, forward selection using SKAT had

the most desireable outcomes. In fact SKAT forward selection dominated both marginal

analysis and stability selection in that it had both more TP and fewer FP. SKAT forward

had rank score on par with Lasso based methods and higher than the other error-controlled

methods.

Weighting as a general strategy seemed to range from uncertain gain to unhelpful. It is

not clearly shown in any method that weighting by MAF increased TP while lowering FP.

Examining the effect of sample size on abilty of the methods to detect causal variants

shown in figure 6.1, we saw patterns seen for the default 1000 sample size persist in the other
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TP by MAF
TP FP 1% to 0.5% 0.5% to 0.1% ≤ 0.1% rank.score

Marginal 2.3 0.7 0.5 1.0 0.9 0.42
Marginal-w 2.8 0.8 0.4 0.9 1.6 0.53
Lasso 10.9 15.2 0.6 2.3 8.1 0.62
Lasso-w 11.2 27.8 0.3 1.3 9.6 0.52
Adaptive Lasso 11.6 16.0 0.5 2.2 8.8 0.61
Stability Selection τ =0.6 4.9 3.5 0.5 2.0 2.4 0.49
Stability Selection τ =0.7 3.1 1.0 0.5 1.6 1.0 0.49
SKAT forward 3.2 0.3 0.5 1.2 1.5 0.63
SKAT forward-w 4.5 0.8 0.5 1.2 2.8 0.63

Mean observed 15.5 68.2 0.6 2.6 12.3

Table 6.1: Comparison of methods in ability to correctly identify causal variants for default
simulation setting. Measures of comparison include true positives, false positives, and true
postitives indexed by minor allele frequency. Additionally presented is a rankscore, which
measures ability to informatively order variants by level of importace, with 1 meaning all 20
top ranked variants are causal, and 0 meaning none are causal.

sample sizes as well. While all methods improve detection with increased sample size, stabilty

selection showed much more variability due to sample size, with poor results in the n = 500

setting.

Finally, we examined the effect of prior information. All methods except stability selection

gained from informative prior information. All methods clearly performed poorly under

anti-informative prior information. This indicates that inclusion of prior knowledge can

significantly improve analyses, but inclusion of unreliable knowledge or knowledge that goes

against the truth can result in decreased ability to identify causal variants.

6.4 Data Analysis

6.4.1 Overview

We applied the four methods to a real data set, in which we wished to find genetic variants

associated with a quantitative trait related to lung function across 1898 individuals. The trait

was continuous and the data set contained 8 additional covariates. Within the region, there

were 86 genetic variants, of which 17 had MAF over 1%, 2 between 0.5% and 1%, 16 between

0.1% and 0.5%, and 51 less than 0.1%. We applied the methods as before and reported the
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n = 500
TP/FP: mean observed 11 causal/ 59 total
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n = 1000
TP/FP: mean observed 15 causal/ 84 total
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n = 2000
TP/FP: mean observed 21 causal/ 112 total
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Figure 6.1: Simulation results for varied sample size. Left column compares methods by true
postives and false postives, with total observed causal variants and total variants noted for
comparison. Middle column compares methods by true postives with respect to minor allele
frequency, with total observed variant by MAF noted for comparison. Right column compares
methods by their ability to order variants by rank of importance, with 0 worst and 1 perfect.
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Informative Prior
TP/FP: mean observed 16 causal/ 84 total

T
P

/F
P

0
2

4
6

8
10

12
14

LM

LM
−

w

LA
S

S
O

W
−

LA
S

S
O

A
D

−
LA

S
S

O

S
S

ta
u0

.6

S
S

ta
u0

.7

S
K

AT
 fw

d

S
K

AT
 fw

d−
w

TP
FP

TP by Minor Allele Frequency

Tr
ue

 P
os

iti
ve

s 
by

 M
A

F

0
2

4
6

8
10

LM

LM
−

w

LA
S

S
O

W
−

LA
S

S
O

A
D

−
LA

S
S

O

S
S

ta
u0

.6

S
S

ta
u0

.7

S
K

AT
 fw

d

S
K

AT
 fw

d−
w

Mean observed
causals
>1% : 0
.5% to 1% : 0.6
.1% to .5% : 2.6
<=.1% : 12.5

TP Score weighted by rank (0 to 1)

R
an

ks
co

re

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

LM

LM
−

w

LA
S

S
O

W
−

LA
S

S
O

A
D

−
LA

S
S

O

S
S

ta
u0

.6

S
S

ta
u0

.7

S
K

AT
 fw

d

S
K

AT
 fw

d−
w

No Prior
TP/FP: mean observed 15 causal/ 84 total

T
P

/F
P

0
5

10
15

20
25

LM

LM
−

w

LA
S

S
O

W
−

LA
S

S
O

A
D

−
LA

S
S

O

S
S

ta
u0

.6

S
S

ta
u0

.7

S
K

AT
 fw

d

S
K

AT
 fw

d−
w

TP
FP

TP by Minor Allele Frequency

Tr
ue

 P
os

iti
ve

s 
by

 M
A

F

0
2

4
6

8

LM

LM
−

w

LA
S

S
O

W
−

LA
S

S
O

A
D

−
LA

S
S

O

S
S

ta
u0

.6

S
S

ta
u0

.7

S
K

AT
 fw

d

S
K

AT
 fw

d−
w

Mean observed
causals
>1% : 0
.5% to 1% : 0.6
.1% to .5% : 2.6
<=.1% : 12.3

TP Score weighted by rank (0 to 1)

R
an

ks
co

re

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

LM

LM
−

w

LA
S

S
O

W
−

LA
S

S
O

A
D

−
LA

S
S

O

S
S

ta
u0

.6

S
S

ta
u0

.7

S
K

AT
 fw

d

S
K

AT
 fw

d−
w

Anti-Informative Prior
TP/FP: mean observed 16 causal/ 84 total
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Figure 6.2: Simulation results for varied prior information. Left column compares methods by
true postives and false postives, with total observed causal variants and total variants noted
for comparison. Middle column compares methods by true postives with respect to minor
allele frequency, with total observed variant by MAF noted for comparison. Right column
compares methods by their ability to order variants by rank of importance, with 0 worst and
1 perfect.
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Total > 1% 1% to 0.5% 0.5% to 0.1% ≤ 0.1%

Marginal 1 0 0 1 0
Marginal-w 2 0 0 1 1
LASSO 3 0 0 1 2
LASSO-w 16 0 0 1 15
Adaptive LASSO 5 0 0 1 4
Stability Selection τ =0.6 2 1 0 0 1
Stability Selection τ =0.7 1 0 0 0 1
SKAT forward 1 0 0 1 0
SKAT forward-w 2 0 0 1 1

Mean observed 86 17 2 16 51

Table 6.2: Real data application: Comparison of methods in number of variants identified as
being associated with homeostatic model assessment levels. Measures of comparison include
total selected variants, and selected variants indexed by minor allele frequency.

number of variants selected.

6.4.2 Results

The Lasso based methods selected several variants (Table 6.2). Marginal regression found

1 variant without weighting, and 2 with weighting. The naive Lasso found 3 association,

weighted Lasso found 16, while adaptive Lasso found 5. Stability selection found 2 and 1

at τ equal to 0.6 and 0.7 respectively. SKAT forward selection found 1 variant without

weighting, and 2 with weighting. Overall, results are similar to what we anticipated based on

the simulation results.

6.5 Discussion

Lasso methods provide the power to detect the greatest number of associated variants, but

lack type I error control and consequently result in large numbers of false positives. Neither

adaptive Lasso nor weighting by minor allele frequency seem to increases power or reduce

false positives.

Among methods which provide adequate error control SKAT forward selection provides

the greater power than marginal analysis. These methods are useful when the desired result

is a ”clean” list of variants with prespecified number of false postivies. When relative order

of importance is of greatest concern Lasso and SKAT forward selection provide the greatest
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precision.

Stability selection, which applies observation resampling to Lasso, provides crude error

control, but performs poorly under moderate sample size. It is dominated by SKAT forward

selection in both true positives and false positives and cannot be recommended.

All methods benefit greatly from the use of informative prior information, such as that

provided by Polyphen-2 or SIFT.
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APPENDIX: SUPPLEMENTARY MATERIAL FOR CHAPTER 4

A1 Derivation of IRLS Newton Raphson: Partially Observed Discrete Covariate

Here we derive the Newton Raphson algorithm to solve IRLS weighted maximum likelihood

for β, σ2, α (It is not necessary to estimate ω)

wl(y, x2|x1, β, σ
2, α) = wl(y|x1, x2, β, σ
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= −
∑
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∑
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∑
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d2l

dα2
= −

∑
XT
i wiXi

(
eXiα

1 + eXiα
− (eXiα)2
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A2 Derivation of IRLS Newton Raphson: Partially Observed Continuous Covariate

Here we derive the Newton Raphson algorithm to solve IRLS weighted maximum likelihood

for β, σ2
y , α, σ

2
x (It is not necessary to estimate ω). We assume that X1 is fully observed and

X2 partially observed.
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