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ABSTRACT

XUAN WANG: Some Asymptotic Problems for Dynamical Random Graphs
(Under the direction of Shankar Bhamidi and Amarjit Budhiraja)

This dissertation consists of two parts. In the first part we study the phase

transition of a class of dynamical random graph processes, that evolve via the addition

of new edges in a manner that incorporates both randomness as well as limited

choice. As the density of edges increases, the graphs display a phase transition from

the subcritical regime, where all components are small, to the supercritical regime,

where a “giant” component emerges. We are interested in the behavior at criticality.

First, we consider the simplest model of this kind, namely the Bohman-Frieze process.

We show that the stochastic process of component sizes, in the critical window for the

Bohman-Frieze process after proper scaling, converges to the standard multiplicative

coalescent. Next, we study a more general family of dynamical random graph models,

namely, the bounded-size-rule processes. We prove a useful upper bound on the size

of the largest component in the barely subcritical regime. We then use this upper

bound to study both sizes and surplus of the components of the bounded-size-rule

processes in the critical window. In order to describe the joint evolution of sizes

and surplus, we introduce the augmented multiplicative coalescent. Our main result

shows that the vector of suitably scaled component sizes and surplus converges in

distribution to the augmented multiplicative coalescent.

In the second part of this dissertation, we study a large deviation problem related

to the configuration model with a given degree distribution. We define a random

walk associated with the depth-first-exploration of the random graph constructed

from the configuration model. The large deviation principle of this random walk
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is studied using weak convergence techniques. Some large deviation bounds on the

probabilities related to the sizes of the largest component are proved.
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CHAPTER 1: INTRODUCTION

This dissertation consists of two parts. The first part, that forms Chapters 3,

4 and 5, studies the percolation phase transition for a family of dynamical random

graph processes. We develop the limit theory for the sizes and complexity of the

largest connected components of these models near criticality. In the second part, we

study some large deviation problems for the configuration random graph model with

a fixed degree distribution.

The percolation phase transition for random graphs refers to the phenomena that,

as the density of edges increases, the network transitions from a configuration with

many small components to one unique “giant” component. This has been a topic of

great interest in many different communities ranging from statistical physics, combi-

natorics, computer science, social networks and probability theory. The Erdős-Rényi

(ER) process is one of the most basic examples. In this model, the graph starts with

n isolated vertices. Then edges are added to the graph step by step. At each step,

two vertices are chosen uniformly at random among all vertices and an edge is placed

between them. Scaling time such that at time t, bnt/2c edges have been added, the

classical work of Erdős and Rényi [16] shows that a phase transition occurs at the

critical time tc = 1. Denoting by C(n)

i (t) the size (the number of vertices in the com-

ponent) of the i-th largest component at time t, the phase transition can be described

as follows: When 0 < t < tc, C(n)

1 (t) ∼ log n, and when t > tc, Cn1 (t) ∼ n, as n→∞.

The three regimes corresponding to t < tc, t = tc and t > tc are called the subcritical,

critical and supercritical regimes, respectively. The behavior of the graph near tc is



also of great interest. Aldous [2] shows that for fixed λ ∈ R,(
1

n2/3
C(n)

i

(
tc +

λ

n1/3

)
: i ∈ N

)
d−→XS(λ) as n→∞, (1.0.1)

where {XS(λ) : λ ∈ R} is the standard multiplicative coalescent, which is a stochastic

process with values in

l2↓ :=

{
(x1, x2, ...) : x1 ≥ x2 ≥ ... ≥ 0, and

∞∑
i=1

x2
i <∞

}
,

and
d−→ denotes convergence in distribution with respect to the l2-metric induced

on l2↓. The time interval
{
tc + λ/n1/3 : λ ∈ B

}
is referred to as the critical window,

where B is an arbitrary bounded interval.

The first part of this dissertation studies some variants of the ER process, the

so-called bounded-size-rule (BSR) processes. In order to introduce the BSR pro-

cesses, we first introduce a more general family of processes, the Achlioptas processes.

Achlioptas processes are random graph processes whose evolution is similar to that of

the ER process, except that at each step, two pairs of vertices are picked uniformly

at random, and only one pair of vertices is linked with an edge. The decision is

based on a rule which only depends on the sizes of the components containing the

four chosen vertices. One is led to the study of such models in trying to understand

how choice interplays with randomness to delay or accelerate the phase transition.

The BSR processes are defined to be Achlioptas processes with an extra constraint:

There is some integer K such that all components of size greater than K must receive

the same treatment. One example of the BSR processes is the Bohman-Frieze (BF)

process, in which an edge is placed between the first pair of vertices if and only if

both of them are singletons (isolated vertices). The BF process is a BSR process

with K = 1, which encourages edge formation between isolated vertices.

Much recent interest has been drawn to a special Achlioptas process, the so-

called Product Rule, wherein one connects the edge that minimizes the product of
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the component sizes on the two end points of the edge. Simulation of the Product

Rule ([1]) and related such rules suggest seem to suggest a new phenomenon called

“explosive percolation”, wherein the phase transition appears much more abruptly,

in the sense that the largest component seems to increase from a size smaller than

√
n to a size larger than n/2 in a very small scaling window. For more reference on

the explosive percolation, please see [28, 18, 13]. In contrast to the simulation results,

recently in [30] it was shown that the phase transition of the Product Rule is actually

continuous. However, the phase transition of such models has very different behavior

as what one sees in the Erdős-Rényi random graph model. The Product Rule is an

Achlioptas process with an “unbounded-size” rule. It is hoped that the techniques

of analyzing bounded-size rules in this dissertation can be extended to the regime of

unbounded-size rules which we shall attempt to do in the future.

Chapter 3 studies the BF process, which was first introduced in Bohman and

Frieze [8]. The paper in particular shows that in the BF model the emergence of the

giant component is delayed in comparison with the ER process. The paper [22] in fact

shows that the critical time for the BF process is tc ≡ tc(BF ) ≈ 1.176. A rigorous

proof of the existence of phase transitions for general BSR processes was first given

by Spencer and Wormald [31]. In this chapter, we study the evolution of component

sizes through the critical window for the BF process. Our precise result is as follows.

Denote by C(n)

i (t) the size of the i-th largest component in the BF process at time t.

There exist constants α ≈ 1.063 and β ≈ 0.764 such that for all fixed λ ∈ R, we have(
β1/3

n2/3
C(n)

i

(
tc +

αβ2/3

n1/3
λ

)
: i ≥ 1

)
d−→XS(λ) as n→∞, (1.0.2)

where XS(λ) is the same object as in (1.0.1). In fact we prove process level weak

convergence in the space of RCLL (right-continuous-left-limit) functions from R to

l2↓. A paper [7] based on this chapter (joint work with S. Bhamidi and A. Budhiraja)

has appeared in Random Structures & Algorithms.
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Chapters 4 and 5 study general BSR processes. In Chapter 4, we focus on the

subcritical regime for BSR processes. The key result of this chapter is an upper

bound (that hold with high probability) of order n2γ log4 n on the size of the largest

component at time tc − n−γ for γ ∈ (0, 1/4). This time scale is also called the barely

subcritical regime. The proof uses a coupling of BSR processes with a certain family of

inhomogeneous random graph models introduced in [11]. This coupling construction

also gives an alternative characterization of the critical time for all BSR processes. A

paper [6] based on this chapter (joint work with S. Bhamidi and A. Budhiraja) has

been accepted in Combinatorics, Probability & Computing.

Chapter 5 studies the sizes and surplus (surplus of a component is the number of

edges that need to be removed in order to obtain a tree) of the components in general

BSR processes in the critical window. Let C(n)

i (t) and ξ(n)

i (t), respectively, be the size

and surplus of the i-th largest component in a BSR process. Our main result shows

that there exist some rule-dependent constants α > 0 and β > 0 such that for fixed

λ ∈ R, denoting t(n)

λ := tc + αβ2/3

n1/3 λ, we have((
β1/3

n2/3
C(n)

i (t(n)

λ ), : i ≥ 1

)
, (ξ(n)

i (t(n)

λ ) : i ≥ 1)

)
d−→ (XS(λ),Y S(λ)) as n→∞,

where XS(·) is the same process as in (1.0.1) and (1.0.2), and Y S(·) is a N∞0 -valued

stochastic process. The pair process (XS,Y S) can be viewed as an extension of

Aldous’s multiplicative coalescent and we refer to it as the augmented multiplicative

coalescent. We show that this process is “nearly Feller” which then allow us to argue

that the convergence in (1.0.2) holds jointly at multiple instants λ1, ..., λm ∈ R,

for m ∈ N. This limit theorem can be seen as an universality result that says that

all bounded-size-rule processes, with suitable (rule dependent) scaling, are governed

asymptotically in the critical window by the augmented multiplicative coalescent. A

paper [5] based on this chapter (joint work with S. Bhamidi and A. Budhiraja) has

appeared in Probability Theory and Related Fields.
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The second part (Chapter 6) of this dissertation focuses on some large deviation

problems for configuration random graph models. The theory of large deviations is

concerned with the asymptotic exponential decay rate of probabilities of rare events.

In a typical setting, one is given a sequence of random variables {Xn} with values in

some Polish metric space (M,d) such that as n→∞, Xn converges to a non-random

limit x ∈ M . The main problem of interest is to obtain the exponential rate of

decay of P {d(Xn, x) > ε} for ε > 0. A systematic treatment of such an asymptotic

study is given by establishing a Large Deviation Principle (LDP) which gives precise

exponential decay rates for probabilities of the above form in terms of a rate function.

Chapter 6 studies a large deviation problem related to the sizes of components

in a random graph model with fixed degree distribution. It is well known that the

asymptotic degree distribution for the Erdős-Rényi random graph process is Poisson.

In contrast for many real-world networks, the spread of degrees is often very large and

the degree distributions have heavy-tails. In general, one can define a random graph

model with a specified degree distribution as follows. Given a degree sequence {di}ni=1

satisfying di ∈ N and
∑n

i=1 di is even, one starts with a vertex set [n] := {1, 2, ..., n}

with vertex i having di half-edges. A uniform random matching is constructed be-

tween half-edges to obtain the edges for the graph. Conditioned on the graph being

simple (no self-loops or multi-edges), its distribution is uniform over the collection of

all simple graphs with vertex set [n] such that vertex i has exactly di neighbors. This

random graph model is referred to as the configuration model ([9, 26]).

Let C(n)

1 be the size of the largest component in the configuration model on n

vertices with a given degree sequence. The goal of Chapter 6 is to argue that the

following asymptotic approximation is valid and to characterize the exponent I(B)

for B ⊂ [0, 1]:

P
{

1

n
C(n)

1 ∈ B
}
≈ e−nI(B).
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Towards this goal, we study the large deviation behavior of a random walk associated

with a depth-first-exploration of the random graph generated by the configuration

model. We use the weak convergence approach developed in [14] for studying large

deviation properties of this random walk. The main challenge is that the transition

kernel of the random walk is degenerate, and standard conditions that are used in

[14] and related works are not satisfied. We give a conjecture on the form of the

LDP rate function. Only upper bounds associated with the conjectured rate function

are proved rigorously. This is an ongoing work together with S. Bhamidi and A.

Budhiraja.
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CHAPTER 2: BACKGROUND

2.1 Basic definitions

Define a graph G to be a pair (V , E), where V 6= ∅ is the vertex set and E ⊂ V ×V

is the edge set. Usually the vertex set is taken to be V = [n] := {1, 2, ..., n}. For

i, j ∈ V , (i, j) and (j, i) are treated identically in E and we only consider undirected

graphs. E is treated as a multi-set in the sense that multiple copies of the same pairs

are allowed in E . By this definition, multi-edges and self-loops are allowed in a graph.

For example, G = (V = {1, 2} , E = {(1, 1), (1, 2), (1, 2)} denotes a graph with two

vertices and three edges.

A component of a graph G is a maximal connected subgraph of G. Define the size

of a component to be the number of vertices in the component. Define the surplus of

a component to be the number of edges in the component that need to be removed

in order to obtain a tree.

We use
P−→ and

d−→ to denote convergence in probability and in distribution

respectively. All the unspecified limits are taken as n → ∞. Given a sequence of

events {En}n≥1, we say En occurs with high probability (whp) if P{En} → 1.

For a Polish space (complete separable metric space) S, D(R : S) (resp. D([0,∞) :

S)) denote the space of right continuous functions with left limits (RCLL) from R

(resp. [0,∞)) to S, equipped with the usual Skorohod topology. Given a metric

space S, we denote by B(S) the Borel σ-field on S and by BM(S), Cb(S),P(S), the

space of bounded (Borel) measurable functions, continuous and bounded function,

and probability measures, on S, respectively.



2.2 Phase transition for the Erdős-Rényi random graph

The Erdős-Rényi random graph G(n, t) is defined as follows. Let [n] = {1, 2, ..., n}

be the vertex set for G(n, t). Then each pair of vertices i, j ∈ [n], i 6= j, are connected

with probability 1 − e−t/n, independently across different pairs. This definition is a

variant of the classical Erdős-Rényi random graph, in which the probability of putting

an edge is max 1, t/n. The two versions are asymptotically equivalent as n → ∞ in

all concerns in this dissertation. Denote by C(n)

1 (t) the size of the largest component

in G(n, t). The phase transition of the Erdős-Rényi random graph can be described

as follows:

Subcritical regime: When t < 1, there exists some constant C = C(t) > 0 such

that C(n)

1 (t) < C log n with high probability.

Supercritical regime: When t > 1, there exists some constant ρ = ρ(t) > 0 such

that C(n)

1 (t)/n
P−→ ρ as n→∞. In addition, ρ is the unique solution of 1− ρ = e−ρt

in (0, 1).

The following construction gives a natural coupling of G(n, t) for different t. Define

the Erdős-Rényi process
{
G(n)

ER(t) : t ≥ 0
}

as follows. Initially, G(n)

ER(0) is the graph with

vertex set [n] and no edges. Consider a Poisson clock with rate n/2 (i.e. a Poisson

process with rate n/2). We add an uniform random edge to the graph whenever the

Poisson clock rings. This construction gives a continuous-time random graph process

with the addition of edges at rate n/2. Note that the number of edges between any

given pair of vertices in G(n)

ER(t) is a Poisson random variable with mean t/n. Thus the

probability that there exist at least one edge between two fixed vertices is 1− e−t/n.

Therefore the distributions of component sizes in G(n, t) and G(n)

ER(t) are the same, in

particular the phase transition of G(n)

ER(t) occurs at the critical time tc = 1.

The scaling limit of the sizes of the components in the critical window was proved

8



by Aldous in the seminal paper [2]. Denote by C(n)

i (t), i = 1, 2, ..., the size of the i-th

largest component in G(n)

ER(t). Define the rescaled component sizes vector C̄
(n)

ER(λ) as

C̄
(n)

ER(λ) :=

(
1

n2/3
C(n)

i

(
1 +

λ

n1/3

)
: i ≥ 1

)
.

Theorem 2.2.1 (Aldous [2]).

C̄
(n)

ER(·) d−→XS(·), as n→∞,

where XS(·) is the standard multiplicative coalescent (see Section 2.3), which is a

Markov process on l2↓ = {(x1, x2, . . .) : x1 ≥ x2 ≥ · · · ≥ 0,
∑

i x
2
i <∞}. Here l2↓ is

equipped with the l2-metric, and the weak convergence is in D(R : l2↓).

2.3 The standard multiplicative coalescent

In this section, we will introduce general multiplicative coalescent processes, and

then introduce one special version of the process, namely, the standard multiplicative

coalescent.

The multiplicative coalescent is a continuous-time Markov process on the state

space l2↓ equipped with the l2-metric d(x,y) = (
∑∞

i=1(xi − yi)
2)1/2, where x =

(x1, x2, ...) and y = (y1, y2, ...).

Dynamics of the multiplicative coalescent can be described as follows. Given

x = (x1, x2, ...) ∈ l2↓ and i < j ∈ N, define

xij := (x1, ..., xl, xi + xj, xl+1, ..., xi−1, xi+1, ..., xj−1, xj+1, ...),

where xl ≥ xi + xj ≥ xl+1. Then the infinitesimal generator for the multiplicative

coalescent AMC can be formally written as

(AMCf)(x) =
∑
j>i>0

xixj[f(xij)− f(x)], where f ∈ Cb(l2↓).

9



The form of AMC says that, the multiplicative coalescent describes a coalescing dy-

namics where any two clusters merge at rate proportional to the product of the

sizes of the two clusters. The existence of such a stochastic process with path in

D([0,∞) : l2↓) was proved in [2].

The Feller property: Denote by {X(x, t) : t ≥ 0} the multiplicative coalescent

with the initial state x ∈ l2↓. Suppose {x(n) : n ∈ N} ⊂ l2↓ and x(n) → x as n → ∞,

then the paper [2] shows that for any fixed t > 0, we have X(x(n), t)
d−→X(x, t), as

n→∞. This convergence says that the multiplicative coalescent is a Feller process.

The Feller property plays an important role in proving the existence of the standard

multiplicative coalescent.

The standard multiplicative coalescent, denoted by XS(·), is a Markov process

with sample path in D(R : l2↓) with the infinitesimal generator AMC , for which the

marginal distributions of XS(λ) for fixed λ ∈ R can be characterized as follows.

Define Wλ(t) := W (t) + λt − t2

2
, where {W (t)}t≥0 is a standard Brownian motion.

Let Ŵλ be the reflected version of Wλ, i.e.,

Ŵλ(t) = Wλ(t)− inf
0≤s≤t

Wλ(s), t ≥ 0. (2.3.1)

Define an excursion of Ŵλ as an interval (l, u) ⊂ [0,+∞) such that Ŵλ(l) = Ŵλ(u) =

0 and Ŵλ(t) > 0 for all t ∈ (l, u). Define u− l as the size of the excursion. Order the

sizes of excursions of Ŵλ as θ1(λ) > θ2(λ) > ... and write Ξ(λ) = (θi(λ) : i ≥ 1). It can

be shown that Ξ(λ) is a l2↓-valued random variable. Then the marginal distribution

of XS(λ) is the same as the distribution of Ξ(λ). The paper [2] proves the existence

of a standard multiplicative coalescent.
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2.4 Construction of bounded-size-rule processes

Fix K ∈ N and let Ω0 = {$} and ΩK = {1, 2, . . . , K,$} for K ≥ 1, where $

represents components of sizes greater than K. Given F ⊂ Ω4
K . We now define the

F -bounded-size-rule (F -BSR) process
{
G(n)

BSR(t) : t ≥ 0
}

as follows.

Let {P~v : ~v ∈ [n]4} be i.i.d. Poisson point processes on [0,∞) with rate 1/2n3.

Let {t1, t2, ...} := ∪~vP~v be such that 0 = t0 < t1 < t2 < .... For a graph G, let

Cv(G) denote the size of the component in G containing the vertex v. Then G(n)

BSR(t)

is constructed as follows.

• Initially, G(n)

BSR(t) := (V = [n], E = ∅), for t ∈ [t0, t1).

• Given G(n)

BSR(t) for t ∈ [0, tk), k ≥ 1, suppose tk ∈ P~v for some ~v = (v1, v2, v3, v4),

then

G(n)

BSR(t) :=

 G
(n)

BSR(tk−1) ∪ (v1, v2), if c(~v) ∈ F

G(n)

BSR(tk−1) ∪ (v3, v4), otherwise
for t ∈ [tk, tk+1),

where c(~v) := (c(vi) : i = 1, 2, 3, 4), and

c(v) :=

 Cv(G
(n)

BSR(tk−1)), if Cv(G(n)

BSR(tk−1)) ≤ K,

$, if Cv(G(n)

BSR(tk−1)) > K.

The rationale behind this scaling for the rate of the Poisson point process is that

the total rate of adding edges is

n4

2n3
=
n

2
.

Thus at time t, G(n)

BSR(t) has approximately the same number of edges as the Erdős-

Rényi process G(n)

ER(t) defined in previous sections. The notation in the above con-

struction follows from Spencer and Wormald [31]. They shows that G(n)

BSR(t) displays

a similar phase transition as the Erdős-Rényi process at a critical time tc ≡ tc(F )

which depends on the rule F .
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The Erdős-Rényi process and the Bohman-Frieze process are special cases of the

F -BSR processes:

• The Erdős-Rényi process: K = 0 and F = Ω4
K .

• The Bohman-Frieze process: K = 1 and F = {(1, 1, i, j) : i, j ∈ ΩK}.

Note that the representations (K,F ) of these processes are not unique.

2.5 The configuration model

Given {di : i = 1, 2, ..., n} satisfying di ∈ N and
∑n

i=1 di is even, consider the

collection of all graphs with the vertex set [n] such that the degree of vertex i is di,

and let G(n, {di}) be a random member from this collection. Further assume that

there exists a probability distribution on N, {pk : k ∈ N}, such that
∑∞

k=1 kpk < ∞

and for each k ∈ N,

| {i ∈ [n] : di = k} |
n

→ pk, as n→∞.

Note that the degree sequence {di} =
{
d(n)

i

}
also depends on n. Then the sequence{

G(n,
{
d(n)

i

}
) : n ∈ N

}
is referred to as the configuration model with degree distri-

bution {pk}. The phase transition of the configuration model can be described as

follows. Define ν :=
∑∞

k=1 k(k − 2)pk ∈ (−∞,+∞]. Denote by C(n)

1 the size of the

largest component in G(n, {di}).

Subcritical regime: When ν < 0, C(n)

1 /n
P−→ 0 as n→∞.

Supercritical regime: When ν > 0, C(n)

1 /n
P−→ ρ0 > 0 as n→∞. Here ρ0 ∈ (0, 1]

can be determined by the following equations:

ρ0 =
∞∑
k=1

pkρ
k
1 and ρ1 =

∞∑
k=0

qkρ
k
1, where qk =

(k + 1)pk+1∑∞
k=1 kpk

.
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In this dissertation, we will study some large deviation problems related to the random

variable C(n)

1 /n. See the next section for a brief introduction to large deviation theory.

2.6 Large deviation principle

Let {X (n) : n ∈ N} be a family of random variables taking values in a Polish

space X . The theory of large deviations concerns with the probability of events

{X (n) ∈ A} for which P {X (n) ∈ A} converge to zero exponentially fast as n → ∞.

The exponential decay rate of such probabilities is of interest, which is typically

expressed in term of the large deviation principle.

The Large Deviation Principle: Let I : X → [0,∞] be such that for each M <∞,

the level set {x ∈ X : I(x) ≤M} is compact. We call I(·) a rate function. The

sequence {X (n) : n ∈ N} is said to satisfy the large deviation principle on X with rate

function I if the following two conditions hold:

1. Large deviation upper bound. For each closed set F ⊂ X ,

lim sup
n→∞

1

n
log P {X (n) ∈ F} ≤ − inf

x∈F
I(x).

2. Large deviation lower bound. For each open set G ⊂ X ,

lim inf
n→∞

1

n
log P {X (n) ∈ G} ≥ − inf

x∈G
I(x).

Formally, the above definition says that if X (n) satisfy the large deviation principle

with rate function I, then

P {X (n) ∈ A} ≈ exp

{
−n inf

x∈A
I(x)

}
.

13



CHAPTER 3: THE BOHMAN-FRIEZE PROCESS

3.1 Introduction

The Bohman-Frieze process {G(n)

BF (t)}t≥0 can be described as follows: Let G(n)

BF (0)

be the graph of n isolated vertices. Consider a Poisson clock of rate n/2 (i.e. a

Poisson process with rate n/2), and whenever the clock rings, we pick two candidate

edges (e1, e2) uniformly among all
(
n
2

)
possible edges and decide which one to add: if

e1 links two isolated vertices, then we add e1, otherwise we add e2.

In this chapter, our goal is to establish the scaling limits for the sizes of the largest

components of the Bohman-Frieze process in the critical window. In the rest of this

chapter tc = tc(BF) will denote the critical time for G(n)

BF (t). The main result of

this chapter is the following theorem. Recall the definition of the state space l2↓, the

standard multiplicative coalescent XS, and the ordered excursion lengths Ξ(λ) from

Chapter 2.

Theorem 3.1.1. For some absolute constants α, β > 0, which will be defined in (3.2.5)

and (3.2.6), and for λ ∈ R, let

C̄
(n)

BF (λ) =

(
β1/3

n2/3
C(n)

i

(
tc + β2/3α

λ

n1/3

)
: i ≥ 1

)
(3.1.1)

be the rescaled component sizes of the Bohman-Frieze process in the critical window.

Then

C̄
(n)

BF (·) d−→XS(·),

as n→∞, where
d−→ denotes weak convergence in the space D(R : l2↓). In particular,

for each fixed λ ∈ R, C̄
(n)

BF (λ) converge in distribution (as l2↓-valued random variables)

to Ξ(λ).



Organization of this chapter: We begin in Section 3.2 with the construction

of the continuous time version of the BF-process and introduce the two constants,

α, β > 0, that show up in the main theorem. Next, in Section 3.3 we give an intuitive

sketch of the proof of Theorem 3.1.1 and also provide details on the organization of

the various steps in the proof that are carried out from Section 3.4 to Section 3.6.

Finally Section 3.7 combines all these ingredients to complete the proof.

3.2 The Bohman-Frieze process

In this section we will define the precise version of the BF process that will be

treated in this chapter. We will also introduce some key quantities of interest defined

on the BF process, and give the constants α and β in Theorem 3.1.1.

Denote the vertex set by [n] = {1, 2, . . . , n} and the edge set by En = {{v1, v2} :

v1 6= v2 ∈ [n]}. To simplify notation we shall suppress n in the notation unless

required. Denote by BF(t) = BFn(t), t ∈ [0,∞), the continuous time Bohman-

Frieze random graph process, constructed as follows:

Let E2 = E × E be the set of all ordered pairs of edges. For every ordered pair of

edges e = (e1, e2) ∈ E2 let Pe be a Poisson process on [0,∞) with rate 2/n3, and let

these processes be independent as e ranges over E2. We order the points generated

by all the
(
n
2

)
×
(
n
2

)
Poisson processes by their natural order as 0 < t1 < t2 < ....

Then we can define the BF-process iteratively as follows:

(a) When t ∈ [0, t1), BF(t) = 0n, the empty graph with n vertices;

(b) Consider t ∈ [tk, tk+1), k ∈ N+, where tk is a point in Pe and e = (e1, e2) =

({v1, v2}, {v3, v4}). If v1, v2 are both singletons (i.e. not connected to any other

vertex) in BF(tk−), then BF(t) = BF(tk−)∪{e1}, else let BF(t) = BF(tk−)∪{e2}.

Note that multiple edges are allowed between two given vertices, however this has no

significance in our analysis which is primarily concerned with component sizes.
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Consider the same construction but with the modification that we always add e1

to the graph and disregard the second edge e2. Note that the total rate of adding

new edges is: (
n

2

)
×
(
n

2

)
2

n3
≈ n

2
.

Then this random graph process is just a continuous time version of the standard

Erdős-Rényi (ER) process wherein tc = 1 is the critical time for the emergence of the

giant component in this model.

As proved in [31], the Bohman-Frieze model also displays a phase transition and

the critical time tc ≈ 1.1763. We now summarize some results from [31] that charac-

terize this critical parameter in terms of the behavior of certain differential equations.

The following notations and definitions mostly follow [22]. Let C(i)
n (t) denote

the size of the ith largest component in BFn(t), and Cn(t) = (C(i)
n (t) : i ≥ 1) the

component size vector. For convenience, we define C(i)
n (t) = 0 whenever t < 0.

For fixed time t ≥ 0, let Xn(t) denote the number of singletons at this time and

x̄(t) = Xn(t)/n denote the density of singletons. For simplicity, we have suppressed

the dependence on n in the notation. For k = 2, 3, let

Sk(t) =
∑
i≥1

(C(i)

n (t))k (3.2.1)

and let s̄k(t) = Sk(t)/n. Then from [31], there exist deterministic functions x(t),

s2(t) and s3(t) such that for each fixed t ≥ 0:

x̄(t)
P−→ x(t), s̄k(t)

P−→ sk(t) for k = 2, 3,

as n → ∞. The limiting function x(t) is continuous and differentiable for all t ∈

R+. For k ≥ 2, there exists 1 < tc < ∞ such that sk(t) is finite, continuous and

differentiable for 0 ≤ t < tc, and sk(t) = ∞ for t ≥ tc. Furthermore, x, s2, s3 solve
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the following differential equations.

x′(t) = −x2(t)− (1− x2(t))x(t) for t ∈ [0,∞, ) x(0) = 1 (3.2.2)

s′2(t) = x2(t) + (1− x2(t))s2
2(t) for t ∈ [0, tc), s2(0) = 1 (3.2.3)

s′3(t) = 3x2(t) + 3(1− x2(t))s2(t)s3(t) for t ∈ [0, tc), s3(0) = 1. (3.2.4)

This constant tc = tc(BF) is the critical time such that whp, for t < tc, the size

of the largest component in BF(t) is O(log n), while for t > tc there exists a giant

component of size Θ(n) in BF(t). Furthermore from [22] (Theorem 3.2) there exist

constants

α = (1− x̄2(tc))
−1 ≈ 1.063 (3.2.5)

β = lim
t↑tc

s3(t)

[s2(t)]3
≈ .764 (3.2.6)

such that as t ↑ tc

s2(t) ∼ α

tc − t
(3.2.7)

s3(t) ∼ β(s2(t))3 ∼ β
α3

(tc − t)3
. (3.2.8)

The two constant α and β are precisely the constants show up in Theorem 3.1.1.

3.3 Proof idea

Let us now give an idea of the proof. We begin by showing in Proposition 3.3.1

below that, just before the critical window, the configuration of the components sat-

isfies some important regularity properties. This proposition will be used in Section

3.7 in order to apply a result of [2] that gives sufficient conditions for convergence to

the multiplicative coalescent.

17



Proposition 3.3.1. Let γ ∈ (1/6, 1/5) and define tn = tc − n−γ. Then we have

n2S3(tn)

S3
2 (tn)

P−→ β (3.3.1)

n4/3

S2(tn)
− n−γ+1/3

α

P−→ 0 (3.3.2)

n2/3C(1)
n (tn)

S2(tn)

P−→ 0. (3.3.3)

Now note that tn can be written as

tn = tc + β2/3α
λn
n1/3

where

λn = −n
−γ+1/3

αβ2/3
→ −∞

as n→∞. The above proposition implies that the configuration of rescaled compo-

nent sizes, for large n at time “−∞”, satisfy the regularity conditions for the standard

multiplicative coalescent (see Proposition 4 in [2]).

Once the above has been proved, the second step is to show that through the

critical window, the component sizes merge as in the multiplicative coalescent, at

rate proportional to the product of the rescaled component sizes. This together with

arguments similar to [4] will complete the proof of the main result.

Let us now outline the framework of the proof:

• In Section 3.4 we introduce some more convenient notation that will be used in

this chapter.

• The bound on the largest component C(1)
n (t) when t ↑ tc (Proposition 3.5.1)

plays a crucial role in proving the statements in Proposition 3.3.1. In order to

achieve this, we introduce a series of related models from Section 3.5.1 through

Section 3.5.3.
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• Section 3.6 uses these models to prove asymptotically tight bounds on the size

of the largest component through the subcritical window. The main goal of

this Section is to prove Proposition 3.5.1.

• Proposition 3.3.1 can be proved by analyzing the sum of squares and cubes of

component sizes near the critical window. The bound on the component sizes

in Proposition 3.5.1 plays a key role this this argument. We delay this argument

to Chapter 5 in a more general setting for all bounded-size-rule processes.

• Finally, in Section 3.7 we use Proposition 3.3.1 and a coupling with the standard

multiplicative coalescent, in a manner similar to [4], to prove the main result.

3.4 Notation

3.4.1 Graphs and random graphs

A graph G = {V , E} consists of a vertex set V and an edge set E , where V is a

subset of some type space X and E is a subset of all possible edges {{v1, v2} : v1 6=

v2 ∈ V}. An example of a type space is [n] = {1, 2, ..., n}. Frequently we will assume

X to have additional structure, for example to be a measure space (X , T , µ). When

V is a finite set, we write |V| for its cardinality.

G is called null graph if V = ∅, and we write G = ∅. G is called an empty

graph if |V| = n and E = ∅, and we write G = 0n.

Given two graphs, Gi = {Vi, Ei} for i = 1, 2, G1 is said to be a subgraph of G2

if and only if V1 ⊂ V2 and E1 ⊂ E2 and we denote this as G1 ≤ G2 (or equivalently

G2 ≥ G1). We write G1 = G2 if G1 ≤ G2 and G1 ≥ G2.

A connected component C = {V0, E0} of a graph G = {V , E} is a subgraph which

is connected (i.e. there is a path between any two vertices in C). The number of

vertices in C will be called the size of the component and frequently we will denote

19



the size and the component by the same symbol.

Let G be the set of all possible graphs (V , E) on a given type space X . When V

is countable, we will consider G to be endowed with the discrete topology and the

corresponding Borel sigma field and refer to a random element of G as a random

graph. All random graphs in this chapter are given on a fixed probability space

(Ω,F ,P) which will usually be suppressed in our proofs.

3.4.2 Probability and analysis

All the unspecified limits are taken as n → +∞. Given a sequence of events

{En}n≥1, we say En (or E) occurs with high probability (whp) if P{En} → 1. For

functions f, g : N→ R, we write g = O(f) if for some C ∈ (0,∞), lim sup g(n)/f(n) <

C and g = Θ(f) if g = O(f) and f = O(g). Given two sequences of random vari-

ables {ξn} and {ζn}, we say ξn = O(ζn) whp if there is a C ∈ (0,∞) such that

ξn < Cζn whp, and write ξn = Θ(ζn) whp if there exist 0 < C1 ≤ C2 < ∞ such

that C1ζn < ξn < C2ζn whp. Occasionally, when clear from the context, we suppress

‘whp’ in the statements.

We also use the following little o notation: For a sequence of real numbers g(n),

we write g = o(f) if lim sup |g(n)/f(n)| = 0. For a sequence of random variables ξn,

we write “ξn = op(f)” if ξn/f(n) converges to 0 in probability.

For a real measurable function ψ on a measure space (X , T , µ), the norms ‖ψ‖2

and ‖ψ‖∞ are defined in the usual way. We use
P−→ and

d−→ to denote the convergence

in probability and in distribution respectively.

We use =d to denote the equality of random elements in distribution. Suppose

that (S,S) is a measurable space and we are given a partial ordering on S. Given two

S valued random variables ξ1, ξ2, we say a pair of S valued random variables ξ∗1 , ξ
∗
2
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given on a common probability space define a coupling of (ξ1, ξ2) if ξi =d ξ
∗
i , i = 1, 2.

We say the S valued random variable ξ1 stochastically dominates ξ2, and write

ξ1 ≥d ξ2 if there exists a coupling between the two random variables, say ξ∗1 and ξ∗2 ,

such that ξ∗1 ≥ ξ∗2 a.s.

For two sequences of S valued random elements ξn and ξ̃n, we say “ξn ≤d ξ̃n whp.”

if there exist a coupling between ξn and ξ̃n for each n (denote as ξ∗n and ξ̃∗n) such that

ξ∗n ≤ ξ̃∗n whp.

Two examples of S that are relevant to this chapter are D([0, T ] : R) and D([0, T ] :

G) with the natural associated partial ordering.

3.4.3 Other conventions

We always use n,m, k, i, j to denote non-negative integers unless specified other-

wise. We use s, t, T to denote the time parameter for continuous time (stochastic)

processes. The scaling parameter is denoted by n. Throughout this chapter T = 2tc

which is a convenient upper bound for the time parameters of interest.

We use d1, d2, ... for constants whose specific value are not important. Some of

them may appear several times and the values might not be the same. We use

C1, C2, ... for constants that appear in the statement of theorems.

3.5 An estimate on the largest component

The following estimate on the largest component is the key ingredient in our

analysis. Recall that tc denotes the critical time for the BF process.

Proposition 3.5.1. Let γ ∈ (0, 1/5) and let In(t) ≡ C(1)
n (t) be the largest component

of BFn(t). Then, for some B ≡ B(γ) ∈ (0,∞),

P{In(t) ≤ m(n, t),∀t < tc − n−γ} → 1, when n→∞
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where

m(n, t) = B
(log n)4

(tc − t)2
. (3.5.1)

The proof of Proposition 3.5.1 will be completed in Section 3.6.3. In the current

section we will give constructions of some auxiliary random graph processes that are

key to our analysis. Although not pursued here, we believe that analogous construc-

tions will be key ingredients in treatment of more general random graph models as

well. The section is organized as follows.

• In Section 3.5.1 we will carry out a preliminary analysis of the BF process

and identify three deterministic maps a0, b0, c0 from [0,∞) to [0, 1] that play a

fundamental role in our analysis.

• Guided by these deterministic maps, in Section 3.5.2 we will define a random

graph process with immigrating vertices and attachments (RGIVA) which is

simpler to analyze than, and is suitably ‘close’ to, the Bohman-Frieze process.

A precise estimate on the approximation error introduced through this model

is obtained in Section 3.6.3.

• In Section 3.5.3 we will introduce an inhomogeneous random graph (IRG) model

associated with a given RGIVA model such that the two have identical compo-

nent volumes at all times. This allows for certain functional analytic techniques

to be used in estimating the maximal component size. We will also make an

additional approximation to the IRG model which will facilitate the analysis.

• In Section 3.5.4 we summarize connections between the various models intro-

duced above.
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3.5.1 A preliminary analysis of Bohman-Frieze process

Recall that BFn(t) denotes the BF process at time t and note that BFn defines a

stochastic process with sample paths in D([0, T ] : G). Also recall that C(i)
n (t) denotes

the size of the ith largest component in BFn(t), Cn(t) = (C(i)
n (t) : i ≥ 1) is the vector

of component sizes and Xn(t) denotes the number of singletons in BFn(t). We let

Ft ≡ Fnt = σ{BFn(s), s ≤ t} and refer to it as the natural filtration for the BF

process.

At any fixed time t > 0, let COM(t) denote the collection of all non-singleton

components

COM(t) = {C(i)

n (t) : |C(i)

n (t)| ≥ 2} .

Recall that x̄(t) = Xn(t)/n. We will now do an informal calculation of the rate at

which an edge e = {v1, v2} is added to the graph BF(t). There are three different

ways an edge can be added: (i) both v1 and v2 are singletons, (ii) only one of them

is a singleton, (iii) neither of them is a singleton.

Analysis of the three types of events:

(i) Both v1 and v2 are singletons. We will refer to such a component that is formed

by connecting two singletons as a doubleton. This will happen at rate

2

n3

[(
Xn(t)

2

)(
n

2

)
+

((
n

2

)
−
(
Xn(t)

2

))(
Xn(t)

2

)]
def
= n · a∗n(x̄(t)). (3.5.2)

The first product in the squared brackets is the count of all possible e = (e1, e2) ∈ E2

such that e1 joins up two singletons and thus will be added to the graph, while the

second product is the count of all e = (e1, e2) ∈ E2 such that the first edge e1 does

not connect two singletons while e2 connects two singletons and will be added.

Define a0 : [0, 1]→ [0, 1] as

a0(y) = 2

(
y2

2
· 1

2
+

(
1

2
− y2

2

)
y2

2

)
=

1

2
(y2 + (1− y2)y2). (3.5.3)
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It is easy to check that

a∗n(x̄(t)) = a0(x̄(t)) + ra(t), where, sup
t
|ra(t)| ≤ 5/n. (3.5.4)

Recall that x(t) is the solution of the differential equation (3.2.2). To simplify nota-

tion we will write a∗n(x̄(t)) = a∗(x̄) = a∗(t) = a∗ and a0(t) = a0(x(t)) exchangeably.

Similar conventions will be followed for the functions c∗n, c0 and b∗n, b0 that will be in-

troduced below. We shall later show that supt≤T |x̄n(t)−x(t)| → 0 in probability (see

Lemma 3.6.4, also see [31]). This in particular implies that supt≤T |a∗n(t)−a0(t)| → 0

in probability.

(ii) Only one of them is a singleton: This will happen if and only if e1 does not

connect two singletons while e2 connects a singleton and a non-singleton, thus at the

rate

2

n3

((
n

2

)
−
(
Xn(t)

2

))
(n−Xn(t))Xn(t). (3.5.5)

We are also interested in the rate that a given non-singleton vertex (say, v0) is con-

nected to any singleton, which is

2

n3

((
n

2

)
−
(
Xn(t)

2

))
Xn(t)

def
= c∗n(x̄(t)). (3.5.6)

Thus at time t a singleton will be added to COM(t) during the small time interval

(t, t + dt], by attaching to a given vertex v0 ∈ COM(t), with the rate c∗(t).Define

c0 : [0, 1]→ [0, 1] as

c0(y) = (1− y2)y, y ∈ [0, 1]. (3.5.7)

Then

c∗(x̄(t)) = c0(x̄(t)) + rc(t) and sup
t
|rc(t)| ≤ 2/n. (3.5.8)

(iii) Neither of them is a singleton: This will happen at the rate

2

n3

((
n

2

)
−
(
Xn(t)

2

))(
n−Xn(t)

2

)
. (3.5.9)

24



Also, the event that two fixed non-singleton vertices are connected has the rate

2

n3

((
n

2

)
−
(
Xn(t)

2

))
def
=

1

n
b∗n(x̄(t)). (3.5.10)

Let b0 : [0, 1]→ [0, 1] be defined as

b0(y) = 1− y2, y ∈ [0, 1]. (3.5.11)

Then

b∗(x̄(t)) = b0(x̄(t)) + rb(t) and sup
t
|rb(t)| ≤ 2/n. (3.5.12)

Note that for the study of the largest component one may restrict attention to

the subgraph COM(t). The evolution of this subgraph is described in terms of

stochastic processes a∗(x̄(t)), b∗(x̄(t)) and c∗(x̄(t)). In the next subsection, we will

introduce a random graph process that is “close” to COM(t) but easier to analyze.

Intuitively, we replace a∗(t), b∗(t), c∗(t) with deterministic functions a(t), b(t), c(t)

which are close to a0(t), b0(t), c0(t) (and thus, from Lemma 3.6.4, whp close to

a∗(x̄(t)), b∗(x̄(t)), c∗(x̄(t))) and construct a random graph with similar dynamics as

COM(t).

3.5.2 Immigrating vertices and attachment

In this subsection, we introduce a random graph process with immigrating vertices

and attachment (RGIVA). This construction is inspired by [4] where a random graph

with immigrating vertices (RGIV) is constructed – we generalize this construction by

including attachments. RGIVA process will be governed by three continuous maps

a, b, c from [0, T ]→ [0, 1] (referred to as rate functions) and the graph at time t will

be denoted by IAn(t) = IAn(a, b, c)t. When (a, b, c) is sufficiently close to (a0, b0, c0)

, the RGIVA model well approximates the BF model in a sense that will be made

precise in Section 3.6.3.
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The RGIVA process IAn(t) = IAn(a, b, c)t. Given the rate functions a, b, c,

define IAn(t) as follows:

(a) IAn(0) = ∅, the null graph;

(b) For t ∈ [0, T ), conditioned on IAn(t), during the small time interval (t, t+ dt],

• (immigration) a doubleton (consisting of two vertices and a joining edge) will

be born at rate n · a(t),

• (attachment) for any given vertex v0 in IAn(t), a new vertex will be created

and connected to v0 at rate c(t),

• (edge) for any given pair of vertices v1, v2 in IAn(t), an edge will be added

between them at rate 1
n
· b(t).

The events listed above occur independently of each other.

In the special case where a(t) ≡ b(t) ≡ 1, c(t) ≡ 0, and doubletons are replaced

by singletons, the above model reduces to the RGIV model of [4]. We note that the

above construction closely follows our analysis of three types of events in Section

3.5.1, replacing stochastic processes a∗(x̄n(t)), b∗(x̄n(t)), c∗(x̄n(t)) with deterministic

maps a(t), b(t), c(t).

The following lemma establishes a connection between the Bohman-Frieze process

and the RGIVA process. Recall the partial order on the space D([0, T ] : G).

Lemma 3.5.2. Let (aL, bL, cL) and (aU , bU , cU) be rate functions. Further, let U ≡ Un

be the event that {a∗(t) ≤ aU(t), b∗(t) ≤ bU(t), c∗(t) ≤ cU(t) for all t ∈ [0, T ]} and

L ≡ Ln be the event that {a∗(t) ≥ aL(t), b∗(t) ≥ bL(t), c∗(t) ≥ cL(t) for all t ∈ [0, T ]}.

Define for t ∈ [0, T ]

COMU
n (t) =

 ∅ on UC

COMn(t) on U
; COML

n(t) =

 IAn(aL, bL, cL)T on LC

COMn(t) on L
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Then

(i)Upper bound: COMU
n ≤d IAU

n ≡ IAn(aU , bU , cU).

(ii)Lower bound: COML
n ≥d IAL

n ≡ IAn(aL, bL, cL).

Proof: We only argue the upper bound. The lower bound is proved similarly.

Construct IAU
n (t) iteratively on [0, T ] as described in the definition, and construct

COMU
n (t) simultaneously by rejecting the proposed change on the graph with prob-

abilities (1− a∗/aU)+, (1− b∗/bU)+ and (1− c∗/cU)+ according to the three types of

the events. Let τ = inf{0 ≤ t ≤ T : a∗(t) > aU(t) or b∗(t) > bU(t) or c∗(t) > cU(t)}

and set COMU
n (t) to be the null graph whenever t ≥ τ . This construction defines a

coupling of IAU
n and COMU

n such that COMU
n ≤ IAU

n a.s. The result follows. �

3.5.3 An inhomogeneous random graph with a weight function

In this section we introduce a inhomogeneous random graph (IRG) associated with

IAn(a, b, c) for given rate functions a, b, c. For a general treatment of IRG models

we refer the reader to [11], which our presentation largely follows. We generalize the

setting of [11] somewhat by including a weight function and considering the volume

of a component instead of the number of vertices of a component. We begin with a

description and some basic definitions for a general IRG model.

A type space is a measure space (X , T , µ) where X is a complete separable

metric space (i.e. a Polish space), T is the Borel σ-field and µ is a finite measure.

A kernel on the type space (X , T , µ) is a measurable function κ : X×X → [0,∞).

The kernel κ is said to be symmetric if κ(x,y) = κ(y,x) for all x,y ∈ X . We will

also use x, y instead of x,y for elements in X when there is no confusion between an

x ∈ X and the function x(t) defined in (3.2.2).

A weight function φ is a measurable, non-negative function on (X , T , µ).
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A basic structure is a triplet {(X , T , µ), κ, φ}, which consists of a type space,

a kernel and a weight function.

The IRG model: Given a type space (X , T , µ), symmetric kernels {κn}n≥1, and

a weight function φ, a random graph RGn(κn) ( ≡ RGn(κn, µ) ≡ RGn(κn, µ, φ)),

for any integer n > 0, is constructed as follows:

(a) The vertex set V are the points of a Poisson point process on (X , T ) with intensity

n · µ.

(b) Given V , for any two vertices x, y ∈ V , place an edge between them with proba-

bility
(

1
n
· κn(x, y)

)
∧ 1.

One can similarly define an IRG associated with a basic structure {(X , T , µ), κ, φ},

where κ is a symmetric kernel, by letting κn = κ for all n in the above definition.

The weight function φ is used in defining the volume of a connected component

in the above construction of a random graph. Given a component of RGn(κ, µ, φ)

whose vertex set is V0, define
∑

x∈V0
φ(x) as the volume of the component.

One can associate κ with an integral opertor K : L2(µ)→ L2(µ) defined as

Kf(x) =

∫
X
κ(x, y)f(y)µ(dy) (3.5.13)

Denote by ρ = ρ(κ) the operator norm ofK. Then ρ = ρ(κ) = ‖K‖ = sup‖f‖2=1 ‖Kf‖2.

Given rate functions a, b, c, there is a natural basic structure and the corresponding

IRG model associated with IAn(a, b, c), which we now describe.

Fix t ∈ [0, T ]. Then the following two stage construction describes an equivalent

(in law) procedure for obtaining IAn(a, b, c)t :

Stage I: Recall that transitions in IAn(a, b, c) are caused by three types of events:
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immigration, attachment (to an existing vertex) and edge formation (between existing

vertices). Consider the random graph obtained by including all the immigration and

attachment events until time t but ignoring the edge formation events. We call

the components resulting from this construction as clusters. Note that each cluster

consists of exactly one doubleton (which starts the formation of the cluster) and

possibly other vertices obtained through later attachments. Note that doubletons

immigrate at rate a(s) and supposing that a doubleton is born at time s, the size of

the cluster at time s ≤ u ≤ t denoted by w(u) evolves according to a integer-valued

time-inhomogeneous jump Markov process starting at w(s) = 2 and infinitesimal

generator A(u) given as

A(u)f(r) = c(u)r · (f(r + 1)− f(r)) , f : N→ R, s ≤ u ≤ t. (3.5.14)

We set w(u) = 0 for 0 ≤ u < s and denote this cluster which starts at instant s by

(s, w).

Stage II: Given a realization of the random graph of Stage I, we add edges to

the graph. Each pair of vertices will be connected during (s, s+ ds] with rate 1
n
b(s).

Thus the number of edges between two clusters x = (s, w),y = (r, w̃) at time instant

t is a Poisson random variable with mean 1
n

∫ t
0
w(u)w̃(u)b(u)du. Consequently,

P{x and y is connected | Stage I} = 1− exp{− 1

n

∫ t

0

w(u)w̃(u)b(u)du} (3.5.15)

≤ 1

n

∫ t

0

w(u)w̃(u)b(u)du. (3.5.16)

It is easy to see that the graph resulting from this two stage construction has the

same distribution as IAn(a, b, c)t.

We now introduce an IRG model associated with the above construction in which

each cluster is treated as a single point in a suitable type space and the size of

the cluster is recorded using an appropriate weight function. Let X = [0, T ] ×W ,
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where W = D([0, T ] : N) is the Skorohod D-space with the usual Skorohod topology.

Denote by T the Borel sigma field on [0, T ]×W . For future use, we will refer to this

particular choice of type space (X , T ) as the cluster space. For a fixed time t ≥ 0,

consider a weight function defined as

φt(x) = w(t), x = (s, w) ∈ [0, T ]×W . (3.5.17)

Then this weight function associates with each ‘cluster’ x its size at time t. We now

describe the finite measure µ that governs the intensity of the Poisson point process

Pt(a, b, c) of clusters (regarded as points in X ). Denote by νs the unique probability

measure on the space W under which, a.s., w(u) = 0 for all u < s, w(s) = 2 and

w(u), u ∈ [s, T ] has the probability law of the time inhomogeneous Markov process

with generator {A(u), s ≤ u ≤ T} defined in (3.5.14). Let µ be a finite measure on

X defined as µ(dsdw) = νs(dw)a(s)ds, namely, for a non-negative real measurable

function f on X ∫
X
f(x)dµ(x) =

∫ T

0

a(s)

(∫
W
f(s, w)dνs(w)

)
ds.

We also define for each t ∈ [0, T ], a finite measure µt on X by the relation µt(A) =

µ(A ∩ ([0, t]×W)). Then for f as above,∫
X
f(x)dµt(x) =

∫ t

0

a(s)

(∫
W
f(s, w)dνs(w)

)
ds. (3.5.18)

The measure µt will be the intensity of the Poisson point process on X which will

be used in our construction of the IRG model associated with IAn(a, b, c)t. Now we

describe the kernel that will govern the edge formation amongst the points. Define

κn,t(x,y) = κn,t((s, w), (r, w̃)) = n

(
1− exp{− 1

n

∫ t

0

w(u)w̃(u)b(u)du}
)
. (3.5.19)

We will also use the following modification of the kernel κn,t.

κt(x,y) = κt((s, w), (r, w̃)) =

∫ t

0

w(u)w̃(u)b(u)du. (3.5.20)
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With the above definitions we can now define IRG models RGn(κn,t, µt, φt) and

RGn(κt, µt, φt) associated with the type space (X , T , µt).

Denote the size of the largest component [resp. the component containing the

first immigrating doubleton] in IAn(a, b, c)t by C(1)(a, b, c)t [resp. C(0)(a, b, c)t]. Also,

denote the volume of the largest component [resp. the component containing the

first cluster] in RGn(κt, µt, φt) by C(1)(κt, µt, φt) [resp. C(0)(κt, µt, φt)]. Then define

C(1)(κn,t, µt, φt), and C(0)(κn,t, µt, φt) in a similar fashion. The following is an imme-

diate consequence of the above construction.

Lemma 3.5.3. We have

(C(1)(a, b, c)t, C(0)(a, b, c)t) =d (C(1)(κn,t, µt, φt), C(0)(κn,t, µt, φt))

and

C(1)(κn,t, µt, φt) ≤d C(1)(κt, µt, φt), C(0)(κn,t, µt, φt) ≤d C(0)(κt, µt, φt).

For future use we will write RGn(κt, µt, φt) ≡ RGn,t(a, b, c).

3.5.4 A summary of the models

As noted earlier, the key step in the proof of Proposition 3.3.1 is a good estimate

on the size of the largest component in the Bohman-Frieze process BFn(t) as in

Proposition 3.5.1. For this we have introduced a series of approximating models. We

summarize the relationship between these models below.

• We can decompose the Bohman-Frieze process as BFn = COMn ∪Xn, namely

the non-singleton components and singleton components at any time t.

• We shall show that COMn ≈ IAn(a0, b0, c0), where a0, b0, c0 are defined in

(3.5.3), (3.5.11), (3.5.7). More precisely we shall show that as n→∞, for any
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fixed δ > 0, we have, whp.

IAn((a0 − δ)+, (b0 − δ)+,(c0 − δ)+) ≤d COMn

≤dIAn((a0 + δ) ∧ 1, (b0 + δ) ∧ 1, (c0 + δ) ∧ 1).

This is a consequence of Lemma 3.5.2.

• Given rate functions (a, b, c), for all t ∈ [0, T ],

C(i)(a, b, c)t =d C(i)(κn,t, µt, φt) ≤d C(i)(κt, µt, φt), i = 0, 1.

Here κn,t, κt, µt, φt and a, b, c are related through (3.5.19), (3.5.20), (3.5.18) (see

also (3.5.14)), (3.5.17), respectively.

3.6 Analysis of the largest component at sub-criticality

This section proves Proposition 3.5.1. The section is organized as follows:

• In Section 3.6.1 we reduce the problem to proving Proposition 3.6.3. We give

the proof of Proposition 3.5.1 using this result. Rest of Section 3.6 is devoted

to the proof of Proposition 3.6.3.

• In preparation for this proof, in Section 3.6.2 we present some key lemmas

that allow us to estimate the errors between various models summarized in

Section 3.5.4. Proofs of Lemmas 3.6.6 will be delayed in Section 3.6.4. Proofs

of Lemmas 3.6.9 and 3.6.10 will be omitted since they will be proved in a more

general setting for all bounded-size-rule processes in Chapter 4.

• Using these lemmas, in Section 3.6.3 we prove the key proposition, Proposition

3.6.3. The rest of Section 3.6 proves the supporting Lemmas 3.6.6, 3.6.9 and

3.6.10.

• In Section 3.6.4 we introduce a branching process related to the IRG model,

and prove Lemma 3.6.6. A key step in the proof is Lemma 3.6.13 whose proof

is left to Section 3.6.5.

32



3.6.1 From the largest component to the first component

In this section we will reduce the problem of proving the estimate on the largest

component in Proposition 3.5.1 to an estimate on the first component as in Proposi-

tion 3.6.3. This reduction, although somewhat different, is inspired by a similar idea

used in [4].

Recall that C(1)
n (t) ≡ In(t) denotes the largest component in BFn(t). Let Csn(t),

0 ≤ s ≤ t, denote the component whose first doubleton is born at time s in BFn(t).

In particular Csn(t) = ∅ if there is no doubleton born at time s. Without loss of

generality, we assume that the first doubleton is born at time 0. Then C0
n(t) denotes

the component of the first doubleton at time t of the BF process. The following

lemma estimates the size of the largest component In(t) in terms of the size of the

first component.

Lemma 3.6.1. For any n ∈ N, t0 ∈ [0, T ] and deterministic function α : [0, T ]→ [0,∞)

P{In(t) > α(t), for some t < t0} ≤ nTP{C0
n(t) > α(t), for some t < t0}.

Proof: Let {BF(i)
n (t), t ≥ 0}i∈N0 be an i.i.d. family of {BFn(t), t ≥ 0} processes

on the same vertex set [n]. Let N be a rate n Poisson process independent of the

above collection. Denote by {τi, i ∈ N} the jump times of the Poisson process. Set

τ0 = 0. Denote the first component of BF(i)
n at time t by J (i)

n (t). Consider the

random graph

Gt
n = ∪i∈N0:τi≤tJ (i)

n (t)

and let IG
n (t) denote the size of the largest component in Gt

n. Then since a∗n(t) ≤ 1
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for all t, In ≤d IG
n . Thus

P{In(t) > α(t), for some t < t0}

≤P{IG
n (t) > α(t), for some t < t0}

=
∑
k∈N0

P{IG
n (t) > α(t), for some t < t0, N(T ) = k}

≤
∑
k∈N0

P{J (i)
n (t) > α(t), for some t < t0, for some i ≤ k}P{N(T ) = k}

≤
∑
k∈N0

kP{C0
n(t) > α(t), for some t < t0}P{N(T ) = k}.

The result follows. �

Next, in the following lemma, we reduce an estimate on the probability of the event

{C0
n(t) > α(t), for some t < t0} to an estimate on supt∈[0,t0] α(t)P{C0

n(t) > α(t)}.

Lemma 3.6.2. There exists an N0 ∈ N such that for all n ≥ N0, t0 ∈ [0, T ] and

continuous α : [0, T ]→ [0,∞)

P{C0
n(t) > 2α(t), for some 0 < t ≤ t0} ≤ 16nT 2 sup

0≤s≤t0

{
α(s)P{C0

n(s) > α(s)}
}
.

(3.6.1)

Proof: Fix N0 ∈ N such that for all n ≥ N0, sups∈[0,T ]{a∗n(s) ∨ b∗n(s)} ≤ 2.

Consider now n ≥ N0. Define τ = inf{t > 0 : C0
n(t) > 2α(t)}. Then

P{C0
n(t) > 2α(t) for some t ∈ [0, t0]} = P{τ ≤ t0}. (3.6.2)

Denote by C0
n ↔t Csn the event that components C0

n and Csn merge at time t. By

convention this event is taken to be an empty set if no doubleton is born at time

instant s. Then

{τ = t} = {C0
n(t−) < 2α(t)} ∩ {C0

n(t−) + Csn(t−) ≥ 2α(t); C0
n ↔t Csn, for some s < t}.

Next note that
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• Since a∗n(s) ≤ 2, the rate at which doubletons are born can be bounded by 2n.

• Given a doubleton was born at instant s, the event {C0
n ↔u Csn, for some u ∈

(t, t+dt]} occurs, conditionally on Ft, with probability 1
n
C0
n(t)Csn(t)b∗n(t)dt. This

probability, using the fact that b∗n(s) ≤ 2 and Csn(t) ≤ n, on the event {C0
n(t) <

2α(t)} is bounded by 4α(t)dt.

• P{C0
n(t) + Csn(t) ≥ 2α(t)} is bounded by 2P{C0

n(t) ≥ α(t)}.

Using these observations we have the following estimate

P{τ ≤ t0} ≤ E
∫

[0,t0]

1{C0
n(t)<2α(t)}

[∫
[0,t]

na∗n(s) · ( 1

n
C0
n(t)Csn(t)) · (b∗n(t))ds

]
dt

≤
∫

[0,t0]

[∫
[0,t]

2n · 2P(C0
n(t) ≥ α(t)) · (4α(t))ds

]
dt

≤
∫

[0,t0]

(2nt) · 2P(C0
n(t) ≥ α(t)) · (4α(t))dt

≤ 16nT 2 sup
t∈[0,t0]

{
α(t)P{C0

n(t) > α(t)}
}
.

Result follows on combining this estimate with (3.6.2). �

The following proposition will be proved in Section 3.6.3.

Proposition 3.6.3. Given η ∈ (0,∞) and γ ∈ (0, 1/5), there exist B,C,N1 ∈ (0,∞)

such that for all n ≥ N1

P
{
C0
n(t) ≥ m(n, t)/2

}
≤ Cn−η for all 0 < t < tc − n−γ, (3.6.3)

where m(n, t) is as defined in (3.5.1).

Remark: Intuitively, one has that in the subcritical regime, i.e. when t < tc,

P{C0
n(t) > m} < d1e

−d2m for some constants d1, d2. This suggests a bound as in

(3.6.3) for each fixed t < tc. However, the constants d1 and d2 depend on t, and in

fact one expects that, d2(t) → 0 when t ↑ tc. On the other hand, in order to prove

the above proposition one requires estimates that are uniform for all t < tc − n−γ as
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n → ∞. This analysis is substantially more delicate as will be seen in subsequent

sections.

We now prove Proposition 3.5.1 using the above results.

Proof of Proposition 3.5.1: Fix γ ∈ (0, 1/5) and fix η > 2 + 2γ. Let B,C,N1

be as determined in Proposition 3.6.3 for this choice of η, γ and let m(n, t) be as

defined in (3.5.1). Without loss of generality we can assume that N1 ≥ N0 where N0

is as in Lemma 3.6.2. Then applying Lemmas 3.6.1 and 3.6.2 with t0 = tc− n−γ and

α(t) = m(n, t), we have

P(In(t) ≥ m(n, t), for some 0 < t < tc − n−γ}

≤nTP(C0
n(t) ≥ m(n, t), for some 0 < t < tc − n−γ}

≤16n2T 3 sup
s∈[0,tc−n−γ ]

{
m(n, s)P{C0

n(s) ≥ m(n.s)/2}
}

≤16CBn2−η+2γT 3(log n)4.

Since η > 2 + 2γ, the above probability converges to 0 as n→∞. The result follows.

�

3.6.2 Some preparatory results

This section collects some results that are helpful in estimating the errors between

various models described in Section 3.5.4.

The first lemma estimates the error between x̄n(t) ≡ x̄(t) = Xn(t)/n and its

deterministic limit x(t) defined in (3.2.2).

Lemma 3.6.4. For any T > 0, there exists a C(T ) ∈ (0,∞) such that, for all γ1 ∈

[0, 1/2),

P{ sup
0≤t≤T

|x̄n(t)− x(t)| > 1

nγ1
} ≤ exp{−C(T )n1−2γ1}.
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Proof: Recall that [n] = {1, 2, . . . , n}. Let En = n−1[n] and let E = [0, 1]. Recall

the three types of events described in Section 3.5.1 that lead to edge formation in the

BF model. Of these only events of type (i) and (ii) lead to a change in the number

of singletons. For the events of type (i), i.e. in the case when a doubleton is created,

x̄ decreases by 2/n. Two key functions (see (3.5.2)) for this case are

f ∗−2(y) = a∗n(y)

f−2(y) = a0(y) =
1

2

(
y2 + (1− y2)y

)
.

For the events of type (ii), i.e. in the case when a singleton attaches to a non-singleton

component, x̄ decreases by 1/n. Two key functions (see (3.5.5)) for this case are

f ∗−1(y) = (1− y)c∗n(y)

f−1(y) = (1− y)c0(y) = y(1− y2)(1− y).

Note that 0 ≤ f ∗l (x̄) ≤ 1 for l = −1,−2, and that x̄(t) is a Markov process on the

state space En for which at time t we have the transitions x̄(t) x̄(t)− 1/n at rate

nf ∗−1(x̄(t)) and x̄(t) x̄(t)− 2/n at rate nf ∗−2(x̄(t)). Furthermore

|f ∗−1(y)− f−1(y)| ≤ 2

n
|f ∗−2(y)− f−2(y)| ≤ 5

n
, for all y ∈ [0, 1]. (3.6.4)

Let Y−1(·), Y−2(·) be independent rate one Poisson processes. Then the process x̄(t)

started with x̄(0) = 1 can be constructed (see eg. [24], [17]) as the unique solution

of the stochastic equation

x̄(t) = 1− 1

n
Y−1

(
n

∫ t

0

f ∗−1(x̄(s))ds

)
− 2

n
Y−2

(
n

∫ t

0

f ∗−2(x̄(s))ds

)
. (3.6.5)

By Equation (3.2.2), the limiting function x(·) is the unique solution of the integral

equation

x(t) = 1−
∫ t

0

f−1(x(s))ds−
∫ t

0

2f−2(x(s))ds. (3.6.6)
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Also note that ∀y, z ∈ E

|(f−1(y) + 2f−2(y))− (f−1(z) + 2f−2(z))| ≤ 6|y − z|. (3.6.7)

Using (3.6.6) and (3.6.5) we get

|x̄(t)− x(t)| ≤ An1 (t) + An2 (t) + An3 (t)

where

An1 (t) =

∣∣∣∣∣ ∑
l=−1,−2

l

[
1

n
Yl

(
n

∫ t

0

f ∗l (x̄(s))ds

)
−
∫ t

0

f ∗l (x̄(s))ds

]∣∣∣∣∣
≤4 sup

l=−1,−2
sup
t<T

∣∣∣∣Yl(nt)n
− t
∣∣∣∣ .

and by (3.6.4)

An2 (t) =

∣∣∣∣∣
∫ t

0

∑
l=−1,−2

l [f ∗l (x̄(s))− fl(x̄(s))] ds

∣∣∣∣∣ ≤ 7

n
T.

and finally by (3.6.7)

An3 (t) =

∣∣∣∣∣
∫ s

0

∑
l=−1,−2

l [fl(x̄(s))− fl(x(s))] ds

∣∣∣∣∣
≤ 6

∫ t

0

|x̄(s)− x(s)|ds.

Combining these estimates we get

|x̄(t)− x(t)| ≤
(

7

n
+ 4 sup

l=−1,−2
sup
t≤T

∣∣∣∣Yl(nt)n
− t
∣∣∣∣)+ 6

∫ t

0

|x̄(s)− x(s)|ds.

This implies, by Gronwall’s lemma (see e.g. [17], p498)

sup
s≤T
|x̄(s)− x(s)| ≤

(
7

n
+ 4 sup

l=−1,−2
sup
t≤T

∣∣∣∣Yl(nt)n
− t
∣∣∣∣) e6T .

Proof is completed using standard large deviations estimates for Poisson processes.

�

In the next lemma we note some basic properties of the integral operator associ-

ated with a kernel κ on a finite measure space.
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Lemma 3.6.5. Let κ, κ′ be kernels given on a finite measure space (X , T , µ). Assume

that κ, κ′ ∈ L2(µ × µ). Denote the associated integral operators by K and K′ (see

(3.5.13)) and there norms by ρ(κ), ρ(κ′) respectively. Then

(i) K is a compact operator. In particular

ρ(κ) = ‖K‖ ≤ ‖κ‖2 =

(∫
X×X

κ2(x, y)µ(dx)µ(dy)

)1/2

<∞.

(ii) If κ ≤ κ′, then ρ(κ) ≤ ρ(κ′).

(iii) ρ(κ+ κ′) ≤ ρ(κ) + ρ(κ′) and ρ(tκ) = tρ(κ) for t ≥ 0.

(iv) |ρ(κ)− ρ(κ′)| ≤ ρ(|κ− κ′|).

(v) ρ(κ) ≤ ‖κ‖∞µ(X ).

Proof: (i) is a standard result, see Theorem VI.23 of [29].

(ii) For any nonnegative f in L2(µ), Kf(x) ≤ K′f(x) pointwise. Thus for such f ,

‖Kf‖2 ≤ ‖K′f‖2. Result follows on observing that the suprema of ‖Kf‖2, ‖K′f‖2

over {f ∈ L2 : ‖f‖2 = 1} is the same as the suprema over {f ∈ L2 : ‖f‖2 = 1, f ≥ 0}

.

(iii) This follows immediately from the facts that ‖(K + K′)f‖2 ≤ ‖Kf‖2 + ‖K′f‖2

and K(tf) = tKf .

(iv) Note that κ ≤ κ′ + |κ − κ′| and κ′ ≤ κ + |κ − κ′|. Result follows on combining

this observation with (ii) and (iii).

(v) This follows immediately from (i) and the fact that ‖κ‖2 ≤ ‖κ‖∞µ(X ).

�

We now present some auxiliary estimates for the IRG model from Section 3.5.3.

The following lemma will be proved in Section 3.6.4. Recall the definition of a basic

structure from Section 3.5.3.

Lemma 3.6.6. Let {(X , T , µ), κ, φ} be a basic structure, where κ is symmetric. Sup-
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pose that µ is non-atomic and ρ(κ) = ‖K‖ < 1. For fixed x0 ∈ X , denote by CRGn (x0)

the volume of the component of RGn(κ) that contains x0. Define CRGn (x0) = 0 if x0

is not a vertex in RGn(κ). Then for all m ∈ N

P{CRGn (x0) > m} < 2 exp{−C1∆2m} (3.6.8)

where

∆ = 1− ρ(κ), C1 =
1

8‖φ‖∞(1 + 3‖κ‖∞µ(X ))
. (3.6.9)

The above result will be useful for estimating the size of a given component in

RGn(a, b, c). One difficulty in directly using this result is that the kernel κt and

the weight function φt defined in (3.5.20) and (3.5.17) are not bounded. We will

overcome this by using a truncation argument. In order to control the error caused

by truncation, the following two results will be useful. For rest of this subsection the

type space (X , T ) will be taken to be the cluster space introduced above (3.5.17).

Lemma 3.6.7. Given rate functions (a, b, c) and t ∈ [0, T ], let µt be the finite measure

on (X , T ) defined as in (3.5.18). Let Pn be a Poisson point process on (X , T ) with

intensity n · µt. Define

Yn
def
= sup

(s,w)∈Pn
w(t).

Then for every A ∈ (0,∞)

P{Yn > A} < 2T · n(1− e−T )A/2.

Proof: Let N be the number of points in Pn, then N is Poisson with mean∫ t
0
na(s)ds ≤ nT . Let {Z(i)

2 }i≥1 be independent copies of Z2 (also independent of N),

where Z2 is a pure jump Markov process on N with initial condition Z2(0) = 2 and

infinitesimal generator A0 defined as

A0f(k) = k(f(k + 1)− f(k)), k ∈ N, f : N→ R.
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Thus Z2 is just a Yule process started with two individuals at time zero. Note that

Yn ≤ sup
(s,w)∈Pn

w(T ) ≤d sup
1≤i≤N

Z
(i)
2 (T ),

where the first inequality holds a.s and the second inequality uses the fact that c ≤ 1.

Standard facts about the Yule process (see e.g.[27]) imply that Z
(i)
2 (T ) is distributed

as sum of two independent Geom{e−T}. Thus

P{Yn > A} ≤ E(N) · P{Z2(T ) > A}

≤ nT · 2(1− e−T )A/2.

This completes the proof of the lemma. �

The following corollary follows on taking A = C log n in the above lemma.

Corollary 3.6.8. Let Yn be as in the above lemma and fix η ∈ (0,∞). Then there

exist C1(η), C2(η) ∈ (0,∞) such that for any rate functions (a, b, c)

P{Yn > C1(η) log n} < C2(η)n−η, for all n ∈ N.

From Section 3.5.1, recall the definitions of the functions a0, b0, c0 associated with

the BF model. The following lemma will allow us to argue that RGn(a0, b0, c0) is

well approximated by RGn(a, b, c) if the rate functions (a, b, c) are sufficiently close to

(a0, b0, c0). Let ((X , T , µt), κt, φt) be the basic structure associated with rate functions

(a, b, c). Let Kt be the integral operator defined by (3.5.13), replacing (µ, κ) there

by (µt, κt). Let ρt = ρ(κt). In order to emphasize the dependance on rate functions

(a, b, c), we will sometimes write ρt = ρt(a, b, c). Similar notation will be used for

κt, µt, φt and Kt.

Lemma 3.6.9. Fix rate functions (a, b, c). Suppose that infs∈[0,T ] a(s) > 0 and for

some θ ∈ (0,∞), c(s) ≥ θs, for all s ∈ [0, T ]. Given δ > 0 and t ∈ [0, T ], let

ρ+,t = ρt((a+ δ) ∧ 1, (b+ δ) ∧ 1, (c+ δ) ∧ 1), ρ−,t = ρt((a− δ)+, (b− δ)+, (c− δ)+).
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Then there exists C2 ∈ (0,∞) and δ0 ∈ (0, 1) such that for all δ ≤ δ0 and t ∈ [0, T ]

max{|ρt − ρ+,t|, |ρt − ρ−,t|} ≤ C2(− log δ)3δ1/2.

The proof of the above lemma is quite technical and is omitted.

The next lemma gives some basic properties of ρt(a0, b0, c0). Recall that tc denotes

the critical time for the emergence of the giant component in the BF model.

Lemma 3.6.10. Let ρ(t) = ρt(a0, b0, c0). Then:

(i) ρ(t) is strictly increasing in t ∈ [0, T ];

(ii) ρ(tc) = 1;

(iii) lims→0+(ρ(tc)− ρ(tc − s))/s = ρ′−(tc) > 0.

The proof of the lemma is also omitted.

3.6.3 Proof of Proposition 3.6.3

This section is devoted to the proof of Proposition 3.6.3. Fix η ∈ (0,∞) and

γ ∈ (0, 1/5).

Step 1: from BFn to IAn,δ

Let γ1 = 2/5 and define En = {sup0≤t≤T |x̄n(t)− x(t)| ≤ n−γ1}.

From Lemma 3.6.4,

P{Ec
n} ≤ exp{−C(T )n1−2γ1} = exp{−C(T )n1/5}. (3.6.10)

From (3.5.4) and recalling that the Lipschitz norm of a0 is bounded by 2 (see (3.5.3)),

we have that on En

|a∗(t)− a0(t)| ≤ 5n−1 + 2n−γ1 , for all t ∈ [0, T ].

42



Similar bounds can be shown to hold for b∗ and c∗. Thus we can find n1 ∈ N and

d1 ∈ (0,∞) such that, for n ≥ n1, on En

a∗n(t) ≤ a0(t) + δn, b
∗
n(t) ≤ b0(t) + δn, c

∗
n(t) ≤ c0(t) + δn, for all t ∈ [0, T ],

where δn = d1n
−γ1 . Since a∗n, b

∗
n, c
∗
n are all bounded by 1, setting (a0(t)+δn)∧1 = an,δ

and similarly defining bn,δ, cn,δ, we in fact have that

a∗n(t) ≤ an,δ(t), b
∗
n(t) ≤ bn,δ(t), c

∗
n(t) ≤ cn,δ(t), for all t ∈ [0, T ].

Let CIAn,δ(t) denote the size of the first component in IAn(an,δ, bn,δ, cn,δ)t. From Lemma

3.5.2, we have for any m ∈ N

P{C0
n(t) > m,En} ≤ P{CIAn,δ(t) > m,En} ≤ P{CIAn,δ(t) > m}. (3.6.11)

Step 2: from IAn,δ to RGn,δ,A

For t ∈ [0, T ], and rate functions an,δ, bn,δ, cn,δ, consider the inhomogeneous random

graph model RGn(κt,δ, µt,δ, φt), where κt,δ = κt(an,δ, bn,δ, cn,δ) and µt,δ is the mea-

sure for the IRG model corresponding to these rate functions as defined in (3.5.18).

Let An = C1(η) log n, where C1(η) is as in Corollary 3.6.8. Consider the following

truncation of the kernel κt,δ and weight function φt(s, w) = w(t):

κt,δ,A(x,y) = κt,δ(x,y)1{w(T )≤An}1{w̃(T )≤An}, x = (s, w),y = (r, w̃)

and

φt,A(s, w) = φt(s, w)1{w(T )≤An}.

Then ‖φt,A‖∞ ≤ An, ‖κt,δ,A‖∞ ≤ TA2
n .

Recall the Poisson point process Pt(a, b, c) associated with rate functions (a, b, c),

introduced below (3.5.17) and write Pt,δ = Pt(an,δ, bn,δ, cn,δ). Let

Yn,δ := sup
(s,w)∈Pt,δ

w(T ).
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From Corollary 3.6.8

P{Yn,δ > An} < C2(η)n−η. (3.6.12)

Let CRGn,δ(t) = CRGn,t (an,δ, bn,δ, cn,δ) be the volume of the ‘first’ component in

RGn,t(an,δ, bn,δ, cn,δ) ≡ RGn(κt,δ, µt,δ, φt).

Then from Lemma 3.5.3

P{CIAn,δ(t) > m} ≤ P{CRGn,δ(t) > m}. (3.6.13)

Letting CRGn,δ,A(t) denote the volume of the first component in RGn(κt,δ,A, µt,δ, φt,A),

namely the random graph formed using the truncated kernel. Then

P{CRGn,δ(t) > m} ≤ P{Yn,δ > An}+ P{CRGn,δ(t) > m,Yn,δ ≤ An}

= P{Yn,δ > An}+ P{CRGn,δ,A(t) > m,Yn,δ ≤ An}

≤ P{Yn,δ > An}+ P{CRGn,δ,A(t) > m} (3.6.14)

Step 3: Estimating CRGn,δ,A

We will apply Lemma 3.6.6, replacing {(X , T , µ), κ, φ} by {(X , T , µt,δ), κt,δ,A, φt,A},

where t ∈ (0, tc − n−γ). From (3.6.8) we have

P{CRGn,δ,A(t) > m} ≤ 2 exp{−C1∆2m}, (3.6.15)

where

C1 =
1

8‖φt,A‖∞(1 + 3‖κt,δ,A‖∞µt,δ(X ))
,

and ∆ = 1 − ρ(κt,δ,A). We now estimate ρ(κt,δ,A). Since κt,δ,A ≤ κt,δ, by (ii) of

Lemma 3.6.5, we have ρ(κt,δ,A) ≤ ρ(κt,δ). Note that rate functions (a0, b0, c0) satisfy

conditions of Lemma 3.6.9. Thus, recalling that δn = d1n
−2/5, we have from this

result, that for some d2 ∈ (0,∞), ρ(κt,δ) < ρ(κt)+d2(log n)3n−1/5, for all t ≤ T . Here

κt = κt(a0, b0, c0).
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Next, by Lemma 3.6.10, there exists d3 ∈ (0,∞) such that ρ(κt) < 1− d3(tc − t)

for all t ∈ [0, tc). Combining these estimates, we have for t < tc − n−γ,

ρ(κt,δ,A) < 1− d3(tc − t) + d2(log n)3n−1/5.

Recalling that γ ∈ (0, 1/5) we have that, for some n2 ∈ (n1,∞) and d4 ∈ (0,∞),

ρ(κt,δ,A) ≤ 1− d4(tc − t), for all t ∈ (0, tc − n−γ) and n ≥ n2.

Using this estimate in (3.6.15) and recalling that ‖φt,A‖∞ ≤ An, ‖κt,δ,A‖∞ ≤ TA2
n ,

we have that for some d5 ∈ (0,∞)

P{CRGn,δ,A(t) > m} ≤ 2 exp{− d5

(log n)3
(tc − t)2m}, (3.6.16)

for all m ∈ N, t ∈ (0, tc − n−γ) and n ≥ n2.

Step 4: Collecting estimates:

Combining (3.6.10), (3.6.11), (3.6.13), (3.6.12), (3.6.14) and (3.6.16), we have

P{C0
n(t) > m} ≤ P{Ec

n}+ P{Yn,δ > An}+ P{CRGn,δ,A(t) > m}

≤ e−C(T )n1/5

+ C2(η)n−η + 2 exp{−d5
(tc − t)2

(log n)3
m}. (3.6.17)

Finally, result follows on replacing m in the above display with η(logn)4

d5(tc−t)2 . �

The following lemma will be used in the proof of Lemma 3.6.10. We will use

notation and arguments similar to that in the proof of Proposition 3.6.3 above.

Lemma 3.6.11. Let (a, b, c) be rate functions. Fix t ∈ [0, T ]. Let IIAn (t) denote

the largest component in IAn(a, b, c)t. Suppose that ρt(a, b, c) < 1. Then for some

C0 ∈ (0,∞)

P{IIAn (t) > C0(log n)4} → 0 when n→∞.

Proof: Let CIAn (t) be the first component of IAn(a, b, c)t. Then an elementary

argument (cf. proof of Lemma 3.6.1) shows that for m > 0

P{IIAn (t) > m} ≤ TnP{CIAn (t) > m}.
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By an argument as in (3.6.14), we have

P{CIAn (t) > m} ≤ P{CRGn (t) > m} ≤ P{Yn > An}+ P{CRGn,A(t) > m},

where CRGn , Yn and CRGn,A correspond to CRGn,δ , Yn,δ and CRGn,δ,A introduced above in the

proof of Proposition 3.6.3, with (an,δ, bn,δ, cn,δ) replaced with (a, b, c). From Corollary

3.6.8 we can find d1 ∈ (0,∞) such that P(Yn ≥ d1 log n) = O(n−2). Let An =

d1 log n. Then, recalling that ρt(a, b, c) < 1, we gave by Lemma 3.6.6 that, for some

d2 ∈ (0,∞),

P{CRGn,A(t) > m} < 2 exp{−d2m/(log n)3}.

Taking m = 2
d3

(log n)4, we have P{CRGn,A(t) > m} = O(n−2). Combining the above

estimates we have P{IIAn (t) > 2
d3

(log n)4} = O(n−1). The result follows. �

3.6.4 Proof of Lemma 3.6.6: A branching process construction

The key idea in the proof of Lemma 3.6.6 is the coupling of the breadth first

exploration of components in the IRG model with a certain continuous type branching

process. This coupling will reduce the problem of establishing the estimate in Lemma

3.6.6 to a similar bound on the total volume of the branching process (Lemma 3.6.13).

We refer the reader to [11] where a similar coupling in a setting where the type space

X is finite using a finite-type branching process is constructed. In this subsection we

will give the proof of Lemma 3.6.6 using Lemma 3.6.13. Proof of the latter result is

given in Section 3.6.5.

Throughout this section we will fix a basic structure {(X , T , µ), κ, φ}, where κ is

a symmetric kernel, and a x0 ∈ X . Let RGn(κ) be the IRG constructed using this

structure as in Section 3.5.3. We now describe a branching process associated with

the above basic structure. The process starts in the 0-th generation with a single

vertex of type x0 ∈ X and in the k-th generation, a vertex x will have offspring,
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independently of the remaining k-th generation vertices, according to a Poisson point

process on X with intensity κ(x, y)µ(dy) to form the (k+ 1)th generation. We denote

this branching process as BP(x0).

Denote by {ξ(k)
i }

Nk
i=1 ⊂ X the kth generation of the branching process. Define the

volume of the k-th generation as Gk =
∑Nk

i=1 φ(ξ
(k)
i ). The total volume of BP(x0)

is defined as G = G(x0) =
∑∞

k=0Gk.

The following lemma, proved at the end of the section, shows that CRGn (x0) is

stochastically dominated by G(x0).

Lemma 3.6.12. For all m1 ∈ N,

P{CRGn (x0) > m1} ≤ P{G(x0) > m1}.

Next lemma, proved in Section 3.6.5 shows that the estimate in Lemma 3.6.6

holds with CRGn (x0) replaced by G(x0).

Lemma 3.6.13. Suppose that ρ(κ) = ‖K‖ < 1. Then for all m ∈ N

P{G > m} < 2 exp{−C1∆2m} (3.6.18)

where ∆ and C1 are as in (3.6.9).

Using the above lemmas we can now complete the proof of Lemma 3.6.6.

Proof of Lemma 3.6.6: Proof is immediate from Lemmas 3.6.13 and 3.6.12 . �

We conclude this section with the proof of Lemma 3.6.12.

Proof of Lemma 3.6.12: Without loss of generality assume that CRGn (x0) 6= 0. We

now explore the component CRGn (x0) in the standard breadth first manner.
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Define the sequence of unexplored sets {Um}m≥0 and the set of removed ver-

tices {Rm}m≥0 iteratively as follows: Let R0 = ∅, U0 = {x0} and y1 = x0. Suppose

we have defined Rj, Uj, j = 0, 1, · · · ,m− 1 and Um−1 = {ym, ym+1, · · · ytm}. Then set

Rm = Rm−1 ∪ {ym}

Um = Um−1 ∪ Em \ {ym}

where Em denotes the set

{x ∈ X : x is a neighbor of ym in RGn(κ) and x /∈ Rm−1 ∪ Um−1}.

If Um−1 = ∅ we set Uj = Ej = ∅ and Rj = Rm−1 for all j ≥ m. Thus Um are the

vertices at step m that have been revealed by the exploration but whose neighbors

have not been explored yet. Note that the number of vertices in Rm−1 ∪Um−1 equals

tm. Label the vertices in Em as ytm+1, ytm+2, . . . ytm+|Em|. With this labeling we have a

well defined specification of the sequence {Rj, Uj, Ej+1}j∈N0 . Note that CRGn (x0) = m0

if and only if Um0−1 6= ∅, Um0 = ∅ and |Rm0 | = m0.

We will now argue that for every m ∈ N, conditioned on {Um−1, Rm−1}, Em is a

Poisson point process on the space X with intensity

Λ∗m(dx) = βm(x)(κ(ym, x) ∧ n)µ(dx),

where βm : X → [0, 1] is given as β1 ≡ 1 and, for m > 1,

βm(x) = Πy∈Rm−1

[
1−

(
κ(y, x)

n
∧ 1

)]
, x ∈ X .

Consider first the case m = 1. Denote the Poisson point process on (X , T ) used in the

construction of RGn(κ, µ) by Nn(κ, µ). From the complete independence property

of Poisson point processes and the non-atomic assumption on µ, conditioned on the

existence of a vertex x0 in Nn(κ, µ), Nn(κ, µ) \ {x0} is once again a Poisson point

process with intensity n · µ(dx) on X . Also, conditioned on Nn(κ, µ), a given type

48



x vertex in Nn(κ, µ) would be connected to x0 with probability (κ(x0, x)/n) ∧ 1.

Thus the neighbors of x0, namely E1, define a Poisson point process with intensity

(κ(x0, x) ∧ n)µ(dx). This proves the above statement on Em with m = 1.

Consider now m > 1. Since µ is non-atomic and Um−1 ∪ Rm−1 consists of only

finitely many elements, it follows that conditioned on vertices in Rm−1 ∪ Um−1 be-

longing to Nn(κ, µ), Nn(κ, µ) \ (Rm−1 ∪ Um−1) is once again a Poisson point process

on X with intensity n · µ(dx). Note that a vertex x ∈ Nn(κ, µ) \ (Rm−1 ∪ Um−1) is

in Em if and only if x is a neighbor of ym and x is not a neighbor of any vertex in

Rm−1. So conditioned on {Rm−1, Um−1}, the probability that x is in Em equals

(κ(ym, x)/n ∧ 1) · Πy∈Rm−1 [1− (κ(y, x)/n) ∧ 1].

From this and the fact that the edges in RGn(κ, µ) are placed in a mutually indepen-

dent fashion, it follows that the points in Em, conditioned on {Rm−1, Um−1}, describe

a Poisson point process with intensity

nµ(dx) · (κ(ym, x)/n ∧ 1) · Πy∈Rm−1 [1− (κ(y, x)/n) ∧ 1]

= Πy∈Rm−1 [1− (κ(y, x)/n) ∧ 1] · (κ(ym, x) ∧ n)µ(dx)

= Λ∗m(dx).

Thus conditioned on {Rm−1, Um−1}, Em is a Poisson point process with the claimed

intensity.

Next note that one can carry out an analogous breadth first exploration of BP(x0).

Denoting the corresponding vertex sets once more by

{Rj, Uj, Ej+1}j∈N0

we see that conditioned on {Rm−1, Um−1}, Em is a Poisson point process with intensity

κ(ym, x)µ(dx).
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As 0 ≤ βm(x) ≤ 1 and κ ∧ n ≤ κ, we can now construct a coupling between

BP(x0) and CRGn (x0) by first constructing BP(x0) and then by iteratively rejecting

each offspring of type x in Em (and all of its descendants) with probability

1− βm(x)(κ(ym, x) ∧ n)

κ(ym, x)
.

The lemma is now immediate. �

3.6.5 Proof of Lemma 3.6.13

Assume throughout this subsection, without loss of generality, that

max{‖φ‖∞, ‖κ‖∞, µ(X )} <∞.

Recall that κ is a symmetric kernel. Define, for k ∈ N, the kernels κ(k) recursively as

follows. κ(1) = κ and for all k ≥ 1

κ(k+1)(x, y) =

∫
X
κ(k)(x, u)κ(u, y)µ(du).

Recall that {ξ(k)
i }

Nk
i=1 denotes the k-th generation of BP(x0) and note that it describes

a Poisson point process with intensity κ(k)(x0, y)µ(dy). This observation allows us to

compute exponential moments of the form in the lemmas below.

Lemma 3.6.14. Let g : X → R+ be a bounded measurable map. Fix δ > 0 and let

0 < ε < log(1 + δ)/‖g‖∞. Then

E exp{ε
N1∑
i=1

g(ξ
(1)
i )} ≤ exp{ε(1 + δ)(Kg)(x0)}.

Proof: Fix δ, ε as in the statement of the lemma. By standard formulas for

Poisson point processes

E exp{ε
N1∑
i=1

g(ξ
(1)
i )} = exp{

∫
X
κ(x0, u)(eεg(u) − 1)µ(du)}

≤ exp{
∫
X
κ(x0, u)(1 + δ)εg(u)µ(du)}

= exp{ε(1 + δ)(Kg)(x0)},
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where the middle inequality follows on noting that eεg(u)−1 ≤ (1+δ)εg(u), whenever

εg(u) < log(1 + δ). �

Using the above lemma and a recursive argument, we obtain the following result.

Recall that Gk =
∑Nk

i=1 φ(ξ
(k)
i ) denoted the volume of generation k where volume is

measured using the function φ.

Lemma 3.6.15. Fix k ∈ N and δ > 0. Given a weight function φ, define φ0 =

φ+
∑k

i=1(1 + δ)iKiφ. Then for all ε ∈ (0, log(1+δ)
‖φ0‖∞ )

E exp{ε
k∑
i=0

Gi} ≤ exp{ε[φ(x0) +
k∑
i=1

(1 + δ)iKiφ(x0)]} = exp{εφ0(x0)}. (3.6.19)

Proof: Define {φi}ki=0 using a backward recursion, as follows. Let φk = φ. For

0 ≤ i < k

φi = φ+ (1 + δ)Kφi+1.

Let Fl = σ{{ξ(k)
i }

Nk
i=1, k = 1, · · · l}. We will show recursively, as l goes from k to 0,

that

E[exp{ε
k∑
i=l

Gi}|Fl] ≤ exp{ε
Nl∑
i=1

φl(ξ
(l)
i )}}. (3.6.20)

The lemma is then immediate on setting l = 0 in the above equation.

When l = k, (3.6.20) is in fact an equality, and so (3.6.20) holds trivially for k.
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Suppose now that (3.6.20) is true for l + 1, for some l ∈ {0, 1, · · · , k − 1}. Then

E[exp{ε
k∑
i=l

Gi}|Fl] = exp{εGl}E[E[exp{ε
k∑

i=l+1

Gi}|Fl+1]|Fl]

≤ exp{εGl}E[exp{ε
Nl+1∑
i=1

φl+1(ξ
(l+1)
i )}|Fl]

≤ exp{εGl} exp{ε(1 + δ)

Nl∑
i=1

Kφl+1(ξ
(l)
i )}

= exp{ε
Nl∑
i=1

φ(ξ
(l)
i )} exp{ε(1 + δ)

Nl∑
i=1

Kφl+1(ξ
(l)
i )}

= exp{ε
Nl∑
i=1

[φ(ξ
(l)
i ) + (1 + δ)Kφl+1(ξ

(l)
i )]}

= exp{ε
Nl∑
i=1

φl(ξ
(l)
i )}.

For the first inequality above we have used the fact that by assumption (3.6.20) holds

for l+ 1 and for the second inequality we have applied Lemma 3.6.14 along with the

observation that ε‖φl‖∞ < log(1+δ) holds for all l = 1, 2, ..., k, since for all l, φl ≤ φ0

and ε‖φ0‖∞ < log(1 + δ).

This completes the recursion and the result follows. �

To emphasize that φ0 in the above lemma depends on δ and k, write φ0 = φ
(k)
δ .

Note that φ
(k)
δ is increasing in k. Let φ∗δ = limk→∞ φ

(k)
δ . The following corollary

follows on sending k →∞ in (3.6.19).

Corollary 3.6.16. Fix δ > 0 and ε ∈ (0, log(1 + δ)/‖φ∗δ‖∞). Then

E{exp εG} ≤ exp{εφ∗δ(x0)}. (3.6.21)

Lemma 3.6.17. For n ∈ N and x ∈ X

Knφ(x) ≤ ρn−1‖fx‖2‖φ‖2, where fx(·) = κ(x, ·) and ρ = ρ(κ).
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Proof: Note that

Knφ(x) =

∫
X
κ(n)(x, u)φ(u)µ(du) ≤ ‖

∫
X
fx(u)κ(n−1)(u, ·)µ(du)‖2‖φ‖2

= ‖Kn−1fx‖2‖φ‖2 ≤ ρn−1‖fx‖2‖φ‖2.

�

Now we can finish the proof of Lemma 3.6.13.

Proof of Lemma 3.6.13: Observing that ‖φ‖2 ≤ ‖φ‖∞µ(X )1/2 and ‖fx‖2 <

‖κ‖∞µ(X )1/2, we have for δ ∈ (0,∞) such that (1 + δ)ρ < 1, and x ∈ X

φ∗δ(x) = φ(x) +
∞∑
i=1

(1 + δ)iKiφ(x)

≤ ‖φ‖∞ + ‖fx‖2‖φ‖2(
∞∑
i=1

(1 + δ)iρi−1)

≤ ‖φ‖∞ + ‖κ‖∞‖φ‖∞µ(X )
(1 + δ)

1− (1 + δ)ρ
,

where the first inequality above follows from Lemma 3.6.17. Setting δ = ∆
2

, we see

(1 + δ)ρ = (1 + ∆/2)(1−∆) < 1−∆/2.

Using this and that ∆ < 1, we have

φ∗δ(x) ≤ ‖φ‖∞
(

1 +
3‖κ‖∞µ(X )

∆

)
≡ d1.

Let ε = log(1 + δ)/(2d1). Clearly ε ∈ (0, log(1 + δ)/‖φ∗δ‖∞). Using Corollary 3.6.16

we now have that

P{G > m} ≤ exp{−εm} exp{εφ∗δ(x0)}

≤ exp{−εm} exp{ log(1 + δ)

2
}

≤ 2 exp{− log(1 + δ)

2d1

m}.

Finally, noting that log(1 + δ) ≥ δ
2
, we have

log(1 + δ)

2d1

≥ ∆2

8‖φ‖∞(1 + 3‖κ‖∞µ(X ))
.

The result follows. �
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3.7 Proof of Theorem 3.1.1

We will now complete the proof of Theorem 3.1.1. As always, we write the

component sizes as

CBF

n (t) ≡ (C(i)

n (t) : i ≥ 1) ≡ (Ci(t) : i ≥ 1);

and write the scaled component sizes as

C̄
BF

n (λ) ≡
(
β1/3

n2/3
C(n)

i

(
tc + β2/3α

λ

n1/3

)
: i ≥ 1

)
≡
(
C̄i(λ) : i ≥ 1

)
(3.7.1)

Then Proposition 3.3.1 proves that with

λn = −n
−γ+1/3

αβ2/3

and γ ∈ (1/6, 1/5) we have, as n→∞,∑
i

(
C̄i(λn)

)3[∑
i

(
C̄i(λn)

)2
]3

P−→ 1,
1∑

i

(
C̄i(λn)

)2 + λn
P−→ 0,

C̄1(λn)∑
i

(
C̄i(λn)

)2

P−→ 0. (3.7.2)

We shall now give an idea of the proof of the main result, and postpone precise

arguments to the next two sections. The first step is to observe that the asymptotics

in (3.7.2) imply that the C̄bf process at time λn satisfies the regularity conditions

of Proposition 4 of [2]. The second key observation is that the scaled components

merge in the critical window at a rate close to that for the multiplicative coalescent.

Indeed, note that for any given time t components i < j ∈ BF(t) merge in a small

time interval [t, t+ dt) at rate

1

n
(1− x̄2(t))Ci(t)Cj(t).

Thus letting λ = (t − tc)n
1/3/(αβ2/3) be the scaled time parameter, in the time

interval [λ, λ+ dλ), these two components merge at rate

γij(λ) =
(1− x̄2(tc + β2/3α λ

n1/3 ))

n

β2/3α

n1/3
Ci
(
tc +

β2/3αλ

n1/3

)
Cj
(
tc +

β2/3αλ

n1/3

)
= α

(
1− x̄2

(
tc + β2/3α

λ

n1/3

))
C̄i(λ)C̄j(λ).
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Now since, for large n,

x̄2

(
tc + β2/3α

λ

n1/3

)
≈ x2(tc)

and from [22], α(1− x2(tc)) = 1 (see (3.2.5)) we get

γij(λ) ≈ C̄i(λ)C̄j(λ)

which is exactly the rate of merger for the multiplicative coalescent. The above two

facts allow us to complete the proof using ideas similar to those in [4]. Let us now

make these statements precise.

As before, throughout this section tn = tc−n−γ = tc +β2/3α λn
n1/3 , where γ is fixed

in (1/6, 1/5). We will first show that C̄
BF

n (λ)
d−→ X(λ) in l2↓ for each λ ∈ R and at

the end of the section show that, in fact, C̄
BF

n
d−→ X in D((−∞,∞) : l2↓). Now fix

λ ∈ R. By choosing n large enough we can ensure that λ ≥ λn. Henceforth consider

only such n. Recall that COMn(t) denotes the subgraph of BFn(t) obtained by

deleting all the singletons. Let
∑

i∈COM denote the summation over all components

in COMn, and
∑

i denote the summation over all components in BFn. Since

∑
i

(
C̄i(λ)

)2 −
∑

i∈COM

(
C̄i(λ)

)2 ≤ d1

n4/3

Xn(t)∑
i=1

1 = O(1/n1/3), (3.7.3)

it suffices to prove Theorem 3.1.1 and verify Proposition 3.3.1 with BFn(t) replaced

by COMn(t). We write
∑

i instead of
∑

i∈COM for simplicity of the notation from

now on. We begin in Section 3.7.1 by constructing a coupling of {COMn(t)}t≥tn

with two other random graph processes, sandwiching our process between these two

processed, and proving statements analogous to those in Theorem 3.1.1 for scaled

component vectors associated with these processes. Proof of Theorem 3.1.1 will then

be completed in Section 3.7.2.
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3.7.1 Coupling with the multiplicative coalescent

Lower bound coupling: Let, for t ≥ tn, COM−
n (t) be a modification of

COMn(t) such that COM−
n (tn) = COMn(tn), and when t > tn, we change the

dynamics of the random graph to the Erdős-Rényi type. More precisely, recall from

Section 3.5.1 that a jump in BFn(t) can be produced by three different kinds of events.

These are described in items (i), (ii) and (iii) in Section 3.5.1. COM−
n (t), t ≥ tn is

constructed from COM−
n (tn) by erasing events of type (i) and (ii) (i.e. immigrating

doubletons and attaching singletons) and changing the probability of edge formation

between two non-singletons (from that given in (3.5.10)) to the fixed value b∗n(tn)/n.

Since b∗n(t) is nondecreasing in t, we have that COMn(tn + ·) ≥d COM−
n (tn + ·).

Denote by C̄
−
n (λ) =

(
C̄−i (λ) : i ≥ 1

)
the scaled (as in (3.7.1)) component size vector

for COM−
n (t). From Proposition 4 of [2], it follows that for any λ ∈ R,

C̄
−
n (λ)

d−→X(λ) (3.7.4)

in l2↓. Indeed, note that the first and third convergence statements in (3.7.2) hold

with C̄i replaced with C̄−i since the contributions made by singletons to the scaled

sum of squares is O(n−1/3) (see (3.7.3)) and to the sum of cubes is even smaller. This

shows that the first and third requirements in Proposition 4 of [2] (see equations (8),

(10) therein) are met. To show the second requirement in Proposition 4 of [2], using

the second convergence in (3.7.2),

lim
n→∞

((
n2/3β−1/3

)2 b∗n(tn)

n

β2/3α(λ− λn)

n1/3
− 1∑

i

(
C̄−i (λn)

)2

)
(3.7.5)

= lim
n→∞

αb∗n(tn)λ− λn(αb∗n(tn)− 1)

= λ− lim
n→∞

λn(αb∗n(tn)− 1),
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where the last equality follows on observing that, as n → ∞, b∗n(tn)
P−→ 1 − x2(tc)

and α(1− x2(tc)) = 1. Also,

lim
n→∞

λn|αb∗n(tn)− 1| = lim
n→∞

n−γ+1/3

β2/3
|b∗n(tn)− α−1|

= lim
n→∞

n−γ+1/3

β2/3
|b0(x̄(tn))− b0(x(tc))|

≤ d1 lim
n→∞

n−γ+1/3|x̄(tn)− x(tc)|

≤ lim
n→∞

d2

(
n−γ+1/3|x̄(tn)− x(tn)|+ n−γ+1/3|tn − tc|

)
,

where the second equality follows from (3.5.12). The first term on the last line con-

verges to 0 using Lemma 3.6.4. For the second term note that n−γ+1/3|tn − tc| =

n−γ+1/3n−γ which converges to 0 since γ > 1/6. Thus we have shown that the ex-

pression in (3.7.5) converges to λ as n → ∞ and therefore the second requirement

in Proposition 4 of [2] (see equation 9 therein) is met as well. This proves that

C̄
−
n (λ)

d−→ X(λ) in l2↓, for every λ ∈ R. Although Proposition 4 of [2] only proves

convergence at any fixed point λ, from the Feller property of the multiplicative coa-

lescent process proved in Proposition 6 of the same paper it now follows that, in fact,

C̄
−
n

d−→X in D((−∞,∞) : l2↓).

Upper bound coupling: Let us construct {COM+
n (t) : t ≥ tn} in the following

way. Let t+n = tc + n−γ and let

λ+
n = (t+n − tc)n1/3/(αβ2/3) = n1/3−γ/(αβ2/3).

Let COM+
n (tn) be the graph obtained by including all immigrating doubleton and

attachments during time t ∈ [tn, t
+
n ] to the graph of COMn(t), along with all the

attachment edges. Namely, we construct COM+
n (tn) by including in COMn(tn) all

events of type (i) and (ii) of Section 3.5.1 that occur over [tn, t
+
n ]. For t > tn the graph

evolves in the Erdős-Rényi way such that edges are added between each pair of vertices

in the fixed rate b∗n(t+n )/n. The coupling between COM+
n (·+ tn) and COMn(·+ tn)

can be achieved as follows: Construct a realization of {COMn(t) : tn ≤ t ≤ t+n }
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first, then use b∗n(t+n )− b∗n(t) to make up for all the additional edges in COM+
n (t) for

tn ≤ t ≤ t+n . Note that COMn(tn + ·) ≤d COM+
n (tn + ·) over [0, t+n − tn].

Let C̄
+
n (λ) =

(
C̄+
i (λ) : i ≥ 1

)
be the scaled (as in (3.7.1)) component size vector for

COM+
n . We will once more apply Proposition 4 of [2]. We first show that the three

convergence statements in (3.7.2) hold with C̄i replaced with C̄+
i . For this it will be

convenient to consider processes under the original time scale. Write C(i)
n (tn) ≡ Ci.

Also denote by {C+
i } the component vector obtained by adding all events of type (ii)

only, to COMn(tn) (i.e. attachment of singletons to components in COMn(tn)), over

[tn, t
+
n ]. Since c∗ is bounded by 1, C+

i is stochastically dominated by the sum of Ci

independent copies of Geometric(p), with p = etn−t
+
n = e−2n−γ . Thus

ui
def
= C+

i − Ci ≤d Negative-binomial(r, p) with r = Ci, p = e−2n−γ .

The random graph COM+
n (tn) contains components other than {C+

i }. These ad-

ditional components correspond to the ones obtained from doubletons immigrating

over [tn, t
+
n ]. Since there are at most n vertices, the number N of such doubletons is

bounded by n/2. Denote by {C̃+
i }Ni=1 the components corresponding to such double-

tons. Once again using the fact that c∗ ≤ 1, we have that

C̃+
i ≤d 2 + Negative-binomial(2, p) with p = e−2n−γ .

Write for k = 2, 3,

Sk =
∑
i

(Ci)k, S+
k =

∑
i

(C+
i )k +

N∑
i=1

(C̃+
i )k,

I = max
i
Ci, I+ = max{max

i
C+
i ,max

i
C̃+
i }.

We shows that Propostion 3.3.1 holds with (S2(tn),S3(tn), C(1)
n (tn)) replaced with

(S+
2 (tn),S+

3 (tn), I+(tn)) in the following proposition.
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Proposition 3.7.1. As n→∞,

I+ = Θ(I)

S+
2

S2

P−→ 1

S+
3

S3

P−→ 1

n4/3

(
1

S2

− 1

S+
2

)
P−→ 0.

Proof: Note that if U is Negative-binomial(r, e−2n−γ ) then for some d1 ∈ (0,∞)

P(U ≥ 3γ−1r) ≤ d1

n3

and thus, as n→∞,

P(max
i
C+
i ≥ (1 + 3γ−1)I) ≤ P(ui ≥ 3γ−1Ci for some i = 1, · · ·n)→ 0.

A similar calculation shows that, for some d2 ∈ (0,∞), as n→∞.

P( max
i=1,···N

C̃+
i ≥ d2)→ 0.

The first statement in the proposition now follows on combining the above two dis-

plays.

Next, note that for Negative-binomial(r, p), the first, second and third moments

are

M1 =
1

p
r(1− p)

M2 =
1

p2
[r2(1− p)2 + r(1− p)]

M3 =
1

p3
[r3(1− p)3 + 3r2(1− p)2 + r(4− 9p+ 7p2 − 2p3)].

From

S2(tn)

αn1+γ

P−→ 1 (3.7.6)
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and (3.3.1) it follows that S2 = Θ(n1+γ) and S3 = Θ(n1+3γ). Also, clearly,
∑

i Ci =

O(n).

Write D2
def
= S+

2 − S2 =
∑N

i=1(C̃+
i )2 +

∑
i(2Ciui + u2

i ), then

E[D2|{Ci}i] ≤ d2

(
n · n−γ +

∑
i

[(Ci)2n−γ + (Ci)2n−2γ + Cin−γ]

)
= O(n)

thus D2/S2
P−→ 0 and consequently S+

2 /S2
P−→ 1.

Write D3
def
= S+

3 −S3 =
∑N

i=1(C̃+
i )3 +

∑
i[3(Ci)2ui + 3Ciu2

i +u3
i ]. One can similarly

show that

E[D3|{Ci}i] = O(n1+2γ)

thus D3/S3
P−→ 0 and so S+

3 /S3
P−→ 1.

To prove the third convergence, it suffices to prove

n4/3D2

(S2)2

P−→ 0. (3.7.7)

By the asymptotics shown above, we have

n4/3D2

(S2)2
= O(n4/3+1−2(1+γ)) = O(n1/3−2γ)

As γ > 1/6, (3.7.7) follows and thus the proof is completed. �

For scaled component size vector of COM+
n , the above proposition shows that

the statements in (3.7.2) hold with C̄i replaced with C̄+
i . In particular, the first and

third requirements in Proposition 4 of [2] are met by {C̄+
i } Also, using the second

convergence in (3.7.2), a calculation similar to that for (3.7.5) shows that

lim
n→∞

((
n2/3β−1/3

)2 b∗n(t+n )

n

β2/3α(λ− λn)

n1/3
− 1∑

i

(
C̄+
i (λn)

)2

)
→ λ.

Therefore the second requirement in Proposition 4 of [2] is satisfied. This proves

that

C̄
+
n (λ)

d−→X(λ). (3.7.8)
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in l2↓, for every λ ∈ R. Using Proposition 6 of [2] once again it now follows that

C̄
+
n

d−→X in D((−∞,∞) : l2↓).

3.7.2 Completing the proof of Theorem 3.1.1

By [3, 4], there is a natural partial order � on l2↓. Informally, interpreting an

element of l2↓ as a sequence of cluster sizes, x,y ∈ l2↓, x � y if y can be obtained from

x by adding new clusters and coalescing together clusters. The coupling constructed

in Section 3.7.1 gives that, for every, λ ∈ (λn, λ
+
n )

C̄
−
n (λ) � C̄BF

n (λ) � C̄+
n (λ).

Since, as n → ∞, λn → −∞ and λ+
n → +∞, (3.7.4), (3.7.8) along with Lemma 15

of [4] yield that

C̄
BF

n (λ)
d−→X(λ)

for all λ ∈ R.

Finally we argue convergence in D((−∞,∞) : l2↓). For x,y ∈ l2↓, let d2(x,y) =∑∞
i=1(xi− yi)2, x = {xi}, y = {yi}. Then d2(x,y) <

∑
i y

2
i −
∑

i x
2
i whenever x � y.

To prove that C̄
BF

n →X in D((−∞,∞) : l2↓) it suffices to prove that

sup
λ∈[λ1,λ2]

d(C̄
BF

n , C̄
−
n )

P−→ 0, for all−∞ < λ1 < λ2 <∞. (3.7.9)

Fix λ1, λ2 as above. Then

sup
λ∈[λ1,λ2]

d(C̄
BF

n , C̄
−
n ) ≤ sup

λ∈[λ1,λ2]

[
∑
i

(C̄+
i (λ))2 −

∑
i

(C̄−i (λ))2]. (3.7.10)

Let, for λ ∈ R,

U+(λ) =
∑
i

(C̄+
i (λ))2, U−(λ) =

∑
i

(C̄−i (λ))2 and V(λ) = U+(λ)− U−(λ).

From Lemma 15 of [4], V(λ)
P−→ 0 for every λ ∈ R. Thus it suffices to show that V is

tight in D((−∞,∞) : R+). Note that both U+ and U− are tight in D((−∞,∞) : R+).
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Although, in general difference of relatively compact sequences in the D-space need

not be relatively compact, in the current setting due to properties of the multiplica-

tive coalescent this difficulty does not arise. Indeed, if {Xx(t), t ≥ 0} denotes the

multiplicative coalescent on the positive real line with initial condition x ∈ l2↓ then,

for δ sufficiently small

sup
τ∈T (δ)

E
(
d2(Xx(τ),x) ∧ 1

)
≤E

[∑
i

(Xx
i (δ))2 −

∑
i

x2
i

]

≤2
∑
i<j

δxixj · 2xixj ≤ 2δ||x||4,

where, ||x|| = (
∑
x2
i )

1/2, T (δ) is the family of all stopping times (with the natural

filtration) bounded by δ. Using the above property, the Markov property of the

coalescent process and the tightness of supλ∈[λ1,λ2] U+(λ), supλ∈[λ1,λ2] U−(λ) one can

verify Aldous’s tightness criteria (see Theorem VI.4.5 in [20]) for V thus proving the

desired tightness. �
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CHAPTER 4: THE BOUNDED-SIZE-RULE PROCESSES

4.1 Introduction

In recent years, there has been an increasing interest in understanding the role of

limited choice along with randomness in the evolution of the network, in particular

how they affect the time and nature of emergence of the giant component. The

simplest such model that has been rigorously analyzed is the Bohman-Frieze process

which was studied in Chapter 3. In Chapter 5 we will show that all bounded-size-rule

processes have the same limiting behavior as the Bohman-Frieze model in the critical

window. In order to establish such a limit theorem, the first step is to understand the

asymptotics of the process right before it enters the critical window. This is the goal

of the current chapter. More precisely, in this chapter we study the bounded-size-rule

processes in the barely subcritical regime, i.e., when t = tc − n−γ for γ ∈ (0, 1/4),

and prove a useful upper bound of order n2γ log4 n on the sizes of components in

this regime. Furthermore, using a coupling between the bounded-size-rule processes

and some inhomogeneous random graph models, we give a new characterization of

the critical time for the phase transitions for all bounded-size-rule processes. These

results will form the key ingredients in the proof of the results in Chapter 5.

Organization of this chapter: In Section 4.2 we give a precise construction

of the bounded-size-rule processes and state our main theorems. Section 4.3 collects

some notation used in this chapter. In Section 4.4 we introduce and analyze certain

inhomogeneous random graphs associated with bounded-size-rule processes. Finally,

Section 4.5 completes the proofs of the main results, Theorems 4.2.2 and 4.2.3.



4.2 Model and main theorems

The bounded-size K-rule process {BSR(n)(t)}t≥0. Fix K ≥ 0, and let ΩK =

{1, 2, . . . , K,$}. Conceptually $ represents components of size greater than K.

Given a graph G and a vertex v ∈ G, write Cv(G) for the component that contains

v. Define

cG(v) :=

 |Cv(G)| if |Cv(G)| ≤ K

$ if |Cv(G)| > K
(4.2.1)

For a quadruple of (not necessarily distinct) vertices v1, v2, v3, v4, write ~v for the

ordered quadruple ~v = (v1, v2, v3, v4). Let cG(~v) = (cG(v1), cG(v2), cG(v3), cG(v4)).

Fix F ⊆ Ω4
K . The set F will be another parameter in the construction of the process.

The F -bounded-size rule(F -BSR) is defined as follows:

(a) At time k = 0 start with the empty graph BSR(n)

0 := 0n on [n] vertices.

(b) For k ≥ 0, having constructed the graph BSR(n)

k , construct BSR(n)

k+1 as follows.

Choose 4 vertices ~v = (v1, v2, v3, v4) uniformly at random amongst all n4 possible

quadruples and let ck(~v) = cBSRk
(~v). If ck(~v) ∈ F then BSR(n)

k+1 = BSR(n)

k ∪

(v1, v2) else BSR(n)

k+1 = BSR(n)

k ∪ (v3, v4).

Mathematically it is more convenient to work with a formulation in which edges

are added at Poissonian time instants rather than at fixed discrete times. More

precisely, we will consider the following random graph process (denoted once more

as BSR(n)(t)). For every quadruple of vertices ~v = (v1, v2, v3, v4) ∈ [n]4, let P~v

be a Poisson process with rate 1/2n3, independent between quadruples. Note that

this implies that the rate of creation of edges is n4 × 1/2n3 = n/2. Thus we have

sped up time by a factor n/2 as in the above discrete time construction. Start with

BSR(n)(0) = 0n. For any t ≥ 0, at which there is a point in P~v for a quadruple
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~v ∈ [n]4, define

BSR(n)(t) =

 BSR(n)(t−) ∪ (v1, v2) if ct−(~v) ∈ F

BSR(n)(t−) ∪ (v3, v4) otherwise,

where ct−(~v) = cBSR(t−)(~v).

Two examples of such processes are Erdős-Rényi process (here K = 0, ΩK =

{$} and F = {($,$,$,$)}) and Bohman-Frieze process (here K = 1, ΩK =

{1, $} and F = {(1, 1, j3, j4) : j3, j4 ∈ ΩK}). Spencer and Wormald[31] showed

that every bounded-size rules exhibits a phase transition similar to the Erdős-Rényi

random graph process. More precisely, write C(n)

i (t) for the i-th largest component

in BSR(n)(t), and |C(n)

i (t)| for the size of this component. Define the susceptibility

function

S2(t) =
∞∑
i=1

|C(n)

i (t)|2. (4.2.2)

Then [31] proves the following result.

Theorem 4.2.1 (Theorem 1.1, [31]). Fix F ∈ Ω4
K . Then for the random graph pro-

cess associated with the F -BSR, there exists deterministic monotonically increasing

function s2(t) and a critical time tc such that limt↑tc s2(t) =∞ and

S2(t)

n

P−→ s2(t) as n→∞, for all t ∈ [0, tc).

For fixed t < tc, |C(n)

1 (t)| = O(log n) while for t > tc, |C(n)

1 (t)| = ΘP (n).

Here we use o,O,Θ in the usual manner. Given a sequence of random variables

{ξn}n≥1 and a function f(n), we say ξn = O(f) if there is a constant C such that

ξn ≤ Cf(n) with high probability (whp), and we say ξn = Ω(f) if there is a constant

C such that ξn ≥ Cf(n) whp. Say that ξn = Θ(f) if ξn = O(f) and ξn = Ω(f). In

addition, we say ξn = o(f) if ξn/f(n)
P−→ 0.

Thus as t transitions from less than tc to greater than tc, the size of the largest

component jumps from size O(log n) to a giant component Θ(n). The aim of this
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chapter is to study the barely subcritical regime, i.e. to analyze the behavior of the

size of the largest component at times t = tc− εn where εn → 0. The following is the

main result.

Theorem 4.2.2 (Barely subcritical regime). Fix F ⊂ Ω4
K and γ ∈ (0, 1/4). Then

there exists B ∈ (0,∞) such that,

P
{
|C(n)

1 (t)| ≤ B
(log n)4

(tc − t)2
, ∀t ≤ tc − n−γ

}
→ 1,

as n→∞.

As another consequence of our proofs, we obtain an alternative characteriza-

tion of the critical time for a bounded-size rule given in Theorem 4.2.3 below. Let

X = [0,∞) × D([0,∞) : N0) where D([0,∞) : N0) is the Skorohod D-space of

functions that are right continuous and have left limits with values in the space of

nonnegative integers, equipped with the usual Skorohod topology. Given a finite

measure µ on (X ,B(X )) and a measurable map κ : X × X → [0,∞) satisfying∫
X×X κ

2(x,y)µ(dx)µ(dy) <∞, define the integral operator K : L2(X , µ)→ L2(X , µ)

as

Kf(x) =

∫
X
κ(x,y)f(y)µ(dy), f ∈ L2(X , µ), x ∈ X .

We refer to κ as a kernel on X × X and K as the integral operator associated with

(κ, µ). We will show the following result.

Theorem 4.2.3 (Characterization of the critical time). Fix F ⊂ Ω4
K . Then

there exists a collection of kernels {κt}t≥0 on X × X and finite measures {µt}t≥0 on

(X ,B(X )) such that the integral operators Kt associated with (κt, µt), t > 0, have the

property that the operator norms ρ(t) = ‖Kt‖ are continuous and strictly increasing

in t. Furthermore, tc is the unique time instant such that ρ(tc) = 1.

See Section 4.4.3 for a precise definition of κt and µt. Using arguments similar

to [23] for the Bohman-Frieze model, one can show that for any fixed ε > 0, the
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size of the largest component at time t = tc − ε can be lower bounded as |C(n)

1 (t)| ≥

A log n/(tc − t)2 where A is a constant independent of ε. Thus up to logarithmic

factors one expects the upper bound in Theorem 4.2.2 to be tight.

Theorem 4.2.2 plays a central role in the study of the asymptotic dynamic behavior

of the process describing the vector of component sizes and associated surpluses for

BSR processes in the critical scaling window and its connections with the augmented

multiplicative coalescent process. This study is the subject of Chapter 5 to which we

refer the reader for details.

4.3 Notation

We collect some notation used through the rest of the chapter. All unspecified

limits are taken as n→∞. We use
P−→ and

d−→ to denote convergence in probability

and in distribution respectively. Given a sequence of events {En}n≥1, we say En

occurs with high probability (whp) if P{En} → 1.

For a set S and a function g : S → Rk, we write ||g||∞ =
∑k

i=1 sups∈S |gi(s)|,

where g = (g1, · · · gk). For a Polish space S, we denote by BM(S), the space of

bounded measurable functions on S (equipped with the Borel sigma-field B(S).) For a

finite set S, |S| denotes the number of elements in the set. N0 is the set of nonnegative

integers. For ease of notation, we shall often suppress the dependence on n and shall

write for example BSR(t) = BSR(n)(t). Recall the Poisson processes P~v used to

construct BSR(·) in Section 4.1. Let {Ft}t≥0 be the associated filtration: Ft =

σ {P~v(s) : s ≤ t, ~v ∈ [n]4}. We shall often deal with {Ft}-semimartingales {J(t)}t≥0

of the form

dJ(t) := α(t)dt+ dM(t), (4.3.1)

where M is a {Ft} local martingale. We shall denote α = d(J) and M = M(J).

For a local martingale M(t), we shall write 〈M,M〉(t) for the predictable quadratic
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variation process namely the predictable process of bounded variation such that

M(t)2 − 〈M,M〉(t) is a local martingale.

4.4 Inhomogeneous random graphs

Fix K ≥ 0 and a general bounded-size rule F ⊆ Ω4
K and recall that {BSR(t)}t≥0

denotes the continuous time bounded-size rule process started with the empty graph

at t = 0. Note that K = 0 case corresponds to the Erdős-Rényi random graph

process for which results such as Theorem 4.2.2 are well known. Thus, henceforth

we shall assume K ≥ 1. We begin in Section 4.4.1 by analyzing the proportion of

vertices in components of size i for i ≤ K. As shown in [31], these converge to a

set of deterministic functions which can be characterized as the unique solution of

a set of differential equations. We will need precise rates of convergence for these

proportions which we establish in Lemma 4.4.2. We then study the evolution of

components of size larger than K in Section 4.4.2. Finally, we relate the evolution of

these components to an inhomogeneous random graph (IRG) model in Section 4.4.3.

4.4.1 Density of vertices in components of size bounded by K

Recall from Section 4.1, (4.2.1) that ct(v) = cBSR(t)(v), for v ∈ [n]. For t ≥ 0 and

i ∈ ΩK , define

Xi(t) = | {v ∈ [n] : ct(v) = i} | and x̄i(t) = Xi(t)/n. (4.4.1)

Following [31], the first step in analyzing bounded-size rules is understanding the

evolution of x̄i(·) as functions of time as n→∞. Although [31] proves the convergence

of x̄i(t) as n→∞, we give here a self contained proof of this convergence with precise

rates of convergence that will be needed in the proof of Theorem 4.2.2.

Note that the BSR process changes values at the occurrence of points in the
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Poisson processes P~v, ~v ∈ [n]4. We call each such occurrence as a ‘round’ and call

a round redundant if the added edge in that round joins two vertices in the same

component. Note that such rounds do not have any effect on component sizes or on

the vector x̄(t) = (x̄1(t), x̄2(t), . . . , x̄K(t), x̄$(t)). We will in fact observe that such

rounds are quite rare. We now describe the effect of non-redundant rounds on x̄(·).

For ~j ∈ Ω4
K and i ∈ ΩK , write ∆(~j; i) for the change ∆Xi(t) := Xi(t) − Xi(t−)

at an occurrence time t if the chosen quadruple ~v ∈ [n]4 satisfies ct−(~v) = ~j and

the round is not redundant. It is easy to check (see Section 2.1, [31]) that, when

~j = (j1, j2, j3, j4) ∈ F ,

∆(~j; i) = i · (1{j1+j2=i} − 1{j1=i} − 1{j2=i}), for 1 ≤ i ≤ K,

∆(~j;$) = 11{j1+j2=$}(j111{j1≤K} + j211{j2≤K}),

with the convention j1 + j2 = $ when the sum of j1, j2 is greater than K, and

j1 +$ = $+ j1 = $ for all j1 ∈ ΩK . For ~j = (j1, j2, j3, j4) ∈ F c one uses the second

edge {v3, v4} and the expressions for ∆(~j; i) are identical to the above, with (j3, j4)

replacing (j1, j2). Note that the corresponding change in the density x̄i(t) = Xi(t)/n

is given by ∆(~j; i)/n. For ~j ∈ Ω4
K and t > 0, write

Q(t;~j) :=
{
~v ∈ [n]4 : ct(~v) = ~j

}
.

Since each quadruple ~v ∈ [n]4 is selected according to the Poisson process P~v with

rate 1/2n3, the above description of the jumps of Xi(·) leads to a semi-martingale

decomposition of x̄i of the form (4.3.1) with

d(x̄i)(t) =
∑
~j∈F

∑
~v∈Q(t;~j)

∆(~j; i)

2n4
11 {Cv1(t) 6= Cv2(t)}+

∑
~j∈F c

∑
~v∈Q(t;~j)

∆(~j; i)

2n4
11 {Cv3(t) 6= Cv4(t)} ,

(4.4.2)

where Cv(t) := Cv(BSR(t)) denotes the component containing v in BSR(t).

Define for i ∈ ΩK , the functions Fi : [0, 1]K+1 → R mapping the vector x =
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(x1, x2, ..., xK , x$) ∈ RK+1 to

F x
i (x) =

1

2

∑
~j∈F

∆(~j; i)xj1xj2xj3xj4 +
1

2

∑
~j∈F c

∆(~j; i)xj1xj2xj3xj4 . (4.4.3)

Note that |∆(~j; i)| ≤ 2K for all ~j ∈ Ω4
K . Also,

max

∑
~j∈F

∑
~v∈Q(t;~j)

11 {Cv1(t) = Cv2(t)} ,
∑
~j∈F c

∑
~v∈Q(t;~j)

11 {Cv3(t) = Cv4(t)}

 ≤ n3K.

Thus we have

|d(x̄i)(t)− F x
i (x̄(t))| ≤ 2K

2n4
· 2Kn3 =

2K2

n
. (4.4.4)

Note that x̄1(0) = 1 while x̄i(0) = 0 for other i ∈ ΩK . Guided by equations (4.4.2) –

(4.4.4), [31] considered the system of differential equations for x(t) := (xj(t) : j ∈ ΩK)

x′i(t) = F x
i (x(t)), i ∈ ΩK , t ≥ 0, x(0) = (1, 0, ..., 0), (4.4.5)

and showed the following result.

Theorem 4.4.1 (Theorem 2.1, [31]). Equation (4.4.5) has a unique solution. For all

i ∈ ΩK and t > 0, xi(t) > 0. Furthermore
∑

i∈ΩK
xi(t) = 1 and limt→∞ x$(t) = 1.

[31] also showed that the functions x̄i(t)
P−→ xi(t) for each fixed t ≥ 0. We will

need precise rates of convergence for our proofs for which we establish the following

result.

Lemma 4.4.2. Fix δ ∈ (0, 1/2) and T > 0. There exist C1, C2 ∈ (0,∞) such that for

all n,

P

(
sup
i∈ΩK

sup
s∈[0,T ]

|x̄i(t)− xi(t)| > n−δ

)
< C1 exp

(
−C2n

1−2δ
)
.

Proof. Note that F x
i (·) is a Lipchitz function, indeed for x, x̃ ∈ [0, 1]K+1,

|F x
i (x)− F x

i (x̃)| ≤ 4K(K + 1)4
∑
i∈ΩK

|xi − x̃i| ≤ 4K(K + 1)5 sup
i∈ΩK

|xi − x̃i|.
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Write D(t) := supi∈ΩK
|x̄i(t) − xi(t)| and Mi(t) := M(x̄i)(t). Using (4.4.4), we get

for all i ∈ ΩK and t ∈ [0, T ],

|x̄i(t)− xi(t)| ≤
∫ t

0

|F x
i (x̄(s))− F x

i (x(s))|ds+ T · 2K2

n
+ |Mi(t)|

≤4K(K + 1)5

∫ t

0

D(s)ds+ T · 2K2

n
+ |Mi(t)|.

Taking supi∈ΩK
on both sides and using Gronwall’s lemma we have

sup
t∈[0,T ]

D(t) ≤

(
sup
i∈ΩK

sup
t∈[0,T ]

|Mi(t)|+
2TK2

n

)
e4K(K+1)5T .

Thus, for a suitable d1 ∈ (0,∞),

P

{
sup
t∈[0,T ]

D(t) > n−δ

}
≤
∑
i∈ΩK

P

{
sup
t∈[0,T ]

|Mi(t)| > d1n
−δ

}
. (4.4.6)

To complete the proof we will use exponential tail bounds for martingales. From

Theorem 5 in Section 4.13 of [25] we have that, for a square integrable martingale

M with M(0) = 0, |∆M(t)| ≤ c for all t, and 〈M,M〉(T ) ≤ Q, a.s., for some

c,Q ∈ (0,∞),

P
{

sup
0≤t≤T

|M(t)| > α

}
≤ 2 exp

{
− sup

λ>0
[αλ−Qψ(λ)]

}
, for all α > 0,

where ψ(λ) = eλc−1−λc
c2

. Optimizing over λ, we get the bound

P
{

sup
0≤t≤T

|M(t)| > α

}
≤ 2 exp

{
−α
c

log

(
1 +

αc

Q

)
+

[
α

c
− Q

c2
log

(
1 +

αc

Q

)]}
.

(4.4.7)

In our context, note that for any i ∈ ΩK , |∆Mi(t)| = |∆x̄i(t)| ≤ 2K/n. Also, the

total rate of jumps is bounded by n4 · 1
2n3 . Thus for all i ∈ ΩK , the quadratic variation

process

〈Mi,Mi〉(T ) ≤
∫ T

0

(
2K

n

)2

× n4

2n3
dt =

2K2T

n
.

Taking α = d1n
−δ, Q = 2K2T/n and c = 2K/n in (4.4.7) completes the proof. �
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4.4.2 Evolution of components of size larger than K

Let BSR∗(t) denote the subgraph of BSR(t) consisting of components of size

greater than K. In this section, we will focus on the dynamics and evolution of

BSR∗(t). Note that BSR∗(0) = ∅, i.e. a graph with no vertices or edges. As time

progresses components of size less than K merge and components of size greater than

K emerge. Three distinct types of events affect the evolution BSR∗(t):

1. Immigration: This occurs when two components of size ≤ K merge into a single

component of size > K. We view the resulting component as a new immigrant into

BSR∗(t). Note that the first component to appear in BSR∗(t) is an immigrant.

2. Attachments: This occurs when a component of size ≤ K gets linked to a

component of size larger than K. The former component enters BSR∗(t) via

attaching itself to a component of size larger than K.

3. Edge formation: Two distinct components of size larger than K merge into a

single component via formation of an edge between these components. In this

case, the vertex set of BSR∗(t) remains unchanged.

We now introduce some functions that describe the rate of occurrence for each of the

three types of events. For i1, i2 ∈ ΩK , define F x
i1,i2

: [0, 1]K+1 → R as

F x
i1,i2

(x) =
1

2

 ∑
~j∈F :{j1,j2}={i1,i2}

xj1xj2xj3xj4 +
∑

~j∈F c:{j3,j4}={i1,i2}

xj1xj2xj3xj4

 . (4.4.8)

For i1, i2 ≤ K, denote n · Ri1,i2(t) as the rate at which two components of size i1, i2

merge. When i1 6= i2, this rate is precisely

(2n3)−1[
∑
~j∈F

{j1,j2}={i1,i2}

Xj1(t)Xj2(t)Xj3(t)Xj4(t) +
∑
~j∈F

{j3,j4}={i1,i2}

Xj1(t)Xj2(t)Xj3(t)Xj4(t)] := n · F x
i1,i2

(x̄(t)).

72



Thus Ri1,i2(t) = F x
i1,i2

(x̄(t)). The case i1 = i2 ≤ K is more subtle due to redundant

rounds linking vertices in the same component. The rate of redundant rounds can be

bounded by 1
2n3 ·Kn3 · 2 = K, from which it follows that

|Ri,i(t)− F x
i,i(x̄(t))| ≤ K

n
.

The case i1 = i2 = $ corresponds to creation of edges in BSR∗(t) and n ·F x
$,$(x̄(t))

is the rate of creation of such edges.

We now give expressions for the rates for the three types of events that govern the

evolution of BSR∗(t). The convention followed for the rest of this section is that for

i1, i2 ∈ ΩK , i1 + i2 = $ when the sum of is greater than K, and $+ i1 = i1 +$ = $

for all i1 ∈ ΩK .

I. Immigrating vertices: For 1 ≤ i ≤ K, write Ii(t) := n · a∗i (t) for the rate at

which components of size K + i immigrate into BSR∗(t) at time t. Using the above

expressions for the rate of merger of components of various sizes we have∣∣∣∣∣a∗i (t)− ∑
1≤ii,i2≤K:i1+i2=K+i

F x
i1,i2

(x̄(t))

∣∣∣∣∣ ≤ K

n
. (4.4.9)

As before the error is due to redundant rounds which can only occur for i1 = i2 = (K+

i)/2 (and when (K + i)/2 is an integer). Now define functions F a
i : [0, 1]K+1 → R+,

and ai(·) : [0,∞)→ [0,∞) by

F a
i (x) =

∑
1≤ii,i2≤K,
i1+i2=K+i

F x
i1,i2

(x), ai(t) = F a
i (x(t)), (4.4.10)

where x(t) is as in (4.4.5). Then (4.4.9) says that

sup
t∈[0,∞)

|a∗i (t)− F a
i (x̄(t))| ≤ K/n. (4.4.11)

Note that for any δ < 1, the error term in (4.4.11) is o(n−δ). Using this observation

along with the Lipschitz property of Fi1,i2 , we have from Lemma 4.4.2 that for any
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fixed T > 0 and δ < 1/2,

P( sup
1≤i≤K

sup
s∈[0,T ]

|a∗i (t)− ai(t)| > n−δ) ≤ C1 exp(−C2n
1−2δ). (4.4.12)

The constants C1, C2 here may be different from those in Lemma 4.4.2, however for

notational ease we use the same symbols.

II. Attachments: Fix 1 ≤ i ≤ K and a vertex v contained in a component in

BSR∗(t). Let, for i ≤ K, c∗i (t) denote the rate at which a component of size i attaches

itself to the component of v through an edge connecting the former component to v.

This rate can be calculated as follows. First note that the total rate of merger between

a component of size i with a component in BSR∗(t) is n ·F x
i,$(x̄(t)). Since there are

X$(t) vertices in BSR∗(t) each of which has the same probability of being the vertex

through which this attachment event happens, the rate at which a component of size

i attaches to v is given by nF x
i,$(x̄(t))/X$(t) = F x

i,$(x̄(t))/x̄$(t). Since x$ is a factor

of F x
i,$(x), c∗i (t) is a polynomial in x̄(t). Define the functions F c

i : [0, 1]K+1 → R and

ci(·) : R+ → R+ as

F c
i (x) = F x

i,$(x)/x$, ci(t) = F c
i (x(t)). (4.4.13)

Then c∗i (t) = F c
i (x̄(t)). Once again using Lemma 4.4.2 we get for any δ < 1/2 and

T > 0,

P( sup
1≤i≤K

sup
s∈[0,T ]

|c∗i (t)− ci(t)| > n−δ) ≤ C1 exp(−C2n
1−2δ). (4.4.14)

III. Edge formation: Note that the rate of creation of an edge between vertices in

BSR∗(t) is nF x
$,$(x̄(t)). Since such an edge is equally likely to be between any of

the X2
$(t) pairs of vertices in BSR∗(t), we have that the rate of creation of an edge

between specified vertices {v1, v2} with v1, v2 ∈ BSR∗(t) is b∗(t)/n where b∗(t) =

F x
$,$(x̄(t))/x2

$(t). Define F b : [0, 1]K+1 → R and b(·) : R+ → R+ as

F b(x) = F x
$,$(x)/x2

$ and b(t) = F b(x(t)). (4.4.15)
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Once more it is clear that F b(x) is a polynomial and furthermore b∗(t) = F b(x̄(t)),

so by Lemma 4.4.2, for any δ < 1/2 and T > 0,

P( sup
s∈[0,T ]

|b∗(t)− b(t)| > n−δ) ≤ C1 exp(−C2n
1−2δ). (4.4.16)

Write a(t) := {ai(t)}1≤i≤K and c(t) := {ci(t)}1≤i≤K . We refer to (a, b, c) as rate

functions. In the proposition below we collect some properties of these rate functions.

These properties are easy consequences of Theorem 4.4.1.

Proposition 4.4.3. (a) For all 1 ≤ i ≤ K and t > 0, b(t), ai(t), ci(t) > 0.

(b) We have

‖a‖∞ := sup
t≥0

K∑
i=1

ai(t), ‖c‖∞ := sup
t≥0

K∑
i=1

ci(t), ‖b‖∞ := sup
t≥0

b(t),

and max {‖a‖∞, ‖c‖∞, ‖b‖∞} ≤ 1/2.

(c) limt→∞ b(t) = 1/2.

Proof: Part(a) follows from Theorem 4.4.1 and the definition of the functions.

For (b) observe that

K∑
i=1

ai(t) =
K∑
i=1

F a
i (x(t)) ≤ 1

2

∑
~j∈ΩK

xj1(t)xj2(t)xj3(t)xj4(t) =
1

2

[∑
i∈ΩK

xi(t)

]4

=
1

2
.

Statements on ‖c‖∞, ‖b‖∞ follow similarly.

For (c), note that F x
$,$(x) ≥ x4

$/2 since when all the four vertices selected are

from components of size greater than K, two components of size greater than K will

surely be linked. From Theorem 4.4.1 limt→∞ x$(t) = 1 and thus lim supt→∞ b(t) ≥

x2
$(t)/2. The result now follows on combining this with (b). �

4.4.3 Connection to inhomogeneous random graphs

In this section, we describe the inhomogeneous random graph (IRG) models that

have been studied extensively in [11], and then approximate BSR∗(t) by a special
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class of such models. We will in fact use a variation of the models in [11] which

uses a suitable weight function to measure the volume of a component. We begin by

defining the basic ingredients in this model. Let X be a Polish space, equipped with

the Borel σ-field B(X ). We shall sometimes refer to this as the type space. Let µ

be a non-atomic finite measure on X which we shall call the type measure on X . A

kernel will be a symmetric non-negative product measurable function κ : X×X → R

and a weight function φ : X → R will be a non-negative measurable function on

X . We call such a quadruple {X , µ, κ, φ} a basic structure.

The inhomogeneous random graph with weight function (IRG): Associ-

ated with a basic structure {X , µ, κ, φ}, the IRG model RG(n)(X , µ, κ, φ) is a random

graph described as follows:

(a) Vertices: the vertex set V of this random graph is a Poisson point process on

the space X with intensity measure nµ.

(b) Edges: an edge is added between vertices x,y ∈ V with probability 1 ∧ κ(x,y)
n

,

independent across different pairs. This defines the random graph.

(c) Volume: The volume of a component C of RG(n)(X , µ, κ, φ) is defined as

volφ(C) :=
∑
x∈C

φ(x). (4.4.17)

For the rest of this section we take

X := [0,∞)×W where W := D([0,∞) : N0). (4.4.18)

We first describe how, for each t > 0, BSR∗(t) can be identified with a random

graph with vertex set in X . Recall the three types of events governing the evolution

of BSR∗(t), described in Section 4.4.2. Each component in BSR∗(t) contains at

least one group of K + i vertices, i = 1, · · · , K which appeared at instant s ≤ t in
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BSR∗(·), as an immigrant. We denote the collection of all such groups as Imm(t). For

C ∈ Imm(t), we denote by τC ∈ (0, t] the instant this immigrant appears. Also, to each

C ∈ Imm(t), we associate a path inD([0,∞) : N0), denoted as wC, such that wC(s) = 0

for all s < τC; wC(s) = wC(t) for all s ∈ [t,∞); and for s ∈ [τC, t], wC(s) = |AC(s)|,

where AC(s) denotes the component that is formed by C and all the attachment

components that link to C over the time interval [τC, s]. Then {(τC, wC) : C ∈ Imm(t)}

is a point process on X and forms the vertex set of a random graph which we denote

by Γ(t). We form edges between any two vertices (τC, wC), (τ ′C, w
′
C) in Γ(t) if the

components AC(t) and AC′(t) are directly linked by some edge in BSR∗(t).

Define, for t > 0, the weight function φt : X → [0,∞) as

φt(x) = φt(s, w) = w(t), x = (s, w) ∈ X . (4.4.19)

Note that by construction there is a one to one correspondence between the com-

ponents in BSR∗(t) and the components in Γ(t). For a component C0 in BSR∗(t),

denote by IC0 the corresponding component in Γ(t). Then note that

|C0| = volφt(IC0). (4.4.20)

We will now describe inhomogeneous random graph models that approximate

Γ(t) (and hence BSR∗(t)). Given a set of nonnegative continuous bounded functions

α = {αi}1≤K , β and γ = {γi}1≤i≤K on [0,∞) we construct, for each t > 0, type

measures µt(α, β,γ) and kernels κt(α, β,γ) on X as follows. For i = 1, · · ·K and

s ∈ [0,∞), denote by ν̃s,i the probability law on D([s,∞) : N0) of the Markov process

{w̃(r)}r∈[s,∞) with infinitesimal generator

(A(u)f)(k) =
K∑
j=1

kγj(u)(f(k + j)− f(k)), f ∈ BM(N0) (4.4.21)

and initial condition w̃(s) = K + i. In words, this is a pure jump Markov process

which starts at time s at state K + i and then at any time instant u > s, has jumps
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of size j at rate γj(u). Denote by νs,i the probability law on D([0,∞) : N0) of the

stochastic process {w(r)}r∈[0,∞), defined as

w(r) = w̃(r) for r ≥ s , w(r) = 0 otherwise. (4.4.22)

Now define the finite measure µt(α, β,γ) ≡ µt as∫
X
f(x)dµt(x) =

K∑
i=1

∫ t

0

αi(u)

(∫
W
f(u,w)νu,i(dw)

)
du, f ∈ BM(X ). (4.4.23)

Next, define the kernel κt(α, β,γ) ≡ κt on X × X as

κt(x,y) = κt((s, w), (r, w̃)) =

∫ t

0

w(u)w̃(u)β(u)du, x = (s, w),y = (r, w̃) ∈ X .

(4.4.24)

With the above choice of µt, κt and with weight function φt as in (4.4.19) we now con-

struct the random graph RG(n)(X , µt, κt, φt) which we denote by RG(n)(α, β,γ)(t).

We will refer to the set of functions (α, β,γ) as above, as rate functions. These

rate functions will typically arise as small perturbations of the functions (a, b, c),

thus in view of Proposition 4.4.3(b) it will suffice to consider (α, β,γ) such that

max{||α||∞, ||β||∞, ||γ||∞} < 1. Throughout this chapter we will assume that all rate

functions (and their perturbations) satisfy this bound.

The following key result says that for large n, Γ(t) is suitably close to RG(a, b, c)(t),

where (a, b, c) are the rate functions introduced below (4.4.16). In order to state the

result precisely, we extend the notion of a “subgraph” to the setting with type space

X and weight function φ. For i = 1, 2, consider graphs Gi, with finite vertex set

Vi ⊂ X and edge set Ei. We say G1 is a subgraph of G2, and write G1 ⊂ G2, if there

exists a one to one mapping Ψ : V1 → V2 such that

(i) φ(x) ≤ φ(Ψ(x)), for all x ∈ V1.

(ii) {x1,x2} ∈ E1 implies {Ψ(x1),Ψ(x2)} ∈ E2.
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Lemma 4.4.4. Fix δ ∈ (0, 1/2) and let εn = n−δ, n ≥ 1. Define, for t > 0, the set of

functions a−(t) := {(ai(t)− εn) ∨ 0}1≤i≤K , a+(t) := {ai(t) + εn}1≤i≤K and similarly

c−(t), c+(t) and b−(t), b+(t). Define the inhomogeneous random graphs (IRG) with

the above rate functions by

RG−(t) := RG(a−, b−, c−)(t), RG+(t) := RG(a+, b+, c+)(t).

Then for every T > 0 there exist C3, C4 ∈ (0,∞), such that for all t ∈ [0, T ], there

is a coupling of RG−(t), RG+(t) and Γ(t) such that,

P
{
RG−(t) ⊂ Γ(t) ⊂ RG+(t)

}
> 1− C3 exp

{
−C4n

1−2δ
}
.

Proof: The coupling between the three graphs is done in a manner such that

Γ(t) is obtained by a suitable thinning of vertices and edges in RG+(t) and RG−(t)

is obtained by a thinning of Γ(t). We will only provide details of the first thinning

step. We first construct the vertex sets V+ and V∗ in RG+(t) and Γ(t) respectively.

Let V+ be a Poisson point process on X with intensity nµ+
t , where µ+

t :=

µt(a
+, b+, c+). For a fixed realization of V+, denote by (x+

1 , · · · , x+
N), the points in V+,

with x+
i = (s+

i , w
+
i ) and 0 < s+

1 < s+
2 · · · s+

N < t. Write w+ = (w+
1 , · · ·w+

N). We now

construct vertices in the corresponding realization of Γ(t) (denoted as {x1, · · ·xN0}),

along with the realizations of x̄i(s), i ∈ ΩK , 0 ≤ s ≤ t, which then defines

(a∗j(s), b
∗(s), c∗j(s)) for 0 ≤ s ≤ t, j = 1, · · · , K,

as functions of x̄(s) = (x̄i(s))i∈ΩK in Section 4.4.2. For that, we will construct

functions wj : [0, t] → N0, 1 ≤ j ≤ N and x̄i : [0, t] → [0, 1], i ∈ ΩK . We will only

describe the construction of wj, x̄i until the first time instant s ∈ (0, t], when the

property

a∗j(s) ≤ a+
j (s), b∗(s) ≤ b+(s), c∗j(s) ≤ c+

j (s) for all 1 ≤ k ≤ K (4.4.25)
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is violated. Denote σ for the first time that (4.4.25) is violated with σ taken to be t if

the property holds for all s ∈ [0, t]. Subsequent to that time instant the construction

can be done in any fashion that yields the correct probability law for Γ(t). For

simplicity, we assume henceforth that σ = t. After obtaining the functions wj, x̄i, we

set x∗i = (τ ∗i , w
∗
i ), where τ ∗i is the first jump instant of wi (taken to be +∞ if there are

no jumps) and w∗i ∈ D([0,∞) : N0) is defined as w∗i (s) = wi(s)1[0,t](s)+wi(t)1(t,∞)(s).

The vertex set V∗ is then defined as

V∗ = {x1, · · ·xN0} = {x∗i : τ ∗i < t, i = 1, · · ·N}.

We now give the construction of w(s) = (w1(s), · · ·wN(s)) and x̄(s) for s ≤ t.

Denote by {ti}Mi=1, 0 = t0 < t1 < t2 < ...tM < t, the collection of all time instants

of jumps of {w+
i }Ni=1 before time t. Denote by ik the coordinate of w+ that has a

jump at time tk, and denote the corresponding jump size by jk. We set w(0) = 0,

x̄i(0) = 0 for i 6= 1 and x̄1(0) = 1. The construction proceeds recursively over the

time intervals (tk−1, tk], k = 1, · · ·M + 1, where tM+1 = t. Suppose that (w(s), x̄(s))

have been defined for s ∈ [0, tk−1], for some k ≥ 1. We now define these functions

over the interval (tk−1, tk].

Step 1: s ∈ (tk−1, tk). Set w(s) = w(tk−1). The values of x̄(s) over the interval will

be given as a realization of a jump process, for which jumps at time instant s occur

at rates n · Ri1,i2(s), i1, i2 ∈ {1, · · ·K}, i1 + i2 ≤ K, where the function Ri1,i2(s),

given as a function of x̄(s) is defined as in Section 4.4.2. A jump at time instant s,

corresponding to the pair (i1, i2) as above, changes the values of x̄ as: when i1 6= i2

x̄i1(s) = x̄i1(s−)− i1
n
, x̄i2(s) = x̄i2(s−)− i2

n
, x̄i1+i2(s) = x̄i1+i2(s−) +

i1 + i2
n

,

and when i1 = i2,

x̄i1(s) = x̄i1(s−)− 2i1
n
, x̄i1+i2(s) = x̄2i1(s−) +

2i1
n
.
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Remaining x̄i stay unchanged. The values of a∗i (s), b
∗(s), c∗i (s) are determined ac-

cordingly.

Step 2: s = tk. Recall that w+
ik

(tk)− w+
ik

(tk−) = jk. We define wi(tk) = wi(tk−) for

all i 6= ik. The values of wik(tk) and x̄(tk) are determined as follows.

Case 1: w+
ik

(tk−) = 0. In this case K + 1 ≤ jk ≤ 2K and tk is the first jump of

w+
ik

. Define for 1 ≤ l ≤ K, Qk(l) :=
∑l

i=1 Ri,jk−i(tk−), where by definition Ri,i′ = 0

if i′ > K. Note that Qk(K) = a∗jk(tk−). We set Qk(0) = 0. The values of wik(tk)

and x̄(tk) are now determined according to the realization of an independent Uniform

[0, 1] random variable uk as follows.

• If uk > Qk(K)/ajk(tk−), define (wik(tk), x̄(tk)) = (wik(tk−), x̄(tk−)).

• Otherwise, suppose 1 ≤ lk ≤ K is such that Qk(lk − 1) < uk ≤ Qk(lk). Then

define wik(tk) = jk, x̄$(tk) = x̄$(tk−) + jk
n

and

x̄lk(tk) = x̄lk(tk−)− lk
n
, x̄jk−lk(tk) = x̄jk−lk(tk−)− jk − lk

n
, if lk 6= jk − lk,

x̄lk(tk) = x̄lk(tk−)− 2lk
n
, if lk = jk − lk.

The value of all other xi processes at tk stay the same as their values at tk−.

Case 2: w+
ik

(tk−) 6= 0. In this case 1 ≤ jk ≤ K. Once again, the values of wik(tk)

and x̄(tk) are determined according to the realization of an independent Uniform

[0, 1] random variable uk as follows.

• If uk >
wik (tk−)c∗jk

(tk−)

w+
ik

(tk−)c+jk
(tk−)

, define (wik(tk), x̄(tk)) = (wik(tk−), x̄(tk−)).

• Otherwise,

wik(tk) = wik(tk−) + jk, x̄jk(tk) = x̄jk(tk−)− jk
n
, x̄$(tk) = x̄$(tk−) +

jk
n
,

and the value of all other xi processes stay the same as their value at tk−.
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This completes the construction of (w(s), x̄(s)) for s ∈ (tk−1, tk] and thus by this

recursive procedure and our earlier discussion we obtain the vertex set

V∗ = {x1, · · ·xN0} = {x∗i : τ ∗i < t, i = 1, · · ·N},

which will be used to construct Γ(t).

Having constructed vertex sets V+ and V∗, we now construct edges. For this we

take realizations of independent Uniform [0, 1] random variables {ui,j}1≤i<j<∞ and

construct edge between vertices x+
i and x+

j in V+ if

ui,j ≤
1

n

∫ t

0

b+(s)w+
i (s)w+

j (s)ds.

This completes the construction of RG+(t). Finally construct an edge between x∗i

and x∗j if both vertices are in V∗ and

ui,j ≤ 1− exp

{
− 1

n

∫ t

0

b∗(s)wi(s)wj(s)ds

}
.

This completes the construction of Γ(t). By construction Γ(t) ⊂ RG(a+, b+, c+)(t)

on the set σ = t. Also, from (4.4.12), (4.4.16) and (4.4.14) it follows that P(σ < t) ≤

C3 exp
{
−C4n

1−2δ
}

for suitable constant C3, C4. The result follows. �

The following is an immediate corollary of Lemma 4.4.4.

Corollary 4.4.5. Fix T > 0. Then with C3, C4 ∈ (0,∞) and , for t ∈ [0, T ], a

coupling of RG−(t), RG+(t) and Γ(t) as in Lemma 4.4.4:

P
{

volφt(IRG−

1 (t)) ≤ volφt(IΓ

1 (t)) ≤ volφt(IRG+

1 (t))
}

≥ 1− C3 exp(−C4n
1−2δ), (4.4.26)

where IΓ
1 (t) denotes the component in Γ(t) with the largest volume with respect to

the weight function φt, and IRG−
1 (t), IRG+

1 (t) are defined similarly.
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4.5 Proof of the main results

In this section, we will complete the proof of Theorems 4.2.2 and 4.2.3. Proof

of Theorem 4.2.3 is given in Section 4.5.4 while proof of Theorem 4.2.2 is given in

Section 4.5.5. Recall that Lemma 4.4.4 says that BSR∗ can be approximated by

RG(a, b, c). Sections 4.5.2 and 4.5.3 analyze properties of integral operators associ-

ated with RG(α, β,γ) for a general family of rate functions (α, β,γ). We begin in

Section 4.5.1 by presenting some results about an IRG model RG(n)(X , µ, κ, φ) on a

general type space X .

4.5.1 Preliminary lemmas

In this section, we collect some results about the general inhomogeneous random

graph model RG(n)(X , µ, κ, φ). Let K be the integral operator associated with (κ, µ),

as defined in Section 4.1. Recall that the operator norm of K, denoted as ‖K‖, is

defined as

‖K‖ = sup
f∈L2(X ,µ),f 6=0

‖Kf‖2

‖f‖2

, (4.5.1)

where for f ∈ L2(X , µ), ‖f‖2 =
(∫
X |f(x)|2µ(dx)

)1/2
.

Lemma 4.5.1. Fix (X , µ, κ, φ). Denote the vertex set of RG(n)(X , µ, κ, φ) ≡ RG(n)

by Pn which is a rate nµ Poisson point process on X . Let K be the integral operator

associated with (κ, µ). Suppose that ‖K‖ < 1 and let ∆ = 1− ‖K‖. Denote by IRG
1

the component in RG(n) with the largest volume (with respect to the weight function

φ).

Then the following hold.

(i) If ‖φ‖∞ <∞ and ‖κ‖∞ <∞, then for all m ∈ N and D ∈ (0,∞)

P{volφ(IRG

1 ) > m} ≤ 2nD exp{−C∆2m}+ P(|Pn| ≥ nD),
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where C = (8‖φ‖∞(1 + 3‖κ‖∞µ(X )))−1.

(ii) Let for n ≥ 1, Λn ∈ B(X ) be such that

g(n) := 8 sup
x∈Λn

|φ(x)|

(
1 + 3µ(X ) sup

(x,y)∈Λn×Λn

|κ(x,y)|

)
<∞.

Then for all m ∈ N,

P{volφ(IRG

1 ) > m} ≤ nµ(Λc
n) + 2nD exp(−∆2m/g(n)) + P(|Pn| ≥ nD).

Proof: Part (i) has been proved in Chapter 3. We now prove (ii). Consider

the truncated version of RG(n) constructed using the basic structure {X , µ̄, κ̄, φ̄}

where µ̄ := µ|Λn (i.e. the restriction of µ to Λn), κ̄(x,y) = κ(x,y)11Λn(x)11Λn(y) and

φ̄(x) = φ(x)11Λn(x). Note that ||κ̄||∞ <∞ and ||φ̄||∞ <∞. Denote by K̄ the integral

operator associated with (κ̄, µ̄). Clearly ‖K̄‖ ≤ ‖K‖ and thus ∆̄ = 1 − ‖K̄‖ ≥ ∆.

Consider the natural coupling between the truncated and original model by using the

vertex set P̄n := Pn ∩ Λn. Write ĪRG
1 for the component with the largest volume in

the truncated model. Then we have

P{volφ(IRG

1 ) > m} ≤P{Pn ∩ Λc
n 6= ∅}+ P{Pn ⊂ Λn, volφ(IRG

1 ) > m}

=P{Pn ∩ Λc
n 6= ∅}+ P{volφ(ĪRG

1 ) > m}

≤(1− exp{−nµ(Λc
n)}) + 2nD exp{−∆2m/g(n)}+ P(|Pn| ≥ nD),

where the last inequality follows from part (i) and the fact that ∆ ≤ ∆̄. �

We state the following two elementary lemmas, whose proof is omitted.

Lemma 4.5.2. Let κ, κ′ be kernels on a common finite measure space (X , µ), with the

associated integral operators K,K′ respectively. Then

(a) ‖K‖ ≤ ‖κ‖2,µ :=
(∫
X×X κ

2(x,y)µ(dx)µ(dy)
)1/2

.

(b) If κ ≤ κ′, then ||K|| ≤ ||K′||.
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(c) ||K − K′|| ≤ ||K̄||, where K̄ is the integral operator associated with (|κ− κ′|, µ).

Lemma 4.5.3. Let µ̃, µ be two finite measures on the space X . Assume µ̃ � µ and

let g = dµ̃/dµ be the Radon-Nikodym derivative. Let κ̃ be a kernel on X × X , and

define κ as

κ(x,y) :=
√
g(x)g(y)κ̃(x,y), x,y ∈ X .

Denote by K [resp. K̃] the integral operator on L2(X , µ) [resp. L2(X , µ̃)] associated

with (κ, µ) [resp. (κ̃, µ̃)]. Then ‖K‖L2(µ) = ‖K̃‖L2(µ̃), where ‖K‖L2(µ) [resp. ‖K̃‖L2(µ̃)]

is the norm of the operator K [resp. K̃] on L2(µ) [resp. L2(µ̃)].

We end this section with a lemma drawing a connection between the Yule process

and the pure jump Markov processes with distribution νs,i that arose in the construc-

tion of the inhomogeneous random graphs RG(α, β,γ), see (4.4.22). Fix j ≥ 1 and

recall that a rate one Yule process started at time t = 0 with j individuals is a pure

birth Markov process Y (t) with Y (0) = j and the rate of going from state i to i+ 1

given by λ(i) := i. Also recall from (4.4.18) that W denotes the Skorohod space

W := D([0,∞) : N0).

Lemma 4.5.4. Fix 1 ≤ i ≤ K and s ≥ 0 and rate functions α, β,γ. Let {w(t)}t≥0 be

a pure jump Markov process with law νs,i := νs,i(α, β,γ) as in (4.4.22). Then

(i) The process w∗(t) := w(t/K‖γ‖∞)/K can be stochastically dominated by a

Yule processes Y (·) starting with two particles (i.e. Y (0) = 2).

(ii) Fix t > 0, s ∈ [0, t] and 1 ≤ i ≤ K. Then we have∫
W

[w(t)]2νs,i(dw) ≤ 6K2e2tK‖γ‖∞ ,

and for any A > 0 we have

νs,i(w(t) > A) ≤ 2(1− e−tK‖γ‖∞)A/2K .
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Proof: Let us first prove (i). Note that under the law νs,i, the process w satisfies

w(u) = 0 for u < s and w(s) = K + i ≤ 2K. Further for times t > s, by (4.4.21),

the jumps of the w can be bounded as ∆w(t) := w(t)− w(t−) ≤ K at rate at most

w(t)‖γ‖∞. The process w∗(·) is obtained by rescaling time and space for the process

w(·). This is once again a pure jump Markov process with jump sizes ∆w∗(t) ≤ 1

which happen at rate at most one. Further w∗(0) ≤ 2. This immediately implies

that this process is stochastically dominated by a Yule process with Y (0) = 2. This

completes the proof.

We now consider (ii). We will use the result in part (i). Note that a Yule process

started with two individuals at time t = 0 has the same distribution as the sum of

two independent Yule processes {Y1(t)}t≥0 and {Y2(t)}t≥0 with Y1(0) = Y2(0) = 1.

Now fix t > 0, s ≤ t and 1 ≤ i ≤ K. Let w(·) have distribution νs,i. From (i) we

have

w(t) ≤d K · (Y1(tK‖γ‖∞) + Y2(tK‖γ‖∞)). (4.5.2)

For simplicity write X1 = Y1(tK‖γ‖∞) and X2 = Y2(tK‖γ‖∞). Well known results

about Yule processes ([27, Chapter 2]) say that the random variables X1 and X2 have

a Geometric distribution with p := e−tK‖γ‖∞ . The first bound in (ii) follows from the

Geometric distribution and the fact∫
W

[w(t)]2νs,i(dw) ≤ K2E[(X1 +X2)2].

The second bound in (ii) follows from

νs,i({w(t) > A}) ≤ 2P{X1 > A/2K}.

This completes the proof. �
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4.5.2 Some perturbation estimates for RG(a, b, c).

Recall that Lemma 4.4.4 coupled the evolution of Γ(t) (equivalently BSR∗(t))

with two inhomogeneous random graphs RG(a+, b, c+)(t) and RG(a−, b, c−)(t) which

can be considered as perturbations of RG(a, b, c)(t). The aim of this section is

to understand the effect of such perturbations on the associated operator norms.

Throughout this section X and φt are as in (4.4.18) and (4.4.19), respectively. Given

the basic structure {X , µt, κt, φt}, t > 0, associated with rate functions (α, β,γ), we

denote the norm of the integral operator Kt associated with (κt, φt) as ρt(α, β,γ).

The following proposition which is the main result of this section studies the

effect of perturbations of (α, β,γ) on this norm. For a K-dimensional vector v =

(v1, · · · vK) and a scalar θ, v + θ denotes the vector (v1 + θ, · · · vK + θ) and (v + θ)+

denotes the vector ((v1 + θ)+, · · · (vK + θ)+).

Proposition 4.5.5. For ε > 0 let ρ+
t = ρt(α+ε, β+ε,γ+ε) and ρ−t = ρt((α−ε)+, (β−

ε)+, (γ− ε)+), where (α, β,γ) are rate functions. Assume that max{||α+ ε||∞, ||β+

ε||∞, ||γ + ε||∞} < 1. For every T > 0, there is a C5 ∈ (0,∞) such that for all ε > 0

and t ∈ [0, T ],

max{|ρt − ρ+
t |, |ρt − ρ−t |} ≤ C5

√
ε · (− log ε)2 .

Proof of Proposition 4.5.5 relies on Lemmas 4.5.6 – 4.5.10 below, and is given at

the end of the section. We analyze the effect of perturbation of β, α and γ separately

in Lemmas 4.5.6, 4.5.8) and 4.5.10, respectively.

Lemma 4.5.6 (Perturbations of β). Let (α, β,γ) be rate functions and βε be be a

nonnegative function on [0,∞) with sup0≤s<∞ |βε(s)− β(s)| ≤ ε. Then

|ρt(α, β,γ)− ρt(α, βε,γ)| ≤ Cε,

where C = 6t2K3‖α‖∞e2t‖γ‖∞ .
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Proof: Let (µt, κt) be the type measure and kernel associated with (α, β,γ)

Note that a perturbation in β only affects the kernel κt and not µt. Recall the

representation of µt in terms of probability measures {νu,i, u ∈ [0, t], i = 1, · · · , K}.

From Lemma 4.5.4(ii)∫
W

[w(t)]2νu,i(dw) ≤ 6K2e2tK‖γ‖∞ , for all u ∈ [0, t], i = 1, · · ·K. (4.5.3)

Denote the kernel obtained by replacing β by βε in (4.4.24) by κεt . Since ‖β−βε‖∞ <

ε, we have from (4.4.24) that

|κt(x,y)− κεt(x,y)| ≤ ε

∫ t

0

w(u)w̃(u)du ≤ εtw(t)w̃(t),

µt ⊗ µt a.e. (x,y) = ((s, w), (r, w̃)).

By Lemma 4.5.2 (a) and (c) we now have

|ρt(α, β,γ)− ρt(α, βε,γ)| ≤
(∫
X×X
|κt(x,y)− κεt(x,y)|2dµt(x)dµt(y)

)1/2

≤
(∫
X×X

(εtw(t)w̃(t))2dµt(x)dµt(y)

)1/2

=εt
K∑
i=1

∫ t

0

αi(s)

[∫
W

[w(t)]2νs,i(dw)

]
ds

≤εt · t‖α‖∞ ·K · 6K2e2tK‖γ‖∞ ,

where the last inequality follows from (4.5.3). The result follows. �

When α or γ is perturbed, the underlying measure µt changes as well and thus

one needs to analyze the corresponding Radon-Nikodym derivatives. This is done

in the following two lemmas. We denote by {Gs}0≤s<∞ the canonical filtration on

D([0,∞) : N0). In the following we follow the convention that 0/0 = 1.

Lemma 4.5.7. Fix ε > 0 and let (α, β,γ), (α̃, β̃, γ̃) be two sets of rate functions such

that for all 1 ≤ i ≤ K and s ≥ 0,

αi(s)− ε ≤ α̃i(s) ≤ αi(s), and γi(s)− ε ≤ γ̃i(s) ≤ γi(s).
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Fix t ≥ 0 and let µt and µ̃t be the corresponding type measures on X . For (s, w) ∈ X

and j ≥ 1 let τ sj for the time of the j-th jump of w(·) after time s (µt a.s.). Also

write ∆(u) = w(u) − w(u−) for u ≥ 0. Then there exists ε0 > 0 such that for all

ε ∈ (0, ε0), µ̃� µ and

dµ̃t
dµt

(s, w)

=
α̃∆(s)−K(s)

α∆(s)−K(s)
× Πj:τsj≤t

γ̃∆(τsj )(τ
s
j )

γ∆(τsj )(τj)
× exp

{
−
∫ t

s

w(u)

[
K∑
i=1

γ̃i(u)−
K∑
i=1

γi(u)

]
du

}
.

Proof: For i = 1, · · ·K, define finite measures µit, µ̃
i
t on X as

µit(du dw) = αi(u)νu,i(dw)1[0,t](u)du, µ̃it(du dw) = α̃i(u)ν̃u,i(dw)1[0,t](u)du,

where νu,i is defined above (4.4.23) and ν̃u,i is defined similarly on replacing γi with

γ̃i. We will show that

for all 1 ≤ k ≤ K and s ∈ [0, T ], ν̃s,k � νs,k and
dν̃s,k
dνs,k

(w) = Lts(w), (4.5.4)

where

Lts := Πj≥1

(
γ̃∆(τsj )(τ

s
j )

γ∆(τsj )(τ sj )
11{τsj≤t}

)
× exp

{
−
∫ t

s

w(u)

[
K∑
i=1

γ̃i(u)−
K∑
i=1

γi(u)

]
du

}
.

(4.5.5)

The lemma is an immediate consequence of (4.5.4) on observing that µit and µjt are

mutually singular when i 6= j, and the relation µt =
∑K

i=1 µ
i
t, µ̃t =

∑K
i=1 µ̃

i
t.

We now show (4.5.4). From the construction of νs,k it follows that, there are

counting processes {Ni(u)}u∈[s,t], i = 1, · · ·K, on W such that

w(u) = w(s) +
K∑
i=1

iNi(u), for u ∈ [s, t], a.s. νs,k (4.5.6)

and

Mi(u) := Ni(u)−
∫ u

s

w(r)γi(r)dr (4.5.7)
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under νs,k is a {Gu}u∈[s,t] local martingale for u ∈ [s, t]. From standard results it

follows that Lts is a local-martingale and super-martingale (see Theorem VI.T2, p.165

of [12]). In order to show (4.5.4), it suffices to show that {Lus}u∈[s,t] is a martingale.

By a change of variable formula it follows that (see e.g. Theorem A4.T4, p. 337 of

[12])

Lvs = 1 +
K∑
i=1

∫ v

s

Lu−s ·
(
γ̃i(u)

γi(u)
− 1

)
dMi(u), v ∈ [s, t]. (4.5.8)

In order to show Lts is a martingale, it then suffices, in view of (4.5.7), to show that

(see e.g. Theorem II.T8 in [12]) for all 1 ≤ i ≤ K,∫
W

[∫ t

s

Lus · |γ̃i(u)− γi(u)|w(u)du

]
dνs,k(w) <∞.

Finally note that Lus ≤ eεtw(t). Using Lemma 4.5.4(i) and standard estimates for Yule

processes, it follows that for ε sufficiently small

sup
s∈[0,t]

sup
1≤k≤K

∫
W
w(t)eεtw(t)dνs,k(w) <∞.

The result follows. �

We will now use the above lemma to study the effect of perturbations in α on

ρt(α, β,γ).

Lemma 4.5.8 (Perturbations of α). Fix ε > 0. Let (α, β,γ) be rate functions and

let αε = (αε1, · · · , αεK), where αεi are continuous nonnegative bounded functions on

[0,∞) such that for all 1 ≤ i ≤ K and s ∈ [0, T ]

αi(s)− ε ≤ αεi (s) ≤ αi(s).

Then for every t > 0,

|ρt(α, β,γ)− ρt(αε, β,γ)| ≤ C
√
ε,

where C = t‖β‖∞ · 6K2e2tK‖γ‖∞ · 4tK
√
‖α‖∞.
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Proof: Let (µt, κt) be the type measure and kernel associated with (α, β,γ).

Also, let µεt be the type measure associated with (αε, β,γ). By Lemma 4.5.7,

g(s, w) :=
dµεt
dµt

(s, w) =
αε∆(s)−K(s)

α∆(s)−K(s)
for (s, w) ∈ [0, t]×W .

Using Lemma 4.5.2 (c), (a), Lemma 4.5.3, and the fact that |κt(x,y)| ≤ t‖β‖∞w(t)w̃(t),

µt ⊗ µt a.e. (x,y) = ((s, w), (s̃, w̃)), we have

|ρt(α, β,γ)− ρt(αε, β,γ)|

≤
(∫
X×X
|
√
g(x)g(y)− 1|2|κt(x,y)|2dµt(x)dµt(y)

)1/2

≤t‖β‖∞
(∫
X×X
|
√
g(x)g(y)− 1|2w2(t)w̃2(t)dµt(x)dµt(y)

)1/2

≤t‖β‖∞d1

 K∑
i,j=1

∫
[0,t]2

(√
αεi (s)α

ε
j(u)

αi(s)αj(u)
− 1

)2

αi(s)αj(u)dsdu

1/2

, (4.5.9)

where

d1 = sup
s∈[0,T ]

sup
1≤i≤K

∫
W
|w(t)|2νs,i(dw) ≤ 6K2e2tK‖γ‖∞ ,

and the last inequality follows from (4.5.3). In order to bound (4.5.9), note that:∣∣∣∣√αi(s)αj(u)−
√
αεi (s)α

ε
j(u)

∣∣∣∣
=

∣∣∣∣√αi(s)

(√
αj(u)−

√
αεj(u)

)
+
(√

αi(s)−
√
αεi (s)

)√
αεj(u)

∣∣∣∣
≤2
√
ε

(√
αi(s) +

√
αj(u)

)
.

Plugging the above bound in (4.5.9) gives the desired result. �

We will now analyze the effect of perturbations in γ on ρt(α, β,γ). We need the

following preliminary truncation lemma.

Lemma 4.5.9. For every T > 0, there exist C6, C7, A0 ∈ (0,∞) such that for any

t ∈ [0, T ] and rate functions (α, β,γ) the following holds: Let µt, κt be the type
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measure and kernel associated with (α, β,γ). Define, for A ∈ (0,∞), the kernel κA,t

as

κA,t(x,y) = κt(x,y)11{w(t)≤A,w̃(t)≤A} where x = (s, w),y = (r, w̃). (4.5.10)

Then for all A > A0,

ρ(κt)− C6e
−C7A ≤ ρ(κA,t) ≤ ρ(κt),

where ρ(κt) [ resp. ρ(κA,t)] denotes the norm of the operator associated with (κt, µt)

[ resp. (κA,t, µt)].

Proof: The upper bound in the lemma is immediate from Lemma 4.5.2 (b). We now

consider the lower bound. For the rest of the proof, we suppress the dependence of

κt, κA,t, µt on t. Note that, from Lemma 4.5.2 (a,c)

ρ(κ)− ρ(κA) ≤
(∫
X×X

(κ(x,y)− κA(x,y))2dµ(x)dµ(y)

)1/2

≤2

(∫
X×X

(t‖β‖∞w(t)w̃(t)11{w̃(t) > A})2dµ(x)dµ(y)

)1/2

≤2t‖β‖∞

(
d1

K∑
i=1

K∑
j=1

∫
[0,t]×[0,t]

αi(s)αj(u)dsdu

)1/2

≤2t‖β‖∞ · t‖α‖∞ ·
√
d1, (4.5.11)

where

d1 =

∫
W

[w(t)]2νs,i(dw)

∫
W

[w(t)]211{w(t)>A}νs,i(dw). (4.5.12)

By (4.5.2), w(t) ≤d K(X1 + X2) where X1, X2 are independent and identically dis-

tributed with Geometric p = e−tK‖γ‖∞ distribution.∫
W

[w(t)]211{w(t)>A}νs,i(dw)

≤K2E
[
(X1 +X2)211{X1+X2>A/K}

]
=K2E

[
(X1 +X2)2(11{X1+X2>C,X1≥X2} + 11{X1+X2>C,X1<X2})

]
≤4K2E

[
X2

1 11{X1>A/2K} +X2
2 11{X2>A/2K}

]
,
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The above quantity can be bounded by

d2(1− e−2TK‖γ‖∞)A/2K ≤ d2 exp

{
−e
−2TK‖γ‖∞

K
A

}
for some constant d2. The result now follows on using the above bound and (4.5.3)

in (4.5.12) and (4.5.11). �

Lemma 4.5.10 (Perturbations of γ). For every T > 0, there exists C8 ∈ (0,∞) and

ε0 ∈ (0, 1) such that for all t ∈ [0, T ] and rate functions (α, β,γ) the following holds:

Suppose ε ∈ (0, ε0) and γε = (γε1, · · · γεK), where γεi are continuous, nonnegative maps

on [0, T ] such that for all 1 ≤ i ≤ K

γi(s)− ε ≤ γεi (s) ≤ γi(s), for all s ∈ [0, T ].

Then

|ρt(α, β,γ)− ρt(α, β,γε)| ≤ C8

√
ε · (− log ε)2.

Proof: Let (µt, κt) [resp. (µεt , κ
ε
t)] be the type measure and kernel associated with

(α, β,γ) [resp. (α, β,γε)]. By Lemma 4.5.7, for (s, w) ∈ [0, t]×W

dµεt
dµt

(s, w) = Πj≥1

(
γε∆(τsj )(τ

s
j )

γ∆(τsj )(τ sj )
11{τsj≤t}

)
×exp

{
−
∫ t

s

w(u)

[
K∑
i=1

γεi (u)−
K∑
i=1

γi(u)

]
du

}
.

Denote the right side as Lts(w). Then, as in the proof of Lemma 4.5.7, it follows

that {Lus (w)}u∈[s,t] is a {Gu}u∈[s,t] martingale under νs,k for every k = 1, · · ·K. Fix

A ∈ (A0,∞), where A0 is as in Lemma 4.5.9, and let κA,t be defined by (4.5.10).

Similarly define κεA,t by replacing κt with κεt in (4.5.10). Denote the operator norm

of the integral operators associated with (κA,t, µt) and (κεA,t, µ
ε
t) by ρA,t(α, β,γ) and
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ρA,t(α, β,γ
ε), respectively. Then, by Lemma 4.5.3 and Lemma 4.5.2 (a,c),

|ρA,t(α, β,γ)− ρA,t(α, β,γε)|

≤

∫
X×X

∣∣∣∣∣
√
dµεt
dµt

(s, w)
dµεt
dµt

(u, w̃)− 1

∣∣∣∣∣
2

(κA,t(x,y))2dµt(x)dµt(y)

1/2

≤tA2‖β‖∞

(
K∑

i,j=1

∫
[0,t]×[0,t]

αi(s)αj(u)

∫
W×W

∣∣∣√Lts(w)Ltu(w)− 1
∣∣∣2 νs,i(dw)νu,j(dw̃)

)1/2

.

(4.5.13)

Next, using the martingale property of Lts, we have∫
W×W

∣∣∣√Lts(w)Ltu(w)− 1
∣∣∣2 νs,i(dw)νu,j(dw̃)

=2− 2

∫
W

√
Lts(w)νs,i(dw)

∫
W

√
Ltu(w)νu,j(dw)

≤4− 2

∫
W

√
Lts(w)νs,i(dw)− 2

∫
W

√
Ltu(w)νu,j(dw), (4.5.14)

where the inequality on the last line follows on observing that from Jensen’s inequality

the two integrals on the second line are bounded by 1 and using the elementary

inequality a1 + a2 ≤ a1a2 + 1, for a1, a2 ∈ [0, 1]. We will now estimate the two

integrals on the last line of (4.5.14) by using the martingale properties of {Lus}u∈[s,t]

and the representations (4.5.6) and (4.5.8) in the proof of Lemma 4.5.7. For the rest

of the proof we write Lus as Ls(u). By an application of Ito’s formula, we have that

for every k = 1, · · ·K, νs,k a.s.

√
Ls(t)− 1−

K∑
i=1

∫ t

s

√
Ls(u−)

2

(
γεi (u)

γi(u)
− 1

)
dMi(u)

=
∑
s<u≤t

(√
Ls(u)−

√
Ls(u−)

)
−

K∑
i=1

∫ t

s

√
Ls(u−)

2

(
γεi (u)

γi(u)
− 1

)
dNi(u)

=
K∑
i=1

∫ t

s

√
Ls(u−)

(√
γεi (u)

γi(u)
− 1

)
dNi(u)−

K∑
i=1

∫ t

s

√
Ls(u−)

2

(
γεi (u)

γi(u)
− 1

)
dNi(u)

=− 1

2

K∑
i=1

∫ t

s

√
Ls(u−)

(√
γεi (u)

γi(u)
− 1

)2

dNi(u),

(4.5.15)
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where the second equality follows on observing that for u ∈ (s, t],

√
Ls(u) =

K∑
i=1

√
Ls(u−)

√
γεi (u)

γi(u)
∆Ni(u).

As in the proof of Lemma 4.5.7, we can check that for all i, k,∫
W

[∫ t

s

√
Ls(u) · |γεi (u)− γi(u)|w(u)du

]
dνs,k(w) <∞,

and consequently the last term on the left side of (4.5.15) is a martingale. Denoting

the expectation operator corresponding to the probability measure νs,k onW by Es,k,

we have

1− Es,k[
√
Ls(t)] =

1

2

K∑
i=1

Es,k

∫ t

s

√
Ls(u−)

(√
γεi (u)

γi(u)
− 1

)2

dNi(u)


=

1

2

K∑
i=1

Es,k

∫ t

s

√
Ls(u)

(√
γεi (u)

γi(u)
− 1

)2

w(u)γi(u)du


=

1

2

K∑
i=1

∫ t

s

Es,k

[√
Ls(u)w(u)

(√
γεi (u)−

√
γi(u)

)2
]
du

≤1

2

∫ t

s

Kε · Es,k[
√
Ls(u)w(u)]du

≤Kε
2

∫ t

s

(
Es,k[Ls(u)]Es,k[w

2(u)]
)1/2

du

≤Kε
2
· t · (6K2e2TK‖γ‖∞)1/2,

where the last inequality follows from (4.5.3). Using the above bound in (4.5.13) we

now have

|ρA,t(α, β,γ)− ρA,t(α, β,γε)| ≤tA2‖β‖∞ · t‖α‖∞ ·
[
2Kεt(6K2e2TK||γ||∞)1/2

]1/2
.

Finally, by Lemma 4.5.9, we have

|ρt(α, β,γ)− ρt(α, β,γε)| ≤|ρA,t(α, β,γ)− ρA,t(α, β,γε)|+ 2C6e
−C7A

<d1A
2ε1/2 + 2C6e

−C7A,
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where d1 = tA2‖β‖∞ · t‖α‖∞ ·
[
2Kt(6K2e2TK||γ||∞)1/2

]1/2
. The result now follows on

taking A = − log ε in the above display and taking ε0 sufficiently small (in particular

such that − log(ε0) > A0). �

Now we combine all the above ingredients to complete the proof of Proposition

4.5.5.

Proof of Proposition 4.5.5: Using Lemma 4.5.10, 4.5.6 and 4.5.8, we get

|ρ+
t − ρt| ≤|ρt(α+ ε, β + ε,γ + ε)− ρt(α+ ε, β + ε,γ)|

+ |ρt(α+ ε, β + ε,γ)− ρt(α+ ε, β,γ)|+ |ρt(α+ ε, β,γ)− ρt(α, β,γ)|

≤C8ε
1/2(− log ε)2 + d1ε+ d2ε

1/2,

where d1 = 6T 2K3e2TK and d2 = 24K3T 2e2TK . A similar bound holds for |ρ−t − ρt|.

The result follows. �

4.5.3 Effect of time perturbation on ρt

Throughout this section we fix rate functions (α, β,γ). The aim of this section is

to understand the evolution of the operator norm ρt(α, β,γ) as t changes. The main

result of the section is Proposition 4.5.11 which studies continuity and differentiability

properties of the function ρ(t) := ρt(α, β,γ), t ≥ 0.

Proposition 4.5.11. Suppose that β(t) > 0 for t > 0 and lim inft→∞ β(t) > 0. Then

(i) ρ is a continuous strictly increasing function on R+ with

ρ(0) = 0and lim
t→∞

ρ(t) =∞.

(ii) There is a unique value t′c = t′c(α, β,γ) such that ρ(t′c) = 1.

The proof of the proposition relies on the following lemma and is given after the

proof of the lemma.
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Lemma 4.5.12. Let 0 < t1 ≤ t2 <∞. Then

|t2− t1| ·
inft1≤u≤t2 β(u)

t1‖β‖∞
· ρ(t1) ≤ ρ(t2)− ρ(t1) ≤ |t2− t1| · 6t2K2‖β‖∞‖α‖∞e2t2K‖γ‖∞ .

Proof: Letting µ := µt2 we have

|ρ(t2)− ρ(t1)| ≤
(∫
X×X

(κt2(x,y)− κt1(x,y))2dµ(x)dµ(y)

)1/2

≤
(∫
X×X

(‖β‖∞w(t2)w̃(t2)|t2 − t1|)2dµ(x)dµ(y)

)1/2

≤|t2 − t1| · ‖β‖∞ · t2‖α‖∞ · 6K2e2t2K‖γ‖∞ ,

where the last inequality once again follows from (4.5.3). This proves the upper

bound.

Next note that, for µ⊗ µ a.e. (x,y) such that κt1(x,y) 6= 0, we have

κt2(x,y)

κt1(x,y)
=1 +

∫ t2
t1
w(u)w̃(u)β(u)du∫ t1

0
w(u)w̃(u)β(u)du

≥1 +
w(t1)w̃(t1) inft1≤u≤t2 β(u) · (t2 − t1)

w(t1)w̃(t1)‖β‖∞t1
.

Thus κt2(x,y) ≥
(

1 + |t2 − t1| ·
inft1≤u≤t2 β(u)

t1‖β‖∞

)
κt1(x,y) which from Lemma 4.5.2 (b)

implies

ρ(t2)− ρ(t1) ≥ |t2 − t1| ·
inft1≤u≤t2 β(u)

t1‖β‖∞
· ρ(t1).

This completes the proof of the lower bound. �

Proof of Proposition 4.5.11: Since κ0 = 0, the property ρ(0) = 0 is immediate.

Also Lemma 4.5.12 shows that ρ is continuous and strictly increasing. Finally since

inft→∞ β(t) > 0, there exists δ > 0 and a t∗ ∈ (0,∞) such that for all t ≥ t∗, β(t) ≥ δ.

From Lemma 4.5.12 we then have, for t ≥ t∗, ρ(t)− ρ(t∗) ≥ (t−t∗)δ
t∗||β||∞ . This proves that

ρ(t) → ∞ as t → ∞ and completes the proof of (i). Part (ii) is immediate from (i).

�
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4.5.4 Operator norm of RG(a, b, c) and critical time of BSR

In this section we will prove Theorem 4.2.3. Recall that by Lemma 4.4.4, for any

fixed time t, BSR∗(t) (more precisely, Γ(t)) can be approximated by perturbations

of RG(a, b, c)(t). To estimate the volume of the largest component in RG(a, b, c)(t)

we will use Lemma 4.5.1. In order to identify suitable Λn as in part (ii) of the lemma,

we start with the following lemma.

Lemma 4.5.13. Let (α, β,γ) be rate functions and let µt be the associated type

measure. Fix T > 0. Define Λ ∈ B(X ) as Λ = {(s, w) ∈ X : w(T ) ≤ l} for l ∈ R+.

Then, for every l ∈ R+

µt(Λ
c) < 2T‖α‖∞ · exp

(
−l e

−TK‖γ‖∞

2K

)
.

Proof: Note that

µt(Λ
c) =

K∑
i=1

∫ t

0

αi(u)νu,i(Λ
c) ≤ ||α||∞T sup

u∈[0,T ]

sup
1≤i≤K

νu,i(Λ
c). (4.5.16)

By (4.5.2),

νu,i(Λ
c) = νu,i({w : w(T ) ≥ l}) ≤ P(X1 +X2 ≥ l/K) ≤ 2(1− e−TK‖γ‖∞)l/2K .

where Xi are iid with Geom(e−T‖γ‖∞) distribution. Using this estimate in (4.5.16),

we have

µt(Λ
c) ≤ ||α||∞T · 2(1− e−TK‖γ‖∞)l/2K .

The result follows. �

We will now use the above lemma along with Lemma 4.5.1 to estimate the largest

component in RG(n)(α, β,γ)(t). Recall the notation ρt(α, β,γ) from Section 4.5.2.

Lemma 4.5.14. Let (α, β,γ) be rate functions and denote by IRG
1 (t) the component

with the largest volume, with respect to the weight function φt, in RG(n)(t) :=
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RG(n)(α, β,γ)(t). Then, for every t > 0 such that ρt(α, β,γ) < 1, there exists

A ∈ (0,∞) such that

P(volφt(IRG

1 (t)) > A log4 n)→ 0, as n→∞.

Proof: We will use Lemma 4.5.1(ii). Define

Λn := {(s, w) ∈ X : w(t) < B log n} ,

where B will be chosen appropriately later in the proof. Now consider the function

g(n) in Lemma 4.5.1(ii) with Λn defined as above and (µ, φ, κ) there replaced by

(µt, φt, κt), where (µt, κt) is the type measure and kernel associated with (α, β,γ).

Note that

κt(x,y) =

∫ t

0

β(u)w(u)w̃(u)du ≤ t‖β‖∞w(t)w̃(t)

and therefore

g(n) ≤ 8B log n(1 + 3µt(X ) · t‖β‖∞B2 log2 n). (4.5.17)

Writing mn = A log4 n, the bound in Lemma 4.5.1(ii) then gives

P(volφt(IRG

1 (t)) > mn) ≤ nµt(Λ
c
n) + 2nµt(X ) exp

(
−∆2A log4 n/g(n)

)
, (4.5.18)

where ∆ = 1− ρt(α, β,γ) > 0. Using Lemma 4.5.13 with l = B log n gives

nµt(Λ
c
n) ≤ nt‖α‖∞ · n−Be

−T‖γ‖∞/2K = o(1) (4.5.19)

for B > 2KeT ||γ||∞ . Now fix B > eT‖γ‖∞/2K , and choose A large such that

nµt(X ) exp

(
−∆2A log4 n/g(n)

)
→ 0

as n→∞. The result follows. �

Proof of Theorem 4.2.3: Let, for t ≥ 0, (µt, κt) be the type measure and the

kernel associated with rate functions (a, b, c). We will prove Theorem 4.2.3 with this
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choice of (µt, κt). From Proposition 4.5.11 we have that ρ(t) = ρt(a, b, c) is continuous

and strictly increasing in t and there is a unique t′c ∈ (0,∞) such that ρ(t′c) = 1. It

now suffices to show that: (a) For t < t′c, |C1(t)| (the size of the largest component

in BSR∗(t)) is O(log4 n); and (b) for t > t′c, |C1(t)| = Ω(n).

Consider first (a). Fix t < t′c. For δ > 0, define rate functions (a+, b+, c+) =

(a + δ, b+ δ, c + δ). Since ρ(t) < 1, by Proposition 4.5.5, we can choose δ sufficiently

small so that ρt(a
+, b+, c+) < 1. Denote IRG+

1 (t) for the component of the largest

volume in RG+(t) := RG(a+, b+, c+)(t). From Lemma 4.5.14 there exists A ∈ (0,∞)

such that

P(volφt(IRG+

1 (t)) > A log4 n)→ 0, as n→∞.

Combining this result with Corollary 4.4.5 we see that

P(volφt(IΓ

1 (t)) > A log4 n)→ 0, as n→∞,

where IΓ
1 (t) is the component with the largest volume in Γ(t). Part (a) is now

immediate from the one to one correspondence between the components in Γ(t) and

BSR∗(t) (see (4.4.20)).

We now consider (b). Fix t > t′c. Then ρ(t) > 1. From Proposition 4.5.5 we

can find δ > 0 such that ρt(a
−, b−, c−) > 1, where (a−, b−, c−) = ((a − δ)+, (b −

δ)+, (c − δ)+). Let CRG−
1 (t) be the component in RG−(t) := RG(n)(a−, b−, c−)(t)

with the largest number of vertices. By Theorem 3.1 of [11], |CRG−
1 (t)| = Θ(n).

Since volφt(CRG−
1 (t)) ≥ |CRG−

1 (t)|, we have volφt(IRG−
1 (t)) = Ω(n), where IRG−

1 (t) is

the component with the largest volume in RG−(t). Finally, in view of Corollary

4.4.5, we have the same result with IRG−
1 (t) replaced by IΓ

1 (t) and the result follows

once more from the one to one correspondence between the components in Γ(t) and

BSR∗(t). �
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4.5.5 Barely subcritical regime for bounded-size rules

In this section we complete the proof of Theorem 4.2.2. Throughout this section

we fix γ ∈ (0, 1/4) and let tn = tc − n−γ. The main ingredient in the proof is the

following proposition.

Proposition 4.5.15. There exist B̄, C̄, N̄ ∈ (0,∞) such that for all n ≥ N̄ and all

0 ≤ t ≤ tn

P{|C(n)

1 (t)| ≥ m̄(n, t)} ≤ C̄

n2
, where m̄(n, t) =

B̄(log n)4

(tc − t)2
.

Let us first prove Theorem 4.2.2 assuming the above proposition.

Proof of Theorem 4.2.2: Write τ = inf{t ≥ 0 : |C(n)

1 (t)| ≥ m(n, t)}, where

m(n, t) = 2B̄(logn)4

(tc−t)2 . Then

P{|C(n)

1 (t)| ≥ m(n, t) for some t ≤ tn} = P{τ ≤ tn}. (4.5.20)

Note that

{τ = t} ⊂
⋃

v,v′∈[n],v 6=v′
Ev,v′ , (4.5.21)

where, denoting the component in BSR(t) that contains the vertex v ∈ [n] by C(n)
v (t)

and its size by |C(n)
v (t)|,

Ev,v′ =
{

max
{
|C(n)

v (t−)|, |C(n)

v′ (t−)|
}
< m(n, t); C(n)

v (t−) 6= C(n)

v′ (t−)
}

⋂{
|C(n)

v (t−)|+ |C(n)

v′ (t−)| ≥ m(n, t)
}⋂
{C(n)

v (t) = C(n)

v′ (t)}. (4.5.22)

Note that

P{|C(n)

v (t)|+ |C(n)

v′ (t)| ≥ m(n, t)} ≤ 2P{|C(n)

1 (t)| ≥ m(n, t)/2} (4.5.23)

and, on the set, {max
{
|C(n)
v (t)|, |C(n)

v′ (t)|
}
< m(n, t)}, the rate at which C(n)

v (t) and

C(n)

v′ (t) merge can be bounded by

1

2n3
· 4|C(n)

v (t)||C(n)

v′ (t)|n2 ≤ 2m2(n, t)

n
.
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Combining this observation with (4.5.21) and (4.5.23), we have

P{τ ≤ tn} ≤
∑

v,v′∈[n],v 6=v′

∫ tn

0

P{|C(n)

v (t)|+ |C(n)

v′ (t)| ≥ m(n, t)} · 2m2(n, t)

n
dt

≤2n2

∫ tn

0

P{|C(n)

1 (t)| ≥ m(n, t)/2} · 2m2(n, t)

n
dt

≤4ntc sup
t≤tn

{
m2(n, t)P{|C(n)

1 (t)| ≥ m̄(n, t)}
}

=O(n · n4γ(log n)8 · n−2) = O(n−1+4γ(log n)8) = o(1),

where the last line follows from Proposition 4.5.15 and the fact that γ < 1/4. Using

the above estimate in (4.5.20) we have the result. �

We will need the following lemma in the proof of Proposition 4.5.15.

Lemma 4.5.16. Let (a+, b+, c+) = (a + δn, b + δn, c + δn), where δn = n−2γ0 and

γ0 ∈ (γ, 1/4). Let ρ(n),+

t = ρt(a
+, b+, c+). Then there exists C9, N0 ∈ (0,∞) such that

for all n ≥ N0,

ρ(n),+

t < 1− C9(tc − t) for all 0 ≤ t ≤ tn.

Proof of Lemma 4.5.16: From Proposition 4.5.5, there is a d1 ∈ (0,∞) such that

ρ(n),+

t ≤ ρt(a, b, c) + d1n
−γ0 log2 n, for all t ≤ tc.

By Lemma 4.5.12 and since ρtc(a, b, c) = 1, there exists d2 ∈ (0,∞) such that

ρt(a, b, c) ≤ 1− d2(tc − t), for all t ≤ tn.

Thus, since γ < γ0, we have for some N0 > 0

ρ(n),+

t ≤ 1− d2(tc − t) + d1n
−γ0(log n)2 < 1− d2

2
(tc − t),

for all n ≥ N0 and 0 ≤ t ≤ tc − n−γ. The result follows. �

Proof of Proposition 4.5.15: Recall the rate functions (a, b, c) introduced in

Section 4.4.2. Choose γ0 ∈ (γ, 1/4) and let (a+, b+, c+) be as in Lemma 4.5.16. Fix
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t < tn and consider the random graph RG(n)(a+, b+, c+)(t). From Lemma 4.4.4, we

can couple Γ(t) and RG(n)(a+, b+, c+)(t) such that

P(Γ(t) ⊆ RG(n)(a+, b+, c+)(t)) ≥ 1− C3 exp(−C4n
1−4γ0), for all t ∈ [0, T ].

Recalling the one to one correspondence between components in BSR∗(t) and Γ(t),

and (4.4.20), we have for any m ≥ 1,

P{|C(n)

1 (t)| > m} ≤ P{volφt(IRG+

1 (t)) ≥ m}+ C3 exp{−C4n
1−4γ0}, (4.5.24)

where IRG+

1 (t) is the component with the largest volume in RG(n)(a+, b+, c+)(t).

From Lemma 4.5.16, there is a N0 > 0 such that ∆(n),+

t = 1− ρt(a+, b+, c+) satisfies

∆(n),+

t ≥ C9(tc − t), for all t ≤ tn, n ≥ N0. (4.5.25)

Using Lemma 4.5.1 and arguing as in equation (4.5.18) we have for all t ∈ [0, T ] and

all m ≥ 1,

P{volφt(IRG+

1 (t)) ≥ m} ≤ nd1 exp{−(∆(n),+

t )2m/(d2 log3 n)}+ d3n
−2, (4.5.26)

where d1, d2, d3 are suitable constants. Using (4.5.25) in (4.5.26) we get

P{volφt(IRG+

1 (t)) ≥ m} ≤ nd1 exp{−d4(tc − t)2m/ log3 n}+ d3n
−2.

The result now follows on substituting m = m(n, t) = B̄(logn)4

(tc−t)2 , with B̄ > 3/d4, in the

above inequality. �
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CHAPTER 5: THE AUGMENTED MC AND BSR

5.1 Introduction

In this chapter we introduce the augmented multiplicative coalescent (AMC),

which captures the evolution of the sizes and surplus of the components of the

bounded-size-rule processes in the critical window. The augmented multiplicative

coalescent is an extension of Aldous’s multiplicative coalescent. Recall the typical

state space for the multiplicative coalescent is

l2↓ =

{
(x1, x2, ...) : x1 ≥ x2 ≥ ... ≥ 0,

∞∑
i=1

x2
i <∞

}
.

The dynamics of Aldous’s multiplicative coalescent can be described as follows: Two

clusters of sizes xi and xj merge into one cluster of size xi + xj at the rate xixj.

The augmented multiplicative coalescent is defined as a continuous-time Markov

process on the state space

U↓ :=

{
(x,y) : x ∈ l2↓,y ∈ N∞,

∞∑
i=1

xiyi <∞

}
,

where x = (x1, x2, ...) and y = (y1, y2, ...). U↓ is equipped with a suitable metric

which is defined in (5.2.5). To describe the dynamics of the augmented multiplicative

coalescent, we treat (xi, yi) as the label on the i-th cluster, for i ∈ N. The evolution

of the augmented multiplicative coalescent follows the following two rules:

• For i 6= j ∈ N, two clusters with labels (xi, yi) and (xj, yj) merge into one

cluster with label (xi + xj, yi + yj) at rate xixj.

• For i ∈ N, the cluster with label (xi, yi) changes into a cluster with label

(xi, yi + 1) at rate x2
i /2.



The x-coordinate represents the component sizes while the y-coordinate corresponds

to their surplus. The first bullet above describes the change in state when the i-th

and j-th clusters merge while the second bullet corresponds to an edge formation

between two vertices in the i-th component.

In this chapter, we give a concrete construction of the augmented multiplicative

coalescent. We show that this process is well-defined and satisfies a certain regu-

larity which can be viewed as a form of Feller property. Furthermore we show that

there exists a special version of the augmented multiplicative coalescent, whose first

coordinate is the standard multiplicative coalescent. We call this special version the

standard augmented multiplicative coalescent. Finally we revisit the bounded-size-

rule process that was introduced in Chapter 4, and show that the stochastic process

of the sizes and surplus of its components in the critical window converge in the

sense of finite dimensional distributions, to the standard augmented multiplicative

coalescent.

Organization of this chapter: Section 5.2 reviews the definition of the bounded-

size-rule processes and gives a formal description of the augmented multiplicative

coalescent (AMC). In Section 5.3 we state our main results. Sections 5.4 and 5.5

are devoted to proving the existence and the near-Feller property of the AMC. In

particular Section 5.5 contains the proof of Theorem 5.3.1. Section 5.6 studies gen-

eral bounded-size rules in the critical window and proves Theorems 5.3.2. Finally in

Section 5.7 we complete the proof of Theorem 5.3.3.

5.2 Definitions and notation

5.2.1 Notation

We collect some common notation and conventions used in this work. For a finite

set A write |A| for its cardinality. A graph G with no vertices and edges will be
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called a null graph. For graphs G1,G2, if G1 is a subgraph of G2 we shall write

this as G1 ⊂ G2. Denote by |C| the size of a connected component C. Denote by

spls(C) the surplus of the component C. Let G be the set of all possible graphs (V , E)

on a given type space X . When V is finite, we will consider G to be endowed with

the discrete topology and the corresponding Borel sigma field and refer to a random

element of G as a random graph.

For a RCLL (right continuous functions with left limits) function f : [0,∞)→ R,

we write ∆f(t) = f(t) − f(t−), t > 0. Suppose that (S,S) is a measurable space

and we are given a partial ordering on S. We say the S-valued random variable ξ

stochastically dominates ξ̃, and write ξ ≥d ξ̃ if there exists a coupling between the

two random variables on a common probability space such that ξ∗ ≥ ξ̃∗ a.s., where

ξ∗ =d ξ and ξ̃∗ =d ξ̃. For probability measures µ, µ̃ on S, we say µ stochastically

dominates µ̃, and write µ ≥d µ̃ if ξ ≥d ξ̃ where ξ has distribution µ and ξ̃ has

distribution µ̃.

5.2.2 The continuous-time bounded-size-rule processes

Fix K ∈ N and let Ω0 = {$} and ΩK = {1, 2, . . . , K,$} for K ≥ 1, where $ will

represent components of size greater than K. Given a graph G and a vertex v ∈ G,

write Cv(G) for the component that contains v. Let

c(v) =

 |Cv(G)| if |Cv(G)| ≤ K

$ if |Cv(G)| > K.
(5.2.1)

For a quadruple of vertices v1, v2, v3, v4, write ~v = (v1, v2, v3, v4) and let c(~v) =

(c(v1), c(v2), c(v3), c(v4)).

Fix F ⊆ Ω4
K . We construct the F -BSR process {BSR(n)(t)}t≥0 as follows. Define

BSR(n)(0) = 0n, the graph on [n] with no edges. For every quadruple of vertices ~v =
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(v1, v2, v3, v4) ∈ [n]4, let P~v be a Poisson process with rate 1
2n3 , independent between

quadruples. Denote the function c(v) [resp. c(~v)] associated with BSR(n)(t−) as

ct−(v) [resp. ct−(~v)]. Given BSR(n)(t−), and that for some ~v ∈ [n]4, P~v has a point

at the time instant t, we define

BSR(n)(t) =

 BSR(n)(t−) ∪ (v1, v2) if ct−(~v) ∈ F

BSR(n)(t−) ∪ (v3, v4) otherwise.
(5.2.2)

To simplify notation, when there is no scope for confusion, we will suppress n in the

notation. For example, we write BSRt := BSR(n)(t).

Denote C(n)

i (t) for the i-th largest component of BSRt. Spencer and Wormald

[31] shows that for given F -BSR, there exists a (model dependent) critical time

tc > 0 such that for t < tc, |C(n)

1 (t)| = O(log n) and for t > tc, |C(n)

1 (t)| ∼ f(t)n where

f(t) > 0.

Along with the size of the components, another key quantity of interest is the

surplus of the components. Denote ξ(n)

i (t) := spls(C(n)

i (t)) for the surplus of the

component C(n)

i (t). We will be interested in the joint vector of ordered component

sizes and corresponding surplus

((|Ci(t)|, ξi(t)) : i ≥ 1).

5.2.3 The augmented multiplicative coalescent

5.2.3.1 Aldous’s multiplicative coalescent

Let l2 = {x = (x1, x2, . . .) :
∑

i x
2
i < ∞}. Then l2 is a separable Hilbert space

with the inner product 〈x, y〉 =
∑∞

i=1 xiyi, x = (xi), y = (yi) ∈ l2. Let

l2↓ = {(x1, x2, . . .) : x1 ≥ x2 ≥ · · · ≥ 0,
∑
i

x2
i <∞}. (5.2.3)
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Then l2↓ is a closed subset of l2 which we equip with the metric inherited from l2. In [2]

Aldous introduced a l2↓ valued continuous time Markov process, called the standard

multiplicative coalescent, that can be used to describe the asymptotic behavior of

suitably scaled component size vector in Erdős-Rényi random graph evolution, near

criticality. Subsequently, similar results have been shown to hold for the Bohman-

Frieze process (Chapter 3) and other random graph models (see [4] and reference

therein). We now give a brief description of this Markov process.

Fix x = (xi)i∈N. Let {ξi,j, i, j ∈ N} be a collection of independent rate one Poisson

processes. Given t ≥ 0, consider the random graph with vertex set N in which there

exist ξi,j([0, txixj/2]) + ξj,i([0, txixj/2]) edges between (i, j), 1 ≤ i < j < ∞, and

there are ξi,i([0, tx
2
i /2]) self-loops at vertex i ∈ N. The volume of a component C of

this graph is defined to be

vol(C) :=
∑
i∈C

xi.

Let Xi(x, t) be the volume of the i-th largest (by volume) component. It can be

shown that X(x, t) = (Xi(x, t), i ≥ 1) ∈ l2↓, a.s. (see Lemma 20 in [2]). Define

Tt : BM(l2↓)→ BM(l2↓),

as Ttf(x) = E(f(X(x, t))). It is easily checked that (Tt)t≥0 satisfies the semigroup

property Tt+s = TtTs, s, t ≥ 0, and [2] shows that (Tt) is Feller in the sense that

Tt(Cb(l
2
↓)) ⊂ Cb(l

2
↓) for all t ≥ 0. The paper [2] also shows that the semigroup

(Tt) along with an initial distribution µ ∈ P(l2↓) determines a Markov process with

values in l2↓ and RCLL sample paths. Denoting by P µ the probability distribution

of this Markov process on D([0,∞) : l2↓), the Feller property says that µ 7→ P µ is a

continuous map. One special choice of initial distribution for this Markov process is

particularly relevant for the study of asymptotics of random graph models. We now

describe this distribution. Let {W (t)}t≥0 be a standard Brownian motion, and for a
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fixed λ ∈ R, define

Wλ(t) = W (t) + λt− t2

2
, t ≥ 0.

Let Ŵλ denote the reflected version of Wλ, i.e.,

Ŵλ(t) = Wλ(t)− min
0≤s≤t

Wλ(s), t ≥ 0. (5.2.4)

An excursion of Ŵλ is an interval (l, u) ⊂ [0,+∞) such that Ŵλ(l) = Ŵλ(u) = 0 and

Ŵλ(t) > 0 for all t ∈ (l, u). Define u − l as the length of the excursion. Order the

lengths of excursions of Ŵλ as

X∗1 (λ) > X∗2 (λ) > X∗3 (λ) > · · ·

and write X∗(λ) = (X∗i (λ) : i ≥ 1). Then X∗(λ) defines a l2↓ valued random variable

(see Lemma 25 in [2]) and let µλ be its probability distribution. Using the Feller

property and connections with certain inhomogeneous random graph models, the

paper [2] shows that µλTt = µλ+t, for all λ ∈ R and t ≥ 0, where for µ ∈ P(l2↓),

µTt ∈ P(l2↓) is defined in the usual way: µTt(A) =
∫
Tt(11A)(x)µ(dx), A ∈ B(l2↓).

Using this consistency property one can determine a unique probability measure

µMC ∈ P(D((−∞,∞) : l2↓)) such that, denoting the canonical coordinate process on

D((−∞,∞) : l2↓) by {πt}−∞<t<∞,

µMC ◦ (πt+·)
−1 = P µt , for all t ∈ R,

where πt+· is the process {πt+s}s≥0. The measure µMC is known as the standard mul-

tiplicative coalescent. This measure plays a central role in characterizing asymptotic

distribution of component size vectors in the critical window for random graph models

[2, 4, 7].

5.2.3.2 The augmented multiplicative coalescent

We will now augment the above construction and introduce a measure on a larger

space that can be used to describe the joint asymptotic behavior of the component
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size vector and the associated surplus vector, for a broad family of random graph

models.

Let N∞ = {y = (y1, · · · ) : yi ∈ N, for all i ≥ 1} and define

U↓ = {(xi, yi)i≥1 ∈ l2↓ × N∞ :
∞∑
i=1

xiyi <∞ and ym = 0 whenever xm = 0,m ≥ 1}.

We will view xi as the volume of the i-th component and yi the surplus of the i-th

component of a graph with vertex set N. Writing x = (xi) and y = (yi), we will

sometimes denote (xi, yi) as z = (x, y). We equip U↓ with the metric

dU((x, y), (x′, y′)) =

(
∞∑
i=1

(xi − x′i)2

)1/2

+
∞∑
i=1

|xiyi − x′iy′i|. (5.2.5)

The choice of this metric is discussed in Remark 5.4.15.

Let U0
↓ = {(xi, yi)i≥1 ∈ U↓ : if xk = xm, k ≤ m, then yk ≥ ym}. We now

introduce the augmented multiplicative coalescent (AMC). This is a continuous time

Markov process with values in (U0
↓,dU), whose dynamics can heuristically be described

as follows: The process jumps at any given time instant from state (x, y) ∈ U0
↓ to:

• (xij, yij) at rate xixj, i 6= j, where (xij, yij) is obtained by merging components

i and j into a component with volume xi+xj and surplus yi+yj and reordering

the coordinates to obtain an element in U0
↓.

• (x, yi) at rate x2
i /2, i ≥ 1, where (x, yi) is the state obtained by increasing the

surplus in the i-th component from yi to yi + 1 and reordering the coordinates

(if needed) to obtain an element in U0
↓.

Whenever z = (x, y) ∈ U0
↓ is such that

∑∞
i=1 xi < ∞, it is easy to construct a

well defined Markov process {Z(z, λ)}λ≥0 that corresponds to the above transition

mechanism, starting at time λ = 0 in the state z. However when
∑∞

i=1 xi = ∞,
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the existence of such a process requires more work. We show in Section 5.4 (see

also Theorem 5.3.1) that in fact there is a well defined Markov process {Z(z, λ)}λ≥0

corresponding to the above dynamical description for any z ∈ U0
↓. Define, for λ ≥ 0,

Tλ : BM(U0
↓)→ BM(U0

↓) as

(Tλf)(z) = Ef(Z(z, λ)).

As for Aldous’s multiplicative coalescent, there is one particular family of distribu-

tions that plays a special role. Recall the reflected parabolic Brownian motion Ŵλ(t)

from (5.2.4). Let P be a Poisson point process on [0,∞)× [0,∞) with intensity λ⊗2
∞

(where λ∞ is the Lebesgue measure on [0,∞)) independent of Ŵλ. Let (li, ri) be the

i-th largest excursion of Ŵλ. Define

X∗i (λ) = ri − li and Y ∗i (λ) = |P ∩ {(t, z) : 0 ≤ z ≤ Ŵλ(t), li ≤ t ≤ ri}|.

Then Z∗(λ) = (X∗(λ),Y ∗(λ)) is a.s. a U0
↓ valued random variable, where X∗ =

(X∗i )i≥1 and Y ∗ = (Y ∗i )i≥1. Let νλ be its probability distribution. In Theorem 5.3.1

we will show that there exists a U0
↓ valued stochastic process (Z(λ))−∞<λ<∞ such that

Z(λ) has probability distribution νλ for every λ ∈ (−∞,∞) and for all f ∈ BM(U0
↓),

and λ1 < λ2, we have

E[f(Z(λ2))|{Z(λ)}λ≤λ1 ] = (Tλ2−λ1f)(Z(λ1)).

The process Z will be referred to as the standard augmented multiplicative coalescent.

We will also show that {Tλ}λ≥0 is a semigroup, which is nearly Feller, in the sense

made precise in the statement of Theorem 5.3.1. It will be seen that this process plays

a similar role in characterizing the asymptotic joint distributions of the component

size and surplus vector in the critical window as Aldous’s standard multiplicative

coalescent does in the study of asymptotics of the component size vector.
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5.3 Main results

Our first result establishes the existence of the standard augmented coalescent

process. Let U1
↓ = {z = (x, y) ∈ U0

↓ :
∑

i xi =∞}.

Theorem 5.3.1. There is a collection of maps {Tt}t≥0, Tt : BM(U0
↓) → BM(U0

↓) and

a U0
↓ valued stochastic process {Z(λ)}−∞<λ<∞ = {(X(λ),Y (λ))}−∞<λ<∞ such that

the following hold.

(i) {Tt} is a semigroup: Tt ◦ Ts = Tt+s, s, t ≥ 0.

(ii) {Tt} is nearly Feller: For all t > 0, f ∈ BM(U0
↓) and {zn} ⊂ U0

↓, such that f is

continuous at all points in U1
↓ and zn → z for some z ∈ U1

↓, we have Ttf(zn)→ Ttf(z).

(iii) The marginal distribution ofZ(λ) is characterized through the parabolic reflected

Brownian motion Ŵλ: For each λ ∈ R, Z(λ) has the probability distribution νλ.

(iv) The stochastic process {Z(λ)} satisfies the Markov property with semigroup

{Tt}: For all f ∈ BM(U0
↓), and λ1 < λ2, we have

E[f(Z(λ2))|{Z(λ)}λ≤λ1 ] = (Tλ2−λ1f)(Z(λ1)).

(v) If f ∈ BM(U0
↓) is such that f(x, y) = g(x) for some g ∈ BM(l2↓), then

(Ttf)(z) = (Ttg)(x), ∀z = (x, y) ∈ U0
↓.

Furthermore, {X(λ)}−∞<λ<∞ is Aldous’s standard multiplicative coalescent.

A precise definition of Tt can be found in Section 5.4. Theorem 5.3.1 will be

proved in Section 5.5.

Throughout this work we fix K ∈ N0, F ∈ Ω4
K and consider a F -BSR as intro-

duced in Section 5.2.2.

The result below considers the asymptotics of the ‘susceptibility functions’. For
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any given time t and fixed k ≥ 1 define the k-susceptibility function

S (n)

k (t) ≡ Sk(t) :=
∑
i≥1

∣∣C(n)

i (t)
∣∣k .

Define the scaled susceptibility functions by, for k ≥ 1,

s̄k(t) :=
Sk(t)
n

. (5.3.1)

Then Theorem 1.1 of [31] shows that for any bounded-size rule, there exists a

monotonically increasing function s2 : [0, tc) → [0,∞) satisfying s2(0) = 1 and

limt↑tc s2(t) =∞, such that

s̄2(t)
P−→ s2(t) ∀t ∈ [0, tc).

Part (iii) of the following result gives a similar result for s̄3. Part (ii) in fact gives con-

vergence of s̄2, s̄3 in a stronger sense. Part (i) of the theorem gives precise asymptotics

of s2(t) and s3(t) as t ↑ tc.

Theorem 5.3.2. There exist monotonically increasing functions sk : [0, tc) → [0,∞),

k = 2, 3, such that s2(0) = s3(0) = 1 and limt↑tc s2(t) = limt↑tc s3(t) =∞, having the

following properties.

(i) There exist α, β ∈ (0,∞) such that

s2(t) = (1 +O(tc − t))
α

tc − t
, s3(t) = β[s2(t)]3(1 +O(tc − t)), as t ↑ tc. (5.3.2)

(ii) For every γ ∈ (1/6, 1/5),

sup
t∈[0,tn]

∣∣∣∣ n1/3

s̄2(t)
− n1/3

s2(t)

∣∣∣∣ P−→ 0 (5.3.3)

sup
t∈[0,tn]

∣∣∣∣ s̄3(t)

(s̄2(t))3
− s3(t)

(s2(t))3

∣∣∣∣ P−→ 0, (5.3.4)

where tn = tc − n−γ.

(iii) For all t ∈ [0, tc), s̄2(t)
P−→ s2(t), s̄3(t)

P−→ s3(t) as n→∞.

We now state the main result which gives the asymptotic behavior in the critical

scaling window as well as merging dynamics for all bounded-size rules.
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Theorem 5.3.3 (Bounded-size rules: Convergence at criticality). Let α, β ∈

(0,∞) be as in Theorem 5.3.2. For λ ∈ R define

C̄
(n)

(λ) :=

(
β1/3

n2/3

∣∣∣∣Ci(tc +
αβ2/3

n1/3
λ

)∣∣∣∣ : i ≥ 1

)
,

Ȳ
(n)

(λ) :=

(
ξi

(
tc +

αβ2/3

n1/3
λ

)
: i ≥ 1

)
.

Then Z̄
(n)

= (C̄
(n)
, Ȳ

(n)
) is a stochastic process with sample paths in D((−∞,∞) :

U↓) and for any set of times −∞ < λ1 < λ2 < ... < λm <∞(
Z̄

(n)
(λ1), . . . , Z̄

(n)
(λm)

)
d−→ (Z(λ1), . . . ,Z(λm)) (5.3.5)

as n→∞, where Z is as in Theorem 5.3.1.

Organization of the proofs: The two main results in this chapter are Theorems

5.3.1 and 5.3.3. In Section 5.4 we introduce the semigroup {Tt}t≥0 and, as a first

step towards Theorem 5.3.1, establish in Theorem 5.4.1 the existence of a U0
↓ valued

Markov process associated with this semigroup, starting from an arbitrary initial

value. Then in Section 5.5 we complete the proof of Theorem 5.3.1. We then proceed

to the analysis of bounded-size rules in Section 5.6 where we study the differential

equation systems associated with the BSR process and prove Theorems 5.3.2. Finally

in Section 5.7 we complete the proof of Theorem 5.3.3.

5.4 The augmented multiplicative coalescent

We begin by making precise the formal dynamics of the augmented multiplicative

coalescent process given in Section 5.2.3.2. Fix (x, y) ∈ U0
↓. Let {ξi,j}i,j∈N be a

collection of i.i.d. rate one Poisson processes. Let G(z, t), where z = (x, y), be the

random graph on vertex set N given as follows:

(I) For i ∈ N, put yi initial self-loops to the vertex i.

(II) For i < j ∈ N, put ξi,j([0, txixj/2]) + ξj,i([0, txixj/2]) edges between vertices i

and j. Also, for i ∈ N, put additional ξi,i([0, tx
2
i /2]) self-loops to the vertex i.
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Note that the total number of self-loops at a vertex i at time instant t is yi +

ξi,i([0, tx
2
i /2]). The self-loops coming from (I) and (II) will later be termed as “type

I” and “type II” surplus.

Let Fxt = σ{ξi,j([0, sxixj/2]) : 0 ≤ s ≤ t, i, j ∈ N}, t ≥ 0.

Recall the volume of a component C is defined to be vol(C) =
∑

i∈C xi. We have

also defined surplus for finite graphs. For infinite graphs the definition requires some

care. We define the surplus for a connected graph G with vertex set a subset of N as

spls(G) := lim
k→∞

spls(G[k]),

where G[k] is the induced subgraph that has the vertex set [k] (the subgraph with

vertex set [k] and all edges between vertices in [k] that are present in G). It is

easy to check that this definition of surplus does not depend on the labeling of the

vertices. Further note that the surplus of a connected graph might be infinite with

this definition.

Thus letting C̃i(t) be the i-th largest component (in volume) in G(z, t), define

Xi(z, t) := vol(C̃i(t)) and Yi(z, t) := spls(C̃i(t)) to be the volume and the surplus of

the i-th largest component at time t. In case two components have the same volume,

the ordering of (C̃i(t) : i ≥ 1) is taken to be such that Ym(z, t) ≥ Yk(z, t) whenever

m ≤ k and Xm(z, t) = Xk(z, t).

Let Xz(t) := (Xi(z, t) : i ≥ 1) and Y z(t) := (Yi(z, t) : i ≥ 1). The paper [2]

shows that Xz(t) ∈ l2↓ a.s. for all t ≥ 0. The following result shows that Zz(t) =

(Xz(t),Y z(t)) ∈ U0
↓ a.s., for all t.

Theorem 5.4.1. Fix z = (x, y) ∈ U0
↓ and let (Xz(t),Y z(t))t≥0 be the stochastic

process described above, then for any fixed t ≥ 0, (Xz(t),Y z(t)) ∈ U0
↓.

The above theorem will be proved in Section 5.4.1. For t ≥ 0, define Tt :
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BM(U0
↓)→ BM(U0

↓) as

Ttf(z) = Ef(Zz(t)), z ∈ U0
↓, f ∈ BM(U0

↓).

The following result shows that {Tt} is a semigroup that is (nearly) Feller.

Theorem 5.4.2. For t, s ≥ 0, Tt◦Ts = Tt+s. For all t > 0, f ∈ BM(U0
↓) and {zn} ⊂ U0

↓,

such that f is continuous at all points in U1
↓ and zn → z for some z ∈ U1

↓, we have

Ttf(zn)→ Ttf(z).

The above theorem will be proved in Section 5.4.2. Throughout we will assume,

without loss of generality, that for all z ∈ U0
↓, Z

z is constructed using the same set

of Poisson processes {ξi,j}. This coupling of Zz for different values of z will not be

noted explicitly in the statement of various results.

We begin with the following elementary lemma.

Lemma 5.4.3. Let {Fm}m∈N0 be a filtration given on some probability space.

(i) Let {Zm}m≥0 be a {Fm} adapted sequence of nondecreasing random variables such

that Z0 = 0. Let limm→∞ Zm = Z∞. Suppose there exists a nonnegative random

variable U such that U <∞ a.s. and
∑∞

m=1 E[Zm − Zm−1|Fm−1] ≤ U. Then for any

ε ∈ (0, 1),

P{Z∞ > ε} ≤ 1 + ε

ε
E[U ∧ 1].

(ii) Let {Am} be a sequence of events such that Am ∈ Fm. Suppose there exists a

random variable U <∞ a.s. such that
∑∞

m=1 E[11Am|Fm−1] ≤ U . Then P{Am i.o.} =

0. Furthermore,

P{∪∞m=1Am} ≤ 2E[U ∧ 1].

Proof: (i) Define B0 = 0 and Bm :=
∑m

i=1 E[Zi−Zi−1|Fi−1] for m = 1, 2, ... Note

that Bm is nondecreasing and Fm−1-measurable. Define τ = inf{l : Bl+1 > 1} where

the infimum over an empty set is taken to be ∞. Since Bm is predictable, τ is a
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stopping time and, for all m, Bm∧τ ≤ 1. Let B∞ = limm→∞Bm. Since Zm∧τ −Bm∧τ

is a martingale, by the optimal stopping theorem and monotone convergence,

E[Zτ ] = lim
m→∞

E[Zm∧τ ] = lim
m→∞

E[Bm∧τ ] ≤ lim
m→∞

E[Bm ∧ 1] = E[B∞ ∧ 1].

Thus

P{Z∞ > ε} ≤ P{τ <∞}+
1

ε
E[B∞ ∧ 1] = P{B∞ > 1}+

1

ε
E[B∞ ∧ 1] ≤ 1 + ε

ε
E[U ∧ 1].

(ii) The first statement is immediate from the Borel-Cantelli lemma (cf. [15, Theorem

5.3.2]). For the second statement note that for any ε ∈ (0, 1), we have ∪∞m=1Am =

{
∑∞

m=1 11Am > ε}. Now applying part (i) to Zm =
∑m

k=1 11Ak and taking ε→ 1 yields

the desired result. �

Next, we present a result from [2] that will be used here. We begin with some

notation. For x ∈ l2↓, we write x[k] = (x1, ..., xk, 0, 0, ...) for the k-truncated version

of x. Similarly, for a sequence x(n) = (x(n)

1 , x(n)

2 , ...) of elements in l2↓, x
(n)[k] is the

k-truncation of x(n). For z = (x, y), z(n) = (x(n), y(n)) ∈ U0
↓ z

[k], y[k], z(n)[k], y(n)[k] are

defined similarly.

Recall the construction of G(z, t) described in items (I) and (II) at the beginning of

the section. We will distinguish the surplus created in C̃i(t) by the action in item (I)

and that in item (II). The former will be referred to as the type I surplus and denoted

by Ỹi(z, t) while the latter will be referred to as the type II surplus and denoted by

Ŷi(z, t) ≡ Ŷi(x, t). More precisely,

Ỹi(z, t) =
∑
j∈C̃i(t)

yj and Ŷi(z, t) = Yi(z, t)− Ỹi(z, t).

Also define

R̃(z, t) :=
∞∑
i=1

Xi(z, t)Ỹi(z, t), R̂(x, t) ≡ R̂(z, t) :=
∞∑
i=1

Xi(z, t)Ŷi(z, t)

and

R(z, t) :=
∞∑
i=1

Xi(z, t)Yi(z, t), S(x, t) ≡ S(z, t) :=
∞∑
i=1

(Xi(x, t))
2.
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The following properties of S and X have been established in [2, Proposition 5,

Corollary 18, Lemma 22].

Theorem 5.4.4. (i) For every x ∈ l2↓ and t ≥ 0, we have S(x, t) < ∞ a.s. and

S(x[k], t) ↑ S(x, t) as k →∞.

(ii) If x(n) → x in l2↓, then X(x(n), t)
P−→ X(x, t) in l2↓, as n → ∞. In particular,

{S(x(n), t)}n≥1 is tight.

5.4.1 Existence of the AMC

This section proves Theorem 5.4.1. We begin by considering the type I surplus.

Proposition 5.4.5. For any t ≥ 0 and z ∈ U0
↓, R̃(z, t) =

∑∞
i=1Xi(z, t)Ỹi(z, t) <∞ a.s.

Proof of Proposition 5.4.5 is given below Lemma 5.4.7. The basic idea is to

bound the truncated version R̃[k] = R̃(z[k], t) using a martingale argument, and then

let k →∞. The truncation error is controlled using Lemma 5.4.6 below and a suitable

supermartingale is constructed in Lemma 5.4.7.

Lemma 5.4.6. For every z ∈ U0
↓ and t ≥ 0, as k →∞, R̃(z[k], t)→ R̃(z, t) ≤ ∞ a.s.

Proof: Fix t ≥ 0. Denote by Eij [resp. E [k]

ij ] the event that there exists a path

from i to j in G(z, t) [resp. G(z[k], t)], with the convention that P {Eii} = P{E [k]

ii } = 1.

Let

fi =
∞∑
j=1

yj11Eij , f [k]

i =
k∑
j=1

yj11E[k]
ij
.

Then

R̃(z, t) =
∞∑
i=1

fixi, R̃(z[k], t) =
∞∑
i=1

f [k]

i xi.

Since E [k]

ij ↑ Eij, we have f [k]

i ↑ fi. The result now follows from an application of

monotone convergence theorem. �
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Lemma 5.4.7. Suppose that z = (x, y) = z[k] for some k ≥ 1 and that
∑

j yj 6= 0.

Then

At ≡ A(z, t) := log R̃(z, t)−
∫ t

0

S(z, u)du

is a supermartingale with respect to the filtration Fxt = σ{ξi,j([0, sxixj/2]); 0 ≤ s ≤

t, i, j ∈ N}.

Proof: From the construction of Z(z, ·) we see that R̃(z, t) is a pure jump,

nondecreasing process that at any time instant t, jumps at rate Xi(z, t−)Xj(z, t−),

1 ≤ i < j ≤ k, with jump sizes Bij(t−) = Xi(z, t−)Ỹj(z, t−) + Xj(z, t−)Ỹi(z, t−).

Consequently log R̃(z, t) jumps at the same rate, with corresponding jump size log(1+

Bij(t−)

R̃(z,t−)
). From this and elementary properties of Poisson processes it follows that

log R̃(z, t) = log R̃(z, 0) +
∑

1≤i<j≤k

∫ t

0

log

(
1 +

Bij(u)

R̃(z, u)

)
Xi(z, u)Xj(z, u)du+M(t),

where M is a Fxt martingale. Consequently, for 0 ≤ s < t <∞

log R̃(z, t)− log R̃(z, s)

=
∑

1≤i<j≤k

∫ t

s

log

(
1 +

Bij(u)

R̃(z, u)

)
Xi(z, u)Xj(z, u)du+M(t)−M(s). (5.4.1)

Next note that, for u ≥ 0

∑
1≤i<j≤k

log

(
1 +

Bij(u)

R̃(z, u)

)
Xi(z, u)Xj(z, u)

≤
∑

1≤i<j≤k

Bij(u)

R̃(z, u)
Xi(z, u)Xj(z, u)

=
∑

1≤i<j≤k

Xi(z, u)Ỹj(z, u) +Xj(z, u)Ỹi(z, u)

R̃(z, u)
Xi(z, u)Xj(z, u)

≤S(z, u).

Using this observation in (5.4.1) we now have

E
[
log R̃(z, t)− log R̃(z, s) | Fxs

]
≤ E

[∫ t

s

S(z, u)du | Fxs
]
.
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The result follows. �

Proof of Proposition 5.4.5: Fix z = (x, y) ∈ U0
↓. The result is trivially

true if
∑

i yi = 0. Assume now that
∑

i yi 6= 0. For k ≥ 1 and a ∈ (0,∞), define

T [k]
a = inf{s ≥ 0 : S(z[k], s) ≥ a}. Fix k ≥ 1 and assume without loss of generality that∑k
i=1 yi > 0. Write R[k](t) = R(z[k], t), and A[k](t) = A(z[k], t) where A is as in Lemma

5.4.7. From the supermartingale property E[A[k](T [k]
a ∧ t)] ≤ E[A[k](0)] = log R̃[k](0).

Therefore

E

[
log

R̃[k](T [k]
a ∧ t)

R̃[k](0)

]
≤ E

[∫ T
[k]
a ∧t

0

S(z[k], u)du

]
≤ ta.

Thus

P{R̃[k](t) > m} ≤P{R̃[k](t) > m,T [k]

a > t}+ P{T [k]

a ≤ t}

≤ ta

logm− log R̃[k](0)
+ P{T [k]

a ≤ t}.

By Lemma 5.4.6, R̃[k](t) → R̃(z, t), and by Theorem 5.4.4 (i), S(z[k], t) → S(z, t)

when k → ∞. Therefore letting k → ∞ on both sides of the above inequality, we

have

P{R̃(z, t) > m} ≤ ta

logm− log R̃(z, 0)
+ P{S(z, t) ≥ a}. (5.4.2)

The result now follows on first letting m → ∞ and then a → ∞ in the above

inequality. �

The following result is an immediate consequence of the estimate in (5.4.2) and

Theorem 5.4.4(ii).

Corollary 5.4.8. If z(n) → z in U0
↓, then for every t ≥ 0, {R̃(z(n), t)}n≥1 is tight.

Next we consider the type II surplus. Let, for x ∈ l2↓

Gxt := σ{{ξi,j([0, sxixj/2]) = 0} : 0 ≤ s ≤ t, i, j ∈ N}.
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The σ-field Gxt records whether or not i and j are in the same component at time s,

for all i, j and for all s ≤ t. In particular, components {C̃i(s), i ≥ 1, s ≤ t} can be

determined from the information in Gxt and consequently, X(x, t) is Gxt measurable.

Lemma 5.4.9. (i) Fix x ∈ l2↓ and t ≥ 0. Then R̂(x, t) <∞ a.s.

(ii) Let x(n) → x in l2↓. Then the sequence {R̂(x(n), t)}n≥1 is tight.

Proof: Note that (i) is an immediate consequence of (ii). Consider now (ii). For

fixed x ∈ l2↓ and t ≥ 0, let µ̂i(x, t) denote the conditional law of Ŷi(x, t), conditioned

on Gxt . Then, for a.e. ω, µ̂i(x, t) is Poisson distribution with parameter∫ t

0

∞∑
j=1

(
∑

k,k′∈C̃j(s)

1

2
xkxk′)11{C̃j(s)⊂C̃i(t)}ds

=

∫ t

0

1

2

∞∑
j=1

(Xj(x, s))
211{C̃j(s)⊂C̃i(t)}ds ≤

t

2
(Xi(x, t))

2,

where the last inequality is a consequence of the inequality
∑

j:C̃j(s)⊂C̃i(t)(Xj(x, s))
2 ≤

(Xi(x, t))
2. Therefore µ̂i(x, t) ≤d ν̂i(x, t), a.s., where ν̂i(x, t) is a random probability

measure on N such that for a.e. ω, ν̂i(x, t) is Poisson distribution with parameter

t
2
(Xi(x, t, ω))2.

A similar argument shows that the conditional distribution of
∑∞

i=1 Ŷi(x, t), given

Gxt is a.s. stochastically dominated by a random measure on N that, for a.e. ω has a

Poisson distribution with parameter
∑∞

i=1
t
2
(Xi(x, t, ω))2 = t

2
S(x, t). Also, if x(n) is a

sequence converging to x in l2↓, we have that for each n, the conditional distribution

of
∑∞

i=1 Ŷi(x
(n), t), given Gx(n)

t is a.s. stochastically dominated by a Poisson random

variable with parameter t
2
S(x(n), t). From Theorem 5.4.4(ii), {S(x(n), t)}n≥1 is tight.

Combining these facts we have that {
∑∞

i=1 Ŷi(x
(n), t)}n≥1 is a tight family. Finally,

note that R̂(x(n), t) ≤ X1(x(n), t)
(∑∞

i=1 Ŷi(x
(n), t)

)
. The tightness of {R̂(x(n), t)}n≥1

now follows on combining the above established tightness of {
∑∞

i=1 Ŷi(x
(n), t)}n≥1

and the tightness of {X1(x(n), t)}n≥1, where the latter is once again a consequence of

Theorem 5.4.4(ii). �
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We now complete the proof of Theorem 5.4.1.

Proof of Theorem 5.4.1. Fix z = (x, y) ∈ U0
↓ and t ≥ 0. From Lemma 5.4.9

(i) R̂(x, t) < ∞ a.s. Also, from Proposition 5.4.5, R̃(z, t) < ∞ a.s. The result now

follows on recalling that R(z, t) = R̂(x, t) + R̃(z, t). �

We also record the following consequence of Lemma 5.4.9 and Corollary 5.4.8 for

future use.

Corollary 5.4.10. If z(n) → z in U0
↓, then {R(z(n), t)}n≥1 is tight.

5.4.2 Feller property of the AMC

In this section, we will prove Theorem 5.4.2. In fact we will show that if z(n) =

(x(n), y(n)) converges to z = (x, y) in U0
↓, and z ∈ U1

↓, then

(X(z(n), t),Y (z(n), t))
P−→ (X(z, t),Y (z, t)). (5.4.3)

We start with the following elementary lemma.

Lemma 5.4.11. Suppose (x, y), (x(n), y(n)) ∈ U↓ for n ≥ 1. Then

lim
n→∞

dU((x, y), (x(n), y(n))) = 0

if and only if the following three conditions hold:

(i) limn→∞
∑∞

i=1(x(n)

i − xi)2 = 0.

(ii) y(n)

i = yi for n sufficiently large, for all i ≥ 1.

(iii) limn→∞
∑∞

i=1 x
(n)

i y
(n)

i =
∑∞

i=1 xiyi.

Proof: The “only if” part is immediate. To see the “if” part, note that the first

two conditions imply limn→∞ x
(n)

i y
(n)

i = xiyi for all i ≥ 1. By the third condition and

Scheffe’s lemma, we now have limn→∞
∑

i |x
(n)

i y
(n)

i − xiyi| = 0. The result follows. �
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The key ingredient in the proof is the following lemma the proof of which is given

after Lemma 5.4.14.

Lemma 5.4.12. Let z(n) = (x(n), y(n)) converge to z = (x, y) in U0
↓. Suppose that

z ∈ U1
↓. Then

(i) Yi(z
(n), t)

P−→ Yi(z, t) for all i ≥ 1.

(ii)
∑∞

i=1 Xi(z
(n), t)Yi(z

(n), t)
P−→
∑∞

i=1Xi(z, t)Yi(z, t).

Proof of Theorem 5.4.2 can now be completed as follows.

Proof of Theorem 5.4.2. The first part of the theorem is immediate from

the construction given at the beginning of Section 5.4 and elementary properties

of Poisson processes. For the second part, consider z(n) = (x(n), y(n)), z = (x, y)

as in the statement of the theorem. It suffices to prove (5.4.3). From Theorem

5.4.4(ii), X(z(n), t) → X(z, t) in probability, in l2↓. The result now follows on

combining this convergence with the convergence in Lemma 5.4.12 (on noting that

(X(z, t),Y (z, t)) ∈ U1
↓ a.s.) and applying Lemma 5.4.11. �

Rest of this section is devoted to the proof of Lemma 5.4.12. The key idea

of the proof is as follows. Consider the induced subgraphs on the first k vertices

G[k] = G(z[k], t) and G(n)[k] = G(z(n)[k], t). Since there are only finite number of

vertices in G[k], when n → ∞, G(n)[k] will eventually be identical to G[k] almost

surely. The main step in the proof is to control the difference between G(n)[k] and

G(n) when k is large, uniformly for all n. For this we first analyze the difference

between G(n)[k] and G(n)[k+1] in the lemma below.

Consider the set of vertices [k + 1] = {1, 2, ..., k, k + 1}, and for every i ∈ [k + 1],

let vertex i have label (xi, yi) representing its size and surplus, respectively. Suppose

x1 ≥ x2 ≥ ... ≥ xk+1. Fix t > 0. Define a random graph G∗ on the above vertex set

as follows. For i ≤ k, the number of edges, Ni, between i and k + 1 is distributed
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as Poisson(txixk+1). In addition, there are N0 = Poisson(tx2
k+1/2) self-loops to the

vertex k+1. All the Poisson random variables are taken to be mutually independent.

Denote Xi and Yi for the component volumes and surplus of the resulting star-like

graph if i is the smallest labeled vertex in its component; otherwise let Xi = Yi = 0.

A precise definition of (Xi, Yi) is as follows. Write i ∼ k+1 if there is an edge between

i and k+1 in G∗. By convention (k+1) ∼ (k+1). Let Jk = {i ∈ [k+1] : i ∼ k+1},

and i0 = min{i : i ∈ Jk}. Then

(Xi, Yi) =



(∑
i∈Jk xi,

∑
i∈Jk yi

)
if i = i0

(0, 0) if i ∈ Jk \ {i0}

(xi, yi) if i ∈ [k + 1] \ Jk.

Define Rk =
∑k

i=1 xiyi, Sk =
∑k

i=1 x
2
i , Rk+1 =

∑k+1
i=1 XiYi. Then we have the follow-

ing result.

Lemma 5.4.13. (i) P{Yi 6= yi} ≤ txk+1yk+1x1 + tx2
k+1 (1 + itx2

1 + tSk + tRkx1).

(ii) E[Rk+1 − Rk] ≤ xk+1yk+1(1 + tSk) + x2
k+1(tRk + t2SkRk + t2Skx1) + tx3

k+1(1 +

2tSk + t2S2
k).

Proof: (i) It is easy to see that, for i = 1, · · · k,

{Yi 6= yi} ⊂ ({yk+1 > 0} ∩ {i ∈ Jk}) ∪ {N0 6= 0} ∪kj=1 {Nj > 1}

∪j<i {NjNi 6= 0} ∪j:yj>0 {NjNi 6= 0}.

Using the observation that for a Poisson(λ) random variable Z, P{Z ≥ 1} < λ and

P{Z ≥ 2} < λ2, we now have that
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P{Yi 6= yi} ≤txixk+1 · yk+1 +
tx2
k+1

2
+

k∑
j=1

(txjxk+1)2

+
i−1∑
j=1

txjxk+1 · txixk+1 +
k∑
j=1

txjxk+1 · txixk+1 · yj.

The proof is now completed on collecting all the terms and using the fact that xi ≤ x1

for every i.

(ii) Note that

X0 = xk+1 +
k∑
j=1

xj11{Nj≥1}, Y0 = yk+1 +
k∑
j=1

yj11{Nj≥1} +N0 +
k∑
j=1

(Nj − 1)+.

Then

Rk+1 −Rk

=X0Y0 −
∑
j∈Jk

xjyj

=xk+1yk+1 +
k∑
j=1

(xjyk+1 + xk+1yj)11{Nj≥1} +
∑

1≤j<l≤k

(xjyl + xlyj)11{Nj≥1}11{Nl≥1}

+N0X0 + xk+1

k∑
j=1

(Nj − 1)+ +
k∑
j=1

xj(Nj − 1)+

+
∑

1≤j<l≤k

(xj11{Nj≥1}(Nl − 1)+ + xl11{Nl≥1}(Nj − 1)+).

The result now follows on taking expectations in the above equation and using the

fact that E[(Nj − 1)+] < (txjxk+1)2. �

Recall that, by construction, Xi(z, t) ≥ Xi+1(z, t) for all z ∈ U↓, t ≥ 0 and i ∈ N.

The following lemma which is a key ingredient in the proof of Lemma 5.4.12 says

that if z ∈ U1
↓, ties do not occur, a.s.

Lemma 5.4.14. Let z ∈ U1
↓. Then for every t > 0 and i ∈ N, Xi(z, t) > Xi+1(z, t) a.s.

Proof: Fix t > 0. Consider the graph G(z, t) and write Cxi ≡ Cxi(t) for the compo-
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nent of vertex (xi, yi) at time t. It suffices to show for all i 6= j

P
{
|Cxi | = |Cxj |, Cxi 6= Cxj

}
= 0. (5.4.4)

The key property we shall use is that for z = (x, y) ∈ U1
↓,
∑∞

i=1 xi = ∞. Now fix

i ≥ 1. It is enough to show that |Cxi | has no atom i.e for all (x, y) ∈ U1
↓

P(|Cxi | = a) = 0, for any a ≥ 0. (5.4.5)

To see this, first note that since |Cxi | < ∞ a.s., conditional on Cxi the vector z∗ =

((xk, yk) : xk /∈ Cxi) ∈ U1
↓ almost surely. Thus on the event xj /∈ Cxi , conditional

on Cxi , using (5.4.5) with a = |Cxi | implies that P(|Cxj | = |Cxi | | Cxi) = 0 and

this completes the proof. Thus it is enough to prove (5.4.5). For the rest of the

argument, to ease notation let i = 1. Let us first show the simpler assertion that the

volume of direct neighbors of x1 has a continuous distribution. More precisely, let

Ni,j(t) := ξi,j([0, txixj/2]) + ξj,i([0, txixj/2]), 1 ≤ i < j, denote the number of edges

between any two vertices xi and xj by time t. Then the volume of direct neighbors

of the vertex x1 is L :=
∑∞

i=2 xi11{N1,i(t)≥1} and we will first show that L has no atom,

namely

P(L = a) = 0, for all a ≥ 0. (5.4.6)

For any random variable X define the maximum atom size of X by

atom(X) := sup
a∈R

P {X = a} .

For two independent random variables X1 and X2 we have atom(X1 + X2) ≤

min {atom(X1), atom(X2)}. For m ≥ 2, define Lm =
∑∞

i=m xi11{N1,i(t)≥1}. Since

Lm and L− Lm are independent, we have atom(L) ≤ atom(Lm). Define the event

Em := {N1,i(t) ≤ 1 for all i ≥ m} ,

and write

L∗m(t) :=
∞∑
i=m

xiN1,i(t).
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Then L∗m(t) is a pure jump Levy process with Levy measure ν(du) =
∑∞

i=m x1xiδxi(du).

By [19], such a Levy process has continuous marginal distribution since the Levy mea-

sure is infinite (ν(0,∞) = (
∑∞

i=m xi)x1 = ∞) . Thus L∗m(t) has no atom. Next, for

any a ∈ R,

P {Lm = a} ≤P {Ec
m}+ P {Em, Lm = a} = P {Ec

m}+ P {Em, L∗m(t) = a}

≤
∞∑
i=m

(tx1xi)
2

2
+ 0 =

t2x2
1

2

∞∑
i=m

x2
i .

Thus atom(L) ≤ atom(Lm) ≤ t2x2
1

2

∑∞
i=m x

2
i . Sincem is arbitrary, we have atom(L) =

0. Thus L is a continuous variable, and (5.4.6) is proved.

Let us now strengthen this to prove (5.4.5). Let G̃ be the subgraph of G(z, t)

obtained by deleting the vertex x1 and all related edges. Let X̃i be the volume of the

i-th largest component of G̃. Note that
∑∞

i=1 X̃i =
∑∞

i=2 xi =∞ a.s. Conditional on

(X̃i)i≥1, let Ñ1,i have Poisson distribution with parameter tx1X̃i. Then

Cx1

d
= x1 +

∞∑
i=1

X̃i11{Ñ1,i≥1},

where the second term has the same form as the random variable L. Using (5.4.6)

completes the proof. �

We now proceed to the proof of Lemma 5.4.12.

Proof of Lemma 5.4.12. Fix t > 0 and z(n), z as in the statement of the lemma.

Denote Y [k] = Y (z[k], t), Y (n)[k] = Y (z(n)[k], t). Similarly, denote C [k]

i and C(n)[k]

i for the

corresponding i-th largest component; and X [k]

i and X (n)[k]

i for their respective sizes.

Also, write X (n) = X(x(n), t) and define Y (n), R(n), S(n) similarly.

For i ∈ N, define the event E(n)[k]

i as,

E(n)[k]

i := {ω : X (n)[k]

j (ω) > X (n)

j+1(ω), for j = 1, 2, ..., i},
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and define E [k]

i similarly. Then

P{Y (n)

i 6= Yi(t)} ≤P{Y (n)

i 6= Y (n)[k]

i }+ P{Y (n)[k]

i 6= Y [k]

i }+ P{Y [k]

i 6= Yi(t)}

≤P{Y (n)

i 6= Y (n)[k]

i , E(n)[k]

i }+ P{(E(n)[k]

i )c}

+ P{Y (n)[k]

i 6= Y [k]

i }+ P{Y [k]

i 6= Yi(t)}. (5.4.7)

Note that

E(n)[k]

i ⊂ {ω : C(n)[k]

j (ω) ⊂ C(n)[m]

j (ω) ⊂ C(n)

j (ω), for all j = 1, 2, ..., i and m ≥ k}.

Thus the probability of the event {Y (n)[m+1]

i 6= Y (n)[m]

i , E(n)[k]

i }, for m ≥ k, can be

estimated using Lemma 5.4.13 (i). More precisely, let F [m] = σ{ξi,j; i, j ≤ m} for

m ≥ 1. Then by Lemma 5.4.13 (i),

P{Y (n)[m+1]

i 6= Y (n)[m]

i , E(n)[k]

i |F [m]}

≤tx(n)

m+1y
(n)

m+1X
(n)[m]

1 + t(x(n)

m+1)2
(
1 + it(X (n)[m]

1 )2 + tS(n)[m] + tR(n)[m]X (n)[m]

1

)
,

where S(n)[m] =
∑

i(X
(n)[m]

i )2 and R(n)[m] =
∑

i(X
(n)[m]

i Y (n)[m]

i ).

Note that X (n)[k]

1 ≤ X (n)

1 , R(n)[k] ≤ R(n) and S(n)[k] ≤ S(n). Thus we have

∞∑
m=k

P{Y (n)[m+1]

i 6= Y (n)[m]

i , E(n)[k]

i |F [m]}

≤t

(
∞∑

m=k+1

x(n)

m y
(n)

m

)
X (n)

1 + t

(
∞∑

m=k+1

(x(n)

m )2

)(
1 + it(X (n)

1 )2 + tS(n) + tR(n)X (n)

1

)
.

Denote the right hand side of the above inequality as U (n)[k]. Then by Lemma 5.4.3(ii),

we have

P{Y (n)

i 6= Y (n)[k]

i , E(n)[k]

i } =P
(
∪∞m=k{Y

(n)[m+1]

i 6= Y (n)[m]

i , E(n)[k]

i }
)

≤2E[U (n)[k] ∧ 1] (5.4.8)

and therefore

P{Y (n)

i 6= Yi(t)} ≤ 2E[U (n)[k] ∧ 1] + P{(E(n)[k]

i )c}+ P{Y (n)[k]

i 6= Y [k]

i }+ P{Y [k]

i 6= Yi(t)}.

(5.4.9)
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Next note that X (n)

1 , S(n) and R(n) are all tight sequences by Corollary 5.4.10 and

Theorem 5.4.4(ii). Thus (1 + it(X (n)

1 )2 + tS(n) + tR(n)X (n)

1 ) is also tight. Also, since

z(n) → z,

lim sup
k→∞

lim sup
n→∞

∞∑
i=k+1

x(n)

i y
(n)

i = 0 and lim sup
k→∞

lim sup
n→∞

∞∑
i=k+1

(x(n)

i )2 = 0.

Combining the above observations we have that lim supk→∞ lim supn→∞ P{U (n)[k] >

ε} = 0 for all ε > 0. From the inequality

E[U (n)[k] ∧ 1] ≤ P{U (n)[k] > ε}+ ε

we now see that

lim sup
k→∞

lim sup
n→∞

E[U (n)[k] ∧ 1] = 0. (5.4.10)

Next, from a straightforward extension of Proposition 5 of Aldous [2] we have that

(X (n), X (n)[k]

1 , ..., X (n)[k]

i )
d−→ (X(t), X [k]

1 , ..., X
[k]

i ) in l2↓ × Ri when n → ∞, for each

fixed i and k. Combining this with Lemma 5.4.14 we now see that for fixed i

lim sup
k→∞

lim sup
n→∞

P{(E(n)[k]

i )c} = 0.

Also, for each fixed k

lim sup
n→∞

P{Y (n)[k]

i 6= Y
[k]
i } = 0.

Observing that limk→∞ Y
[k]

i = Yi(t) and the last term in (5.4.9) does not depend on

n, we have that

lim sup
k→∞

lim sup
n→∞

P{Y [k]

i 6= Yi(t)} = 0.

Part (i) of the lemma now follows on combining the above observations and taking

limit as n→∞ and then k →∞ in (5.4.9).

We now prove part (ii) of the lemma. Note that

lim inf
n→∞

R(n) ≥ lim
n→∞

R(n)[k] = R[k].
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With a similar argument as in Lemma 5.4.6, we have R[k] → R(z, t) as k →∞. Thus

sending k →∞ in the above display we have

lim inf
n→∞

R(n) ≥ R(z, t). (5.4.11)

To complete the proof, it suffices to show that

For any ε > 0, lim
n→∞

P{R(n) > R(z, t) + ε} = 0. (5.4.12)

Note that

P{R(n) −R(z, t) > ε} ≤P{R(n) −R(n)[k] > ε/2}+ P{R(n)[k] −R(z, t) > ε/2}

≤P{R(n) −R(n)[k] > ε/2}+ P{R(n)[k] −R[k] > ε/2}. (5.4.13)

The second term on the right side above goes to zero for each fixed k, as n → ∞.

For the first term, note that by Lemma 5.4.13(ii), for all m ≥ k

E[R(n)[m+1] −R(n)[m]|F [m]] ≤ x(n)

m y
(n)

m U (n)

1 + (x(n)

m )2U (n)

2 + (x(n)

m+1)3U (n)

3 ,

where U (n)

1 = 1 + tS(n), U (n)

2 = tR(n) + t2S(n)R(n) + t2S(n)X (n)

1 and U (n)

3 = t(1 + 2tS(n) +

t2(S(n))2). Thus by Lemma 5.4.3 (i),

P{R(n) −R(n)[k] > ε} ≤ (1 + 1/ε)E[U (n)[k] ∧ 1],

where U (n)[k] = (
∑∞

m=k+1 x
(n)
m y

(n)
m )U (n)

1 + (
∑∞

m=k+1(x(n)
m )2)U (n)

2 + (
∑∞

m=k+1(x(n)

m+1)3)U (n)

3 .

Note that U (n)

1 , U (n)

2 and U (n)

3 are all tight sequences and z(n) → z. An argument

similar to the one used to prove (5.4.10) now shows that, for all ε > 0,

lim sup
k→∞

lim sup
n→∞

P{R(n) −R(n)[k] > ε} ≤
(

1 +
1

ε

)
lim sup
k→∞

lim sup
n→∞

E[U (n)[k] ∧ 1] = 0.

The statement in (5.4.12) now follows on using the above convergence in (5.4.13) and

combining it with the observation below (5.4.13). This completes the proof of part

(ii). �
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Remark 5.4.15. Lemma 5.4.12 is at the heart of the (near) Feller property in Theo-

rem 5.4.2 which is crucial for the proof of the joint convergence in (5.3.5). The proof

of the lemma reveals the reason for considering the metric dU on U↓.

One natural metric on U↓, denoted by d1, is the one obtained by replacing the

second term in (5.2.5) with
∞∑
i=1

|yi − y′i|
2i

∧ 1.

This metric corresponds to the topology on U↓ inherited from `2 × N∞ taking the

topology generated by the inner product 〈·, ·〉 on `2 and the product topology on N∞;

and then considering the product topology on `2 × N∞.

Another metric (which we denote by d2) that can be considered on U↓ corresponds

to replacing the second term in (5.2.5) with dvt(µz, µz′), where µz =
∑∞

i=1 δzi , µz′ =∑∞
i=1 δz′i and dvt is the metric corresponding to the vague topology on the space of

N ∪ {∞} valued locally finite measures on (0,∞)× N.

The proof of Lemma 5.4.12 hinges upon the convergence of
∑∞

m=1 x
(n)
m y

(n)
m to∑∞

m=1 xmym, as n → ∞, even for the proof of convergence of Yi(z
(n), t)

P−→ Yi(z, t).

Since d1 and d2 give no control over sums of the form
∑∞

m=1 xmym, this suggests that

the convergence in d1 or d2 is “too weak” to yield the desired Feller property.

5.5 The standard augmented multiplicative coalescent.

In this section we prove Theorem 5.3.1. The Proposition 4 of [2] proves a very

useful result on convergence of component size vectors of a general family of non-

uniform random graph models to the ordered excursion lengths of Ŵλ. We begin

in this section by extending this result to the joint convergence of component size

and component surplus vectors in U↓, under a slight strengthening of the conditions

assumed in [2].
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Recall the excursion lengths and mark count process Z∗(λ) = (X∗(λ),Y ∗(λ))

defined in Section 5.2.3.2. Our first result below shows that, for fixed λ ∈ R, Z∗(λ)

arises as a limit of Z(z(n), q(n)) in U↓ for all sequences {z(n)} ⊂ U↓ and q(n) = q(n)

λ ⊂

(0,∞) that satisfy certain regularity conditions.

For n ≥ 1, let z(n) = (x(n), y(n)) ∈ U0
↓. Writing z(n)

i = (x(n)

i , y
(n)

i ), i ≥ 1, define

x∗(n) = sup
i≥1

x(n)

i , s
(n)

r =
∞∑
i=1

(x(n)

i )r, r ≥ 1.

Note that x∗(n) = x(n)

1 since the sequence is ordered. Let {q(n)} be a nonnegative

sequence. We will suppress (n) from the notation unless needed.

Theorem 5.5.1. Let z(n) = (z(n)

1 , · · · ) ∈ U0
↓ be such that x(n)

i = 0 for all i > n and

y(n)

i = 0 for all i ≥ 1. Suppose that, as n→∞,

s3

(s2)3
→ 1, q − 1

s2

→ λ,
x∗

s2

→ 0, (5.5.1)

and, for some ς ∈ (0,∞),

s1 ·
(
x∗

s2

)ς
→ 0. (5.5.2)

Then Z(n) = Z(z(n), q(n)) converges in distribution in U↓ to Z∗(λ).

Remark: The convergence assumption in (5.5.1) is the same as that in Propo-

sition 4 of [2]. The additional assumption in (5.5.2) is not very stringent as will be

seen in Section 5.7 when this result is applied to a general family of bounded-size

rules.

Given Theorem 5.5.1, the proof of Theorem 5.3.1 can now be completed as follows.

Proof of Theorem 5.3.1. The first two parts of the theorem were shown in

Theorem 5.4.2. Also, part (v) of the theorem is immediate from the definition of

{Tt} in Section 5.2.3.1. Recall the definition of νλ from Section 5.2.3.2. In order to

132



prove parts (iii)-(iv) it suffices to show that

for any λ1, λ2 ∈ R, λ1 ≤ λ2, νλ1Tλ2−λ1 = νλ2 . (5.5.3)

Indeed, using the semigroup property of (Tλ) and the above relation, it is straight-

forward to define a consistent family of finite dimensional distributions µλ1,···λk on

(U↓)⊗k, −∞ < λ1 < λ2, · · ·λk < ∞, k ≥ 1, such that µλ = νλ for every λ ∈ R. The

desired result then follows from Kolmogorov’s consistency theorem.

We now prove (5.5.3). Let

z(n) = (x(n), y(n)), x(n)

i = n−2/3, y(n)

i = 0, i = 1, · · ·n, q(n)

λj
= λj + n1/3, j = 1, 2.

We set z(n)

i = 0 for i > n. Note that with this choice of x(n), s1 = n1/3, s2 = n−1/3, s3 =

n−1 and so clearly (5.5.1) and (5.5.2) (with any ς > 1) are satisfied with q = qλj ,

λ = λj, j = 1, 2. Thus, denoting the distribution of Z(z(n), q(n)

λj
) by ν(n)

λj
, we have by

Theorem 5.5.1 that

ν(n)

λj
→ νλj , as n→∞. (5.5.4)

Also, from the construction of Z(z, t) in Section 5.4, it is clear that ν(n)

λ1
Tλ2−λ1 = ν(n)

λ2
.

The result now follows on combining the convergence in (5.5.4) with Theorem 5.4.2

and observing that Z∗(λ) ∈ U1
↓ a.s. for every λ ∈ R. �

Rest of this section is devoted to the proof of Theorem 5.5.1 and is organized

as follows. Recall the random graph process G(z, q), for z ∈ U↓, q ≥ 0, defined

at the beginning of Section 5.4. In Section 5.5.1 we will give an equivalent in law

construction of G(z, q), from [2], that defines the random graph simultaneously with

a certain breadth-first-exploration random walk. The excursions of the reflected

version of this walk encode the component sizes of the random graph while the area

under the excursions gives the parameter of the Poisson distribution describing the

(conditional) law of the surplus associated with the corresponding component. Using
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this construction, in Theorem 5.5.2, we will first prove a weaker result than Theorem

5.5.1 which proves the convergence in distribution of Z(n) to Z∗(λ) in l2↓×N∞, where

we consider the product topology on N∞. This result is proved in Section 5.5.2. In

Section 5.5.3 we will give the proof of Theorem 5.5.1 using Theorem 5.5.2 and an

auxiliary tightness lemma (Lemma 5.5.4). Finally, proof of Lemma 5.5.4 is given in

Section 5.5.4.

5.5.1 Breadth-first-exploration random walk

In this section, following [2], we will give an equivalent in law construction of

G(z, q) that defines the random graph simultaneously with a certain breadth-first-

exploration random walk. Given q ∈ (0,∞) and z ∈ U0
↓ such that xi = 0 for all

i > n and yi = 0 for all i, we will construct a random graph Ḡ(z, q) that is equivalent

in law to G(z, q), in two stages, as follows. We begin with a graph on [n] with no

edges. Let {ηi,j}i,j∈N be independent Poisson point processes on [0,∞) such that ηij

for i 6= j has intensity qxj; and for i = j has intensity qxi/2.

Stage I: The breadth-first-search forest and associated random walk: Choose

a vertex v(1) ∈ [n] with P(v(1) = i) ∝ xi. Let

I1 = {j ∈ [n] : j 6= v(1) and ηv(1),j ∩ [0, xv(1)] 6= ∅}.

Form an edge between v(1) and each j ∈ I1. Let c(1) = |I1|. Let mv(1),j be the first

point in ηv(1),j for each j ∈ I1. Order the vertices in I1 according to increasing values

of mv(1),j and label these as v(2), · · · v(c(1) + 1). Let

V1 = {v(1)}, N1 = {v(2), · · · , v(c(1) + 1)}, l1 = xv(1) and d1 = c(1).

Having defined Vi′ , Ni′ , li′ , di′ and the edges up to step i′, with Vi′ = {v(1), · · · v(i′)},

Ni′ = {v(i′ + 1), v(i′ + 2), · · · v(di′ + 1)} for 1 ≤ i′ ≤ i− 1, define, if Ni−1 6= ∅

Ii = {j ∈ [n] : j 6∈ Ni−1 ∪ Vi−1 and ηv(i),j ∩ [0, xv(i)] 6= ∅}
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and form an edge between v(i) and each j ∈ Ii. Let c(i) = |Ii| and let mv(i),j be the

first point in ηv(i),j for each j ∈ Ii. Order the vertices in Ii according to increasing

values of mv(i),j and label these as v(di−1 + 2), · · · v(di + 1), where di = di−1 + c(i).

Set

li = li−1 + xv(i), Vi = {v(1), · · · v(i)}, Ni = {v(i+ 1), v(i+ 2), · · · v(di + 1)}.

In case Ni−1 = ∅, we choose v(i) ∈ [n] \ Vi−1 with probability proportional to xj,

j ∈ [n] \ Vi−1 and define Ii, c(i), di, li,Vi,Ni and the edges at step i exactly as above.

This procedure terminates after exactly n steps at which point we obtain a forest-

like graph with no surplus edges. We will include surplus to this graph in stage II

below.

Associate with the above construction an (interpolated) random walk process

H (n)(·) defined as follows. H (n)(0) = 0 and

H (n)(li−1 +u) = H (n)(li−1)−u+
∑

j /∈Vi∪Ni−1

xj11{mv(i),j<u} for 0 < u < xv(i), i = 1, · · ·n,

(5.5.5)

where by convention l0 = 0 and N0 = ∅. This defines H (n)(t) for all t ∈ [0, ln). Define

H (n)(t) = H (n)(ln−) for all t ≥ ln.

Stage II: Construction of surplus edges: For each i = 1, · · · , n, we construct

surplus edges on the graph obtained in Stage I and a point process Px on [0, ln],

simultaneously, as follows.

(i) For each v ∈ Ii and τ ∈ ηv(i),v ∩ [0, xv(i)]\{mv(i),v}, construct an edge between v(i)

and v. This corresponds to multi-edges between the two vertices v(i) and v.

(ii) For each τ ∈ ηv(i),v(i) ∩ [0, xv(i)], construct an edge between v(i) and itself. This

corresponds to self-loops at the vertex v(i).

(iii) For each v(j) ∈ Ni−1 \ {v(i)} and τ ∈ ηv(i),v(j) ∩ [0, xv(i)], construct an edge

between v(i) and v(j). This corresponds to additional edges between two vertices,
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v(i) and v(j), that were indirectly connected in stage I.

For each of the above cases, we also construct points for the point process Px at time

li−1 + τ ∈ [0, ln].

This completes the construction of the graph Ḡ(z, q) and the random walk H (n)(·).

This graph has the same law as G(z, q), so the associated component sizes and surplus

vector denoted by (X̄(z, q), Ȳ (z, q)) has the same law as that of (X(z, q),Y (z, q)).

Furthermore, conditioned on H (n), Px is Poisson point process on [0, ln] whose inten-

sity we denote by rx(t).

Using the above construction we will show in next section, as a first step, a weaker

result than Theorem 5.5.1.

5.5.2 Convergence in l2↓ × N∞.

The following is the main result of this section.

Theorem 5.5.2. Let z(n) ∈ U0
↓ and q(n) ∈ (0,∞) be sequences that satisfy the condi-

tions in Theorem 5.5.1. Then

(X (n),Y (n))
d−→ (X∗(λ),Y ∗(λ)) (5.5.6)

in the space l2↓ × N∞ as n→∞, where we consider the product topology on N∞.

The key ingredient in the proof is the following result. With z(n) and q(n) as in

the above theorem, define X̄
(n)

= X̄(z(n), q(n)), Ȳ
(n)

= Ȳ (z(n), q(n)) and r(n)(t) =

rx(n)(t)11[0,ln](t), t ≥ 0. Denote the random walk process from Section 5.5.1 con-

structed using (x(n), q(n)) (rather than (x, q)), once more, by H (n)(·).

Define the rescaled process H̄ (n)(·) and its reflected version Ĥ (n)(·) as follows

H̄ (n)(t) :=

√
s2

s3

H (n)(t), Ĥ (n)(t) := H̄ (n)(t)− min
0≤u≤t

H̄ (n)(u). (5.5.7)
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Lemma 5.5.3. (i) As n→∞, the process H̄ (n) d−→ Wλ in D([0,∞) : R).

(ii) For n ≥ 1,

sup
t≥0

∣∣∣∣r(n)(t)− q
√
s3

s2

Ĥ (n)(t)

∣∣∣∣ ≤ 3

2
qx∗. (5.5.8)

Given Lemma 5.5.3, the proof of Theorem 5.5.2 can be completed as follows.

Proof of Theorem 5.5.2: The paper [2] shows that the vector X̄
(n)

can be

represented as the ordered sequence of excursion lengths of the process Ĥ (n). Also,

weak convergence of H̄ (n) to Wλ in Lemma 5.5.3 (i) implies the convergence of Ĥ (n)

to Ŵλ. Using these facts, Proposition 4 of [2] shows that X̄
(n)

converges in distri-

bution to the ordered excursion length sequence of Ŵλ, namely X∗(λ), in l2↓. Also,

conditional on Ĥ (n), Px is a Poisson point process on [0,∞) with rate r(n)(t) and

for i ≥ 1, Ȳ (n)

i has a Poisson distribution with parameter
∫

[a
(n)
i ,b

(n)
i ]

r(n)(s)ds, where

a(n)

i , b
(n)

i are the left and right endpoints of the i-th ordered excursion of Ĥn. From

conditions in (5.5.1) it follows that x∗ → 0 and s2 → 0, further more we have

qx∗ → 0 and q
√
s3/s2 → 1. Lemma 5.5.3 (ii) then shows that

∫
[a

(n)
i ,b

(n)
i ]

r(n)(s)ds

converges in distribution to
∫

[ai,bi]
Ŵλ(s)ds, where ai, bi are the left and right end-

points of the i-th ordered excursion of Ŵλ. In fact we have the joint convergence

of

(
Ĥ (n),

(∫
[a

(n)
i ,b

(n)
i ]

r(n)(s)ds
)
i≥1

)
to

(
Ŵλ,

(∫
[ai,bi]

Ŵλ(s)ds
)
i≥1

)
. This proves the

convergence of (X̄
(n)
, Ȳ

(n)
) to (X∗(λ),Y ∗(λ)) in l2↓ × N∞. The result follows since

(X̄
(n)
, Ȳ

(n)
) has the same law as (X (n),Y (n)). �

Proof of Lemma 5.5.3 Part (i) was proved in Proposition 4 of [2]. Consider

now (ii).

For j = 1, 2, ..., define δv(j) = 1{Nj−1=∅}, i.e. δv(j) is 1 if v(j) is the first vertex that

is explored in its component during the breadth-first-search, and is 0 otherwise. It is
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easy to verify that H (n) satisfies

H (n)(li) = −
i∑

j=1

δv(j)xv(j) +
∑
v∈Ni

xv, i = 1, · · ·n.

The above equation implies that for all k ≤ i, H (n)(lk) ≥ −
∑i

j=1 δv(j)xv(j). In

addition, taking k0 = sup
{
j ≤ i : δv(j) = 1

}
we have H (n)(lk0) = −

∑i
j=1 δv(j)xv(j). In

particular, this implies that infj≤iH
(n)(lj) = −

∑i
j=1 δv(j)xv(j). Also, from (5.5.5) we

have that for t ∈ (li−1, li], H
(n)(t) ≥ H (n)(li−1)− x∗. Consequently∣∣∣∣∣ inf

0≤u≤t
H (n)(u) +

i−1∑
j=1

δv(j)xv(j)

∣∣∣∣∣ =

∣∣∣∣ inf
0≤u≤t

H (n)(u)− inf
{j:lj≤t}

H (n)(lj)

∣∣∣∣ ≤ x∗. (5.5.9)

Let Ni−1 = {v(i), v(i + 1), ..., v(i + l)}. From the above expression for H (n)(li), we

have that for t ∈ (li−1, li]

H (n)(t) =

(
−

i−1∑
j=1

δv(j)xv(j) +
i+l∑
j=i

xv(j)

)
− (t− li−1) +

∑
j /∈Vi∪Ni−1

xj11{mv(i),j<t−li−1},

(5.5.10)

Also, accounting for the three sources of surplus described in Stage II of the con-

struction, one has the following formula for r(n)(t) at time t ∈ (li−1, li]:

r(n)(t) = q ·

xv(i)

2
+

i+l∑
j=i+1

xv(j) +
∑

j /∈Vi∪Ni−1

xj11{mv(i),j<t−li−1}

 .

The three terms in the above expression correspond to self-loops; edges between

vertices that in stage I were only connected indirectly; and additional edges between

two vertices that were directly connected in stage I. Combining the above expression

with (5.5.10) and (5.5.9), we have∣∣∣∣r(n)(t)− q ·
(
H (n)(t)− min

0≤s≤t
H (n)(s)

)∣∣∣∣
≤q ·

(∣∣∣∣∣ inf
0≤s≤t

H (n)(s) +
i−1∑
j=1

δv(j)xv(j)

∣∣∣∣∣+
xv(i)

2

)
≤ 3

2
qx∗. (5.5.11)

The result follows. �
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5.5.3 Proof of Theorem 5.5.1.

In this section we complete the proof of Theorem 5.5.1. The key step in the proof

is the following lemma whose proof is given in Section 5.5.4.

Lemma 5.5.4. Let z(n) ∈ U0
↓ and q(n) ∈ (0,∞) be as in Theorem 5.5.1. Let Ĥ (n) be as

introduced in (5.5.7). Then {supt≥0 Ĥ
(n)(t)}n≥1 is a tight family of R+ valued random

variables.

Remark 5.5.5. In fact one can establish a stronger statement, namely

sup
u≥t

sup
n≥1

Ĥ (n)

u
P−→ 0

as t→∞. Also, although not used in this work, using very similar techniques as in

the proof of Lemma 5.5.4, it can be shown that supu≥t Ŵλ(u) converges a.s. to 0, as

t→∞.

Proof of Theorem 5.5.1. Since (X (n),Y (n)) has the same distributions as

(X̄
(n)
, Ȳ

(n)
), we can equivalently consider the convergence of the latter sequence.

From Theorem 5.5.2 we have that (X̄
(n)
, Ȳ

(n)
) converges to (X∗(λ),Y ∗(λ)), in dis-

tribution, in l2↓ × N∞ (with product topology on N∞). By appealing to Skorohod

representation theorem, we can assume without loss of generality that the conver-

gence is almost sure. By the definition of dU↓ it now suffices to argue that

∞∑
i=1

∣∣X̄ (n)

i Ȳ (n)

i −X∗i (λ)Y ∗i (λ)
∣∣ P−→ 0.

Fix ε > 0. Then, for any k ∈ N,

P

{
∞∑
i=1

∣∣X̄ (n)

i Ȳ (n)

i −X∗i (λ)Y ∗i (λ)
∣∣ > ε

}
(5.5.12)

≤P

{
k∑
i=1

∣∣X̄ (n)

i Ȳ (n)

i −X∗i (λ)Y ∗i (λ)
∣∣ > ε

3

}
+ P

{
∞∑

i=k+1

X̄ (n)

i Ȳ (n)

i >
ε

3

}

+ P

{
∞∑

i=k+1

X∗i (λ)Y ∗i (λ) >
ε

3

}
.

139



From the convergence of (X̄
(n)
, Ȳ

(n)
) to (X∗(λ),Y ∗(λ)) in l2↓ × N∞ we have that

lim
n→∞

P

{
k∑
i=1

∣∣X̄ (n)

i Ȳ (n)

i −X∗i (λ)Y ∗i (λ)
∣∣ > ε

3

}
= 0.

Consider now the second term in (5.5.12). Let E(n)

L = {supt≥0 r
(n)

t ≤ L}. Then

P

{
∞∑

i=k+1

X̄ (n)

i Ȳ (n)

i >
ε

3

}
≤ P

{
(E(n)

L )c
}

+
3

ε
E

[
11
E

(n)
L

(
∞∑

i=k+1

X̄ (n)

i Ȳ (n)

i ∧ 1

)]
.

Let G = σ{Ĥ (n)(t) : t ≥ 0}. Since r(n)

t is G measurable for all t ≥ 0, E(n)

L ∈ G. Then

E

[
11
E

(n)
L

(
∞∑

i=k+1

X̄ (n)

i Ȳ (n)

i ∧ 1

)]
=E

[
11
E

(n)
L

E

[
∞∑

i=k+1

X̄ (n)

i Ȳ (n)

i ∧ 1 | G

]]

≤E

[
11
E

(n)
L

(
∞∑

i=k+1

E
[
X̄ (n)

i Ȳ (n)

i | G
]
∧ 1

)]

≤LE

[(
∞∑

i=k+1

(X̄ (n)

i )2

)
∧ 1

]
,

where the last inequality follows on observing that, conditionally on G, Ȳ (n)

i has a

Poisson distribution with rate that is dominated by X̄ (n)

i · (supt≥0 r
(n)

t ). Using the

convergence of X̄
(n)

to X∗, we now have

lim sup
n→∞

E

[
11
E

(n)
L

(
∞∑

i=k+1

X̄ (n)

i Ȳ (n)

i

)
∧ 1

]
≤ LE

[(
∞∑

i=k+1

(X∗i (λ))2

)
∧ 1

]
.

Let δ > 0 be arbitrary. Using Lemma 5.5.4 and Lemma 5.5.3 (ii) we can choose

L ∈ (0,∞) such that P
{

(E(n)

L )c
}
≤ δ. Finally, taking limit as n→∞ in (5.5.12) we

have that

lim sup
n→∞

P

{
∞∑
i=1

∣∣X̄ (n)

i Ȳ (n)

i −X∗i (λ)Y ∗i (λ)
∣∣ > ε

}

≤δ + LE

[(
∞∑

i=k+1

(X∗i (λ))2

)
∧ 1

]
+ P

{
∞∑

i=k+1

X∗i (λ)Y ∗i (λ) >
ε

3

}
. (5.5.13)

The result now follows on sending k → ∞ in the above display and recalling that∑∞
i=1(X∗i (λ))2 <∞ and

∑∞
i=1X

∗
i (λ)Y ∗i (λ) <∞ a.s. and δ > 0 is arbitrary. �
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5.5.4 Proof of Lemma 5.5.4.

In this section we prove Lemma 5.5.4. We will only treat the case λ = 0. The

general case can be treated similarly. The key step in the proof is the following

proposition whose proof is given at the end of the section.

Note that supt≥0 |H̄ (n)(t) − H̄ (n)(t−)| ≤ x∗
√
s2/s3 → 0 as n → ∞. Also, as

n→∞, qs2 → 1. Thus, without loss of generality, we will assume that

sup
n≥1

sup
t≥0
|H̄ (n)(t)− H̄ (n)(t−)| ≤ 1, sup

n≥1
q(n)s(n)

2 ≤ 2. (5.5.14)

Fix ϑ ∈ (0, 1/2) and define t∗(n) =
(
s2
x∗

)ϑ
. Denote by {F (n)

t } the filtration generated

by {H̄ (n)(t)}t≥0. For ease of notation, we write supt∈[a,b] = sup[a,b]. We will suppress

(n) in the notation, unless needed.

Proposition 5.5.6. There exist Θ ∈ (0,∞), events G(n), increasing F (n)

t -stopping times

1 = σ(n)

0 < σ(n)

1 < ..., and a real positive sequence {κi} with
∑∞

i=1 κi <∞, such that

the following hold:

(i) For every i ≥ 1,
{
σ(n)

i

}
n≥1

is tight.

(ii) For every i ≥ 1,

P

 sup
[σ

(n)
i−1,σ

(n)
i ]

Ĥ (n)(t) > 2Θ + 1

 ∩ {σ(n)

i−1 < t∗(n)
}
∩G(n)

 ≤ κi.

(iii) As n→∞, P
{

sup[σ∗(n),∞) Ĥ
(n)(t) > Θ;G(n)

}
→ 0, where σ∗(n) = inf

{
σ(n)

i : σ(n)

i ≥ t∗(n)
}

.

(iv) As n→∞, P(G(n))→ 1.

Given Proposition 5.5.6, the proof of Lemma 5.5.4 can be completed as follows.

Proof of Lemma 5.5.4:

Fix ε ∈ (0, 1). Let Θ ∈ (0,∞), G(n), σ(n)

i , κi be as in Proposition 5.5.6. Choose

i0 > 1 such that
∑

i≥i0 κi ≤ ε. Since
{
σ(n)

i0−1

}
is tight, there exists T ∈ (0,∞) such
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that lim supn→∞ P
{
σ(n)

i0−1 > T
}
≤ ε. Thus for any M ′ > 2Θ + 1, we have

P

{
sup
[1,∞)

Ĥ (n)(t) > M ′

}

≤P

{
sup
[1,T ]

Ĥ (n)(t) > M ′

}
+ P

{
σ(n)

i0−1 > T
}

+ P {(G(n))c}

+P

 sup
[σ

(n)
i0−1,σ

∗(n)]

Ĥ (n)(t) > 2Θ + 1;G(n)

+ P

{
sup

[σ∗(n),∞)

Ĥ (n)(t) > Θ;G(n)

}
.

Taking lim supn→∞ on both sides

lim sup
n→∞

P

{
sup
[1,∞)

Ĥ (n)(t) > M ′

}
≤ lim sup

n→∞
P

{
sup
[1,T ]

Ĥ (n)(t) > M ′

}
+ ε+ 0 + ε+ 0.

Since
{

sup[1,T ] Ĥ
(n)(t)

}
n≥1

is tight, we have,

lim sup
M ′→∞

lim sup
n→∞

P

{
sup
[1,∞)

Ĥ (n)(t) > M ′

}
≤ 2ε.

Since ε > 0 is arbitrary, the result follows. �

We now proceed to the proof of Proposition 5.5.6. The following lemma is key.

Lemma 5.5.7. There are {F (n)

t } adapted processes {A(n)(t)}, {B(n)(t)} and F (n)

t -

martingale {M (n)(t)} such that

(i) A(n)(·) is a non-increasing function of t, a.s. For all t ≥ 0, H̄ (n)(t) =
∫ t

0
A(n)(u)du+

M (n)(t).

(ii) For t ≥ 0, 〈M (n),M (n)〉t =
∫ t

0
B(n)(u)du.

(iii) supn≥1 supu≥0B
(n)(u) ≤ 2.

(iv) With G(n) =
{
A(t) < −t/2 for all t ∈ [1, t∗(n)]

}
, P(G(n))→ 1 as n→∞.

(v) For any α ∈ (0,∞) and t > 0,

P

{
sup
u∈[0,t]

|M (n)(u)| > α

}
≤ 2 exp {α} · exp

{
−α log

(
1 +

α

2t

)}
. (5.5.15)

Proof: Recall the notation from Section 5.5.1. Parts (i) and (ii) are proved in

[2]. Furthermore, from Lemma 11 of [2] it follows that, for t ∈ [li−1, li), writing
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Q2(t) =
∑i

j=1(xv(j))
2, we have

A(t) ≤
√
s2

s3

(−1 + qs2 − qQ2(t)), B(t) ≤ qs2.

Part (iii) now follows on recalling from (5.5.14) that qs2 ≤ 2. To prove (iv) it suffices

to show that

sup
t≤t∗

∣∣∣∣s2

s3

Q2(t)− t
∣∣∣∣ P−→ 0. (5.5.16)

To prove this we will use the estimate on Page 832, Lemma 13 of [2], which says that

for any fixed ε ∈ (0, 1), and L ∈ (0,∞)

P

{
sup
t∈[0,L]

∣∣∣∣s2

s3

Q2(t)− t
∣∣∣∣ > ε

}

=O

L2x∗

s2

+

√
L(x∗)2s2

s3

+
L2s3

s2
2

+

√
Ls3

s2

+
s2

2

(1− 2Ls2)+

 .

Note that the first term on the right hand side determine its order when L → ∞.

Taking L = t∗ in the above estimate we see that, since ϑ ∈ (0, 1/2), the expression

on the right side above goes to 0 as n→∞. This proves (5.5.16) and thus completes

the proof of (iv). Finally, proof of (v) uses standard concentration inequalities for

martingales. Indeed, recalling that the maximal jump size of H̄, and consequently

that of M , is bounded by 1 and 〈M,M〉t ≤ 2t, we have from Section 4.13, Theorem

5 of [25] that, for any fixed α > 0 and t > 0,

P{ sup
u∈[0,t]

|Mu| > α} ≤ 2 exp

{
− sup

λ>0
[αλ− 2tφ(λ)]

}
,

where φ(λ) = (eλ − 1− λ). A straightforward calculation shows

sup
λ>0

[αλ− 2tφ(λ)] = α log
(

1 +
α

2t

)
−
(
α− 2t log

(
1 +

α

2t

))
≥ α log

(
1 +

α

2t

)
− α.

The result follows. �
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The bound (5.5.15) continues to hold if we replace M(u) with M(τ+u)−M(τ) for

any finite stopping time τ . From this observation we immediately have the following

corollary.

Corollary 5.5.8. Let M be as in Lemma 5.5.7. Then, for any finite stopping time

τ :

(i) P
{

supu∈[0,t] |M(τ + u)−M(τ)| > α
}
≤ 2e−α, whenever α > 2(e2 − 1)t.

(ii) P
{

supu∈[0,t] |M(τ + u)−M(τ)| > α
}
≤ 2(2e/α)αtα, for all t > 0 and α > 0.

Part (i) of the corollary is useful when α is large and part (ii) is useful when t is

small. Finally we now give the proof of Proposition 5.5.6.

Proof of Proposition 5.5.6: From Lemma 5.5.3 (i) we have that Ĥ (n) converges

in distribution to Ŵ0 (recall we assume that λ = 0) as n → ∞. Let {εi}i≥1 be a

positive real sequence bounded by 1 and fix Θ ∈ (2,∞). Choice of Θ and εi will be

specified later in the proof. Let σ(n)

0 < τ (n)

1 ≤ σ(n)

1 < τ (n)

2 ≤ σ(n)

2 < ... be a sequence of

stopping times such that σ(n)

0 = 1, and for i ≥ 1,

τ (n)

i = inf{t ≥ σ(n)

i−1 + εi : Ĥ (n)(t) ≥ Θ}∧ (σ(n)

i−1 + 1), σ(n)

i = inf{t ≥ τ (n)

i : Ĥ (n)(t) ≤ 1}.

(5.5.17)

Similarly define stopping times 1 = σ̄0 < τ̄1 ≤ σ̄1 < τ̄2 ≤ σ̄2 < ... by replacing Ĥ (n) in

(5.5.17) with Ŵ0. Due to the negative quadratic drift in the definition of W0 it follows

that σ̄i <∞ for every i and from the weak convergence of Ĥ (n) to Ŵ0 it follows that

σ(n)

i → σ̄i and τ (n)

i → τ̄i, in distribution, as n→∞. Here we have used the fact that

if ζ denotes the first time W0 hits the level α ∈ (0,∞) then, a.s., for any δ > 0, there

are infinitely many crossings of the level α in (ζ, ζ + δ). In particular we have that

{σ(n)

i }n≥1 is a tight sequence, and this proves part (i) of Proposition 5.5.6.

For the rest of the proof we suppress (n) from the notation. Since the jump size of

Ĥ is bounded by 1, we have that sup[σi−1,σi−1+εi]
Ĥ(t) ≤ Θ implies sup[σi−1,τi]

Ĥ(t) ≤
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Θ + 1 and thus, in this case, when t ∈ [τi, σi], we have Ĥ(t) = Ĥ(τi) + (H̄(t) −

H̄(τi)) ≤ Θ + 1 + (H̄(t) − H̄(τi)). Let G ≡ G(n) be as in Lemma 5.5.7 (iv) and let

Hi = G ∩ {σi−1 < t∗}, then writing P(· ∩Hi) as Pi(·),

Pi

{
sup

[σi−1,σi]

Ĥ(t) > 2Θ + 1

}
≤Pi

{
sup

[σi−1,σi−1+εi]

Ĥ(t) > Θ

}
(5.5.18)

+Pi

{
sup
[τi,σi]

[
Θ + 1 + (H̄(t)− H̄(τi))

]
> 2Θ + 1

}
.

(5.5.19)

Denote the two terms on the right side by T1 and T2 respectively. Recalling that

Ĥ(σi−1) ≤ 2, we have from the decomposition in Lemma 5.5.7 (i) and Corollary

5.5.8(ii) that

T1 ≤ P

{
sup

[σi−1,σi−1+εi]

|M(t)−M(σi−1)| > Θ− 2

2

}
≤ CΘ−2

2
εi

(Θ−2)/2, (5.5.20)

Here, for α > 0, Cα = 2(2e/α)α and we have used the fact that on Hi, A(t) ≤ −t/2 ≤

0 for all t ∈ [σi−1, σi−1 + εi].

Next, let {δi}i≥1 be a sequence of positive reals bounded by 1. Setting di =∑i−1
j=1 εi, we have

T2 ≤Pi

{
sup

[τi,τi+δi]

(H̄(t)− H̄(τi)) > Θ

}
+ Pi

{
sup

[τi+δi,τi+1]

(H̄(t)− H̄(τi)) > Θ

}

+ P {σi > τi + 1}

≤P

{
sup

[τi,τi+δi]

(M(t)−M(τi)) > Θ

}
+ P

{
sup

[τi+δi,τi+1]

(M(t)−M(τi)) > Θ +
δidi
2

}

+ P
{
M(τi + 1)−M(τi) > −Θ +

di
2

}
≤CΘδ

Θ
i + 2e−δidi/2 + 2eΘ−di/2, (5.5.21)

whenever

min{δidi/2, di/2−Θ} > 2(e2 − 1). (5.5.22)
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Fix Θ > 14. Then max
{
CΘ, C(Θ−2)/2

}
≤ 2. We will impose additional conditions on

Θ later in the proof. Combining (5.5.20) and (5.5.21), we have

Pi

{
sup

[σi−1,σi]

Ĥ(t) > 2Θ + 1

}
≤ 2(εi

(Θ−2)/2 + δΘ
i + e−δidi/2 + eΘ−di/2) ≡ κi. (5.5.23)

Let

εi = i−1/2, di =
i−1∑
j=1

εi ∼ i1/2, δi = 1/
√
di ∼ i−1/4.

Then, (5.5.22) holds for i large enough, and

κi ∼ 2(i−(Θ−2)/4 + i−Θ/4 + e−i
1/4/2 + eΘe−i

1/2/2),

which, since Θ > 14, is summable. This proves part (ii) of the Proposition.

Now we consider part (iii). We will construct another sequence of stopping times

with values in [t∗,∞), as follows. Define

σ∗0 := inf {σi : σi ≥ t∗} = inf
{
t ≥ t∗ : Ĥ(t) ≤ 1

}
.

Then define τ ∗i , σ
∗
i for i ≥ 1 similarly as in (5.5.17). Similar arguments as before give

a bound as (5.5.23) with di replaced by t∗, δi replaced by 1/
√
t∗, εi replaced with 1/t∗

and Θ replaced by any Θ0 > 14. Namely,

P

{
sup

[σ∗i−1,σ
∗
i ]

Ĥ(t) > 2Θ0 + 1; G(n)

}

≤2((1/t∗)(Θ0−2)/2 + (1/
√
t∗)Θ0 + e−

√
t∗/2 + eΘ0−t∗/2). (5.5.24)

Here we have used the fact that since A(t) is non-increasing, on G(n), A(t) ≤ −t∗/2

for all t ≥ t∗.

Recall that, by construction, Ĥ(t) = 0 when t ≥ s1. So there exist i0 such that

τ ∗i0 =∞, in fact since σ∗i ≥ σ∗i−1 + ε, we have that i0 ≤ s1/ε. Thus, we have from the

above display that

P

{
sup

[σ∗0 ,∞)

Ĥ(t) > 2Θ0 + 1

}
≤ 2s1

ε
((1/t∗)(Θ0−2)/2 + (1/

√
t∗)Θ0 + e−

√
t∗/2 + eΘ0−t∗/2).
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Taking Θ > 29, we have on setting Θ0 = Θ−1
2

in the above display

P

{
sup

[σ∗0 ,∞)

Ĥ(t) > Θ

}

≤2s1

((
1

t∗

)(Θ−1)/4−2

+

(
1

t∗

)(Θ−1)/4−1

+
1

t∗
e−
√
t∗/2 +

1

t∗
e(Θ−1)/2−t∗/2

)
.

From (5.5.2) we have that s1 · ( 1
t∗

)ς/ϑ → 0. So if Θ ≥ 4( ς
ϑ

+ 2) + 1, the

above expression approaches 0 as n → ∞. The result now follows on taking Θ =

max{29, 4( ς
ϑ

+ 2) + 1}. �

5.6 Bounded-size rules at time tc − n−γ

Throughout Sections 5.6 and 5.7 we take T = 2tc which is a convenient upper

bound for the time parameters of interest. In this section we prove Theorem 5.3.2.

We begin with some notation associated with BSR processes, which closely follows

[31]. Recall from Section 5.2.2 the set ΩK and the random graph process BSR(n)(t)

associated with a given K-BSR F ⊂ Ω4
K . Frequently we will suppress n in the

notation. Also recall the definition of ct(v) from Section 5.2.2.

For i ∈ ΩK , define

Xi(t) = |{v ∈ BSR(n)

t : ct(v) = i}| and x̄i(t) = Xi(t)/n. (5.6.1)

Denote by BSR∗(t) the subgraph of BSR(t) consisting of all components of size

greater than K, and define, for k = 1, 2, 3

Sk,$(t) :=
∑

{C⊂BSR∗(t)}

|C|k and s̄k,$(t) = Sk,$(t)/n,

where {C ⊂ BSR∗(t)} denotes the collection of all components in BSR∗(t). For

notational convenience in long formulae, we sometimes write BSR(t) = BSRt and

similarly BSR∗(t) = BSR∗t . Similar notation will be used throughout this chapter.
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Clearly

Sk(t) = Sk,$ +
K∑
i=1

ik−1Xi(t), s̄k(t) = s̄k,$ +
K∑
i=1

ik−1x̄i(t). (5.6.2)

Also note that S1(t) = n and S1,$(t) = X$(t).

Recall the Poisson processes P~v introduced in Section 5.2.2. Let Ft = σ{P~v(s) :

s ≤ t, ~v ∈ [n]4}. For T0 ∈ [0, T ] and a {Ft}0≤t<T0 semi-martingale {J(t)}0≤t<T0 of the

form

dJ(t) = α(t)dt+ dM(t), 〈M,M〉t =

∫ t

0

γ(s)ds, (5.6.3)

where M is a {Ft} local martingale and γ is a progressively measurable process, we

write α = d(J), M = M(J) and γ = v(J).

Organization: The rest of this section is organized as follows. In Section 5.6.1,

we state a recent result on BSR models and certain deterministic maps associated

with the evolution of BSR∗t from Chapter 4 that will be used in this work. In

Section 5.6.2, we will study the asymptotics of s̄2,$ and s̄3,$. In Section 5.6.3, we will

complete the proof of Theorem 5.3.2(i). In Section 5.6.4, we will obtain some useful

semi-martingale decompositions for certain functionals of s̄2 and s̄3. In Section 5.6.5,

we will prove parts (ii) and (iii) of Theorem 5.3.2.

5.6.1 Evolution of BSR∗t .

We begin with the following lemma from Chapter 4 (see also [31]).

Lemma 5.6.1. (a) For each i ∈ ΩK , there exists a continuously differentiable function

xi : [0, T ] → [0, 1] such that for any δ ∈ (0, 1/2), there exist C1, C2 ∈ (0,∞) such

that for all n,

P

(
sup
i∈ΩK

sup
s∈[0,T ]

|x̄i(t)− xi(t)| > n−δ

)
< C1 exp

(
−C2n

1−2δ
)
.
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(b) There exist polynomials {F x
i (x)}i∈ΩK , x = (xi)i∈ΩK ∈ RK+1, such that x(t) =

(xi(t))i∈ΩK is the unique solution to the differential equations:

x′i(t) = F x
i (x(t)), i ∈ ΩK , t ∈ [0, T ] with initial values x(0) = (1, 0, ..., 0). (5.6.4)

Furthermore, x̄i is a {Ft}0≤t<T semi-martingale of the form (5.6.3) and

sup
0≤t<T

|d(x̄i)(t)− F x
i (x̄(t))| ≤ K2

n
.

Also, for all i ∈ ΩK and t ∈ (0, T ], we have xi(t) > 0 and
∑

i∈ΩK
xi(t) = 1.

Recall that BSR∗(t) is the subgraph of BSR(t) consisting of all components of

size greater than K. The evolution of this graph is governed by three type of events:

Type 1 (Immigrating vertices): This corresponds to the merger of two

components of size bounded by K into a component of size larger than K. Such

an event leads to the appearance of a new component in BSR∗(t) which we view as

the immigration of a ‘vertex’ into BSR∗(t). Denote by na∗i (t) the rate at which a

component of size K + i immigrates into BSR∗t at time t. In Chapter 4 it is shown

that there are polynomials F a
i (x) for 1 ≤ i ≤ K such that, with x̄(t) = (x̄i(t))i∈ΩK

sup
t∈[0,∞)

|a∗i (t)− F a
i (x̄(t))| ≤ K

n
. (5.6.5)

We define, with x(t) as in Lemma 5.6.1,

ai(t) := F a
i (x(t)), i = 1, · · ·K. (5.6.6)

Type 2 (Attachments): This event corresponds to a component of size at most

K getting linked with some component of size larger than K. For 1 ≤ i ≤ K,

denote by |C|c∗i (t) the rate at which a component of size i attaches to a component

C in BSR∗t−. Then there exist polynomials F c
i (x) for 1 ≤ i ≤ K, such that c∗i (t) =

F c
i (x̄(t)). Define

ci(t) := F c
i (x(t)), i = 1, · · ·K. (5.6.7)
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Type 3 (Edge formation): This event corresponds to the addition of an edge

between components in BSR∗t . The occurrence of this event adds one edge between

two vertices in BSR∗t−, the vertex set stays unchanged, whereas the edge set has one

additional element. From Chapter 4, there is a polynomial F b(x) such that, defining

b∗(t) = F b(x̄(t)), the rate at which each pair of components C1 6= C2 ∈ BSR∗t merge

at time t, equals |C1||C2|b∗(t)/n. Furthermore, define

b(t) := F b(x(t)). (5.6.8)

From Chapter 4, F a
i (x), F c

i (x) and F b(x) are polynomials with positive coeffi-

cients, thus from the last statement in Lemma 5.6.1 we have that b(tc) ∈ (0,∞).

5.6.2 Analysis of s̄2,$(t) and s̄3,$(t)

Define functions F s
2,$ : [0, 1]K+1 × R→ R and F s

3,$ : [0, 1]K+1 × R2 → R as

F s
2,$(x, s2) :=

K∑
j=1

(K + j)2F a
j (x) + s2

K∑
j=1

2jF c
j (x) + x$

K∑
j=1

j2F c
j (x) + (s2)2F b(x),

(5.6.9)

for (x, s2) ∈ [0, 1]K+1 × R and, for (x, s2, s3) ∈ [0, 1]K+1 × R2

F s
3,$(x, s2, s3) :=

K∑
j=1

(K + j)3F a
j (x) + s3

K∑
j=1

3jF c
j (x) + 3s2

K∑
j=1

j2F c
j (x)

+x$

K∑
j=1

j3F c
j (x) + 3s2s3F

b(x). (5.6.10)

The following lemma relates the evolution of s̄j,$(·) to that of F s
j,$(x̄(·), s̄2,$(·)).

By definition, s̄j,$(t) is a non-decreasing process with RCLL paths, and therefore a

semi-martingale. For T0 ∈ [0, T ], a stochastic process {ξ(t)}0≤t<T0 , and a nonneg-

ative sequence α(n), the quantity OT0(ξ(t)α(n)) will represent a stochastic process

{η(t)}0≤t<T0 such that for some d1 ∈ (0,∞), η(t) ≤ d1ξ(t)α(n), for all 0 ≤ t < T0 and

n ≥ 1.
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Lemma 5.6.2. The processes s̄j,$, j = 2, 3, are {Ft}0≤t<tc semi-martingales of the

form (5.6.3) and

|d(s̄2,$)(t)− F s
2,$(x̄(t), s̄2,$(t))| = Otc(S4(t)/n2)

|d(s̄3,$)(t)− F s
3,$(x̄(t), s̄2,$(t), s̄3,$(t))| = Otc(S5(t)/n2).

Proof: Note that S2,$ and S3,$ have jumps at time instant t with rates and

values ∆S2,$(t), ∆S3,$(t), respectively, given as follows.

• for each 1 ≤ i ≤ K, with rate na∗i (t),

∆S2,$(t) = (K + i)2, ∆S3,$(t) = (K + i)3.

• for each 1 ≤ i ≤ K and C ⊂ BSR∗t−, at rate |C|c∗i (t),

∆S2,$(t) = 2|C|i+ i2, ∆S3,$(t) = 3|C|2i+ 3|C|i2 + i3.

• for all unordered pair C, C̃ ⊂ BSR∗t−, such that C 6= C̃, at rate |C||C̃|b∗(t)/n,

∆S2,$(t) = 2|C||C̃|, ∆S3,$(t) = 3|C|2|C̃|+ 3|C||C̃|2.

Thus

d(S2,$)(t) =
K∑
j=1

(K + j)2na∗j(t) +
K∑
j=1

∑
C⊂BSR∗t

(2j|C|+ j2)|C|c∗j(t)

+
∑

C6=C̃⊂BSR∗t

2|C||C̃|b
∗(t)|C||C̃|

n

=
K∑
j=1

(K + j)2na∗j(t) +
K∑
j=1

2jc∗j(t)S2,$(t) +
K∑
j=1

j2c∗j(t)X$(t)

+
b∗(t)

n
(S2

2,$(t)− S4,$(t))

=n
(
F s

2,$(x̄, s̄2,$) +O(1/n) +Otc(S4,$(t)/n2)
)

(5.6.11)
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and

d(S3,$)(t)

=
K∑
j=1

(K + j)3na∗j(t) +
K∑
j=1

∑
C⊂BSR∗t

(3j|C|2 + 3j2|C|+ j3)|C|c∗j(t)

+
∑

C6=C̃⊂BSR∗t

(3|C|2|C̃|+ 3|C||C̃|2)
b∗(t)|C||C̃|

n

=
K∑
j=1

(K + j)3na∗j(t) +
K∑
j=1

3jc∗j(t)S3,$(t) +
K∑
j=1

3j2c∗j(t)S2,$(t)

+
K∑
j=1

j3c∗j(t)X$(t) +
3b∗(t)

n
(S3,$(t)S2,$(t)− S5,$(t))

=n
(
F s

3,$(x̄(t), s̄2,$(t), s̄3,$(t)) +O(1/n) +Otc(S4,$(t)/n2)
)
.

The result follows. �

5.6.3 Proof of Theorem 5.3.2(i)

In this section we prove Theorem 5.3.2(i). We begin with the following differential

equations, whose solutions play an important role in defining s2(·) and s3(·) that

appear in Theorem 5.3.2.

Consider the equations

s′2,$(t) =F s
2,$(x(t), s2,$(t)), s2,$(0) = 0, t ≥ 0 (5.6.12)

s′3,$(t) =F s
3,$(x(t), s2,$(t), s3,$(t)), s3,$(0) = 0, t ≥ 0. (5.6.13)

The following lemma describes some properties of solutions to the above differen-

tial equations.

Lemma 5.6.3. Equation (5.6.12) and (5.6.13) have unique solutions s2,$(t) and s3,$(t)

for t ∈ [0, tc). Furthermore s2,$(t) and s3,$(t) are non-negative, increasing and

limt↑tc s2,$(t) = limt↑tc s3,$(t) =∞.
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Proof: The existence and uniqueness of solution to (5.6.12) follows from Lemma

5.6.1(b) and Theorem 2.2 in [31]. Furthermore, Theorem 2.2 in [31] also implies

limt↑tc s2,$(t) =∞.

Note that F s
3,$ is a polynomial and the right hand side of (5.6.13) is linear in

s3,$, thus (5.6.13) has a unique solution on [0, tc) as well. Since s2,$(t) explodes at

tc, we have limt↑tc s3,$(t) = ∞. The monotonicity of s2,$(t) and s3,$(t) follow from

the positivity of the functions
{
F a
j : 1 ≤ j ≤ K

}
, F b,

{
F c
j : 1 ≤ j ≤ K

}
that appear

in the definition of the functions F s
2,$ and F s

3,$ in (5.6.9) and (5.6.10) respectively. �

Define sk : [0, tc)→ [0,∞), k = 2, 3, as follows.

sk(t) := sk,$(t) +
K∑
i=1

ik−1xi(t), for k = 2, 3. (5.6.14)

Then using (5.6.12) - (5.6.13) we get the following differential equations for s2 and

s3.

Lemma 5.6.4. The functions s2, s3 are continuously differentiable on [0, tc) with

lim
t↑tc

s2(t) = lim
t↑tc

s3(t) =∞,

and can be characterized as the unique solutions of the following differential equations

s′2(t) = F s
2 (x(t), s2(t)), s2(0) = 1,

s′3(t) = F s
3 (x(t), s2(t), s3(t)), s3(0) = 1.

where the function F s
2 (·) and F s

3 (·) are defined as

F s
2 (x, s2) := F s

2,$

(
x, s2 −

K∑
i=1

ixi

)
+

K∑
i=1

iF x
i (x),

F s
3 (x, s2, s3) := F s

3,$

(
x, s2 −

K∑
i=1

ixi, s3 −
K∑
i=1

i2xi

)
+

K∑
i=1

i2F x
i (x).

Proof: The differentiability of s2(·), s3(·) on [0, tc) and the form of F s
2 and F s

3

follow from (5.6.14) and the differential equations (5.6.12), (5.6.13) and (5.6.4). The
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uniqueness of the solution follows from the fact that F s
2 and F s

3 are polynomials. The

limit behavior as t ↑ tc follows from the definition of sk. �

The following lemma defines the two parameters α and β that appear in Theorems

5.3.2 and 5.3.3. Recall from Section 5.6.1 that b(tc) ∈ (0,∞).

Lemma 5.6.5. The following two limits exist,

α := lim
t→tc−

(tc − t)s2(t), β := lim
t→tc−

s3(t)

(s2(t))3
.

Furthermore, α, β ∈ (0,∞) and α = 1/b(tc).

Proof: By (5.6.14), for k = 2, 3, |sk(t)− sk,$(t)| ≤ Kk. Since limt→tc− sk,$(t) =

∞, we thus have that limt→tc− sk(t)/sk,$(t) = 1. Write y$(t) = 1/s2,$(t) and z$(t) =

y3
$(t)s3,$(t), it suffices to show that:

lim
t→tc−

tc − t
y$(t)

= lim
t→tc−

− 1

y′$(t)
=

1

b(tc)
, and lim

t→tc−
z$(t) ∈ (0,∞). (5.6.15)

Define Al(t) =
∑K

i=1(K + i)lai(t) and Cl(t) =
∑K

i=1 i
lci(t) for l = 1, 2, 3. Then by

(5.6.12), (5.6.13), (5.6.9) and (5.6.10), the derivative of y$(t) and z$(t) can be written

as follows (we omit t from the notation):

y′$ =− (A2 + C2x$)y2
$ − 2C1y$ − b, (5.6.16)

z′$ =y3
$ [A3 + 3C1s3,$ + 3C2s2,$ + C3x$ + 3bs2,$s3,$]

−3y2
$s3,$

[
(A2 + C2x$)y2

$ + 2C1y$ + b
]

=− (3y$A2 + 3y$C2x$ + 3C1)z$ + (y3
$A3 + 3y2

$C2 + y3
$C3x$)

=−B1z$ +B2, (5.6.17)

where B1(t) = (3y$(t)A2(t) + 3y$(t)C2(t)x$(t) + 3C1(t)) and B2(t) = (y3
$(t)A3(t) +

3y2
$(t)C2(t) + y3

$(t)C3(t)x$(t)). Since limt→tc− y$(t) = 0, we have limt→tc− y
′
$(t) =

−b(tc) which proves the first statement in (5.6.15).
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Choose t1 ∈ (0, tc) such that y$(t), z$(t) ∈ (0,∞) for all t ∈ (t1, tc). Then from

(5.6.17), for all such t

z$(t) =

∫ t

t1

e−
R t
s B1(u)duB2(s)ds+ z$(t1)e

−
R t
t1
B1(u)du

.

Since B1, B2 are nonnegative and supt∈[t1,tc]{B1(t) +B2(t)} <∞, we have

lim
t→tc−

z$(t) ∈ (0,∞).

This completes the proof of (5.6.15). The result follows. �

We now complete the proof of Theorem 5.3.2(i).

Proof of Theorem 5.3.2(i): Let α, β be as introduced in Lemma 5.6.5. From

Lemma 5.6.4 it follows that y(t) = 1/s2(t) and z(t) = y3(t)s3(t), for 0 ≤ t < tc, solve

the differential equations

y′(t) = F y(x(t), y(t)), z′(t) = F z(x(t), y(t), z(t)), y(0) = z(0) = 1, (5.6.18)

where F y : [0, 1]K+2 → R and F z : [0, 1]K+2 × R→ R are defined as

F y(x, y) := −y2F s
2 (x, 1/y), F z(x, y, z) := 3zF y(x, y)/y + y3F s

3 (x, 1/y, z/y3),

(5.6.19)

(x, y, z) ∈ [0, 1]K+2×R→ R. We claim that F y(x, y) and F z(x, y, z) are polynomials.

To see this note that, by (5.6.9), for any u ∈ R

y2F s
2,$(x, u/y) = y2

K∑
j=1

(K+j)2F a
j (x)+uy

K∑
j=1

2jF c
j (x)+y2x$

K∑
j=1

j2F c
j (x)+u2F b(x).

From the definition of F s
2 in Lemma 5.6.4 it is now clear that F y(x, y) is a polynomial.

To check that F z(x, y, z) is a polynomial, one only needs to examine the expression

−3zyF s
2,$(x,

1

y
− β1) + y3F s

3,$(x,
1

y
− β1,

z

y3
− β2), where βk =

K∑
i=1

ikxi, i = 1, 2.

Note that the non-polynomial part in the first term is −3yz · 1
y2F

b(x), which gets

cancelled with the non-polynomial part of the second term, namely y3 · 3
y
· z
y3F

b(x).
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This proves the claim. Also, from (5.6.10) it is clear that the order of z in F z(x, y, z)

is at most 1.

Thus (5.6.18) has a unique solution. Also, defining y(tc) = limt→tc− y(t) =

limt→tc− y$(t) and z(tc) = limt→tc− z(t) = limt→tc− z$(t), we see that y, z are twice

continuously differentiable (from the left) at tc. Furthermore, y′(tc−) = −α−1 and

z(tc−) = β. Thus we have

y(t) =
1

α
(tc − t)(1 +O(tc − t)), z(t) = β(1 +O(tc − t)), as t ↑ tc.

The result follows. �

5.6.4 Asymptotic analysis of s̄2(t) and s̄3(t)

In preparation for the proof of Theorem 5.3.2(ii), in this section we will obtain

some useful semi-martingale decompositions for Y (t) := 1
s̄2(t)

and Z(t) := s̄3(t)
(s̄2(t))3 .

Throughout this section and next we will denote |C(n)

1 (t)| as I(t). Recall the functions

F s
2 , F s

3 introduced in Lemma 5.6.4.

Lemma 5.6.6. The processes s̄2 and s̄3 are {Ft}0≤t<tc semi-martingales of the form

(5.6.3) and the following equations hold.

(a) d(s̄2)(t) = F s
2 (x̄(t), s̄2(t)) +Otc (I2(t)s̄2(t)/n) .

(b) d(s̄3)(t) = F s
3 (x̄(t), s̄2(t), s̄3(t)) +Otc (I3(t)s̄2(t)/n) .

(c) v(s̄2)(t) = Otc(I
2(t)s̄2

2(t)/n).

Proof: Parts (a) and (b) are immediate from (5.6.2), Lemma 5.6.1(b) and

Lemma 5.6.2. For part (c), recall the three types of events described in Section

5.6.1. For type 1, ∆s̄2(t) is bounded by 2K2/n and the total rate of such events is

bounded by n/2. For type 2, the attachment of a size j component, 1 ≤ j ≤ K, to a
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component C in BSR∗t− occurs at rate |C|c∗j(t) and produces a jump ∆s̄2(t) = 2j|C|/n.

For type 3, components C and C̃ merge at rate |C||C̃|b∗(t)/n and produce a jump

∆s̄2(t) = 2|C||C̃|/n. Thus for t ∈ [0, tc), v(s̄2)(t) can be estimated as

v(s̄2)(t)

≤n
2

(
2K2

n

)2

+
K∑
j=1

∑
C⊂BSR∗t

(
2j|C|
n

)2

|C|c∗j(t) +
∑

C6=C̃⊂BSR∗t

(
2|C||C̃|
n

)2
b∗(t)|C||C̃|

n

≤2K4

n
+

4K2S3

n2
+

4(S3)2

n3
= Otc

(
I2(t)s̄2

2(t)

n

)
.

This proves (c). �

In the next lemma, we obtain a semi-martingale decomposition for Y .

Lemma 5.6.7. The process Y (t) = 1/s̄2(t) is a {Ft}0≤t<tc semi-martingale of the form

(5.6.3) and

(i) With F y(·) as defined in (5.6.19),

d(Y )(t) = F y(x̄(t), Y (t)) +Otc

(
I2(t)Y (t)

n

)
. (5.6.20)

(ii)

v(Y )(t) = Otc

(
I2(t)Y 2(t)

n

)
.

Proof: Note that

∆Y (t) =
1

s̄2 + ∆s̄2

− 1

s̄2

= −∆s̄2

s̄2
2

+
(∆s̄2)2

s̄2
2(s̄2 + ∆s̄2)

= −∆s̄2

s̄2
2

+Otc

(
(∆s̄2)2

s̄3
2

)
. (5.6.21)

Thus by Lemma 5.6.6(a), we have,

d(Y )(t)

=− 1

(s̄2(t))2
d(s̄2)(t) +Otc

(
1

(s̄2(t))3
v(s̄2)(t)

)
=

(
− 1

(s̄2(t))2

)(
F s

2 (x̄(t), s̄2(t)) +Otc

(
I2(t)s̄2(t)

n

))
+Otc

(
1

(s̄2(s))3
· I

2(t)s̄2
2(t)

n

)
=F y(x̄(t), Y (t)) +Otc

(
I2(t)Y (t)

n

)
.
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This proves (i). For (ii), note that (5.6.21) also implies (∆Y (t))2 ≤ (∆s̄2)2

s̄42
. We then

have

v(Y )(t) ≤ 2v(s̄2)(t)

s̄4
2

= Otc

(
I2(t)Y 2(t)

n

)
.

The result follows. �

We now give a semi-martingale decomposition for Z(t) = s̄3(t)/(s̄2(t))3.

Lemma 5.6.8. The process Z(t) = s̄3(t)/(s̄2(t))3 is a {Ft}0≤t<tc semi-martingale of

the form (5.6.3) and

(i) With F z(·) as defined in (5.6.19),

d(Z)(t) = F z(x̄(t), Y (t), Z(t)) +Otc

(
I3(t)Y 2(t)

n

)
.

(ii)

v(Z)(t) = Otc

(
I4(t)Y 4(t)

n
+
I6(t)Y 6(t)

n

)
.

Proof: Note that

∆Z = Y 3∆s̄3 + 3Y 2s̄3∆Y +R(∆Y,∆s̄3),

where R(∆Y,∆s̄3) is the error term which, using the observations that s̄3 ≤ Is̄2,

∆s̄3 ≤ 3I∆s̄2 and |∆Y | ≤ Y 2∆s̄2, can be bounded as follows.

|R(∆Y,∆s̄3)| ≤3Y 2|∆Y ||∆s̄3|+ 3Y s̄3|∆Y |2

≤3Y 2 · Y 2∆s̄2 · 3I∆s̄2 + 3I ·
(
Y 2∆s̄2

)2
= 12IY 4 · (∆s̄2)2.

From Lemma 5.6.6(b), Lemma 5.6.7(i) and Lemma 5.6.6(c), we have

d(Z)(t) =Y 3(t)d(s̄3)(t) + 3Y 2(t)s̄3(t)d(Y )(t) +Otc

(
I(t)Y 4(t)v(s̄2)(t)

)
=Y 3(t)

(
F s

3 (x̄(t), s̄2(t), s̄3(t)) +Otc

(
I3(t)s̄2(t)

n

))
+ 3Y 2(t)s̄3(t)

(
F y(x̄(t), Y (t)) +Otc

(
I2(t)Y (t)

n

))
+Otc

(
I3(t)Y 2(t)

n

)
=F z(x̄(t), Y (t), Z(t)) +Otc

(
I3(t)Y 2(t)

n

)
.
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This proves (i). For (ii), note that

Y 3|∆s̄3|+ 3Y 2s̄3|∆Y | ≤ Y 3 · 3I|∆s̄2|+ 3Y 2 · Is̄2 · Y 2|∆s̄2| = 6Y 3I|∆s̄2|.

Thus,

|∆Z| ≤ 6Y 3I|∆s̄2|+ 12IY 4 · (∆s̄2)2.

Applying Lemma 5.6.6(c) we now have,

v(Z)(t) = Otc

(
Y 6I2v(s̄2)(t)

)
+Otc

(
I6Y 6

n

)
= Otc

(
I4Y 4

n
+
I6Y 6

n

)
.

The result follows. �

5.6.5 Proof of Theorem 5.3.2(ii)

We begin with an upper bound on the size of the largest component at time

t ≤ tn = tc− n−γ for γ ∈ (0, 1/4), which has been proved in Chapter 4, and will play

an important role in the proof of Theorem 5.3.2(ii).

Theorem 5.6.9 (Barely subcritical regime). Fix γ ∈ (0, 1/4). Then there exists

C3 ∈ (0,∞) such that, as n→∞,

P
{
I (n)(t) ≤ C3

(log n)4

(tc − t)2
, ∀t < tc − n−γ

}
→ 1.

The next lemma is an elementary consequence of Gronwall’s inequality.

Lemma 5.6.10. Let {tn} be a sequence of positive reals such that tn ∈ [0, tc) for all

n. Suppose that U (n) is a semi-martingale of the form (5.6.3) with values in D ⊂ R.

Let g : [0, tc)× D→ R be such that, for some C4(g) ∈ (0,∞),

sup
t∈[0,tc)

|g(t, u1)− g(t, u2)| ≤ C4(g)|u1 − u2|, u1, u2 ∈ D. (5.6.22)

Let {u(t)}t∈[0,tc) be the unique solution of the differential equation

u′(t) = g(t, u(t)), u(0) = u0.

Further suppose that there exist positive sequences:
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(i) {θ1(n)} such that, whp, |U (n)(0)− u0| ≤ θ1(n).

(ii) {θ2(n)} such that, whp,∫ tn

0

|d(U (n))(t)− g(t, U (n)(t))| dt ≤ θ2(n).

(iii) {θ3(n)} such that, whp, 〈M (U (n)),M(U (n))〉tn ≤ θ3(n).

Then, whp,

sup
0≤t≤tn

|U (n)(t)− u(t)| ≤ eC4(g)tc(θ1(n) + θ2(n) + θ4(n)),

where θ4 = θ4(n) is any sequence satisfying
√
θ3(n) = o(θ4(n)).

Proof: We suppress n from the notation unless needed. Using the Lipschitz

property of g, we have, for all t ∈ [0, tn],

|U(t)− u(t)|

≤ |U(0)− u0|+
∫ t

0

|d(U)(s)− g(s, U(s))|ds

+

∫ t

0

|g(s, U(s))− g(s, u(s))|ds+ |M (U)(t)|

≤ |U(0)− u0|+
∫ t

0

|d(U)(s)− g(s, U(s))|ds+ |M (U)(t)|+ C4

∫ t

0

|U(s)− u(s)|ds.

Then by Gronwall’s lemma

sup
0≤t≤tn

|U(t)− u(t)| (5.6.23)

≤
(
|U(0)− u0|+

∫ tn

0

|d(U)(s)− g(s, U(s))|ds+ sup
0≤t≤tn

|M(U)(t)|
)
eC4tc .

Let τ (n) = inf{t ≥ 0 : 〈M (U),M(U)〉t > θ3(n)}. By Doob’s inequality

E[ sup
0≤t≤tn

|M (U)(t∧ τ)|2] ≤ 4E[|M (U)(tn ∧ τ)|2] = 4E [〈M (U),M (U)〉tn∧τ ] ≤ 4θ3(n).
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Then for any θ4(n) such that θ3 = o((θ4)2), we have

P{ sup
0≤t≤tn

|M(U)(t)| > θ4(n)} ≤P{τ (n) < tn}+ P
{

sup
0≤t≤tn

|M(U)(t ∧ τ)| > θ4(n)

}
≤P{〈M (U),M(U)〉tn > θ3(n)}+ 4θ3(n)/θ2

4(n)→ 0.

The result now follows on using the above observation in (5.6.23). �

Proof of Theorem 5.3.2(ii): Let y and z be as in the proof of Theorem 5.3.2(i).

It suffices to show

sup
0≤t≤tn

|Y (t)− y(t)|n1/3 P−→ 0 (5.6.24)

sup
0≤t≤tn

|Z(t)− z(t)| P−→ 0. (5.6.25)

We begin by proving the following weaker result than (5.6.24):

sup
0≤t≤tn

|Y (t)− y(t)| = O(n−1/5), whp. (5.6.26)

Recalling from the proof of Theorem 5.3.2(i) that x 7→ F y(x, y) is Lipschitz for

x ∈ [0, 1]K+1, uniformly for all y ∈ [0, 1], we get for some d1 ∈ (0,∞)

sup
0≤t≤tc

|F y(x̄(t), Y (t))− F y(x(t), Y (t))| ≤ d1 sup
i∈ΩK

sup
0≤t≤tc

|x̄i(t)− xi(t)|.

From Lemma 5.6.7(i) and Lemma 5.6.1(a) we now get for some d2 ∈ (0,∞), whp,

|d(Y )(t)− F y(x(t), Y (t))| ≤ d2

(
I2(t)Y (t)

n
+ n−2/5

)
, for all t ∈ [0, tn].

Thus, from Theorem 5.6.9 and recalling that γ < 1/5, we have whp,∫ tn

0

|d(Y )(t)− F y(x(t), Y (t))|dt =O

(∫ tn

0

(log n)8

n(tc − t)4
dt+ n−2/5

)
=O((log n)8n3γ−1) +O(n−2/5) = O(n−2/5).

Next, by Lemma 5.6.7(ii) and using the fact Y (t) ≤ 1 for all t ∈ [0, tc),

〈M(Y ),M (Y )〉tn =O

(∫ tn

0

I2(t)Y 2(t)

n
dt

)
= O

(∫ tn

0

I2(t)

n
dt

)
=O

(∫ tn

0

(log n)8

n(tc − t)4
dt

)
= O((log n)8n3γ−1). (5.6.27)
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The statement in (5.6.26) now follows on observing that ((log n)8n3γ−1)1/2 = o(n−1/5)

and applying Lemma 5.6.10 with D := [0, 1], g(t, y) := F y(x(t), y), θ1 = 0, θ2 = n−2/5

and θ3 = (log n)8n3γ−1.

We now strengthen the estimate in (5.6.26) to prove (5.6.24). From Theorem

5.3.2(i) it follows that y(tn) = 1/s2(tn) = Θ(n−γ). Since γ < 1/5, from (5.6.26) we

have, whp, Y (t) ≤ 2y(t) for all t ≤ tn. Thus from the first equality in (5.6.27) and

Theorem 5.3.2(i) we get, whp,

〈M (Y ),M(Y )〉tn = O

(∫ tn

0

I2(t)y2(t)

n

)
= O

(∫ tn

0

(log n)8

n(tc − t)2
dt

)
= O((log n)8nγ−1).

Since ((log n)8nγ−1)1/2 = o(n−2/5), applying Lemma 5.6.10 again gives

sup
0≤t≤tn

|Y (t)− y(t)| = O(n−2/5), whp. (5.6.28)

This proves (5.6.24).

We now prove (5.6.25). We will apply Lemma 5.6.10 to D := R and g(t, z) :=

F z(x(t), y(t), z). As noted in the proof of Theorem 5.3.2(i), g defined as above satisfies

(5.6.22).

We now verify the three assumptions in Lemma 5.6.10. Note that (i) is satisfied

with θ1 = 0, since Z(0) = z(0) = 1. Next, by Lemma 5.6.8(ii) and the fact Y (t) ≤

2y(t) for t ≤ tn, whp, we have

〈M(Z),M(Z)〉tn =O

(∫ tn

0

(
I4(t)Y 4(t)

n
+
I6(t)Y 6(t)

n

)
dt

)
=O

(∫ tn

0

(
(log n)16

n(tc − t)4
+

(log n)24

n(tc − t)6

)
dt

)
= O((log n)24n5γ−1).

Since γ < 1/5, we can find θ4(n) → 0 such that
√

(log n)24n5γ−1 = o(θ4(n)) Thus

(iii) in Lemma 5.6.10 is satisfied. Next recall from the proof of Theorem 5.3.2(i) that

g(t, z) is linear in z. Also, Z(t) ≤ I(t). Thus from Lemma 5.6.1 and (5.6.28), for
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some d3 ∈ (0,∞) whp, for all t ≤ tn

|F z(x̄(t), Y (t), Z(t))− g(t, Z(t))|

≤d3(1 + Z(t))

(
sup

1≤i≤K
sup

0≤t≤tn
|x̄i(t)− xi(t)|+ sup

0≤t≤tn
|Y (t)− y(t)|

)
= I(t)O(n−2/5).

By Lemma 5.6.8(i) and the above bound,∫ tn

0

|d(Z)(t)− g(t, Z(t))|dt =O

(∫ tn

0

n−2/5I(t)dt

)
+O

(∫ tn

0

y2(t)I3(t)

n
dt

)
=O

(∫ tn

0

(log n)4n−2/5

(tc − t)2
dt

)
+O

(∫ tn

0

(log n)12

(tc − t)4
dt

)
=O((log n)4nγ−2/5) +O((log n)12n3γ−1). (5.6.29)

This verifies (ii) in Lemma 5.6.10 with θ2(n) = O((log n)12n3γ−1). From Lemma

5.6.10 we now have

sup
0≤t≤tn

|Z(t)− z(t)| = O(θ1(n) + θ2(n) + θ4(n)) = o(1).

The result follows. �

Part (iii) of Theorem 5.3.2 is a simple consequence of part (ii).

Proof of Theorem 5.3.2(iii): The convergence when t = 0 is trivial. Consider now

t > 0. Since tn → tc as n→∞, we have from part (ii) of the theorem that, for fixed

t ∈ (0, tc),

1

s̄2(t)

P−→ 1

s2(t)
,

s̄3(t)

(s̄2(t))3

P−→ s3(t)

(s2(t))3
.

Also, since t > 0, we have that xi(t) > 0 for all i ∈ ΩK , thus s2(t) > 0. Theorem

5.3.2(iii) is now immediate. �

5.7 Coupling with the multiplicative coalescent

In this section we prove Theorem 5.3.3. Throughout this section we fix γ ∈

(1/6, 1/5). The basic idea of the proof is as follows. Recall α, β ∈ (0,∞) from

Theorem 5.3.2 (see also Lemma 5.6.5). We begin by approximating the BSR random
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graph process by a process which until time tn := tc − n−γ is identical to the BSR

process and in the time interval [tn, tc+αβ2/3 λ
n1/3 ] evolves as an Erdős-Rényi process,

namely over this interval edges between any pair of vertices appear at rate 1/αn, and

self loops at any given vertex appear at rate 1/2αn. Asymptotic behavior of this

random graph is analyzed using Theorem 5.5.1. Theorems 5.3.2 and 5.6.9 help in

verifying the conditions (5.5.1) and (5.5.2) in the statement of Theorem 5.5.1. We

then complete the proof of Theorem 5.3.3 by arguing that the ‘difference’ between

the BSR process and the modified random graph process is asymptotically negligible.

Let

tn = tc − αβ2/3 λn
n1/3

where λn =
n1/3−γ

αβ2/3
. (5.7.1)

Throughout this section, for λ ∈ R, we denote tλ = tc +αβ2/3λ/n1/3. Recall the ran-

dom graph process BSR∗(t) introduced in Section 5.6. Denote by (|C∗i (t)|, ξ∗i (t))i≥1

the vector of ordered component size and corresponding surplus in BSR∗(t) (the

components are denoted by C∗i (t) ). Let, for λ ∈ R,

C̄
(n),∗

(λ) =

(
β1/3

n2/3

∣∣C∗i (tλ)∣∣ : i ≥ 1

)
, Ȳ

(n),∗
(λ) =

(
ξ∗i (t

λ) : i ≥ 1
)
.

For i ≥ 1, denote C̄
(n),∗
i (λ) and Ȳ

(n),∗
i (λ) for the i-th coordinate of C̄

(n),∗
(λ) and

Ȳ
(n),∗

(λ) respectively. Write Ȳ
(n),∗
i = ξ̃(n)

i + ξ̂(n)

i where ξ̃(n)

i (λ) represents the surplus

in BSR∗(tλ) that is created before time tn, namely

ξ̃(n)

i (λ) =
∑

j:C∗j (tn)⊂C∗i (tλ)

Ȳ
(n),∗
j (−λn).

In Section 5.7.2 we will show that the contribution from ξ̃(n)(λ) := (ξ̃(n)

i (λ) : i ≥ 1) is

asymptotically negligible. First, in Section 5.7.1 below we analyze the contribution

from the ‘new surplus’, i.e. ξ̂(n) := (ξ̂(n)

i : i ≥ 1).
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5.7.1 Surplus created after time tn.

The main result of this section is as follows. Recall Z(λ) = (X(λ),Y (λ)) intro-

duced in Theorem 5.3.1.

Theorem 5.7.1. For every λ ∈ R, as n → ∞, (C̄
(n),∗

(λ), ξ̂(n)(λ)) converges in distri-

bution, in U↓, to (X(λ),Y (λ)).

The basic idea in the proof of the above theorem is to argue that BSR∗(tλ) ‘lies

between’ two Erdős-Rényi random graph processes G(n),−(tλ) and G(n),+(tλ), whp,

and then apply Theorem 5.5.1 to each of these processes. For a graph G, denote by

|Ci(G)| and ξi(G) the size and surplus, respectively, of the i-th largest component,

Ci(G) of graph G. We begin with the following lemma. Recall λn from (5.7.1).

Lemma 5.7.2. There exists a construction of {BSR∗(t)}t≥0 along with two other

random graph processes {G(n),−(t)}t≥0 and {G(n),+(t)}t≥0 such that:

(i) With high probability,

G(n),−(tλ) ⊂ BSR∗(tλ) ⊂ G(n),+(tλ) for all λ ∈ [−λn, λn]. (5.7.2)

(ii) Let for i ≥ 1, C̄
(n),∓
i (λ) = β1/3

n2/3 |Ci
(
G(n),∓(tλ)

)
| and

Ȳ
(n),∓
i (λ) = ξi

(
G(n),∓(tλ)

)
−

∑
j:Cj(G(n),∓(tn))⊂Ci(G(n),∓(tλ))

ξj (G(n),∓(tn)) .

Then, for all λ ∈ R

(C̄
(n),•

(λ), Ȳ
(n),•

(λ))
d−→ (X(λ),Y (λ)), • = −,+,

where
d−→ denotes weak convergence in U↓.

We remark that Ȳ
(n),∓

(λ) represents the surplus in G(n),∓(tλ) created after time

instant tn. Proof of the lemma relies on the following proposition which is an imme-

diate consequence of Theorem 5.3.2 and Theorem 5.6.9.

165



Proposition 5.7.3. There exists a κ ∈ (0, 1
3
− γ) such that

s̄3(tn)

(s̄2(tn))3

P−→ β,
n1/3

s̄2(tn)
− n1/3−γ

α

P−→ 0,
I (n)(tn)

n2γ+κ

P−→ 0.

We now prove Lemma 5.7.2.

Proof of Lemma 5.7.2: We suppress n in the notation for the random graph

processes. Write t+n := tc + n−γ. Let BSR(t) for t ∈ [0, t+n ] be constructed as in

Section 5.2.2 and define BSR∗(t) for t ∈ [0, tn) as in Section 5.6. Set

G(n),−(t) = G(n),+(t) = BSR∗(t), for t ∈ [0, tn).

We now give the construction of these processes for t ∈ [tn, t
+
n ].

The construction is done in two rounds. In the first round, we construct processes

GI,−(t), BSRI,∗(t) and GI,+(t) for t ∈ [tn, t
+
n ] by using only the information about

immigrations and attachments in BSR(t), while the edge formation between large

components is ignored. We first construct the process {BSRI(t)}t∈[tn,t
+
n ] as follows.

Let BSRI(tn) := BSR(tn). For t > tn, BSRI(t) is constructed along with and same

as BSR(t), except for when

ct−(~v) ∈ {~j ∈ Ω4
K : ~j ∈ F, j1 = j2 = $ or ~j /∈ F, j3 = j4 = $},

in which case no edge is added to BSRI(t).

Let x̄i(t), a
∗
i (t), b

∗(t), c∗i (t), 1 ≤ i ≤ K, t ∈ [tn, t
+
n ], be the processes determined

from {BSR(t)}t∈[tn,t
+
n ] as in Section 5.6. These processes will be used in the second

round of the construction.

Now define BSRI,∗(t) to be the subgraph that consists of all large components

(components of size greater than K) in BSRI(t), and then define GI,−(t) and GI,+(t)

for t ∈ [tn, t
+
n ] as follows:

GI,−(t) ≡ BSRI,∗(tn), and GI,+(t) ≡ BSRI,∗(t+n ).
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Then

GI,−(t) ⊂ BSRI,∗(t) ⊂ GI,+(t) for all t ∈ [tn, t
+
n ].

We now proceed to the second round of the construction. Let

En =
{
b(tc)− n−1/6 < b∗(t) < b(tc) + n−1/6, for all t ∈ [tn, t

+
n ]
}
.

Note that Lemma 5.6.1 and (5.6.8) implies that with probability at least 1−C1e
−C2n1/5

,

sup
t∈(tn,t

+
n )

|b∗(t)− b(tc)| ≤ sup
t∈(tn,t

+
n )

|b∗(t)− b(t)|+ sup
t∈(tn,t

+
n )

|b(t)− b(tc)|

≤d1n
−2/5 + d2n

−γ = o(n−1/6).

Thus P {Ec
n} → 0 as n→∞. Since we only need the coupling to be good with high

probability, it suffices to construct the coupling of the three processes until the first

time t ∈ [tn, t
+
n ] when b∗(t) 6∈ [b(tc)−n−1/6, b(tc)+n−1/6]. Equivalently, we can assume

without loss of generality that b∗(t) ∈ [b(tc)− n−1/6, b(tc) + n−1/6], for all t ∈ [tn, t
+
n ],

a.s.

We will construct G+(t), BSR∗(t) and G−(t) by adding new edges between com-

ponents in the three random graph processes GI,−(t), BSRI,∗(t) and GI,+(t) such

that, at time t ∈ [tn, t
+
n ] edges are added between each pair of vertices in GI,−(t),

BSRI,∗(t) and GI,+(t), at rates 1
n
(b(tc)− n−1/6), 1

n
b∗(t) and 1

n
(b(tc) + n−1/6), respec-

tively. The precise mechanism is as follows.

We first construct G+(t) for t ∈ (tn, t
+
n ] by adding edges between every pair of

vertices in GI,+(t) at the rate 1
n
(b(tc) + n−1/6) and creating self-loops at the rate

1
2n

(b(tc) + n−1/6) for each vertex in GI,+(t).

Next, we construct BSR∗(t) and G−(t) through successive thinning of G+(t),

thus obtaining the desired coupling. Let (e1, e2, ...) be the sequence of edges that
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are added to GI,+(t) to obtain G+(t). Let (u1, u2, ...) be i.i.d Uniform[0, 1] ran-

dom variables that are also independent of the random variables used to construct

GI,−,BSRI,∗,GI,+,G+. Suppose at time tk, we have G+(tk) = G+(tk−) ∪ {ek},

where ek = {v1, v2}. We set BSR∗(tk) = BSR∗(tk−) ∪ {ek} if and only if

v1, v2 ∈ BSRI,∗(tk−) and uk ≤
b∗(tk)

b(tc) + n−1/6
,

otherwise let BSR∗(tk) = BSR∗(tk−). This defines the process BSR∗(t) (with the

correct probability law) such that the second inclusion in (5.7.2) is satisfied. Finally,

construct G−(t) by a thinning of BSR∗(t) exactly as above by replacing b∗(tk)

b(tc)+n−1/6

with b(tc)−n−1/6

b∗(tk)
. Then G−(t), for t ∈ [tn, t

+
n ] is an Erdős-Rényi type processes and the

first inclusion in (5.7.2) is satisfied. This completes the proof of the first part of the

lemma.

We now prove (ii). Consider first the case • = −. We will apply Theorem

5.5.1. With notation as in that theorem, it follows from the Erdős-Rényi dynamics

of G(n),−(t) that, the distribution of (C̄
(n),−

(λ), Ȳ
(n),−

(λ)), conditioned on {P~v(t), t ≤

tn ~v ∈ [n]4}, for each λ ∈ [−λn, λn], is same as the distribution of Z(z(n), q(n)), where

z(n) = (C̄
(n),−

(−λn),0), 0 denotes the vector (0, 0, · · · ) and q(n) is determined by the

equality

q(n)C̄
(n),−
i (−λn)C̄

(n),−
j (−λn)

=
αβ2/3

n1/3
(λ+ λn)

(b(tc)− n−1/6)

n
|Ci(G(n),−(tn))||Cj(G(n),−(tn))|,

for i 6= j. Recalling that αb(tc) = 1 it then follows that q(n) = λ+ n1/3−γ

αβ2/3 +O(n1/6−γ).

We now verify the conditions of Theorem 5.5.1. Taking x(n) = C̄
(n),−

(−λn) we see

with, x∗, sk, k = 1, 2, 3 as in Theorem 5.5.1,

s(n)

1 ≤ β1/3n1/3, s(n)

2 =
β2/3

n4/3

∑
C⊂BSR∗(tn)

|C|2, s(n)

3 =
β

n2

∑
C⊂BSR∗(tn)

|C|3.

Recall the definition of s̄k and s̄k,$ from (5.3.1) and Section 5.6. Then

s(n)

2 =
β2/3s̄2,$(tn)

n1/3
, s(n)

3 =
βs̄3,$(tn)

n
, x∗(n) = β1/3 I(tn)

n2/3
.
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From the first two convergences in Proposition 5.7.3 and recalling that, for k = 1, 2,

|s̄k,$ − s̄k| ≤ Kk, we immediately get that the first two convergences in (5.5.1) hold.

Also,

x∗

s2

=
I(tn)

β1/3n1/3s̄2,$(tn)
=

I(tn)

β2/3nγ+1/3
O(1)→ 0, in probability,

where the second equality is consequence of the second convergence in Proposition

5.7.3, and the convergence of the last term follows from the third convergence in

Proposition 5.7.3. This proves the third convergence in (5.5.1).

Finally we note that the convergence in (5.5.2) holds with ς = 1
1−3(γ+κ)

, where κ

is as in Proposition 5.7.3, since

s1

(
x∗

s2

)ς
≤ O(1)n1/3

(
I(tn)

nγ+1/3

)ς
= O(1)

(
I(tn)

n2γ+κ

)ς
→ 0,

where the last equality follows from our choice of ς and the convergence is a con-

sequence of Proposition 5.7.3. Thus we have verified all the conditions in Theorem

5.5.1 and therefore we have from this result that (C̄
(n),−

(λ), Ȳ
(n),−

(λ)) converges in

distribution, in U↓, to (X∗(λ),Y ∗(λ)) proving part (ii) of the lemma for • = −.

To prove part (ii) of the lemma for • = +, one needs slightly more work. Once

more we will apply Theorem 5.5.1. As before, conditioned on {C̄(n),+
(λ0) : λ0 ≤

−λn}, for each λ ∈ [−λn, λn], the distribution of (C̄
(n),+

(λ), Ȳ
(n),+

(λ)) is same as the

distribution of Z(z̄(n), q̄(n)), where z̄(n) = (C̄
(n),+

(−λn),0) and q̄(n) = λ + n1/3−γ

αβ2/3 +

O(n1/6−γ). Taking x(n) = C̄
(n),+

(−λn) we see with, x∗, sk, k = 1, 2, 3 as in Theorem

5.5.1,

s(n)

1 ≤ β1/3n1/3, s(n)

2 =
β2/3

n4/3

∑
C⊂BSRI,∗(t+n )

|C|2, s(n)

3 =
β

n2

∑
C⊂BSRI,∗(t+n )

|C|3.

Next note that for any component C ⊂ G−(tn) = BSRI,∗(tn) there is a unique

component C+ ⊂ G+(tn) = BSRI,∗(t+n ), such that C ⊂ C+. Denote by Ci the i-th

largest component in BSRI,∗(tn), and let C+
i be the corresponding component in
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BSRI,∗(t+n ) such that Ci ⊂ C+
i . Denote by N the number of immigrations that occur

during [tn, t
+
n ] in BSRI,∗, and denote by {C̃+

i }Ni=1 the components in BSRI,∗(t+n )

resulting from these immigrations. Then

s(n)

2 =
β2/3s̄+

2

n1/3
, s(n)

3 =
βs̄+

3

n
, x∗(n) = β1/3 I

+

n2/3
,

where

s̄+
2 :=

1

n

(
∞∑
i=1

|C+
i |2 +

N∑
i=1

|C̃+
i |2
)
,

s̄+
3 :=

1

n

(
∞∑
i=1

|C+
i |3 +

N∑
i=1

|C̃+
i |3
)
,

I+ := max
{

max
i
|C+
i |,max

i
|C̃+
i |
}
.

To complete the proof it suffices to show that the statement in Proposition 5.7.3 holds

with (s̄2(tn), s̄3(tn), I (n)(tn)) replaced with (s̄+
2 , s̄

+
3 , I

+). This follows from Proposition

5.7.4 given below and hence completes the proof of the lemma. �

Proposition 5.7.4. With notation as in the proof of Lemma 5.7.2, as n→∞, we have

I+ = O(I),
s̄+

2

s̄2(tn)

P−→ 1,
s̄+

3

s̄3(tn)

P−→ 1,
n1/3

s̄2(tn)
− n1/3

s̄+
2

P−→ 0.

Proof. The proof is similar to that of Proposition 3.7.1 in Chapter 3 thus we

only give a sketch.

Observe that the total rate of attachments is
∑K

i=1 c
∗
i (t) ≤ 1 and each attachment

has size no bigger than K. Recall that Ci denotes the i-th largest component in

BSRI,∗(tn). Denote by Vi(t), t ∈ [tn, t
+
n ], the stochastic process defining the size of

the component containing Ci in BSRI,∗(t). Note that Vi(tn) = |Ci| and Vi(t
+
n ) =

|C+
i |. Then Vi(t)/K can be stochastically dominated by a Yule process starting with

d|Ci|/Ke particles and birth rate K. Using this and an argument similar to Chapter

3, it follows that,

|C+
i | − |Ci| ≤d K · Negative-Binomial(d|Ci|/Ke, e−2Kn−γ ).
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Next, note that the immigrations are of size no bigger than 2K, and thus for the

same reason, we have the bound,

|C̃+
i | ≤d 2K +K · Negative-Binomial(2, e−2Kn−γ ).

Since the total number of vertices is n, the number of immigrations N can be bounded

by n/K.

With the above three bounds the proof of the proposition follows exactly as the

proof of Proposition 3.7.1 in 3 with obvious changes needed due to the constant K

that appears in the above bounds. Details are omitted. �

The next proposition says that the inclusion in (5.7.2) can be strengthened to

component-wise inclusion.

Proposition 5.7.5. Fix λ ∈ R and i0 ≥ 1. Then, as n→∞,

P
{
Ci(G(n),−(tλ)) ⊂ Ci(BSR∗(tλ)) ⊂ Ci(G(n),+(tλ)) ∀ 1 ≤ i ≤ i0

}
→ 1.

Proof: From Lemma 5.7.2 and Lemma 15 in [4] (see Chapter 3 for a similar

argument), we have, as n→∞,

(C̄
(n),−

(λ), C̄
(n),∗

(λ), C̄
(n),+

(λ))
d−→ (X(λ),X(λ),X(λ)), (5.7.3)

in l2↓ × l2↓ × l2↓, where X is as in Theorem 5.3.1. Define events En, Fn as

En =
{
C̄

(n),−
i (λ) > C̄

(n),+

i+1 (λ) : 1 ≤ i ≤ i0

}
, Fn = {G(n),−(λ) ⊂ BSR∗(λ) ⊂ G(n),+(λ)} .

Then on the set En ∩ Fn

Ci(G(n),−(λ)) ⊂ Ci(BSR∗(λ)) ⊂ Ci(G(n),+(λ)), ∀ 1 ≤ i ≤ i0.

From Lemma 5.7.2 (i) P{F c
n} → 1. Also

lim sup
n

P(Ec
n) ≤ lim sup

n
P
{
C̄

(n),−
i (λ) ≤ C̄(n),+

i+1 (λ) for some 1 ≤ i ≤ i0

}
≤P {X i(λ) ≤X i+1(λ) for some 1 ≤ i ≤ i0} = 0.
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This shows that P(En ∩ Fn)→ 1 as n→∞. The result follows. �

We will also need the following elementary lemma. Proof is omitted.

Lemma 5.7.6. Let η(n),−, η(n),+, η∗ be real random variables such that η(n),− ≤ η(n),+

with high probability. Further assume η(n),− d−→ η∗ and η(n),+ d−→ η∗. Then η(n),+ −

η(n),− P−→ 0. Furthermore, if η(n) are random variables such that η(n),− ≤ η(n) ≤ η(n),+

with high probability, then η(n) d−→ η∗ and η(n) − η(n),− P−→ 0.

We now complete the proof of Theorem 5.7.1.

Proof of Theorem 5.7.1: From Lemma 5.7.2 (ii) we have that

(
C̄

(n),−
(λ), Ȳ

(n),−
(λ),

∞∑
i=1

C̄
(n),−
i (λ)Y (n),−

i (λ)

)
d−→

(
X(λ),Y (λ),

∞∑
i=1

X i(λ)Y i(λ)

)
,

(5.7.4)

in l2↓ × N∞ × R, where on N∞ we consider the product topology.

In order to prove the theorem it suffices, in view of Lemma 5.4.11, to show that(
C̄

(n),∗
(λ), ξ̂(n)(λ),

∞∑
i=1

C̄
(n),∗
i (λ)ξ̂(n)

i (λ)

)
d−→

(
X(λ),Y (λ),

∞∑
i=1

X i(λ)Y i(λ)

)
,

(5.7.5)

in l2↓ × N∞ × R.

From Proposition 5.7.5, we have for any i0 ∈ N, with high probability

Ȳ
(n),−
i (λ) ≤ ξ̂(n)

i (λ) ≤ Ȳ (n),+

i for 1 ≤ i ≤ i0.

Also, from Lemma 5.7.2 (i), whp,

∞∑
i=1

C̄
(n),−
i (λ)Ȳ

(n),−
i (λ) ≤

∞∑
i=1

C̄
(n)

i (λ)Ȳ
(n)

i (λ) ≤
∞∑
i=1

C̄
(n),+

i (λ)Ȳ
(n),+

i (λ).

From Lemma 5.7.6 and Lemma 5.7.2 (ii), we then have(∣∣∣ξ̂(n)(λ)− Ȳ (n),−
(λ)
∣∣∣ , ∞∑

i=1

C̄
(n),∗
i (λ)ξ̂(n)

i (λ)−
∞∑
i=1

C̄
(n),−
i (λ)Ȳ

(n),−
i (λ)

)
P−→ 0,
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in N∞ × R, where for y = (y1, y2, · · · ) ∈ Z∞, |y| = (|y1|, |y2|, · · · ). The convergence

in (5.7.5) now follows on combining (5.7.4) and (5.7.3). The result follows. �

5.7.2 Proof of Theorem 5.3.3.

As a first step towards the proof we show the following convergence result for one

dimensional distributions.

Theorem 5.7.7. For every λ ∈ R, as n→∞, (C̄
(n)

(λ), Ȳ
(n)

(λ)) converges in distribu-

tion, in U↓, to (X(λ),Y (λ)).

Proof. Fix λ ∈ R. We first argue that

(C̄
(n),∗

(λ), Ȳ
(n),∗

(λ))
d−→ (X(λ),Y (λ)), in U↓. (5.7.6)

For this, it suffices to show that

∞∑
i=1

ξ̃(n)

i (λ)C̄
(n),∗
i (λ)

P−→ 0. (5.7.7)

Define

En =

{
I (n)(s) ≤ C3

(log n)4

(tc − s)2
for s ≤ tc − n−γ

}
.

By Theorem 5.6.9, P{Ec
n} → 0 and En ∈ F̃(λ) := σ{|Ci(s)| : i ≥ 1, s ≤ tλ} for all

λ ≥ −λn. We begin by showing that there exists d1 ∈ (0,∞) such that, for all i ∈ N,

E
[
ξ̃(n)

i (λ) | F̃λ
]

11En ≤ d1C̄
(n),∗
i (λ)nγ−1/3(log n)4. (5.7.8)

Note that at any time s < tλ, for a component C ⊂ BSR(n)(s), there are at most

2|C|2n2 quadruples of vertices which may provide a surplus edge within C. Since

edges are formed at rate 2/n3, we have that

E
[
ξ̃ni (λ) | F̃λ

]
≤
∫ tn

0

 ∑
j:Cj(BSR(n)(s))⊂Ci(BSR∗(tλ))

1

2n3
2n2|Cj(BSR(n)(s))|2

 ds
≤ 1

n
|Ci(BSR∗(tλ))|

∫ tn

0

I(s)ds.

173



Thus, for some d0, d1 ∈ (0,∞)

E
[
ξ̃(n)

i (λ) | F̃(λ)
]

11En ≤ d0
C̄

(n),∗
i (λ)

n1/3

∫ tc−n−γ

0

(log n)4

(tc − s)2
ds ≤ d1C̄

(n),∗
i (λ)nγ−1/3(log n)4.

This proves (5.7.8). As an immediate consequence of this inequality we have that

E

[∑
i

ξ̃(n)

i (λ)C̄
(n),∗
i (λ) | F̃(λ)

]
11En =

∑
i

C̄
(n),∗
i (λ)11EnE

[
ξ̃(n)

i (λ) | F̃(λ)
]

≤d1n
γ−1/3(log n)4

∑
i

(
C̄

(n),∗
i (λ)

)2

.

Observing that γ−1/3 < 0 and, from Theorem 5.7.1, that
∑

i

(
C̄

(n),∗
i (λ)

)2

converges

in distribution, we have that

E

[∑
i

ξ̃(n)

i (λ)C̄
(n),∗
i (λ) | F̃(λ)

]
11En

P−→ 0.

Since P{En} → 1, letting η(n) =
∑

i ξ̃
(n)

i (λ)C̄
(n),∗
i (λ), we have that E(η(n) | F̃(λ))→ 0

in probability. Convergence in (5.7.7) now follows from Markov’s inequality on noting

that, as n→∞,

E[η(n) ∧ 1] = E
[
E[η(n) ∧ 1 | F̃(λ)]

]
≤ E

[
E[η(n) | F̃(λ)] ∧ 1

]
→ 0.

This proves (5.7.6). Next note that

∞∑
i=1

|C̄(n)

i (λ)− C̄(n),∗
i (λ)|2 ≤ n

n4/3
O(1)→ 0, as n→∞. (5.7.9)

Also,

E
[
Ȳ

(n)

i (λ) | F̃(λ)
]

11{|Ci(tλ)|≤K} ≤

∫ tλ

0

∑
j:Cj(s)⊂Ci(tλ)

1

2n3
2n2|Cj(s)|2ds

 11{|Ci(tλ)|≤K}

≤K
2

n
· tλ = O(n−1).

Thus, as n→∞,

E
∞∑
i=1

|C̄(n)

i (λ)Ȳ
(n)

i (λ)− C̄(n),∗
i (λ)Ȳ

(n),∗
i (λ)|

=
∞∑
i=1

E
[
C̄

(n)

i (λ)Ȳ
(n)

i (λ)11{|Ci(tλ)|≤K}

]
≤ O(n−1)E

[
∞∑
i=1

C̄
(n)

i (λ)

]
= O(n−2/3)→ 0.
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The result now follows on combining the above convergence with (5.7.9) and (5.7.6).

�

Remark 5.7.8. The proofs of Theorems 5.7.1 and 5.7.7 in fact establish the following

stronger statement: For all λ ∈ R,(
|Ȳ (n),−

(λ)− Ȳ (n)
(λ)|,

∞∑
i=1

|C̄(n),−
i (λ)− C̄(n)

i (λ)|2,

∞∑
i=1

|C̄(n),−
i (λ)Ȳ

(n),−
i (λ)− C̄(n)

i (λ)Ȳ
(n)

i (λ)|

)
→ (0, 0, 0),

in probability, in N∞ × R× R.

Proof of Theorem 5.3.3: For simplicity we present the proof for the case m = 2.

The general case can be treated similarly. Fix −∞ < λ1 < λ2 < ∞. Denote, for

λ ∈ R, Z̄
(n),−

(λ) = (C̄
(n),−

(λ), Ȳ
(n),−

(λ)). In view of Remark 5.7.8 it suffices to show

that, as n→∞,

(Z̄
(n),−

(λ1), Z̄
(n),−

(λ2))
d−→ (Z(λ1),Z(λ2)),

for which it is enough to show that for all f1, f2 ∈ Cb(U0
↓)

E
[
f1(Z̄

(n),−
(λ1))f2(Z̄

(n),−
(λ2))

]
→ E [f1(Z(λ1))f2(Z(λ2))] . (5.7.10)

Note that the left side of (5.7.10) equals

E
[
f1(Z̄

(n),−
(λ1))Tλ2−λ1f2(Z̄

(n),−
(λ1))

]
,

which using Theorem 5.3.1 (2), Lemma 5.7.2 (ii) and the fact that Z(λ) ∈ U1
↓ a.s.,

converges to

E [f1(Z(λ1))Tλ2−λ1f2(Z(λ1))] = E [f1(Z(λ1))f2(Z(λ2))] ,

where the last equality follows from Theorem 5.3.1 (3). This proves (5.7.10) and the

result follows. �
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CHAPTER 6: LDP FOR THE CONFIGURATION MODEL

6.1 Introduction

In this chapter we study some large deviation problems related to the configuration

model. The configuration model random graph G(n, {di}) is defined as follows. Given

{di : i = 1, 2, ..., n} satisfying di ∈ N and
∑n

i=1 di is even, consider the collection of all

graphs with the vertex set [n] such that the degree of vertex i is di, for i ∈ [n]. Define

G(n, {di}) to be a uniformly random member in this collection. Further assume that

there exists a probability distribution on N, {pk : k ∈ N}, such that
∑∞

k=1 kpk < ∞

and for each k ∈ N,

| {i ∈ [n] : di = k} |
n

→ pk, as n→∞.

Let C(n)

1 be the size of the largest component in G(n, {di}). The goal of this chapter

is to argue that P
{

1
n
C(n)

1 ∈ B
}

= e−nI(B)+o(n) as n→∞, and to identify the exponent

I(B) in the expression for B ⊂ [0, 1]. Towards this goal, we construct a random walk

associated with the depth-first-exploration of G(n, {di}), and then study the large

deviation properties of this random walk. Our techniques are based on the weak

convergence approach developed in [14]. However, due to certain singularities in the

transition kernel of this random walk, the conditions imposed in [14] are not satisfied

for this example, and we have only been able to prove a large deviation upper bound.

Establishing the corresponding lower bound is an open problem.

Organization of this chapter: Section 6.2 gives some preliminary results, in-

cluding the definition of the configuration model, the assumptions, and the random

walk associated with the depth-first-exploration. Section 6.3 defines the rate function



and conjectures a large deviation principle (LDP) for the scaled random walk process.

We also present our main result which establishes a large deviation upper bound. In

Section 6.4, the proof of the main LDP is reduced to the LDP of some modified

process in Theorem 6.4.1. Theorem 6.4.1 is proved in Section 6.5 and Section 6.6.

6.2 Preliminaries

6.2.1 Notation

The following notation will be used. Given a Polish space E and T > 0, C([0, T ]) :

E) (resp. C([0,∞) : E)) will denote the space of E valued continuous functions on

[0, T ] (resp. [0,∞)) which is equipped with the usual uniform topology (resp. local

uniform topology). Also, D([0, T ] : E) will denote the space of right continuous

functions with left limits on [0, T ] with values in E . This space is equipped with the

usual Skorohod topology. B(E) will denote the Borel σ-field on E . P(E) will denote

the space of probability measures on E which is considered with the usual topology

of weak convergence. We say a sequence of E valued random variables is tight if the

corresponding sequence of induced measures on E is tight. For a function f : E → R,

define ‖f‖∞ = supx∈E |f(x)|.

We denote by R∞ the space of all real sequences which is identified with the

countable product of copies of R. This space is equipped with the usual product

topology. A function I from a Polish space E to [0,∞] is called a rate function if

for each M < ∞ the set {x ∈ E : I(x) ≤ M} is compact. Given a measurable

space (Ω,F) and a Polish space E a family of probability measures ν(dy | x) on E

parametrized by x ∈ Ω is called a stochastic kernel on E given Ω if for every Borel

set B in E , the map x 7→ ν(B | x) is measurable.
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6.2.2 The configuration model and assumptions

Fix n ≥ 1. We start by describing the construction of the configuration model of

random networks [10] with vertex set [n] := {1, 2, . . . , n}. Let d(n) = (di : i ∈ [n])

be a degree sequence, namely a sequence of non-negative integers such that
∑n

i=1 di

is even. Let 2m(n) :=
∑n

i=1 di. Each di may depend on n but we suppress this

dependence in the notation. Now start with the n vertices with vertex i ∈ [n] having

di half-edges. Perform a uniform random matching on these 2m half-edges to form

m edges so that every edge is composed of two half-edges. This procedure creates

a random multigraph G([n],d(n)) with m(n) edges, allowing for multiple edges and

self-loops, and is called the configuration model with degree sequence d(n). Since

we are concerned with connectivity properties of the resulting graph, vertices with

degree zero play no role in our analysis, and therefore we assume that di > 0 for

all i ∈ [n], n ≥ 1. We make the following further assumptions on the collection

{d(n), n ∈ N}.

Assumption 6.2.1. There exists a probability mass function p := {pk}k≥1 on Z+ :=

{1, 2, . . .} such that, p2 6= 1 and writing n(n)

k := |
{
i : d(n)

i = k
}
| for the number of

vertices with degree k,

n(n)

k

n
→ pk as n→∞, for all k ≥ 1

We will make the following exponential integrability assumption on the degree

distribution.

Assumption 6.2.2. For all λ ∈ R, supn∈N
∑∞

k=1

n
(n)
k

n
eλk <∞.

Remark 6.2.3. (i) Note that Assumptions 6.2.1 and 6.2.2, along with Fatou’s

lemma say that
∑∞

k=1 pke
λk <∞ for every λ ∈ R. Conversely, if

∑∞
k=1 pke

λk <

∞ for every λ ∈ R and {Di, i ≥ 1} is an i.i.d. sequence with common distri-
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bution {pk}k≥1, then for a.e. ω, Assumptions 6.2.1 and 6.2.2 are satisfied with

d
(n)
i = Di(ω), i = 1, · · ·n, n ≥ 1.

(ii) Under Assumptions 6.2.1 and 6.2.2, µ :=
∑∞

k=1 kpk <∞ and the total number

of edges m(n) = 1
2

∑n
i=1 di satisfies m(n)

n
→ 1

2

∑∞
k=1 kpk as n→∞.

6.2.3 Edge-exploration algorithm

One can construct G(n, (di)
n
1 ) whilst simultaneously exploring its component

structure [21] which we now describe. This algorithm traverses the graph by ex-

ploring all its edges, unlike typical graph exploration algorithms, which sequentially

explore vertices. At each stage of the algorithm, every vertex is in one of two possi-

ble states, sleeping or awake, while each half-edge is in one of three states: sleeping

(unexplored), active or dead (removed). Write AV(j),SV(j) for the set of awake

and sleeping vertices at time j and similarly let SE(j),AE(j),DE(j) be the set of

sleeping, active and dead half-edges at time j. We call a half-edge “living” if it is

either sleeping or active. Initialize by setting all vertices and half-edges to be in the

sleeping state. For step j ≥ 0, write A(j) := |AE(j)| for the number of active half-

edges and Vk(j) for the number of sleeping vertices v ∈ SV(j) with degree k. Write

V(j) = (Vk(j) : k ∈ N) for the corresponding vector in R∞+ and let S(j) :=
∑∞

k=1 Vk(j)

for the total number of sleeping vertices at time j. A(j),V(j) are regarded as ran-

dom variables given on some probability space (Ω,F ,P) on which we introduce the

filtration Fn(k) = σ{A(j),V(j), j ≤ k}, k ≥ 0.

At time j = 0, all vertices and half-edges are asleep hence A(0) = 0 and for k ≥ 1

and Vk(0) = nk. The exploration process proceeds as follows:

Edge exploration algorithm (EEA):

(a) If the number of active half-edges and sleeping vertices A(j) = 0 and S(j) = 0,
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all vertices and half-edges have been explored and we terminate the algorithm.

(b) If A(j) = 0, and S(j) > 0 so there exist sleeping vertices, pick one such vertex

with probability proportional to its degree (alternatively pick a sleeping half-

edge uniformly at random) and mark the vertex as awake and all its half-edges

as active. Thus on the set {A(j) = 0, S(j) > 0},

P (A(j + 1) = k|F(j)) =
kVk(j)∑∞
k=1 kVk(j)

, for k ≥ 1.

(c) If A(j) > 0, pick an active half-edge uniformly at random, pair it with another

uniformly chosen living half-edge (either active or sleeping), say e∗, merge both

half edges to form a full edge and kill both half-edges. If e∗ was sleeping when

picked, wake the vertex corresponding to half-edge e∗, and mark all its other

half-edges active. Thus we have

P {A(j + 1)− A(j) = −2|F(j)} =
A(j)− 1∑∞

k=1 kVk(t) + A(j)− 1
,

P {A(j + 1)− A(j) = k − 2|F(j)} =
kVk(j)∑∞

k=1 kVk(j) + A(j)− 1
for k ≥ 1.

(6.2.1)

The first expression covers the case when e∗ was active before being killed, while

the second expression corresponds to the case where e∗ was sleeping and belonged

to a degree-k vertex.

Construction of G(n,d(n)): The random graph formed at the termination of

the above algorithm has the same distribution as the configuration model.

Note that at each step in the EEA, either a new vertex is woken up or two half-

edges are killed. Since there are a total of n vertices and 2m half-edges, we have from

Assumptions 6.2.1 and 6.2.2 that the algorithm terminates in at most m + n ≤ nT

steps where T := 1 + supn
1
2

∑∞
k=1 k

n
(n)
k

n
. We define A(j) ≡ 0 and V(j) ≡ 0 for all

j ≥ j0 where j0 is the time instant at which the algorithm terminates.
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Scaling and Linear Interpolation: Note that for j ∈ N0, (V(j)) is a R∞

valued random variable. Define continuous time process Vn by scaling and linear

interpolation of the discrete time sequence {V(j)}j∈N0 as follows.

Vn(t) :=
1

n
V(bntc) +

(
t− bntc

n

)
[V(bntc+ 1)−V(bntc)], t ∈ [0, T ]. (6.2.2)

Thus Vn(·) is a random variable with values in C([0, T ] : R∞).

6.3 Main result and the rate function

The main result of this chapter gives a large deviation upper bound for {Vn}n∈N

in the path space C([0, T ] : R∞). First, we define the corresponding rate function for

the large deviation principle.

Let

ν∗ = sup
n

∑
k

k
n

(n)
k

n
, ν∗p = sup

n

∑
k

epk
n

(n)
k

n
, p ≥ 1.

Define

Ddeg :=

{
β = (βk) ∈ R∞ : βk ≥ 0 ∀k,

∑
k

kβk ≤ ν∗,
∑
k

epkβk ≤ ν∗p ,∀p ≥ 1

}

and let D∗deg := [0, ν∗]×Ddeg, D̄deg := [0,∞)×Ddeg.

Define the stochastic kernel µ(· | ·) on N0 given D̄deg as follows. For x = (a,β) ∈

D̄deg with
∑

k kβk + a > 0, define

µ(k | x) :=


aP

k kβk+a
when k = 0

kβkP
k kβk+a

when k > 0
(6.3.1)

If
∑

k kβk + a = 0, define µ(· | x) = δ0(·).

Let Dvel ⊂ R∞ be the set

Dvel :=

{
γ = (γk)k≥1 ∈ R∞ : γk ≤ 0, for all k ∈ N,

∞∑
k=1

γk ≥ −1

}
.
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For fixed γ ∈ Dvel, define the probability measure ν(· | γ) on N0,

ν(k | γ) :=

 1 +
∑∞

k=1 γk for k = 0,

−γk for k > 0.
(6.3.2)

For µ, ν ∈ P(N0), the relative entropy of µ with respect to ν is defined as

R(ν‖µ) :=

∫
N0

log
dν

dµ
(y)ν(dy) =

∞∑
k=0

ν(k) log
ν(k)

µ(k)
, (6.3.3)

when ν � µ, and R(ν‖µ) :=∞ otherwise. For x = (a,β) ∈ D∗deg and γ ∈ Dvel define

L(x,γ) := R
(
ν(· | γ)

∥∥µ(· | x)
)
. (6.3.4)

Recall the probability mass function p := {pk}k≥1 introduced in Assumption 6.2.1.

Define P := C([0, T ] : R∞). Consider the subset PI of P consisting of those functions

v(·) = (vk(·))k≥1 such that

(a) vk(0) = pk, vk(t) ≥ 0 for all t ∈ [0, T ], and vk(·) is absolutely continuous for all

k ≥ 1.

(b) Writing v̇(·) = (v̇k(·))k≥1 for the corresponding derivatives, for a.e. t ∈ [0, T ]

v̇(t) ∈ Dvel.

We recall that the one dimensional Skorohod map Γ : D([0, T ] : R) → D([0, T ] : R)

is defined as follows. Given a function b ∈ D([0, T ] : R),

Γ(b)(t) := b(t)− inf
0≤s≤t

(b(s) ∧ 0), t ∈ [0, T ]. (6.3.5)

For v ∈ P with v(·) = (vk(·))k≥1, define two new functions bv(·), av(·) ∈ C([0, T ] : R)

via the operations,

bv(t) :=
∞∑
k=1

kvk(0)− 2t−
∞∑
k=1

kvk(t), av(t) := Γ(bv)(t), t ≥ 0. (6.3.6)
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and let xv = (av(·),v(·)). Note that for every v(·) ∈ PI , xv(t) ∈ D∗deg. Indeed,

for v ∈ PI and t ≥ 0, vk(t) ∈ [0, pk] for every k ≥ 1 and so from Fatou’s lemma

v(t) ∈ Ddeg. Also,

av(t) =bv(t)− inf
0≤s≤t

bv(s) = −
∑
k

kvk(t)− 2t− inf
0≤s≤t

(
−
∑
k

kvk(s)− 2s

)

≤−
∑
k

kvk(t)− 2t+ 2t+
∑
k

kvk(0) ≤
∑
k

kvk(0) ≤ ν∗.

This shows xv(t) = (av(t),v(t)) ∈ D∗deg for every t ≥ 0.

Define the function I : P→ [0,∞] as

I(v) :=


∫ T

0
L(xv(t), v̇(t))dt when v ∈ PI ,

∞ when v /∈ PI ,
(6.3.7)

With the usual convention 0 · ∞ = 0, this has the explicit form

I(v) :=

∫ T

0

[(
1 +

∑
k

v̇k(t)

)
log

1 +
∑

k v̇k(t)

av(t)/[
∑

k kvk(t) + av(t)]

−
∑
k

v̇k(t) log
−v̇k(t)

kvk(t)/[
∑

k kvk(t) + av(t)]

]
1{P

k kvk(t)+av(t)>0}dt.

(6.3.8)

Recall from (6.2.2), the process Vn(·) that keeps track of the degree sequence of

sleeping vertices. The large deviation principle that we want to study is the following:

Conjecture 6.3.1. The function I in (6.3.7) is a rate function on P and the sequence

{Vn}n∈N satisfies a large deviation principle in P with rate function I.

Our main result is the following theorem.

Theorem 6.3.2. (i) The function I in (6.3.7) is a rate function.

(ii) (Large deviation upper bound) For all closed set F ⊂ P,

lim sup
n→∞

1

n
log P {Vn ∈ F} ≤ inf

v∈F
I(v).
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Whether the large deviation lower bound holds with the rate function I is an open

problem.

6.4 Proof of the large deviation upper bound

The map x 7→ µ(· | x) is not continuous at x = (0,0). This causes difficulty in

proving various weak convergence results needed in the proof of the large deviations

principle. To deal with this we first regularize the stochastic kernel µ(· | ·) as follows.

6.4.1 Regularization of the stochastic kernel.

For fixed ε > 0 and a,v := (vk)k≥1 such that x = (a,v) ∈ D̄deg, define the

stochastic kernel,

µε(k | x) :=


aε

(
P
k kvk+a)∨ε for k = 0

kvk
(
P
k kvk+a)∨ε for k > 0

. (6.4.1)

Here aε := (ε−
∑

k kvk) ∨ a. Note that aε +
∑

k kvk = ε when a +
∑

k kvk < ε, thus

the above always defines a probability measure. Define

Λε :=

{
(a,v) ∈ D∗deg : a+

∑
k

kvk ≤ ε

}
.

Then µε(· | x) = µ(· | x) for x ∈ Λc
ε. Also, for every ε > 0, x 7→ µε(· | x)

is a continuous map on D̄deg. We will now argue that it suffices to prove a large

deviation principle for the case when the dynamics is driven by the regularized kernel

µε. In order to make this statement precise we begin by observing the following

dynamical description of the sequence {A(j),V(j)}j∈N0 . Recall that A(0) = 0 and

V(0) = (nk)k≥1. Define the sequence {X(j)}j∈N0 of R+×R∞ valued random variables

as

X(j) := ((A(j)− 1)+,V(j)), j ≥ 0. (6.4.2)

For j ≥ 0, let ξ(j + 1) denote the degree of the vertex chosen at time j + 1, with

ξ(j + 1) = 0 if two active half-edges are merged at time instant j + 1 thus resulting

184



in no new vertex removed from the set of sleeping vertices. From (6.2.1) and (6.3.1),

P(ξ(j + 1) = k | F(j)) = µ(k | 1

n
X(j)) for all k ∈ N0, j ∈ N0, a.s. (6.4.3)

and

Vk(j + 1) = Vk(j)− 1{ξ(j+1)=k}, A(j + 1) = A(j) + (ξ(j + 1)− 2) + 21{A(j)≤0}.

(6.4.4)

Thus Vk(j) = nk −
∑j

i=1 1{ξ(i)=k} and

A(j) =

j∑
i=1

(ξ(i)− 2) + 2

j∑
i=1

1{A(i−1)≤0}. (6.4.5)

Now, for ε > 0 the sequence {Xε(j),Vε(j), Aε(j)}j∈N0 is defined as in (6.4.2)-(6.4.5)

above by replacing µ(k | 1
n
X(j)) with µε(k | 1

n
Xε(j)). Define the continuous time

process Vn,ε through (6.2.2) by replacing {V(j)} on the right side of the equation

with {Vε(j)}. ext, for x ∈ D∗deg and γ ∈ Dvel, let

Lε(x,γ) := R
(
ν(· | γ)

∥∥µε(· | x)
)

(6.4.6)

where ν is as in (6.3.2) and consider the following function analogous to (6.3.7) given

in terms of the kernel µε: For ϕ ∈ P,

Iε(ϕ) :=


∫ T

0
Lε(xϕ(t), ϕ̇(t))dt when ϕ ∈ PI ,

∞ when ϕ /∈ PI .
(6.4.7)

where xϕ(·) = (aϕ(·),ϕ(·)) and aϕ(·) is as in (6.3.6). The following conjecture is the

main ingredient in the proof of Theorem 6.3.2.

Theorem 6.4.1. For every ε > 0, the function Iε in (6.4.7) is a rate function on P and

the sequence {Vn,ε}n∈N satisfies a large deviation principle upper bound in P with

rate function Iε.

Partial proofs of Theorem 6.4.1 is given at the end of this section. We now prove

Theorem 6.3.2.
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6.4.2 Proof of Theorem 6.3.2

Recall that P = C([0, T ] : R∞) is a Polish space that can be metrized, for

example using the following metric: for ϕ, ϕ̃ ∈ P with ϕ(·) = (ϕk(·) : k ∈ N) and

ϕ̃ = (ϕ̃k(·) : k ∈ N)

dP(ϕ, ϕ̃) :=
∞∑
k=1

‖ϕk − ϕ̃k‖∞ ∧ 1

2k
, (6.4.8)

where ‖ · ‖∞ denotes the usual sup-norm on C([0, T ] : R). The following result shows

that Vn is well approximated by Vn,ε.

Lemma 6.4.2. Let h : P → R be bounded and Lipschitz with Lipschitz constant

Ch <∞. Then for all n ≥ 1 and ε > 0∣∣∣∣ 1n log E exp [−nh(Vn)]− 1

n
log E exp [−nh(Vn,ε)]

∣∣∣∣ ≤ 2Chε.

Proof: Without loss of generality we assume that the sequences {X(j)}j∈N0 and

{Xε(j)}j∈N0 are constructed simultaneously using the same noise sequence {ξ(j)}

until the first time instant j∗ when 1
n
X(j∗) ∈ Λε. Denoting τ = j∗/n we see that

Vn(t) = Vn,ε(t) for all t ∈ [0, τ ] and supk{V n
k (t) ∨ V n,ε

k (t)} ≤ ε for all t > τ . Thus,

for all k ≥ 1,

sup
t∈[0,T ]

|V n
k (t)− V n,ε

k (t)| = sup
t∈[τ,T ]

|V n
k (t)− V n,ε

k (t)| ≤ 2ε.

Consequently dP(Vn,Vn,ε) ≤ 2ε and therefore |h(Vn)−h(Vn,ε)| ≤ 2Chε. The result

follows. �

Our next result shows that for every h as in Lemma 6.4.2, infϕ∈P {I(ϕ) + h(ϕ)}

is well approximated by infϕ∈P {Iε(ϕ) + h(ϕ)}.

Proposition 6.4.3. Let h : P→ R be bounded and Lipschitz with Lipschitz constant

Ch <∞. Then, for all ε > 0,∣∣∣∣ inf
ϕ∈P
{I(ϕ) + h(ϕ)} − inf

ϕ∈P
{Iε(ϕ) + h(ϕ)}

∣∣∣∣ ≤ 2Chε.
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The following proposition says that I is a rate function.

Proposition 6.4.4. For every M > 0, SM = {v ∈ P : I(v) ≤M} is a compact subset

of P.

Proof of Propositions 6.4.3 and 6.4.4 will be given in Sections 6.4.2.1 and 6.4.2.2

respectively. First we complete the proof of Theorem 6.3.2. Proof of Theorem

6.3.2: Note that Proposition 6.4.4 shows that I is a rate function. It then suffices

to show(cf. Corollary 1.2.5 [14]) that for every bounded and Lipschitz function h :

P→ R

lim
n→∞

1

n
log E{exp[−nh(Vn)]} = − inf

v∈P
{I(v) + h(v)} .

From Theorem 6.4.1 the above equality holds with Vn replaced by Vn,ε and I replaced

by Iε. The result now follows on combining this observation with Lemma 6.4.2 and

Proposition 6.4.3. �

6.4.2.1 Proof of Proposition 6.4.3.

We start with two auxiliary results needed for the proof. Proofs of these results

are deferred to Section 6.4.3.

Lemma 6.4.5. Suppose ϕ(·) = (ϕk(·) : k ∈ N) ∈ P is such that ϕk is nonnegative

and nonincreasing for each k. Fix a(0) ≥ 0 and define for t > 0,

a(t) = a(t;ϕ, a(0)) := Γ(b)(t), (6.4.9)

where

b(t) = b(t;ϕ, a(0)) := a(0)− 2t+
∞∑
k=1

kϕk(0)−
∞∑
k=1

kϕk(t). (6.4.10)

Then t 7→
∑∞

k=1 kϕk(t) + a(t) is nonincreasing on [0, T ].
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The next result deals with properties of an associated system of differential equa-

tions. Fix constants a0 ≥ 0 and a v0 = {vk,0}k≥1 ∈ Ddeg. Consider the sequence of

v(·) = {vk(·)}k≥1 that solves the system of integral equations

vk(t) =vk,0 −
∫ t

0

kvk(s)∑∞
l=1 lvl(s) + a(s)

ds, for k ≥ 1. (6.4.11)

where a(t) = a(t; v, a0) is as in (6.4.9) (with (a(0),ϕ) replaced by (a0,v)).

Theorem 6.4.6. There exists a collection of functions v = {vk}k≥1 ⊂ C([0, T ] : R∞)

such that writing τ := inf {t ≤ T :
∑∞

l=1 lvl(t) + a(t) = 0}, the following conditions

are satisfied:

(i) The integral equations (6.4.11) hold on [0, τ).

(ii) For t ≥ τ , a(t) = 0 and vk(t) = 0 for all k ≥ 1.

(iii) The functions t 7→
∑∞

l=1 lvl(t) + a(t) and t 7→ vk(t), k ≥ 1 are nonincreasing on

[0, T ].

(iv) τ ≤
∑∞

l=1 vl,0 + 1
2
(
∑∞

l=1 lvl,0 + a0).

Let us now proceed with the proof of the Proposition 6.4.3. We first show

inf
ϕ∈P
{Iε(ϕ) + h(ϕ)} ≤ inf

ϕ∈P
{I(ϕ) + h(ϕ)}+ 2Chε. (6.4.12)

For any fixed σ > 0, we can find ϕ∗ ∈ PI such that

I(ϕ∗) + h(ϕ∗) ≤ inf
ϕ∈P
{I(ϕ) + h(ϕ)}+ σ <∞. (6.4.13)

Let τ ε := inf
{
t ∈ [0, T ] :

∑∞
k=1 kϕ

∗
k(t) + aϕ

∗
(t) ≤ ε

}
. Given a non-negative se-

quence ς = (ςk)k≥1, denote by ϑε(ς) = (ϑεk(ςk; t), t ≥ 0)k≥1 the unique solution of

ϑ̇εk(ςk; t) = −kϑ
ε
k(ςk; t)

ε
, t ≥ 0, ϑεk(ςk; 0) = ςk, k ≥ 1. (6.4.14)
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Let ψ = ϑ(ϕ(τ ε)) and define ϕ̃∗(t) := ϕ∗(t) for t ∈ [0, τ ε] and ϕ̃∗(t) := ψ(t− τ ε) for

t ∈ [τ ε, T ]. Note that by construction ϕ̃∗ ∈ PI . Also, by Lemma 6.4.5,
∑∞

k=1 kϕ̃
∗
k(t)+

aϕ̃
∗
(t) ≤ ε for t ≥ τ ε. From (6.3.2), (6.4.1) and (6.4.14) it follows that for all t ≥ τ ε,

ν(· | ˙̃ϕ∗(t)) = µε(· | xϕ̃∗(t)) and consequently from (6.4.6) we have∫ T

τε
Lε(xϕ̃

∗
(t), ˙̃ϕ∗(t))dt = 0.

Thus,

Iε(ϕ̃∗) =

∫ τε

0

Lε(xϕ̃
∗
(t), ˙̃ϕ∗(t))dt =

∫ τε

0

L(xϕ
∗(t), ϕ̇∗(t))dt ≤ I(ϕ∗). (6.4.15)

Noting that sup0≤t≤T |ϕ̃∗k(t)− ϕ∗k(t)| ≤ 2ε for all k ≥ 1, we see that

|h(ϕ̃∗)− h(ϕ∗)| ≤ 2Chε. (6.4.16)

Thus

Iε(ϕ̃∗) + h(ϕ̃∗) ≤ I(ϕ∗) + h(ϕ∗) + 2Chε ≤ inf
ϕ∈P
{I(ϕ) + h(ϕ)}+ σ + 2Chε.

Letting σ → 0 proves (6.4.12). Let us now prove the reverse inequality, namely

inf
ϕ∈P
{I(ϕ) + h(ϕ)} ≤ inf

ϕ∈P
{Iε(ϕ) + h(ϕ)}+ 2Chε. (6.4.17)

For σ > 0 fix ϕ∗ now satisfying

Iε(ϕ∗) + h(ϕ∗) ≤ inf
ϕ∈P
{Iε(ϕ) + h(ϕ)}+ σ.

Define τ ε as before and consider now the sequence of functions v := (vk(t) : t ≥ 0)k≥1

as in Theorem 6.4.6 with vk,0 = ϕ∗k(τ
ε) and a0 = aϕ

∗
(τ ε). Define ϕ̃∗ as in the first part

of the proof by replacing ψ with v. Note that, by construction, L(xϕ̃
∗
(t), ˙̃ϕ∗(t)) = 0

for all t ≥ τ ε. So

I(ϕ̃∗) =

∫ τε

0

L(xϕ̃
∗
(t), ˙̃ϕ∗(t))dt =

∫ τε

0

Lε(xϕ
∗
(t), ϕ̇∗(t))dt ≤ Iε(ϕ∗).

Also, as before it follows that (6.4.16) holds. The inequality in (6.4.17) now follows

on combining the last two observations as in the proof of (6.4.12). �
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6.4.2.2 Proof of Proposition 6.4.4.

From the Theorem 6.4.1 we have that for every ε > 0, Iε is a rate function. We

will now use this fact to show that I is a rate function as well. Fix M > 0 and

suppose {ϕn} ⊂ SM is a sequence such that ϕn → ϕ. Note that we must have that

ϕ ∈ PI . We need to show that I(ϕ) ≤ M . We argue via contradiction. Suppose

that, for some δ > 0, I(ϕ) > M + δ. Let τ = inf{t ≥ 0 :
∑

k kϕk(t) + aϕ(t) = 0}.

From the definition of I we see that there is a δ0 > 0 and t0 ∈ (0, τ) such that∫
[0,t0]

L(xϕ(t), ϕ̇(t))dt > M + δ0. (6.4.18)

Let Mϕ(t) =
∑

k kϕk(t) + aϕ(t) and let γ = inft∈[0,t0] Mϕ(t). Note that γ > 0. From

the definition of Lε we see that∫
[0,t0]

Lγ/2(xϕ(t), ϕ̇(t))dt =

∫
[0,t0]

L(xϕ(t), ϕ̇(t))dt > M + δ0. (6.4.19)

Since ϕn → ϕ, we can find n0 ∈ N such that

Mϕn(t) ≥ γ/2, for all t ∈ [0, t0], n ≥ n0. (6.4.20)

Let τn = inf{t ∈ [0, T ] : Mϕn(t) ≤ γ/2} and define ϕγn ∈ PI as

ϕγn(t) = ϕn(t)1[0,τn](t) + ϑγ/2(ϕn(τn); t− τn)1(τn,T ](t), t ∈ [0, T ],

where ϑγ/2 is as in (6.4.14) (with ε replaced by γ/2). As in (6.4.15) we have

Iγ/2(ϕγn) ≤ I(ϕn) ≤M. (6.4.21)

From Theorem 6.4.6(iv) supn τn ≤ T , and so we can find a subsequence (labeled again

as {n}) such that τn → τ for some τ ∈ [0, T ]. Also, since ϕn,k is nonincreasing for

every k, we have that

ϕγn,k(t) = (ϕn,k(t)− ϕn,k(τn))+ + ϑ
γ/2
k (ϕn,k(τn); (t− τn)+), t ∈ [0, T ].
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By uniform convergence of ϕn,k to ϕk and continuity of (t, ζ) 7→ ϑγ/2(ζ; t) we have

that for every k ≥ 1, ϕγn,k converges uniformly on [0, T ], as n→∞, to

ϕγk(t) = (ϕk(t)− ϕk(τ))+ + ϑ
γ/2
k (ϕk(τ), (t− τ)+), t ∈ [0, T ]

and thus ϕγn → ϕγ. Combining this with (6.4.21) and recalling that Iγ/2 is a rate

function we now have that Iγ/2(ϕγ) ≤M . Also note that ϕγn(t) = ϕn(t) for all t ≤ τn

and from (6.4.20) τn ≥ t0. Therefore ϕγ(t) = ϕ(t) for all t ≤ t0. Thus, from (6.4.19)

M + δ0 <

∫
[0,t0]

Lγ/2(xϕ(t), ϕ̇(t))dt =

∫
[0,t0]

Lγ/2(xϕ
γ

(t), ϕ̇γ(t))dt ≤ Iγ/2(ϕγ) ≤M,

which is a contradiction. Thus we must have that I(ϕ) ≤M . The result follows. �

6.4.3 Proofs of Lemma 6.4.5 and Theorem 6.4.6

Let us now prove the auxiliary results used in the proof of Proposition 6.4.3.

6.4.3.1 Proof of Lemma 6.4.5:

Note that for 0 ≤ t1 ≤ t2 ≤ T

a(t2) =a(t1)− 2(t2 − t1)−
∞∑
k=1

k(ϕk(t2)− ϕk(t1))

− inf
t1≤s≤t2

(
a(t1)− 2(s− t1)−

∞∑
k=1

k (ϕk(s)− ϕk(t1))

)
∧ 0.

Consider first the case when the infimum in the second line of the display is zero. In

that case

a(t2) +
∞∑
k=1

kϕk(t2) = a(t1) +
∞∑
k=1

kϕk(t1)− 2(t2 − t1) ≤ a(t1) +
∞∑
k=1

kϕk(t1).

Next consider the case when the infimum is negative. Then

a(t2) +
∞∑
k=1

kϕk(t2) =− 2t2 + sup
t1≤s≤t2

(
2s+

∞∑
k=1

kϕk(s)

)

≤− 2t2 + 2t2 +
∞∑
k=1

kϕk(t1) ≤ a(t1) +
∞∑
k=1

kϕk(t1).
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This completes the proof. �

6.4.3.2 Proof of Theorem 6.4.6:

Note that in this theorem, infinitely many functions are related via integral equa-

tions. We first consider the following approximation involving finitely many functions.

For m ≥ 1, let [m] = {1, 2, . . . ,m}. Recall a0 and v0 = (vk,0)∞k=1 introduced above

Theorem 6.4.6. Consider the integral equations

vk(t) =vk,0 −
∫ t

0

kvk(s)∑m
l=1 lvl(s) + a[m](s)

ds, k ∈ [m], t > 0 (6.4.22)

where analogous to (6.4.9)–(6.4.10),

b[m](t) = b[m](t; v, a0) :=a0 − 2t+
m∑
k=1

kvk,0 −
m∑
k=1

kvk(t), (6.4.23)

a[m](t) = a[m](t; v, a0) :=Γ(b[m])(t). (6.4.24)

Lemma 6.4.7. Fix m ≥ 1. Then there exists c = c(m) ∈ (0,∞) such that for all

δ ≤ c(m) min{d0, d
2
0}, where d0 = a0 +

∑m
k=1 kvk,0, there is a unique v = (vk)

m
k=1 ∈

C([0, δ] : Rm) that solves (6.4.22)–(6.4.24).

Proof: We use the contraction mapping theorem. Assume δ < d0/(m + 2). Addi-

tional restrictions on δ will be introduced later in the proof. Define Pm,δ ⊂ C([0, δ] :

Rm) as

Pm,δ := {v ∈ C([0, δ] : Rm) : vk(0) = vk,0, vk(·) ≥ 0 and nonincreasing ∀ k ∈ [m]} .

(6.4.25)

Note that Pm,δ is a closed subset of C([0, δ] : Rm). Write

D(t) :=
m∑
l=1

lvl(t) + a[m](t).
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Note that for any v ∈ Pm,δ,

D(t) =
m∑
l=1

lvl(t) + b[m](t)− inf
s∈[0,t]

b[m](s) ∧ 0 = d0 − 2t− inf
s∈[0,t]

b[m](s) ∧ 0 ≥ d0 − 2t.

(6.4.26)

Define the map T : Pm,δ → C([0, δ] : Rm)

(T v)k(t) := vk,0 −
∫ t

0

kvk(s)∑m
l=1 lvl(s) + a[m](s; v, a0)

ds, k ∈ [m], t ∈ [0, δ].

We now claim that T maps Pm,δ to itself. It is immediate that (T v)k(·) is nonin-

creasing. Also, using the inequalities vk(t) ≤ vk,0, k ∈ [m] and (6.4.26),

(T v)k(δ) ≥ vk,0 −
∫ δ

0

mvk,0
d0 − 2δ

ds =

(
1− mδ

d0 − 2δ

)
vk,0 ≥ 0,

where the last inequality uses the fact that d0− (m+ 2)δ > 0. This proves the claim.

Next we show that T is a contraction for δ small. Define

‖v‖m,δ := sup
1≤k≤m

sup
t∈[0,δ]

|vk(t)|, v ∈ Pm,δ.

Consider v, ṽ ∈ Pm,δ. Let ã[m](t) = a[m](t; ṽ, a0), b̃[m](t) = b[m](t; ṽ, a0) and D̃(t) =∑m
l=1 lṽl(t) + ã[m](t). From the second equality in (6.4.26), for t ∈ [0, δ]

|D(t)− D̃(t)| =
∣∣∣∣ inf
s∈[0,t]

b[m](s) ∧ 0− inf
s∈[0,t]

b̃[m](s) ∧ 0

∣∣∣∣
≤ sup

s∈[0,t]

|b[m](s)− b̃[m](s)| ≤
m∑
k=1

k sup
s∈[0,δ]

|vk(s)− ṽk(s)| ≤ m2‖v − ṽ‖m,δ.

Therefore, for k ∈ N,m and t ∈ [0, δ],

|(T v)k(t)− (T ṽ)k(t)| ≤
∫ t

0

∣∣∣∣kvk(s)D(s)
− kṽk(s)

D̃(s)

∣∣∣∣ ds
≤
∫ t

0

(
kvk(s)

D(s)D̃(s)

∣∣∣D(s)− D̃(s)
∣∣∣+

k

D̃(s)
|vk(s)− ṽk(s)|

)
ds

≤δ
(

mvk,0
(d0 − 2δ)2

·m2‖v − ṽ‖m,δ +
m

d0 − 2δ
‖v − ṽ‖m,δ

)
=δ

(
m3vk,0

(d0 − 2δ)2
+

m

d0 − 2δ

)
‖v − ṽ‖m,δ.
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Taking supremum over t ∈ [0, δ] and k ∈ [m],

‖T v − T ṽ‖m,δ ≤ δ

(
m3 max1≤k≤m vk,0

(d0 − 2δ)2
+

m

d0 − 2δ

)
‖v − ṽ‖m,δ.

Noting that max1≤k≤m vk,0 ≤ ν∗ we see that there is a c(m) ∈ (0,∞) such that for all

δ ≤ c(m) min{d0, d
2
0}, T : Pm,δ → Pm,δ is a contraction. This completes the proof.

�

Using Lemma 6.4.7 we can now prove the following finite dimensional analogue of

Theorem 6.4.6.

Theorem 6.4.8. Fix m ≥ 1 and suppose
∑m

k=1 kvk,0 + a0 > 0. Then there exists a

unique v = (vk)
m
k=1 ∈ C([0,∞),Rm) with the following properties.

(i) τ [m] := inf {t ≥ 0 :
∑m

l=1 lvl(t) + a[m](t) = 0} > 0.

(ii) (vk)
m
k=1 satisfy the integral equations (6.4.22) on [0, τ [m]).

(iii) For all t ≥ τ [m], vk(t) = 0 for all k ∈ [m] and a[m](t) = 0 .

(iv) The functions t 7→ vk(t) for all k ∈ [m] and t 7→
∑m

l=1 lvl(t) + a[m](t) are

nonincreasing on [0,∞).

(v) τ [m] ≤
∑m

l=1 vl,0 + 1
2
(
∑m

l=1 lvl,0 + a0).

Proof: Using Lemma 6.4.7 we can recursively construct a unique solution of

(6.4.22) – (6.4.24) on [0, σ1], [0, σ2], · · · where 0 = σ0 < σ1 < · · · In fact denoting

αi =
∑m

l=1 lvl(σi) + a[m](σi), we can have {σi} such that for all i ≥ 0, αi > 0 and

σi+1 − σi = c(m) min {di, d2
i }. This in particular proves (i).

The recursive construction gives a unique solution of (6.4.22) – (6.4.24) on [0, σ∞),

where σ∞ = limj→∞ σj. Furthermore, t 7→ vk(t) is nonincreasing on [0, σ∞) for all

k ∈ [m] and combining this fact with Lemma 6.4.5, t 7→
∑m

l=1 lvl(t) + a[m](t) is

nonincreasing on [0, σ∞) as well.
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Parts (ii) -(iv) are now immediate if σ∞ = ∞. Consider now the case when

σ∞ <∞. Then, noting that

∞ > σ∞ =
∞∑
j=0

(σj+1 − σj) = c(m)
∞∑
j=1

αj,

we see that αj → 0 as j → ∞. Recalling that t 7→ D(t) is nonincreasing on [0, σ∞)

we now see that vk(t) → 0 for all k ∈ [m] and a[m](t) → 0, as t → σ∞. This proves

parts (ii)-(iv).

Finally, we prove (v). Note that if η : [0,∞) → R is an absolutely continuous

function then ζ = Γ(η) satisfies

ζ(t) = η(0) +

∫ t

0

η̇(s)1{ζ(s)>0}ds, for all t ≥ 0.

Thus for t < τ [m]

D(t) =
m∑
l=1

lvl(t) + a[m](t) =
m∑
l=1

lvl(t) + a0 −
∫ t

0

(
m∑
l=1

lv̇l(s) + 2

)
1{a[m](s)>0}ds

≤
m∑
l=1

lvl(t) + a0 − 2

∫ t

0

1{a[m](s)>0}ds−
∫ t

0

m∑
l=1

lv̇l(s)ds

where the second inequality uses the fact that v̇k(t) ≤ 0 a.s. Taking limit as t→ τ [m]

we have ∫ τ [m]

0

1{a[m](s)>0}ds ≤
1

2
d0. (6.4.27)

One the other hand, for t ∈ [0, τ [m])

m∑
l=1

vl(t) =
m∑
l=1

vl,0 −
∫ t

0

∑m
l=1 lvl(s)∑m

l=1 lvl(s) + a[m](s)
ds ≤

m∑
l=1

vl,0 −
∫ t

0

1{a[m](s)=0}ds.

Thus we have
∫ τ [m]

0
1{a[m](s)=0}ds ≤

∑m
l=1 vl,0. Combining this with (6.4.27) we have

(v). �

Proof of Theorem 6.4.6: Since
∑∞

l=1 lvl,0 + a0 > 0, we have
∑m

l=1 lvl,0 + a0 > 0

for all m large enough. Without loss of generality, we assume this for all m ∈ N. For
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m ≥ 1, denote by (ϕ[m]

k )mk=1 the unique collection of functions obtained from Theorem

6.4.8. We set ϕ[m]

k (t) ≡ vk,0 for all t ≥ 0, k > m. Noting that

|ϕ[m]

k (t)− ϕ[m]

k (s)| ≤ |t− s| for all m, k ∈ N and s, t ≥ 0,

we see that for each k ≥ 1, {ϕ[m]

k ,m ≥ 1} is relatively compact in C([0,∞) : R).

Denote by vk the limit, as m → ∞, along a convergent subsequence. By a diago-

nalization argument we can take the same subsequence for all k and without loss of

generality we assume that
{
ϕ[m]

k

}
converges to vk as m → ∞ for every k. Clearly

v = (vk)k≥1 ∈ PI . We claim that v satisfies all the properties stated in Theorem

6.4.6. Let τ be as in the statement of the theorem. From Theorem 6.4.8(v) it follows

that τ < T . Also, since supt∈[0,T ] ϕ
[m]

k (t) ≤ vk,0 and
∑
kvk,0 ≤ ν∗ <∞, we have

∞∑
l=1

lϕ[m]

l (t)→
∞∑
l=1

lvl(t) uniformly on [0, T ] as m→∞.

Let a[m](t) := a[m](t;ϕ[m], a0), a(t) := a(t; v, a0), b[m](t) := b[m](t;ϕ[m], a0), and b(t) :=

b(t; v, a0) (cf. (6.4.9) - (6.4.10) and (6.4.23) - (6.4.24)). By the continuity of Sko-

rokhod map Γ, we have

a[m](t)→ a(t) and b[m](t)→ b(t) uniformly on [0, T ] as m→∞.

Note that for each fixed t < τ , there is a m0 ∈ N such that for all m ≥ m0, we have

ϕ[m]

l (s) + a[m](s) > 0 for all s ∈ [0, t]. Thus, for each k ∈ N and m ≥ m0,

ϕ[m]

k (s) = vk,0 −
∫ s

0

kϕ[m]

k (u)∑∞
l=1 lϕ

[m]

l (u) + a[m](u)
du, s ∈ [0, t].

Sending m→∞ in the above equation, we see that v solves (6.4.11) on [0, t] for all

t < τ . We extend v to [τ, T ] by continuity. This proves (i)-(ii). The other two parts

follow from analogous properties of ϕ[m]. �

6.4.4 From Theorem 6.4.1 to the Laplace principle

In order to prove the theorem it suffices to show:
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(a) For all ε > 0, Iε is a rate function.

(b) (Upper Bound) For all ε > 0 and bounded and Lipschitz functions h : P→ R,

lim sup
n→∞

1

n
log E{exp[−nh(Vn,ε)]} ≤ − inf

ϕ∈P
{Iε(ϕ) + h(ϕ)} .

Proofs of (a) and (b) are given in Sections 6.6 and 6.5 respectively.

Due to the singularity of the transition kernel of the process Vn,ε(·), we are unable

to prove the Laplace principle lower bound:

Conjecture 6.4.9. for all ε > 0 and bounded and Lipschitz functions h : P→ R,

lim inf
n→∞

1

n
log E{exp[−nh(Vn,ε)]} ≥ − inf

ϕ∈P
{Iε(ϕ) + h(ϕ)} .

We leave the proof of the lower bound as an open problem.

Note: For rest of this chapter ε > 0 will be fixed and therefore we suppress it from

notation, in particular we write Vn,ε, µε as Vn, µ, respectively.

6.5 Laplace principle upper bound

In this section we will prove the Laplace principle upper bound, namely item (b)

of Section 6.4.4. Write

W n := − 1

n
log E{exp[−nh(Vn)]}.

Then the goal is to show

lim inf
n→∞

W n ≥ inf
ϕ∈P
{I(ϕ) + h(ϕ)} . (6.5.1)

We begin with a variational characterization that will play a key role in proofs of

both the upper and the lower bounds.
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6.5.1 The variational formula

Consider a sequence of random variables

{
Ξ̄(j) : j ≥ 0

}
:=
{

(Ā(j), V̄(j), X̄(j), B̄(j)) : j ≥ 0
}

with values in (R+ × R∞+ × (R+ × R∞+ ) × R) and a sequence {νj}j≥0 of random

probability measures on N0, that is constructed recursively on some probability space

(Ω,F ,P) as follows:

1. Define Ā(0) = 0, B̄(0) = 0, V̄k(0) = nk, k ∈ N, X̄(0) = (0, V̄(0)). Let F̄0 = {∅,Ω}

be the trivial σ - field.

2. For j ≥ 0, having defined {Ā(m), V̄(m), X̄(m), B̄(m)}jm=0 and F̄j, select a random

F̄j measurable probability measure νj on N0 and let ξ̄(j+1) be a N0 valued random

variable such that

P
{
ξ̄(j + 1) = k | F̄j

}
= νj(k), k ∈ N0. (6.5.2)

3. Let

V̄k(j + 1) = V̄k(j)− 1{ξ̄(j+1)=k}, k ∈ N, (6.5.3)

and

B̄(j+1) = B̄(j)+(ξ̄(j+1)−2), Ā(j+1) = Ā(j)+(ξ̄(j+1)−2)+2 ·1{Ā(j)≤0}.

(6.5.4)

Let V̄(j) = (V̄k(j))k≥1 and set X̄(j) = ((Ā(j)− 1)+, V̄(j)).

Define the continuous time process V̄n through (6.2.2) by replacing {V(j)} on the

right side of the equation with {V̄(j)}.

In the variational representation below, we will take infimum over all sequences

{νj}j∈N0 of random probability measures of the form above and we refer to any
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such sequence as an admissible control and the corresponding sequence {Ξ̄(j)} as a

controlled sequence.

The following variational characterization is proved exactly as Theorem 4.4.1 in

[14].

Lemma 6.5.1. Let h : P→ R be bounded and measurable. Then for all n ≥ 1,

W n = inf
{νj}

E

 1

n

bnT c∑
j=1

R
(
νj(·)

∥∥µ(· | 1

n
X̄(j))

)
+ h(V̄n)

 ,

where the inf is taken over all admissible controls.

Now fix ε ∈ (0, 1) and n ≥ 1. Then we can find an admissible control sequence

{νnj }j≥0 such that

W n + ε ≥ E

 1

n

bnT c∑
j=1

R
(
νnj (·)

∥∥µ(· | 1

n
X̄(j))

)
+ h(V̄n)

 . (6.5.5)

Consider the collection {νn(· | t)}t∈[0,T ] of random probability measures on N0 defined

as νn(· | t) := νnbtnc(·), t ∈ [0, T ]. Define a random probability measure ν̄n(·) on

N0 × [0, T ] as

ν̄n(A×B) =
1

T

∫
B

νn(A|t)dt, A ∈ B(N0), B ∈ B([0, T ]). (6.5.6)

Define the stochastic process {X̃n(t)}t∈[0,T ] with sample paths in D([0, T ] : R+ ×

R∞+ ) as X̃n(t) = 1
n
X̄(bntc), 0 ≤ t ≤ T . Then (6.5.5) can be rewritten as

W n + ε ≥ E
{∫

[0,T ]

R
(
νn(· | t)

∥∥µ(· | X̃n(t))
)
dt+ h(V̄n)

}
. (6.5.7)

The rest of this section is organized as follows.

(i) In Section 6.5.2, we show {ν̄n : n ≥ 1} is tight and has a certain uniform

integrability property.
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(ii) Using this result, in Section 6.5.3 we will argue that {Zn = (ν̄n, X̃n, V̄n) : n ≥ 1}

is tight as well and then characterize weak limit points of the sequence.

(iii) Finally, in Section 6.5.4 we will complete the proof of the Laplace principle

upper bound by taking limits as n→∞ in (6.5.7).

6.5.2 Tightness of {ν̄n}

The goal of this section is to prove the following proposition.

Proposition 6.5.2. {ν̄n}n≥1 defined in (6.5.6) is a tight sequence of P(N0 × [0, T ])

valued random variables. Furthermore, it has the following uniform integrability

property

lim
K→∞

sup
n∈N0

E

{
∞∑

k=K+1

kν̄n({k} × [0, T ])

}
= 0.

We will make use of the following Feller property of the stochastic kernel µ(· | ·).

We recall that we are suppressing ε in the notation, namely µ = µε for some fixed

ε > 0, where µε is as defined in (6.4.1).

Lemma 6.5.3. Let {x(n)}∞n=1 ⊂ D̄deg be such that x(n) → x as n → ∞. Then,

µ(· | x(n))→ µ(· | x).

Proof: Write x(n) = (a(n), (v(n)

k )k≥1) and x = (a, (vk)k≥1). We need to show for

each fixed k ≥ 0, limn→∞ µ(k | x(n)) = µ(k | x). Noting that the denominator in the

definition of µ(k|x(n)) is bounded away from 0, it suffices to show limn→∞
∑∞

k=1 kv
(n)

k =∑∞
k=1 kvk. This follows from convergence of v(n)

k to vk for each k and noting from the

definition of Ddeg that for any m ≥ 1 supn
∑

k≥m kv
(n)

k ≤
2ν∗1
m

. �

In order to prove Proposition 6.5.2 we will prove a more general result of the

following form.
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Theorem 6.5.4. Let {πnj }j∈N0,n≥1 and {γnj }j∈N0,n≥1 be collections of P(N0) valued

random variables such that

sup
n∈N0

E

 1

n

bnT c∑
j=0

∑
k∈N0

eλkπnj (k)

 <∞ for all λ > 0 (6.5.8)

sup
n∈N0

E

 1

n

bnT c∑
j=0

R(γnj ‖πnj )

 <∞ (6.5.9)

Then the sequence {γ̄n : n ≥ 1} of P(N0 × [0, T ]) valued random variables, defined

as

γ̄n(A×B) =
1

T

∫
B

γnbntc(A)dt, A ⊂ N0, B ∈ B([0, T ]),

is tight and furthermore has the following uniform integrability property.

lim
K→∞

sup
n∈N0

E
∞∑

k=K+1

kγ̄n({k} × [0, T ]) = 0. (6.5.10)

Proof: From (6.5.9) we see that for all j ∈ N0, γnj � πnj a.s. Let fnj (y) :=
dγnj
dπnj

(y),

y ∈ N0. Using the elementary inequality

ab ≤ eλa +
1

λ
(b log b− b+ 1), for all a ≥ 0, b ≥ 0, λ ≥ 1

with a = y and b = fnj (y), we have

yfnj (y) ≤ eλy +
1

λ
[fnj (y) log fnj (y)− fnj (y) + 1] for all λ ≥ 1, j ∈ N0, n ∈ N.

Then, for every λ ≥ 1,

TE
∫
{y∈N0:y>K}×[0,T ]

yγ̄n(dy × dt) ≤ E
1

n

bnT c∑
j=0

∫
{y∈N0,y>K}

yγnj (dy)

= E
1

n

bnT c∑
j=0

∫
{y∈N0,y>K}

yfnj (y) · πnj (dy)

≤ I1(λ) + I2(λ),
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where

I1(λ) := E
1

n

bnT c∑
j=0

∫
{y∈N0,y>K}

eλyπnj (dy) ≤ E
1

n

bnT c∑
j=0

∫
{y∈N0,y>K}

e−λK · e2λyπnj (dy)

≤ e−λKE
1

n

bnT c∑
j=0

∫
N0

e2λyπnj (dy) ≤ e−λKM1(2λ),

and M1(λ) denotes the supremum in (6.5.8); and

I2(λ) := E
1

n

bnT c∑
j=0

∫
{y∈N0,y>K}

1

λ
[fnj (y) log fnj (y)− fnj (y) + 1]πnj (dy)

Since b log b− b+ 1 ≥ 0 for all b ≥ 0, we have

I2(λ) ≤E
1

n

bnT c∑
j=0

∫
N0

1

λ
[fnj (y) log fnj (y)− fnj (y) + 1]πnj (dy)

=E
1

n

bnT c∑
j=0

∫
N0

1

λ
fnj (y) log fnj (y)πnj (dy) =

1

λ
E

1

n

bnT c∑
j=0

R(γnj ‖πnj ) ≤ 1

λ
M2,

where M2 is the supremum in (6.5.9). Combining the bounds on I1 and I2, we have,

for all n ∈ N0 and λ ≥ 1,

sup
n
T E

∫
{y∈N0:y>K}×[0,T ]

yγ̄n(dy × dt) ≤ e−λKM1(2λ) +
1

λ
M2.

The uniform integrability stated in (6.5.10) now follows on first sending K →∞ and

then let λ→∞ in the above display.

Finally, in order to prove the tightness of {γ̄n} it suffices to show that σn = Eγ̄n

is a tight sequence of probability measures in N0 × [0, T ]. However the tightness of

the latter sequence is immediate on noting that

lim sup
K→∞

sup
n
σn ([K + 1,∞)× [0, T ]) ≤ lim sup

K→∞

1

K
sup
n

∞∑
k=K+1

kσn({k} × [0, T ]) = 0,

where the last equality is from (6.5.10). �

Proof of Proposition 6.5.2: It suffices to verify (6.5.8) and (6.5.9) with πnj = µ(· |
1
n
X̄(j)) and γnj = νnj . The proof of (6.5.9) is immediate from (6.5.5) on noting that

h is bounded, ε ∈ (0, 1) and recalling the definition of W n.
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We now verify (6.5.8). Note that for every k ≥ 1, V̄k(0) = nk and from (6.5.3),

{V̄k(j} is a non-decreasing sequence a.s., since V̄k(j + 1)− V̄k(j) can only take values

in {0,−1}. Also note from (6.4.1) that on the set {V̄k(j) = 0} µ(k | 1
n
X̄(j)) = 0 and

since as argued above R(νnj
∥∥µ(· | 1

n
X̄(j))) < ∞ a.s., we must have that νnj (k) = 0

a.s. Thus on the set {V̄k(j) = 0} we have V̄k(l) = 0 for all l ≥ j, a.s. Combining

the above observations we have that 1
n
V̄k(j) ≤ nk/n for all k, n, j ∈ N. Thus, for all

λ > 0

sup
n∈N0

E
1

n

bnT c∑
j=0

∑
k∈N0

eλkµ(k | 1

n
X̄(j)) ≤ T +

1

nε

bnT c∑
j=0

∑
k∈N0

keλk
1

n
V̄k(j)

≤ T

(
1 +

1

λε
sup
n

∑
k∈N0

e2λknk
n

)
<∞.

This verifies (6.5.8) and completes the proof of Proposition 6.5.2. �

6.5.3 Characterizing limit points.

The following is the main result of this section.

Proposition 6.5.5. (a) {Gn = (ν̄n, X̃n, V̄n) : n ≥ 1} is a tight sequence of P(N0 ×

[0, T ])×D([0, T ] : R+ × R∞+ )× C([0, T ] : R∞+ ) valued random variables.

(b) Suppose Gn converges in distribution along a subsequence to G∗ = (ν̄∗,X∗,V∗).

Then the following hold

(i) Writing X̃∗ = (Ã∗, Ṽ∗), we have V̄∗ = Ṽ∗ a.s.

(ii) For all k ≥ 1 and t ∈ [0, T ]

V̄ ∗k (t) = pk − T ν̄∗({k} × [0, t]) = pk −
∫

[0,t]

ν̄∗(k | s)ds, (6.5.11)

where ν̄∗(· | ·) is a stochastic kernel on N0 given [0, T ].

(iii) Letting

B̂∗(t) =

∫
N0×[0,t]

yν̄∗(dyds)− 2t, t ∈ [0, T ],

Ã∗ = Γ(B̂∗) and X̃∗(t) = xV̄∗(t), for a.e. t ∈ [0, T ], a.s.
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The following lemma will be needed in the proof of the proposition. Define

Ṽn(t) =
1

n
V̄(bntc), Ãn(t) =

1

n
(Ā(bntc)− 1)+, B̃n(t) =

1

n
B̄(bntc), t ∈ [0, T ].

(6.5.12)

Note that X̃n = (Ãn, Ṽn).

Lemma 6.5.6. For every n ≥ 1,

sup
0≤t≤T

∣∣∣Ãn(t)− Γ(B̃n)(t)
∣∣∣ ≤ 3

n
.

Proof: For j ∈ N0, let Sj(B̄) = B̄(j)− infi≤j(B̄(i) ∧ 0). It suffices to show that

for all j ∈ N0

|Ā(j)− Sj(B̄)| ≤ 2. (6.5.13)

We prove the statement by induction on j. When j = 0, A(0) = γ0(B̄) = 0 and so

(6.5.13) holds. Suppose now that (6.5.13) holds for some j ∈ N0 and consider j+1. If

(Ā(j),Sj(B̄)) ∈ {(0, 1), (0, 0), (−1, 1), (−1, 0)}, one can check by a direct calculation

that (6.5.13) holds with j replaced by j + 1.

Consider now the case where either Ā(j) ≥ 1 or Sj(B̄) ≥ 2. Letting A1(j) =

Ā(j) ∨ Sj(B̄) and A2(j) = Ā(j) ∧ Sj(B̄), we have that

A1(j + 1)− A1(j) = ξ̄(j + 1)− 2 and A2(j + 1)− A2(j) ≥ ξ̄(j + 1)− 2.

Thus

|Ā(j + 1)− Sj+1(B̄)| = A1(j + 1)− A2(j + 1)

= (A1(j + 1)− A1(j))− (A2(j + 1)− A2(j)) + (A1(j)− A2(j))

≤ (ξ̄(j + 1)− 2)− (ξ̄(j + 1)− 2) + 2 = 2.

The result follows. �

We now proceed to the proof of Proposition 6.5.5.
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Proof of Proposition 6.5.5: Tightness of ν̄n in P(N0 × [0, T ]) was shown

in Proposition 6.5.2. To prove tightness of {(X̃n, V̄n)} we will consider auxiliary

processes (B̂n, V̂n) with sample paths in C([0, T ] : R × R∞+ ) defined as follows. For

t ∈ [0, T ],

V̂ n
k (t) =pk − T

∫
{k}×[0,t]

ν̄n(dy × ds) for k ≥ 1 (6.5.14)

B̂n(t) =T

∫
N0×[0,t]

yν̄n(dy × ds)− 2t. (6.5.15)

We first argue that

{(̂Bn, V̂n)}n≥1 is tight in C([0, T ] : R× R∞+ ). (6.5.16)

Tightness of V̂n is immediate on noting that

|V̂ n
k (t)− V̂ n

k (s)| ≤ |t− s|, for all 0 ≤ s ≤ t ≤ T, n ≥ 1, k ≥ 1. (6.5.17)

Next, for 0 ≤ s ≤ t ≤ T and K ∈ N,

|B̂n(t)− B̂n(s)| =
∣∣∣∣∫

N0×(s,t]

yν̄n(dydu)

∣∣∣∣ ≤ (K + 2)|t− s|+ Un(K), (6.5.18)

where Un(K) =
∑∞

k=K+1 kν̄
n({k} × [0, T ]). Also, from Proposition 6.5.2

sup
n∈N

E(Un(K))→ 0 as K →∞.

Tightness of {B̂n} is now immediate. We now argue that, for all k ≥ 1,

max
{
‖V̄ n

k − V̂ n
k ‖∞, ‖Ṽ n

k − V̂ n
k ‖∞

}
P−→ 0 as n→∞, (6.5.19)

and ‖B̃n − B̂n‖∞
P−→ 0 as n→∞. (6.5.20)

From (6.5.17) we have that

max

{
sup
t∈[0,T ]

|V̄ n
k (t)− V̂ n

k (t)|, sup
t∈[0,T ]

|Ṽ n
k (t)− V̂ n

k (t)|

}

≤ sup
0≤j≤bnT c

|V̄ n
k (j/n)− V̂ n

k (j/n)|+ 1

n
. (6.5.21)
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Next

sup
0≤j≤bnT c

|V̄ n
k (j/n)− V̂ n

k (j/n)|

= sup
0≤j≤bnT c

∣∣∣∣∣
(
nk
n
− 1

n

j∑
i=1

1{ξ̄(i)=k}

)
−

(
pk −

1

n

j∑
i=1

νni−1(k)

)∣∣∣∣∣
≤|nk/n− pk|+ sup

0≤j≤bnT c

∣∣∣∣∣ 1n
j∑
i=1

(1{ξ̄(i)=k} − ν
n
i−1(k))

∣∣∣∣∣
=|nk/n− pk|+

1

n
sup

0≤j≤bnT c
|Y (j)|,

where Y (0) = 0 and Y (j) :=
∑j

i=1(1{ξ̄(i)=k} − ν
n
i−1(k)), j = 1, 2, .... From (6.5.2) we

see that {Y (j)} is a martingale and so for any η > 0,

P

{
1

n
sup

0≤j≤bnT c
|Y (j)| > η

}
≤ 4

n2η2
E(|Y (bnT c)|)2

=
4

n2η2

bnT c∑
j=1

E
[
(1{ξ̄(i)=k} − ν

n
i−1(k))2

]
≤ 4T

nη2
.

Using the above two displays in (6.5.21) and recalling that nk/n→ pk as n→∞, we

have (6.5.19).

Next consider (6.5.20). Note that

‖B̃n − B̂n‖∞ ≤ sup
0≤j≤bnT c

|B̃n(j/n)− B̂n(j/n)|+ Θn,

where Θn = sups,t∈[0,T ],|t−s|≤1/n |B̂n(t) − B̂n(s)|. From (6.5.18) and recalling that

supn∈N E(Un(K))→ 0 as K →∞, we see that Θn → 0 in L1 as n→∞. Also,

sup
1≤j≤bnT c

|B̃n(j/n)− B̂n(j/n)|

= max
1≤j≤bnT c

∣∣∣∣∣ 1n
j∑
i=1

(ξ̄(i)− 2)− 1

n

j∑
i=1

(∫
N0

yνni−1(dy)− 2

)∣∣∣∣∣ (6.5.22)

For any K > 0, the right hand side can be bounded by

1

n
sup

0≤j≤bnT c

∣∣∣∣∣
j∑
i=1

(
ξ̄(i) ∧K −

∫
N0

(y ∧K)νni−1(dy)

)∣∣∣∣∣+
1

n

bnT c∑
i=1

|ξ̄(i)− (ξ̄(i) ∧K)|

+
1

n

bnT c∑
i=1

∣∣∣∣∫
N0

(y ∧K)νni−1(dy)−
∫

N0

yνni−1(dy)

∣∣∣∣ := I1(K) + I2(K) + I3(K).
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Note that
∑j

i=1

(
ξ̄(i) ∧K −

∫
N0

(y ∧K)νni−1(dy)
)

, j = 1, 2, ..., is a martingale and so

E[(I1(K))2] ≤ 4

n2
E

bnT c∑
i=1

[
ξ̄(i) ∧K −

∫
N0

(y ∧K)νni−1(dy)

]2
 ≤ 4

n2
· nTK2 =

4TK2

n
.

Also,

E[I2(K)] ≤ 1

n

bnT c∑
i=1

E|ξ̄(i)− (ξ̄(i) ∧K)|

≤ 1

n

bnT c∑
i=1

E
[∫

N0

y1{y>K}ν
n
i−1(dy)

]
= E

[∫
{y>K}×[0,T ]

yν̄n(dy × ds)
]
,

and

E[I3(K)] =
1

n

bnT c∑
i=1

E
[(∫

N0

yνni−1(dy)−
∫

N0

(y ∧K)νni−1(dy)

)]

=
1

n

bnT c∑
i=1

E
[(∫

{y>K}
yνni−1(dy)−Kνni−1({y > K})

)]

≤ 1

n

bnT c∑
i=1

E
[∫

N0

y1{y>K}ν
n
i−1(dy)

]
= E

[∫
{y>K}×[0,T ]

yν̄n(dy × ds)
]
.

Using these estimates in (6.5.22), we have for any η > 0

P

{
sup

0≤j≤bnT c
|B̃n(j/n)− B̂n(j/n)| > η

}
≤

3∑
j=1

P {Ij(K) > η/3}

≤ 9

η2
E[(I1(K))2] +

3

η
E[I2(K)] +

3

η
E[I3(K)]

≤ 9

η2
· 4TK2

n
+

6

η
E [Un(K)] .

Proof of (6.5.20) now follows on recalling that supn∈N E(Un(K))→ 0 as K →∞ and

first sending n→∞ and then K →∞ in the above display.

Tightness of V̄n and Ṽn is now immediate from (6.5.19) and the tightness of V̂n

established earlier. Also, from Lemma 6.5.6, tightness of {B̃n} established earlier

and the continuity of the Skorohod map, we have that Ãn is tight in D([0, T ] : R+).

This proves the tightness of X̃n and completes the proof of part (a).
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Next suppose Gn = (ν̄n, X̃n, V̄n) converges in distribution to G∗ = (ν̄∗, X̃∗, V̄∗).

Without loss of generality we can assume that the convergence is a.s. From (6.5.14)

it follows that, for all k ≥ 1, V̂ n
k converges a.s. in C([0, T ] : R+) to V̂ ∗k given as

V̂ ∗k (t) = pk − T ν̄∗({k} × [0, t]), t ∈ [0, T ]. (6.5.23)

Also, using Proposition 6.5.2 and (6.5.15) we have that B̂n converges a.s. in C([0, T ] :

R) to B̂∗ given as

B̂∗(t) = T

∫
N0×[0,t]

yν̄∗(dydt)− 2t, t ∈ [0, T ]. (6.5.24)

From (6.5.19) we obtain that V̄∗ = V̂∗ = Ṽ∗, proving (i). Also, combining with

(6.5.23), this proves the first equality in (6.5.11). The second equality in (6.5.11) is

immediate on noting that ν̄n(N0 × ·) is the normalized Lebesgue measure on [0, T ]

for every n. This completes the proof of (ii).

Next, from (6.5.20) and the above established convergence for B̂n we have that

B̃n → B̂∗ in probability. Using Lemma 6.5.6 again, we now have that Ãn converges

a.s. to Γ(B̂∗) which proves Ã∗ = Γ(B̂∗). Also, recall that for v ∈ P, xv = (av,v),

where av is as in (6.3.6). Thus, from (6.5.24)

bV̄
∗
(t) =

∞∑
k=1

kV̄ ∗k (0)− 2t−
∞∑
k=1

kV̄ ∗k (t)

=
∞∑
k=1

kpk − 2t−
∞∑
k=1

kpk +

∫
N0×[0,t]

yν̄∗(dyds)

=B̂∗(t).

Combining this with the equality Ã∗ = Γ(B̂∗) we now have that X̃∗(t) = xV̄∗(t) a.s.

for all t ∈ [0, T ]. This proves part (iii). �

6.5.4 Completing the proof for the Laplace upper bound

Recall from (6.5.5) that

W n + ε ≥ E
{
TR

(
ν̄n
∥∥µ̄n)+ h(V̄n)

}
, (6.5.25)
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where µ̄n is a P(N0 × [0, T ]) valued random variable defined as

µ̄n(A×B) :=
1

T

∫
B

µ(A | X̃n(t))dt, A ∈ B(N0), B ∈ B([0, T ]). (6.5.26)

Let Gn be as in Proposition 6.5.5 and fix a subsequence along which Gn converges in

distribution to G∗. It suffices to prove (6.5.1) along such a subsequence. We assume

without loss of generality that Gn → G∗ a.s. Recall that G∗ satisfies properties

(i)-(iii) in Proposition 6.5.5 and note that X̃n(t) ∈ D∗deg a.s. for all t ∈ [0, T ]. From

the convergence of X̃n to X∗ and Lemma 6.5.3 we now have that

µ(· | X̃n(t))→ µ(· | X∗(t)), for all t ∈ [0, T ], a.s.

Consequently, µ̄n → µ∗ a.s., where µ∗ is defined through (6.5.26) by replacing X̃n on

the right side with X∗.

Using the above result and Fatou’s lemma in (6.5.25) we have

lim inf
n→∞

W n + ε ≥T E
[
lim inf
n→∞

R(ν̄n‖µ̄n)
]

+ E [h(V∗)]

≥T E [R(ν∗(·)‖µ∗(·))] + E [h(V∗)] , (6.5.27)

where the second line follows from the lower-semicontinuity of the relative entropy.

From Proposition 6.5.5(b)(ii) we see that

V̇ ∗k (t) = −ν∗(k | t), a.e. t ∈ [0, T ], a.s.

and so using notation from (6.3.2) we have ν∗(· | t) = ν(· | V̇∗(t)), a.e. t, a.s.. Also,

from Proposition 6.5.5(b)(iii), X∗(t) = xV∗(t) a.s. for all t ∈ [0, T ]. Thus recalling

the definition of L (see (6.4.6)) we have

R(ν∗‖µ∗) =

∫
[0,T ]

R
(
ν∗(· | t)

∥∥µ(· | X∗(t))
)
dt =

∫
[0,T ]

L(xV∗(t), V̇∗(t))dt = I(V∗).

Finally, combining this with (6.5.27) we have

lim inf
n→∞

W n + ε ≥ E [I(V∗) + h(V∗)] ≥ inf
v∈P
{I(v) + h(v)} .
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Since ε is arbitrary, we have (6.5.1) and the proof of the Laplace principle upper

bound (i.e. item (b) in Section 6.4.4) is complete. �

6.6 Iε is a rate function.

In this section we show that for every ε > 0, Iε is a rate function, namely the

set SεM = {ϕ ∈ P : Iε(ϕ) ≤ M} is compact for every M < ∞. As in the previous

section we suppress ε from the notation.

Let {ϕn}n≥1 ⊂ SM be such that ϕn → ϕ0. It suffices to show that I(ϕ0) ≤ M .

Note that, since I(ϕn) <∞, ϕn ∈ PI for each n, namely

ϕnk(0) = pk, ϕ
n
k(t) ≥ 0, for all t ∈ [0, T ]; ϕnk is absolutely continuous on [0, T ], k ≥ 1

and ϕ̇n = (ϕ̇nk)k≥1 ∈ Dvel. (6.6.1)

It then follows that ϕ0 ∈ PI as well. Next, for n ≥ 0,

I(ϕn) =

∫ T

0

R
(
ν(· | ϕ̇n(t))‖µ(· | xϕn(t))

)
dt = TR(ν̄n‖µ̄n),

where ν̄n, µ̄n ∈ P(N0 × [0, T ]) are defined as

ν̄n(A×B) =
1

T

∫
B

ν(A | ϕ̇n(t))dt,

µ̄n(A×B) =
1

T

∫
B

µ(A | xϕn(t))dt,

for A ∈ B(N0) and B ∈ B([0, T ]). In order to prove the result it suffices from the

lower semicontinuity property of relative entropy to argue that ν̄n → ν̄0 and µ̄n → µ̄0.

For this, note that since ϕnk(t) ≤ pk for all n ∈ N0, k ∈ N, we get by Assumption

6.2.2 and dominated convergence that bϕ
n → bϕ

0
and combining with the continuity

property of the Skorohod map, we have aϕ
n → aϕ

0
. This in view of Lemma 6.5.3

shows that µ(· | xϕn(t))→ µ(· | Xϕ0
(t)) for all t ∈ [0, 1] and thus µ̄n → µ̄0 as n→∞.
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Consider now ν̄n. Note that for any λ ≥ 1∫
N0×[0,T ]

eλydµ̄n =
1

T

∫
[0,T ]

∑
k

eλkµ(k | xϕn(t))dt

≤ 1 +
1

Tε

∫
[0,T ]

∑
k

keλkϕnk(t)dt

≤ 1 +
1

ε

∑
k

keλkpk <∞,

where the last inequality is from Assumption 6.2.2. Thus an argument similar to that

in the proof of Theorem 6.5.4 (see also Lemma 1.4.3 in [14]) shows that {ν̄n}n≥1 is a

tight sequence and supn
∑∞

k=K+1 kν̄
n({k} × [0, T ])→ 0 as K →∞. Finally let ν̄ be

a limit point of ν̄n. Noting that for all k ≥ 1 and n ∈ N0

ϕnk(t) = pk − T ν̄n({k} × [0, t]), for all t ∈ [0, T ],

we now have on sending n→∞ along the convergent subsequence that

pk − T ν̄0({k} × [0, t]) = ϕ0
k(t) = pk − T ν̄({k} × [0, t]), for all k ≥ 1.

Also, ν̄0(N0 × [0, t]) = ν̄(N0 × [0, t]) = t for all t ∈ [0, 1]. Thus ν̄0 = ν̄. Thus we have

proved that ν̄n → ν̄0. The result follows. �
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