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ABSTRACT 

Yu Yan: Diabetes Susceptibility Polymorphisms and Risk of Prediabetes and Diabetes 
Complications in the Atherosclerosis Risk in Communities (ARIC) Study 

(Under the direction of Dr. Kari E. North) 
 

Transcription factor 7-like 2 (TCF7L2) has emerged as a consistently replicated 

susceptibility gene for type 2 diabetes, however, its association with prediabetes as quantified 

by impaired fasting glucose (IFG), and diabetes complications such as retinopathy has not 

been well characterized in population-based studies.  Thus, we investigated the association 

between the TCF7L2 rs7903146 polymorphism and two types of diabetes-related outcomes, 

IFG and retinal microvascular signs, in the Atherosclerosis Risk in Communities cohort. 

The incident IFG analysis was conducted among 1,377 African American and 5,152 

Caucasian participants without diabetes and IFG at baseline. IFG was defined as fasting 

glucose levels of 100–125 mg/dl. After adjusted for age, sex, and study center, the rs7903146 

T risk allele was significantly associated with higher risk of IFG over 9 years of follow-up in 

Caucasians. Moreover, the association was stronger in Caucasians with obesity or high 

triglycerides. No association of the rs7903146 polymorphism and incident IFG was noted in 

African Americans, although we had limited power to assess this association. 

 We also evaluated the association between the rs7903146 polymorphism and retinal 

microvascular signs in 2,199 African American and 8,121 Caucasian participants in the 

ARIC cohort. After adjusting for age, sex, study center, and other covariates, TCF7L2 
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rs7903146 T risk allele was associated with increased risk of focal arteriolar narrowing in 

Caucasians with hypertension or without diabetes. No significant association of the 

rs7903146 polymorphism and retinal vascular signs was noted among African American 

individuals, although, again, we were limited in power to detect these associations.   

In summary, our study replicates the association between the rs7903146 

polymorphism and IFG risk in Caucasians and provides new evidence for interactions 

between TCF7L2 and metabolic risk factors on the occurrence of IFG in Caucasians. 

Moreover, our study is the first to report an association with focal arteriolar narrowing in 

Caucasians with hypertension or without diabetes. Our study results contribute knowledge 

about the etiology of type 2 diabetes, and could be important for public health initiatives to 

encourage lifestyle changes in patients at risk of diabetes. Further research in other larger 

population-based studies will be needed to replicate our results. 
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CHAPTER I 

INTRODUCTION 

The rapid increase in the prevalence of hyperglycemia, type 2 diabetes (T2DM) and 

its complications imposes a major burden on the public health and significantly contributes to 

the high prevalence of cardiovascular disease in the United States and worldwide1. 

Identification and characterization of the genetic variants is important for the understanding 

of T2DM, and the etiology and pathogenesis of its complications.  

Transcription factor 7-like 2 (TCF7L2), a Wingless and Int (Wnt) signaling-

associated transcription factor located on chromosome 10q25, has emerged as a consistently 

replicated susceptibility gene for T2DM2-4, possibly through the impairment of glucagon-like 

peptide-1-induced insulin secretion5. The T allele at single nucleotide polymorphism (SNP) 

rs7903146 located in intron 3 of TCF7L2 confers risk for T2DM6, however, its association 

with prediabetes phenotypes and retinopathy, one of the common complications of T2DM, 

has not been well characterized in population-based studies, especially in African Americans. 

Moreover, literature on TCF7L2 gene–environment interaction assessment is limited.  

The present study, conducted under approval of the University of North Carolina at 

Chapel Hill Institutional Review Board (see Appendix A), addresses the dearth of 

population-based studies examining the association between TCF7L2 rs7903146 and 

prediabetes measured by impaired fasting glucose (IFG), and the association between 

TCF7L2 rs7903146 and retinal vascular signs. Identifying susceptibility genes for diabetes-
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related phenotypes and investigating the modification by metabolic risk factors on gene-

diabetes-related phenotypes association contribute significant knowledge about the etiology 

of prediabetes, T2DM and retinopathy, and could have significant public health implications 

in patients at risk of diabetes, long before they develop frank diabetes. Given the recent rise 

in the prevalence of diabetes, such information may be important for public health initiatives 

to encourage lifestyle changes in such patients at risk. Here, we assess the relationship 

between SNP rs7903146 in TCF7L2, metabolic risk factors, and two types of diabetes-related 

endpoints (IFG and retinal microvascular phenotypes) using data from the ARIC Study, a 

community-based prospective cohort study of 15,792 males and females. The two 

manuscripts prepared for fulfillment of the Epidemiology doctoral program requirements are 

as follows: 

Manuscript 1: Transcription Factor 7-Like 2 (TCF7L2) Polymorphism and Context-Specific 

Risk of Impaired Fasting Glucose in African American and Caucasian Adults: The 

Atherosclerosis Risk in Communities (ARIC) Study. 

 We investigated the effects of SNP rs7903146 TCF7L2 on incident IFG in the 

context of other metabolic risk factors for diabetes. A total of 1,377 African American and 

5,152 Caucasian participants without diabetes and IFG at baseline were selected from the 

entire ARIC cohort (n=15,792). Analyses were race-stratified and adjusted for age, sex, and 

ARIC study center. Hazard ratios (HR) and 95% confidence intervals (CI) of incident IFG 

were estimated by proportional hazard regression models. Gene–environment interaction 

testing was assessed on the multiplicative and additive scales between genotypes and 

different metabolic risk factors including obesity, elevated waist circumference, 
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hypertension, low HDL, high LDL, and high triglycerides. A Wald 2χ  test for significance 

of the estimated β-coefficient for the interaction term and the interaction contrast ratio (ICR) 

were employed to assess the departure from multiplicativity and additivity, respectively. This 

study addresses Aims 1 and 2 of the dissertation (see Chapter II). 

 Manuscript 2: Transcription Factor 7-Like 2 (TCF7L2) Polymorphism and Retinal 

Vascular Signs in African American and Caucasian Adults: The Atherosclerosis Risk in 

Communities (ARIC) Study. 

We examined the association between SNP rs7903146 TCF7L2 and retinal 

microvascular phenotypes and the extent to which hypertension and diabetes modified the 

association between gene-retinal phenotypes association in the ARIC cohort. A total of 2,199 

African American and 8,121 Caucasian participants were selected from all eligible 

participants who returned for the third examination when retinal photography was first 

performed in 1993-1995 (n=12,887). Analyses were race-stratified and adjusted for age, sex, 

ARIC study center, current smoking, obesity, total serum cholesterol, total serum 

triglycerides, mean arterial blood pressure, and antihypertensive medication. Odds ratios 

(OR) and 95% CIs of prevalent retinal lesions (retinopathy, focal arteriolar narrowing, AV 

nicking) were estimated by logistic regression models; adjusted mean retinal vascular 

calibers for each genotype of rs7903146 were obtained under generalized linear models. A 

Wald 2χ  test for significance of the estimated β-coefficient for the interaction term (SNP × 

hypertension or SNP × diabetes) and the ICR were employed to assess the departure from 

multiplicativity and additivity, respectively. This study addresses Aims 3 and 4 of the 

dissertation (see Chapter II). 



 

CHAPTER II 

SPECIFIC AIMS 

Our goal was to measure the associations between TCF7L2 and prediabetes/retinal 

phenotypes using the Atherosclerosis Risk in Communities (ARIC) data. The ARIC study is 

an ongoing, bi-racial population-based longitudinal study of cardiovascular-related diseases 

in 15,792 males and females. Manuscript 1 addresses Aims 1 and 2, and Manuscript 2 

addresses Aims 3 and 4.  

The specific aims were as follows: 

1) To estimate the association between SNP rs7903146 in TCF7L2 and prediabetes as 

quantified by incident impaired fasting glucose (IFG).  

a) Proportional hazard regression modeling in which the association between SNP 

rs7903146 in TCF7L2 and the hazard of incident IFG was estimated. 

2) To estimate the extent to which metabolic risk factors including obesity, elevated waist 

circumference, hypertension, low HDL, high LDL, high triglyceride modified the 

association between SNP rs7903146 in TCF7L2 and incident IFG.  

a) Proportional hazard regression modeling in which metabolic risk factors were 

evaluated as modifiers of the rs7903146 - incident IFG association. 

3) To estimate the association between SNP rs7903146 in TCF7L2 and retinal phenotypes 

including retinopathy, arteriovenous (AV) nicking, focal arteriolar narrowing, central 

retinal artery equivalent (CRAE) and the central retinal venular equivalent (CRVE).    
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a) Logistic regression modeling in which the association between SNP rs7903146 in 

TCF7L2 and the odds of prevalent retinal microvascular signs (retinopathy, AV 

nicking, focal arteriolar narrowing) was estimated. 

b) Generalized linear modeling in which adjusted mean retinal vascular calibers (CRAE, 

CRVE) for each genotype of rs7903146 were esimated.  

4) To estimate the extent to which hypertension and diabetes modified the association 

between SNP rs7903146 in TCF7L2 and retinal phenotypes.  

a) Logistic regression modeling in which hypertension and diabetes were evaluated as 

modifiers of the rs7903146 – prevalent retinal microvascular signs association. 

b) Generalized linear modeling in which hypertension and diabetes were evaluated as 

modifiers of the rs7903146 – CRAE / CRVE association. 

 

 



 

CHAPTER III 

BACKGROUND AND SIGNIFICANCE 

 Diabetes mellitus is a heterogeneous group of disorders characterized by 

hyperglycemia resulting from defects in insulin secretion and resistance to insulin action7. 

The two most common forms of diabetes mellitus are type 1 diabetes and T2DM. Both are 

caused by a combination of genetic and environmental risk factors. All forms of diabetes 

have serious effects on health. Symptoms of marked hyperglycemia include polyuria, 

polydipsia, weight loss, sometimes with polyphagia, and blurred vision7. In addition to the 

consequences of abnormal metabolism of glucose, the chronic hyperglycemia of diabetes is 

associated with long-term damage, dysfunction, and failure of various organs, especially the 

eyes, kidneys, nerves, heart, and blood vessels7.  

A. T2DM – a major public health concern 

1. Definition of T2DM 

T2DM is the most common form of diabetes mellitus and caused by a combination of 

resistance to insulin action and an inadequate compensatory insulin secretary response7, 8. A 

diagnosis of T2DM is made if a fasting plasma glucose concentration is ≥7.0 mmol/l (≥126 

mg/dl) or 2-hour plasma glucose concentration after a standard oral glucose challenge is 

≥11.1 mmol/l (≥200 mg/dl)7.  
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2. Pathogenesis of T2DM 

T2DM is characterized by impaired insulin action (insulin resistance) and an insulin 

secretory defect as a result of impaired beta cell functioning8. Insulin resistance is a state in 

which the body does not respond to the action of insulin, even when enough insulin is being 

secreted 9. Nearly 90% of T2DM patients are insulin resistant10. Insulin resistance, 

prediabetes, and T2DM are linked by a similar pathogenesis. Initially, insulin resistance 

causes an increase in insulin secretion appropriately from the beta cells of the pancreas. This 

compensatory mechanism results in euglycemia with elevated fasting and/or postprandial 

serum insulin levels. The beta cells continue to compensate by increasing insulin levels, 

resulting in hyperinsulinemia and maintaining glucose homeostasis for up to 7 years11, 12. As 

the beta cells eventually exhaust and insulin levels become too low to meet the requirement 

of skeletal muscles and liver tissues, a mild postprandial hyperglycemia develops. As insulin 

resistance increases and the progressive loss of beta cells function continues, more global 

defects in insulin secretion increase resulting in impaired fasting glucose (IFG).  

3. Epidemiology of T2DM  

T2DM is a major – and growing – worldwide public health concern. Globally, the 

prevalence of diabetes has increased dramatically over the past several decades although it is 

partly due to the diabetes definition changes1, 13-15. In 1997, the ADA proposed a lowered 

fasting blood glucose level from 140 to 126 mg/dl as a diagnostic sign of diabetes16. In 2003, 

the maximum normal levels had further been reduced from 110 to 100 mg/dl, resulting in a 

definition of IFG by a glycemia ≥100 and <126 mg/dl17. There were approximately 30 

million individuals with T2DM in 1985, while by 1995, this number had escalated to 135 

million15, 18. Furthermore, the total number of people with diabetes is projected to rise from 
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171 million in 2000 (2.8% of the world population) to 366 million in 2030 (4.4% of the 

world population)1.  

Diabetes mellitus imposes a major burden on the public health of the United States, 

where in 2002 it was the sixth leading cause of death19 and was estimated to cost 92 billion 

dollars20, 21. T2DM accounts for 90% to 95% of diabetic individuals in the US15, 21, 22. Current 

predictions indicate that one in three Americans born in 2000 will develop T2DM; for 

Hispanics and African-Americans, the risk is almost one in two23. The highest prevalence of 

T2DM was found among Native Americans, particularly the Pima Indians who reside in 

Arizona1. T2DM is also known to be more predominant in Hispanics, Pacific Islanders, and 

African Americans than in Caucasians22, 24. In the ARIC study, the incidence of T2DM is 

2.4-fold greater in African American women and 1.5-fold greater in African American men 

compared to their white counterparts25. Possible explanations include racial differences in 

socioeconomic status, adiposity, physical inactivity, and family history of diabetes26.  

4. Risk factors of T2DM 

Approximately one-third of patients with T2DM may be undiagnosed27. Screening of 

asymptomatic individuals and individuals at high risk is recommended by American Diabetes 

Association (ADA) as an important strategy to the prevention and control of diabetes 

although the effectiveness of this strategy has not been determined27, 28. The ADA suggests 

screening be considered at any age if risk factors for diabetes are present, and recommends 

screening all individuals >45 years of age, regardless of their risk factor status29. It also 

recommends repeat screening at 3-year intervals.  
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Numerous epidemiological studies have identified the following major risk factors 

discussed below which are also criteria for screening: age, overweight (BMI>25 kg/m2), first 

degree relative with diabetes, habitual physical inactivity, member of a high-risk ethnic 

population (e.g., A-A, Latino, Native American, Asian-American, Pacific islander), 

previously identified IFG or IGT, history of gestational diabetes or delivery of a baby 

weighing >9lb, hypertension, dyslipidemia, polycystic ovary syndrome and history of 

vascular disease27, 30, 31.   

Age 

 T2DM was known for years as “adult onset” emphasizing the prevalence of T2DM 

increases with age. Of persons less than 45 years, 45-64, 65-74, and 75 years or older, the 

prevalence per 100 population in 2004 were 1.2, 9.5, 18.1 and 15.7, respectively32. In 2004, 

the prevalence of diagnosed diabetes among people aged 45-64 years (9.5%) was 

approximately 8 times that of people less than 45 years of age (1.2%)32. The age of 45 years 

has been officially used as an important cut-off point in estimating the prevalence of T2DM, 

however the prevalence of T2DM in children and adolescents is rising at an alarming rate 

(e.g., approximately 4% in 1963 to 15% in 2000 among aged 6-19 years) which is estimated 

to increase if no effective measures taken to prevent obesity33. The ARIC study also 

identified age as an important risk factor for diabetes incidence34.  

Overweight  

 Overweight (BMI>25kg/m2) plays a major role in the pathogenesis of T2DM by 

influencing insulin resistance. Obesity is also an independent risk factor for hypertension, 

dyslipidemia, and CVD which is the major cause of death in those with diabetes 27. Among 
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people diagnosed with T2DM, 67% have a BMI ≥27 and 46% have a BMI ≥30 kg/m2. 

Excess weight contributes to an estimated 70% of diabetes risk in the United States35. In 

ARIC, participants with a BMI ≥30 were more likely to have diabetes than those in lower 

BMI categories (22.4% versus 7.9%, p < 0.01) and the prevalence of diabetes increased with 

increasing BMI: 4.4% (BMI<20), 4.9% (20≤BMI≤24), 10% (25≤BMI≤29), and 22.4% 

(BMI≥30)36. In each category of BMI (18.5-<22, 22-<25, 25-<28, 28-<31, 31-<34, ≥34), 

African-American women had higher fasting insulin than Caucasian women (P = 0.0003), but 

not in men (P = 0.2620) in the ARIC cohort37.  

Two general mechanisms linking obesity and T2DM have been identified11. The first 

major mechanism involves the accumulation of fat in the liver and muscle mediates obesity-

induced insulin resistance based on the following observations: experimental elevation of 

free fatty acids leads to insulin resistance; direct correlation between the lipid content of 

skeletal muscle and liver and insulin resistance; fatty acids and their metabolic products can 

reduce insulin signaling in muscle and liver at the cellular level. The second major 

mechanism is a group of peptides, made by fat cells, that decrease insulin sensitivity. It has 

been shown that adiponectin reduces insulin resistance and individuals with progressive 

obesity demonstrate reductions in adiponectin. Elevated levels of adipocytokines such as 

tumor necrosis factor-alpha, interleukin-6, and resistin are observed with obesity and these 

adipocytokines have been suggested to increase insulin resistance. Various adipose tissue 

beds produce different amounts of these peptides, perhaps adding to the regional differences 

these adipose depots make in their contributions to insulin resistance. Therefore, greater 

accumulation of fat in the body will increase insulin resistance, and increase the risk of 

developing T2DM. 
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First-degree relative with diabetes 

 It is well accepted that T2DM is an inherited disease. The Framingham Offspring 

Study found that the ORs for T2DM or prediabetes among offspring with maternal/paternal 

diabetes were 3.4 (95% CI: 2.3-4.9)/3.5 (2.3-5.2) and 2.7 (2.0-3.7)/1.7 (1.2-2.4), respectively, 

and among those with bilineal (maternal and paternal) diabetes were 6.1 (2.9-13.0) and 5.2 

(2.6-10.5), respectively, when compared to individuals without parental diabetes38. In ARIC, 

parental history of diabetes has been suggested as an important predictor of incident 

diabetes34. In the Framingham Offspring Study, the offspring with maternal diabetes were 

more likely to have a mild slowly progressive form of glucose intolerance compared to 

offspring with paternal diabetes38. The Northern California Kaiser Permanente Diabetes 

Registry also reported excess maternal transmission of T2DM although the size of the excess 

was negligible in African-Americans and male offspring39. However, in a Korean cohort, 

excess paternal transmission of T2DM was observed in the offspring but not for maternal 

diabetes40. A review by Fetita et al. stated that intrauterine exposure in fetal to maternal 

hyperglycemia is associated with abnormal glucose homeostasis in offspring, which is 

demonstrated in animal models41. Mechanisms such as defects in pancreatic angiogenesis and 

innervation, or modification of parental imprinting, may be implicated, acting either 

independently or in combination41. 

Habitual physical inactivity 

There is firm and consistent evidence that physical activity is inversely associated 

with T2DM42-45. A meta-analysis combining ten prospective cohorts of physical activity of 

moderate intensity and type 2 diabetes suggested that physical activities of moderate intensity 

such as brisk walking can substantially reduce the risk of type 2 diabetes42. The ARIC study 
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reported that the mean leisure time physical activity score was slightly higher in non-diabetic 

participants than diabetic participants in both races at baseline, and Caucasian participants 

had higher scores on average then African-American participants (unpublished data). To 

improve glycemic control and reduce the risk of cardiovascular disease (CVD) the ADA 

recommends at least 150min/week of moderate-intensity aerobic physical activity (50-70% 

of maximum heart rate) and/or at least 90min/week of vigorous aerobic exercise (>70% of 

maximum heart rate)27. Current evidence supports habitual physical inactivity and low 

cardiorespiratory fitness are involved in the progression to T2DM46. Physical inactivity can 

initiate and accelerate the pathogenesis of diabetes and subsequent morbidity and mortality. 

Conversely, regular physical activity can retard and even reverse the process46. In the 

Diabetes Prevention Program, the lifestyle-modification program with the goals of at least a 7 

percent weight loss and at least 150 minutes of physical activity per week reduced the 

incidence of T2DM by 58% (95% CI: 48-66%)47.  

High-risk ethnic population 

 Minorities in the United States exhibit a higher prevalence of diabetes compared to 

the white population. According to the National Diabetes Fact Sheet, United States, 2005, 

among people aged 20 years or older non-Hispanic blacks, Hispanic/Latino Americans, 

American Indians and Alaska Natives, and Asian Americans and Pacific Islanders were 1.8, 

1.8, 2.2, and 1.5 times as likely to have diagnosed diabetes as non-Hispanic whites 

(www.cdc.gov, 2005). In the ARIC cohort, the incidence of T2DM is 2.4-fold and 1.5-fold 

higher in African American women and men, respectively, compared to their white 

counterparts 25. Furthermore, African Americans bear a disproportionate burden of morbidity 

and mortality associated with T2DM35, 48. The high prevalence of T2DM in African 
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Americans can be attributed, in part, to high prevalence of obesity, physical inactivity and 

insulin resistance. Other contributing factors, such as lower social economic status and access 

barriers to health care, may negatively impact the African-American group26, 48, 49. The third 

National Health and Nutrition Examination Survey (NHANES III) data were examined for 

racial and ethnic differences in health care access and health outcomes for patients with 

T2DM 50. Small differences by race and ethnicity were identified.  

 IFG and IGT 

 IFG and IGT are used to characterize a “prediabetes” state, an intermediate category 

between normoglycemia and diabetes. IFG is now defined as fasting plasma glucose (FPG) 

between 100 and 125 mg/dL (between 5.6 and 6.9 mmol/l) with the lower threshold changed 

from 110 to 100 mg/dL7, 51; IGT is defined as a postprandial blood glucose between 140 to 

199 mg/dL (between 7.8 to 11.0 mmol/l) after a 75-g glucose load on the oral glucose 

tolerance test (OGTT)7. There are many who disagreed with dropping the threshold for IFG 

from 110 mg/dL to 100 mg/dL52, 53. The ADA stated that changing the IFG cut point to 100 

mg/dl (5.6 mmol/l) would optimize its sensitivity and specificity for predicting future 

diabetes51, but studies suggested that IFG with the cutoff at 110 mg/dL is more likely to 

confer risk of postchallenge hyperglycemia52. In addition, IFG with the cutoff at 100 mg/dL 

does not predict mortality below 126 mg/dL53. In effect, the dropping of the threshold 

increases the prevalence of IFG, but with potentially low predictive value, and few studies 

have documented the value of lower threshold. 

According to the National Health and Nutrition Examination Survey (NHANES) 

(1999-2002) data, the crude prevalence of IFG among adults aged ≥20 years in the US was 
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26.0% in 1999–200254. The overall standardized prevalence in non-Hispanic blacks (17.7%) 

was significantly lower than that in non-Hispanic whites (26.1%, P = 0.0007) and Mexican 

Americans (31.6%, P < 0.00001), a pattern consistent across all ages54. The ARIC study 

results suggested that African Americans have higher fasting glucose than Caucasians55.  

The natural history of both IFG and IGT is variable, with 25% progressing to 

diabetes, 50% remaining in their abnormal glycemic state, and 25% reverting to normal 

glucose state over an observational period of 3–5 years56. Individuals with other diabetes risk 

factors such as obesity are more likely to progress to diabetes56. It takes up to 10 years for 

individuals with prediabetes generally to develop T2DM with beta-cell abnormalities found 

long before frank T2DM8. Multiple studies have shown that IGT is more prevalent than IFG 

and that there is limited overlap between them57-64. The incidence of diabetes is highest in 

individuals with both IFG and IGT compared to isolated IFG or isolated IGT. Isolated IGT 

appears to better predict diabetic cases than isolated IFG 59, 64-68. A FPG of 5.7 mmol/l is 

closer to a 2-hour glucose value of 7.8 mmol/l in terms of sensitivity and specificity of 

predicting future diabetes59, 64. There is no threshold value of IFG in terms of future diabetes 

and cardiovascular risks, as these risks increase continually with increasing FPG69.   

Different pathophysiologic mechanisms in glucose homeostasis have been suggested 

in isolated IFG and isolated IGT individuals56. Isolated IFG and isolated IGT individuals 

differ in their site of insulin resistance70. Hepatic insulin resistance and normal muscle insulin 

sensitivity are predominantly demonstrated in isolated IFG individuals whereas individuals 

with isolated IGT have normal to mildly reduced hepatic insulin sensitivity and moderate to 

severe muscle insulin resistance. Both muscle and hepatic insulin resistance are manifested in 
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individuals with both IFG and IGT. IFG and IGT individuals also differ in the insulin 

secretion pattern70. Individuals with isolated IFG only have a defect in early-phase insulin 

secretion response during the OGTT whereas individuals with isolated IGT appear to have a 

defect in early-phase insulin secretion but also a severe defect in late-phase insulin secretion. 

The combinational hepatic insulin resistance and early-phase insulin secretion defect in 

isolated IFG leads to fasting hyperglycemia, and the combined muscle and hepatic insulin 

resistance and defective late insulin secretion results in hyperglycemia after a oral glucose 

load.  

The ARIC study evaluated practical strategies involving fasting glucose, clinical 

rules, and the oral glucose tolerance test (OGTT) for the detection of undiagnosed diabetes, 

IFG and IGT71. Screening with FPG using the conventional IFG cut point (FPG≥6.1mmol/l) 

identified 68.8% of the diabetic cases but only 28.1% of the IFG/IGT cases. Two screening 

strategies obtained the best results—detecting >85% of the cases of diabetes, 58% of the 

cases of IFG/IGT, and 52% of the cases of IGT: the first one used an FPG cut point of 6.1 

mmol/l and then applied a clinical detection rule to those below this cut point; the second one 

used an FPG cut point of 5.6 mmol/l and then applied an OGTT to those with FPG <6.1 

mmol/l. The ARIC study results suggested that FPG-based screening strategies 

complemented by clinical detection rules and/or an OGTT, are effective and practical in the 

detection of hyperglycemic states. 

Gestational Diabetes Mellitus (GDM) 

 GDM is defined as any degree of glucose intolerance with onset or first recognition 

during pregnancy72. The prevalence of GDM is about 4% of all the pregnancies in the U.S. 



16 
 

although the range is much wider (1-14%) depending on the population studied, as well as 

the prevalence of obesity 73, 74. The Nurses’ Health Study identified increasing age, BMI, 

weight gain, cigarette smoking, and non-European ethnicity as predictive factors for GDM74. 

A study by Dooley et al. demonstrated that the relative risk for GDM was higher in black 

(1.81, 95% CI 1.13, 2.89), and Hispanic (2.45, 95% CI 1.48, 4.04) women than in white 

women75. The rate of developing diabetes after GDM varies, ranging from ~5% during the 

subsequent 3-6 months to 47% at 5-year follow-up; it was reported that ~40% of women 

previously diagnosed as GDM develop diabetes by 15-years of follow-up76. The development 

of subsequent diabetes is influenced by the degree of obesity prior to pregnancy, insulin 

requirements during pregnancy and higher glucose values during OGTT76. Based on the 

ARIC study results that the relative risk for diabetes was higher for African American 

women vs. Caucasian women than it was for African American men vs. Caucasian men 25, 

Kahn and Williamson proposed that the differential exclusion of gestational diabetes with 

respect to race may be one possible explanation77. A Caucasian woman with GDM is more 

likely to be diagnosed during pregnancy than an African American woman. It is possible that 

Caucasian women with a known history of GDM might have been excluded from the study, 

whereas African American women with an unrecognized history of GDM might have been 

included. Unfortunately, the ARIC study did not collect specific information on GDM.  

Hypertension 

 Hypertension is often associated clinically with diabetes either as part of the 

metabolic syndrome or as a manifestation of diabetic nephropathy and the coexistence of 

these two conditions synergistically increases in the risk of life-threatening cardiovascular 

events 78-80. Hypertension has been suggested as an independent risk factor for diabetes. In 
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ARIC cohort, the risk of developing diabetes was 2.4-fold greater in hypertensive individuals 

than in those that were normotensive after adjusting for obesity81. The ARIC study also 

found that the prevalence of hypertension than in African Americans (72% in diabetics vs. 

52% non-diabetics) was higher in Caucasians (51% in diabetics vs. 25% in non-diabetics) 

(unpublished data). Elevated systemic blood pressure accelerates the progression of both 

microvascular and macrovascular complications in diabetes. Vasoactive hormone pathways, 

e.g. the renin-angiotensin-aldosterone system, appear to play a pertinent role in the 

progression of diabetes and diabetic complications79.  

 Several secondary or post hoc trials involving patients with hypertension or 

cardiovascular disease have suggested that agents that block or inhibit the renin–angiotensin 

system may prevent diabetes82. However, the prospective trial, the Diabetes Reduction 

Assessment with Ramipril and Rosiglitazone Medication (DREAM) study83 found that 

among persons with prediabetes, the use of ramipril (an angiotensin converting enzyme 

inhibitor to treat hypertension) for 3 years does not significantly reduce the incidence of 

diabetes or death but does significantly increase regression to normoglycemia. The variations 

in study design, participants, diabetes diagnosis, and the duration of follow-up may explain 

these findings.     

Dyslipidemia 

 Reduced HDL-cholesterol levels and increased triglyceride concentrations are the key 

characteristics of dyslipidemia in T2DM patients84, 85. A similar pattern was observed in the 

ARIC study. The mean HDL-cholesterol levels (mg/dl) for diabetic vs. non-diabetic 

participants at baseline were 49 vs. 56 in African Americans, and 41 vs. 51 in Caucasians, 
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respectively; the mean triglyceride levels (mg/dl) were 152 vs. 105 in African Americans, 

and 212 vs. 130 in Caucasians, respectively (unpublished data), suggesting dyslipidemia is a 

risk factor for diabetes. Elevated triglyceride rich lipoproteins contribute to increased 

availability of free fatty acids in the liver and raised levels of free fatty acids generate 

lipotoxicity, which decreases insulin secretion induced by glucose and then worsens the 

insulin resistance. Consequently, the increased triglyceride causes the reduction of HDL 

cholesterol86, 87. Several post-hoc analyses of subgroups of diabetic subjects from large 

clinical trials suggest a beneficial effect of lipid-lowering therapy (e.g. statins) in T2DM, for 

example, a reduction of macrovascular complications88-91.   

Polycystic Ovary Syndrome (PCOS) 

 PCOS is characterized by chronic anovulation and hyperandrogenism92. Large cohort 

studies have demonstrated that the prevalence of glucose intolerance is as high as 40% in 

PCOS women when the WHO criteria are used93-95. It is estimated that approximately 20% of 

impaired glucose tolerance and 40% of T2DM are attributed to PCOS in reproductive-aged 

women96. A study by Ehrmann et al. suggested that African-American PCOS women had 

significantly higher insulin levels (P <0.05) and were significantly more insulin resistant (P 

<0.05) than Caucasian women with PCOS, however, fasting glucose and 2-h glucose levels 

were similar between African-American and Caucasian PCOS women97. The majority of 

women with PCOS have peripheral insulin resistance, and insulin resistance plus beta-cell 

dysfunction plays an important role in the consequent development of T2DM and CVD98.  

Inflammation and endothelial dysfunction 
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 T2DM and atherosclerotic vascular disease may arise from a “common soil”99 with 

common antecedent factors100. These factors have shown a strong correlation with markers of 

inflammation and endothelial dysfunction101. The ARIC study found that the haemostatic 

variables, especially associated with inflammation and endothelial dysfunction, such as factor 

VII [OR: 1.4 (95% CI: 1.1–1.6)], fibrinogen [1.2; (1.0–1.5)], factor VIII [1.8 (1.3–2.3) in 

women ], and von Willebrand [1.4 (1.1–1.8) in women] are related to incidence of T2DM, 

after adjusting for age, sex, race, study center, family history of diabetes, fasting glucose, 

physical activity, and smoking102. ARIC findings support a role for inflammation and 

endothelial dysfunction in diabetes pathogenesis. Other studies found elevated levels of C-

reactive protein (CRP) and other markers of inflammation manifested in patients with 

T2DM, suggesting atherosclerosis and T2DM may share the same inflammation origin103-105. 

5. Genetics of T2DM 

Evidence for a genetic component to T2DM comes from several sources: animal 

models, familial aggregation, and gene mapping studies. All of these lines of evidence 

support a genetic etiology of T2DM, but also shed light on the complexity and heterogeneity 

of T2DM.  

Animal models 

 Due to the limited availability of human tissues, animal models of diabetes have 

become very useful in providing valuable insights into the etiology of T2DM. Studies in 

animal models have aided in the identification of genes that are functionally important in the 

pathophysiology of T2DM.  
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 Studies in C57BL/6J mice with IGT found that the loss-of-function mutation in the 

gene encoding nicotinamide nucleotide transhydrogenase was significantly associated with 

glucose intolerance and less insulin secretion through the impairment of mitochondrial ATP 

production106. The activation of uncoupling protein 2 will prevent glucose-dependent closure 

of KATP channels and consequently beta-cell activity and insulin secretion are impaired. This 

is a clear example of a promising candidate gene discovered from a mouse model of diabetes. 

Genes that have arisen from animal models such as ARNT107, and IRS2108 now warrant 

testing in genetic and functional studies in human beings.    

Familial aggregation 

1). Family studies 

 Family studies compare the disease prevalence within family members of a proband 

to that expected in the general population. A higher prevalence within family members is 

expected because of an increased number of shared genes between family members. For 

T2DM, the prevalence is increased in individuals who have a first degree relative with the 

condition. The lifetime risk of T2DM is 70% in offspring of both diabetic parents, whereas 

the risk is about 40% if only one parent is diabetic109. The ARIC study also suggested a 

parental history of diabetes as an important predictor of incident diabetes in middle-aged 

adults34. In addition, young-age onset T2DM seems to be more familial than late-age onset 

diabetes. In Pima Indians, the offspring of parents that have been diagnosed as diabetic 

individuals prior to the age of 45 have a higher prevalence of diabetes compared to the 

offspring of parents that developed diabetes after the age of 45110. A study in South Asian 

individuals reported similar findings111.  
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 2). Twin studies 

Familial clustering suggests a genetic component for T2DM, as do twin studies. Twin 

studies are employed to assess the extent to which familial aggregation of disease can be 

accounted for by inherited genetic factors. In twin studies, the concordance rates for the 

presence of disease under investigation are estimated and compared in monozygotic (MZ) 

and dizygotic (DZ) twins. Because MZ twins share the identical genes and DZ twins share 

half of genes on average, and as both types of twins tend to share most of their environment, 

increased concordance rates in MZ twins compared with DZ twins are indicative of shared 

genetic factors predisposed to the disease. For T2DM, estimates for concordance rates varied 

ranging from 0.20 to 0.91 in MZ, while 0.10–0.43 in DZ twins112-118. Although these studies 

varied regarding sample sizes, ethnicity, study design (proband-based or population-based), 

disease definition and age distribution, concordance rates were consistently higher in MZ 

twins than in DZ twins across all studies. Based on the fact that the high concordance rates in 

MZ twins could reflect a correlation of intrauterine environment, and as the “equal 

environments assumption” in twin studies might not always hold true due to the increasing 

sharing of environment risk factors post-natally, the results of twin studies warrant cautious 

interpretation. It was estimated that the age-adjusted concordance rate in MZ twins may be 

up to 70-80% for T2DM119. Despite the caveats in twin studies, the evidence from familial 

aggregation still supports that a genetic component plays an important role in the etiology of 

T2DM.  

Gene mapping studies 

The inheritance patterns for T2DM are complex. Because of its complexity, with both 

gene-gene and gene-environment interactions, the identification of susceptibility SNPs for 
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T2DM has not been easily achieved. Although the progress is slow, over the last decade, 

researchers have embarked on linkage scans and candidate gene studies in an attempt to 

discover genes impacting on the risk of T2DM. The most significant findings from linkage 

studies, and association studies including genome-wide association studies are discussed 

below.   

1). Linkage studies 

  Initial linkage studies focused on target regions in the genome with prior suggested 

association with disease, or regions known to harbor genes that were plausibly functional for 

disease predisposition120-122. Later, technologies advances in genome mapping enabled 

researchers to perform linkage scans spanning the entire genome with 5-10cM intervals. 

Multiple linkage studies including genome-wide linkage studies were conducted in a variety 

of populations and identified a number of regions demonstrating at least suggestive evidence 

for linkage [logarithm of the odds (LOD)>2], but only a few regions have shown significant 

evidence for linkage in a single scan (LOD score >3.6), or consistent replication across 

scans123.   

 One of the earliest significant linkage peaks was at chromosome 2q37.3124. The gene 

calpain 10 (CAPN10)125 encoding an intracellular calcium-dependent cysteine protease126 

was discovered 4 years after the locus was first mapped. Physiological studies suggested that 

variations in CAPN10 activity affected insulin secretion126. However, given the inconsistency 

of results across linkage studies, association studies, and meta-analysis results127-138, 

widespread acceptance of CAPN10 as a T2DM predisposing gene has been lacking. These 

inconsistent results with respect to the CAPN10 gene could be related to population-specific 
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environmental triggers, gene-gene interactions, or population-specific patterns of linkage 

disequilibrium (LD)139.  

 Despite these difficulties with linkage analysis, a number of regions have been 

replicated in multiple populations123. A region on chromosome 1q21-1q25 has been observed 

in multiple distinct populations140-145, other regions with most evidence for loci are 

chromosome 12q24146-150, and chromosome 20148, 151-154. Additional regions showing 

significant linkage (LOD>3.6) in the initial scan that are supported by at least one other study 

(LOD>1.0) include 3q24, 3q28, 10q26, and 18p11123.  

 While some of the loci have shown at least moderate support from several 

populations, no single locus shows strong linkage evidence in multiple populations. This 

suggests that T2DM is a polygenic disease and no T2DM susceptibility locus has a strong 

effect in most populations. Some of putative loci may be type I errors. Other possible causes 

may include population heterogeneity, and different gene-gene and gene-environment 

interactions in each population studied. It is also possible that the lack of consistency is 

because of a large number of genes involved, each with a small effect, and many studies have 

been underpowered to detect all of these genes involved.       

2). Association studies 

 Association studies investigate the relationship between disease status and a particular 

allele, genotype or haplotype of genetic marker/s. A case-control study design is utilized by 

most association studies in which the prevalence of a putative disease marker is compared 

among persons with a disease (cases) to persons without the disease (controls). For T2DM, 

given the two major mechanisms including insulin secretion defects and insulin resistance in 
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the development of T2DM, most candidate gene studies have focused on genes that encode 

proteins in the pathways of glucose-induced insulin secretion from the beta-cells, peripheral 

insulin-induced glucose uptake in muscle and fat, and insulin regulation of liver 

gluconeogenic pathways.  

 To date, a large number of association studies have been undertaken in T2DM, but 

only a handful have been reproduced in multiple samples and generated consistent results. A 

number of causes may contribute to the poor reproducibility: poor study design (poor 

matching of cases and controls, a wide usage of convenience samples), limited sample size, 

limited number of markers typed, population heterogeneity, gene-gene and gene-environment 

interactions, etc. Despite these difficulties, there is now compelling evidence that common 

variants in the TCF7L22, PPARγ155-157, KCNJ11 (in Caucasians only) 127, 158-162 genes 

influence susceptibility to T2DM.  Other possible genes, such as the HNF4α, have been 

inconsistently associated and meta-analysis of these association studies are warranted 163-166. 

Other genes with less well-established impact on T2DM are IRS1167, ABCC8163, 168, 

HNF1A167 and INS 163, 169.   

 The PPARγ (peroxisome proliferator-activated receptor-γ)155-157, 170, 171 gene has been 

widely studied because it is important in adipocyte and lipid metabolism. It is also a target 

for the hypoglycemic drugs known as thiazolidinediones. The PPARγ gene substantially 

decreases insulin sensitivity and increases the risk of T2DM. This gene is quite common in 

most populations, especially in Caucasians, with a population attributable risk of ~25%. In 

ARIC, the Pro12Ala variant in PPARγ gene was not significantly associated with diabetes 

[OR: 0.64 (95%CI: 0.34–1.20); P=0.16] in African American participants, but the Pro/Ala 
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genotype was associated with markers of greater insulin sensitivity including lower insulin 

levels (P = 0.001), lower HOMA-IR (P = 0.005), and lower diastolic blood pressure (P = 

0.02) among nonobese African Americans170.  

 The KCNJ11 (potassium inwardly-rectifying channel, subfamily J, member 11) 127, 

158-162, 171 gene is part of the ATP-sensitive potassium channel, which plays a key role in 

regulating the release of hormones, such as insulin and glucagon, in the beta cells. Mutation 

in KCNJ11 can affect the potassium channel’s activity and insulin secretion, ultimately 

leading to the development of T2DM. KCNJ11 is now the target for the sulphonylurea class 

of drugs used routinely in the treatment of T2DM. A recent meta-analysis conducted in 

Caucasians suggested that the E23K variant is significantly associated with T2DM [EK vs. 

EE: 1.12 (1.01-1.23); KK vs. EE: 1.44 (1.17-1.78)]161. However, the only large-scale study in 

African Americans (n=1173) suggested that KCNJ11 is inversely associated with T2DM 

[OR: 0.69 (0.49–0.99)]  indicating the KCNJ11 is a primarily susceptible gene to T2DM in 

Caucasians162.  ABCC8 is a sulfonylurea receptor that is located on the same chromosome 

locus 11p15.1 as KCNJ11172. Studies suggest that ABCC8 influences insulin secretion 

through the ATP-sensitive potassium channels as well172.  

HNF4A, one of the genes primarily associated with the maturity onset diabetes of the 

young (MODY), encodes an orphan hormone nuclear receptor that, together with other HNF 

genes such as HNF1A, constitutes part of a network of transcription factors controlling gene 

expression in pancreatic β-cells, liver, and other tissues163, 167. In β-cells, these transcription 

factors regulate insulin secretion. Evidence for HNF4A and T2DM has been conflicting and a 

meta-analysis is warranted 163-166. Studies suggest that HNF-1α Ala98Val polymorphism is 
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associated with a significant reduction in post-OGTT serum insulin and C-peptide levels 

among Caucasians 173.  

IRS1 is a protein that plays a pivotal role in insulin and cytokine signalling via the 

phosphatidylinositol-3-kinase pathway174. Functional studies have shown impaired insulin 

signalling and impaired insulin secretion associated with this gene167. Furthermore, the gene 

is associated with insulin resistance 174. 

INS encodes the hormone preproinsulin, which upon proteolytic cleavage generates 

mature insulin and C-peptide163. Evidence for the association between INS and T2DM is not 

conclusive and a role for INS in T2DM predisposition has not been definitively established 

163. 

3). Genome-wide association studies (GWAS) 

The genome-wide association study (GWAS) is an increasingly popular approach to 

greatly enhance our understanding of the genetic basis of common and complex diseases such 

as T2DM171, 175. Companies such as Affymetrix and Illumina have utilized major advances in 

technology to develop high-throughput genetic arrays that can capture information from the 

majority of common variations in the human genome171. These chips can analyze 

approximately 300 - 2,500,000 SNPs. With the low genotyping cost per-SNP and the 

presence of well-designed large cohort and case-cohort studies175, this technology has 

facilitated rapid progress in genetic research of T2DM.  

According to the Genome.gov (accessed on February 05, 2009), a total of ten GWAS 

on T2DM-related traits with at least 100,000 SNPs assayed in the initial stage have been 
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published176.  All GWAS were performed in the Caucasian population. Table 1 lists SNPs 

with p-values < 1.0 x 10-5 from these ten GWAS. The research progress by Frayling reviewed 

six GWAS that were published by September, 2007 and provided convincing evidence for 

six new gene regions involved in T2DM in Caucasians171 plus five known gene regions171: 

CDKAL1 (CDK5 regulatory subunit-associated protein 1-like 1), CDKN2 (cyclin-dependent 

kinase inhibitor 2A), FTO (fat mass and obesity-associated), HHEX (haematopoietically 

expressed homeobox)-IDE (insulin-degrading enzyme), IGF2BP2 (insulin-like growth factor 

2 mRNA-binding protein 2), KCNJ11, PPARG, SLC30A8 (solute carrier family 30 (zinc 

transporter), member 8), TCF2 (transcription factor 2, hepatic), TCF7L2, and WFS1 

(Wolfram syndrome 1). In addition, rs9300039 in the chromosome 11 has been identified to 

be associated with increased risk of T2DM (P = 4 x 10-7) in a Finnish GWAS177. In 2008, 

Zeggini et al. performed a meta-analysis of three T2DM GWA scans comprising of 10,128 

European individuals and detected six previously unknown loci (P < 10-8)178: JAZF1 

(juxtaposed with another zinc finger gene 1), CDC123 (cell division cycle 123 homolog)-

CAMK1D (calcium/calmodulin-dependent protein kinase 1D), TSPAN8 (tetraspanin 8)-LGR5 

(leucine-rich repeat-containing G protein-coupled receptor 5), THADA (thyroid adenoma 

associated), ADAMTS9 (ADAM metallopeptidase with thrombospondin type 1 motif, 9), and 

NOTCH2 (Notch homolog 2). Another two GWAS discovered 4 SNPs within KCNQ1 

(potassium voltage-gated channel, KQT-like subfamily, member 1) to be associated with 

increased risk of T2DM in East Asian (Japanese, Singaporean) and European (Danish) 

populations (P < 10-8)179, 180. Together, common variation in 19 gene regions altered the risk 

of T2DM in Caucasians with a level of statistical confidence based on GWAS findings 

(Table 2). 
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Common variants in TCF7L2 emerged as one of the top signals and each T allele 

copy from rs7903146 conferred substantially higher risk than all of the other 10 gene variants 

indicating TCF7L2 may be the most important T2DM gene in Caucasians171. TCF7L2 

encodes a transcription factor that is expressed in the fetal pancreas and plays a significant 

role in the WNT signalling pathway171.  One of its targets is HHEX that encodes a 

transcription factor with a key role in pancreatic development. The HHEX–IDE locus has 

shown to be associated with reduced insulin secretion171.  

CDKN2B lies next to its close relative CDKN2A. The overexpression of CDKN2A 

results in decreased islet proliferation in ageing mice181.  

We know little about CDKAL1, but it is highly expressed in human islets182. CDKAL1 

shares homology with the CDK5 regulatory-subunit-associated protein-1 gene 

(CDK5RAP1), a known inhibitor of CDK5 activation. CDK5 may downregulate insulin 

expression through the formation of p35–CDK5 complexes and then reduce beta-cell 

function171.  
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Table 1. Results from ten genome-wide association studies on T2DM-related traits 
First Author 

(year) 
Initial 

Sample Size 
Disease/

Trait Region 
Reported 
Gene(s) SNP 

MAF in 
Controls p-Value OR 95% CI 

Meigs(2007) 183 1,087 
individuals  

Diabetes 
related 
insulin 
traits 

14q12 Intergenic rs2877832 NR 2.00E-06 NR NR 
 13q21.33 Intergenic rs2066219 NR 9.00E-06 NR NR 
  14q12 Intergenic rs2877832 NR 3.00E-06 NR NR 
  7p15.1 CPVL rs10486607 NR 8.00E-06 NR NR 

  
Incident 
diabetes 2q32.3 TMEFF2 rs10497721 NR 7.00E-07 NR NR 

Salonen (2007) 184 500 cases, 
497 controls 

Type 2 
diabetes 

10q25.2 TCF7L2 rs7903146 NR 5.00E-08 1.71 [1.41-2.08] 
 2q12.1 Intergenic rs6712932 NR 6.00E-06 1.52 [1.27-1.82] 
Saxena (2007) 185 

1,464 cases, 
1,467 controls 

Type 2 
diabetes 

10q23.33 HHEX rs1111875 0.53 6.00E-10 1.13 [1.08-1.17] 

 9p21.3 
CDKN2A,CD
KN2B rs10811661 0.83 8.00E-15 1.20 [1.14-1.25] 

   6p22.3 CDKAL1 rs7754840 0.31 4.00E-11 1.12 [1.08-1.16] 
   3q27.2 IGF2BP2 rs4402960 0.29 9.00E-16 1.14 [1.11-1.18] 
   3p25.2 PPARG rs1801282 0.86 2.00E-06 1.14 [1.08-1.20] 
   8q24.11 SLC30A8 rs13266634 0.65 5.00E-08 1.12 [1.07-1.16] 
   10q25.2 TCF7L2 rs7903146 0.26 1.00E-48 1.37 [1.31-1.43] 
   11p15.1 KCNJ11 rs5219 0.47 7.00E-11 1.14 [1.10-1.19] 
Scott (2007) 177 1,161 cases, 

1,174 controls 
Type 2 
diabetes 

3p25.2 PPARG rs1801282 0.82 2.00E-06 1.14 [1.08-1.20] 
 10q23.33 HHEX rs1111875 0.52 6.00E-10 1.13 [1.09-1.17] 
   11p12 Intergenic rs9300039 0.89 4.00E-07 1.25 [1.15-1.37] 

   9p21.3 
CDKN2A, 
CDKN2B rs10811661 0.85 8.00E-15 1.20 [1.14-1.25] 

   6p22.3 CDKAL1 rs7754840 0.36 4.00E-11 1.12 [1.08-1.16] 
   3q27.2 IGF2BP2 rs4402960 0.30 9.00E-16 1.14 [1.11-1.18] 
   11p15.1 KCNJ11 rs5219 0.46 7.00E-11 1.14 [1.10-1.19] 
   10q25.2 TCF7L2 rs7903146 0.18 1.00E-48 1.37 [1.31-1.43] 
   8q24.11 SLC30A8 rs13266634 0.61 5.00E-08 1.12 [1.07-1.16] 
Sladek(2007) 186 1,380 cases, 

1,323 controls 
Type 2 
diabetes 

10q23.33 HHEX rs1111875 0.40 3.00E-06 1.19 [0.82-1.56] 
 10q25.3 TCF7L2 rs7903146 0.30 2.00E-34 1.65 [1.28, 2.02] 
   8q24.11 SLC30A8 rs13266634 0.30 6.00E-08 1.18 [0.69-1.67] 
Steinthorsdottir(20 1,399 cases, Type 2 10q25.2 TCF7L2 rs7903146 0.30 2.00E-10 1.38 [NR] 
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Table 1. Results from ten genome-wide association studies on T2DM-related traits 
First Author 

(year) 
Initial 

Sample Size 
Disease/

Trait Region 
Reported 
Gene(s) SNP 

MAF in 
Controls p-Value OR 95% CI 

07) 187 5,275 controls diabetes 8q24.11 SLC30A8 rs13266634 0.67 3.00E-06 1.15 [1.08-1.22] 
   6p22.3 CDKAL1 rs7756992 0.26 8.00E-09 1.20 [1.13-1.27] 

Timpson(2008) 188 
1,924 cases, 
2,938 controls 

Type 2 
diabetes 

16q12.2 FTO rs8050136 NR 
2.00E-17 
(obese)  1.30 [1.23-1.39] 

 10q25.2 TCF7L2 rs7903146 NR 
9.00E-30 
(non-obese)  1.49 [1.39-1.59] 

   11p15.1 KCNJ11 rs5219 NR 
5.00E-07 
(obese)  1.19 [1.11-1.27] 

   8q24.11 SLC30A8 rs13266634 NR 
7.00E-06 
(non-obese)  1.18 [1.10-1.27] 

   9p21.3 CDKN2B rs10811661 NR 
7.00E-07 
(non-obese)  1.26 [1.15-1.38] 

   10q25.2 TCF7L2 rs7903146 NR 
6.00E-16 
(obese)  1.31 [1.23-1.40] 

   6p22.3 CDKAL rs10946398 NR 
7.00E-07 
(non-obese)  1.18 [1.11-1.26] 

   11p15.1 KCNJ11 rs5219 NR 
1.00E-09 
(non-obese)  1.25 [1.16-1.34] 

WTCCC(2007) 189 1,924 cases, 
2,938 controls 

Type 2 
diabetes 

6p22.3 CDKAL1 rs9465871 0.18 3.00E-07 1.18 [1.04-1.34] 
 16q12.2 FTO rs9939609 0.40 2.00E-07 1.34 [1.17-1.52] 
   10q25.2 TCF7L2 rs4506565 0.32 5.00E-12 1.36 [1.20-1.54] 
   4q27 NR rs7659604 0.38 9.00E-06 1.35 [1.19-1.54] 
   3p14 NR rs358806 0.80 3.00E-06 1.16 [1.03-1.33] 
   12q15 NR rs1495377 0.50 7.00E-06 1.28 [1.11-1.49] 
   12q13 NR rs12304921 0.15 7.00E-06 2.50 [1.53-4.09] 
Zeggini (2008) 178 4,549 cases, 

5,579 controls 
Type 2 
diabetes 

7p15.1 JAZF1 rs864745 0.50 5.00E-14 1.10 [1.07-1.13] 
 3p14.1 ADAMTS9 rs4607103 0.76 1.00E-08 1.09 [1.06-1.12] 
   12q13.2 DCD rs1153188 0.73 2.00E-07 1.08 [1.05-1.11] 
   3p25.2 SYN2, PPARG rs17036101 0.93 2.00E-07 1.15 [1.10-1.21] 
   6p22.3 CDKAL1 rs6931514 NR 1.00E-11 1.25 [1.17-1.33] 
   10q23.33 HHEX rs5015480 NR 7.00E-08 1.17 [1.11-1.24] 
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Table 1. Results from ten genome-wide association studies on T2DM-related traits 
First Author 

(year) 
Initial 

Sample Size 
Disease/

Trait Region 
Reported 
Gene(s) SNP 

MAF in 
Controls p-Value OR 95% CI 

   16q12.2 FTO rs8050136 NR 7.00E-06 1.15 [1.09-1.22] 
   10q25.2 TCF7L2 rs7903146 NR 3.00E-23 1.37 [1.28-1.47] 
   11p15.1 KCNJ11 rs5215 NR 4.00E-07 1.16 [1.09-1.23] 

   9p21.3 
CDKN2A,CD
KN2B rs7020996 NR 2.00E-07 1.26 [1.15-1.38] 

   3q27.2 IGF2BP2 rs4402960 NR 8.00E-08 1.17 [1.10-1.25] 
   6p21.1 VEGFA rs9472138 0.28 4.00E-06 1.06 [1.04-1.09] 

   1p12 
NOTCH2, 
ADAM30 rs10923931 0.11 4.00E-08 1.13 [1.08-1.17] 

   2p21 THADA rs7578597 0.90 1.00E-09 1.15 [1.10-1.20] 

   10p13 
CDC123,CAM
K1D rs12779790 0.18 1.00E-10 1.11 [1.07-1.14] 

   12q21.1 
TSPAN8,LGR
5 rs7961581 0.27 1.00E-09 1.09 [1.06-1.12] 

Zeggini (2007) 190 1,924 cases, 
2,938 controls 

Type 2 
diabetes 

16q12.2 FTO rs8050136 0.60 1.00E-12 1.17 [1.12-1.22] 
 10q23.33 HHEX rs5015480 0.43 6.00E-10 1.13 [1.08-1.17] 
   3q27.2 IGF2BP2 rs4402960 0.32 9.00E-16 1.14 [1.11-1.18] 
   9p21.3 CDKN2A/B rs10811661 0.83 8.00E-15 1.20 [1.14-1.25] 
   6p22.3 CDKAL1 rs10946398 0.32 4.00E-11 1.12 [1.08-1.16] 
   9p21.3 CDKN2B rs564398 NR 1.00E-07 1.12 [1.07-1.17] 
   3p25.2 PPARG rs1801282 NR 2.00E-06 1.14 [1.08-1.20] 
   11p15.1 KCNJ11 rs5215 NR 5.00E-11 1.14 [1.10-1.19] 
   10q25.2 TCF7L2 rs7901695 NR 1.00E-48 1.37 [1.31-1.43] 
   8q24.11 SLC30A8 rs13266634 0.30 5.00E-08 1.12 [1.07-1.16] 
Abbreviations: CI, confidence interval; MAF, minor allele frequency; NR, not reported; OR, odds ratio; SNP, single nucleotide polymorphism.   
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Table 2. Details of 19 T2DM gene regions 
Example 
variant 

Closest 
gene 

Mode of 
identification 

Previous 
evidence p value 

Additional evidence 
from human physiology 

rs1801282 
(P12A) PPARG Candidate 

Monogenic + 
drug target 2x10-6 Nothing consistent 

rs5215 
(E23K) KCNJ11 Candidate 

Monogenic + 
drug target 5x10-11 

Alters insulin secretion 
in general population 

rs7901695 TCF7L2 Region-wide None 1x10-48 
Alters insulin secretion 
in general population 

rs4430796 TCF2 Candidate Monogenic 8x10-10 Nothing consistent 
rs10010131 WFS1 Candidate Monogenic 1x10-7 Nothing consistent 

rs1111875 
HHEX–
IDE GWAS 

Some, e.g. 
HHEX KO 
mouse has 
disrupted 
pancreatic 
development 7x10-17 

Early studies indicate 
altered insulin secretion 
in general population 

rs13266634 SLC30A8 GWAS None 1x10-19 

Early studies indicate 
altered insulin secretion 
in general population 

rs10946398 CDKAL1 GWAS None 2x10-18 

Early studies indicate 
altered insulin secretion 
in general population 

rs10811661 
CDKN2A–
2B GWAS 

Some – 
CDKN2A KO 
mouse has 
reduced islet 
proliferation 8x10-15 Nothing consistent 

rs4402960 IGF2BP2 GWAS 

Some — binds 
insulin-like 
growth factor 
mRNA 9x10-16 Nothing consistent 

rs8050136 FTO GWAS None 1x10-12 
Alters BMI in general 
population 

rs9300039 Intergenic GWAS None 4x10-7 Nothing consistent 
rs864745 JAZF1 GWAS None 5x10-14 Nothing consistent 

rs12779790 
CDC123-
CAMK1D GWAS None 1x10-10 Nothing consistent 

rs7961581 
TSPAN8-
LGR5 GWAS None 1x10-9 Nothing consistent 

rs7578597 THADA GWAS None 1x10-9 Nothing consistent 
rs4607103 ADAMTS9 GWAS None 1x10-8 Nothing consistent 
rs10923931 NOTCH2 GWAS None 4x10-8 Nothing consistent 
rs2283228 KCNQ1 GWAS None 3x10-12 Nothing consistent 

Abbreviations: BMI, body mass index; GWAS, genome-wide association study; GWAS, genome-
wide association study; KO, knockout; N/C, not captured; LF-B3, variant hepatic nuclear factor.
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JAZF1 encodes a transcriptional repressor of NR2C2 (nuclear receptor subfamily, 

group C, member 2). It has been shown that mice deficient in NR2C2 have growth 

retardation, perinatal and early postnatal hypoglycemia178.  

Less is known about the other genes. IGF2BP2 binds to the key growth and insulin 

signaling molecule insulin-like growth factor 2 (IGFII) and is also expressed in the 

pancreatic islet181. SLC30A8 is a pancreatic beta-cell specific zinc transporter171. FTO gene is 

related to increased adiposity, which seems to explain its association with diabetes191. 

KCNQ1 is expressed in pancreatic islets178. CDC123 has a role in cell cycle regulation178, and 

TSPAN8 is a cell-surface glycoprotein expressed in carcinomas of pancreas178.   

The GWAS in American Indians suggested that SNPs on chromosome 3 near zinc 

finger protein 659 (ZNF659), chromosome 11 near Fanconi anemia, complementation group 

F (FANCF), chromosome 11 near zinc finger and BTB domain containing 7B (ZBTB15), and 

chromosome 12 near sentrin specific peptidase 1 (SENP1) confered susceptibility to 

younger-onset T2DM192. SNPs in or near four genes that showed evidence for association 

with T2DM in Mexican Americans: rs979752 and rs10500641 near ubiquilin-like (UBQLNL) 

and olfactory receptor, family 52, subfamily H, member 1 (OR52H1) on chromosome 11, 

rs2773080 and rs3922812 in or near Ral-A exchange factor (RALGPS2) on chromosome 1, 

and rs1509957 near early growth response 2 (EGR2) on chromosome 10193. In the Amish, the 

strongest T2DM association signal was observed on chromosome 7 in a functionally relevant 

candidate gene, Grb10 (growth factor receptor-bound protein 10), an adaptor protein that 

regulates insulin receptor signaling194. None of these common variants identified in 

Caucasians was observed in American Indians, Mexican Americans, and Amish. It is 
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possible that the relatively sparse density of the 100K SNP panel in these 3 GWAS compared 

to the GWAS SNP panel in Caucasians may fail to capture those common predisposing genes 

194. It is also possible that those T2DM susceptibility genes in Caucasians may not play a 

significant role in diabetes in other ethnic populations192, 193. 

6. TCF7L2 and T2DM 

 Of the T2DM susceptibility genes so far identified by GWAS, the SNP rs7903146 

within TCF7L2 has emerged as having by far the most pronounced effect on diabetes risk171. 

As one of the target genes of this dissertation work, I will discuss this gene, TCF7L2, in 

detail below.  

The discovery of TCF7L2 

 The deCODE Genetics group published a genome-wide linkage scan for T2DM in 

2003195. The authors reported suggestive evidence for linkage to a region in chromosome 10q 

with the LOD score of 1.69. When the interaction between the linkage peaks at 10q and 

5q34, another suggestive region, the LOD score at 10q increased to 4.06 if the analysis was 

restricted to families with a negative score at 5q34.  

 In February 2006, Grant et al. (2006) 2 reported a common microsatellite in the TCF7L2 

gene region  (DG10S478) that was associated with T2DM in an Icelandic population, with a 

convincing replication of this finding in two additional Caucasian samples. DG10S478 

marker is within a well-defined linkage disequilibrium (LD) block of 92.1kb and no other 

known genes reside within this LD block. Individuals heterozygous (38% of the population) 

and homozygous for the at-risk DG10S478 variant (7% of the population) had (prevalence) 

relative risks of 1.41 (95%CI: 1.17-1.70) and 2.27 (1.70, 3.04), respectively in the Icelandic 
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population. Importantly, they replicated the findings in additional samples from the US and 

Denmark. A population attributable risk of 21% was estimated in the three combined 

Caucasian populations. Grant et al. (2006) reported five SNPs, which showed an association 

with T2DM as well, with the strongest correlation to DG10S478 were rs12255372 (r2=0.95), 

rs7903146 (r2=0.78), rs7901695 (r2=0.61), rs11196205 (r2=0.43), and rs7895340 (r2=0.42) 

and recommended rs12255372 and rs7903146 be included in any replication effort2. 

Although some SNPs showed slightly higher estimated relative risks and lower p values in 

one or two of the cohorts, none demonstrated a stronger association to T2DM than 

DG10S478 when the results for all three cohorts were combined.  The association of T2DM 

with the at-risk variant was reportedly not modified by body mass; although carriers of the 

at-risk variant appeared to have an earlier age of onset. 

Confirmation of the original findings 

 Since Grant et al.2, common variants in the TCF7L2 gene have been compellingly 

associated with T2DM in subsequent replication studies4, however, among the large number 

of SNPs showing associations with T2DM, there are no obvious functional candidates. Table 

3 reviewed the characteristics of variants within TCF7L2 that have been investigated in 

subsequent replication efforts.   

Association studies  

 Since the first association study by Grant et al.2, a large number of papers have been 

published. A meta-analysis of 10 association studies suggested that TCF7L2 rs7903146 T 

allele was associated with T2DM (OR: 1.46; 95% CI: 1.42-1.51)4. There are also data from 
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other ethnic populations. For example, TCF7L2 is associated with T2DM in studies of 

individuals of Indian196, Japanese135, 197, Mexican-American198, West African199, Moroccan4, 

Table 3. Characterization of TCF7L2 intron variants from replication studies. 

Variant* 
TCF7L2 
location† 

Genomic 
position‡ 

Relative 
position§ 

MAF (Population)** 

Caucasian 
African-

American 

DG10S478 Intron 3 
114460845-
114461228 . 

0.27 (Iceland); 
0.26 (Denmark); 

0.25 (USA) . 
rs10885390 5’ to gene 114630787 -117.552 0.29 0.35 
rs12573128 Intron 3 114720787 -27.552 0.11 0.17 
rs11196175 Intron 3 114726604 -21.735 0.28  0 
rs7895307 Intron 3 114733951 -14.388 0.41 0.22 
rs7079711 Intron 3 114735778 -12.561 0.22  0.46 
rs4074718 Intron 3 114738606 -9.733 0.42 0.16 
rs11196181 Intron 3 114739008 -9.331 0.07  0 
rs17747324 Intron 3 114742493 -5.846 0.19  0.02 
rs7901695 Intron 3 114744078 -4.261 0.28  0.47 
rs4506565 Intron 3 114746031 -2.308 0.27  0.47 
rs7903146 Intron 3 114748339 0 0.25  0.29 
rs10885402 Intron 3 114751686 3.347 0.42 0.10 
rs6585198 Intron 3 114752226 3.887 0.40 0.12 
rs7896811 Intron 3 114756707 8.368 0.13  0.16 
rs4132670 Intron 3 114757760 9.421 0.27 0.28 
rs6585200 Intron 3 114758598 10.259 0.41 0.10 
rs6585201 Intron 3 114758772 10.433 0.41 0.13 
rs12354626 Intron 3 114762418 14.079 0.03 0 
rs7904519 Intron 3 114763916 15.577 0.41 0.10 
rs10885405 Intron 3 114767660 19.321 0.42 0.13 
rs10885406 Intron 3 114767713 19.374 0.42 0.11 
rs10787472 Intron 3 114771286 22.947 0.42 0.11 
rs11196192 Intron 3 114772277 23.938 0.05  0.04 
rs7924080 Intron 3 114777001 28.662 0.42 0.09 
rs12243326 Intron 3 114778805 30.466 0.21  0.29 
rs7077039 Intron 3 114779066 30.727 0.41 0.14 
rs7100927 Intron 3 114786037 37.698 0.40 0.10 
rs11196199 Intron 3 114786107 37.768 0.17  0.16 
rs17685538 Intron 3 114787461 39.122 0.18  0 
rs11592706 Intron 3 114788975 40.636 0.03 0 
rs7895340 Intron 4 114791515 43.176 0.40  0.13 
rs11196200 Intron 4 114791927 43.588 0.41 0.13 
rs11196203 Intron 4 114795849 47.51 0.17 0.15 
rs11196205 Intron 4 114797037 48.698 0.41  0.23 
rs10885409 Intron 4 114798061 49.722 0.42 0.13 
rs12255372 Intron 4 114798892 50.553 0.22  0.27 
rs12265291 Intron 4 114800229 51.89 0.42 0.10 



 

37 
 

Table 3. Characterization of TCF7L2 intron variants from replication studies. 

Variant* 
TCF7L2 
location† 

Genomic 
position‡ 

Relative 
position§ 

MAF (Population)** 

Caucasian 
African-

American 
rs11196208 Intron 4 114801305 52.966 0.42 0.13 
rs7077247 Intron 4 114802060 53.721 0.42 0.15 
rs12718338 Intron 4 114803036 54.697 0.40 0.14 
rs11196213 Intron 4 114811544 63.205 0.43  0.31 
rs3750804 Intron 4 114823840 75.501 0.31 0.06 
rs11196228 Intron 4 114854287 105.948 0.07  0 
rs911768 Intron 4 114864761 116.422 0.03 0.01 
rs290494 Intron 4 114875861 127.522 0.19  0.03 
rs3814573 Intron 4 114888083 139.744 0.41 0.08 
rs1555485 Intron 4 114902524 154.185 0.20  0 
rs290483 Intron 10 114905204 156.865 0.42 0.31 

*From published studies. †Intronic location from Ensemble ENST00000347863 (126). 
‡Genomic position on chromosome 10 in NCBI Build 35. §Genomic position (in kilobytes) 
relative to rs7903146. **from HapMap project data except for DG10S478. 
(http://www.hapmap.org). CEPH, Genomic DNA samples obtained for a panel of 92 unrelated 
individuals chosen from Centre d'Etude du Polymorphisme Human (CEPH) pedigrees comprised 
of UTAH (93%), French (4%), and Venezuelan (3%) samples purchased from Coriell Cell 
Repository; CEU, 30 mother-father-child trios from the CEPH collection, one of the populations 
studied in the HapMap project; MAF , minor allele frequency; YRI , 30 Yoruba mother-father-
child trios in Ibadan, Nigeria, one of the populations studied in the HapMap project. 

 

French186, Amish200 and Finnish201 ancestry, but not among the Pima Indian population202. 

Regarding the lack of association in Pima Indians, the authors hypothesized that other highly 

prevalent, unidentified genetic or environmental risk factors interacted with variants in 

TCF7L2 may result in no overall association in this population202. Table 4 reviewed the 

association studies that examined the association between TCF7L2 gene variations and 

T2DM and related traits in diverse populations.  

 It is worth noting that association studies in African Americans generated conflicting 

results. In the African-American participants of the Diabetes Prevention Program203, an Afro-

Caribbean sample from the UK population 204 and an African-American sample from 

Arkansas, US205,  the effect estimates were either close to the null or had a similar magnitude 

as those of their Caucasian counterparts.  Notably, no statistically significant associations 
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between TCF7L2 variants and T2DM were noted, possibly because of inadequate sample 

size. In contrast, the association between SNP rs7903146 of TCF7L2 and T2DM was 

replicated in families from West Africa (RR=1.45, 95% CI 1.19-1.77)199 and Moroccans 

(OR=1.56, p<0.0001)4. Interestingly, differences in minor allele frequency across these 5 

studies cannot explain these finding discrepancies. Compared to their Caucasian 

counterparts, populations with large amounts of African ancestry exhibit greater genetic 

diversity and some diabetes susceptibility variants may be maintained at higher or lower 

frequencies in these populations, when compared to populations with predominantly 

European ancestry 206. Furthermore, gene-gene and gene-environment interactions do play an 

important role in the pathogenesis of T2DM and may explain these study discrepancies. 

 A few studies assessed the association between TCF7L2 and metabolic syndrome207, 208. 

No association with metabolic syndrome defined by the International Diabetes Federation 

[OR: 1.08 (0.90-1.28)] or National Cholesterol Education Program [OR: 1.01 (0.83-1.23)] 

criteria was noted in a population-based sample from the Cooperative Health Research in the 

Region of Augsburg survey 207. Among patients aged ≥65 years with diabetes or impaired 

fasting glucose, carriers of the rs7903146 T allele (risk allele) were less likely to have two or 

more metabolic syndrome features [OR: 0.55 (0.30-0.99)] 208. When metabolic syndrome 

features were studied separately, T allele carriers had an inverse association with 

hypertension [OR: 0.65 (0.35-1.20)], abdominal obesity [0.67 (0.36-1.20)], high triglycerides 

[0.58 (0.33-0.99)], and low HDL [0.67 (0.37-1.21)]208.    



 

 

39 

Table 4. Review of association studies examining the relationship between TCF7L2 polymorphisms and T2DM and related 
traits. 

Author (year) Study Population 
Study 
Design Sample Size Outcome Measure Estimates PAF 

Covariate 
adjustments 

Barber (2007)209 

UK females and 
males; Finnish 

females Case-control 
UK: 2834; 

Finnish: 1700 PCOS OR 0.95-1.10 . . 

Bielinski 
(2008)210 

Caucasian and 
African American 

adults Cohort 13369 

CHD, CVD, 
stroke, all cause 

mortality HR 0.92-1.12 . 

Age, gender, 
race, smoking, 

BMI 
Bodhini 
(2007)211 

Asian Indian females 
and males Case-control 2069 T2DM OR 1.29-1.56 . 

Age, gender, 
and BMI 

Cauchi (2006) 
212 

French females and 
males Case-control 4866 T2DM OR 1.60-1.89 

31%- 
37.7% . 

    

CHD, severe 
retinopathy, 

severe 
nephropathy . 

No evidence of 
association . . 

    BMI . 

Reverse 
association in the 

T2DM group 
(p=8.0*10-3) . . 

Cauchi (2006) 
213 

French females and 
males Prospective 4976 T2DM and IFG HR, OR 

T2DM: 1.19-1.37 
T2DM&IFG: 1.14-

1.20 
10.4%-
13.3% . 

Cauchi (2007)4 

Moroccan females 
and males (cases: 
BMI<30; controls: 

BMI<27) Case-control 931 T2DM 
Allelic 

OR 1.56 . . 

 
Austrian females and 

males Case-control 1563 T2DM 
Allelic 

OR 1.52   

Cauchi (2007)214 
French Caucasian 
females and males Case-control 6385 T2DM, Obesity OR 1.14-1.88 . Age and gender 

Chandak (2006) 
215 

Indian females and 
males Case-control 1354 T2DM OR 1.39-2.28 . . 

Dahlgren 
(2007)216 

Swedish elderly 
males Cohort 1142 T2DM OR 1.88-2.15 . . 

Damcott (2006) Amish females and Case-control 618 T2DM OR 0.69-1.57 . Age, sex and 
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Table 4. Review of association studies examining the relationship between TCF7L2 polymorphisms and T2DM and related 
traits. 

Author (year) Study Population 
Study 
Design Sample Size Outcome Measure Estimates PAF 

Covariate 
adjustments 

200 males pedigree 
structure. 

De Silva 
(2007)217 

UK females and 
males 

community-
based, cases 

enriched 
case-control 

community-
based: 2586 

case enriched: 
2700 T2DM OR 1.16-2.47 

17-
27% No adjustment 

Duan (2007)218 
French cardiac 

females and males Case-control 1037 T2DM OR 1.52-2.48 . No adjustment 
Elbein  (2007) 
205 

Europid females and 
males Case-control 378 T2DM OR 1.46-1.72 . . 

 
African American 
females and males Case-control 554 T2DM OR 0.93-1.10 . . 

Field (2006) 219 
UK Caucasian 

females and males Case-control 13795 T1DM OR 0.90-0.99 . . 

Fisher (2009)220 
German aged 35–65 

years Case–cohort 3042 T2DM HR 1.51  

Age, gender, 
BMI, sports 
activity, 
smoking, energy 
intake etc. 

Florez (2006)203 

US Caucasian, A-A, 
Hispanic, Asian, 
American Indian 

with IGT Clinical trial 

W: 1671 
A-A: 605 
H: 497 
A: 128 
A-I: 82 T2DM HR 1.00-1.55 

6%-
11% . 

Folsom (2008)221 

US Caucasian and 
African American 
females and males Cohort 13117 Colon cancer HR 1.25 17% 

Age, gender, 
study center and 
other covariates 

Grant (2006) 2 

Icelandic, Danish 
and US Caucasian 
females and males Case-control 

Iceland: 2116 
Denmark: 767 

US: 891 T2DM RR 1.37-3.29 
17%-
28% Relatedness 

Groves (2006) 
222 

UK Caucasian 
females and males Case-control 

Population-
based: 4732 

Family-based: 
388 T2DM OR 1.30-1.90 ~16% . 
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Table 4. Review of association studies examining the relationship between TCF7L2 polymorphisms and T2DM and related 
traits. 

Author (year) Study Population 
Study 
Design Sample Size Outcome Measure Estimates PAF 

Covariate 
adjustments 

Guo (2007)202 
Pima Indian females 

and males Case-control 

Population-
based: 3501 

Family-based: 
1037 T2DM OR 1.02-1.04 . 

Age, gender, 
birth year, and 

family 
membership 

Hayashi  (2007) 
197 

Japanese females ad 
males Case-control 2694 T2DM OR 1.30-4.35 . . 

Helgason 
(2007)199 

Danish whites, 
Icelandic whites, and 

West Africans Case-control 

Danish:3549; 
Icelandic: 

11135; 
African: 1069 T2DM OR 1.20-1.49 . No adjustment 

Horikoshi (2007) 
223 

Japanese females and 
males 

Cross-
sectional 2029 T2DM OR 1.18-1.69 ~3% 

Age, gender, 
and BMI 

Humphries 
(2006) 204 

UK European whites, 
Indian Asians and 
Afro-Caribbean 

females and males 

Prospective 
and Cross-
sectional 

W: 3999 
I-A: 1150 
A-C; 629 T2DM HR, OR 

HR: 1.25-1.61 
OR: 1.05-2.11 . 

Age, center, 
tyiglyceride, 
CRP, systolic 
blood pressure 

and BMI. 
Kimber  (2007) 
224 

UK European whites 
females and males Case-control 6516 T2DM OR 1.35-2.11 18.9% 

Age, gender and 
obesity 

Kirchhoff 
(2008)225 

German Caucasians 
at increased risk of 

diabetes 
Cross-

sectional 1065 continuous traits . . . . 

Korner (2007)226 
German Caucasian 

children Case-control 1312 

Obesity, glucose 
and insulin 
measures OR 

0.78 in obese 
children . . 

Kottgen 
(2008)227 

Caucasian and 
African Americans Cohort ARIC: 11061 

chronic kidney 
disease HR 1.17-1.20 . 

Age, gender, 
center, diabetes, 
fasting glucose, 

systolic BP, 
antihypertensive 

medication 
intake, BMI, 

smoking 
Kunika (2008)228 Japanese females and Cross- 2877 T2DM OR 1.59 . . 
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Table 4. Review of association studies examining the relationship between TCF7L2 polymorphisms and T2DM and related 
traits. 

Author (year) Study Population 
Study 
Design Sample Size Outcome Measure Estimates PAF 

Covariate 
adjustments 

males sectional 
Lehman (2007) 
198 

Mexican Americans 
females and males 

Family-based 
prospective 545 T2DM HR 0.92-1.15 . relatedness 

Loos (2007)229 
Europid non-diabetic 
females and males 

population-
based 1697 continuous traits . . . . 

Lyssenko 
(2007)230 

Swedish and Finnish 
females and males Prospective 

Swedish: 
7061; 

Finnish: 2651 T2DM OR 1.27-3.17 . 

Age, time of 
follow-up, BMI, 

gender and 
family history 

of DM 
Mayans (2007) 
231 

Sweden females and 
males 

Matched 
case-control 1792 T2DM OR 1.08-1.47 . No adjustment 

Marquezine 
(2008)232 

a Brazilian cohort of 
patients with known 

coronary heart 
disease; a general 
Brazilian cohort Cohort 

CHD patients: 
560;  

General 
residents: 

1449 T2DM OR 

CHD patients: 
1.57;  

General residents: 
1.15 . Age and gender 

Marzi (2007)207 
German females and 

males 

Case-control; 
cross-

sectional 
C-C: 2369; C-

S: 1404 T2DM; MS OR 
T2DM: 1.16-2.00; 

MS: 1.01-1.08 . 
Age, gender and 

BMI 

Melzer (2006)208 
Italian females and 
males >=65 years 

Cross-
sectional 1155 T2DM; IFG OR 1.06-1.64 . Age and gender 

Munoz (2006)  
233 

US Caucasian and A-
A nondiabetic 

females aged 7-57 
years 

Cross-
sectional 

W: 138 
A-A: 118 Si, AIRg, DI * . . 

Age, BMI, 
percent fat mass 
and ethnicity. 

Ng (2007)234 
Hong Kong Chinese 
females and males Case-control 852 T2DM OR 1.27-2.11 . . 

Palmer (2008)235 

Hispanic American 
and African 

American non-
diabetic females and 

males 
Prospective 

cohort 
H-A: 1268 
A-A: 581 

Continuous 
traits . . . 

Age, gender, 
center and BMI 

Qu (2007)236 Mixed European Family-based 2658 T1DM † . . . 
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Table 4. Review of association studies examining the relationship between TCF7L2 polymorphisms and T2DM and related 
traits. 

Author (year) Study Population 
Study 
Design Sample Size Outcome Measure Estimates PAF 

Covariate 
adjustments 

females and males 

Raitakari 
(2007)237 

Finnish healthy 
children and 
adolescents 

Prospective 
cohort 1663 IFG OR 1.1-2.9 9% 

Age, gender, 
waist, physical 
activity, and 

insulin 

Rees (2008)238 

A UK-resident South 
Asian cohort of 
Punjabi ancestry Case-control 1268 T2DM OR 1.31 . . 

Saadi (2008)239 
Emirati females and 

males 
Cross-

sectional 368 
Prediabetes, 
T2DM, MS OR 

Prediabetes/T2DM: 
1.16-1.28 . 

BMI, waist 
circumference 

Salonen 
(2007)184 

Caucasian females 
and males GWAS 997 T2DM OR 1.64-1.71 . . 

Saxena (2006) 
240 

Scandinavia, Poland 
and US females and 

males 
Family-based 
case-control 8310 T2DM OR 1.40 . . 

Schafer (2007)241 
German non-diabetic 
females and males 

Cross-
sectional 1110 

Continuous 
traits . . . . 

Scott (2006) 201 
Finnish females and 

males Case-control 2104 T2DM OR 1.01-1.39 . . 

Scott (2007)177 
Finnish females and 

males GWAS 2335 T2DM OR 1.37 . . 

Shaat  (2007) 242 
Scandinavia pregnant 

women Case-control 1881 GDM OR 1.49-2.05 . Age? 

Sladek (2007) 186 
French females and 

males Case-control 5511 T2DM OR 1.65-2.77 28% . 

Thorsby 
(2008)243 

Norway females and 
males 

Cross-
sectional 2949 T2DM OR 1.47-1.61 . 

diabetes in 
family, waist, 

physical 
activity, BMI, 
SBP and HDL 

Vliet-
Ostaptchouk 
(2006) 244 

Dutch Breda females 
and males Case-control 1422 T2DM OR 1.29-1.96 10% Age, sex, BMI 

Watanabe (2007) Mexican Americans Family-based 572 GDM ‡ . . . 
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Table 4. Review of association studies examining the relationship between TCF7L2 polymorphisms and T2DM and related 
traits. 

Author (year) Study Population 
Study 
Design Sample Size Outcome Measure Estimates PAF 

Covariate 
adjustments 

245 females and males case-control 

Wang (2007)246 
Finnish females and 

males 

Clinical trial; 
cross-

sectional; 
study on 

offspring of 
T2DM 
patients 

C-T: 507; 
C-S: 1766 

men; 
Offspring: 

238 
nondiabetics 

T2DM, 
continuous traits HR; OR 

HR: 1.14-1.71; 
OR: 1.96-3.10 . 

HR: Age, 
gender, BMI, 

and FPG; 
OR: Age, BMI 

Weedon (2006) 
247 

UK Caucasian 
females and males Case-control 6077 T2DM OR 1.48 . . 

Zhang (2006) 248 

US Caucasian 
females and males 
aged 30-75 years Case-control 3520 T2DM OR 1.42-1.99 18.7% 

Age, race, time 
of blood draw, 
fasting status, 

physical 
activity, 

smoking, family 
history of 

diabetes and 
history of 

hypertension. 
Abbreviations: A = Asian; A-A = African American; A-C = Afro-Caribbean; A-I = American Indian; AIRg = acute insulin response to glucose; DI = 
disposition index; H = Hispanic; I-A = Indian Asian; IFG = impaired fasting glucose; IGT = impaired glucose tolerance; MS = metabolic syndrome; NGT = 
normal glucose tolerance; OR = odds ratio; PAF = population attributable fraction; PCOS = polycystic ovary syndrome; Si = insulin sensitivity; T2DM = 
T2DM mellitus; W = White. 
*ANCOVA and ordinary least-squares regression were used to compare the difference between genotypes. 
†Transmission ratio=369/342 (X2=1.0, p=0.311). SNP rs7903146 has no association with T1D. 
‡Linear modeling was used to compare quantitative traits between genotypes under an additive genetic model. 
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 Among the large number of SNPs showing associations with T2DM, there are no 

obvious functional candidates. The SNP rs7903146 T allele has shown strongest association 

with T2DM and remains the most likely candidate, however, rs7903146 is located in an 

intron with no obvious mechanism by which it affects the activity of TCF7L26. Since no 

coding SNPs are correlated with rs7903146, it is likely that rs7903146 is closest to the 

unidentified functional variant 6 and the causal variant acts through affecting the expression 

of TCF7L2249. Because of this and in order to avoid the multiple comparison problem, my 

dissertation work on the associations between TCF7L2 and prediabetes/retinal 

abnormalities/characteristics will focus on SNP rs7903146 only. Table 5 reviewed 

association studies examining the relationship between SNP rs7903146 and diabetes-related 

discrete traits such as T2DM, IFG, IGT.  
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Table 5. Review of association studies examining the relationship between TCF7L2 SNP rs7903146 and T2DM and related 
traits. 

Author (Year) Study Population 
No. 

cases/controls 
Genotype 
contrast OR (95% CI) 

Covariate 
adjustments Notes 

T2DM       
Bodhini (2007)211 Asian Indian females and males 1031/1038 T/T vs. C/C 1.50 (1.08-2.08) Age, gender, and BMI  
   C/T vs. C/C 1.44 (1.18-1.76) Age, gender, and BMI  
Cauchi (2006) 212 French females and males 4734/4998* T vs. C 1.69 (1.55-1.83) N/A  
  1218/1439 T/T vs. C/C 2.86 N/A  
  1936/2268 C/T vs. C/C 1.66 N/A  

Cauchi (2006) 213 French females and males 278/8868* T vs. C 1.19 (0.92-1.53) N/A 
Baseline 
analysis 

  364/5850 T vs. C 1.37 (1.10-1.70) N/A 
Incident T2DM 

over 9ys 

  642/5850 T vs. C 1.30 (1.10-1.55) N/A 

Incident and 
Prevalent 
T2DM 

Cauchi (2007)4 

Moroccan females and males 
(cases: BMI<30; controls: 

BMI<27) 516/415 T vs. C 1.56 (1.92-1.89)? N/A  

Cauchi (2007)214 
French Caucasian females and 

males  T vs. C 1.88 (1.69-2.10) Age and gender BMI<30 
    1.56 (1.33-1.84) Age and gender 30<=BMI<40 
    1.24 (1.03-1.50) Age and gender BMI>=40 
 Austrian females and males 486/1075 T vs. C 1.52 (1.29-1.78) N/A  
Chandak (2006) 215 Indian females and males 2010/753* T vs. C 1.46 (1.22-1.75) N/A  
  532/239 T/T vs. C/C 2.17 (1.44-3.28) N/A  
  814/365 C/T vs. C/C 1.39 (1.08-1.78) N/A  
Dahlgren (2007)216 Swedish elderly males 168/1770 T/T vs. C/C 2.15 (1.20-3.85) N/A  
   C/T vs. C/C 1.88 (1.32-2.67) N/A  

Damcott (2006) 200 Amish females and males 137/142 T/T vs. C/C 1.46 (p=0.07) 
Age, sex and pedigree 

structure  

De Silva (2007)217 
UK community-based females 

and males 487/2099 T vs. C 1.32 (1.13-1.52) N/A  
   T/T vs. C/C 1.92 (1.38-2.65) N/A  
   C/T vs. C/C 1.16 (0.94-1.43) N/A  
 UK case enriched females and 487/2099 T vs. C 1.58 (1.38-1.80) N/A  
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Table 5. Review of association studies examining the relationship between TCF7L2 SNP rs7903146 and T2DM and related 
traits. 

Author (Year) Study Population 
No. 

cases/controls 
Genotype 
contrast OR (95% CI) 

Covariate 
adjustments Notes 

males 
   T/T vs. C/C 2.47 (1.82-3.34) N/A  
   C/T vs. C/C 1.65 (1.35-2.02) N/A  
Elbein  (2007) 205 Europid females and males 190/183 T vs. C 1.72 (1.25-2.37) N/A  

 
African American females and 

males 369/186 T vs. C 1.05 (0.80-1.37) N/A  

Florez (2006) 203 

US Caucasian, A-A, Hispanic, 
Asian, American Indian with 

IGT 382/. T/T vs. C/C 1.55 (1.20-2.01) .  
  560/. C/T vs. C/C 1.00 (0.84-1.19) .  
 US Caucasians with IGT 198/. T/T vs. C/C 1.62 (1.16-2.25) .  
  300/. C/T vs. C/C 1.03 (0.81-1.30) .  
 US A-As with IGT <79/. T/T vs. C/C 1.20 (0.66-2.17) .  
  126/. C/T vs. C/C 1.09 (0.76-1.56) .  
 US Hispanics with IGT <76/. T/T vs. C/C 2.26 (1.14-4.50) .  
  90/. C/T vs. C/C 0.89 (0.56-1.41) .  
 US Asians with IGT <37/. T/T vs. C/C 0.92 (0.11-7.48) .  
  <37/. C/T vs. C/C 0.55 (0.23-1.33) .  
 US American Indians with IGT <30/. T/T vs. C/C NA .  
  <30/. C/T vs. C/C 1.15 (0.35-3.78) .  

Grant (2006) 2 
Icelandic, Danish and US 

Caucasian females and males 1630/1780 T vs. C 1.54 (1.39-1.70) Relatedness  

 
Icelandic Caucasian females 

and males 1066/788 T vs. C 
1.50 (1.31-1.71) 

 Relatedness  

 
Danish Caucasian females and 

males 214/498 T vs. C 
1.46 (1.15-1.85) 

 No adjustment  

 
US Caucasian females and 

males 350/494 T vs. C 
1.71 (1.40-2.09) 

 No adjustment  

Groves (2006) 222 
UK Caucasian females and 

males 2001/2476 T vs. C 1.36 (1.24-1.48) No adjustment  
  1041/1392 T/T vs. C/C 1.90 (1.54-2.33) No adjustment  
  1731/2259 C/T vs. C/C 1.35 (1.19-1.53) No adjustment  
Guo (2007)202 Pima Indian females and males 578/459 T vs. C 1.04 (0.82-1.32) Age, gender, birth year Population-
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Table 5. Review of association studies examining the relationship between TCF7L2 SNP rs7903146 and T2DM and related 
traits. 

Author (Year) Study Population 
No. 

cases/controls 
Genotype 
contrast OR (95% CI) 

Covariate 
adjustments Notes 

and family membership based 

  1561/1940 T vs. C 1.02 (0.68-1.54) 
Age, gender, birth year 
and family membership Family-based 

Hayashi  (2007) 197 Japanese females ad males  T vs. C 1.30 (1.00- 1.68)   
Helgason (2007)199 Danish whites 1149/2400 T vs. C 1.49 (1.34-1.66) No adjustment  
 Icelandic whites 1185/9950 T vs. C 1.47 (1.33-1.62) No adjustment  
 West Africans 621/448 T vs. C 1.45 (1.19-1.77) No adjustment  
Horikoshi (2007) 
223 Japanese females and males 1205/824 T vs. C 1.69 (1.21-2.36) Age, gender and BMI  

  . T vs. C 2.02 (1.28-3.21) . 

The analysis 
restricted to 

those with BMI 
lower than the 

median 

  . T vs. C 1.32 (0.81-2.17) . 

The analysis 
restricted to 

those with BMI 
higher than the 

median 
Humphries (2006) 
204 

UK European whites females 
and males 1459/2493 T vs. C 1.54 (1.35-1.76) No adjustment  

  794/1492 T/T vs. C/C 2.11 (1.69-2.63) No adjustment  
  1266/2296 C/T vs. C/C 1.43 (1.25-1.64) No adjustment  

 
UK Indian Asians females and 

males 837/300 T vs. C 1.53 (1.17-2.00) No adjustment  
  426/189 T/T vs. C/C 1.64 (1.03-2.63) No adjustment  
  741/274 C/T vs. C/C 1.50 (1.14-1.99) No adjustment  

 
UK Afro-Caribbean females 

and males 307/311 T vs. C 1.26 (0.92-1.73) No adjustment  
  171/187 T/T vs. C/C 1.32 (0.74-2.33) No adjustment  
  277/285 C/T vs. C/C 1.25 (0.90-1.75) No adjustment  

Kimber  (2007) 224 
UK European whites females 

and males 3225/3291 T/T vs. C/C 2.03 (1.67-2.47) 
Age, gender and 

obesity  
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Table 5. Review of association studies examining the relationship between TCF7L2 SNP rs7903146 and T2DM and related 
traits. 

Author (Year) Study Population 
No. 

cases/controls 
Genotype 
contrast OR (95% CI) 

Covariate 
adjustments Notes 

   C/T vs. C/C 1.36 (1.21-1.52) 
Age, gender and 

obesity  

Lehman (2007) 198 
Mexican Americans females 

and males . T/T vs. C/C 1.24 Relatedness p=0.03 
  . C/T vs. C/C 1.09 Relatedness  

Lyssenko (2007)230 Swedish females and males 1422/5639 T vs. C 1.35 (1.23-1.48) 

Age, time of follow-up, 
BMI, gender and 

family history of DM  

   T/T vs. C/C 1.47 (1.15-1.89) 

Age, time of follow-up, 
BMI, gender and 

family history of DM  

   C/T vs. C/C 1.57 (1.37-1.80) 

Age, time of follow-up, 
BMI, gender and 

family history of DM  

 Finnish females and males 150/2501 T vs. C 1.43 (1.10-1.87) 

Age, time of follow-up, 
BMI, gender and 

family history of DM  

   T/T vs. C/C 3.17 (1.54-6.52) 

Age, time of follow-up, 
BMI, gender and 

family history of DM  

   C/T vs. C/C 1.48 (1.04-2.12) 

Age, time of follow-up, 
BMI, gender and 

family history of DM  
Mayans (2007) 231 Sweden females and males 872/857 T vs. C 1.42 (1.21-1.69) No adjustment  
   T/T vs. C/C 1.85 (1.18-2.90) No adjustment  
   C/T vs. C/C 1.49 (1.21-1.83) No adjustment  
Marzi (2007)207 German females and males 647/1632 T vs. C 1.36 (1.18-1.58) Age, gender and BMI Additive model 
   T/T vs. C/C 1.92 (1.38-2.67) Age, gender and BMI  
   C/T vs. C/C 1.33 (1.09-1.62) Age, gender and BMI  

Melzer (2006)208 
Italian females and males >=65 

years 127/717 T vs. C 1.17 (0.80-1.72) Age and gender  
   T/T vs. C/C 1.64 (0.93-2.87) Age and gender  
   C/T vs. C/C 1.06 (0.70-1.60) Age and gender  
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Table 5. Review of association studies examining the relationship between TCF7L2 SNP rs7903146 and T2DM and related 
traits. 

Author (Year) Study Population 
No. 

cases/controls 
Genotype 
contrast OR (95% CI) 

Covariate 
adjustments Notes 

Ng (2007)234 
Hong Kong Chinese females 

and males 433/419 T vs. C 1.27 (0.71-2.29) No adjustment  
Salonen (2007)184 Caucasian females and males 500/497 T vs. C 1.71 (1.41-2.08) No adjustment  

Saxena (2006) 240 
Scandinavia, Poland and US 

females and males 8018 T vs. C 1.40(1.30-1.50) No adjustment 

Combined 
case-control 
and family-

based samples 

  6790 T vs. C 1.39 (1.29-1.50) No adjustment 

Combined 
case-control 
samples only 

  . T/T vs. C/C 1.86 (1.55-2.23) No adjustment 

Combined 
case-control 
samples only 

  . C/T vs. C/C 1.40 (1.27-1.55) No adjustment 

Combined case 
control 

samples only 

 Scandinavian 946 T vs. C 1.27 (1.03–1.58) No adjustment 
Case-control 

group 

 Swedish 966 T vs. C 1.45 (1.18–1.77) No adjustment 
Case-control 

group 

 Polish 1,942 T vs. C 1.38 (1.20–1.59) No adjustment 
Case-control 

group 

 US 2,246 T vs. C 1.45 (1.27–1.64) No adjustment 
Case-control 

group 

 Botnia 430 T vs. C 1.47 (1.06–2.03) No adjustment 
Case-control 

group 

 Swedish/Finnish 260 T vs. C 1.02 (0.69–1.51) No adjustment 
Case-control 

group 

 All case-control groups 6,790 T vs. C 1.39 (1.29–1.50) No adjustment 
Case-control 

group 

 Botnia sibs 260 T vs. C 1.83 (0.75–1.63) No adjustment 
Family-based 

group 
 Swedish/Finnish sibs 212 T vs. C 1.56 (0.84–2.91) No adjustment Family-based 
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Table 5. Review of association studies examining the relationship between TCF7L2 SNP rs7903146 and T2DM and related 
traits. 

Author (Year) Study Population 
No. 

cases/controls 
Genotype 
contrast OR (95% CI) 

Covariate 
adjustments Notes 

group 

 Scandinavian trios 756 T vs. C 1.42 (1.09–1.86) No adjustment 
Family-based 

group 

 All family-based groups 1,228 T vs. C 1.48 (1.17–1.87) No adjustment 
Family-based 

group 
Scott (2006) 201 Finnish females and males 1113/920 T vs. C 1.33 (1.14-1.56) No adjustment Additive model 
Scott (2007)177 Finnish females and males 1161/1174 T vs. C 1.37 (1.31-1.43) No adjustment  
Shaat  (2007) 242 Scandinavia pregnant women 644/1180 T vs. C 1.49 (1.28-1.75) Age?  
  330/719 T/T vs. C/C 2.05 (1.41-2.99) Age?  
  526/1042 C/T vs. C/C 1.56 (1.26-1.93) Age?  
Sladek (2007) 186 French females and males . T/T vs. C/C 2.77 (0.50) . GWAS 
  . C/T vs. C/C 1.65 (0.19) . GWAS 
Vliet-Ostaptchouk 
(2006) 244 Dutch Breda females and males 496/907 T vs. C 1.41 (1.19-1.66) Age, sex and BMI  
  275/542 T/T vs. C/C 1.96 (1.37-2.80) Age, sex and BMI  
  424/824 C/T vs. C/C 1.37 (1.08-1.73) Age, sex and BMI  

Wang (2007)246 Finnish females and males 
clinical trial 

(n=507) T/T vs. C/C 1.14 (0.49-2.63) 
Age, sex, BMI and 

FPG  

   C/T vs. C/C 1.29 (0.88-1.89) 
Age, sex, BMI and 

FPG  

Weedon (2006) 247 
UK Caucasian females and 

males 2229/3538 T vs. C 1.48 (1.36-1.60) .  
Nonobese T2DM       
Cauchi (2006) 212 French females and males 2999/4998* T vs. C 1.89 (1.72-2.09) No adjustment  
  671/1439 T/T vs. C/C 3.63 No adjustment  
  1040/2268 C/T vs. C/C 1.85 No adjustment  
IFG       

Melzer (2006)208 
Italian females and males >=65 

years 114/830 T vs. C 1.25 (0.94-1.67) Age and gender  
   T/T vs. C/C 1.42 (0.75-2.69) Age and gender  
   C/T vs. C/C 1.45 (0.94-2.23) Age and gender  

Munoz (2006)250 
Non-diabetic European 

American females 13/125 T vs. C Not reported . 
rs7903146 is 

not statistically 
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Table 5. Review of association studies examining the relationship between TCF7L2 SNP rs7903146 and T2DM and related 
traits. 

Author (Year) Study Population 
No. 

cases/controls 
Genotype 
contrast OR (95% CI) 

Covariate 
adjustments Notes 

associated IFG 

 
Non-diabetic African American 

females 11/107 T vs. C Not reported . 

rs7903146 is 
not statistically 
associated IFG 

Raitakari (2007)237 
Finnish healthy children and 

adolescents(n=1663) . T/T vs. C/C 2.3 (1.0-5.3) 

Age, gender, waist, 
physical activity, and 

insulin  

   C/T vs. C/C 1.4 (1.0-2.1) 

Age, gender, waist, 
physical activity, and 

insulin  
IGT       

Damcott (2006)200 Amish females and males 139/342 T/T vs. C/C 1.55 (p=0.03) 
Age, sex and pedigree 

structure  
T2DM & IFG        

Cauchi (2006) 213 French females and males 1084/8868* T vs. C 1.14 (1.00-1.31) No adjustment 
Baseline 
analysis 

  920/5850* T vs. C 1.20 (1.04-1.40) No adjustment 

Incident T2DM 
& IFG over 9 

years 

  2004/5850* T vs. C 1.19 (1.07-1.38) No adjustment 

Incident and 
Prevalent 

T2DM & IFG 

Melzer (2006)208 
Italian females and males >=65 

years 241/703 T vs. C 1.29 (1.04-1.60) Age and gender  
   T/T vs. C/C 1.67 (1.05-2.65) Age and gender  
   C/T vs. C/C 1.28 (0.93-1.76) Age and gender  
T2DM & IGT       

Damcott (2006) 200 Amish females and males 276/342 T/T vs. C/C 1.57 (p=0.008) 
Age, sex and pedigree 

structure  
T1DM       

Field (2006) 219 
UK Caucasian females and 

males 11804/14530* T vs. C 0.99 (0.94-1.05) No adjustment  
  3480/4297 T/T vs. C/C 0.97 (0.85-1.10) No adjustment  
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Table 5. Review of association studies examining the relationship between TCF7L2 SNP rs7903146 and T2DM and related 
traits. 

Author (Year) Study Population 
No. 

cases/controls 
Genotype 
contrast OR (95% CI) 

Covariate 
adjustments Notes 

  5413/6637 T/C vs. C/C 1.01 (0.93-1.08) No adjustment  
Prediabetes/T2DM       

Saadi (2008)239 Emirati females and males 180/188 T vs. C 1.28 (0.89-1.84) 
Age, gender, BMI, 
waist circumference  

Metabolic Syndrome      

Marzi (2007)207 German females and males 730/662 T vs. C 1.05 (0.88-1.25) Age, gender and BMI 

International 
Diabetes 

Federation 
definition 

  370/1024 T vs. C 0.96 (0.79-1.16) Age, gender and BMI 
NCEP 

definition 
Saadi (2008)239 Emirati females and males 180/188 T vs. C No association  Data not shown 
PCOS       
Barber (2007)209 UK females and males 358/2476 T vs. C 0.95 (0.81-1.17) No adjustment  
 Finnish females 476/936 T vs. C 1.10 (0.90-1.34) No adjustment  
Two or more metabolic syndrome features      
Melzer (2006)208 Italian diabetics >=65 years . CT/TT vs. CC 0.37 (0.15-0.92) Age and gender  

 
Italian diabetics and IFG >=65 

years . CT/TT vs. CC 0.55 (0.30-0.99) Age and gender  
High blood pressure or meds.      
Melzer (2006)208 Italian diabetics >=65 years . CT/TT vs. CC 0.37 (0.16–0.90) Age and gender  

 
Italian diabetics and IFG >=65 

years . CT/TT vs. CC 0.65(0.35–1.20) Age and gender  
Obesity       

Cauchi (2007)214 
French Caucasian females and 

males . T vs. C 1.16 (0.96-1.40) Age 

Non-diabetics: 
BMI>=40 vs. 

<30 

  . T vs. C 1.13 (0.99-1.29) Age 

Non-diabetics: 
30<=BMI<40 

vs. <30 

  . T vs. C 1.69 (1.46-1.95) Age 

Diabetics: 
BMI>=40 vs. 

<30 
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Table 5. Review of association studies examining the relationship between TCF7L2 SNP rs7903146 and T2DM and related 
traits. 

Author (Year) Study Population 
No. 

cases/controls 
Genotype 
contrast OR (95% CI) 

Covariate 
adjustments Notes 

  . T vs. C 1.36 (1.20-1.55) Age 

Diabetics: 
30<=BMI<40 

vs. <30 
Melzer (2006)208 Italian diabetics >=65 years . CT/TT vs. CC 0.53(0.20–1.35) Age and gender  

 
Italian diabetics and IFG >=65 

years . CT/TT vs. CC 0.67(0.36–1.22) Age and gender  
High TG       
Melzer (2006)208 Italian diabetics >=65 years . CT/TT vs. CC 0.68(0.32–1.43) Age and gender  

 
Italian diabetics and IFG >=65 

years . CT/TT vs. CC 0.58(0.33–0.99) Age and gender  
Low HDL       
Melzer (2006)208 Italian diabetics >=65 years . CT/TT vs. CC 0.83(0.37–1.86) Age and gender  

 
Italian diabetics and IFG >=65 

years . CT/TT vs. CC 0.67(0.37–1.21) Age and gender  
Myocardial infarction       
Melzer (2006)208 Italian diabetics >=65 years . CT/TT vs. CC 0.16(0.03–0.84) Age and gender  

 
Italian diabetics and IFG >=65 

years . CT/TT vs. CC 0.270.08–0.92) Age and gender  
Poor renal function      
Melzer (2006)208 Italian diabetics >=65 years . CT/TT vs. CC 3.15(1.27–7.81) Age and gender  

 
Italian diabetics and IFG >=65 

years . CT/TT vs. CC 1.74(0.96–3.17) Age and gender  
Retinopathy      

Cauchi (2006)251 French males and females . T vs. C Not reported . 

rs7903146 not 
associated with 

severe 
retinopathy 

Melzer (2006)208 Italian diabetics >=65 years . CT/TT vs. CC 7.15(0.87–58.51) Age and gender  

 
Italian diabetics and IFG >=65 

years . CT/TT vs. CC 6.13(0.77–48.86) Age and gender  
Dementia       

Melzer (2006)208 Italian diabetics >=65 years . CT/TT vs. CC 
10.67(1.00–

113.70) Age and gender  
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Table 5. Review of association studies examining the relationship between TCF7L2 SNP rs7903146 and T2DM and related 
traits. 

Author (Year) Study Population 
No. 

cases/controls 
Genotype 
contrast OR (95% CI) 

Covariate 
adjustments Notes 

 
Italian diabetics and IFG >=65 

years . CT/TT vs. CC 11.62(1.38–97.57) Age and gender  
 



 

56 
 

Biological mechanism 

Wnt signaling pathway 

  The exact mechanism by which the TCF7L2 gene influences the susceptibility to 

T2DM is not clear. TCF7L2, also known as TCF4, is a nuclear receptor for cadherin-

associated protein, beta 1 (β-catenin)252. As a consequence, TCF7L2 may mediate the 

canonical Wingless and Int (Wnt) signaling pathway252. The Wnt signaling pathway is 

critical for normal embryogenesis, cell proliferation and motility. Mutations in different 

molecules involved in Wnt signaling have been identified in several cancers, e.g. colorectal, 

pancreatic, kidney, ovarian and uterine cancers 252-254. Animal studies have suggested that the 

TCF7L2-null mice died shortly after birth due to the lack of epithelial stem-cell 

compartments in the small intestine255. The importance of Wnt signaling in glucose 

homeostasis is further highlighted by the recent finding that common variants in HHEX and 

IDE genes are associated with T2DM177, 186, 187, 190. HHEX is a target of Wnt signaling.  

Impaired insulin secretion vs. insulin resistance 

  More studies have found associations with impaired insulin secretion than with 

increased insulin resistance203, 229, 230. Table 6 reviewed associated studies on rs7903146 and 

diabetes-related continuous traits including measurements on insulin secretion and insulin 

resistance.  
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Table 6. Review of association studies examining the relationship between TCF7L2 rs7903146 and continuous traits by 
variants. 
Outcome Author (Year) Study Population Genotype CC Genotype CT Genotype TT P value 
BMI (kg/m2) Bodhini (2007)211 Asian Indian females and males 23.7 ± 4.6 23.2 ± 4.4 24.3 ± 5.1 NS 
 Cauchi (2006) 212 French controls 22.75 ± 2.25 22.87 ± 2.31 22.83 ± 2.27 0.76 
  French T2DM subjects 30.40 ± 6.30 30.01 ± 5.71 29.29 ± 5.75 8.0*10-3 

 Cauchi (2006) 213 French controls at baseline (n=4434) 24.49 ± 3.67 24.51 ± 3.70 24.23 ± 3.52 0.39 
  French controls at end of study (n=2925) 25.29 ± 3.89 25.27 ± 3.74 25.14 ± 3.76 0.84 
 Guo (2007)202 Pima Indian females and males (n=3501) 37.4 ± 8.6 36.2 ± 8.1 34.2 ± 6.8 <0.05 
 Kimber  (2007) 224 UK European controls (n=3291) 26.7 (4.7) 26.8 (4.6) 26.9 (4.5) 0.802 
  UK European cases (n=3225) 31.6 (6.3) 31.3 (6.0) 30.4 (6.3) 0.002 

 Kirchhoff (2008)225 
German non-diabetic Caucasians 
(n=1065) 27.21±0.54 27.01±0.30 27.65 ± 0.30  

 Loos (2007)229 
Europid non-diabetic females and males 
(n=1697) 26.6 ± 0.4 26.8 ± 0.2 27.0 ± 0.2 0.24 

 Lyssenko (2007)230 Swedish females and males 24.4± 3.3 24.5± 3.4 24.5± 3.5 NS 
  Finnish females and males 24.2± 3.5 25.9± 4.0 25.6± 4.2 P<0.05 

 Melzer (2006)208 
Italian females and males >=65 years 
(n=920) 27.37 ± 3.56 27.18 ± 4.16 27.75 ± 4.06 0.165 

 Saadi (2008)239 Emirati females and males (n=368) 29.1 ± 6.2 28.5 ± 6.3 28.4 ± 6.7 0.22 

 Saxena (2006) 240 
Scandinavia, Poland and US females and 
males (n=8258) 28.4 ± 5.4 28.4 ± 5.3 28.2 ± 5.2 P>0.05 

 Schafer (2007)241 
German non-diabetic females and males 
(n=1110) 28.2 ± 1.0 28.9 ± 0.4 29.5 ± 0.4 0.51 

Waist (cm) Bodhini (2007)211 Asian Indian females and males 85.2 ± 10.9 82.9 ± 11.4 83.8 ± 11.8 NS 
 Kimber  (2007) 224 UK European controls (n=3291) 92.9 (13.1) 92.5 (13.0) 91.7 (13.4) 0.549 
  UK European cases (n=3225) 104.8 (14.3) 104.3 (13.6) 102.1 (14.5) 0.001 

 Loos (2007)229 
Europid non-diabetic females and males 
(n=1697) 91.3 ± 0.9 92.5 ± 0.4 92.9 ± 0.4 0.21 

 Melzer (2006)208 
Italian females and males >=65 years 
(n=920) 91.35 ± 10.24 91.93 ± 10.66 93.79 ± 9.88 0.009 

 Saadi (2008)239 Emirati females and males (n=368) 90.6 ± 14.9 87.9 ± 13.2 84.8 ± 12.9 0.02 
Fasting Plasma 
Glucose (mmol/l) 

Bodhini (2007)211 Asian Indian females and males 4.7 ± 0.5 4.7 ± 0.4 4.6 ± 0.4 NS 
Cauchi (2006) 212 French controls 5.11 ± 0.47 5.12 ± 0.48 5.09 ± 0.49 0.68 

 Cauchi (2006) 213 French controls at baseline (n=4434) 5.17 ± 0.47 5.18 ± 0.47 5.16 ± 0.49 0.61 
  French controls at end of study (n=2925) 5.03 ± 0.43 5.03 ± 0.45 5.01 ± 0.44 0.87 
 Damcott (2006) 200 Amish nondiabetic subjects (n=664) 5.10 ± 0.04 5.13 ± 0.04 5.03 ± 0.07 0.92 
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Table 6. Review of association studies examining the relationship between TCF7L2 rs7903146 and continuous traits by 
variants. 
Outcome Author (Year) Study Population Genotype CC Genotype CT Genotype TT P value 
 Guo (2007)202 Pima Indian females and males (n=3501) 5.01 ± 0.55 4.96 ± 0.57 5.36 ± 0.51 0.74 

 Korner (2007)226 
German Caucasian obese children 
(n=283) 4.83 ± 0.10 4.79 ± 0.04 4.68 ± 0.04 0.02 

 Lyssenko (2007)230 Swedish females and males 4.9± 0.5 4.9± 0.5 4.9± 0.5 NS 
  Finnish females and males 5.6± 0.5 5.6± 0.6 5.5± 0.6 P<0.05 

 Loos (2007)229 
Europid non-diabetic females and males 
(n=1697) 5.61 ± 0.06 5.54 ± 0.03 5.49 ± 0.02 0.042 

 Mayans (2007) 231 Sweden non-diabetics (n=857) 5.40.7 5.3 1.0 5.2 0.7 0.16 

  
Sweden family-based non-diabetics 
(n=83) 5.4 0.1 4.7 0.7 5.0 0.6 0.17 

 Melzer (2006)208 
Italian females and males >=65 years 
(n=920) 5.31 ± 1.27 5.19  ±1.23 5.08 ±1.22 0.028 

 Saadi (2008)239 Emirati females and males (n=368) 5.9 ± 1.9 5.9 ± 1.8 6.3 ± 2.5 0.30 

 Schafer (2007)241 
German non-diabetic females and males 
(n=1110) 5.2 ± 0.07 5.1 ± 0.02 5.1 ± 0.02 0.25 

Glucose at 2h 
OGTT (mmol/l) 

Bodhini (2007)211 Asian Indian females and males 6.0 ± 1.3 5.7 ± 1.1 5.6 ± 1.0 

P<0.05 ( 
TT vs. 
CC) 

Guo (2007)202 Pima Indian females and males (n=3501) 6.79 ± 1.69 7.13 ± 1.60 8.22 0.08 

 Korner (2007)226 
German Caucasian obese children 
(n=283) 6.28 ± 0.22 6.13 ± 0.09 5.89 ± 0.08 0.04 

 Lyssenko (2007)230 Swedish females and males 5.9±1.6 5.8±1.5 5.8±1.5 NS 
  Finnish females and males 6.5±1.6 6.4±1.5 6.1±1.5 P<0.05 
 Mayans (2007) 231 Sweden non-diabetics (n=857) 6.51.7 6.5 1.5 6.4 1.3 0.66 

  
Sweden family-based non-diabetics 
(n=83) 5.2 0.9 5.2 0.9 6.3 0.8 0.16 

 Schafer (2007)241 
German non-diabetic females and males 
(n=1110) 6.5 ± 2.0 6.9 ± 2.4 6.6 ± 1.7 0.9 

 Schafer (2007)241 
German non-diabetic females and males 
(n=1110) 6.7 ± 0.2 6.2 ± 0.07 6.1 ± 0.07 0.06 

Fasting plasma 
insulin (pmol/l) 

Cauchi (2006) 212 French controls 39.17 ± 19.01 38.08 ± 25.79 35.56 ± 19.64 0.08 

Korner (2007)226 
German Caucasian obese children 
(n=283) 88.6 ± 10.0 88.8 ± 5.3 80.5 ± 4.1 P>0.1 

Melzer (2006)208 Italian females and males >=65 years 70.48 ± 1.55 78.87 ± 1.70 81.74 ± 1.69 0.030 
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Table 6. Review of association studies examining the relationship between TCF7L2 rs7903146 and continuous traits by 
variants. 
Outcome Author (Year) Study Population Genotype CC Genotype CT Genotype TT P value 

(n=920) 

 Loos (2007)229 
Europid non-diabetic females and males 
(n=1697) 48.6 ± 2.1 48.9 ± 1.0 49.5 ± 0.9 0.60 

 Schafer (2007)241 
German non-diabetic females and males 
(n=1110) 49.8 ± 3.1 53.4 ± 1.7 62.0 ± 2.1 0.004 

Fasting plasma 
insulin (mU/l) Saxena (2006) 240 

Scandinavia, Poland and US females and 
males (n=995) 7.27 ± 4.24 9.19 ± 6.66 8.94 ± 6.02 P>0.05 

Fasting intact 
proinsulin 
(pmol/l) Loos (2007)229 

Europid non-diabetic females and males 
(n=1697) 4.46 ± 0.20 3.89 ± 0.08 3.56 ± 0.07 P<0.001 

Fasting 32,33 split 
proinsulin 
(pmol/l) Loos (2007)229 

Europid non-diabetic females and males 
(n=1697) 4.69 ± 0.28 4.06 ± 0.11 3.85 ± 0.10 0.0028 

Peak Insulin 
(pmol/l) Korner (2007)226 

German Caucasian obese children 
(n=283) 1080 ± 153 1029 ± 59 978 ± 58 P>0.1 

Ln(Fasting 
plasma insulin) 
(pmol/l) Cauchi (2006) 213 French controls at baseline (n=4434) 3.68 ± 0.51 3.66 ± 0.51 3.61 ± 0.53 0.04 
 Saadi (2008)239 Emirati females and males (n=368) 1.60 ± 0.29 1.64 ± 0.33 1.61 ± 0.31 0.8 
Ln(Fasting 
plasma insulin) 
(mmol/l) 

Damcott (2006) 200 Amish females and males (n=664) 4.11 ± 0.03 4.09 ± 0.03 4.12 ± 0.06 0.92 

 French controls at end of study (n=2925) 3.90 ± 0.57 3.89 ± 0.53 3.82 ± 0.55 0.09 
Ln30min-plasma 
insulin (uU/ml) Guo (2007)202 Pima Indian females and males (n=3501) 2.35 ± 0.27 2.34 ± 0.24 2.10 0.15 
2h insulin 
(pmol/l) Schafer (2007)241 

German non-diabetic females and males 
(n=1110) 372 ± 34 356 ± 17 442 ± 19 0.12 

Proinsulin 
(pmol/l) Dahlgren (2007)216 Swedish elderly males (n=1142) 6.8 ± 5.0 6.9 ± 4.1 8.3 ± 8.2 

CT vs 
TT:0.02; 

CC 
vs.TT: 
0.001 

Log (2-h OGTT 
insulin) (pmol/L) Saadi (2008)239 Emirati females and males (n=368) 2.30 ± 0.38 2.33 ± 0.40 2.35 ± 0.35 0.5 
HbA1c (%) Kimber  (2007) 224 UK European controls (n=3291) 5.63 (0.5) 5.60 (0.4) 5.56 (0.4) 0.003 
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Table 6. Review of association studies examining the relationship between TCF7L2 rs7903146 and continuous traits by 
variants. 
Outcome Author (Year) Study Population Genotype CC Genotype CT Genotype TT P value 
  UK European cases (n=3225) 7.88 (1.4) 7.72 (1.5) 7.64 (1.5) 0.012 

 Loos (2007)229 
Europid non-diabetic females and males 
(n=1697) 5.46 ± 0.04 5.38 ± 0.02 5.35 ± 0.02 0.012 

 Saadi (2008)239 Emirati females and males (n=368) 5.9 ± 1.1 6.0 ± 1.3 6.3 ± 1.9 1.0 
HOMA 
(mmol*mU/I2) 

Lyssenko (2007)230 Swedish females and males 2.2± 2.2 2.1± 2.9 1.9± 1.5 NS 
 Finnish females and males 1.3± 1.0 1.4± 0.9 1.3± 1.0 NS 

HOMA-B Cauchi (2006) 212 French controls 73.09 ± 54.07 69.69 ± 52.87 67.24 ± 42.76 0.18 

 Loos (2007)229 
Europid non-diabetic females and males 
(n=1697) 77.7 ± 2.4 81.0 ± 1.2 83.3 ± 1.1 0.028 

 Melzer (2006)208 
Italian females and males >=65 years 
(n=920) 95.75 ± 1.69 106.23 ± 1.61 113.19 ± 1.57 0.001 

Ln(HOMA-B) 
(AU) 

Cauchi (2006) 213 French controls at baseline (n=4434) 4.41 ± 0.52 4.38 ± 0.52 4.35 ± 0.53 0.04 
 French controls at end of study (n=2925) 4.73 ± 0.54 4.71 ± 0.52 4.66 ± 0.60 0.18 

Log (HOMA2-
%B) (%) Saadi (2008)239 Emirati females and males (n=368) 1.81 ± 0.28 1.78 ± 0.34 1.80 ± 0.30 0.9 
HOMA-IR Cauchi (2006) 212 French controls 1.26 ± 0.67 1.23 ± 0.88 1.15 ± 0.69 0.12 
 Damcott (2006) 200 Amish nondiabetic subjects (n=664) 2.81 ± 0.13 2.64 ± 0.12 2.78 ± 0.21 0.70 

  Korner (2007)226 
German Caucasian obese children 
(n=283) 2.75 ± 0.36 2.68 ± 0.17 2.31 ± 0.12 >0.1 

 Loos (2007)229 
Europid non-diabetic females and males 
(n=1697) 92.9 ± 4.0 91.3 ± 1.8 90.1 ± 1.6 0.45 

 Melzer (2006)208 
Italian females and males >=65 years 
(n=920) 82.80 ± 1.55 76.68 ± 1.66 74.06 ± 1.63 0.053 

 Saxena (2006) (127) 
Scandinavia, Poland and US females and 
males (n=995) 1.88 ± 1.29 2.30 ± 2.06 2.19 ± 1.63 p>0.05 

Ln(HOMA-IR) 
(AU) Cauchi (2006) 213 French controls at baseline (n=4434) 0.41 ± 0.55 0.39 ± 0.55 0.34 ± 0.56 0.07 
  French controls at end of study (n=2925) 0.61 ± 0.60 0.60 ± 0.56 0.52 ± 0.58 0.09 
Log (HOMA2-IR) 
(mmol pmol/L2) Saadi (2008)239 Emirati females and males (n=368) −0.12 ± 0.29 −0.07 ± 0.32 −0.11 ± 0.31 0.8 
Glycated 
hemoglobin (%) Bodhini (2007)211 Asian Indian females and males 5.7 ± 0.5 5.6 ± 0.4 5.5 ± 0.4 NS 
 Cauchi (2006) 212 French controls 5.21 ± 0.40 5.22 ± 0.38 5.19 ± 0.35 0.62 
GLP-1 (pmol/l) at Schafer (2007)241 German non-diabetic females and males 17.3 ± 2.0 17.3 ± 1.3 16.1 ± 0.9 0.91 
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Table 6. Review of association studies examining the relationship between TCF7L2 rs7903146 and continuous traits by 
variants. 
Outcome Author (Year) Study Population Genotype CC Genotype CT Genotype TT P value 
0 min (n=155) 
GLP-1 (pmol/l) at 
30 min Schafer (2007)241 

German non-diabetic females and males 
(n=155) 38.1 ± 3.5 38.8 ± 4.0 34.1 ± 2.1 0.45 

GLP-1 (pmol/l) at 
120 min Schafer (2007)241 

German non-diabetic females and males 
(n=155) 28.9 ± 2.4 29.0 ± 1.7 28.9 ±1.5 0.87 

Cholesterol 
(mmol/l) Bodhini (2007)211 Asian Indian females and males 4.67 ± 0.91 4.65 ± 0.89 4.54 ± 0.95 NS 
 Cauchi (2006) 212 French controls 5.67 ± 0.95 5.64 ± 0.93 5.67 ± 0.95 0.65 
 Cauchi (2006) 213 French controls at baseline (n=4434) 5.72 ± 1.01 5.69 ± 0.99 5.72 ± 0.94 0.69 
  French controls at end of study (n=2925) 5.72 ± 0.90 5.73 ± 0.91 5.69 ± 0.93 0.77 
 Kimber  (2007) 224 UK European controls (n=3291) 5.32 (1.1) 5.35 (1.1) 5.25 (1.0) 0.375 
  UK European cases (n=3225) 4.48 (0.9) 4.45 (0.9) 4.46 (0.9) 0.757 
Cholesterol 
(mg/dl) Melzer (2006)208 

Italian females and males >=65 years 
(n=920) 208.83 ± 1.21 214.35 ± 1.20 212.92 ± 1.21 0.680 

HDL (mmol/l) Bodhini (2007)211 Asian Indian females and males 1.12 ± 0.24 1.12 ± 0.26 1.08 ± 0.24 NS 
 Cauchi (2006) 212 French controls 1.72 ± 0.42 1.73 ± 0.44 1.74 ± 0.46 0.86 
 Cauchi (2006) 213 French controls at baseline (n=4434) 1.64 ± 0.42 1.64 ± 0.43 1.66 ± 0.44 0.74 
  French controls at end of study (n=2925) 1.54 ± 0.36 1.53 ± 0.36 1.55 ± 0.39 0.67 
 Kimber  (2007) 224 UK European controls (n=3291) 1.65 (0.5) 1.64 (0.5) 1.66 (0.5) 0.563 
  UK European cases (n=3225) 1.37 (0.4) 1.37 (0.4) 1.39 (0.4) 0.306 

HDL (mg/dl) Melzer (2006)208 
Italian females and males >=65 years 
(n=920) 56.32 ± 1.30 54.13 ± 1.31 52.55 ± 1.29 0.008 

LDL (mmol/l) Bodhini (2007)211 Asian Indian females and males 2.94 ± 0.70 2.90 ± 0.78 2.85 ± 0.79 NS 
 Cauchi (2006) 212 French controls 3.51 ± 0.90 3.47 ± 0.86 3.51 ± 0.88 0.67 
 Cauchi (2006) 213 French controls at baseline (n=4434) 3.56 ± 0.93 3.55 ± 0.90 3.57 ± 0.90 0.84 
  French controls at end of study (n=2925) 3.66 ± 0.79 3.67 ± 0.77 3.63 ± 0.77 0.73 
 Kimber  (2007) 224 UK European controls (n=3291) 2.98 (1.0) 2.98 (1.0) 2.92 (0.9) 0.632 
  UK European cases (n=3225) 2.17 (0.8) 2.12 (0.8) 2.14 (0.8) 0.393 

LDL (mg/dl) Melzer (2006)208 
Italian females and males >=65 years 
(n=920) 126.73 ± 1.33 132.27 ± 1.29 131.38 ± 1.31 0.495 

TG (mmol/l) Bodhini (2007)211 Asian Indian females and males 1.17 ± 0.01 1.19 ± 0.02 1.32 ± 0.02 NS 
 Cauchi (2006) 212 French controls 0.99 ± 0.64 0.97 ± 0.58 0.96 ± 0.54 0.61 
 Cauchi (2006) 213 French controls at baseline (n=4434) 1.14 ± 0.76 1.12 ± 0.79 1.10 ± 0.66 0.59 
  French controls at end of study (n=2925) 1.14 ± 0.59 1.16 ± 0.61 1.10 ± 0.61 0.25 
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Table 6. Review of association studies examining the relationship between TCF7L2 rs7903146 and continuous traits by 
variants. 
Outcome Author (Year) Study Population Genotype CC Genotype CT Genotype TT P value 
 Kimber  (2007) 224 UK European controls (n=3291) 1.56 (1.0) 1.64 (1.3) 1.56 (1.0) 0.326 
  UK European cases (n=3225) 2.21 (1.5) 2.25 (1.4) 2.21 (1.4) 0.756 

TG (mg/dl) Melzer (2006)208 
Italian females and males >=65 years 
(n=920) 102.65 ± 1.56 113.5 ± 1.58 118.24 ± 1.57 0.006 

Serum creatinine 
(µmol/l) Kimber  (2007) 224 UK European controls (n=3291) 94.5 (19.4) 95.2 (18.4) 93.3 (19.5) 0.419 
  UK European cases (n=3225) 98.8 (24.1) 99.8 (27.0) 97.5 (23.4) 0.252 
GAUC Damcott (2006) 200 Amish nondiabetic subjects (n=664) 18.81 ± 0.32 18.99 ± 0.30 18.96 ± 0.51 0.28 

 Loos (2007)229 
Europid non-diabetic females and males 
(n=1697) 15.8 ± 0.3 15.3 ± 0.1 15.0 ± 0.1 0.013 

 Saxena (2006) (127) 
Scandinavia, Poland and US females and 
males (n=721) 339.8 ± 262.8 271.4 ± 214.5 270.0 ± 195.3 p>0.05 

AUCglucose 
(mmol/l*min) 

Elbein  (2007) 205 Europid non-diabetics 
834 (809–

859) 867 (838–898) 875 (804–952) 0.16 

 African American non-diabetics 
794 (758–

833) 821 (777–869) 863 (731–1020) NS 
IAUC Damcott (2006) 200 Amish nondiabetic subjects (n=664) 665.2 ± 41.0 637.7 ± 39.3 630.3 ± 66.4 0.54 

 Loos (2007)229 
Europid non-diabetic females and males 
(n=1697) 621 ± 26 594 ± 12 616 ± 11 0.54 

 Saxena (2006) 240 
Scandinavia, Poland and US females and 
males (n=721) 3,911 ± 3,658 4,971 ± 3,176 5,229 ± 3,248 P<<0.05 

AUCinsulin 
(pmol/l × min) 

Elbein  (2007) 205 Europid non-diabetics 

34930 
(31687–
38504) 

41361 (36948–
46301) 

48460 (36562–
64230) 0.016 

 African American non-diabetics 

50277 
(43594–
57983) 

38899 (33007–
45842) 

45851 (26597–
79041) 0.06 

AUC C-peptide: 
AUC glucose 
(pmol:mmol) Kirchhoff (2008)225 

German non-diabetic Caucasians 
(n=1065) 316±5 298±5 278±11 0.0002 

AUC proinsulin: 
AUC glucose 
(pmol:mmol) Kirchhoff (2008)225 

German non-diabetic Caucasians 
(n=1065) 0.065±0.006 0.054±0.002 0.053±0.002 0.019 

Insulin Schafer (2007)241 German non-diabetic females and males 17.8 ± 1.2 18.2 ± 0.5 16.8 ± 0.5 0.02 
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Table 6. Review of association studies examining the relationship between TCF7L2 rs7903146 and continuous traits by 
variants. 
Outcome Author (Year) Study Population Genotype CC Genotype CT Genotype TT P value 
sensitivityOGTT 
(arbitrary units) 

(n=1110) 

Insulin sensitivity 
(pmol/liter per 
min) 

Palmer (2008)235 
Hispanic American non-diabetic females 
and males (n=1268) 2.11 ± 1.81 2.20 ± 1.83 2.01 ± 1.70 0.2317 

 
African American non-diabetic females 
and males (n=581) 1.81 ± 1.22 1.81 ± 1.34 1.42 ± 0.75 0.6079 

Insulin sensitivity 
(AU) Kirchhoff (2008)225 

German non-diabetic Caucasians 
(n=1065) 17.02±1.15 18.10±0.53 16.93±0.48 0.011 

Insulin 
secretionOGTT 
(pmol/mmol) Schafer (2007)241 

German non-diabetic females and males 
(n=1110) 292 ± 10 301 ± 5 319 ± 5 0.003 

Insulin/glucose 
ratio (pmol/mmol) Schafer (2007)241 

German non-diabetic females and males 
(n=1110) 124 ± 13 127 ± 5 143 ± 5 0.003 

Insulin-to-glucose 
ratio at 30min Loos (2007)229 

Europid non-diabetic females and males 
(n=1697) 88.4 ± 5.9 86.1 ± 2.7 88.6 ± 2.5 0.70 

Insulin-to-glucose 
ratio at 60min Loos (2007)229 

Europid non-diabetic females and males 
(n=1697) 108.5 ± 8.6 120.2 ± 4.5 134.0 ± 4.5 0.0035 

IS Damcott (2006) 200 Amish nondiabetic subjects (n=664) 0.82 ± 0.04 0.77 ± 0.04 0.78 ± 0.09 0.39 
Si (10–5 
(min*[pmol/l] –1) Damcott (2006) 200 

Non-Amish nondiabetic Caucasians 
(n=48) 5.62 ± 0.44 3.77 ± 0.71 2.67 ± 1.18 0.03 

Si (10-4 min-1 
[uU/ml]-1) 

Elbein  (2007) 205 Europid non-diabetics 
3.17 (2.79-

3.60) 2.94 (2.54-3.40) 1.74 (1.24-2.44) 0.004 

 African American non-diabetics 
2.70 (2.35-

3.10) 2.91 (2.46-3.43) 2.34 (1.45-3.77) NS 

Sg (min−1)b 
 Elbein  (2007) 205 Europid non-diabetics 

0.0158 
(0.0147–
0.0169) 

0.0167 (0.0153–
0.0181) 

0.0141 
(0.0116–0.017) 0.21 

  African American non-diabetics 

0.0175 
(0.0155–
0.0197) 

0.0170 (0.0147–
0.0195) 

0.0135 (0.009–
0.0203) NS 

AIRg (pmol/l) Damcott (2006) 200 
Non-Amish nondiabetic Caucasians 
(n=48) 510.9 ± 44.9 496.3 ± 77.6 244.6 ± 123.1 0.05 

AIRg(pmol/l×min) Elbein  (2007) 205 Europid non-diabetics 
2183 (1925–

2476) 
2074 (1796–

2394) 
2501 (1793–

3488) 0.56 
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Table 6. Review of association studies examining the relationship between TCF7L2 rs7903146 and continuous traits by 
variants. 
Outcome Author (Year) Study Population Genotype CC Genotype CT Genotype TT P value 

 African American non-diabetics 
3456 (2820–

4230) 
3018 (23270–

3846) 
3498 (1740–

7026) NS 

AIR (pmol/liter) Palmer (2008)235 
Hispanic American non-diabetic females 
and males (n=1268) 

806.98 ± 
664.31 730.62 ± 642.30 

687.81 ± 
748.99 0.0319 

  
African American non-diabetic females 
and males (n=581) 

963.97 ± 
841.56 793.63 ± 703.28 

754.01 ± 
524.66 0.2591 

LnAIR (uU/ml) Guo (2007)202 Pima Indian females and males (n=3501) 2.36 ± 0.28 2.32 ± 0.27 2.01 0.06 

Insulinogenic 
index (mU/mmol) 

Saxena (2006) 240 
Scandinavia, Poland and US females and 
males (n=995) 10.9 ± 12.7 16.5 ± 50.5 18.1 ± 33.1 P<<0.05 

Lyssenko (2007)230 Swedish females and males 9.5± 4.9 9.2± 5.5 10.2± 5.3 P<0.05 
  Finnish females and males 4.6± 3.3 5.1± 4.0 5.4± 4.3 NS 

Insulinogenic 
index 
(pmol/mmol) 

Elbein  (2007) 205 Europid non-diabetics 
91.5 (81.9–

102.1) 
97.8 (86.1–

111.1) 
102.0 (74.3–

140.0) 0.64 

 African American non-diabetics 
170 (137–

212) 110 (85–141) 127 (55–291) 0.033 

DI (Si x AIRg) Damcott (2006) 200 
Non-Amish nondiabetic Caucasians 
(n=48) 2,674 ± 249 1,941 ± 422 824 ± 670 0.02 

 Elbein  (2007) 205 Europid non-diabetics 
1152 (1001–

1326) 1061 (903–1248) 726 (501–1052) 0.067 

  African American non-diabetics 
1596 (1278–

1993) 
1450 (1112–

1890) 
1361 (634–

2922) NS 
DI (mU2/l2) Lyssenko (2007)230 Swedish females and males 7.1± 6.2 7.2± 5.4 8.1± 6.2 P<0.05 
  Finnish females and males 4.3± 3.7 4.5± 3.6 4.8± 3.8 NS 

 Saxena (2006) 240 
Scandinavia, Poland and US females and 
males (n=995) 22.5 ± 28.9 35.8 ± 112.9 42.6 ± 79.9 P<<0.05 

DI (min-1) Palmer (2008)235 
Hispanic American non-diabetic females 
and males (n=1268) 

1348.80 ± 
1208.10 

1307.78 ± 
1245.86 

1231.26 ± 
1297.01 0.0725 

  
African American non-diabetic females 
and males (n=581) 

1541.38 ± 
1386.08 

1242.28 ± 
1096.36 

1032.92 ± 
932.11 0.1547 

GAUC, glucose area under the OGTT curve; HOMA-IR, homeostatis model assessment of insulin resistance; IAUC, insulin area under the OGTT curve; 
IS, insulin secretion; WHR = Waist –to-Hip ratio  

 

 



 

65 
 

 The finding that the variants within TCF7L2 are associated with a decreased insulin 

secretion has been supported by subsequent association studies200, 201, 203, 213, 215, 229, 230, 240, 241. 

For example, in the Diabetes Prevention Study, carriers of the T risk allele at rs7903146 had 

significantly lower levels of insulin secretion than did CC homozygotes (P < 0.001 for 

corrected insulin response)203. A study by Saxena et al. suggested that the insulinogenic 

index (P = 0.003) and insulin disposition index (P = 0.004) for the rs7903146 risk allele was 

reduced ~50% in homozygous individuals 240.  However, Munoz et al. noticed that, in non-

diabetic women, rs12255372 was associated with reduced insulin secretion but not 

rs7903146233.  

 A study by Cauchi et al.212 demonstrated that the TCF7L2 gene is highly expressed in 

the pancreas which apparently contradicts the murine models 256. The significant expression 

in human pancreatic β-cells suggests that TCF7L2 may be involved in β-cell development 

and/or function, and differentiation from the precursor cells212. Damcott et al. (2006) found 

that variants within TCF7L2 were associated with insulin resistance in the Amish 200. Authors 

put forth the hypothesis that variants with TCF7L2 disrupt adipogenesis and/or adipocyte 

function by altering the transcriptional regulation of CEBPA and PPARG, two important 

regulators of adipogenesis for β-catenin/TCF complex, leading to deposition of triglycerides 

in peripheral tissues and resulting in insulin resistance200. Moreover, Chandak et al. found an 

association of the rs12255372 risk allele in non-diabetic Indian controls with higher 

glycaemia and higher HOMA-insulin resistance, suggesting defects in insulin secretion and 

an increase in insulin resistance215. A study by Elbein et al. suggested that TCF7L2 was 

associated with reduced insulin sensitivity, but not insulin secretion in US participants of 

European descent 205.  
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  Additional evidence for a role of TCF7L2 in the regulation of insulin secretion comes 

from a birthweight study. Freathy et al. 257genotyped the rs7903146 variant in 15,709 

individuals from six studies, and in 8344 mothers from three studies. Each fetal copy of the 

T2DM risk allele was associated with an 18-g increase in birthweight (P = 0.001), and each 

maternal copy with a 30-g increase in offspring birthweight (P = 2.8 × 10−5). The association 

still holds (31 g, corrected P = 0.003) when stratified by fetal genotype. This suggests that 

the association was primarily driven by maternal genotype. They also analyzed diabetes-

related traits in 10 314 non-diabetic individuals. From these analyses, they suggested the 

most likely mechanism for the birthweight effect is that the risk allele reduces maternal 

insulin secretion [the disposition index was reduced by 0.15 standard deviations 

(P = 1 × 10−4). This would result in elevated maternal blood glucose levels in pregnancy and 

hence increased offspring birthweight.  

  Why do TCF7L2 mutations impair insulin secretion? The exact mechanism is still 

unclear.  It has been suggested that variants of TCF7L2 gene influence the susceptibility to 

T2DM through altered transcriptional regulation of insulinotropic hormone glucagon-like 

peptide 1 (GLP-1), a peptide secreted by the intestinal endocrine L-cells2, 256. Dominant-

negative TCF7L2 was shown to repress proglucagon gene mRNA expression and GLP-1 

synthesis. GLP-1 can lower blood glucose levels through the stimulation of insulin secretion 

and biosynthesis, the inhibition of glucagon release and gastric emptying and the 

enhancement of peripheral insulin sensitivity256. GLP-1-based therapies for T2DM are 

currently marketed such as Byetta, an injectable GLP-1 analogue. Alternatively, as TCF7L2 

is part of the WNT signaling252, a pathway critical for normal embryogenesis, cell 
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proliferation and motility, an effect on beta-cell mass, pancreatic beta-cell development 

and/or beta-cell function implicates itself.  

TCF7L2 and BMI-related traits  

  It is worth noting that results on the association between BMI and TCF7L2 were 

inconsistent2, 201, 203, 224, 237, 244. Several studies reported a negative association between BMI 

and TCF7L22, 203, 224, 244, however, Kimber et al.224 found that this inverse association was 

only noted in diabetic patients, not in controls.  Another two studies did not observe any 

association with BMI201, 237. It has been suggested that a chronic reduction in the anabolic 

effect of insulin may explain the association of TCF7L2 variants with BMI in diabetic 

patients, but not in controls249.  

No studies to date have demonstrated an additive interaction between body mass traits 

and TCF7L2 variants. The study by Duan et al., which evaluated the interaction between 

obesity and SNP rs12255372 among French patients with established coronary heart disease, 

found no evidence for effect modification on the multiplicative scale (p>0.34) 218. Another 

study by Wang et al. did not find an interaction between rs12255372 and BMI or lean body 

mass in Finnish men aged 50 to 70 years, either246. In contrast, a multiplicative interaction 

was noted in a European Caucasian (rs7903146: p=0.001; rs12255372: p=0.04) and a 

Japanese population (rs7903146: p=0.031) 204, 223. Both studies found that the risk of T2DM 

increased in lean individuals whereas the risk decreased in obese/over-weight individuals. 

For individuals with a lower BMI, the risk of T2DM increased as BMI decreased204. 

Watanabe et al. reported an interaction between SNP rs12255372 of TCF7L2 and percent 

body fat (p=0.016) on 30-minute plasma insulin concentrations in families of a proband with 
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previous gestational diabetes mellitus in Mexican Americans 245. Watanabe et al. further 

proposed that TCF7L2 variants may have dual effects, limiting β-cell compensation through 

acute effects in lean people, but minimizing the insulin secretion defects related to adiposity 

245. The mechanism of action of TCF7L2 variants in the context of obesity and/or other 

metabolic impairments is an important area for further research. 

B. Diabetic retinopathy 

 Diabetic retinopathy, one of the common and severe complications of T2DM, is a 

leading cause of blindness in people 20 to 74 years of age258-260. Diabetic retinopathy remains 

an important problem with the rapid increase of prevalence of diabetes worldwide.   

1. Clinical manifestation of diabetic retinopathy 

The earliest clinical signs of diabetic retinopathy are microaneurysms, small 

outpouchings from retinal capillaries, and dot intraretinal hemorrhages261. These signs are 

present in nearly 80 percent of those with T2DM for 20 years262. As the disease progresses, 

patients with preproliferative retinopathy have an increase in the number and size of 

intraretinal hemorrhages. This may be accompanied by cotton-wool spots; both of these signs 

indicate regional failure of the retinal microvascular circulation, which results in ischemia261.  

Proliferative diabetic retinopathy involves the formation of new blood vessels that 

develop from the retinal circulation. New vessels can extend into the vitreous cavity of the 

eye and can hemorrhage into the vitreous, resulting in visual loss. Late in the course of the 

disease, in the presence of severe retinal hypoxia, new blood vessels may form within the 

stroma of the iris and may extend, with accompanying fibrosis, into the structures that drain 

the anterior chamber angle of the eye261.  
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Another important change is diabetic macular edema, which involves the breakdown 

of the blood–retinal barrier, with leakage of plasma from small blood vessels in the macula, 

the central portion of the retina that is responsible for the major part of visual function. This 

causes swelling of the central retina. Resorption of the fluid elements from plasma leads to 

the deposition of its lipid and lipoprotein components and the formation of hard exudates. 

Although diabetic macular edema does not cause total blindness, it frequently leads to severe 

loss of central vision and is often difficult to successfully treat with laser photocoagulation261.  

 

2. Epidemiology of diabetic retinopathy 

 The Wisconsin Epidemiologic Study of Diabetic Retinopathy (WESDR) is the first 

epidemiological study to estimate the prevalence and incidence of diabetic retinopathy in the 

US263. This study was designed to examine all persons receiving care for diabetes in south 

central Wisconsin264. The WESDR found that prevalence of diabetic retinopathy (1979-80) 

varied from 17% to 98% in persons with younger onset diabetes with duration of diabetes 

fewer than 5 years and 15 or more years, respectively; for those with older onset diabetes the 

prevalence were 29% and 78%, respectively263.  

Subsequent to the WESDR, many epidemiological studies on retinopathy were 

performed and the Eye Disease Prevalence Research Group summarized study results from 

these studies265. The estimated crude prevalence of diabetic retinopathy in the diabetic US 

population 40 years and older was 3.4% (95% CI, 3.2%-3.6%) and the estimated crude 

prevalence of vision-threatening diabetic retinopathy in the same population was 0.75% (95% 

CI, 0.66%-0.85%)265. The prevalence of diabetic retinopathy increases as age increases 
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among Caucasian (OR per step in age category = 1.47, P <.001), African American (OR = 

1.30, P <.001), and Hispanic (OR = 1.58, P <.001) persons265.  

In ARIC, the overall three-year incidence and cumulative prevalence of any 

retinopathy, regardless of diabetes status, were 3.8% and 7.7%, respectively; for Caucasians 

were 3.6% and 5.5%; for African Americans were 4.5% and 13.0%266. African American 

participants have significantly higher cumulative prevalence than Caucasian participants (P 

<0.001), but not incidence. When stratified by diabetes status, diabetic participants had a 

substantially higher 3-year incidence (10.1% vs. 2.9%, P <0.001) and cumulative prevalence 

(27.2% vs. 4.3%, P <0.001) than non-diabetic participants.   

3. Risk factors for diabetic retinopathy 

Duration and degree of glycemia are major predictors for the development of diabetic 

retinopathy258-260.  

Duration of disease 

 Duration of disease is probably the strongest risk factor for diabetic retinopathy267. 

Among younger-onset patients with age at diagnosis less than 30 years old  in the WESDR, 

the prevalence of any retinopathy was 8% at 3 years, 25% at 5 years, 60% at 10 years, and 

80% at 15 years268. The prevalence of proliferative diabetic retinopathy was 0% at 3 years 

and increased to 25% at 15 years268. The incidence of retinopathy and proliferative diabetic 

retinopathy also increased with increasing duration among younger-onset patients with 

diabetes268. Still in the WESDR, among diabetic patients with age at diagnosis ≥ 30 years 

old, the prevalence of diabetic retinopathy varied from 28.8% in diabetic patients for less 
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than five years to 77.8% for 15 or more years262. The rate of proliferative diabetic retinopathy 

varied from 2.0% in diabetic patients for less than five years to 15.5% for 15 or more years. 

Hyperglycemia/Glycemic control 

The Diabetes Control and Complications Trial (DCCT) found that intensive diabetes 

management with three or more daily insulin injections or a continuous subcutaneous insulin 

infusion reduced the mean risk of retinopathy by 76% (95% CI 62–85) among type 1 diabetes 

patients without retinopathy, and by 36 months, reduced the risk of progression by 54% (95% 

CI 39–66) among type 1 diabetes patients with minimal-to-moderate non-proliferative 

diabetic retinopathy267. 

The protective effect of intensive glycemic control has also been for confirmed in 

another randomized clinical trail in patients with T2DM. The U.K. Prospective Diabetes 

Study (UKPDS) reported that the overall rate of microvascular complications was decreased 

by 25% in patients receiving intensive therapy versus conventional therapy, and for every 

percentage point decrease in HbA1c (e.g., from 8 to 7%), there was a 35% reduction in the 

risk of microvascular complications267. 

The ARIC study identified hyperglycemia as a risk factor for retinopathy266. One 

standard deviation (42 mg/dl) increase in fasting serum glucose was associated with 

increased incidence of any retinopathy (OR 1.6, 95% CI 1.3 to 2.1) and retinopathy among 

those without diabetes (OR 1.5, 95% CI 1.0 to 2.3) after adjusting for age, gender, race, study 

center, current smoking, mean arterial blood pressure, total cholesterol and plasma 

fibrinogen.  
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Hypertension/Blood pressure control 

The UKPDS reported that, with a median follow-up of 8.4 years, hypertensive 

patients with T2DM with tight blood pressure control (<150/85 mmHg) had a 34% reduction 

in progression of retinopathy and a 47% reduced risk of deterioration in visual acuity of three 

lines in association with a 10/5 mmHg reduction in blood pressure267.  

The study results from ARIC suggested hypertension as a risk factor for 

retinopathy266. After adjusting for age, gender, race, and study center, increased risk of any 

retinopathy (OR 1.5, 95% CI 1.0 to 2.3, per standard deviation increase in risk factor levels) 

and non-diabetic retinopathy (OR 1.4, 95% CI 0.9 to 2.3) with higher levels of mean arterial 

blood pressure was observed.  

4. Retinopathy in diabetes development 

Retinopathy is found in people with prediabetes 260 which suggests that microvascular 

disease may contribute to the development of T2DM 269, 270. Studies showed that 

microvascular abnormalities such as arteriolar narrowing and impaired microvascular blood 

flow in the skin and skeletal muscles have been noted in persons with T2DM and in persons 

at high risk of developing diabetes, such as those with prediabetes and first-degree relatives 

of persons with diabetes271-274. Previous ARIC studies suggested that the retinal arteriolar 

narrowing is independently associated with risk of diabetes274 and that retinopathy predicts 

subsequent risk of clinical diabetes in individuals with a family history of diabetes275, 

supporting a microvascular role in the development of diabetes. Therefore, early 

identification of individuals with increased risk for retinopathy among diabetics and non-

diabetics may be important for effective intervention.  
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Retinal microvascular signs (e.g., retinopathy, arteriolar narrowing, arterio-venous 

nicking) are potential markers of systemic arteriolar disease. Previous ARIC studies have 

demonstrated that narrower retinal arteriolar diameters are related to elevated blood 

pressure276, incident T2DM 274, 277 and incident hypertension278. Larger venular calibers have 

been further shown to predict the progression of retinopathy, independent of severity of 

retinopathy279. In this study, the severity level of retinopathy was derived by concatenating 

the levels for the two eyes, giving the eye with the higher level greater weight280. This 

scheme provided a 15-step severity scale. The progression to proliferative retinopathy was 

estimated from all persons who were free of this complication at the baseline examination; 

for persons with no or only nonproliferative retinopathy, progression was defined as the first 

instance of an increase in the severity of retinopathy by two steps or more from the baseline 

level at any of the follow-up examinations279, 280. The 14-year rate of progression to 

retinopathy was 86%, and rate of progression to proliferative retinopathy was 37%280.  

5. Genetics of diabetic retinopathy 

Evidence is accumulating that not only is there underlying genetic susceptibility to 

diabetes, but genetic variation also plays a role in the development of diabetic retinopathy281.  

Familial aggregation  

A study of 322 families from south India reported an approximate threefold increased 

risk for retinopathy in siblings of probands with retinopathy relative to siblings of those 

without282.  

In follow-up studies from the Diabetes Control and Complications Trial (DCCT) with 

patients who had type 1 diabetes283, there was evidence for aggregation of more severe 
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retinopathy: Correlations for the severity of retinopathy were 0.187 (all family members), 

0.327 (parent-offspring), 0.249 (father-child), 0.391 (mother-child), and 0.060 (sib-sib). 

These results are consistent with the familial study in 656 patients with T2DM from 282 

Mexican-American sibships from Starr County, Texas284.  

Candidate gene studies 

Although a large number of candidate genes have been examined in subjects with 

diabetes, no definitive major predisposing genes or functional consequences of genetic 

variants have been identified for retinopathy285, 286. One of the well-studied genes is VEGF 

(vascular endothelial growth factor). VEGF is produced in many cell types in the retina and is 

known to be a mediator of ischemia-induced vascularization and neovascularization287. Three 

SNPs in the promoter and 5´UTR regions of the gene were studied in different populations, 

but the studies are inconclusive286. Another popular susceptibility gene is eNOS (endothelial 

nitric oxide synthase) which plays an active role in vascular relaxation and upregulates 

vascular growth protein expression. Results for an association between SNPs within the 

eNOS gene and DR are conflicting across different ethnic populations286.  

 
Regarding the association between TCF7L2 rs7903146 and retinopathy, an earlier 

case-control study in a French population reported the lack of an association with severe 

retinopathy (effect estimates not reported)251. The InCHIANTI study of elderly Europeans 

reported an association with diabetic retinopathy (OR=7.15, 95%CI=0.87-58.51, P=0.067) in 

127 persons with diabetes. However the number of participants with diabetic retinopathy was 

very small (n=12) and results were not statistically significant288.   



 

75 
 

The ARIC study evaluated whether the Apolipoprotein E (APOE) gene is associated 

with retinal microvascular signs289, 290. After adjusting for age, sex, systolic blood pressure, 

total serum cholesterol, triglycerides, and other covariates, APOE 4 was associated with 

retinopathy in non-diabetic Caucasian (OR, 1.3; 95% CI, 1.0-1.6) and African American (1.4; 

1.0-2.1) individuals290, however, APOE gene polymorphisms are not associated with diabetic 

retinopathy in either Caucasians (1.04; 0.66–1.65) or African-Americans (0.95; 0.57–1.56) 

with T2DM289. In addition, no strong association with other retinal microvascular signs 

including retinal arteriolar and venular diameter were noted290. 

C. Public health significance 

Although the TCF7L2 gene effect is consistently observed across ethnically diverse 

populations 2, 4, studies conducted in African Americans have been of small sample size and 

have demonstrated inconsistent results4, 199, 203-205. Moreover, literature on TCF7L2 gene–

environment interaction assessment is limited, particularly on biologic interaction viewed as 

a departure from expected additivity291. Gene-environment interaction has been strongly 

implicated in the pathogenesis of T2DM292 and an understanding of a given genetic variant in 

its metabolic context is critical to determining the health implications of a given variant and 

the priority it should receive for identifying interventions to reduce its associated risk. Thus, 

the proposed study will contribute to the extant knowledge in several ways. It will quantify 

the effect of the TCF7L2 gene on incident prediabetes, as well as its association with retinal 

microvascular signs (retinopathy, focal narrowing, AV nicking, CRAE, CRVE). The detailed 

phenotypic characterization available on the ARIC cohort members will permit adjustment 

for a range of potential confounders and evaluation on gene-environment interactions. The 

evaluation of gene-environment interactions will be another important strength of this study. 
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This study will potentially contribute significant knowledge about the etiology of 

prediabetes, T2DM and retinopathy, and may aid in the development of screening strategies 

and treatment regimes utilizing genetic information.  



 

CHAPTER IV 

PRELIMANARY STUDIES 

A. ARIC study design  

ARIC is a prospective investigation of the etiology and natural history of subclinical 

and clinically manifest atherosclerosis funded by the National Heart, Lung, and Blood 

Institute (NHLBI). It includes a cohort of 15,792 middle-aged men and women, ages 45 to 64 

years old at recruitment (1987-1989), which was selected as a probability sample from four 

U.S. communities. The cohort was re-examined every three years through January 1999 

(Table 7). The study also conducts an on-going epidemiologic surveillance of cardiovascular 

and cerebrovascular disease hospital admissions and mortality of all residents 35 to 74 years 

of age in the study communities from which the cohort was recruited. Recruitment of the 

cohort occurred during 1987-89 in four U.S. locations: Forsyth CO, NC; Jackson, MS; seven 

Table 7. Sample Size in the ARIC Cohort Clinical 
Examination Visits by Ethnicity and Gender.  
 Visit 1 Visit 2 Visit 3 Visit 4 
 1987-89 1990-92 1993-95 1996-98 
Study Center     
Forsyth County, NC 4035 3679 3340 2851 
Jackson, MS   3728 3148 2622 2368 
Minneapolis, MN  4009 3827 3497 3252 
Washington County, MD     4020 3694 3426 3185 
Total (all ethnic groups)  15,792 14,348 12,885 11,656 
Ethnicity/Gender     
African American Men   1631 1331 1097 963 
African American Women  2639 2246 1900 1701 
European American Men  5429 5054 4601 4169 
European American Women 6049 5675 5248 4792 
Total (excludes other ethnic 
groups)  

15,748 14,306 12,846 11,625 
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northwestern suburbs of Minneapolis, MN; and Washington CO, MD. Approximately 4,000 

participants were recruited from each community. The overall recruitment response rates 

varied from 42% in African American men to 68% in white women122.  Women constituted 

slightly more than 50% of the baseline ARIC cohort, permitting analyses by gender. African-

Americans were over-sampled in Forsyth CO and were exclusively sampled in Jackson and 

comprised 27% of the baseline cohort.  This provides sufficient power to investigate findings 

by ethnicity in the aggregate, and as often as possible, in the two different geographic 

locations. The very small sample sizes for the two other ethnicities recorded at baseline 

(Asian, n=34; American Indian, n=14) preclude interpretation of stratified analyses and are 

therefore not included in this study.  

  After a home interview which established a baseline socio-demographic and 

cardiovascular disease profile of all enumerated residents in each study community who were 

willing to participate, age-eligible residents were invited to participate in a baseline, and 

three subsequent clinical examinations, scheduled at three year intervals. The baseline 

examination (Visit 1) was conducted between 1987 and 1989; Visit 2 was held between 1990 

and 1992; Visit 3 between 1993 and 1995; and the last clinic visit (Visit 4) was conducted 

between 1996 and 1998.   

ARIC study personnel also continue to contact cohort members annually by telephone 

to establish vital status and assess indices of cardiovascular disease, including 

hospitalizations. Annual follow-up interviews have continued after the last clinic exam (Visit 

4), and those data will be available to the investigators on a continuing basis. The follow-up 

of the ARIC cohort has been quite successful, with completeness of follow-up at high levels 



 

79 
 

through the present, namely the 12th contact of individuals examined during 1986-1989. 

Responses to cohort contact year 09 - the latest complete contact cycle - based on 14,881 

eligible individuals contacted during 1995 -1997 – are as follows: 96% contacted and alive; 

1% deceased (during the contact year); 1% refused; 1% could not be reached, but were 

reported alive by next of kin/contact persons; and 1% were not contacted during this cycle. 

The responses to follow-up contact year 13 (calendar years 1998-2000), as tracked by the 

ARIC Coordinating Center, suggests that these patterns are unchanged and that completeness 

of follow-up remains between 97 and 98%.  

B. Extant ARIC data resources and their quality  

Access to the ARIC data and approval of their use for the study proposed here has 

been granted by the ARIC Steering Committee, and the IRB application has been approved 

(please see Appendix 1). All procedures and interviews in the ARIC study were conducted 

under quality assurance programs. These are described in the data collection protocols for 

each study area (ARIC protocol manuals 1-18). For each cohort examination, the quality 

assurance procedures were assembled into a manual (ARIC protocol No. 12: Quality 

Assurance and Quality Control). Briefly, written manuals of operations were developed for 

each clinical examination and the community surveillance component. Data collection 

instruments were provided with on-entry range, and consistency checks, and with question by 

question instructions for their administration. Instruments were pilot tested before 

implementation. Central and continuous on-site training was conducted for all staff. Annual 

(for interviewers) or bi-annual (for technicians) recertification was conducted and 

documented at the Coordinating Center. Annual field center and central laboratory/reading 

center monitoring visits were made by Coordinating Center staff.  
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Specific data quality analyses were conducted periodically by the ARIC Quality 

Control Committee, with reports to the Steering Committee. Overall data quality and 

completeness were monitored by means of quarterly data management reports, reviewed by 

the study's relevant administrative and procedural over-sight committees (the Steering and its 

Executive Committee; Cohort Operations, Community Surveillance, Laboratory, Quality 

Control, Sampling/Recruitment, and Ultrasound Committees) and annually reviewed by the 

Policy Board. A system of phantom IDs was maintained throughout the study to routinely 

monitor blinded repeat measurements by the same and different technicians. Laboratory and 

reading center results were monitored by the Coordinating Center and the Quality Control 

Committee for completeness, blinded repeatability, and also for trends over time. Equipment 

calibration and maintenance protocols were followed for all field center and reading center 

equipment; results were documented and monitored by the Coordinating Center or relevant 

Reading Center or Laboratory, and supported by on-site monitoring visits by trained staff and 

contracted maintenance personnel. In addition, external standardization where appropriate 

and rigorous internal quality control measures were conducted by the central laboratories and 

reading centers, specific to the laboratory, imaging, or processing technology.  

C. DNA extraction and storage  

Genomic DNA has been isolated from all ARIC participants by the ARIC DNA 

laboratory under the direction of Dr. Eric Boerwinkle.  DNA was extracted from frozen buffy 

coat, which was thawed, washed, recovered by centrifugation, and submitted to overnight 

digestion at 37°C with cell lysis buffer.  Phenol/chloroform methods were used to recover 

precipitated DNA, which was then solubilized in 0.1x TE buffer by incubation at 37 °C for 1-

3 days.  Buffy coat from 10 ml of human blood yields approximately 250 - 400 ug of 
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genomic DNA.  A portion of each primary aliquot for the entire ARIC cohort has been 

removed from storage and transferred to 96-well microtiter plates in a constant 

volume/constant concentration format.  Working plates for PCR and routine genotyping (10 

ng per reaction) have then been replicated from these master plates, using a Biomek FX 

workstation.  The DNA has been used in many previous ARIC studies.  

D. SNP genotyping 

Genomic DNA from the ARIC cohort was genotyped by the ARIC Central 

Laboratory for TCF7L2 rs7903146 using Taqman® (Applied Biosystems, Foster City, CA) 

methods. The TaqMan assay uses fluorogenic probes in a 5’ nuclease assay to identify 

differences in DNA sequence. For high through-put processing, we employed the Applied 

Biosystems 7900HT Sequence Detection System. Briefly, allele-specific probes 

approximately 13-30 bp in length are labeled at the 5’ end with a fluorescent reporter dye and 

one of the following two quencher dyes at the 3’ end:  TAMRA (fluorescent dye) or MGB (a 

nonfluorescent dye that binds in the minor groove). These probes are blocked at the 3’ end to 

prevent extension during PCR. The proximity of the reporter dye molecule to the quencher 

dye molecule masks the fluorescent activity of the reporter dye as long as the probe remains 

intact. During the annealing and extension phase of the PCR reaction, primers and probes 

bind to the DNA strand in a site-specific manner. As the Taq DNA polymerase extends the 

DNA strand from the primer, its 5’ nuclease activity degrades the bound probe and releases 

the reporter dye, causing an increase in the fluorescence intensity of the reporter dye. Each 

allele-specific probe is labeled with a different reporter dye, usually FAM (6-carboxy-

fluorescein) and VIC (Applied Biosystems proprietary reagent). Genotypes are determined 

by analysis of the FAM and VIC fluorescent signals. An increase in only one of the 
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fluorescent signals indicates that the sample is homozygous for either the FAM- or VIC-

specific allele while an increase in both signals is indicative of heterozygosity at the locus. 

All PCR reagents are included in the TaqMan Universal PCR Master Mix (Applied 

Biosystems). The AB 7900HT system includes software for optimizing probe and primer 

design and PCR conditions, thereby reducing the occurrence of non-specific probe binding 

(Primer Express™). 

Laboratory-designed probes and primers were obtained from Applied Bioystems 

(Foster City, CA) and IDT (Coralville, IA), respectively. Assay-on-Demand (AoD) and 

Assay-by-Design (AbD) are ready-to-use genotyping products supplied by Applied 

Biosystems. The AoD product consists of validated, pre-designed assays and the AbD are 

custom-designed. The AoD and AbD products consist of a concentrated reaction mix that 

contains both primers and probes. The total reaction volume of 5 µL will include 3 ng of 

human genomic DNA, 4 mM MgCl2, 200 µM each dCTP, dATP, and dGTP, 400 µM dUTP, 

and 0.35 units of AmpliTaq Gold DNA polymerase. All PCR reactions took place in optical 

384-well reaction plates (Applied Biosystems). Thermal cycling of PCR reactions were 

carried out using the Dual 384-Well GeneAmp® PCR System 9700 (Applied Biosystems), 

and the DNA Engine Tetrad (MJ Research). Within two hours after completion of PCR, the 

fluorescent activity for each plate was determined using the ABI 7900HT. Quantification of 

fluorescence was made by comparing each sample’s fluorescent activity to that of a 

background dye present in the reaction buffer, and a blank standard containing no DNA. 

These comparisons were made to normalize the samples for variation in pipetting as well as 

to normalize the results for reactivity of the PCR. The ABI 7900HT Sequence Detection 

Software makes these comparison calculations and uses the results to automatically assign 
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and store genotypes in an Oracle Database that was exported in computerized format.  

DNA laboratory quality assurance  

ARIC Central Laboratory maintains a strict adherence to quality control procedures; 

the major components include standard protocols, laboratory safety standards, cross-training, 

computerized freezer inventory, sample retrieval lists, separate pre- and post- PCR areas, bar-

coded labels, standardized DNA concentrations, robotic liquid handling, redundancy, data 

validity checks, data fire walls, negative controls, blind duplicate program, Hardy-Weinberg 

test and missing data rate. In brief, this proposed study implemented a sophisticated blind 

duplicate program in which 5% of samples were re-genotyped. In total, 726 ARIC 

participants were genotyped in duplicate. The percentage of agreement ranged from 98% and 

simple Kappa coefficients ranged from 0.97 indicating a good genotyping quality. Moreover, 

No Hardy-Weinberg deviation was detected (P > 0.05 in both African American and 

Caucasian participants).  

E. Preliminary data on T2DM in the ARIC study 

ARIC investigators have a longstanding interest in understanding the influence of 

genetic factors in the etiology and pathogenesis of diabetes and hyperglycemia. The ARIC 

study contains a rich set of measurements of diabetes and hyperglycemia and its risk factors 

in which to study the association of variants of TCF7L2 and diabetes/hyperglycemia.  

1. Descriptive statistics of the ARIC cohort at baseline   

 An overview of characteristics of the participants in the baseline ARIC cohort by 

gender and race are presented in Table 8. The average age at first examination for the entire 

study population was approximately 54 years. Mean BMI in all groups approached or 
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exceeded the cutoff for obesity (BMI > 30.0), and was highest in African American women. 

African American participants were more likely to be current smokers than Caucasians. 

Physical activity indices in both races were moderate (2-3). The prevalence of hypertension 

was approximately 28% overall, with higher prevalences in African Americans. Among non-

diabetic participants, the mean HOMA-IR was highest in African American women followed 

by African American men and lowest in Caucasian women. The average systolic and 

diastolic blood pressure was higher in men of both races. Mean HDL was higher in women 

than men in both ethnicities.     

Table 8. Distribution of Selected Diabetes-, Obesity-, and CVD-Related Phenotypes in the 
ARIC study. Data are presented as mean (standard deviation) unless otherwise indicated. 
 African American Caucasian 

 Males Females Males Females 
Sample Size, N (%) 1631 (10) 2635 (17) 5428 (34) 6050 (38) 
Ever Smokers, N (%) 1170 (72) 1115 (42) 3914 (72) 2987 (49) 
Current Smokers, N (%) 622 (38) 651 (25) 1337 (25) 1507 (25) 
Leisure Time Physical Activity 
(score 1-5) 

2.06 (0.58) 2.07 (0.58) 2.42 (0.52) 2.50 (0.54) 

IFG*, N (%) 227 (14) 289 (11) 817 (15) 475 (8) 
HOMA-IR (uU/ml*mmol/l) § 2.85 (2.29) 3.63 (2.86) 2.81 (2.17) 2.30 (2.01) 
Glucose (mmol/l) § 5.53 (0.60) 5.46 (0.58) 5.60 (0.50) 5.37 (0.49) 
Insulin (µU/ml) § 11.29 (8.34) 14.56 (10.36) 11.07 (7.95) 9.37 (7.31) 
Diabetes+, N (%) 293 (18) 528 (21) 553 (10) 493 (8) 
Hypertension‡, N (%) 887 (55) 1487 (57) 1541 (29) 1580 (26) 
Family Diabetes History, N (%) 400 (25) 774 (29) 1226 (23) 1483 (25) 
Age (years) 54 (6) 53 (6) 55 (6) 54 (7) 
BMI (kg/m2) 28 (5) 31 (7) 27 (4) 27 (6) 
Waist (cm) 97 (13) 101 (16) 100 (10) 93 (15) 
Triglycerides (mg/dl) 120 (94) 110 (70) 148 (100) 129 (86) 
HDL (mg/dl) 50 (17) 58 (17) 43 (12) 57 (17) 
LDL (mg/dl) 137 (42) 138 (44) 140 (36) 136 (40) 
SBP (mm Hg) 130 (22) 128 (21) 120 (16) 117 (18) 
DBP (mm Hg) 82 (13) 78 (12) 73 (10) 70 (10) 
*IFG is defined as the FPG falls between 6.1 (100 mg/dL) and 6.9mmol/l (126 mg/dL); 
+Diabetes defined as FPG levels of at least 7.0 mmol/L (126 mg/dL), nonfasting glucose levels of 
at least 11.1 mmol/L (200 mg/dL), current use of medications prescribed to treat diabetes (eg, 
insulin or sulfonylureas), or a positive response to the question "Has a doctor ever told you that 
you had diabetes (sugar in the blood)?"; ‡Hypertension defined as SBP >=140mmHg or 
DBP>=90mmHg or self-reported medication use; §Excluding cases of prevalent T2DM. 
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2. Diabetes prevalence and incidence in the ARIC study  

Eighteen hundred individuals were diagnosed with T2DM at the baseline exam.  One 

thousand forty six of these individuals were Caucasian and 821 were African American, with 

a greater proportion of female diabetic participants in comparison to males. 

Among 12,845 adults without T2DM at baseline, 766 female and 755 male incident 

T2DM events were noted during 9 years of follow-up (Table 9).  The incidence of T2DM 

was highest in African American females and lowest in Caucasian females [the unadjusted 

relative risk of incident T2DM in African American females was 2.16 times (95% CI: 1.89-

2.47) that in Caucasian females].   

Table 9. Incident T2DM in 12,845 Adults without Diabetes at Baseline, by Sex and Race  
 Females  Males 
 African-American Caucasian  African-American Caucasian 
No. of persons at risk  1828 5297  1114 4606 
Incident cases of T2DM 327 439  186 569 
Risk (95% CI) 0.18  

(0.16-0.20) 
0.08  

(0.07-0.09) 
 
 

0.17  
(0.15-0.19) 

0.12  
(0.11-0.13) 

 
 

3. Preliminary data on TCF7L2-T2DM associations in ARIC  

The preliminary data on the association between TCF7L2 and incident T2DM in the 

ARIC Study has been published in Diabetes293, and is summarized as follows.  

Objectives 

In this study, we investigated whether the rs7903146 SNP of the TCF7L2 gene is 

associated with T2DM in a large community-based cohort of African-American and 

Caucasian middle-aged adults participating in the Atherosclerosis Risk in Communities 
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(ARIC) Study. A second objective was to evaluate whether the risk of T2DM was associated 

with the rs7903146 SNP in the context of metabolic impairments.  

Study subjects  

A total of 12,029 baseline examination participants (2,727 African-Americans and 

9,302 Caucasians) were included in the current analysis, after applying the exclusion criteria. 

The institutional review boards at all participating institutions approved the procedures and 

all participants included in the analysis gave informed consent. 

Outcome assessment 

Individuals were classified as having diabetes if any of the following conditions were 

met: fasting serum glucose levels of at least 7.0 mmol/L (126 mg/dl), nonfasting glucose 

levels of at least 11.1 mmol/L (200 mg/dl), current use of hypoglycemic medications (e.g., 

insulin or sulfonlyureas), or a self-reported physician diagnosis of diabetes294. In this study, 

individuals with diabetes at baseline were excluded. Individuals without diabetes at baseline 

who subsequently met any of these criteria at visit 2, 3, or 4 were considered to have incident 

T2DM. 

Exposure assessment 

 SNP7903146 has three different genotypes: CC, CT and TT. We compared 

heterozygous CT-genotype and homozygous TT-genotype individuals to CC-genotype 

individuals, using the rs7903146 CC-genotype as the referent group, and the T allele as the 

risk variant. A variable taking on the values 0 for genotype CC, 1 for genotype CT, and 2 for 

genotype TT was used to test for additive genetic effects. 
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Covariate assessment  

Demographic information including race, gender, cigarette smoking was self-

reported. Individuals with a BMI ≥30 kg/m2 were classified as obese295. Hypertension was 

defined as systolic blood pressure ≥ 140mmHg or diastolic blood pressure ≥ 90mmHg or 

anti-hypertension medication use296. Low HDL was defined as less than 40 mg/dl in males 

and 50 mg/dl in females. Impaired fasting glucose was defined by a fasting glucose level 

between 100 and 125 mg/dl297.  

Statistical analyses 

 All analyses were stratified by race to crudely account for population stratification. 

We estimated the predicted cumulative incidence/risk of T2DM over a 9-year follow-up 

using the Kaplan Meier approach. We used Cox proportional hazards to estimate the hazard 

ratios (HRs) and 95% confidence intervals (CIs) of incident diabetes. Covariates, including 

ever smoking, BMI, obesity, hypertension, HDL, LDL, and work, sport, leisure time physical 

activity level, were assessed as potential confounders and dismissed from all further analyses. 

 Variables were considered as potential effect measure modifiers if either of the 

following criteria were met: departures from additivity of effect as assessed by the ICR291, or 

an indication of context specific effects in the previous TCF7L2 literature. ICRs were 

quantified as follows:  ICR= HR_AB – HR_A – HR_B + 1, where HR_AB represents the 

joint effect of metabolic exposure and the SNP, and HR_A and HR_B represent the main 

effects of metabolic exposure and the SNP, respectively291. Departures from zero suggest that 

the exposure of interest and the SNP interact to cause T2DM. The HR and the variance 

covariance matrix were used to calculate ICR values and their 95% confidence intervals298.  
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 As our interaction analyses indicated obesity and low HDL as possible effect 

modifiers, we further divided the ARIC population into three mutually exclusive subgroups 

according to the presence of none, one (obesity only, or low HDL only), or both of these two 

metabolic risk factors.   

Results 

A total of 485 (17.8%) and 923 (9.9%) incident T2DM cases were identified among 

African American and Caucasian ARIC participants, respectively (Table 10)293. The 

rs7903146 T allele was observed with similar frequency in African-American and Caucasian 

individuals, but was more common among incident T2DM cases compared with non-cases in 

both races (Table 10)293. The risk of T2DM was highest among TT individuals, followed by 

CT individuals, and lowest among CC individuals in both races. As previously documented, 

the risk of T2DM was higher in African Americans compared to Caucasians with the same 

genotype.  
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Table 10. Genotypic frequency of TCF7L2 rs7903146 by race and incident type 2 diabetes status, cumulative incidence of  
type 2 diabetes by race and genotype over 9 years of follow-up, and estimated hazard ratio of rs7903146 on type 2 diabetes 
by race: The ARIC Study (Adapted from Yan293)* 
 African American Caucasian 
 Controls/Cases Cumulative 

Incidence (%) 
(95%CI) 

HR  
(95% CI) † 

P 
value‡ 

Controls/Cases Cumulative 
Incidence (%) 

(95%CI) 

HR  
(95% CI) † 

P 
value‡ 

N 2242/485 20.6  
(18.7, 22.5) 

  8379/923 10.7  
(10.0, 11.4) 

  

Genotype, N (%)        

CC 1156 (52)/225 (46) 11.3  
(10.2, 12.4) 

1.00  4295 (51)/430 (47) 9.7  
(8.8, 10.6) 

1.00  

CT 921 (41)/212 (44) 21.1  
(20.8, 21.4) 

1.17  
(1.02, 1.34) 

0.03 3391 (40)/392 (42) 11.3  
(10.2, 12.4) 

1.18  
(1.07, 1.30) 

<0.01 

TT 165 (7)/48 (10) 27.9  
(19.3, 36.5) 

1.36  
(1.03, 1.79) 

0.03 693 (8)/101(11) 13.6  
(11.1, 16.1) 

1.38  
(1.14, 1.68) 

<0.01 

T allele 28%/32%    29%/32%    
Abbreviation: CI, confidence interval; HR, hazard ratio. 
*The genotypic distributions were in agreement with Hardy-Weinberg equilibrium in African-Americans and Caucasians.   
†Adjusted for age at baseline, study center and gender.  
‡P value for HR. 
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 We identified obesity (Caucasians: ICR=0.69; 95% CI (0.10, 1.27); P =0.02) and 

low HDL (African Americans: ICR=0.57; 95% CI (0.18, 0.96); P =0.004) as important effect 

measure modifiers293. Individuals with one T allele or two T alleles had the highest hazards 

of developing T2DM if they were obese and had low HDL, followed by individuals with any 

one of these two risk factors compared to those with none of the traits (Table 11). 

Homozygous individuals (TT) with two metabolic risk factors had the highest HR of T2DM 

of 6.04 (95% CI: 3.70, 9.87) in African Americans and 9.35 (6.72, 13.00) in Caucasians 

compared to CC individuals with none of these two. A similar trend was observed for risk 

differences (RDs) and risks of T2DM. When studied separately, we observed a larger ICR for 

obesity (P=0.02) in Caucasians and low HDL (P=0.004) in African Americans, but testing by 

bootstrapping 299 did not support significant racial differences. 
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Table 11. Association of TCF7L2 rs7903146 with T2DM [HR (95% CI)]† modified by the number of metabolic risk factors (obesity 
and low HDL) in ARIC(Adapted from Yan 293). 
 African American Caucasian 
# of risk 
factors 

CC genotype CT genotype TT genotype CC genotype CT genotype TT genotype 

None 1 1.14 (0.88, 1.48) 1.30 (0.77, 2.20) 1 1.19 (0.98, 1.44) 1.42 (0.97, 2.09) 
One 2.31 (1.71, 3.12) 2.70 (2.04, 3.58) 3.16 (2.15, 4.65) 2.46 (1.96, 3.08) 3.09 (2.50, 3.82) 3.88 (2.93, 5.16) 
Two 3.49 (2.46, 4.95) 4.59 (3.33, 6.33) 6.04 (3.70, 9.87) 6.77 (5.33, 8.62) 7.96 (6.34, 9.98) 9.35 (6.72, 

13.00) 
Abbreviation: CI, confidence interval; HDL, high density lipoprotein cholesterol; HR, hazard ratio.  
*Abnormal metabolic traits included obesity and low HDL.  
†Adjusted for age at baseline, study center and gender.  
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Discussion and Conclusion 

TCF7L2 has been implicated as an important T2DM susceptibility gene in different 

populations. Our study replicates the association between the T allele at rs7903146 and 

T2DM risk in Caucasians and provides the first significant evidence of association in a large, 

population-based African-American population4, 199, 203-205. The rs7903146 was significantly 

associated with T2DM risk in another two African ancestry studies4, 199, but none of these 

two studies were population-based. Our study also contributes new evidence for additive 

interaction between TCF7L2 variants and obesity (P=0.02) in Caucasians, and HDL 

cholesterol (P=0.004) in African Americans (Table 3). Indeed, we demonstrate that the risk 

of developing T2DM associated with this TCF7L2 variant is substantially increased in the 

context of some of these well known metabolic risk factors for T2DM.  

The majority of current literature suggests that TCF7L2 is associated with impaired 

insulin secretion, but not with increased insulin resistance203, 229, 230. We found a slightly 

lower fasting insulin and HOMA-IR concentration among individuals with the T risk allele, 

suggestive of impaired insulin secretion. A possible explanation of our study findings is that 

TCF7L2 may impair beta cell function, which when combined with insulin resistance caused 

by other factors provides a “double hit” that disproportionately increases the risk for T2DM. 

Although our study has implicated, for the first time, interesting relationships between these 

metabolic risk factors, the TCF7L2 variants and T2DM, the mechanism of action of TCF7L2 

variants on T2DM remains to be determined. 

   In conclusion, this prior published study research provided important new evidence 

for an association between TCF7L2 and T2DM in a large African American population. It 
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also provided estimates of the predicted cumulative incidence of T2DM over 9 years of 

follow-up associated with this genetic variant, in the context of metabolic impairments that 

usually precede and coexist with T2DM. The study findings need to be replicated in other 

population-based studies and further study is needed on the mechanisms by which the 

TCF7L2 gene acts in the context of metabolic traits in the pathogenesis of T2DM. 



 

CHAPTER V 

RESEARCH DESIGN AND METHODS 

A. Overview 

 The present study utilized data collected from the ARIC study, a community-based 

prospective cohort study examining cardiovascular and pulmonary disease, and disease 

variation over time.  The ARIC study includes a cohort of 15,792 middle-aged men and 

women, aged 45 to 64 years old at recruitment (1987-1989), which was selected as a 

probability sample from four U.S. communities, and followed-up every three years through 

January 1999.  

 For Manuscript 1, we estimated the association between SNP rs7903146 in TCF7L2 and 

prediabetes as quantified by incident impaired fasting glucose (IFG), and the extent to which 

metabolic risk factors modified the association using the proportional hazard regression 

modeling.  

 For Manuscript 2, we characterized the associations between SNP rs7903146 in TCF7L2 

and retinal phenotypes, and how hypertension and diabetes modified the association. Retinal 

phenotypes included retinopathy, arteriovenous (AV) nicking, focal arteriolar narrowing, 

central retinal artery equivalent (CRAE) and the central retinal venular equivalent (CRVE). 

Logistic regression models were fit to estimate the association between SNP rs7903146 in 

TCF7L2 and the odds of prevalent retinal microvascular signs (retinopathy, AV nicking, 
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focal arteriolar narrowing); generalized linear models were fit to estimate adjusted mean 

retinal vascular calibers (CRAE, CRVE) for each genotype of rs7903146.  

B. Exposure assessment  

The TCF7L2 rs7903146 SNP was genotyped by the ARIC Central Laboratory using 

Taqman® assays (Applied Biosystems, Foster City, CA). Laboratory-designed probes were 

obtained from Applied Bioystems and primers from IDT (Coralville, IA). All PCR reactions 

took place in optical 384-well reaction plates (Applied Biosystems). Five percent of samples 

were re-genotyped for quality control as blind duplicates. The percent agreement between 

blind duplicates was 98% and the simple Kappa coefficient was 0.97 indicating good 

genotyping quality. Details on SNP genotyping were described in Chapter IV: D. SNP 

Genotyping above.  

Following published literature4 and our previous findings3, we assumed an additive 

mode of inheritance and compared heterozygous CT-genotype and homozygous TT-

genotype individuals to CC-genotype individuals, using the rs7903146 CC-genotype as the 

referent group. 

C. Outcome assessment 

1. Impaired fasting glucose (IFG) 

As a measure of prediabetes, individuals with fasting serum glucose levels of 100–

125 mg/dl (5.6–6.9 mmol/l)294 were classified as having IFG. Individuals without IFG at 

baseline who subsequently met this criterion for incident IFG at visit 2, 3, or 4 were 

considered to be incident cases. The 2-h glucose value from OGTT at visit 4 was not 

considered in the diagnosis of IFG. 
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2. Retinal phenotypes 

Retinal phenotypes included retinopathy, focal retinal arteriolar narrowing, arterio-

venous (A/V) nicking, central retinal arteriolar equivalent (CRAE) and central retinal venular 

equivalent (CRVE) at visit 3. Following is a summary of the ARIC Study methods for taking 

retinal photographs and evaluating them for retinal abnormalities/characteristics300.  

Retinal photography 

Technicians at the ARIC examination centers took one 45°nonstereoscopic color 

retinal photograph of one eye of each participant using a fundus camera that does not require 

pharmacologic dilation of the pupil (Canon CR-45UAF; Canon USA, Inc., Lake Success, 

NY). Centered between the optic disc and the macula, the photograph documented the optic 

disc, the macula, substantial portions of the temporal vascular arcades, and approximately 2 

disc diameters of retina nasal to the optic disc. Photography was performed in a darkened 

room (to a degree that would barely allow one to read a newspaper), allowing the pupil to 

dilate. Typically, dilation to at least 4 mm was necessary to obtain an optimal image, 

although sometimes a partially usable image could be obtained through a 3-mm pupil. The 

eye to be photographed was systematically chosen to achieve balance (i.e., right eye for even 

identification numbers, left eye for odd identification numbers). If photography was not 

feasible in the eye selected by algorithm because of poor dilation or ocular media opacities 

(e.g., cataract), the technician was allowed to switch eyes. Completion of the entire 

photography session typically took less than 15 minutes. Photographs were mounted in 

plastic sheets and sent to a central reading center. 

Evaluation of retinal vascular abnormalities 
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The ARIC Study photographs were assessed by the Retinal Reading Center for retinal 

vascular abnormalities using two different technologies: semiquantitative manual grading on 

a light box and measurement of retinal vessel caliber on an image processor. To establish the 

correspondence between measurements on film and dimensions in the eye, the diameter of 

the average optic nervehead was assumed to be approximately 3.4 mm on film and 1850 µm 

in the eye.  

The method used to evaluate focal vascular abnormalities was adapted principally 

from the Modified Airlie House Classification of Diabetic Retinopathy, which includes some 

lesions that are not necessarily diabetic. The grader examined the retinal photograph with a 

monocular 8× stand viewer on a “daylight” (i.e., 6200° K color rating) fluorescent light box. 

The grader compared possible abnormalities with standard and example photographs to help 

determine their presence and severity. 

Retinopathy 

 Retinopathy was defined if any characteristic lesion as defined by the Early 

Treatment Diabetic Retinopathy Study severity scale was present: retinal hemorrhages (blot 

or flame shaped), microaneurysms, soft or hard exudates, macular edema, intraretinal 

microvascular abnormalities, venous beading, swelling, or laser photocoagulation scars.  

Focal retinal arteriolar narrowing & A/V nicking 

Focal narrowing was considered definite if an arteriole estimated to be 50-µm 

diameter or greater (approximately 1/3 of the diameter of a major vein at the disc margin) 

had a constricted area of 2/3 or less the width of proximal and distal vessel segments. AV 

nicking was considered definite if the venous blood column was tapered on both sides of its 
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crossing under an arteriole (rare crossings of venules over arterioles were ignored). Focal 

arteriolar narrowing and AV nicking were defined as present if graded as definite or probable 

and as absent if not.  

CRAE & CRVE 

 Measurements were based on retinal vessels located 0.5–1 disc diameter from the 

optic disc using computer designed software that summarized diameters as central retinal 

arteriolar equivalent (CRAE) and venular equivalent (CRVE), which represented the average 

arteriolar and venular diameter, respectively, to detect and quantify generalized retinal 

arteriolar narrowing. 

D. Other Covariates 

Demographic information was self-reported. A positive family history of diabetes 

was defined by participant report of diabetes in either biological parent. Self-reported 

cigarette smoking exposure was defined as ever smoking versus never smoking obtained by a 

personal interview. Body mass index (BMI) was calculated as measured weight (kg) divided 

by the square of measured height (m2).  Individuals with a BMI ≥30 kg/m2 were classified as 

obese301. Elevated waist circumference (WC) was defined as WC≥102cm in males or 

WC≥88cm in females302. Blood pressure was measured three times using a random zero 

sphygmomanometer and the average of the last two measurements was used for this analysis. 

Hypertension was defined as systolic blood pressure ≥ 140mmHg or diastolic blood pressure 

≥ 90mmHg or a history of anti-hypertension medication use296. Glucose was assessed by a 

modified hexokinase/glucose-6-phosphate dehydrogenase procedure303. Plasma total 

cholesterol levels, high-density lipoprotein cholesterol (HDL-C), and triglyceride levels were 
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measured by enzymatic methods. Low HDL-C was defined as less than 40 mg/dl in males 

and 50 mg/dl in females. High triglyceride was defined as triglyceride levels higher than 200 

mg/dl304. Insulin was measured by radioimmunoassay (125Insulin kit; Cambridge Medical 

Diagnosis, Bilerica, MA). Physical activity was quantified using a slightly modified version 

of the Baecke physical activity questionnaire305, that classified work, sport and leisure 

activities into categories ranging from 1 (low) to 5 (high). For example, leisure time physical 

activity was derived from four questions regarding the frequency of television watching, 

walking, bicycling during the leisure time, and walking and/or bicycling to/from work, and 

was measured on a 5-point scale, with 1 indicating the lowest level of activity and 5 the 

highest.  

E. Statistical analysis 

1. Assessment of population substructure 

Hardy-Weinberg equilibrium (HWE) was examined for SNP rs7903146, by race. For 

a biallelic locus in a randomly mating population, where the frequency of alleles are 

represented by ‘p’ and ‘q’, the distribution of genotypes in the referent population should be 

p2 + 2pq + q2.  Deviations from HWE are assessed using a chi-square test with degrees of 

freedom equal to the number of alleles (n) – 1.  Significant deviations from HWE may be 

indicative of laboratory error306 or a violation of the factors necessary to maintain HWE in a 

population, such as population admixture.  While the power of HWE to detect population 

admixture is small, assessing HWE before analysis can generally reduce false positive 

findings of genes underlying complex traits307. 
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2. Association analyses 

  All association analyses were examined within each ethnic (African American or 

Caucasian) group. Manuscript 1 used proportional hazard regression to estimate the hazard 

ratios (HRs) and 95% confidence intervals (CIs) of incident IFG associated with SNP 

7903146 T risk allele. The hazard function was formulated on the age scale and date of onset 

of IFG was interpolated using blood glucose levels at the visits at each end of the triennial 

intervals308. Plots of the log (-log) survival curves and the Cox test were utilized to assess 

violations of proportional hazard assumptions. Manuscript 2 used logistic regression to 

estimate odds ratios (ORs) and 95% CIs of prevalent focal retinal lesions (retinopathy, focal 

arteriolar narrowing, AV nicking) associated with the TCF7L2 rs7903146, and employed 

generalized linear models to estimate adjusted mean retinal vascular calibers (CRAE, CRVE) 

for each genotype of rs7903146.  

Genetic models  

  Following published literature4 and our previous findings3, we assumed an additive 

mode of inheritance and compared heterozygous CT-genotype and homozygous TT-

genotype individuals to CC-genotype individuals, using the rs7903146 CC-genotype as the 

referent group.  A variable taking on the values 0 for genotype CC, 1 for genotype CT, and 2 

for genotype TT was used to test for additive genetic effects.  

3. Assessment of confounding 

 In Manuscript 1, covariates including age, gender, and ARIC field center were always 

included in the models for minimal confounding adjustment. Otherwise, a change-in-estimate 

approach with a criterion of 0.10 was used to adjust for potential confounders including ever 
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smoking (yes/no), obesity, high LDL, low HDL, hypertension, high triglyceride, physical 

activity, and elevated waist circumference. 

  In Manuscript 2, following published literature290, 309, all models were adjusted for 

age, study center, sex, current smoking (yes/no), obesity (yes/no), total serum cholesterol, 

total serum triglycerides, mean arterial blood pressure, and antihypertensive medication. As 

hypertension is an important risk factor for retinal microvascular signs, hypertension was 

also included in the model when it was not assessed as an effect measure modifier.  

4. Assessment of modification 

An important aspect of this project is the evaluation of gene-environment interactions 

which was assessed on the multiplicative and additive scales between genotypes and different 

metabolic risk factors including obesity, elevated waist circumference, hypertension, high 

triglycerides, and low HDL-C. In Manuscript 2, we only evaluated hypertension and diabetes 

as modifiers. A Wald 2χ  test for significance of the estimated β-coefficient for the 

interaction term and the interaction contrast ratio (ICR) were employed to assess the 

departure from multiplicativity and additivity, respectively 291, 298. A p value <0.05 was 

considered to indicate an important modifier, despite the multiple tests as interaction tests 

tend to be underpowered310. 

A multiplicative interaction was determined by a Wald χ
2 test for significance of the 

estimated β coefficient,β̂ , for the interaction term. If β̂ , is significantly different from the 

null value, which corresponds to β=0, and a hazard ratio or odds ratio (eβ)=1, we concluded a 

multiplicative interaction existed.  
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An additive interaction was assessed by testing ICR. In terms of proportional hazard 

regression, ICRs were quantified as follows:  ICR= HR_AB – HR_A – HR_B + 1, where 

HR_AB represents the joint effect of metabolic exposure and the SNP, and HR_A and HR_B 

represent the main effects of metabolic exposure and the SNP, respectively291. For logistic 

regression, odds ratios replace the hazards ratios in the above ICR equation. Thus, ICR refers 

to the increased risk due to an additive interaction between the metabolic risk factors and the 

T risk allele adjusted for confounders. Assuming an additive mode of inheritance, the ICR 

comparing TT to CT is equal to the ICR comparing CT to CC when the metabolic exposure 

of interest is constant, thus only one ICR was reported. Departures from zero suggest that the 

exposure of interest and the SNP interact to cause the outcome of interest. The HR and the 

variance covariance matrix were used to calculate ICR values and their 95% confidence 

intervals298.  

5. Multiple comparisons 

Association mapping often involves estimating single-locus models separately for 

each candidate marker and then evaluating statistical significance.  As expected, a large 

number of dependent tests are performed, necessitating a correction for multiple 

comparisons. To minimize the impact of the multiple tests, we applied a crude Bonferroni 

correction, noting that such an approach is an over-correction because many of the analytic 

runs assessed the same dependent variable. 



 

CHAPTER VI 

 
RESULTS 

A. Manuscript 1: Transcription Factor 7-Like 2 (TCF7L2) Polymorphism and 

Context-Specific Risk of Impaired Fasting Glucose in African American and Caucasian 

Adults: The Atherosclerosis Risk in Communities (ARIC) Study 

ABSTRACT 

AIMS/HYPOTHESIS: Although variants in the transcription factor 7-like 2 (TCF7L2) gene 

are consistently associated with impaired fasting glucose (IFG) in Caucasians, data from 

large population-based studies of African Americans are lacking. Moreover, few studies have 

investigated the effects of TCF7L2 on IFG in the context of other metabolic risk factors for 

diabetes.  

METHODS: We investigated the association between the TCF7L2 rs7903146 polymorphism 

and incident IFG defined as fasting serum glucose levels of 100–125 mg/dl (5.6–6.9 mmol/l) 

in 1,377 African American and 5,152 Caucasian participants without diabetes and IFG at 

intake who participated in the Atherosclerosis Risk in Communities (ARIC) Study in 1987-

1989 and were followed for 9 years.   

RESULTS:  Incident IFG was identified in 810 (58.8%) and 2,652 (51.5%) African-

Americans and Caucasians, respectively. Compared to homozygous CC Caucasian 

individuals, heterozygous CT [hazard ratio=1.09 (95% CI=1.03-1.15)] and homozygous TT 
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[1.18 (1.05-1.33)] individuals had significantly higher risk of developing IFG over 9 years of 

follow-up. The association between the rs7903146 genotype and IFG risk was stronger in 

Caucasians with obesity or high triglycerides. No association of the TCF7L2 rs7903146 

polymorphism and incident IFG was noted in African Americans.  

CONCLUSIONS/INTERPRETATION: Our study replicates the association between the T 

allele at rs7903146 and IFG risk in Caucasians but not in African Americans. Our study also 

provides new evidence for interactions between TCF7L2 and metabolic risk factors on the 

occurrence of IFG in Caucasians.  

1. Introduction 

Impaired fasting glucose (IFG), an intermediate stage between normoglycemia and 

diabetes, is characterized by defects in insulin sensitivity and early-phase insulin secretion [1, 

2]. The transcription factor 7-like 2 (TCF7L2) gene, a Wingless and Int (Wnt) signaling-

associated transcription factor located on chromosome 10q25, has emerged as a consistently 

replicated susceptibility gene for type 2 diabetes and IFG [3-7]. In our previous work, we 

demonstrated a significant association between the T allele at single nucleotide 

polymorphism (SNP) rs7903146 and the risk of incident type 2 diabetes in middle-aged 

African American and Caucasian participants of the Atherosclerosis Risk in Communities 

(ARIC) Study[8]. The rs7903146 T allele has been described either as the causal risk variant 

or the closest correlate to an unidentified functional variant [9], possibly impairing the 

glucagon-like peptide-1-induced insulin secretion[10], but the exact mechanism is still under 

investigation.  
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  Although an effect of TCF7L2 on IFG has been observed in Caucasians [6, 7], no 

studies of TCF7L2 and prediabetes as quantified by incident IFG have been conducted in 

African Americans. Moreover, potential TCF7L2 gene–metabolic risk factors interactions on 

IFG have been largely unexplored.  

Our previous work focused on the association between the rs7903146 SNP and type 2 

diabetes[8]. In this study, we investigated whether the rs7903146 SNP of the TCF7L2 gene is 

associated with incident IFG in a large community-based cohort of African-American and 

Caucasian middle-aged adults in the ARIC Study. A second objective is to evaluate whether 

the effect of the rs7903146 SNP on IFG varies by obesity and triglyceride levels. 

2. Methods 

a. Study subjects and phenotype definitions 

The ARIC Study is an ongoing, longitudinal cohort study of cardiovascular and other 

major diseases among 15,792 men and women, aged 45 to 64 years old at baseline (1987-

1989), selected from 4 US communities: Forsyth County, NC; Jackson, MS; the northwestern 

suburbs of Minneapolis, MN; and Washington County, MD. By design, African-Americans 

were over-sampled at the Forsyth County site and were exclusively sampled in Jackson and 

thus constituted 27% of the baseline cohort. The sampling procedures and methods used in 

ARIC have been described in detail elsewhere[11].  

We excluded ARIC participants who were not African-American or Caucasian 

(n=48), African-Americans from Minnesota and Maryland field centers (n=55), participants 

with prevalent diabetes at baseline or incident diabetes during follow-up (n=3,379), 

participants with prevalent IFG at baseline (n=4,472), participants with missing genotype 
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data or who did not provide consent for the use of their DNA (n=525), and participants with 

missing information on incident IFG (n=784). Diabetes was defined as fasting serum glucose 

levels of at least 7.0 mmol/L (126 mg/dl), nonfasting glucose levels of at least 11.1 mmol/L 

(200 mg/dl), current use of hypoglycemic medications (e.g., insulin or sulfonlyureas), or a 

self-reported physician diagnosis of diabetes[1]. After these exclusions, 6,529 baseline 

examination participants (1,377 African American and 5,152 Caucasians) were available for 

analysis. The institutional review boards at all participating institutions approved the 

procedures and all participants included in the analysis gave informed consent. 

All covariates were measured at the baseline exam (visit 1). As a measure of 

prediabetes, individuals with fasting serum glucose levels of 100–125 mg/dl (5.6–6.9 

mmol/l)[1] were classified as having IFG. Individuals without IFG at baseline who 

subsequently met this criterion for incident IFG at visit 2, 3, or 4 were considered to be 

incident cases in the analysis.  

Self-reported cigarette smoking exposure was defined as ever smoking versus never 

smoking obtained by a personal interview. Body mass index (BMI) was calculated as 

measured weight (kg) divided by the square of measured height (m2).  Individuals with a 

BMI ≥30 kg/m2 were classified as obese[12]. Elevated waist circumference (WC) was 

defined as WC≥102cm in males or WC≥88cm in females[13]. Blood pressure was measured 

three times using a random zero sphygmomanometer and the average of the last two 

measurements was used for this analysis. Hypertension was defined as systolic blood 

pressure ≥ 140mmHg or diastolic blood pressure ≥ 90mmHg or a history of anti-hypertension 

medication use[14]. Glucose was assessed by a modified hexokinase/glucose-6-phosphate 
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dehydrogenase procedure[15]. Plasma total cholesterol levels, high-density lipoprotein 

cholesterol (HDL-C), and triglyceride levels were measured by enzymatic methods. Low 

HDL-C was defined as less than 40 mg/dl in males and 50 mg/dl in females. High 

triglyceride was defined as triglyceride levels higher than 200 mg/dl[16]. Insulin was 

measured by radioimmunoassay (125Insulin kit; Cambridge Medical Diagnosis, Bilerica, MA). 

Physical activity was quantified using a slightly modified version of the Baecke physical 

activity questionnaire[17], that classified work, sport and leisure activities into categories 

ranging from 1 (low) to 5 (high).  

b. SNP genotyping  

The TCF7L2 rs7903146 SNP was genotyped by the ARIC Central Laboratory using 

Taqman® assays (Applied Biosystems, Foster City, CA). Laboratory-designed probes were 

obtained from Applied Bioystems and primers from IDT (Coralville, IA). All PCR reactions 

took place in optical 384-well reaction plates (Applied Biosystems). Five percent of samples 

were re-genotyped for quality control and 726 ARIC participants were genotyped in 

duplicate. The percent agreement between blind duplicates was 98% and the simple Kappa 

coefficient was 0.97 indicating good genotyping quality.  

c. Statistical analysis  

All analyses were stratified by race to crudely account for population stratification. 

To assess whether genotype distribution within each race departed from Hardy-Weinberg 

equilibrium, a 2χ  goodness-of-fit test was used. We estimated the predicted cumulative 

incidence/risk of IFG over a 9-year follow-up under a semiparametric regression model. We 

used Cox proportional hazards to estimate the hazard ratios (HRs) and 95% confidence 
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intervals (CIs) of incident IFG. The hazard function was formulated on the age scale and date 

of onset of IFG was interpolated using blood glucose levels at the visits at each end of the 

triennial intervals[18]. To interrogate the consistency of our findings, we investigated the 

association between TCF7L2 and persistent IFG incidence defined as at least two IFG 

diagnoses at visit 2, 3 or 4, and the first occurrence of incident IFG was used to calculate the 

time-to-event. In addition, we assessed the association between IFG and TCF7L2 using a 

more stringent definition of IFG, categorizing individuals with a fasting glucose value of 110 

- 125 mg/dl as affected. Lastly, we evaluated the association between rs7903146 and 

repeated fasting glucose values over 9 years of follow-up (visit 1-4) in the ARIC study 

population using Generalized Estimating Equation models.  

Covariates including history of ever smoking, BMI, obesity, hypertension, plasma 

HDL-C, and history of work, sport, leisure time physical activity level were assessed as 

potential confounders and were removed from all further analyses as the adjustment for these 

covariates made no difference in the association between TCF7L2 and incident IFG. 

Following the published literature [4] and our findings from previous research [8], we 

compared heterozygous CT-genotype and homozygous TT-genotype individuals to CC-

genotype individuals, using the rs7903146 CC-genotype as the referent group, and the T 

allele as the risk variant. A variable taking on the values 0 for genotype CC, 1 for genotype 

CT, and 2 for genotype TT was used to test for additive genetic effects.  

 Gene–environment interaction testing was assessed on the multiplicative and additive 

scales between genotypes and different metabolic risk factors including obesity, elevated 

waist circumference, hypertension, high triglycerides, and low HDL-C. A Wald 2χ  test for 
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significance of the estimated β-coefficient for the interaction term and the interaction contrast 

ratio (ICR) were employed to assess the departure from multiplicativity and additivity, 

respectively [19, 20]. Variables were considered as potential effect measure modifiers if they 

departed from multiplicativity and additivity of effect as assessed by the Wald 2χ  test and 

the ICR, respectively [19]. A p value <0.05 was considered to indicate an important modifier, 

despite the multiple tests as interaction tests tend to be underpowered [21]. ICRs were 

quantified as follows:  ICR= HR_AB – HR_A – HR_B + 1, where HR_AB represents the 

joint effect of metabolic exposure and the SNP, and HR_A and HR_B represent the main 

effects of metabolic exposure and the SNP, respectively[19]. Thus, ICR refers to the 

increased risk due to an additive interaction between the metabolic risk factors and the T risk 

allele adjusted for age, gender, and study center. Assuming an additive mode of inheritance, 

the ICR comparing TT to CT is equal to the ICR comparing CT to CC when the metabolic 

exposure of interest is constant, thus only one ICR was reported. Departures from zero 

suggest that the exposure of interest and the SNP interact to cause IFG. The HR and the 

variance covariance matrix were used to calculate ICR values and their 95% confidence 

intervals[20].  

3. Results 

The allele frequencies for rs7903146 in both races were in Hardy–Weinberg 

equilibrium (p>0.05). Selected baseline characteristics of the ARIC Study participants by 

race and genotype status are presented in Table 1. At the baseline exam, no significant 

differences in demographic or behavioral characteristics (age, gender, leisure physical 

activity level, and smoking) were noted by genotype status in Caucasian and African 
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American ARIC participants.  Moreover, no significant differences in hypertension, glucose, 

insulin, obesity relate traits, triglycerides, and HDL-C were noted.   

Over the course of 9 years of follow-up, incident IFG was identified in 810 (58.8%) 

and 2,652 (51.5%) African American and Caucasian ARIC participants, respectively (Table 

2). The rs7903146 T allele was observed with similar frequency in African-American and 

Caucasian individuals, but was more common among incident IFG cases compared with non-

cases in Caucasians (Table 2). The rs7903146 T allele was significantly associated with 

incident IFG in Caucasian participants [HRCT vs. CC (95% CIs)=1.09 (1.03, 1.15); HRTT vs. CC 

(95% CIs)=1.18 (1.05, 1.33)], but not in African American participants [HRCT vs. CC (95% 

CIs)=0.99 (0.89, 1.10); HRTT vs. CC (95% CIs)=0.98 (0.79, 1.22)] (Table 2).  

To interrogate the consistency of our findings, we investigated the association 

between TCF7L2 and persistent IFG incidence defined as at least two IFG diagnoses at visit 

2, 3 or 4 and obtained similar effect estimates in Caucasians; however, in African Americans 

the effect estimates improved but were still not statistically significant (Online Appendix 

Table 1). In addition, we assessed the association between IFG and TCF7L2 using a more 

stringent definition of IFG (110 - 125 mg/dl) and similar results were obtained (data not 

shown). Lastly, a significant association between the rs7903146 T allele and repeated fasting 

glucose across visit 1-4 was noted in Caucasians (β=0.2480 with p=0.0389) but not in 

African Americans (β=0.3002 with p=0.2826), which is consistent with the IFG findings. 

We identified obesity and high triglyceride as important effect measure modifiers in 

Caucasians, but no important modifiers were noted in African Americans (Table 3; Figure 1; 

Online Appendix Table 2). Specifically, among non-obese Caucasians, heterozygous CT 
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[HR=1.07 (95% CI=1.00, 1.14)] and homozygous TT [1.14 (1.00, 1.30)] individuals had 

slightly higher HRs (95%CI) of IFG over 9 years of follow-up compared to homozygous CC 

individuals, whereas among obese Caucasians, heterozygous CT [1.28 (1.12, 1.47)] and 

homozygous TT [1.65 (1.25, 2.17)] individuals had significantly higher HRs (95%CI) of IFG 

compared to CC individuals (multiplicative interaction p value=0.01). Similar results were 

obtained for high triglycerides. When each effect measure modifier was studied separately, 

we observed a slightly larger ICR for obesity in Caucasians (Table 3), but testing by 

bootstrapping did not find significant differences between ICRs for obesity and high 

triglycerides[22]. 
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Table 12. (MS1: Table 1) Selected characteristics of the Atherosclerosis Risk in Communities Study participants at baseline, 
by race and genotype status. 
 African American Caucasian 
 CC CT TT p CC CT TT p 
n 695 569 113  2679 2084 389  

Age (years) 52 ± 6 52 ± 6 53 ± 6 0.76 54 ± 6 54 ± 6 53 ± 6 0.06 

Sex (male) 241 (34.68) 210 (36.91) 36 (31.86) 0.52 1010 (37.70) 807 (38.72) 146 (37.53) 0.75 

Ever Smoked 344 (49.50) 292 (51.32) 53 (46.90) 0.64 1499 (56.00) 1163 (55.83) 213 (54.76) 0.90 

Leisure-time Physical 
Activity  a 2.12 ± 0.59 2.16 ± 0.59 2.11 ± 0.56 0.42 2.5 ± 0.54 2.5 ± 0.53 2.53 ± 0.52 0.53 

Obeseb 214 (30.79) 155 (27.29) 31 (27.43) 0.37 412 (15.38) 273 (13.12) 49 (12.6) 0.06 

BMI (kg/m2) 28.37 ± 5.89 27.99 ± 5.23 27.70 ± 5.02 0.32 25.83 ± 4.29 25.55 ± 4.16 25.64 ± 4.23 0.07 

Elevated WCc 366 (52.66) 276 (48.59) 56 (49.56) 0.35 1142 (42.63) 842 (40.40) 161 (41.39) 0.30 

WC (cm) 95.13 ± 14.70 94.05 ± 13.10 93.12 ± 13.03 0.21 92.55 ± 12.41 91.76 ± 11.87 92.03 ± 11.91 0.08 

Hypertensiond 302 (43.64) 238 (42.05) 47 (41.59) 0.82 529 (19.86) 376 (18.13) 61 (15.72) 0.08 

Glucose (mg/dl)e 91.33 ± 5.77 91.58 ± 5.34 91.60 ± 5.39 0.70 92.40 ± 4.88 92.46 ± 4.82 92.13 ± 4.90 0.47 

Insulin (µU/ml)e 11.12 ± 7.75 10.45 ± 6.82 10.19 ± 6.51 0.18 8.23 ± 5.40 7.88 ± 5.13 7.89 ± 4.87 0.06 

High triglyceridef 24 (3.55) 20 (3.60) 3 (2.70) 0.97 245 (9.16) 198 (9.52) 36 (9.28) 0.91 

Triglycerides (mg/dl) 95.32 ± 52.14 95.25 ± 52.75 91.05 ± 50.34 0.71 118.64 ± 67.09 117.94 ± 72.40 121.85 ± 84.62 0.61 

Low HDL-Cg 174 (25.74) 139 (25.05) 22 (19.82) 0.42 883 (33.02) 651 (31.30) 132 (34.02) 0.35 

HDL-C (mg/dl) 58.85 ± 18.26 58.88 ± 18.61 61.18 ± 19.00 0.45 54.26 ± 17.21 54.83 ± 17.44 53.91 ± 17.17 0.43 

Data are means ± SE or n (%) unless otherwise indicated. Abbreviations: BMI, body mass index; HDL-C, high density lipoprotein cholesterol; 
WC, waist circumference. aLeisure time physical activity was derived from four questions regarding the frequency of television watching, 
walking, bicycling during the leisure time, and walking and/or bicycling to/from work, and was measured on a 5-point scale, with 1 indicating 
the lowest level of activity and 5 the highest[26]; bobesity was defined as BMI ≥30 kg/m2; celevated WC was defined as WC≥102cm in males or 
WC≥88cm in females; dhypertension was defined as systolic blood pressure ≥ 140mmHg or diastolic blood pressure ≥ 90mmHg or a history of 
anti-hypertension medication use; eprevalent diabetes and IFG cases were excluded; fhigh triglyceride was defined as triglyceride levels higher 
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than 200 mg/dl; glow HDL-C was defined as less than 40 mg/dl in males and 50 mg/dl in females. 
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Table 13. (MS1: Table 2) Genotypic frequency of TCF7L2 rs7903146 by race and incident IFG status, cumulative 
incidence of IFG by race and genotype over 9 years of follow-up, and estimated hazard ratio of rs7903146 on IFG by 
race: The ARIC Study. 
 African American  Caucasian 
 

Non-Cases/Cases 

Cumulative 
Incidence (%) 

(95%CI) 
HR  

(95% CI)a pb  Non-Cases/Cases 

Cumulative 
Incidence (%) 

(95%CI) 
HR  

(95% CI)a pb 

n 567/810 
63.73  

(60.64, 66.58)    2500/2652 
53.87  

(52.37, 55.31)   

CC 291(51)/404(50) 
63.78  

(59.84, 67.34) 1.00   1354(54)/1325(50) 
52.19 

 (50.26, 54.04) 1.00  

CT 221(39)/348(43) 
63.64  

(60.05, 66.91) 
0.99  

(0.89, 1.10) 0.86  966(39)/1118(42) 
55.19  

(53.42, 56.89) 
1.09  

(1.03, 1.15) 0.01 

TT 55(10)/58(7) 
63.50  

(56.49, 69.38) 
0.98  

(0.79, 1.22)   180(7)/209(8) 
58.24  

(54.66, 61.53) 
1.18  

(1.05, 1.33)  
T allele (%) 29/29     27/29    
Abbreviation: CI, confidence interval; HR, hazard ratio; IFG, impaired fasting glucose. 
aAdjusted for age at baseline, study center and gender; bp value for HR. 
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Table 14. (MS1: Table 3) Association of TCF7L2 rs7903146 with IFG [HR (95% CI)] modified by obesity and high 
triglycerides, respectively, over 9 years of follow-up in ARIC 
Characteris
tics CC genotype  CT genotype  TT genotype  

Multiplicative 
Interaction  

Additive 
Interaction 

 N HR (95% CI)a  N HR (95% CI)a  N HR (95% CI)a  pb  ICR (pc) 
African-American            
Obesityd             
        No 481 1  413 1.03 (0.90, 1.17)  82 1.06 (0.82, 1.38)  0.40  -0.12 (0.42) 
        Yes 214 1.40 (1.15, 1.71)  155 1.31 (1.08, 1.59)  31 1.22 (0.87, 1.70)     
 High triglyceridese            
        No 652 1  535 1.00 (0.90, 1.12)  108 1.01 (0.80, 1.26)  0.32  0.44 (0.30) 
        Yes 24 1.18 (0.71, 1.97)  20 1.63 (1.05, 2.51)  3 2.23 (0.90, 5.56)     
Caucasian             
Obesityd             
        No 2267 1  1808 1.07 (1.00, 1.14)  340 1.14 (1.00, 1.30)  0.01  0.38 (0.007) 
        Yes 412 1.52 (1.33, 1.73)  273 1.96 (1.74, 2.21)  49 2.53 (2.03, 3.17)     
High triglyceridese            
        No 2429 1  1882 1.07 (1.00, 1.14)  352 1.14 (1.00, 1.29)  0.02  0.36 (0.002) 
        Yes 245 1.31 (1.11, 1.54)  198 1.73 (1.51, 1.99)  36 2.30 (1.76, 3.00)     
Abbreviation: ICR, interaction contrast ratio; IFG, impaired fasting glucose; CI, confidence interval; HR, hazard ratio. 
aAdjusted for age at baseline, study center and gender; bp value for the Wald 2χ  test; cp value for ICR; dobesity was defined as BMI 
≥30 kg/m2; ehigh triglyceride was defined as triglyceride levels higher than 200 mg/dl. 
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Figure 1 (MS1: Figure 1) Association of TCF7L2 rs7903146 with incident IFG in Caucasian participants stratified by 
obesitya (Panel A, left) or high triglyceridesb (Panel B, right) in the ARIC Study.  
aObesity was defined as BMI ≥30 kg/m2; bhigh triglyceride was defined as triglyceride levels higher than 200 mg/dl.  
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Table 15. (MS1: Supplemental Table 1) Genotypic frequency of TCF7L2 rs7903146 by race and persistent IFG 
incidencea, and estimated hazard ratio of rs7903146 on IFG by race: The ARIC Studyb 
 African American  Caucasian 
 Non-Cases/Cases HR (95% CI) c pd  Non-Cases/Cases HR (95% CI) c pd 
n 1005/372    3937/1179   
CC 519(52)/176(47) 1   2091(53)/588(50) 1  
CT 407(41)/162(44) 1.11 (0.95, 1.30) 0.1802  1589(40)/495(42) 1.09 (0.99, 1.19) 0.0675 
TT 79(8)/34(9) 1.24 (0.91, 1.70)   293(7)/96(8) 1.18 (0.99, 1.41)  
T allele (%) 28/31    27/29   
Abbreviation: CI, confidence interval; HR, hazard ratio; IFG, impaired fasting glucose. 
aPersistent IFG incidence was defined as at least two IFG occasions for visit 2, 3, or 4; bthe genotypic distributions were in agreement 
with Hardy-Weinberg equilibrium in African-Americans and Caucasians; cadjusted for age at baseline, study center and gender; dp value 
for HR.  
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Table 16. (MS1: Supplemental Table 2) Association of TCF7L2 rs7903146 with IFG [HR (95% CI)] modified by low 
HDL, hypertension and elevated WC, respectively, over 9 years of follow-up in ARICa 

Characteristics 
 

  HR (95% CI)b    
Multiplicative 

Interaction  
Additive 

Interaction 
  CC genotype  CT genotype  TT genotype  pc  ICR (pd) 
African-American           

Low HDLe No  1  1.02 (0.90, 1.16)  1.04 (0.81, 1.35)  0.84  -0.03(p =0.86) 
  Yes 1.35 (1.09, 1.66)  1.34 (1.10, 1.63)  1.33 (0.93, 1.90)     

Hypertensionf No  1  0.92 (0.80, 1.06)  0.84 (0.63, 1.12)  0.11  0.18(p =0.09) 
  Yes 0.94 (0.78, 1.14)  1.04 (0.87, 1.24)  1.14 (0.86, 1.53)     

Elevated WCg  No  1  1.05 (0.89, 1.22)  1.09 (0.80, 1.50)  0.43  -0.11(p =0.45) 
  Yes 1.47 (1.20, 1.79)  1.41 (1.16, 1.71)  1.35 (1.01, 1.79)     

Caucasian           
Low HDLe No  1  1.09 (1.01, 1.18)  1.19 (1.03, 1.39)  0.97  0.03(p =0.69) 

  Yes 1.38 (1.24, 1.53)  1.50 (1.36, 1.66)  1.64 (1.39, 1.93)     
Hypertensionf No  1  1.09 (1.02, 1.17)  1.20 (1.05, 1.37)  0.93  0.04(p =0.71) 

  Yes 1.29 (1.14, 1.46)  1.42 (1.26, 1.60)  1.56 (1.25, 1.95)     
Elevated WCg  No  1  1.05 (0.97, 1.14)  1.11 (0.94, 1.31)  0.14  0.16(p =0.04) 

  Yes 1.42 (1.28, 1.57)  1.63 (1.48, 1.80)  1.88 (1.61, 2.20)     
Abbreviation: ICR, interaction contrast ratio; IFG, impaired fasting glucose; CI, confidence interval; HR, hazard ratio; WC, waist 
circumference. 
aAll subgroups had sample sizes of 26 or greater and 70 or greater in African Americans and Caucasians, respectively; badjusted for age at 

baseline, study center and gender; cp value for the Wald 2χ  test; dp value for ICR; elow HDL-C was defined as less than 40 mg/dl in 
males and 50 mg/dl in females; fhypertension was defined as systolic blood pressure ≥ 140mmHg or diastolic blood pressure ≥ 90mmHg 
or a history of anti-hypertension medication use; gelevated WC was defined as WC≥102cm in males or WC≥88cm in females. 
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4. Discussion 

TCF7L2 has been implicated as an important IFG susceptibility gene in different 

Caucasian populations [6, 7]. To our knowledge, our study is the first population-based study 

on the TCF7L2 rs7903146 and prediabetes as measured by incident IFG in African 

Americans and no association was noted. An earlier study in non-diabetic African American 

women (n=118 with 11 prevalent IFG cases) reported the lack of an association with 

prevalent IFG (effect estimates not reported) [23], which is consistent with our findings. Our 

study replicates the association between the T allele at rs7903146 and IFG risk in 

Caucasians, and contributes new evidence for interactions between TCF7L2 variants and 

obesity and high triglycerides in Caucasians. Indeed, we demonstrate that the risk of 

developing IFG associated with this TCF7L2 variant is substantially increased in the context 

of well known metabolic risk factors for type 2 diabetes.   

 We and other investigators have previously demonstrated an association between 

the TCF7L2 rs7903146 and type 2 diabetes in both races [3, 4, 8]. In contrast, in this study, 

no association with IFG was noted in African Americans. Further investigation of the 

association between TCF7L2 rs7903146 and persistent, incident IFG (2 or more occasions) 

demonstrated similar effect estimates in Caucasians. Similarly, in African Americans the 

effect estimates remained below thresholds of nominal statistical significance (Online 

Appendix Table 1). The lack of association between rs7903146 and IFG within the African 

American could reflect confounding by unmeasured covariates that are differentially 

distributed in African American and Caucasian participants, which warrants further 

investigation. Second, the limited power to detect such a modest effect in the African 
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American sample (calculated as 20% for a relative risk of 1.10) may also explain our 

findings.  

Our data identified obesity and high triglycerides as significant effect measure 

modifiers in Caucasians. When studied separately, the most prominent interaction with 

genotype was for obesity (Table 3, Figure 1). Although we are unable to elucidate the 

pathogenesis underlying the observed statistical interactions, strong evidence indicates that 

abnormal metabolic traits including obesity and dyslipidemia aggregate in diabetic patients 

and their relatives [24, 25]. Genetic factors interacting with shared and unique environmental 

factors may cause this aggregation of metabolic traits [24]. Although our study has 

implicated, for the first time, interesting relationships between these metabolic risk factors, 

the TCF7L2 variants and IFG in Caucasians, the role of TCF7L2 variants in pathogenesis of 

IFG in the context of metabolic risk factors remains to be determined. 

Our study findings have public health significance of potential importance since they 

suggest that having one or two rs7903146 T risk alleles only partially informs one’s risk for 

prediabetes, as quantified by IFG. In the Caucasian population, the risk of IFG conferred by 

the T risk allele of rs7903146, even in the context of metabolic risk factors, only 

demonstrated a modest risk. In the African American population, no association between the 

T risk allele and IFG was noted. Thus, the cumulative risk of IFG likely depends on multiple 

susceptibility variants, the gene-gene interactions, and most importantly, “established” risk 

factors for type 2 diabetes such as BMI and other lifestyle habits.  

 In conclusion, our study replicates the association between the T allele at rs7903146 

and IFG risk in Caucasians, whereas no associations were observed in African Americans. 
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Our study provides new evidence for interactions between TCF7L2 and metabolic risk 

factors on the risk of IFG in Caucasians, as was previously demonstrated for type 2 diabetes. 

The reported differences between African American and Caucasian subpopulations require 

replication in larger epidemiological studies, as we were underpowered to detect the very 

modest effects that were observed in the Caucasians. 
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B. Manuscript 2: Transcription Factor 7-Like 2 (TCF7L2) Polymorphism and 

Retinal Vascular Signs in African American and Caucasian Adults: The 

Atherosclerosis Risk in Communities (ARIC) Study 

ABSTRACT 

Purpose: To investigate the association between the transcription factor 7-like 2 (TCF7L2) 

rs7903146 polymorphism and retinal microvascular phenotypes in the Atherosclerosis Risk 

in Communities (ARIC) Study (1993-1995).  

Design: Population-based, cross-sectional study. 

Methods: A total of 10,320 middle-aged African American (n=2,199) and Caucasian 

(n=8,121) men and women were selected from four United States communities to examine 

the association between TCF7L2 rs7903146 polymorphism and retinal microvascular signs 

(retinopathy, focal arteriolar narrowing, arteriovenous nicking, arteriolar and venular 

calibers). Photographs on one randomly selected eye were graded for presence of retinal 

microvascular signs and used to measure retinal vessel calibers.   

Results: After adjusting for age, sex, study center, mean arterial blood pressure, total serum 

cholesterol, triglycerides, and other covariates, few associations of TCF7L2 rs7903146 and 

retinal microvascular signs were noted. TCF7L2 rs7903146 T risk allele was significantly 

associated with focal arteriolar narrowing in Caucasians with hypertension [odds ratio 

(OR)CT vs. CC (95% CI) = 1.25 (1.09-1.44); ORTT vs. CC= 1.56 (1.18-2.06); P = 0.002] and in 

Caucasians without diabetes [OR CT vs. CC = 1.18 (1.06-1.32); OR TT vs. CC = 1.40 (1.12, 1.75); P 
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= 0.003]. No significant association of the TCF7L2 rs7903146 polymorphism and retinal 

vascular signs was noted among African American individuals.   

Conclusions: TCF7L2 rs7903146 is not consistently associated with retinal microvascular 

signs. However, we report an association between the TCF7L2 rs7903146 polymorphism and 

focal arteriolar narrowing in Caucasians with hypertension or without diabetes. Further 

research in other large, population-based studies is needed to replicate these findings.   

1. Introduction 

Retinal microvascular signs (e.g. retinopathy) and changes in retinal vessel caliber are 

common fundus findings in adults aged 40 years and older1. Narrowing in retinal vascular 

caliber has been shown to predict the risk of diabetes2 and to be related to retinopathy in 

people with diabetes3, hypertension, or cardiovascular disease in the general population1. In 

addition to risk factors such as diabetes and hypertension, genetic factors may also play a role 

in the development of these retinal microvascular signs4, 5.    

Transcription factor 7-like 2 (TCF7L2), a Wingless and Int (Wnt) signaling-

associated transcription factor located on chromosome 10q25, has emerged as a consistently 

replicated susceptibility gene for type 2 diabetes6-8, possibly through the impairment of 

glucagon-like peptide-1-induced insulin secretion9. In our previous work, we confirmed that 

the T allele at single nucleotide polymorphism (SNP) rs7903146 located in intron 3 of 

TCF7L2 confers risk for incident type 2 diabetes in middle-aged African Americans and 

Caucasians7. However, whether the TCF7L2 gene also has similar effects on the retinal 

microvasculature is less clear. To our knowledge, no studies examining the association of the 
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TCF7L2 gene to retinal microvascular signs have been conducted but two studies evaluated 

retinopathy, which relies on less precise global assessments or self-report. 

A study in a French population reported no evidence of an association with prevalent, 

severe diabetic retinopathy10, whereas the InCHIANTI study indicated an association of the 

TCF7L2 gene  with reported diabetic retinopathy (odds ratio=7.15, 95%CI=0.87-58.51)11, 

although the estimates were notably imprecise. Moreover, potential effects of hypertension 

on the association of TCF7L2 gene and retinopathy have been largely unexplored.  

In this study, we investigated whether the TCF7L2 rs7903146 polymorphism is 

associated with retinal microvascular signs and retinal vessel caliber in a large community-

based cohort of African-American and Caucasian middle-aged adults. A second objective is 

to evaluate whether the effect of the rs7903146 SNP varies by hypertension or diabetes 

status. 

2. Methods 

a. Study population 

The ARIC Study is an ongoing, longitudinal cohort study of cardiovascular and other 

major diseases among 15,792 men and women, aged 45 to 64 years old at baseline (1987-

1989), selected from 4 US communities: Forsyth County, NC; Jackson, MS; the northwestern 

suburbs of Minneapolis, MN; and Washington County, MD12. By design, African-Americans 

were over-sampled at the Forsyth County site and were exclusively sampled in Jackson and 

thus constituted 27% of the baseline cohort. Of the 15,792 participants at baseline, 12,887 

(86%) returned for the third examination when retinal photography was first performed in 

1993-1995.  
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We excluded ARIC participants who were not African-American or Caucasian 

(n=38), African-Americans from Minnesota and Maryland field centers (n=42), participants 

with missing genotype data or who did not provide consent for the use of their DNA (n=803), 

participants who did not have retinal photographs (n=224), participants who had ungradeable 

photographs (n=1458), and participants who had diabetes diagnosed before 20 years old 

(n=2). After these exclusions, 10,320 participants (2,199 African American and 8,121 

Caucasians) were available for analysis. Characteristics of participants with and without 

gradable retinal photographs have been previously described13, 14. 

b. Assessment of Retinal Microvascular Signs 

The retinal photography procedures and grading of retinal microvascular signs have 

been published in detail elsewhere13. In brief, one eye was randomly selected from each 

participant and a 45° retinal photograph, centered on the region of the optic disc and the 

macula, was taken using an autofocus film camera after a five-minute dark adaptation. If the 

selected eye was considered too difficult or not possible to photograph with adequate quality, 

the other eye was photographed instead.  

These retinal photographs were evaluated at the Fundus Photograph Reading Center 

at the University of Wisconsin, Madison, by trained graders who were masked to participant 

characteristics. We measured and defined the presence of focal retinal microvascular 

abnormalities, including retinopathy, arteriovenous (AV) nicking, and focal arteriolar 

narrowing. Retinopathy was defined based on the presence of any of the following lesions: 

retinal hemorrhages (blot or flame shaped), microaneurysms, soft or hard exudates, macular 

edema, intraretinal microvascular abnormalities, venous beading, swelling, or laser 
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photocoagulation scars. AV nicking and focal arteriolar narrowing were defined as present if 

graded as definite or probable and as absent if not. Retinal arteriolar and venular calibers 

were measured using a computer-assisted approach. The fundus photographs were digitized 

and the diameters of all arterioles and venules in an area half to one disc diameters from the 

optic disc were measured. These diameters were summarized as the central retinal artery 

equivalent (CRAE) and the central retinal venular equivalent (CRVE)13. Quality control 

procedures have been previously reported13.  

c. TCF7L2 Genotyping 

The TCF7L2 rs7903146 SNP was genotyped by the ARIC Central Laboratory using 

Taqman® assays (Applied Biosystems, Foster City, CA). Laboratory-designed probes were 

obtained from Applied Bioystems and primers from IDT (Coralville, IA). All PCR reactions 

took place in optical 384-well reaction plates (Applied Biosystems). Five percent of samples 

were re-genotyped for quality control as blind duplicates. The percent agreement between 

blind duplicates was 98% and the simple Kappa coefficient was 0.97 indicating good 

genotyping quality. 

d. Measurement of Covariates 

Self-reported race, sex, and study center were ascertained at baseline (1987-1989). 

Other covariates including age, current smoking, obesity, total serum cholesterol, total serum 

triglycerides, mean arterial blood pressure, and antihypertensive medication were obtained at 

visit 3 (1993-1995). At each visit, blood pressure was measured three times using a random 

zero sphygmomanometer and the average of the last two measurements was used for 

analyses. Hypertension was defined as systolic blood pressure ≥ 140mmHg or diastolic blood 
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pressure ≥ 90mmHg or current use of anti-hypertension medication use at visit 1, 2, or 315. 

Mean arterial blood pressure was defined as one-third of systolic blood pressure plus two-

thirds of diastolic blood pressure at visit 316. Diabetes was defined as fasting serum glucose 

levels of at least 7.0 mmol/L (126 mg/dl), nonfasting glucose levels of at least 11.1 mmol/L 

(200 mg/dl), current use of hypoglycemic medications, or a self-reported physician diagnosis 

of diabetes at visit 1, 2 or 317. Plasma total cholesterol and triglyceride levels were measured 

by enzymatic methods; high-density lipoprotein cholesterol (HDL-C) was measured after 

dextran-magnesium precipitation of the non-HDL-C; and glucose was assessed by a modified 

hexokinase/glucose-6-phosphate dehydrogenase procedure18. Self-reported cigarette smoking 

exposure was defined as current smoking versus non-smoking obtained by a personal 

interview. Body mass index (BMI) was calculated as measured weight (kg) divided by the 

square of measured height (m2). Individuals with a BMI ≥30 kg/m2 were classified as 

obese19.  

e. Statistical Analysis 

 All analyses were stratified by race to crudely account for population stratification. 

To assess whether genotype distribution within each race departed from Hardy-Weinberg 

equilibrium, a 2χ  goodness-of-fit test was used. Logistic regression was used to model the 

association of focal retinal lesions (retinopathy, focal arteriolar narrowing, AV nicking) with 

the TCF7L2 rs7903146 polymorphism, and odds ratios (ORs) and 95% confidence intervals 

(CIs) were obtained. Following published literature8 and our previous findings7, we assumed 

an additive mode of inheritance and compared heterozygous CT-genotype and homozygous 

TT-genotype individuals to CC-genotype individuals, using the rs7903146 CC-genotype as 

the referent group.  A variable taking on the values 0 for genotype CC, 1 for genotype CT, 
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and 2 for genotype TT was used to test for log additive genetic effects in logistic regression 

models. Generalized linear models were used to obtain adjusted mean retinal vascular 

calibers (CRAE, CRVE) for each genotype of rs7903146. All models were adjusted for age, 

study center, sex, current smoking (yes/no), obesity (yes/no), total serum cholesterol, total 

serum triglycerides, mean arterial blood pressure, and antihypertensive medication. 

Hypertension was also included in the model when it was not assessed as an effect measure 

modifier. 

As hypertension and diabetes are strongly associated with retinal microvascular signs 

and TCF7L2 is a diabetes-related gene, we assessed the potential interactions between 

genotype and hypertension and interactions between genotype and diabetes on retinal 

microvascular phenotypes, respectively, and performed sub-group analyses with and without 

hypertension/diabetes. A Wald 2χ  test for significance of the estimated β-coefficient for the 

interaction term (SNP × hypertension or SNP × diabetes) and the interaction contrast ratio 

(ICR) with P value were used to assess the departure from multiplicativity and additivity, 

respectively20, 21. A P value <0.05 was considered to indicate an important modifier, despite 

the multiple tests as interaction tests tend to be underpowered22. ICRs were quantified as 

follows:  ICR= OR_AB – OR_A – OR_B + 1, where OR_AB represents the joint effect of 

hypertension/diabetes and the SNP, and OR_A and OR_B represent the main effects of 

hypertension/diabetes and the SNP, respectively20. Thus, ICR refers to the increased odds 

due to an additive interaction between hypertension/diabetes and the T risk allele adjusted for 

aforementioned covariates. Assuming an additive mode of inheritance, the ICR comparing 

TT to CT is equal to the ICR comparing CT to CC, thus only one ICR was reported. 

Departures from zero suggest that hypertension/diabetes and the SNP interact to cause retinal 
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microvascular signs. The OR and the variance covariance matrix were used to calculate ICR 

values and P values21. For retinal vascular calibers (CRAE, CRVE), only the P value from 

multiplicative interaction test was estimated.  

3. Results 

The rs7903146 T allele was observed with same frequency (29%) in African-

American and Caucasian individuals, and the genotype frequencies for rs7903146 in both 

races were consistent with Hardy–Weinberg equilibrium (P>0.05). Selected characteristics of 

the ARIC Study participants by race and genotype status are presented in Table 1. No 

statistically significant differences in demographic or behavioral characteristics (sex, and 

current smoking) were noted by genotype status except for age in Caucasian participants 

(Table 1). Moreover, no statistically significant differences in hypertension, mean arterial 

blood pressure, obesity, triglycerides, HDL-C, LDL-C, and total cholesterol by genotype 

were noted except for individuals with T allele who had significantly higher fasting glucose 

and were more likely to be diabetic in Caucasians (Table 1).   

The associations between retinal lesions and rs7903146 are presented in Table 2. The 

heterozygous CT-genotype and homozygous TT-genotype individuals had a slightly higher 

prevalence of retinal lesions when compared with CC-genotype individuals in both races 

except for AV nicking in Caucasians. Assuming an additive mode of inheritance, the 

rs7903146 T allele was marginally significantly associated with prevalent focal arteriolar 

narrowing in Caucasians [ORCT vs. CC (95% CIs) = 1.11 (1.00, 1.23); ORTT vs. CC (95% CIs) = 

1.23 (1.00, 1.51); P = 0.05], but not in African American participants [ORCT vs. CC (95% CIs) 

= 1.10 (0.88, 1.36); ORTT vs. CC (95% CIs) = 1.20 (0.78, 1.85); P =0.40] (Table 2). No 
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significant associations were noted for AV nicking, retinopathy, or retinal arteriolar or 

venular diameters (CRAE, CRVE) with rs7903146 (Table 3).      

Hypertension and diabetes were important effect measure modifiers for focal 

arteriolar narrowing in Caucasians [multiplicative P = 0.03 (hypertension), P = 0.04 

(diabetes); additive ICR = 0.41 and P=0.006 (hypertension), ICR = -0.29 and P=0.04 

(diabetes)], but not in African American participants (P>0.05). When stratified by 

hypertension or diabetes status, TCF7L2 rs7903146 was significantly associated with an 

increased odds of focal arteriolar narrowing in Caucasian individuals, however only among 

those with hypertension or without diabetes (Table 4); no associations were noted in African 

American participants (data not shown). Our analysis in Caucasian individuals with 

hypertension AND without diabetes indicated that TCF7L2 rs7903146 was associated with 

focal arteriolar narrowing [ORCT vs. CC (95% CIs) = 1.40 (1.19, 1.64); ORTT vs. CC (95% CIs) = 

1.96 (1.43, 2.68); P < 0.0001], which is consistent with our interaction analyses. No 

significant interactions with hypertension or diabetes were observed for other retinal lesions 

and retinal vessel calibers (CRAE, CRVE).  
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Table 17. (MS2: Table 1) Distribution of selected characteristics by race and rs7903146 genotype status: the 
Atherosclerosis Risk in Communities Study (1993-1995) 
 African American  Caucasian 

 CC CT TT 
P 

valuea  CC CT TT 
P 

valuea 
n 1099 923 177   4105 3321 695  
Age, years 58.4 ± 5.6 58.3 ± 5.4 58.9 ± 5.6 0.36  60.1 ± 5.6 59.9 ± 5.6 59.6 ± 5.6 0.03 
Male sex 399 (36.31) 353 (38.24) 65 (36.72) 0.66  1894 (46.14) 1528 (46.01) 339 (48.78) 0.39 
Current smoker 232 (21.28) 194 (21.20) 34 (19.32) 0.86  672 (16.38) 570 (17.17) 117 (16.83) 0.66 
Obesity Presentb 516 (46.95) 418 (45.29) 86 (48.86) 0.60  1223 (29.81) 926 (27.92) 200 (28.78) 0.20 
Hypertension Presentc 720 (65.51) 619 (67.06) 116 (65.54) 0.75  1612 (39.28) 1311 (39.48) 262 (37.70) 0.68 
Mean arterial blood 
pressure, mm Hgd 

94.06 ± 
12.87 

94.28 ± 
12.61 

92.98 ± 
12.76 0.46  

87.83 ± 
11.08 

87.55 ± 
11.38 

87.24 ± 
11.05 0.32 

Diabetes Presente 283 (25.75) 258 (27.95) 58 (32.77) 0.12  534 (13.01) 536 (16.14) 136 (19.57) <0.01 

Glucose, mg/dL 
119.74 ± 

54.11 
121.25 ± 

57.38 
128.02 ± 

61.89 0.19  
105.80 ± 

31.34 
108.5 ± 

35.47 
111.18 ± 

36.60 <0.01 

Triglycerides, mg/dL 
115.99 ± 

72.35 
113.05 ± 

60.12 
113.64 ± 

59.79 0.60  
150.57 ± 

91.84 
149.22 ± 

91.66 
151.24 ± 

116.54 0.78 

HDL-C, mg/dL 
55.73 ± 

18.84 
54.78 ± 

17.82 
53.90 ± 

18.83 0.33  
51.08 ± 

17.70 
51.82 ± 

18.54 
50.20 ± 

17.11 0.05 

LDL-C, mg/dL 
127.88 ± 

36.20 
129.15 ± 

37.24 
130.26 ± 

37.15 0.61  
126.99 ± 

33.10 
126.56 ± 

34.90 
127.03 ± 

33.21 0.85 
Total Cholesterol, 
mg/dL 

206.43 ± 
39.13 

206.45 ± 
38.71 

206.89 ± 
39.96 0.99  

207.90 ± 
36.98 

207.94 ± 
37.95 

206.36 ± 
35.65 0.57 

Data are means ± SE or n (%) unless otherwise indicated. Abbreviations: HDL-C, high density lipoprotein cholesterol; LDL-C, low 
density lipoprotein cholesterol. aP value is based on ANOVA (continuous) and (categorical), comparing differences for individual 
characteristic across genotypes; bobesity was defined as body mass index ≥30 kg/m2; chypertension was defined as systolic blood pressure 
≥ 140mmHg or diastolic blood pressure ≥ 90mmHg or a history of anti-hypertension medication use; dmean arterial blood pressure was 
defined as one-third of systolic blood pressure plus two-thirds of diastolic blood pressure; ediabetes was defined as fasting serum glucose 
levels of at least 7.0 mmol/L (126 mg/dl), nonfasting glucose levels of at least 11.1 mmol/L (200 mg/dl), current use of hypoglycemic 
medications, or a self-reported physician diagnosis of diabetes.  
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Table 18. (MS2: Table 2) Retinal lesions by TCF7L2 rs7903146 genotype, by race: the Atherosclerosis Risk in 
Communities Study (1993-1995) 
  African American  Caucasian 

Retinal  Lesion Genotype n 
No. with 

Lesion (%) OR (95% CI)a 
P 

valueb  n 
No. with 

Lesion (%) OR (95% CI)a 
P 

valueb 

AV nicking CC 1083 179 (16.53) 1.00 0.24  4058 585 (14.42) 1.00 0.58 
 CT 915 156 (17.05) 1.12 (0.93, 1.35)   3286 433 (13.18) 1.03 (0.93, 1.14)  
 TT 174 33 (18.97) 1.26 (0.86, 1.83)   689 106 (15.38) 1.06 (0.86, 1.30)  
Focal arteriolar 
narrowing 

CC 1076 136 (12.64) 1.00 0.40  4041 598 (14.80) 1.00 0.05 
CT 912 120 (13.16) 1.10 (0.88, 1.36)   3268 543 (16.62) 1.11 (1.00, 1.23)  

 TT 173 26 (15.03) 1.20 (0.78, 1.85)   688 104 (15.12) 1.23 (1.00, 1.51)  
Retinopathy CC 1099 138 (12.56) 1.00 0.36  4105 236 (5.75) 1.00 0.27 
 CT 923 128 (13.87) 1.10 (0.90, 1.35)   3321 205 (6.17) 1.09 (0.94, 1.26)  
 TT 177 24 (13.56) 1.21 (0.81, 1.81)   695 45 (6.47) 1.18 (0.88, 1.58)  
Abbreviations: AV, arteriovenous; CI, confidence interval; OR, odds ratio. 
aAdjusted for age, study center, gender, current smoking (yes/no), obesity, total serum cholesterol, total serum triglycerides, mean arterial 
blood pressure, hypertension, and antihypertensive medication; bP value for OR in the log additive genetic model. 
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Table 19. (MS2: Table 3) Mean retinal vessel calibers (CRAE/CRVE) by TCF7L2 rs7903146 genotype, by race: the 
Atherosclerosis Risk in Communities Study (1993-1995) 

  African American  Caucasian 

Retinal Vessel Index Genotype n Multivariate Adjusteda 
P 

valueb  n Multivariate Adjusteda 
P 

valueb 

Mean retinal 
arteriolar diameter 
(95% CI), µm 

CC 1090 163.44 (161.97, 164.90) 0.14  4096 161.03 (160.25, 161.82) 0.29 
CT 916 164.54 (162.95, 166.13)   3312 160.53 (159.71, 161.35)  
TT 177 162.92 (160.47, 165.36)   694 160.79 (159.56, 162.02)  

Mean retinal venular 
diameter (95% CI), 
µm 

CC 1090 202.43 (200.88, 203.97) 0.72  4096 194.65 (193.87, 195.44) 0.72 
CT 916 201.60 (199.93, 203.28)   3312 194.85 (194.03, 195.67)  
TT 177 201.92 (199.33, 204.51)   694 194.44 (193.21, 195.67)  

Abbreviations: CI, confidence interval; CRAE, central retinal artery equivalent; CRVE, central retinal venular equivalent. 
aAdjusted for age, study center, gender, current smoking (yes/no), obesity, total serum cholesterol, total serum triglycerides, mean arterial 
blood pressure, hypertension, antihypertensive medication, and CRAE (when the outcome is CRVE)/CRVE (when the outcome is 
CRAE); bP value for 1 degree freedom test of association between vessel calibers and rs7903146 under the log additive genetic model. 
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Table 20. (MS2: Table 4) Retinal Lesions and TCF7L2 rs7903146 genotype by 
hypertension or diabetes status in Caucasians: the Atherosclerosis Risk in 
Communities Study (1993-1995) 
Retinal 
Lesion 

Geno-
type n 

No. with 
Lesion (%) 

OR 
(95% CI)a n 

No. with 
Lesion (%) 

OR 
(95% CI)a 

  With Hypertension Without Hypertension 
AV nicking CC 1595 280 (17.55) 1.00 2462 305 (12.39) 1.00 

CT 1297 222 (17.12) 1.18 (1.02, 1.36) 1989 211 (10.61) 0.91 (0.78, 1.05) 

TT 259 60 (23.17) 1.39 (1.04, 1.86) 430 46 (10.70) 0.83 (0.61, 1.11) 
P valueb    0.03   0.21 
Focal 
arteriolar 
narrowing 

CC 1584 330 (20.83) 1.00 2456 268 (10.91) 1.00 
CT 1290 320 (24.81) 1.25 (1.09, 1.44) 1978 223 (11.27) 0.96 (0.82, 1.12) 
TT 259 67 (25.87) 1.56 (1.18, 2.06) 429 37 (8.62) 0.92 (0.68, 1.25) 

P valueb    0.002   0.59 
Retinopathy CC 1612 136 (8.44) 1.00 2492 100 (4.01) 1.00 

CT 1311 112 (8.54) 1.04 (0.85, 1.26) 2010 93 (4.63) 1.12 (0.90, 1.39) 
TT 262 23 (8.78) 1.08 (0.73, 1.60) 433 22 (5.08) 1.26 (0.81, 1.94) 

P valueb    0.71   0.31 
        
  With Diabetes Without Diabetes 
AV nicking CC 525 89 (16.95) 1.00 3533 496 (14.04) 1.00 

CT 525 88 (16.76) 0.99 (0.78, 1.26) 2761 345 (12.50) 1.04 (0.92, 1.16) 
TT 134 21 (15.67) 0.98 (0.61, 1.58) 555 85 (15.32) 1.07 (0.85, 1.35) 

P valueb    0.94   0.56 
Focal 
arteriolar 
narrowing 

CC 519 88 (16.96) 1.00 3522 510 (14.48) 1.00 
CT 526 91 (17.30) 0.85 (0.65, 1.11) 2742 452 (16.48) 1.18 (1.06, 1.32) 

TT 136 15 (11.03) 0.73 (0.42, 1.24) 552 89 (16.12) 1.40 (1.12, 1.75) 
P valueb    0.24   0.003 
Retinopathy CC 534 78 (14.61) 1.00 3571 158 (4.42) 1.00 

CT 536 76 (14.18) 1.05 (0.82, 1.34) 2785 129 (4.63) 1.01 (0.84, 1.22) 
TT 136 23 (16.91) 1.10 (0.67, 1.8) 559 22 (3.94) 1.02 (0.70, 1.48) 

P valueb    0.71   0.91 
Abbreviations: AV, arteriovenous; CI, confidence interval; OR, odds ratio. 
aAdjusted for age, study center, gender, current smoking (yes/no), obesity, total serum cholesterol, total 
serum triglycerides, mean arterial blood pressure, hypertension (when stratified by diabetes), and 
antihypertensive medication; bP value for OR in the log additive genetic model. 

 
 

4. Discussion 

Our study reports on the association between the TCF7L2 rs7903146 polymorphism 

and retinal microvascular lesions and retinal vascular caliber in a middle-aged biracial 

population. No associations were noted except for focal arteriolar narrowing in Caucasians. 

The TCF7L2 rs7903146 was significantly associated with a greater frequency of focal 

arteriolar narrowing among Caucasians with hypertension or without diabetes, but not among 
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those without hypertension or with diabetes, suggesting an interaction between TCF7L2 

variants and hypertension and diabetes status in Caucasians.  

To our knowledge, there are few studies for direct comparison. An earlier case-

control study in a French population reported the lack of an association with severe 

retinopathy (effect estimates not reported)10, which is consistent with our findings on 

retinopathy in Caucasians. The InCHIANTI study of elderly Europeans reported an 

association with diabetic retinopathy (OR=7.15, 95%CI=0.87-58.51, P=0.067) in 127 

persons with diabetes. However the number of participants with diabetic retinopathy was 

very small (n=12) and results were not statistically significant11. Notably, these two studies 

did not report the definition for retinopathy used, which may differ from ours. 

We observed an association between TCF7L2 rs7903146 and focal arteriolar 

narrowing in Caucasians, but not in African Americans. The lack of association in the 

African American examinees could reflect confounding by unmeasured covariates that are 

differentially distributed in African American and Caucasian participants, which warrants 

further investigation. More likely however, the limited power to detect such a modest effect 

in the African American sample (calculated as 26% for a relative risk of 1.15) may explain 

our findings. The latter is supported by the observation of very similar effect size estimates 

between African American and Caucasian participants, and therefore warrants further study 

in additional African American populations. 

 It is not known why TCF7L2 rs7903146 was associated with retinal focal arteriolar 

narrowing. To determine whether the effect of TCF7L2 rs7903146 on focal arteriolar 

narrowing was due to hyperglycemia, we further adjusted for fasting glucose values in the 
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models, but no attenuation of genetic effects were noted. It is possible that the TCF7L2 

rs7903146 variant may be related to focal arteriolar narrowing not through its effect on 

diabetes but through other, retinal-specific mechanisms (i.e. pleiotropic effects). The Wnt/β-

catenin/T-cell factor (TCF) (canonical) signaling pathway may inhibit the adipogenic 

differentiation of pericytes (a contractile cell in small retinal arterioles), which may have a 

later effect in regulating retinal microvascular function. This pathway also regulates vascular 

smooth muscle cell proliferation, suggesting that it may be involved in intimal thickening23. 

Prolonged exposure to elevated blood pressure may lead to retinal vessel vasospasm, intimal 

thickening, medial hyperplasia and arteriosclerosis manifesting as either generalized or focal 

arteriolar narrowing24. However, we found only a relation with focal and not generalized 

arteriolar narrowing as measured by CRAE and biological mechanisms remain speculative.  

An alternate explanation of our positive findings could be chance considering the 

large number of comparisons made in assessing association in the context of possible effect 

modification. To minimize the impact of the multiple tests we could apply a crude 

Bonferroni correction (five phenotypes in the context of multiple strata defined by diabetes, 

hypertension, combined diabetes and hypertension grouping, and the full sample N=30), 

noting that such an approach is an over-correction because many of the analytic runs assessed 

the same dependent variable. If such a correction were applied, most of the results reported in 

this paper would not be statistically significant except in the subgroup with hypertension 

AND without diabetes.  

Our study has notable strengths, including a large, biracial, population-based cohort, 

standardized assessment of retinal photographs, and detailed information on a variety of risk 
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factors. To our knowledge, this is the first population-based study that systematically 

examines the association between TCF7L2 rs7903146 and retinal microvascular lesions and 

caliber in middle-aged African Americans and Caucasians.  

Several important limitations also deserve mention. First, grading was performed 

from a single 45° fundus photograph that was taken through a nonpharmacologically dilated 

pupil. This can underestimate the prevalence of retinal microvascular lesions, which could 

have biased the results toward the null. Second, we found that the TCF7L2 rs7903146 is 

related to higher risk of retinal AV nicking only in Caucasians who had hypertension 

(P=0.03). This association could have arisen by chance; the pathophysiology underlying any 

relationship between AV nicking and rs7903146 has not been established. Third, as diabetes 

and fasting glucose values are plausibly intermediate variables between TCF7L2 and retinal 

phenotypes, our analyses conditional on diabetes/fasting glucose values need to be 

interpreted with caution as this method may introduce confounding25. Finally, our samples of 

African American and diabetic Caucasians are limited to 2,199 and 1,206 examinees, 

respectively, thus true associations between retinal lesions and the TCF7L2 variant could 

have been missed in these subpopulations. Replication of our findings in other large, 

population-based studies could help better elucidate these relationships.  

In summary, TCF7L2 rs7903146 is not consistently associated with retinal 

microvascular signs. However, our study is the first to report an association between the 

TCF7L2 rs7903146 polymorphism and focal arteriolar narrowing in Caucasians with 

hypertension or without diabetes. No significant associations were noted for other retinal 

microvascular signs in either race group. Other large, population-based studies are needed to 
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confirm our findings.  
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CHAPTER VII 

CONCLUSIONS 

A. Recapitulation of overall study aims and results 

1. Overall study aims 

The goal of this project was to measure the associations between TCF7L2 and 

prediabetes/retinal phenotypes using the Atherosclerosis Risk in Communities (ARIC) data. 

The ARIC study is an ongoing, bi-racial population-based longitudinal study of 

cardiovascular-related diseases in 15,792 males and females. Manuscript 1 addressed Aims 1 

and 2, and Manuscript 2 addressed Aims 3 and 4.  

AIM 1:  To estimate the association between SNP rs7903146 in TCF7L2 and 

prediabetes as quantified by incident impaired fasting glucose (IFG).  

Research question: Is SNP rs7903146 in TCF7L2 associated with incident IFG? 

AIM 2:  To estimate the extent to which metabolic risk factors including obesity, 

elevated waist circumference, hypertension, low HDL, high LDL, high triglyceride modify 

the association between SNP rs7903146 in TCF7L2 and incident IFG.  

Research question: To what extent do metabolic risk factors modify the association between 

SNP rs7903146 in TCF7L2 and incident IFG? 
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AIM 3:  To estimate the association between SNP rs7903146 in TCF7L2 and retinal 

phenotypes including retinopathy, arteriovenous (AV) nicking, focal arteriolar narrowing, 

central retinal artery equivalent (CRAE) and the central retinal venular equivalent (CRVE).    

Research question: Is SNP rs7903146 in TCF7L2 associated with prevalent retinal 

phenotypes? 

AIM 4:  To estimate the extent to which hypertension and diabetes modify the 

association between SNP rs7903146 in TCF7L2 and retinal phenotypes.  

Research question: To what extent do hypertension and diabetes modify the association 

between SNP rs7903146 in TCF7L2 and prevalent retinal phenotypes? 

2. Results 

Results from Manuscript 1 suggested that SNP rs7903146 in TCF7L2 is associated 

with incident IFG in Caucasians, but not in African Americans. Obesity and high 

triglycerides were associated with increases in the estimated effect of SNP rs7903146 on 

incident IFG in Caucasians. Results from Manuscript 2 suggested that SNP rs7903146 in 

TCF7L2 is associated with prevalent focal arteriolar narrowing in Caucasians with 

hypertension and in Caucasians without diabetes. Other focal retinal lesions and vessel 

calibers were not significantly associated with the rs7903146 polymorphism among 

Caucasian individuals. No significant association of the TCF7L2 rs7903146 polymorphism 

and retinal vascular signs was noted among African American individuals. 

Evaluating two related, yet distinct phenotypes allowed us to consider different stages 

in the natural history of T2DM. We extended our study of incident T2DM events by 

evaluating prediabetes as measured by IFG (Manuscript 1) and retinal phenotypes 
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(Manuscript 2), as they can provide information not captured by studies of incident T2DM 

events. For example, the association between TCF7L2 and prevalent focal arteriolar 

narrowing among non-diabetic Caucasians suggested that this candidate gene may be related 

to focal arteriolar narrowing not through its effect on diabetes but through other, retinal-

specific mechanisms (i.e. pleiotropic effects), which clearly needs further investigation.   

Our study results also highlight the advantage of considering gene-by-environment 

interaction. The TCF7L2 rs7903146 main effect is marginally significant for focal arteriolar 

narrowing (P = 0.05). If we correct for multiple testing, this main effect is basically null; thus 

an analysis limited to examine the main effect of TCF7L2 rs7903146 would conclude that 

TCF7L2 is not associated with focal arteriolar narrowing. However, by incorporating the two 

important modifiers, hypertension and diabetes, we found that TCF7L2 rs7903146 was 

significantly associated with increased prevalence of focal arteriolar narrowing in Caucasians 

with hypertension AND without diabetes, even after adjusting for multiple testing. 

B. Strengths 

 This dissertation work has notable strengths, including a large, biracial, population-

based cohort, standardized assessment of retinal photographs, and detailed information on a 

variety of risk factors. To our knowledge, our study is the first population-based study on the 

TCF7L2 rs7903146 and prediabetes as measured by incident IFG in African Americans, and 

also the first the population-based study that systematically examines the association between 

TCF7L2 rs7903146 and retinal microvascular lesions and caliber in middle-aged African 

Americans and Caucasians. This work underscores the necessity of considering gene-

environment interactions in genetic epidemiology research, as described above.  
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Results from this study may also have significant public health implications. 

Investigating the gene-environment interaction is critical to determining the health 

implications of a given variant and the priority it should receive for identifying interventions 

to reduce its associated risk. Given the recent rise in the prevalence of diabetes, the 

information on the association between TCF7L2, metabolic risk factors and incident IFG in 

Caucasians presented in this study may be important for public health initiatives to encourage 

lifestyle changes (e.g. diet, physical activity) in such patients at risk.  

C. Limitations 

While the study sample is sufficient for the estimation of the main effects of SNP 

rs7903146 in Caucasians, power to assess the main effects in African American, and also 

gene-environment interactions, especially within the African American stratum, was limited. 

Thus, it is possible that true associations between IFG/retinal lesions and the TCF7L2 variant 

could have been missed in this study. However, the study is adequately powered to address 

the main aims in Caucasians, and thus makes an important contribution to the understanding 

of this major disease in this population.   

 
As the ARIC population is a biracial, middle-aged population sample from four US 

communities, the study results may not be generalizable to other ethnicities, other age 

groups, and other cultures around the world with different lifestyle/environmental factors and 

different hereditary patterns. In addition, the retinal fundus grading was performed from a 

single 45° fundus photograph that was taken through a nonpharmacologically dilated pupil. 

This can underestimate the prevalence of retinal microvascular lesions, which could have 

biased the results toward the null.  
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D. Future Directions 

As a continued line of research stemming from this dissertation work, the associations 

between 19± well replicated susceptibility genes thus far for T2DM (Table 2) and retinal 

phenotypes in the ARIC Study will be assessed. To my knowledge, this will be the first 

population-based study that systematically examines the association between 19 diabetes 

susceptibility genes and retinal miscrovascular lesions and calibre in middle-aged African 

Americans and Caucasians.  

Of 19± diabetes susceptibility genes, 10 SNPs (one SNP from each gene) have been 

genotyped in the entire ARIC cohort. Genotypic information of the rest 9 genes will be 

obtained from the ARIC GWAS data, either genotyped or imputed, once genotyping data are 

released from the full ARIC cohort. The allelic and genotypic frequencies of these 10 

genotyped SNPs as well as the assessment of HWE are presented in Table 21. Of these 10 

SNPs, one is out of HWE (PPARG rs1801282; P<0.0001) and thus excluded from further 

analysis.  

The preliminary analysis on each individual SNP (a total of 9 SNPs) and retinal 

phenotypes including retinopathy, focal narrowing, AV nicking, CRAE and CRVE were 

conducted in African Americans and Caucasians, respectively (Table 22, Table 23). The 

same analytic strategy as Manuscript 2 applies. Table 22 presents the statistical significance 

(P value) for each individual association analysis, and Table 23 provides more detailed 

information on effect estimates (OR with 95% CI) and P values. All analyses were adjusted 

for age, sex, center and other covariates same as Manuscript 2. A few positive associations 

are noted such as the previous findings on TCF7L2 and focal narrowing in Caucasians, 
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however, after applying for a Bonferroni correction (N = 5 participants group * 5 phenotypes 

* 9 SNPs = 225), no association retains significant. Besides the individual SNP-outcome 

association, a risk score which is comprised of all evaluated SNPs, not just those that display 

significant results with retinal phenotypes, will be constructed in order to increase the 

generalizeability of the results. While individual SNPs may show marginal or null effects, an 

aggregate score may show stronger effects and help increase our understanding and 

potentially help elucidate possible pathways of disease. 

As it is unknown how the diabetes susceptibility genes influence the risk of retinal 

miscrovascular phenotypes, this extension of my dissertation work should be informative. 

While the limited power in our African American subpopulation is recognized, the study is 

adequately powered to conduct the main association analysis in Caucasians, and thus may 

make a contribution to the etiology of retinal miscrovascular diseases.   
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Table 21. Allelic and genotypic frequencies of 10 diabetes susceptibility polymorphisms and HWE 
assessment in the ARIC Study. 
  African Americans  Caucasians 

Gene SNP N 
All
ele 

Allelic 
freq 

Geno-
type 

Genoty
pic freq 

HWE P 
value  N 

All
ele 

Allelic 
freq 

Geno-
type 

Genot
ypic 
freq 

HWE 
P value 

CDKN
2A/2B 

rs10811661 2210 C 0.0663 C/C 0.0032 0.3514  8300 C 0.1740 C/C 00310 0.6687 

   T 0.9337 C/T 0.1262    T 0.8260 C/T 0.2861  
     T/T 0.8706      T/T 0.6829  
IGF2
BP2 

rs4402960 2159 G 0.4912 G/G 0.2362 0.3472  8227 T 0.3126 T/T 0.0969 0.7283 

   T 0.5088 T/T 0.2538    G 0.6874 G/T 0.4314  
     G/T 0.5100      G/G 0.4717  
CDKA
L1 

rs7754840 2210 G 0.4215 G/G 0.1706 0.1730  8239 C 0.3119 C/C 0.0981 0.7329 

   C 0.5785 C/C 0.3276    G 0.6881 C/G 0.4276  
     C/G 0.5018      G/G 0.4743  
HHEX rs1111875 2193 T 0.2193 T/T 0.0502 0.5746  8248 T 0.4056 T/T 0.1649 0.8903 
   C 0.7807 C/T 0.3383    C 0.5944 C/C 0.3537  
     C/C 0.6115      C/T 0.4815  
SLC30
A8 

rs13266634 2144 T 0.0793 T/T 0.0089 0.1024  8229 T 0.3105 T/T 0.0979 0.5130 

   C 0.9207 C/T 0.1409    C 0.6895 C/T 0.4251  
     C/C 0.8503      C/C 0.4770  
TCF7
L2 

rs7903146 2199 T 0.2904 T/T 0.0805 0.3850  8121 T 0.2901 T/T 00856 0.5253 

   C 0.7096 C/T 0.4197    C 0.7099 C/T 0.4089  
     C/C 0.4998      C/C 0.5055  
FTO rs12255372 2182 T 0.3116 T/T 0.0949 0.6237  8094 T 0.2856 T/T 0.0830 0.5278 
   G 0.6884 G/T 0.4335    G 0.7144 G/T 0.4052  
     G/G 0.4716      G/G 0.5117  
PPAR
G 

rs1801282 2245 C 0.2274 C/G 0.0494 0.0000  8110 C 0.2606 C/C 01551 0.0000 

   G 0.7726 C/C 0.2027    G 0.7394 C/G 0.2110  
     G/G 0.7479      G/G 0.6339  
KCNJ
1 

rs5219 2154 A 0.0692 A/A 0.0051 0.8166  8181 A 0.3719 A/A 0.1403 0.4348 

   G 0.9308 A/G 0.1281    G 0.6281 G/G 0.3965  
     G/G 0.8668      A/G 0.4631  
Interg
enic 

rs9300039 2191 A 0.1155 A/A 0.0137 0.8695  8250 A 0.0899 A/A 0.0095 0.1297 

   C 0.8845 A/C 0.2036    C 0.9101 A/C 0.1610  
     C/C 0.7827      C/C 0.8296  

 

 

\ 
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Table 22. Summary of Associations between diabetes susceptibility polymorphisms and retinal vascular signs in the ARIC study, stratified by 
hypertension and DM. 

  P value (NS indicates non-statistical significance defined by P > 0.05) 

 
Participant 

Group 
TCF7L2 

rs7903146 
CDKN2A/2B 
rs10811661 

IGF2BP2 
rs4402960 

CDKAL1 
rs7754840 

HHEX 
rs1111875 

SLC30A8 
rs13266634 

FTO 
rs12255372 

KCNJ11 
rs5219 

Chrom 
11rs9300039 

  W B W B W B W B W B W B W B W B W B 
Retino-
pathy 

All NS NS NS NS NS 0.040 NS NS NS NS NS NS NS NS NS NS NS NS 

 Hyt Only NS NS NS NS NS 0.013 0.051 NS NS NS NS NS NS NS NS NS NS NS 
 Non-Hyt Only NS NS NS NS NS NS 0.018 NS NS NS NS NS NS NS NS NS 0.027 NS 
 DM Only NS NS NS NS NS 0.002 NS NS NS NS NS NS NS NS NS NS NS NS 
 Non-DM Only NS NS 0.036 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS 
                    

AV 
nicking 

All NS NS NS NS NS NS NS NS 0.021 NS NS NS NS NS NS NS NS NS 
Hyt Only 0.027 NS NS NS NS NS NS NS 0.003 NS NS NS NS NS NS NS NS NS 

 Non-Hyt Only NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS 
 DM Only NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS 0.034 NS NS 
 Non-DM Only NS NS NS NS NS NS NS NS 0.045 NS NS NS NS NS NS NS NS NS 
                    

FN All 0.050 NS NS NS NS NS NS NS NS NS 0.004 NS NS NS NS NS NS NS 
Hyt Only 0.002 NS NS NS NS NS NS NS NS NS NS NS 0.004 NS NS NS NS NS 

 Non-Hyt Only NS NS NS NS NS NS NS NS NS NS 0.006 NS NS NS NS NS NS NS 
 DM Only NS NS NS NS NS NS 0.011 NS NS NS NS NS NS NS NS NS NS NS 
 Non-DM Only 0.003 NS NS NS NS NS NS NS NS NS 0.005 NS 0.014 NS NS NS NS NS 
                    

CRAE All NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS 
 Hyt Only NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS 
 Non-Hyt Only NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS 
 DM Only NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS 
 Non-DM Only NS NS NS 0.039 NS NS NS NS NS NS NS NS NS NS NS NS NS NS 
                    

CRVE All NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS 
 Hyt Only NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS 
 Non-Hyt Only NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS 
 DM Only NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS 
 Non-DM Only NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS 0.009 NS NS 

Abbreviations: B, blacks; Hyt, hypertension; DM, diabetes mellitus; FN, focal narrowing; NS, non significant; W, whites. 
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Table 23. Retinal lesions, caliber and diabetes susceptibility polymorphisms, by hypertension and diabetes status in the ARIC Study. 
 OR (95%CI) or Mean Caliber (95%CI) with P value 

Gene SNP R Phenotype 
Geno- 
type All Hypertension Only 

Non-Hypertension 
Only Diabetes Only Non-Diabetes only 

TCF
7L2 

rs7903
146 

W CRAE ref 
genotype 

163.25 (162.42, 164.08) 162.38 (161.36, 163.41) 164.38 (160.97, 167.79) 164.67 (162.7, 166.64) 162.89 (161.96, 163.83) 

    het 
genotype 

162.97 (162.16, 163.79) 162 (160.99, 163.02) 164.15 (160.76, 167.53) 164.89 (163.04, 166.74) 162.46 (161.53, 163.39) 

    hom 
genotype 

162.69 (161.65, 163.73) 161.62 (160.18, 163.07) 163.91 (160.45, 167.38) 165.11 (162.71, 167.5) 162.02 (160.85, 163.2) 

    p value 0.2363 0.3069 0.4483 0.7172 0.0926 
TCF
7L2 

rs7903
146 

W CRVE ref 
genotype 

197.52 (196.69, 198.35) 198.44 (197.4, 199.49) 196.89 (193.48, 200.29) 198.18 (196.13, 200.23) 197.66 (196.72, 198.59) 

    het 
genotype 

197.54 (196.72, 198.36) 198.63 (197.59, 199.67) 196.83 (193.45, 200.21) 197.93 (196, 199.86) 197.69 (196.76, 198.62) 

    hom 
genotype 

197.56 (196.51, 198.6) 198.82 (197.35, 200.28) 196.77 (193.31, 200.24) 197.68 (195.18, 200.18) 197.72 (196.55, 198.89) 

    p value 0.9360 0.6223 0.8523 0.6896 0.9026 
TCF
7L2 

rs7903
146 

W retinopathy het vs. ref 1.09 (0.94, 1.26) 1.04 (0.85, 1.26) 1.12 (0.9, 1.39) 1.05 (0.82, 1.34) 1.01 (0.84, 1.22) 

    hom vs. 
ref 

1.18 (0.88, 1.58) 1.08 (0.73, 1.6) 1.26 (0.81, 1.94) 1.1 (0.67, 1.8) 1.02 (0.7, 1.48) 

    p value 0.2679 0.7133 0.3075 0.7008 0.9142 
TCF
7L2 

rs7903
146 

W A/V 
nicking 

het vs. ref 1.03 (0.93, 1.14) 1.18 (1.02, 1.36) 0.91 (0.78, 1.05) 0.99 (0.78, 1.26) 1.04 (0.92, 1.16) 

    hom vs. 
ref 

1.06 (0.86, 1.3) 1.39 (1.04, 1.86) 0.83 (0.61, 1.11) 0.98 (0.61, 1.58) 1.07 (0.85, 1.35) 

    p value 0.5775 0.0270 0.2092 0.9402 0.5577 
TCF
7L2 

rs7903
146 

W Focal 
narrowing 

het vs. ref 1.11 (1, 1.23) 1.25 (1.09, 1.44) 0.96 (0.82, 1.12) 0.85 (0.65, 1.11) 1.18 (1.06, 1.32) 

    hom vs. 
ref 

1.23 (1, 1.51) 1.56 (1.18, 2.06) 0.92 (0.68, 1.25) 0.73 (0.42, 1.24) 1.4 (1.12, 1.75) 

    p value 0.0501 0.0017 0.5916 0.2409 0.0030 
TCF
7L2 

rs7903
146 

B CRAE ref 
genotype 

161.61 (160.07, 163.15) 160.17 (158.37, 161.98) 158.38 (150.5, 166.27) 163.78 (161.1, 166.46) 160.91 (158.95, 162.88) 

    het 
genotype 

161.94 (160.4, 163.48) 161 (159.22, 162.78) 157.52 (149.61, 165.44) 163.74 (161.08, 166.41) 161.34 (159.37, 163.32) 

    hom 
genotype 

162.27 (160.24, 164.29) 161.82 (159.43, 164.21) 156.66 (148.41, 164.92) 163.71 (160.18, 167.24) 161.77 (159.23, 164.31) 

    p value 0.4882 0.1607 0.2811 0.9666 0.4548 
TCF
7L2 

rs7903
146 

B CRVE ref 
genotype 

200.36 (198.79, 201.94) 201.72 (199.9, 203.55) 204.75 (196.45, 213.06) 201.01 (198.08, 203.93) 199.43 (197.47, 201.4) 
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Table 23. Retinal lesions, caliber and diabetes susceptibility polymorphisms, by hypertension and diabetes status in the ARIC Study. 
 OR (95%CI) or Mean Caliber (95%CI) with P value 

Gene SNP R Phenotype 
Geno- 
type All Hypertension Only 

Non-Hypertension 
Only Diabetes Only Non-Diabetes only 

    het 
genotype 

199.86 (198.28, 201.45) 200.92 (199.11, 202.73) 205.05 (196.71, 213.39) 201.57 (198.68, 204.46) 198.43 (196.45, 200.42) 

    hom 
genotype 

199.36 (197.25, 201.47) 200.11 (197.62, 202.6) 205.35 (196.64, 214.05) 202.14 (198.25, 206.03) 197.43 (194.85, 200.01) 

    p value 0.3175 0.1949 0.7263 0.5509 0.0872 
TCF
7L2 

rs7903
146 

B retinopathy het vs. ref 1.1 (0.9, 1.35) 1.07 (0.84, 1.35) 1.31 (0.86, 2) 1.22 (0.91, 1.64) 0.9 (0.66, 1.22) 

    hom vs. 
ref 

1.21 (0.81, 1.81) 1.14 (0.71, 1.82) 1.71 (0.73, 4) 1.5 (0.84, 2.68) 0.81 (0.44, 1.5) 

    p value 0.3598 0.5848 0.2154 0.1734 0.5018 
TCF
7L2 

rs7903
146 

B A/V 
nicking 

het vs. ref 1.12 (0.93, 1.35) 1.1 (0.88, 1.38) 1.13 (0.78, 1.64) 1.31 (0.94, 1.82) 1.03 (0.82, 1.3) 

    hom vs. 
ref 

1.26 (0.86, 1.83) 1.22 (0.78, 1.9) 1.28 (0.61, 2.69) 1.71 (0.88, 3.3) 1.07 (0.67, 1.7) 

    p value 0.2355 0.3866 0.5054 0.1105 0.7831 
TCF
7L2 

rs7903
146 

B Focal 
narrowing 

het vs. ref 1.1 (0.88, 1.36) 1.12 (0.88, 1.43) 1 (0.63, 1.6) 1.18 (0.79, 1.76) 1.08 (0.84, 1.4) 

    hom vs. 
ref 

1.2 (0.78, 1.85) 1.26 (0.77, 2.06) 1 (0.39, 2.57) 1.38 (0.62, 3.09) 1.18 (0.7, 1.97) 

    p value 0.4028 0.3626 0.9917 0.4272 0.5413 
CDK
N2A 

rs1081
166 

W CRAE ref 
genotype 

163.13 (162.33, 163.93) 161.99 (161, 162.97) 164.25 (160.87, 167.63) 164.81 (162.97, 166.65) 162.71 (161.79, 163.62) 

    het 
genotype 

163.16 (162.31, 164.02) 162.41 (161.31, 163.5) 164.04 (160.64, 167.44) 165.31 (163.24, 167.37) 162.67 (161.7, 163.63) 

    hom 
genotype 

163.19 (162, 164.39) 162.83 (161.12, 164.53) 163.82 (160.26, 167.38) 165.8 (162.65, 168.94) 162.63 (161.32, 163.94) 

    p value 0.9111 0.3364 0.5568 0.5311 0.8945 
CDK
N2A 

rs1081
166 

W CRVE ref 
genotype 

197.52 (196.72, 198.33) 198.65 (197.64, 199.65) 196.97 (193.59, 200.34) 197.92 (196, 199.85) 197.65 (196.75, 198.56) 

    het 
genotype 

197.29 (196.43, 198.15) 197.96 (196.85, 199.07) 197.04 (193.65, 200.43) 196.76 (194.6, 198.91) 197.61 (196.65, 198.57) 

    hom 
genotype 

197.06 (195.87, 198.26) 197.27 (195.55, 199) 197.11 (193.56, 200.66) 195.59 (192.3, 198.88) 197.56 (196.26, 198.86) 

    p value 0.4103 0.1203 0.8441 0.1565 0.8805 
CDK
N2A 

rs1081
166 

W retinopathy het vs. ref 1.08 (0.91, 1.29) 1.02 (0.81, 1.29) 1.16 (0.9, 1.5) 0.87 (0.63, 1.21) 1.25 (1.01, 1.53) 

    hom vs. 
ref 

1.17 (0.83, 1.66) 1.04 (0.65, 1.65) 1.35 (0.81, 2.26) 0.76 (0.39, 1.47) 1.55 (1.03, 2.34) 
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Table 23. Retinal lesions, caliber and diabetes susceptibility polymorphisms, by hypertension and diabetes status in the ARIC Study. 
 OR (95%CI) or Mean Caliber (95%CI) with P value 

Gene SNP R Phenotype 
Geno- 
type All Hypertension Only 

Non-Hypertension 
Only Diabetes Only Non-Diabetes only 

    p value 0.3604 0.8724 0.2469 0.4157 0.0362 
CDK
N2A 

rs1081
166 

W A/V 
nicking 

het vs. ref 0.93 (0.82, 1.06) 0.93 (0.78, 1.11) 0.95 (0.79, 1.13) 0.9 (0.65, 1.24) 0.94 (0.82, 1.08) 

    hom vs. 
ref 

0.87 (0.68, 1.12) 0.86 (0.6, 1.23) 0.9 (0.63, 1.28) 0.81 (0.43, 1.54) 0.89 (0.68, 1.17) 

    p value 0.2869 0.4047 0.5542 0.5239 0.3943 
CDK
N2A 

rs1081
166 

W Focal 
narrowing 

het vs. ref 1.08 (0.96, 1.22) 1.12 (0.95, 1.32) 1.06 (0.89, 1.27) 1.21 (0.87, 1.69) 1.06 (0.93, 1.21) 

    hom vs. 
ref 

1.18 (0.92, 1.5) 1.25 (0.9, 1.73) 1.13 (0.79, 1.62) 1.47 (0.76, 2.85) 1.13 (0.87, 1.47) 

    p value 0.1877 0.1811 0.5128 0.2478 0.3642 
CDK
N2A 

rs1081
166 

B CRAE ref 
genotype 

162.07 (160.6, 163.54) 160.91 (159.21, 162.6) 158.38 (150.48, 166.28) 164.52 (161.96, 167.07) 161.12 (159.23, 163) 

    het 
genotype 

163.13 (161.03, 165.22) 162.28 (159.73, 164.83) 158.59 (150.16, 167.03) 162.94 (159.14, 166.73) 163.23 (160.63, 165.83) 

    hom 
genotype 

164.19 (160.67, 167.7) 163.65 (159.3, 168.01) 158.81 (149.01, 168.6) 161.36 (154.88, 167.83) 165.35 (161.1, 169.59) 

    p value 0.2187 0.2013 0.8813 0.3231 0.0391 
CDK
N2A 

rs1081
166 

B CRVE ref 
genotype 

199.98 (198.48, 201.48) 201.14 (199.43, 202.85) 204.75 (196.46, 213.03) 200.67 (197.89, 203.45) 199.02 (197.13, 200.9) 

    het 
genotype 

199 (196.81, 201.18) 199.73 (197.07, 202.38) 204.84 (195.99, 213.7) 202.3 (198.13, 206.48) 197.12 (194.47, 199.76) 

    hom 
genotype 

198.01 (194.32, 201.71) 198.31 (193.72, 202.9) 204.94 (194.64, 215.24) 203.93 (196.72, 211.15) 195.21 (190.87, 199.56) 

    p value 0.2792 0.2127 0.9485 0.3647 0.0695 
CDK
N2A 

rs1081
166 

B retinopathy het vs. ref 1.11 (0.77, 1.6) 1.06 (0.7, 1.62) 1.13 (0.53, 2.43) 1.39 (0.82, 2.36) 0.89 (0.51, 1.56) 

    hom vs. 
ref 

1.23 (0.59, 2.56) 1.13 (0.48, 2.62) 1.28 (0.28, 5.9) 1.92 (0.67, 5.56) 0.8 (0.26, 2.44) 

    p value 0.5767 0.7825 0.7541 0.2267 0.6890 
CDK
N2A 

rs1081
166 

B A/V 
nicking 

het vs. ref 0.93 (0.65, 1.33) 0.8 (0.52, 1.24) 1.44 (0.76, 2.72) 0.95 (0.5, 1.83) 0.94 (0.61, 1.44) 

    hom vs. 
ref 

0.87 (0.43, 1.77) 0.64 (0.27, 1.53) 2.08 (0.58, 7.42) 0.91 (0.25, 3.34) 0.88 (0.38, 2.08) 

    p value 0.6992 0.3174 0.2609 0.8836 0.7785 
CDK
N2A 

rs1081
166 

B Focal 
narrowing 

het vs. ref 1.17 (0.8, 1.71) 1.22 (0.8, 1.87) 0.92 (0.37, 2.26) 1.39 (0.69, 2.77) 1.1 (0.7, 1.73) 
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Table 23. Retinal lesions, caliber and diabetes susceptibility polymorphisms, by hypertension and diabetes status in the ARIC Study. 
 OR (95%CI) or Mean Caliber (95%CI) with P value 

Gene SNP R Phenotype 
Geno- 
type All Hypertension Only 

Non-Hypertension 
Only Diabetes Only Non-Diabetes only 

    hom vs. 
ref 

1.37 (0.64, 2.92) 1.5 (0.65, 3.49) 0.84 (0.14, 5.11) 1.92 (0.48, 7.67) 1.21 (0.49, 2.99) 

    p value 0.4197 0.3461 0.8513 0.3540 0.6867 
IGF2
BP 

rs4402
960 

W CRAE ref 
genotype 

163.3 (162.3, 164.3) 162.51 (161.13, 163.89) 164.14 (160.67, 167.61) 163.57 (161.23, 165.91) 163.15 (162.03, 164.27) 

    het 
genotype 

163.15 (162.34, 163.95) 162.25 (161.25, 163.24) 164.1 (160.72, 167.47) 164.61 (162.79, 166.44) 162.8 (161.88, 163.71) 

    hom 
genotype 

162.99 (162.16, 163.82) 161.98 (160.94, 163.02) 164.05 (160.67, 167.44) 165.65 (163.69, 167.62) 162.44 (161.5, 163.38) 

    p value 0.4986 0.4616 0.8855 0.0784 0.1560 
IGF2
BP 

rs4402
960 

W CRVE ref 
genotype 

197.12 (196.11, 198.12) 197.57 (196.18, 198.97) 197.09 (193.63, 200.55) 197.76 (195.3, 200.21) 197.16 (196.04, 198.27) 

    het 
genotype 

197.35 (196.55, 198.16) 198.09 (197.07, 199.1) 197.08 (193.71, 200.45) 197.6 (195.69, 199.5) 197.48 (196.56, 198.39) 

    hom 
genotype 

197.59 (196.75, 198.42) 198.6 (197.54, 199.66) 197.07 (193.69, 200.45) 197.44 (195.38, 199.49) 197.8 (196.86, 198.73) 

    p value 0.3088 0.1575 0.9753 0.7964 0.1980 
IGF2
BP 

rs4402
960 

W retinopathy het vs. ref 1.08 (0.94, 1.25) 1.09 (0.9, 1.32) 1.07 (0.86, 1.34) 1.08 (0.85, 1.37) 1.04 (0.86, 1.24) 

    hom vs. 
ref 

1.17 (0.88, 1.56) 1.19 (0.82, 1.75) 1.15 (0.74, 1.79) 1.16 (0.71, 1.88) 1.08 (0.75, 1.55) 

    p value 0.2755 0.3622 0.5379 0.5531 0.6943 
IGF2
BP 

rs4402
960 

W A/V 
nicking 

het vs. ref 0.98 (0.88, 1.08) 0.93 (0.8, 1.07) 1.05 (0.91, 1.21) 0.86 (0.68, 1.09) 1.01 (0.9, 1.13) 

    hom vs. 
ref 

0.96 (0.78, 1.17) 0.86 (0.64, 1.14) 1.1 (0.83, 1.47) 0.74 (0.46, 1.2) 1.01 (0.81, 1.27) 

    p value 0.6791 0.2947 0.5100 0.2195 0.9245 
IGF2
BP 

rs4402
960 

W Focal 
narrowing 

het vs. ref 1 (0.9, 1.11) 0.97 (0.84, 1.11) 1.05 (0.9, 1.22) 0.93 (0.72, 1.2) 1.02 (0.91, 1.14) 

    hom vs. 
ref 

1 (0.82, 1.23) 0.94 (0.71, 1.23) 1.1 (0.81, 1.49) 0.86 (0.52, 1.43) 1.03 (0.83, 1.29) 

    p value 0.9881 0.6294 0.5437 0.5579 0.7658 
IGF2
BP 

rs4402
960 

B CRAE ref 
genotype 

161.84 (160.13, 163.55) 160.43 (158.42, 162.44) 158.45 (150.44, 166.45) 163.27 (160.27, 166.26) 161.45 (159.28, 163.61) 

    het 
genotype 

161.87 (160.39, 163.34) 160.67 (158.95, 162.38) 157.81 (149.96, 165.65) 163.75 (161.17, 166.32) 161.19 (159.3, 163.08) 

    hom 
genotype 

161.89 (160.2, 163.59) 160.9 (158.88, 162.93) 157.17 (149.23, 165.1) 164.22 (161.24, 167.21) 160.94 (158.79, 163.08) 
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Table 23. Retinal lesions, caliber and diabetes susceptibility polymorphisms, by hypertension and diabetes status in the ARIC Study. 
 OR (95%CI) or Mean Caliber (95%CI) with P value 

Gene SNP R Phenotype 
Geno- 
type All Hypertension Only 

Non-Hypertension 
Only Diabetes Only Non-Diabetes only 

    p value 0.9536 0.6611 0.3768 0.5374 0.6283 
IGF2
BP 

rs4402
960 

B CRVE ref 
genotype 

200.03 (198.26, 201.81) 201.52 (199.46, 203.58) 204.77 (196.27, 213.26) 201.89 (198.6, 205.19) 198.55 (196.36, 200.75) 

    het 
genotype 

200.07 (198.56, 201.59) 201.38 (199.64, 203.11) 205.18 (196.87, 213.5) 201.31 (198.49, 204.12) 198.96 (197.05, 200.86) 

    hom 
genotype 

200.11 (198.36, 201.87) 201.24 (199.16, 203.32) 205.6 (197.18, 214.01) 200.72 (197.4, 204.03) 199.36 (197.2, 201.53) 

    p value 0.9302 0.8090 0.5909 0.5048 0.4563 
IGF2
BP 

rs4402
960 

B retinopathy het vs. ref 0.82 (0.68, 0.99) 0.76 (0.61, 0.94) 1.05 (0.7, 1.57) 0.64 (0.48, 0.85) 1.06 (0.81, 1.4) 

    hom vs. 
ref 

0.67 (0.46, 0.98) 0.57 (0.37, 0.89) 1.1 (0.49, 2.45) 0.41 (0.23, 0.71) 1.13 (0.65, 1.95) 

    p value 0.0396 0.0126 0.8216 0.0017 0.6734 
IGF2
BP 

rs4402
960 

B A/V 
nicking 

het vs. ref 0.92 (0.77, 1.09) 0.9 (0.73, 1.11) 0.97 (0.7, 1.35) 0.82 (0.6, 1.12) 0.97 (0.79, 1.2) 

    hom vs. 
ref 

0.84 (0.59, 1.2) 0.81 (0.54, 1.23) 0.94 (0.49, 1.82) 0.67 (0.36, 1.26) 0.94 (0.62, 1.44) 

    p value 0.3419 0.3286 0.8572 0.2111 0.7887 
IGF2
BP 

rs4402
960 

B Focal 
narrowing 

het vs. ref 1.09 (0.89, 1.33) 1.13 (0.9, 1.42) 0.95 (0.62, 1.45) 1.15 (0.79, 1.69) 1.07 (0.84, 1.36) 

    hom vs. 
ref 

1.19 (0.79, 1.78) 1.28 (0.81, 2.03) 0.9 (0.38, 2.12) 1.33 (0.62, 2.85) 1.15 (0.71, 1.85) 

    p value 0.4028 0.2928 0.8084 0.4588 0.5759 
CDK
AL1 

rs7754
840 

W CRAE ref 
genotype 

162.86 (162.03, 163.69) 162.17 (161.13, 163.21) 163.74 (160.35, 167.13) 165.13 (163.22, 167.04) 162.35 (161.41, 163.29) 

    het 
genotype 

163.19 (162.39, 163.99) 162.21 (161.23, 163.19) 164.26 (160.89, 167.64) 164.68 (162.86, 166.5) 162.84 (161.93, 163.75) 

    hom 
genotype 

163.52 (162.52, 164.52) 162.25 (160.91, 163.6) 164.78 (161.32, 168.24) 164.24 (161.89, 166.59) 163.33 (162.2, 164.46) 

    p value 0.1502 0.9052 0.0832 0.4361 0.0509 
CDK
AL1 

rs7754
840 

W CRVE ref 
genotype 

197.6 (196.77, 198.43) 198.54 (197.48, 199.61) 197.08 (193.69, 200.46) 197.57 (195.55, 199.58) 197.81 (196.88, 198.74) 

    het 
genotype 

197.41 (196.6, 198.21) 198.27 (197.27, 199.27) 196.93 (193.56, 200.3) 197.69 (195.77, 199.62) 197.54 (196.63, 198.45) 

    hom 
genotype 

197.21 (196.21, 198.22) 197.99 (196.62, 199.36) 196.79 (193.33, 200.25) 197.82 (195.34, 200.3) 197.27 (196.15, 198.4) 

    p value 0.3995 0.4406 0.6316 0.8355 0.2819 
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Table 23. Retinal lesions, caliber and diabetes susceptibility polymorphisms, by hypertension and diabetes status in the ARIC Study. 
 OR (95%CI) or Mean Caliber (95%CI) with P value 

Gene SNP R Phenotype 
Geno- 
type All Hypertension Only 

Non-Hypertension 
Only Diabetes Only Non-Diabetes only 

CDK
AL1 

rs7754
840 

W retinopathy het vs. ref 1.01 (0.87, 1.16) 1.2 (1, 1.44) 0.75 (0.59, 0.95) 0.99 (0.78, 1.25) 0.99 (0.82, 1.19) 

    hom vs. 
ref 

1.01 (0.76, 1.35) 1.44 (1, 2.09) 0.56 (0.35, 0.91) 0.97 (0.6, 1.57) 0.97 (0.68, 1.41) 

    p value 0.9444 0.0507 0.0181 0.9099 0.8920 
CDK
AL1 

rs7754
840 

W A/V 
nicking 

het vs. ref 1.01 (0.92, 1.12) 0.93 (0.81, 1.08) 1.11 (0.96, 1.28) 1.08 (0.86, 1.35) 1 (0.9, 1.12) 

    hom vs. 
ref 

1.03 (0.84, 1.26) 0.87 (0.66, 1.16) 1.22 (0.92, 1.63) 1.16 (0.73, 1.83) 1 (0.8, 1.26) 

    p value 0.7739 0.3465 0.1701 0.5304 0.9762 
CDK
AL1 

rs7754
840 

W Focal 
narrowing 

het vs. ref 0.91 (0.82, 1) 0.9 (0.79, 1.03) 0.92 (0.79, 1.07) 0.71 (0.55, 0.93) 0.95 (0.85, 1.06) 

    hom vs. 
ref 

0.82 (0.67, 1.01) 0.81 (0.62, 1.06) 0.85 (0.63, 1.16) 0.51 (0.3, 0.86) 0.91 (0.73, 1.13) 

    p value 0.0620 0.1284 0.3016 0.0114 0.3949 
CDK
AL1 

rs7754
840 

B CRAE ref 
genotype 

161.67 (159.92, 163.42) 160.49 (158.4, 162.59) 157.46 (149.39, 165.54) 165.6 (162.46, 168.73) 160.27 (158.06, 162.47) 

    het 
genotype 

161.99 (160.53, 163.45) 160.79 (159.09, 162.49) 157.95 (150.08, 165.83) 164.36 (161.81, 166.91) 161.11 (159.23, 162.99) 

    hom 
genotype 

162.31 (160.68, 163.94) 161.08 (159.17, 162.98) 158.45 (150.52, 166.38) 163.12 (160.2, 166.03) 161.95 (159.9, 164) 

    p value 0.4629 0.5884 0.4959 0.1347 0.0997 
CDK
AL1 

rs7754
840 

B CRVE ref 
genotype 

199.81 (198, 201.62) 200.68 (198.51, 202.84) 205.5 (196.99, 214) 200.26 (196.8, 203.73) 198.96 (196.73, 201.2) 

    het 
genotype 

199.92 (198.42, 201.41) 201.09 (199.37, 202.81) 204.84 (196.54, 213.13) 200.93 (198.16, 203.7) 198.93 (197.04, 200.82) 

    hom 
genotype 

200.03 (198.35, 201.71) 201.51 (199.57, 203.44) 204.18 (195.83, 212.54) 201.6 (198.43, 204.77) 198.89 (196.82, 200.96) 

    p value 0.8106 0.4664 0.3929 0.4738 0.9443 
CDK
AL1 

rs7754
840 

B retinopathy het vs. ref 1.06 (0.88, 1.28) 1 (0.81, 1.24) 1.24 (0.84, 1.84) 1 (0.75, 1.33) 1.18 (0.9, 1.54) 

    hom vs. 
ref 

1.13 (0.78, 1.65) 1 (0.65, 1.54) 1.54 (0.7, 3.39) 1 (0.56, 1.78) 1.39 (0.82, 2.36) 

    p value 0.5189 0.9872 0.2792 0.9977 0.2223 
CDK
AL1 

rs7754
840 

B A/V 
nicking 

het vs. ref 0.95 (0.8, 1.13) 0.91 (0.74, 1.12) 1.06 (0.76, 1.48) 0.88 (0.63, 1.23) 0.98 (0.8, 1.21) 

    hom vs. 
ref 

0.9 (0.63, 1.27) 0.84 (0.55, 1.26) 1.13 (0.58, 2.2) 0.77 (0.39, 1.51) 0.96 (0.64, 1.45) 
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Table 23. Retinal lesions, caliber and diabetes susceptibility polymorphisms, by hypertension and diabetes status in the ARIC Study. 
 OR (95%CI) or Mean Caliber (95%CI) with P value 

Gene SNP R Phenotype 
Geno- 
type All Hypertension Only 

Non-Hypertension 
Only Diabetes Only Non-Diabetes only 

    p value 0.5461 0.3966 0.7245 0.4492 0.8552 
CDK
AL1 

rs7754
840 

B Focal 
narrowing 

het vs. ref 0.94 (0.77, 1.14) 0.97 (0.78, 1.22) 0.85 (0.55, 1.31) 0.82 (0.55, 1.22) 0.98 (0.78, 1.23) 

    hom vs. 
ref 

0.88 (0.59, 1.31) 0.95 (0.6, 1.49) 0.72 (0.3, 1.72) 0.67 (0.3, 1.49) 0.95 (0.6, 1.51) 

    p value 0.5233 0.8140 0.4591 0.3222 0.8407 
HHE
X 

rs1111
875 

W CRAE ref 
genotype 

163.25 (162.39, 164.1) 162.38 (161.29, 163.47) 164.25 (160.75, 167.75) 164.52 (162.53, 166.5) 162.94 (161.97, 163.91) 

    het 
genotype 

163.03 (162.24, 163.81) 162.09 (161.14, 163.04) 164.09 (160.61, 167.57) 164.77 (162.97, 166.58) 162.65 (161.76, 163.54) 

    hom 
genotype 

162.8 (161.88, 163.73) 161.8 (160.57, 163.02) 163.92 (160.38, 167.47) 165.03 (162.76, 167.31) 162.36 (161.32, 163.39) 

    p value 0.3046 0.3919 0.5590 0.6587 0.2111 
HHE
X 

rs1111
875 

W CRVE ref 
genotype 

197.13 (196.28, 197.99) 198.15 (197.04, 199.26) 196.25 (192.75, 199.75) 197.4 (195.31, 199.49) 197.25 (196.29, 198.22) 

    het 
genotype 

197.51 (196.72, 198.3) 198.5 (197.52, 199.47) 196.64 (193.16, 200.12) 197.71 (195.81, 199.61) 197.66 (196.77, 198.55) 

    hom 
genotype 

197.89 (196.96, 198.82) 198.85 (197.59, 200.1) 197.02 (193.48, 200.57) 198.02 (195.62, 200.42) 198.07 (197.04, 199.1) 

    p value 0.0835 0.3090 0.1668 0.6129 0.0788 
HHE
X 

rs1111
875 

W retinopathy het vs. ref 1.04 (0.91, 1.2) 1.03 (0.86, 1.24) 1.08 (0.88, 1.33) 1.06 (0.83, 1.34) 1.07 (0.91, 1.27) 

    hom vs. 
ref 

1.09 (0.83, 1.43) 1.06 (0.74, 1.53) 1.17 (0.77, 1.78) 1.12 (0.69, 1.81) 1.15 (0.82, 1.62) 

    p value 0.5380 0.7461 0.4598 0.6527 0.4152 
HHE
X 

rs1111
875 

W A/V 
nicking 

het vs. ref 0.89 (0.81, 0.98) 0.81 (0.71, 0.93) 0.99 (0.86, 1.13) 0.87 (0.68, 1.1) 0.9 (0.81, 1) 

    hom vs. 
ref 

0.8 (0.66, 0.97) 0.66 (0.5, 0.87) 0.97 (0.74, 1.28) 0.75 (0.47, 1.22) 0.81 (0.65, 1) 

    p value 0.0212 0.0030 0.8452 0.2471 0.0454 
HHE
X 

rs1111
875 

W Focal 
narrowing 

het vs. ref 0.94 (0.86, 1.04) 0.92 (0.8, 1.04) 0.98 (0.86, 1.13) 0.85 (0.66, 1.11) 0.96 (0.87, 1.07) 

    hom vs. 
ref 

0.89 (0.74, 1.08) 0.84 (0.65, 1.08) 0.97 (0.73, 1.28) 0.73 (0.43, 1.22) 0.92 (0.75, 1.13) 

    p value 0.2356 0.1799 0.8233 0.2295 0.4536 
HHE
X 

rs1111
875 

B CRAE ref 
genotype 

162.07 (160.55, 163.59) 160.83 (159.06, 162.59) 157.93 (149.91, 165.95) 164.52 (161.9, 167.14) 161.02 (159.06, 162.98) 



 

 

161 

Table 23. Retinal lesions, caliber and diabetes susceptibility polymorphisms, by hypertension and diabetes status in the ARIC Study. 
 OR (95%CI) or Mean Caliber (95%CI) with P value 

Gene SNP R Phenotype 
Geno- 
type All Hypertension Only 

Non-Hypertension 
Only Diabetes Only Non-Diabetes only 

    het 
genotype 

162.11 (160.53, 163.7) 161.02 (159.18, 162.85) 157.74 (149.73, 165.76) 163.9 (161.09, 166.71) 161.43 (159.42, 163.43) 

    hom 
genotype 

162.15 (159.97, 164.33) 161.21 (158.64, 163.77) 157.56 (149.15, 165.97) 163.29 (159.37, 167.21) 161.84 (159.16, 164.51) 

    p value 0.9379 0.7592 0.8434 0.5018 0.5111 
HHE
X 

rs1111
875 

B CRVE ref 
genotype 

199.86 (198.3, 201.42) 200.94 (199.15, 202.74) 204.84 (196.45, 213.23) 200.58 (197.73, 203.43) 199.07 (197.1, 201.03) 

    het 
genotype 

200.1 (198.48, 201.73) 201.17 (199.3, 203.04) 204.9 (196.51, 213.29) 201.62 (198.58, 204.66) 198.9 (196.88, 200.92) 

    hom 
genotype 

200.35 (198.08, 202.61) 201.4 (198.74, 204.07) 204.97 (196.16, 213.77) 202.65 (198.35, 206.95) 198.74 (196.02, 201.46) 

    p value 0.6529 0.7262 0.9486 0.3144 0.7962 
HHE
X 

rs1111
875 

B retinopathy het vs. ref 0.91 (0.73, 1.14) 0.94 (0.73, 1.21) 0.85 (0.5, 1.45) 1 (0.73, 1.37) 0.86 (0.62, 1.2) 

    hom vs. 
ref 

0.83 (0.53, 1.3) 0.88 (0.53, 1.46) 0.72 (0.25, 2.1) 1 (0.53, 1.89) 0.75 (0.39, 1.45) 

    p value 0.4078 0.6174 0.5515 0.9933 0.3889 
HHE
X 

rs1111
875 

B A/V 
nicking 

het vs. ref 0.93 (0.75, 1.14) 0.96 (0.76, 1.22) 0.79 (0.51, 1.22) 1.27 (0.89, 1.79) 0.77 (0.6, 1) 

    hom vs. 
ref 

0.86 (0.57, 1.3) 0.93 (0.58, 1.49) 0.62 (0.26, 1.5) 1.6 (0.8, 3.22) 0.6 (0.36, 1) 

    p value 0.4680 0.7630 0.2928 0.1842 0.0511 
HHE
X 

rs1111
875 

B Focal 
narrowing 

het vs. ref 1.1 (0.88, 1.38) 1.15 (0.89, 1.47) 0.88 (0.51, 1.5) 1.2 (0.79, 1.82) 1.07 (0.81, 1.4) 

    hom vs. 
ref 

1.2 (0.77, 1.89) 1.32 (0.8, 2.17) 0.77 (0.26, 2.25) 1.44 (0.62, 3.31) 1.14 (0.66, 1.96) 

    p value 0.4201 0.2850 0.6302 0.3970 0.6405 
SLC
30A 

rs1326
663 

W CRAE ref 
genotype 

163.23 (162.39, 164.06) 162.07 (161.03, 163.12) 164.56 (161.16, 167.96) 164.8 (162.89, 166.71) 162.82 (161.87, 163.77) 

    het 
genotype 

162.95 (162.15, 163.75) 162.11 (161.12, 163.1) 164.01 (160.63, 167.39) 165.09 (163.24, 166.94) 162.48 (161.56, 163.39) 

    hom 
genotype 

162.67 (161.67, 163.67) 162.15 (160.79, 163.52) 163.46 (160, 166.92) 165.38 (162.92, 167.84) 162.13 (161.02, 163.24) 

    p value 0.2294 0.9139 0.0658 0.6307 0.1650 
SLC
30A 

rs1326
663 

W CRVE ref 
genotype 

197.45 (196.61, 198.29) 198.54 (197.48, 199.6) 196.74 (193.35, 200.13) 198 (195.99, 200.01) 197.55 (196.61, 198.5) 

    het 
genotype 

197.62 (196.81, 198.42) 198.51 (197.5, 199.51) 197.09 (193.72, 200.47) 197.46 (195.51, 199.4) 197.85 (196.94, 198.75) 
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Table 23. Retinal lesions, caliber and diabetes susceptibility polymorphisms, by hypertension and diabetes status in the ARIC Study. 
 OR (95%CI) or Mean Caliber (95%CI) with P value 

Gene SNP R Phenotype 
Geno- 
type All Hypertension Only 

Non-Hypertension 
Only Diabetes Only Non-Diabetes only 

    hom 
genotype 

197.78 (196.78, 198.78) 198.47 (197.09, 199.86) 197.44 (193.99, 200.9) 196.92 (194.33, 199.5) 198.14 (197.03, 199.24) 

    p value 0.4719 0.9273 0.2367 0.3984 0.2380 
SLC
30A 

rs1326
663 

W retinopathy het vs. ref 0.97 (0.84, 1.12) 1 (0.83, 1.21) 0.92 (0.73, 1.14) 1 (0.78, 1.28) 1 (0.83, 1.19) 

    hom vs. 
ref 

0.94 (0.71, 1.26) 1 (0.68, 1.46) 0.84 (0.54, 1.31) 0.99 (0.6, 1.63) 0.99 (0.69, 1.42) 

    p value 0.6979 0.9972 0.4385 0.9775 0.9725 
SLC
30A 

rs1326
663 

W A/V 
nicking 

het vs. ref 0.99 (0.89, 1.1) 0.95 (0.82, 1.09) 1.03 (0.9, 1.19) 0.93 (0.73, 1.19) 1 (0.9, 1.12) 

    hom vs. 
ref 

0.98 (0.8, 1.2) 0.9 (0.67, 1.2) 1.07 (0.8, 1.42) 0.87 (0.53, 1.42) 1 (0.8, 1.25) 

    p value 0.8489 0.4675 0.6506 0.5695 0.9862 
SLC
30A 

rs1326
663 

W Focal 
narrowing 

het vs. ref 1.15 (1.05, 1.28) 1.1 (0.96, 1.26) 1.23 (1.06, 1.42) 1.07 (0.83, 1.39) 1.17 (1.05, 1.3) 

    hom vs. 
ref 

1.33 (1.09, 1.63) 1.21 (0.92, 1.58) 1.51 (1.12, 2.03) 1.15 (0.69, 1.94) 1.36 (1.1, 1.69) 

    p value 0.0044 0.1642 0.0060 0.5883 0.0049 
SLC
30A 

rs1326
663 

B CRAE ref 
genotype 

162.3 (160.8, 163.81) 161.03 (159.3, 162.75) 158.3 (150.34, 166.26) 164.66 (162.07, 167.25) 161.39 (159.44, 163.33) 

    het 
genotype 

161.41 (159.47, 163.35) 159.78 (157.47, 162.1) 158.31 (149.94, 166.68) 163.42 (160, 166.83) 160.57 (158.13, 163) 

    hom 
genotype 

160.51 (157.31, 163.7) 158.54 (154.64, 162.44) 158.33 (148.76, 167.9) 162.17 (156.37, 167.98) 159.75 (155.87, 163.63) 

    p value 0.2631 0.2072 0.9914 0.4049 0.3901 
SLC
30A 

rs1326
663 

B CRVE ref 
genotype 

199.46 (197.92, 201) 200.63 (198.87, 202.38) 204.61 (196.35, 212.86) 200.18 (197.32, 203.04) 198.74 (196.8, 200.69) 

    het 
genotype 

200.44 (198.44, 202.45) 202.25 (199.86, 204.63) 204.33 (195.64, 213.02) 201.73 (197.95, 205.51) 199.5 (197.05, 201.94) 

    hom 
genotype 

201.42 (198.08, 204.76) 203.87 (199.78, 207.95) 204.05 (194.1, 214) 203.28 (196.76, 209.8) 200.25 (196.32, 204.19) 

    p value 0.2470 0.1217 0.8482 0.3607 0.4383 
SLC
30A 

rs1326
663 

B retinopathy het vs. ref 1.16 (0.83, 1.62) 1.34 (0.93, 1.93) 0.68 (0.29, 1.58) 1.51 (0.92, 2.5) 1 (0.61, 1.64) 

    hom vs. 
ref 

1.35 (0.69, 2.63) 1.79 (0.86, 3.73) 0.46 (0.09, 2.49) 2.29 (0.84, 6.26) 1 (0.37, 2.69) 

    p value 0.3756 0.1191 0.3709 0.1059 0.9947 
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Table 23. Retinal lesions, caliber and diabetes susceptibility polymorphisms, by hypertension and diabetes status in the ARIC Study. 
 OR (95%CI) or Mean Caliber (95%CI) with P value 

Gene SNP R Phenotype 
Geno- 
type All Hypertension Only 

Non-Hypertension 
Only Diabetes Only Non-Diabetes only 

SLC
30A 

rs1326
663 

B A/V 
nicking 

het vs. ref 0.77 (0.54, 1.09) 0.84 (0.57, 1.26) 0.59 (0.29, 1.21) 0.56 (0.28, 1.13) 0.83 (0.56, 1.25) 

    hom vs. 
ref 

0.59 (0.3, 1.19) 0.71 (0.32, 1.58) 0.35 (0.09, 1.46) 0.31 (0.08, 1.29) 0.7 (0.31, 1.56) 

    p value 0.1414 0.4042 0.1517 0.1074 0.3777 
SLC
30A 

rs1326
663 

B Focal 
narrowing 

het vs. ref 1.02 (0.7, 1.47) 1.09 (0.72, 1.65) 0.84 (0.36, 1.94) 0.64 (0.27, 1.56) 1.14 (0.76, 1.71) 

    hom vs. 
ref 

1.04 (0.5, 2.16) 1.19 (0.52, 2.72) 0.7 (0.13, 3.77) 0.42 (0.07, 2.43) 1.3 (0.57, 2.93) 

    p value 0.9232 0.6730 0.6784 0.3291 0.5346 
FTO rs1225

537 
W CRAE ref 

genotype 
163.05 (162.22, 163.88) 162.06 (161.03, 163.09) 164.28 (160.88, 167.68) 164.44 (162.48, 166.41) 162.75 (161.81, 163.69) 

    het 
genotype 

162.9 (162.09, 163.72) 162.02 (161.01, 163.04) 164.06 (160.68, 167.44) 164.69 (162.85, 166.52) 162.47 (161.54, 163.41) 

    hom 
genotype 

162.76 (161.72, 163.8) 161.99 (160.55, 163.43) 163.84 (160.37, 167.3) 164.93 (162.56, 167.3) 162.2 (161.03, 163.37) 

    p value 0.5436 0.9261 0.4711 0.6850 0.2917 
FTO rs1225

537 
W CRVE ref 

genotype 
197.57 (196.74, 198.4) 198.54 (197.49, 199.59) 196.94 (193.55, 200.34) 198.11 (196.05, 200.18) 197.7 (196.76, 198.63) 

    het 
genotype 

197.51 (196.69, 198.33) 198.51 (197.47, 199.54) 196.89 (193.52, 200.26) 197.69 (195.77, 199.61) 197.67 (196.74, 198.6) 

    hom 
genotype 

197.45 (196.4, 198.49) 198.47 (197, 199.94) 196.83 (193.38, 200.29) 197.27 (194.79, 199.75) 197.64 (196.47, 198.81) 

    p value 0.7969 0.9228 0.8587 0.5017 0.9092 
FTO rs1225

537 
W retinopathy het vs. ref 1.06 (0.91, 1.23) 0.94 (0.77, 1.15) 1.21 (0.97, 1.51) 1 (0.78, 1.28) 1 (0.83, 1.21) 

    hom vs. 
ref 

1.12 (0.84, 1.5) 0.88 (0.59, 1.32) 1.47 (0.95, 2.28) 1 (0.61, 1.64) 1 (0.69, 1.46) 

    p value 0.4473 0.5450 0.0873 0.9882 0.9950 
FTO rs1225

537 
W A/V 

nicking 
het vs. ref 1.05 (0.95, 1.17) 1.14 (0.99, 1.32) 0.99 (0.85, 1.14) 0.98 (0.77, 1.25) 1.07 (0.95, 1.2) 

    hom vs. 
ref 

1.11 (0.9, 1.37) 1.3 (0.97, 1.74) 0.97 (0.72, 1.31) 0.96 (0.59, 1.55) 1.15 (0.91, 1.45) 

    p value 0.3226 0.0783 0.8493 0.8630 0.2452 
FTO rs1225

537 
W Focal 

narrowing 
het vs. ref 1.08 (0.97, 1.2) 1.23 (1.07, 1.41) 0.92 (0.78, 1.07) 0.83 (0.63, 1.08) 1.15 (1.03, 1.29) 

    hom vs. 
ref 

1.16 (0.95, 1.43) 1.51 (1.14, 1.99) 0.84 (0.61, 1.15) 0.68 (0.4, 1.17) 1.33 (1.06, 1.66) 
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Table 23. Retinal lesions, caliber and diabetes susceptibility polymorphisms, by hypertension and diabetes status in the ARIC Study. 
 OR (95%CI) or Mean Caliber (95%CI) with P value 

Gene SNP R Phenotype 
Geno- 
type All Hypertension Only 

Non-Hypertension 
Only Diabetes Only Non-Diabetes only 

    p value 0.1517 0.0038 0.2709 0.1638 0.0138 
FTO rs1225

537 
B CRAE ref 

genotype 
161.49 (159.93, 163.04) 160.23 (158.41, 162.05) 157.4 (149.52, 165.28) 163.62 (160.94, 166.3) 160.69 (158.69, 162.69) 

    het 
genotype 

162.1 (160.59, 163.62) 160.88 (159.12, 162.65) 158.12 (150.29, 165.94) 163.7 (161.04, 166.36) 161.61 (159.67, 163.55) 

    hom 
genotype 

162.72 (160.76, 164.68) 161.54 (159.2, 163.88) 158.83 (150.77, 166.89) 163.78 (160.22, 167.34) 162.53 (160.1, 164.96) 

    p value 0.1846 0.2609 0.3571 0.9246 0.0986 
FTO rs1225

537 
B CRVE ref 

genotype 
200.36 (198.76, 201.96) 201.58 (199.74, 203.43) 204.94 (196.6, 213.27) 201.43 (198.49, 204.36) 199.31 (197.31, 201.31) 

    het 
genotype 

199.83 (198.27, 201.39) 200.92 (199.13, 202.71) 204.53 (196.26, 212.81) 200.96 (198.03, 203.89) 198.7 (196.76, 200.65) 

    hom 
genotype 

199.3 (197.26, 201.35) 200.26 (197.83, 202.69) 204.13 (195.6, 212.66) 200.5 (196.51, 204.48) 198.09 (195.63, 200.55) 

    p value 0.2857 0.2817 0.6276 0.6353 0.2852 
FTO rs1225

537 
B retinopathy het vs. ref 1.11 (0.91, 1.35) 1.12 (0.89, 1.4) 1.07 (0.7, 1.65) 1.09 (0.81, 1.47) 1.11 (0.83, 1.47) 

    hom vs. 
ref 

1.23 (0.82, 1.83) 1.25 (0.79, 1.97) 1.15 (0.49, 2.71) 1.19 (0.65, 2.15) 1.22 (0.69, 2.17) 

    p value 0.3105 0.3364 0.7527 0.5746 0.4925 
FTO rs1225

537 
B A/V 

nicking 
het vs. ref 1 (0.83, 1.21) 1.09 (0.87, 1.35) 0.78 (0.54, 1.14) 1.08 (0.76, 1.52) 0.97 (0.77, 1.21) 

    hom vs. 
ref 

1 (0.69, 1.46) 1.18 (0.76, 1.83) 0.61 (0.29, 1.29) 1.16 (0.58, 2.32) 0.94 (0.6, 1.47) 

    p value 0.9825 0.4540 0.1978 0.6721 0.7727 
FTO rs1225

537 
B Focal 

narrowing 
het vs. ref 0.99 (0.8, 1.22) 1.08 (0.85, 1.38) 0.67 (0.41, 1.09) 1.12 (0.75, 1.67) 0.94 (0.73, 1.22) 

    hom vs. 
ref 

0.98 (0.64, 1.5) 1.18 (0.73, 1.9) 0.45 (0.17, 1.2) 1.25 (0.56, 2.8) 0.89 (0.54, 1.48) 

    p value 0.9176 0.5099 0.1101 0.5827 0.6538 
KCN
J11 

rs5219 W CRAE ref 
genotype 

163.27 (162.43, 164.11) 162.13 (161.05, 163.21) 164.29 (160.89, 167.68) 165.53 (163.5, 167.56) 162.75 (161.8, 163.7) 

    het 
genotype 

163.25 (162.46, 164.04) 162.21 (161.25, 163.16) 164.18 (160.81, 167.56) 165.11 (163.32, 166.91) 162.79 (161.89, 163.69) 

    hom 
genotype 

163.23 (162.28, 164.19) 162.29 (161.03, 163.54) 164.08 (160.63, 167.52) 164.7 (162.46, 166.94) 162.83 (161.75, 163.9) 

    p value 0.9336 0.8182 0.7112 0.4806 0.8664 
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Table 23. Retinal lesions, caliber and diabetes susceptibility polymorphisms, by hypertension and diabetes status in the ARIC Study. 
 OR (95%CI) or Mean Caliber (95%CI) with P value 

Gene SNP R Phenotype 
Geno- 
type All Hypertension Only 

Non-Hypertension 
Only Diabetes Only Non-Diabetes only 

KCN
J11 

rs5219 W CRVE ref 
genotype 

197.8 (196.95, 198.64) 198.91 (197.81, 200) 197.27 (193.88, 200.67) 197.73 (195.59, 199.86) 198.05 (197.11, 199) 

    het 
genotype 

197.42 (196.63, 198.22) 198.4 (197.42, 199.37) 197.01 (193.63, 200.38) 197.59 (195.7, 199.47) 197.61 (196.71, 198.51) 

    hom 
genotype 

197.05 (196.09, 198.01) 197.89 (196.61, 199.16) 196.74 (193.29, 200.19) 197.45 (195.1, 199.8) 197.17 (196.1, 198.24) 

    p value 0.0917 0.1443 0.3490 0.8226 0.0616 
KCN
J11 

rs5219 W retinopathy het vs. ref 1.06 (0.92, 1.21) 0.95 (0.79, 1.15) 1.19 (0.97, 1.47) 1.04 (0.81, 1.32) 1.05 (0.89, 1.25) 

    hom vs. 
ref 

1.12 (0.85, 1.47) 0.91 (0.63, 1.32) 1.42 (0.94, 2.15) 1.07 (0.66, 1.74) 1.11 (0.79, 1.56) 

    p value 0.4242 0.6081 0.0990 0.7797 0.5563 
KCN
J11 

rs5219 W A/V 
nicking 

het vs. ref 1 (0.91, 1.11) 1 (0.88, 1.15) 1 (0.87, 1.15) 1.15 (0.91, 1.45) 0.98 (0.88, 1.09) 

    hom vs. 
ref 

1.01 (0.83, 1.22) 1.01 (0.77, 1.32) 1 (0.76, 1.31) 1.32 (0.83, 2.1) 0.95 (0.77, 1.18) 

    p value 0.9323 0.9542 0.9908 0.2441 0.6619 
KCN
J11 

rs5219 W Focal 
narrowing 

het vs. ref 1.02 (0.92, 1.12) 0.95 (0.84, 1.09) 1.1 (0.96, 1.27) 0.96 (0.74, 1.24) 1.03 (0.93, 1.14) 

    hom vs. 
ref 

1.03 (0.85, 1.25) 0.91 (0.7, 1.18) 1.22 (0.92, 1.62) 0.92 (0.55, 1.54) 1.06 (0.86, 1.3) 

    p value 0.7411 0.4735 0.1725 0.7529 0.5912 
KCN
J11 

rs5219 B CRAE ref 
genotype 

161.95 (160.43, 163.46) 160.78 (159.02, 162.54) 157.89 (149.97, 165.82) 164.08 (161.5, 166.65) 161.15 (159.19, 163.11) 

    het 
genotype 

163.14 (161.09, 165.18) 161.73 (159.19, 164.27) 159.33 (151.22, 167.44) 165.31 (161.58, 169.05) 162.45 (159.9, 164.99) 

    hom 
genotype 

164.33 (160.93, 167.73) 162.68 (158.34, 167.02) 160.76 (151.69, 169.83) 166.55 (160.25, 172.85) 163.75 (159.62, 167.88) 

    p value 0.1601 0.3810 0.2816 0.4240 0.2014 
KCN
J11 

rs5219 B CRVE ref 
genotype 

200.26 (198.72, 201.81) 201.36 (199.59, 203.13) 205.28 (196.9, 213.67) 200.9 (198.12, 203.68) 199.39 (197.43, 201.36) 

    het 
genotype 

198.77 (196.64, 200.9) 200 (197.37, 202.64) 203.5 (194.91, 212.09) 202.17 (198.07, 206.27) 196.68 (194.09, 199.27) 

    hom 
genotype 

197.27 (193.69, 200.85) 198.65 (194.09, 203.21) 201.72 (192.08, 211.36) 203.44 (196.43, 210.46) 193.97 (189.74, 198.2) 

    p value 0.0939 0.2378 0.2090 0.4641 0.0091 
KCN
J11 

rs5219 B retinopathy het vs. ref 0.99 (0.69, 1.43) 0.96 (0.63, 1.48) 1.05 (0.52, 2.12) 0.98 (0.58, 1.67) 1.02 (0.6, 1.73) 
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Table 23. Retinal lesions, caliber and diabetes susceptibility polymorphisms, by hypertension and diabetes status in the ARIC Study. 
 OR (95%CI) or Mean Caliber (95%CI) with P value 

Gene SNP R Phenotype 
Geno- 
type All Hypertension Only 

Non-Hypertension 
Only Diabetes Only Non-Diabetes only 

    hom vs. 
ref 

0.99 (0.47, 2.06) 0.93 (0.39, 2.2) 1.09 (0.27, 4.48) 0.97 (0.33, 2.81) 1.04 (0.36, 3) 

    p value 0.9723 0.8656 0.9023 0.9542 0.9370 
KCN
J11 

rs5219 B A/V 
nicking 

het vs. ref 1.12 (0.81, 1.56) 1.25 (0.85, 1.83) 0.85 (0.43, 1.68) 1.78 (1.03, 3.08) 0.9 (0.59, 1.39) 

    hom vs. 
ref 

1.27 (0.65, 2.45) 1.56 (0.72, 3.35) 0.73 (0.19, 2.84) 3.18 (1.07, 9.49) 0.82 (0.35, 1.92) 

    p value 0.4853 0.2594 0.6468 0.0378 0.6396 
KCN
J11 

rs5219 B Focal 
narrowing 

het vs. ref 0.97 (0.66, 1.44) 0.97 (0.62, 1.53) 1 (0.44, 2.25) 1.02 (0.49, 2.1) 0.95 (0.59, 1.52) 

    hom vs. 
ref 

0.94 (0.43, 2.08) 0.95 (0.39, 2.33) 1 (0.2, 5.08) 1.04 (0.24, 4.41) 0.9 (0.35, 2.31) 

    p value 0.8870 0.9078 0.9967 0.9624 0.8241 
Inter
genic 

rs9300
039 

W CRAE ref 
genotype 

163.11 (162.32, 163.9) 162.26 (161.3, 163.22) 164.05 (160.67, 167.43) 165.08 (163.28, 166.87) 162.61 (161.71, 163.51) 

    het 
genotype 

163.08 (162.09, 164.07) 161.67 (160.32, 163.02) 164.41 (160.96, 167.85) 164.59 (162.16, 167.03) 162.7 (161.59, 163.8) 

    hom 
genotype 

163.06 (161.5, 164.61) 161.08 (158.77, 163.39) 164.76 (161.02, 168.51) 164.11 (160.09, 168.13) 162.78 (161.09, 164.48) 

    p value 0.9426 0.3077 0.4575 0.6253 0.8292 
Inter
genic 

rs9300
039 

W CRVE ref 
genotype 

197.52 (196.73, 198.31) 198.47 (197.49, 199.45) 197.12 (193.74, 200.49) 197.66 (195.78, 199.54) 197.72 (196.83, 198.62) 

    het 
genotype 

197.06 (196.07, 198.06) 198.11 (196.73, 199.48) 196.58 (193.14, 200.02) 196.86 (194.31, 199.42) 197.3 (196.2, 198.4) 

    hom 
genotype 

196.6 (195.05, 198.16) 197.74 (195.4, 200.09) 196.05 (192.31, 199.79) 196.07 (191.85, 200.29) 196.87 (195.18, 198.55) 

    p value 0.2174 0.5357 0.2664 0.4448 0.2806 
Inter
genic 

rs9300
039 

W retinopathy het vs. ref 1.1 (0.88, 1.37) 0.81 (0.58, 1.14) 1.42 (1.04, 1.93) 0.95 (0.63, 1.45) 1.2 (0.91, 1.57) 

    hom vs. 
ref 

1.2 (0.77, 1.88) 0.66 (0.34, 1.3) 2 (1.08, 3.71) 0.91 (0.39, 2.11) 1.43 (0.83, 2.45) 

    p value 0.4263 0.2301 0.0272 0.8246 0.1957 
Inter
genic 

rs9300
039 

W A/V 
nicking 

het vs. ref 0.92 (0.78, 1.08) 0.91 (0.72, 1.15) 0.93 (0.73, 1.18) 1.06 (0.71, 1.59) 0.89 (0.74, 1.07) 

    hom vs. 
ref 

0.84 (0.6, 1.17) 0.82 (0.51, 1.33) 0.86 (0.54, 1.38) 1.13 (0.51, 2.52) 0.79 (0.55, 1.15) 

    p value 0.3073 0.4239 0.5333 0.7607 0.2158 
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Table 23. Retinal lesions, caliber and diabetes susceptibility polymorphisms, by hypertension and diabetes status in the ARIC Study. 
 OR (95%CI) or Mean Caliber (95%CI) with P value 

Gene SNP R Phenotype 
Geno- 
type All Hypertension Only 

Non-Hypertension 
Only Diabetes Only Non-Diabetes only 

Inter
genic 

rs9300
039 

W Focal 
narrowing 

het vs. ref 0.98 (0.83, 1.15) 1.01 (0.81, 1.26) 0.94 (0.73, 1.2) 1.01 (0.65, 1.59) 0.97 (0.82, 1.16) 

    hom vs. 
ref 

0.95 (0.69, 1.32) 1.03 (0.66, 1.59) 0.88 (0.54, 1.43) 1.03 (0.42, 2.53) 0.94 (0.67, 1.34) 

    p value 0.7649 0.9082 0.6023 0.9539 0.7487 
Inter
genic 

rs9300
039 

B CRAE ref 
genotype 

161.96 (160.46, 163.45) 160.79 (159.06, 162.51) 158.07 (150.16, 165.97) 163.94 (161.33, 166.55) 161.22 (159.3, 163.13) 

    het 
genotype 

161.98 (160.19, 163.77) 160.98 (158.87, 163.08) 157.66 (149.48, 165.84) 164.47 (161.25, 167.7) 161.09 (158.85, 163.32) 

    hom 
genotype 

162 (159.24, 164.76) 161.17 (157.86, 164.48) 157.25 (148.2, 166.31) 165 (159.92, 170.09) 160.96 (157.61, 164.31) 

    p value 0.9744 0.8146 0.7322 0.6674 0.8709 
Inter
genic 

rs9300
039 

B CRVE ref 
genotype 

200.07 (198.54, 201.6) 201.05 (199.29, 202.81) 204.92 (196.67, 213.18) 200.87 (198.03, 203.72) 199.27 (197.35, 201.18) 

    het 
genotype 

199.43 (197.58, 201.29) 200.87 (198.7, 203.04) 203.35 (194.79, 211.91) 201.57 (198.02, 205.12) 198.01 (195.75, 200.27) 

    hom 
genotype 

198.79 (195.89, 201.69) 200.69 (197.21, 204.16) 201.78 (192.27, 211.28) 202.27 (196.59, 207.95) 196.76 (193.34, 200.18) 

    p value 0.3662 0.8339 0.2073 0.6189 0.1260 
Inter
genic 

rs9300
039 

B retinopathy het vs. ref 0.8 (0.59, 1.09) 0.83 (0.59, 1.16) 0.67 (0.31, 1.42) 0.78 (0.5, 1.22) 0.81 (0.52, 1.27) 

    hom vs. 
ref 

0.64 (0.34, 1.18) 0.68 (0.34, 1.35) 0.44 (0.1, 2) 0.6 (0.25, 1.49) 0.66 (0.27, 1.61) 

    p value 0.1549 0.2746 0.2900 0.2718 0.3640 
Inter
genic 

rs9300
039 

B A/V 
nicking 

het vs. ref 0.79 (0.59, 1.05) 0.8 (0.57, 1.11) 0.78 (0.43, 1.42) 0.82 (0.49, 1.39) 0.76 (0.54, 1.08) 

    hom vs. 
ref 

0.62 (0.35, 1.1) 0.63 (0.33, 1.22) 0.62 (0.19, 2.02) 0.68 (0.24, 1.93) 0.58 (0.29, 1.16) 

    p value 0.1030 0.1755 0.4239 0.4671 0.1251 
Inter
genic 

rs9300
039 

B Focal 
narrowing 

het vs. ref 1.13 (0.83, 1.52) 1.07 (0.76, 1.5) 1.36 (0.73, 2.55) 0.82 (0.43, 1.57) 1.23 (0.88, 1.74) 

    hom vs. 
ref 

1.27 (0.7, 2.3) 1.14 (0.58, 2.25) 1.85 (0.53, 6.5) 0.68 (0.19, 2.47) 1.52 (0.77, 3.02) 

    p value 0.4398 0.7082 0.3344 0.5556 0.2269 
Abbreviations: het, heterozygote; hom, homozygote; ref, reference. 
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APPENDICES 

A. IRB approval 

To: Yu Yan  
Epidemiology  
CB:8050 
 
From: Public Health-Nursing IRB 
 
Date: 4/14/2008  
 
RE: Determination that Research or Research-Like Activity does not require IRB Approval  
Study #: 08-0649 
 
Study Title: Diabetes Susceptibility Polymorphisms and Risk of Prediabetes and Diabetes 
Complications in the Atherosclerosis Risk in Communities (ARIC) Study 
 
This submission was reviewed by the above-referenced IRB. The IRB has determined that 
this submission does not constitute human subjects research as defined under federal 
regulations [45 CFR 46.102 (d or f)] and does not require IRB approval.  
 
Study Description:  
 
Purpose: Our goal is to measure the association between diabetes-related single nucleotide 
polymorphisms (SNPs) . Participants: A total of 15,792 men and women randomly selected 
from the residents of four U.S. communities: Washington County, Maryland, Forsyth 
County, North Carolina; suburbs of Minneapolis, Minnesota; and Jackson, Mississippi in 
1987-1989 and followed for 9 years. Procedures: Using behavioral, biochemical and clinical 
data as well as stored bio specimens from these population samples we propose to conduct a 
series of data analyses to estimate the relative risks of prediabetes/retinal abnormalities 
associated with these variants, and use the population attributable fraction to estimate the 
population impact of diabetes-related SNPs on retinal abnormalities.  
 
If your study protocol changes in such a way that this determination will no longer apply, 
you should contact the above IRB before making the changes.  
 
CC: 
Kari North, Epidemiology 
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