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ABSTRACT

LIDDY MIAOLI CHEN: DESIGN CONSIDERATIONS FOR COMPLEX

SURVIVAL MODELS.

(Under the direction of Dr. Joseph G. Ibrahim and Dr. Haitao Chu.)

Various complex survival models, such as joint models of survival and longitudinal

data and multivariate frailty models, have gained popularity in recent years because

these models can maximize the utilization of information collected. It has been shown

that these methods can reduce bias and/or improve efficiency, and thus can increase

the power for statistical inference. Statistical design, such as sample size and power

calculations, is a crucial first step in clinical trials.

We derived a closed form sample size formula for estimating the effect of the longitu-

dinal process in joint modeling, and extend Schoenfeld’s (1983) sample size formula to

the joint modeling setting for estimating the overall treatment effect. The sample size

formula we developed is general, allowing for p-degree polynomial trajectories. The ro-

bustness of our model was demonstrated in simulation studies with linear and quadratic

trajectories. We discussed the impact of the within subject variability on power, and

data collection strategies, such as spacing and frequency of repeated measurements, in

order to maximize power. When the within subject variability is large, different data

collection strategies can influence the power of the study in a significant way.

We also developed a sample size determination method for the shared frailty model

to investigate the treatment effect on multivariate time to events, including recurrent

events. We first assumed a common treatment effect on multiple event times, and the

sample size determination was based on testing the common treatment effect. We then

considered testing the treatment effect on one time-to-event while treating the other
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time-to-events as nuisance, and compared the power from a multivariate frailty model

versus that from a univariate parametric and semi-parametric survival model. The

multivariate frailty model has significant advantage over the univariate survival model

when the time-to-event data is highly correlated.

Group sequential methods had been developed to control the overall type I error rate

in interim analysis of accumulating data in a clinical trial. These methods mainly apply

to testing the same hypothesis at different interim analyses. Finally, we extended the

methodology of the alpha spending function to group sequential stopping boundaries

when the hypotheses can be different between analyses. We found that these stopping

boundaries depend on the Fisher’s Information matrix, and application to a bivariate

frailty model and a joint model was considered.
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CHAPTER 1

Introduction and Literature Review

1.1 Introduction

Various complex survival models, such as joint models of survival and longitudinal data

and multivariate frailty models, have gained popularity in recent years because these

models can maximize the utilization of information collected. Classical models such as

the Cox proportional hazard model to handle time-to-event data and the mix model

to handle repeated measurements evaluate the treatment effect on these two types of

responses separately. There are two complications in describing or making inference

on the longitudinal process in these studies: 1) Occurrence of the time-to-event may

induce an informative censoring (Wu and Carroll 1988, Hogan and Laird 1997ab), as

subjects who have early events would be censored at an earlier time point. 2) The

longitudinal data is only available intermittently for each subject, and likely subjects

to measurement errors. These concerns led to the development of joint models of the

two data types. Joint models are also developed because there is a need to take into

account the dependency of these two data types when investigating the treatment effect

on survival.

The need to study or analyze multiple correlated time-to-event data arises in many

experimental design and observational studies. The frailty model has been becoming



increasingly popular for analyzing multivariate time-to-event data (Oakes 1989, Peter-

son 1998, Duchateau et al. 2003, Cook and Lawless 2007, Zeng et al. 2009) because it

provides a convenient way to introduce association and unobserved heterogeneity into

models for the multivariate survival data. A frailty, a concept introduced by Vaupel et

al. (1979), is an unobservable random effect. A natural way to model dependence of

clustered or multivariate event times is through the introduction of a cluster-specific

random effect. This random effect explains the dependence in the sense that had we

known the frailty, the events would be independent.

Design is a crucial first step in clinical trials. Well-designed studies are essential

for successful research and drug development. Although much effort has been put into

inferential and estimation methods in these complex survival models, design researches

are lacking. Sample size determination for these models have not been formally consid-

ered. There has been little guidance in the methodologic literature as to how researchers

should select the number of repeated measures for the longitudinal data. Hence devel-

oping statistical methods to address design issues in joint modeling and multivariate

frailty model are much needed.

Interim analyses are also commonly used in clinical trials due to difficulty in enroll-

ment, and/or long follow-up time until enough events have occurred. Although much

flexibility has been achieved with the alpha spending function in group sequential de-

signs, the unique feature of joint model also brings up another group sequential design

model. In Chapter 2, a sample size formula to study the association between the time-

to-event and the longitudinal data is provided, followed by detailed discussion of the

methodology when the variance-covariance matrix is known or unknown. Longitudinal

data collection strategies, such as spacing and frequency of repeated measurements, to

maximize the power are also discussed. Chapter 3 provides a sample size determination

formula to study a common treatment effect for the multivariate time-to-event data,

and a sample size formula to investigate the treatment effect on a single event time
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while taking into account the dependency of clustered event times. Group sequential

design when different parameters are involved is discussed is discussed in Chapter 4,

followed by application in multivariate survival models and joint models.

1.2 Joint Models in the Literature

1.2.1 Two-Step Models

The earliest literature on joint modeling focuses on a two-step inferential strategy which

defines sub-models for the longitudinal and event time processes (Self and Pawitan 1992,

Tsiatis and Wulfsohn 1995). In “ideal” data situation, the longitudinal process follows

a well-defined trajectory, {Xi(u), u ≥ 0)}, for all times u ≥ 0 for each subject i =

1, . . . , n. A routine framework to study the association between the time-to-event and

the treatment effect, or the association between the time-to-event and the longitudinal

data, is to represent the relationship between the event time (Ti), the trajectory (Xi(u)),

and the baseline covariates (Zi) by a proportional hazard model (Cox 1975)

λi(u) = lim
du→0

du−1pr
{
u ≤ ti < u + du|ti ≥ u, XH

i (u),Zi

}
= λ0(u)exp

{
βXi(u) + αTZi

}
, (1.1)

where XH
i (u) = {Xi(t), 0 ≤ t < u} is the history of the longitudinal process up to time

u. Inference on β and α can be made by maximizing the partial likelihood.

n∏
i=1

[
exp{βXi(Si) + αTZi}∑n

k=1 exp{βXk(Si) + αTZk}I(Sk ≥ Si)

]Δi

, (1.2)

where Si = min(Ti, Ci) (Ti and Ci denote the event and censoring times, respectively)

and Δi = I(Ti ≤ Ci). However, Xi(u) is unknown, and the response is collected on

each subject only intermittently at time tij ≤ Si, j = 1, . . . , mi. For such a model, the
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value of

f
(
X(u), β, α

)
= exp{βX(u) + αTZ}

is given by

E
[
exp{βX(u) + αTZ|Ȳ (u), u < S}], (1.3)

where Ȳ (u) is the history of observed longitudinal data up to time u. Theoretical

justification for this two-stage model is that the value of (1.3) can be approximated by

a first-order approximation:

E
[
exp{βX(u) + αTZ|Ȳ (u), u < S}]

≈ exp{βE
[
X(u)|Ȳ (u), u < S

]
+ αTZ}.

Therefore, we can replace the unknown value, Xi(Si) in (1.2) with E
[
Xi(Si)|Ȳi(Si)

]
.

Let Yi(tij) = Xi(tij) + ei(tij) denote the observed value of Xi(tij), where ei(tij) is an

intra-subject error and is normally distributed with mean 0. Tsiatis and Wulfsohn

(1995) proposed a simple linear model

Xi(u) = θ0i + θ1iu (1.4)

to represent the log CD4 trajectories. A more general polynomial model Xi(u) = θ0i +

θ1iu+θ2iu
2 + · · ·+θpiu

p had been considered in later studies (Chen et al. 2004, Ibrahim

et al. 2004). In this model, it is assumed that each subject followed his or her own

trajectory with intercept θ0i and slope θ1i. (θ0i, θ1i)
T are i.i.d bivariate normal vectors

with mean (μ0, μ1)
T and variance-covariance Σθ. Consequently, E

[
Xi(Si)|Ȳi(Si)

]
can

be represented by θ̂0i and θ̂1i, the Bayes estimates of θ0i and θ1i. One way to obtain

these estimates is by using the linear random components model as described by Laird
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and Ware (1982).

1.2.2 The Likelihood Approach

Several drawbacks to the two-step modeling were discussed by Wulfsohn and Tsiatis

(1997), and Tsiatis and Davidian (2004). The most important drawback is that the

random effects in those at risk at each event time is probably not normally distributed,

a critical assumption for the mixed model. If the longitudinal data is predictive of

survival, patients with the steepest slope will be removed from the at risk population

at an earlier time point. Thus it is less likely that the normality assumption still holds as

time progresses. Other drawbacks include the validity of the first order approximation

and less efficient use of information.

Wulfshon and Tsiatis (1997) proposed a full data likelihood incorporating a linear

model for the longitudinal data and the Cox model for the time-to-event data as

∫ ∞

−∞

[
mj∏
j=1

f(Yij|θi, σ
2
e)

]
f(θi|μθ,Σθ)f(Si, Δi|θi, β)dθi. (1.5)

In expression (1.5), f(Yij|θi, σ
2
e) is a univariate normal density function with mean

θ0i + θ1itij and variance σ2
e , and f(θi|μθ,Σθ) is the multivariate normal density with

mean μθ and covariance matrix Σθ. The density function for the time-to-event is based

on Cox partial likelihood, where

f(Si, Δi|θi, β, α) = {λ0(Si) exp[β(θ0i + θ1iSi)]}Δi

× exp
[
−
∫ Si

0

λ0(t) exp[β(θ0i + θ1it]dt
]
.

The parameters θ, Σθ, σ2
e , and β were estimated using parametric maximum likelihood,

and λ0(t) was estimated using nonparametric maximum likelihood. An EM algorithm

was developed to obtain these estimates. They obtained parameter estimates that were
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similar to those from the two-step model (the same data was used), with β̂ further from

the null as compared to that from the two-step model.

Alternative forms to model the “true” longitudinal process has been considered

(Song et al. 2002b, Taylor et al. 1994, Lavalley & DeGruttola 1996, Wang & Taylor

2001, Henderson et al. 2000, and Xu & Zeger 2001)

1.3 Multivariate Frailty Models in the Literature

The shared frailty model, first introduced by Clayton (1978), assumes that individuals

in a cluster or repeated measurements of an individual share the same frailty, ω, and the

survival times are assumed to be conditional independent with respect to the shared

(common) frailty. Conditional on the frailty, the hazard function of an event in an

individual, or an individual in a cluster is of the form ωλ0(t)exp(βTX), where ω is

common to all events in an individual. The survival function is given as

S(t1, . . . , tK |ω) = S1(t1)
ωS2(t2)

ω . . . SK(tK)ω.

Independence of the survival times within an individual corresponds to a degenerate

frailty distribution with variance equals 0. One major consideration in the frailty mod-

els is the choice of the frailty distribution. Clayton (1978) and Oakes (1982) first

considered frailty models with gamma distribution for the frailty. In a gamma frailty

model, the frailty can be easily integrated out and thus the data likelihood has a closed

form. This is also the model considered in this paper. Hougaard discussed multivari-

ate failure models, where the frailty follows a positive stable distribution (Hougaard

1986a) or a power variance family (PVF) distribution (Hougaard 1986b). Whitmore

and Lee (1991) proposed a model with inverse Gaussian frailty and constant hazard.

The compound Poisson frailty model was considered by Aalen (Aalen 1988, 1992). The
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Lognormal frailty model (McGilchrist and Aisbett 1991, Korsgaard et al. 1998) has

gained popularity recently especially in Bayesian models. The selection of the family

of frailty distributions, based on the properties of the various models was discussed by

Hougaard (1995).

Besides the shared frailty model, other frailty models have been considered to handle

more complex multivariate time-to-event data. The correlated frailty model (Pickles

et al. 1994, Yashin & Iachine 1995, Wienke et al. 2001) is not constrained to have a

common frailty. The frailty for each event time is associated by a joint distribution

instead. Price and Manatunga (2001) considered the use of cure frailty models to

analyze a leukaemia recurrence with a cured fraction. The nested frailty model that

accounts for the hierarchical clustering of the data by including two nested random

effects is considered by Rondeau et al. (2006). Most recently, joint frailty models for

modeling recurring events and death has been proposed (Rondeau et al. 2007).

1.4 Group Sequential Methods and Alpha Spend-

ing Functions in the Literature

It is fundamental to have a trial that is properly designed to answer the scientific

question, such as whether the drug improves overall survival, and every trial design

is striving to answer the question with most robustness and accuracy while involving

the least number of patients and the shortest duration of time. Theories for group

sequential clinical trials has developed largely during the past few decades so that

a trial can be stopped early if there is strong evidence of efficacy during any planned

interim analysis. A high degree of flexibility has been established with respect to timing

of the analyses and how much type I error (alpha) to spend at each analyses. Popular

methods include the Pocock group sequential boundaries (Pocock 1977), the O’Brien-

Fleming boundaries (O’Brien and Fleming 1979), and the alpha spending functions
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first introduced by Lan and DeMets (1983).

1.4.1 Group Sequential Boundaries

Let Z(k) denote the test statistic using the cumulative data up to analysis k, and Z∗(k)

denote the test statistic using data accumulated between the (k−1)th analysis the kth

analysis, then

Z(k) = {Z∗(1) + · · · + Z∗(k)}/
√

k.

The distribution of Z(k)
√

k can be written as a recursive density function evalu-

able by numerical integration (Armitage et al. 1969). The probability of crossing the

boundary for the very first time at each interim analysis can be calculated based on

this density function. Under H0, the sum of these probabilities should equal to the

nominal overall type I error rate for the group sequential design.

Pocock (1977) first proposed that the crossing boundary be constant for all equally

spaced analyses, with zc(k) = zc for all k = 1, 2 . . . , K. O’Brien and Fleming (1979)

suggested that zc(k) be changed over the K analyses such that zc(k) = zOBF

√
K/k. In

both procedures, the number of interim analyses and the timing of the interim analyses

need to be pre-determined. The O’Brien-Fleming boundaries have been used more

frequently because it still preserves a nominal significance level at the final analysis

that is close to that of a single test procedure. An earlier work by Haybittle and

Peto (Haybittle 1971, Peto et al. 1976) in a less formal structure suggested to use

an arbitrarily large value for the crossing boundary for each interim analysis, and the

boundary for the final analysis should be determined such that the overall type I error

rate be preserved.
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1.4.2 The Alpha Spending Function

The alpha spending function initially developed by Lan and DeMets (1983) over the

course of a group sequential clinical trial is a more flexible group sequential procedure

that does not require the total number nor the exact time of the interim analyses to be

specified in advance.

Specifically, let T denote the scheduled end of the trial, and t∗ denote the fraction

of information that has been observed at calendar time t (t ∈ [0, T ]. Also let ik, k =

1, 2, . . . , K denote the information available at the kth interim analysis at calendar time

tk, so t∗k = ik/I, where I is the total information. Lan and DeMets specified an alpha

spending function such that α(0) = 0 and α(1) = α. Boundary values zc(k) can be

determined successively so that

P0{|Z(1)| ≥ zc(1), or|Z(2)| ≥ zc(2), or . . . , or|Z(k)| ≥ zc(k)} = α(t∗k) (1.6)

where {Z(1), . . . , Z(k)} are the test statistics from the interim analyses 1, . . . , k.

Alpha spending functions that approximate O’Brien-Fleming or Pocock Boundaries

are as follows:

O’Brien-Fleming: α1(t
∗) = 2 − 2Φ(Zα/2/

√
t∗)

Pocock: α2(t
∗) = αIn(1 + (e − 1)t∗)

where Φ denotes the standard normal cumulative distribution function. The other

alpha spending function proposed in the paper is α3(t
∗) = αt∗, representing uniform

spending of alpha over time. α3(t
∗) is intermediate between functions α1(t

∗) and α2(t
∗).

To solve for the boundary values zc(k), we need to obtain the multivariate distribution

of Z(1), Z(2), . . . , Z(k). In most cases, the distribution is asymptotically multivariate

normal, and the covariance structure is simple when the test statistics involve the same
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parameter at each interim analysis.

σlk = cov{Z(l), Z(k)}

=
√

t∗l /t
∗
k =
√

il/ik

=
√

nl/nk, l ≤ k,

where nl and nk are the number of subjects included in the lth and kth interim analy-

ses. If the information increments have independent distributional structure, which is

usually the case, derivation of zc(k) based on α(t∗) is relatively straightforward with

this covariance structure using the methods of Armitage et al. (1969).

Earlier development of the alpha spending function was based on assumption that

information accumulated between each interim analysis is independent. However, the

assumption does not apply to longitudinal studies for sequential test of slopes in which

the total information is unknown. Sequential analysis using the linear random-effects

model suggested by Laird and Ware (1982) has been considered by Lee and DeMets

(1991), and Wu and Lan (1992). The sequence of test statistics still has a multivari-

ate normal distribution but with a complex covariance. There have been debates on

whether the alpha spending function can still be used since the independent increment

structure doesn’t hold and the information fraction is unknown (Wei et al. 1990, Su

and Lachin 1992). It was argued by DeMets and Lan (1994) that the alpha spending

function can still be used with a more complex correlation between the successive test

statistics. The key to using the alpha spending function is being able to define the

information fraction. Although the correlation between successive test statistics will

not be exactly known, it can be estimated by a “surrogate” of the information fraction.
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CHAPTER 2

Sample Size and Power

Determination in Joint Modeling of

Longitudinal and Survival Data

2.1 Introduction

Censored time-to-event data, such as time to failure or time to death, is a common

primary endpoint in many clinical trials. Many studies also collect longitudinal data

with repeated measurements at a number of time points prior to the event, along with

other baseline covariates. The most original example is an HIV trial that compares

time to virologic failure or time to progression to AIDS (Tsiatis et al. 1995, Wulfsohn

& Tsiatis 1997). CD4 cell counts were considered a strong indicator of treatment effect

and are usually measured at each visit as secondary efficacy endpoints. Although CD4

cell counts are no longer considered a valid surrogate for time to progression to AIDS in

the current literature, the joint modeling strategies originally developed for these trials

led to research on joint modeling in other research areas. As discoveries of biomarkers

advance, there are more and more oncology studies that collect repeated measurements

of biomarker data, such as the prostate specific antigen (PSA) in prostate cancer trials,



as secondary efficacy measurements (Renard et al. 2003). Many studies also measure

quality of life (QOL) or depression measures together with survival data where joint

models can also be applied (Ibrahim et al. 2001, Billingham & Abrams 2002, Bowman

& Manatunga 2005, Zeng & Cai 2005, Chi & Ibrahim 2006, Chi & Ibrahim 2007).

Most clinical trials are designed to address the treatment effect on a time-to-event

endpoint. Recently, there has been an increasing interest in focusing on two primary

endpoints such as time-to-event and a longitudinal marker, and also to characterize the

relationship between them. For example, if treatment has an effect on the longitudinal

marker and the longitudinal marker has a strong association with the time-to-event,

the longitudinal marker can potentially be used as a surrogate endpoint or a marker

for the time-to-event, which is usually lengthy to ascertain in practice. The issue of

surrogacy of a disease marker for the survival endpoint by joint modeling was discussed

by Taylor and Wang (2002).

Characterizing the association between time-to-event and the longitudinal process

is usually complicated due to incomplete or mis-measured longitudinal data (Tsiatis et

al. 1995, Wulfsohn & Tsiatis 1997, Tsiatis & Davidian 2004). Another issue is that

occurrence of the time-to-event may induce informative censoring of the longitudinal

process (Hogan & Laird 1997b, Tsiatis & Davidian 2004). The recently developed

joint modeling approaches are frameworks which acknowledge the intrinsic relationships

between the event and the longitudinal process by incorporating a trajectory for the

longitudinal process into the hazard function of the event, or in a more general sense,

introducing shared random effects in both the longitudinal model and the survival

model (Wulfsohn & Tsiatis 1997, Henderson et al. 2000, Wang & Taylor 2001, Lin

et al. 2002, Song et al. 2002b, Zeng & Cai 2005). Bayesian approaches that address

joint modeling of longitudinal and survival data were introduced by Ibrahim et al.

(2001), Chen et al. (2004), Brown and Ibrahim (2003), Ibrahim et al. (2004), and Chi

and Ibrahim (2006, 2007). It has been demonstrated through simulation studies that
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use of joint modeling leads to correction of biases and improvement of efficiency when

estimating the association between the event time and the longitudinal process (Hsieh

et al. 2006). A thorough review on joint modeling is given by Tsiatis and Davidian

(2004). Further generalizations to multiple time-dependent covariates was introduced

by Song et al. (2002a), and a full likelihood for joint modeling of a bivariate growth

curve from two longitudinal measures and event time was introduced by Dang et al.

(2007).

Design is a crucial first step in clinical trials. Well-designed studies are essential

for successful research and drug development. Although much effort has been put into

inferential and estimation methods in joint modeling of survival and longitudinal data,

design issues have not been formally considered. Hence developing statistical methods

to address design issues in joint modeling are much needed. One of the fundamental

issues is power and sample size calculations for joint models. In this paper, we will first

provide a sample size formula for study design based on joint modeling (Section 2.3).

In Section 2.4, we provide a detailed methodology to determine the sample size and

power with an unknown variance-covariance matrix, discuss longitudinal data collec-

tion strategies, such as spacing and frequency of repeated measurements, to maximize

the power. In Sections 2.5 and 2.6, we provide a sample size formula to investigate

treatment effects in joint models, and discuss how ignoring the longitudinal process

would lead to biased estimates of the treatment effect and a potential loss of power. In

Section 2.7, we provide a brief comparison between a two-step inferential approach and

the full joint modeling approach, and show that the sample size formulas we develop

are quite robust.

13



2.2 Preliminaries

For subject i, (i = 1, . . . , N), let Ti and Ci denote the event and censoring times,

respectively; Si = min(Ti, Ci) and Δi = I(Ti ≤ Ci). Let Zi be a treatment indicator,

and let Xi(u) be the longitudinal process (also referred to as the trajectory) at time

u ≥ 0. In a more general sense, Zi can be a q-dimensional vector of baseline covariates

including treatment. To simplify the notation, Zi denotes the treatment indicator in

this paper. Values of Xi(u) are measured intermittently at times u ≤ Si, j = 1, . . . , mi,

for subject i. Let Y (tij) denote the observed value of Xi(tij) at time tij, which may be

prone to measurement error.

The joint modeling approach links two sub-models, one for the longitudinal process

Xi(u) and one for the event time Ti, by including the trajectory in the hazard function

of Ti. Thus,

λi(t) = λ0(t) exp{βXi(t) + αZi}. (2.1)

Although other models for Xi(u) have been proposed (Henderson et al. 2000; Wang

and Taylor 2001, Zeng and Cai 2005), we focus on a general polynomial model (Chen

et al. 2002, Ibrahim et al. 2004),

Xi(u) = θ0i + θ1iu + θ2iu
2 + · · · + θpiu

p + γZi, (2.2)

where θi = {θ0i, θ1i, . . . , θpi}T is distributed as a multivariate normal distribution with

mean μθ and variance-covariance matrix Σθ. The parameter γ is a fixed treatment

effect. The observed longitudinal measures are modeled as Yi(tij) = Xi(tij)+eij, where

eij ∼ N(0, σ2
e), the θi

′s are independent and Cov(eij, eij′) = 0, for j 	= j′. The observed

data likelihood for subject i is given by:

∫ ∞

−∞

[
mj∏
j=1

f(Yij|θi, γ, σ2
e)

]
f(θi|μθ,Σθ)f(Si, Δi|θi, β, γ, α)dθi (2.3)
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In expression (2.3), f(Yij|θi, γ, σ2
e) is a univariate normal density function with

mean θ0i + θ1itij + θ2it
2
ij + · · · + θpit

p
ij + γZi and variance σ2

e , and f(θi|μθ,Σθ) is

the multivariate normal density with mean μθ and covariance matrix Σθ. The den-

sity function for the time-to-event, f(Si, Δi|θi, β, γ, α), can be based on any model.

In this paper, we focus on the exponential model, where f(Si, Δi|θi, β, γ, α) =

{λ0 exp[βX(Si) + αZi]}Δi exp
[
− ∫ Si

0
λ0 exp[βX(t) + αZi]dt

]
.

2.3 Sample Size Determination for Studying the

Relationship between Event Time and the Lon-

gitudinal Process

The sample size formula presented in this section is based on the assumption that the

hazard function follows model (2.1) in Section 2.2 and the trajectory follows a general

polynomial model as specified in (2.2) of Section 2.2. No time-by-treatment interaction

is assumed with the longitudinal process. The primary objective is to test the effect of

the longitudinal process (H0: β = 0) by the score statistic, based on a two-step model

(when Σθ is unknown) or the partial likelihood (when Σθ is known).

2.3.1 Known Σθ

We start by assuming a known trajectory, Xi(t), so that the score statistic can be

derived directly based on the partial likelihood. We show in the Section 2.9, Appendix

A that the score statistic converges to a function of Var{Xi(t)}, and thus a function of

Σθ. When Σθ is known, and assuming that the trajectory follows a general polynomial

function of time as in (2.2), we derive a formula for the number of events required

for a one-sided level α̃ test with power β̃ (see detailed derivation in the Section 2.9),

Appendix A. This formula is given by
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D =
(zβ̃ + z1−α̃)2

σ2
sβ

2
, (2.4)

where

σ2
s = Var(θ0k) +

p∑
j=1

Var(θjk)E{I(T ≤ t̄f )T
2j}/τ

+ 2

p∑
j=0

p∑
l>j

Cov(θjk, θlk)E{I(T ≤ t̄f )T
j+l}/τ, (2.5)

p is the degree of polynomial in the trajectory, τ = D
N

is the event rate, and t̄f is

the mean follow-up time for all subjects. E{(I ≤ t̄f )T
q} is a truncated moment of

T q. It can be estimated by assuming a particular distribution of T, the event time,

and a mean follow-up time. Therefore, the power for estimating β depends on: (a)

The expected log-hazard ratio associated with a unit change in the trajectory, or the

size of β. As β increases, the required sample size decreases; (b) Σθ ( Var(θji) and

Cov(θji, θli) ). A larger variance and positive covariances lead to smaller sample sizes,

while larger negative covariances imply less heterogeneity and require larger sample

sizes; and (c) The truncated moments of the event time, T , which depends on both the

median survival and length of follow-up. Larger E{(I ≤ t̄f )T
q} implies larger σ2

s , and

thus requires smaller sample size. Details for estimating E{(I ≤ t̄f )T
q} are provided in

Section 2.3.3. Since τ , the event rate, also affects σ2
s , censored observations do in fact

contribute to the power when estimating the trajectory effect.

Specific assumptions regarding Σθ are required in order to estimate σ2
s , regardless

of whether Σθ is assumed known or unknown (see Sections 2.3.2 and 2.4). It is usually

difficult to find relevant information concerning each variance and covariance for the

θ’s, especially when the dimension of Σθ, or the degree of polynomial in the trajectory

is high. A structured covariance matrix, such as an autoregressive or compound sym-

metry, can be used. One can simplify formula (2.5) with a structured covariance. This
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also facilitates the selection of a covariance structure in the final analysis.

2.3.2 Unknown Σθ

Tsiatis et al. (1995) developed a two-step inferential approach based on a first-order

approximation, E[f(X(t), β|Ȳ (t), S ≥ t)] ≈ f [E(X(t)|Ȳ , S ≥ t, β)]. As noted above,

X(t) is the unobserved true value of the longitudinal data at time t, and Ȳ (t) de-

notes the observed history up to time t. Under this approximation, we can replace

{θ0i, θ1i, . . . , θpi}T in the Cox model with the empirical estimates {θ̂0i, θ̂1i, . . . , θ̂pi}T de-

scribed by Laird and Ware (1982). The Cox partial likelihood (Cox 1975) can then be

used for inferences in obtaining parameter estimates without using the full joint like-

lihood. Despite several drawbacks to this two-stage modeling approach (Wulfsohn &

Tsiatis 1997), it has two major advantages: (a) the likelihood is simpler and standard

statistical software for the Cox model can be used directly for inferences and estima-

tion; (b) it can correct bias caused by missing data or mis-measured time-dependent

covariates. Therefore, when Σθ is unknown, the trajectory is characterized by the em-

pirical Bayes estimates of θ̂i. Σθ in equation (2.5) can then be replaced with an overall

estimate of Σθ̂i
, where Σθ̂i

is the covariance matrix of {θ̂0i, θ̂1i, . . . , θ̂pi}T .

Σθ̂i
is clearly associated with the frequency and spacing of repeated measurements

on the subjects, duration of the follow-up period, and the within subject variability,

σ2
e (Fitzmaurice et al. 2004). Since Σθ is never known in practice, sample size de-

termination using Σθ in equation (2.5) will likely over-estimate the power. Therefore,

we need to understand how the longitudinal data (i.e., the frequency of measurements,

the spacing of measurements etc.) affects Σθ̂i
, and design a data collection strategy to

maximize the power for the study. We defer the discussion of this issue to Section 2.4.
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2.3.3 Truncated Moments of T

To obtain the truncated moments of T q, E{(I ≤ t̄f )T
q}, in equation (2.5), we must

assume a distribution for T . In practice, the exact distribution for T is unknown.

However, the median event time or event rate at a fixed time point for the study

population can usually be obtained from the literature. It is a common practice to

assume that T follows an exponential distribution with exponential parameter η in the

study design stage. Thus, the truncated moment of T q only depends on η and t̄f , and

has the following form:

E{I(T ≤ t̄f )T
q} =

∫ t̄f

0

T qη exp(−ηT )dT =
1

ηq
Γ(q + 1, t̄f ),

where Γ(q+1, t̄f ) is a lower incomplete gamma function with q = {1, 2, 3, . . . . . . }. η can

be estimated based on the median event time or event rate at a fixed time point. E.g.,

if the median event time, TM , is known for the study population, η = − log(0.5)/TM .

When the trajectory is a linear function of time,

σ2
s = var(θ̂0i) +

1

τ
E[I(T ≤ t̄f )T

2]var(θ̂1i)

+
2

τ
E[I(T ≤ t̄f )T ]cov(θ̂0i, θ̂1i) .

Both E{I(T ≤ t̄f )T
2} and E{I(T ≤ t̄f )T} have closed-form expressions, given by:

E{I(T ≤ t̄f )T
2} =

∫ t̄f

0

T 2η exp(−ηT )dT

=
2

η2
− exp(−ηt̄f )(t̄

2
f +

2t̄f
η

+
2

η2
),
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and

E{I(T ≤ t̄f )T} =

∫ t̄f

0

Tη exp(−ηT )dT

=
1

η
− exp(−ηt̄f )(t̄f +

1

η
).

There are certain limitations of this distributional assumption for T . It does not take

into account covariates that are usually considered in the exponential or Cox model for

S. A more complex distributional assumption can be used to estimate E{(I ≤ t̄f )T
q}

if more information is available. However, simple distributional assumptions for T ,

without the inclusion of covariates or using an average effect of all covariates, is easy

to implement and it is usually adequate for sample size or power determination.

E{(I ≤ t̄f )T
q} also depends on t̄f , the mean follow-up time for all subjects. It

is truncated because we typically cannot observe all events in a study. Therefore,

it is heavily driven by the censoring mechanism, and can be approximated by the

mean follow-up time in censored subjects. One way to estimate t̄f is take the average

of the minimum and maximum follow-up times if censoring is uniform between the

minimum and maximum follow-up times. It can also be estimated based on more

complex methods. If data from a similar study is available, t̄f can be estimated with

the product-limit method by switching the censoring indicator so that censored cases

would be considered as events and events would be considered as censored.

2.3.4 Simulation Results

We first verified in simulation studies that when Σθ is known, formula (2.4) provides

an accurate estimate of the power for estimating β. Table 2.1 shows a comparison

of the calculated power based on equations (2.4) and (2.5), and empirical power in a

linear trajectory with known Σθ. In this simulation study, the event time was simulated

from an exponential model with λi(t) = λ0(t) exp{βXi(t) + αZi}, where Xi(t) = θ0i +
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TABLE 2.1: Validation of formula (2.4) for testing the trajectory effect β when Σθ

is known
Power for Estimating β a

β V ar(θ0i) V ar(θ1i) Cov(θ0i, θ1i) Empirical Calculated
0.15 0.5 0.9 0 41.6 39.8
0.15 0.8 1 0 52.9 52.4
0.15 0.8 1 0.5 66.1 67.0
0.2 1.2 0.7 0 87.1 86.0
0.2 0.7 1.2 0 75.9 76.4
0.2 0.7 1.2 0.2 82.7 82.7
0.2 0.7 1.2 -0.2 69.8 68.4

aCovariance matrix of (θ0i, θ1i) is assumed known. Empirical power is based on 1000 simulations,
each with 100 subjects per arm. Minimum follow-up time is 0.75 years (9 months), and maximum
follow-up time is 2 years. Event time is simulated from an exponential distribution with λ0 = 0.85,
α = 0.3, and γ = 0.1. The θ’s are simulated from a normal distribution with E(θ0i) = 0, E(θ1i) = 3.,
and Σθ as specified in columns 2-4.

θ1it + γZi. To ensure a minimum follow-up time of 0.75 years (9 months), censoring

was generated from a uniform [0.75, 2] distribution. (θ0i θ1i) was assumed to follow a

bivariate normal distribution. We simulated 1000 trials and each trial has 200 subjects.

Empirical power was the % of trials with a p-value from the score test ≤ 0.05 for testing

H0: β = 0. The quantities D, η, and t̄f were obtained based on the simulated data,

η was obtained from the median survival of the simulated data, and t̄f was the mean

follow-up time of the simulated data using the product limit method. Thus Table

2.1 shows that if the input parameters are correct, formula (2.4) returns an accurate

estimate of power in various Σθ.
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2.4 Estimating Σθ̂i
and Maximization of Power

Following the notation in Section 2.2, Let Ri =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 ti1 . . . ti1
p

1 ti2 . . . ti2
p

...
...

. . .
...

1 timi
. . . timi

p

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

be a mi×(1+p)

matrix, and Zi = 1mi
Zi, V ar(Yi) = Vi = Imi

σ2
e + RiΣθRi

T and Wi = Vi
−1, then θ̂i

and Σθ̂i
can be expressed as (Laird & Ware 1982)

θ̂i − μθ = ΣθRi
TWi(Yi − γ̂Zi),

and

Var(θ̂i) = Σθ̂i
=

ΣθRi
T

⎧⎨
⎩Wi − WiZi

(
N∑
i

Zi
TWiZi

)−1

Zi
TWi

⎫⎬
⎭RiΣθ. (2.6)

Based on equation (2.6), Σθ̂i
is associated with the following: (a) The degree of the

polynomial in (2.2); (b) Σθ, that is, the between subject variability; (c) σ2
e , the within

subject variability; (d) tij, time of the repeated measurements of the longitudinal data.

Larger tij implies a longer follow-up period, or more data collection points towards the

end of the trial, and (e) mi, the frequency of the repeated measurements. (a)-(c) above

are likely determined by the intrinsic nature of the longitudinal data, and have little

to do with the data collection strategy during the trial design. Based on (2.6), Σθ̂i
is

associated with the inverse of σ2
e , meaning larger σ2

e will lead to smaller Σθ̂i
, and thus a

decrease in power for estimating β. This is confirmed in the simulation studies (Table

2.2).

Although σ2
e , the within subject variability, can be reduced by using a more reliable
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measurement instrument, this is not always possible. We therefore focus on investi-

gating the impact of (d) and (e). Note that the hazard function can be written as

λi(t) = λ0(t) exp {β(θ0i + θ1it + · · · + θpit
p) + β∗Zi}, where β∗ = βγ + α. In the design

stage, instead of considering a trajectory with γ 	= 0 and a direct treatment effect of α,

we can consider a trajectory with γ = 0 and a direct treatment effect of α + βγ. This

will simplify the calculations for Σθ̂i
. Since formula (2.6) represents Σθ̂i

when Zi = 0,

it should provide a good approximation when Σθ̂i
is similar between the two treatment

groups. To see the relationship between mi, tij and Σθ̂i
, let’s consider the alternative

trajectory with γ = 0. Equation (2.6) then simplifies to

Σθ̂i
= ΣθRi

TWiRiΣθ, (2.7)

and

Σθ̂i
= ΣθQΣθ =

Σθ

⎛
⎜⎝
∑mi

j=1

∑mi

k=1 Wijk

∑mi

j=1

∑mi

k=1 tikWijk∑mi

j=1

∑mi

k=1 tijWijk

∑mi

j=1

∑mi

k=1 tijtijWijk

⎞
⎟⎠Σθ. (2.8)

When the trajectory is linear. Wijk is the element in the jth row and kth column

of Wi. Now we decompose Vi as PiDgi
Pi

T , where Pi is an mi × mi matrix with

orthonormal columns, and Dgi
is a diagonal matrix with non-negative eigenvalues. Let

Pijk denote the element of the jth row and kth column of Pi, and Dgij
denotes the

element in the jth row and jth column of Dgi
. Then the diagonal elements of Q in

(2.8) can be expressed as

mi∑
j=1

mi∑
k=1

Wijk =

mi∑
j=1

D−1
gij

(
mi∑
k=1

Pijk

)2

, (2.9)

22



and
mi∑
j=1

mi∑
k=1

tijtijWijk =

mi∑
j=1

D−1
gij

(
mi∑
k=1

tikPijk

)2

. (2.10)

We can see that both equations (2.9) and (2.10) are sums of mi non-negative ele-

ments, and thus are non-decreasing functions of mi. Equation (2.10) is also positively

associated with tij, implying a larger variance with longer follow-up period or with

longitudinal data collected at a later stage of the trial. However, we should keep in

mind that some subjects may have failed or are censored due to early termination. If

we schedule most data collection time point towards the end of the study, mi could be

reduced significantly in many subjects. An ideal data collection strategy should take

into account drop-out and failure rates and balance tij and mi for a fixed maximum

follow-up period.

The maximum follow-up period is usually prefixed due to timeline or budget con-

straints. We can observe more events with a longer follow-up and the increase in power

is likely to be more significant due to an increased number of events. With a prefixed

follow-up period, the most important decision is perhaps to describe an optimal num-

ber of data collection points. Here, we speculate that the power would reach a plateau

as mi increases. The number of data collection points required to reach the plateau

is likely to be related to the degree of the polynomial in the trajectory function. A

lower order polynomial may require smaller mi. We investigated the power assuming

an unknown Σθ for different mi in simulation studies. Results are summarized in Table

2.2 for a linear trajectory, and in Table 2.3 for a quadratic trajectory. We note that

longitudinal data, Yij, is missing after the event occurs or after the subject is censored.

Therefore mi varies among subjects. Let mx denote the scheduled, or maximum num-

ber of data collection points if the subject has not had an event and is not censored at

the end of the follow-up period. In the simulation studies described in Tables 2.2 and

2.3, mx was assumed to be the same for all subjects, and tij was equally spaced. In the
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linear trajectory simulation studies, we further assumed that the longitudinal data was

also collected when the subject exits the study due to an event or censoring, so that

each subject would have at least 2 measurements (baseline and end of study). In the

quadratic trajectory simulation studies, the longitudinal data was also collected when

the subject exited the study before their first post-baseline scheduled measurement.

Therefore, Ri in equation (2.7) was not the same for all subjects. Some had different

numbers of measurements; and some had measurements at different tij’s. This results

in a different Σθ̂i
for each subject. A weighted average of Σθ̂i

’s can be used for the

sample size calculation. For a fixed mx, the weighted average can be calculated as

mx∑
m=1

ξmΣθR�m
T (Imσ2

e + R�mΣθR
T
�m)−1R�mΣθ, (2.11)

where ξm is the % of non-censored subjects who have m measurements of the lon-

gitudinal data, Im is the m × m identity matrix, and R�m is the R matrix with m

measurements, R�m =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 t�1 . . . t�1p

1 t�2 . . . t�2p

...
...

. . .
...

1 t�m . . . t�mp

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. t�k in the R�m matrix should represent

the mean measurement time of the kth measurement in the subjects who had m mea-

surements if not all measurments are taken at a fixed timepoint.

In the 2nd to the last column of Tables 2.2 and 2.3, we present the calculated power

based on the maximum Σθ̂i
instead of a weighted average of Σθ̂i

’s. The maximum

Σθ̂i
= ΣθR

T
�mx

(Imxσ
2
e + R�mxΣθR

T
�mx

)−1R�mxΣθ. The simulation set up in Tables 2.2

and 2.3 is the same as in Section 2.3.4. The longitudinal data Yij was simulated via a

normal distribution with mean θ0i + θ1itij + γZi (linear), or θ0i + θ1itij + θ2it
2
ij + γZi

(quadratic), and variance σ2
e . Yij was set to be missing after an event or censoring

occurred.

When the measurement error is relatively small and non-systematic, the two-step
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TABLE 2.2: Power for estimating β by maximum number of data collection points
(mx) and size of σ2

e - linear trajectory
Power for Estimating β a

Calculated with Calculated with

σ2
e mx β̂ Empirical Maximum Σθ̂i

Weighted Average Σθ̂i
b

True trajectory 0.2098 87.1 86.0 a

0.09 6 0.2080 86.6 85.4 82.7
0.09 5 0.2075 85.8 85.3 82.6
0.09 4 0.2071 86.3 85.1 82.7
0.09 3 0.2076 86.4 84.9 82.9
0.09 2 0.2065 85.3 84.6 83.3
0.64 6 0.1960 76.3 82.2 75.9
0.64 5 0.1978 76.9 81.6 75.5
0.64 4 0.1939 74.8 80.8 74.9
0.64 3 0.1972 75.0 79.6 74.4
0.64 2 0.1967 74.0 77.4 74.4
1 6 0.1919 71.9 80.5 72.2
1 5 0.1918 71.8 79.7 71.5
1 4 0.1917 69.7 78.5 70.7
1 3 0.1940 70.1 76.8 69.9

a Calculated with Σθi

aβ was estimated using the two-step inferential approach (Tsiatis et al. 1995). Empirical power
was based on 1000 simulations, each with 100 subjects per arm. Minimum follow-up time is 0.75
years (9 months), and maximum follow-up time is 2 years. The event time is simulated from an
exponential distribution with λ0 = 0.85, α = 0.3, γ = 0.1, β = 0.2, E(θ0i) = 0, E(θ1i) = 3.,
V ar(θ0i) = 1.2, Var(θ1i) = 0.7, and Cov(θ0i, θ1i) = 0 (the same simulated data used in Row 4 of
Table 2.1).

bPower based on weighted average of Σθ̂i
.

inferential approach yields nearly unbiased estimates of the longitudinal effect. The

number of data collection points did not seem to be critical when the trajectory is

linear as long as each subject had at least two measurements of the longitudinal data.

There is a slight decrease in power when mx < 5 and σ2
e is large. When the trajectory

is quadratic, mx plays a more important role. The power for estimating β decreases as

mx decreases. Smaller numbers of measurements (mx < 4) can also lead to a biased

estimate of the longitudinal effect and result in a significant loss of power. The effect

of mx on estimates and power is more significant when σ2
e is large. Note that when
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TABLE 2.3: Power for estimating β by maximum number of data collection points
(mx) and size of σ2

e - quadratic trajectory
Power for Estimating β a

Calculated with Calculated with

σ2
e mx β̂ Empirical Maximum Σθ̂i

Weighted Average Σθ̂i
b

True trajectory 0.2212 91.6 90.6 a

0.09 10 0.2117 90.0 90.2 88.0
0.09 7 0.2102 89.5 90.0 88.0
0.09 5 0.2098 89.0 89.9 88.2
0.09 4 0.2014 89.3 89.8 88.4
0.09 3 0.1720 89.1 89.6 88.4
0.25 10 0.2135 89.7 89.5 86.1
0.25 7 0.2104 88.2 89.2 85.8
0.25 5 0.2089 86.7 88.8 85.8
0.25 4 0.2038 86.9 88.5 85.9
0.25 3 0.1621 86.6 88.0 85.8
0.81 10 0.2041 84.7 87.6 81.0
0.81 7 0.1984 81.5 86.6 79.7
0.81 5 0.2021 80.3 85.4 79.0
0.81 4 0.1818 79.1 84.7 78.8
0.81 3 0.1402 74.9 83.3 78.3

a Calculated with Σθi

aβ was estimated with the two-step inferential approach (Tsiatis et al. 1995). Empirical power
was based on 1000 simulations, each with 100 subjects per arm. Minimum follow-up time is 0.75
years (9 months), and maximum follow-up time is 2 years. The event time is simulated from an
exponential distribution with λ0 = 0.85, α = 0.3, γ = 0.1, β = 0.22, θi = (0, 2.5, 3)T , and
Σθ = diag (1.2, 0.7, 0.8).

bPower based on weighted average of Σθ̂i
.

σ2
e = 0, Σθ̂i

reduces to Σθ, and is unrelated to mx. The effect of mx comes from the

magnitude of reducing the contribution of the within subject variability, σ2
e . If we have

a very accurate and reliable measurement instrument, we can reduce the number of

repeated measurements and can still obtain unbiased estimates and maximum power.

The power calculation under the assumption of known Σθ or perfect data collection

(maximum Σθ̂i
) can result in a significant over-estimate of the power especially when

σ2
e is large. We next demonstrate that if we use the weighted average of Σθ̂i

’s, we can

obtain a good estimate of power based on formula (2.4).
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Example 1 from Table 2.2: For the scenario with σ2
e = 0.64 and mx = 2, we observed

that the mean measurement time for the subjects who had an event in the simulated

data is about 0.5 years. We used R�2 =

⎛
⎜⎝ 1 0

1 0.5

⎞
⎟⎠ to calculate Σθ̂ instead of setting

R�2 =

⎛
⎜⎝ 1 0

1 2

⎞
⎟⎠, which assumes that the 2nd measurement was taken at 2 years. As a

result, the power based on formula (2.4) changed from 77.4% to 74.4%, which is much

closer to the empirical power of 74.0%. We used the mean measurement time in the

non-censored subjects, because the power calculation is mainly based on the number

of events. In practice, we need to make certain assumptions about t�k based on the

median survival and length of the follow-up period.

Example 2 from Table 2.3: For demonstration, we chose the scenario with σ2
e =

0.81 and mx = 4. In this example, the 2nd measurement was taken at 0.45 years

(on average) in subjects who had only 2 measurements. For subjects who had more

than 2 measurements, longitudinal data was collected at scheduled time points of 0,

0.5, 1, and 1.5. Therefore, R�2 =

⎛
⎜⎝ 1 0 0

1 0.45 0.20

⎞
⎟⎠, R�3 =

⎛
⎜⎜⎜⎜⎝

1 0 0

1 0.5 0.25

1 1 1

⎞
⎟⎟⎟⎟⎠, and

R�4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0

1 0.5 0.25

1 1 1

1 1.5 2.25

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. A weighted average of the Σθ̂i
’s was calculated based on

formula (2.11). The resulting power is 78.8% instead of 84.7%, which is close to the

empirical power of 79.1%.

For trajectories that are quadratic or higher, it is important to schedule data collec-

tion to ensure mi is large enough for a reasonable proportion of subjects. For example,
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when the trajectory is quadratic and only a small proportion of subjects had 3 mea-

surements of the longitudinal data (mx = 3 in Table 2.3), we obtain a very biased

estimate of β.

2.5 Sample Size Determination for the Treatment

Effect

Using the same model as specified in Section 2.3, the overall treatment effect is βγ +α.

Thus the null hypothesis is H0: βγ + α = 0. Following the framework of Schoenfeld

(1983), we show that Schoenfeld’s formula can be extended to a joint modeling study

design by taking into account the additional parameters β and γ. The number of events

required for a one-sided level α̃ test with power β̃, assuming the hazard and trajectory

follow (2.1) and (2.2) in Section 2.2, is given by

D =
(zβ̃ + z1−α̃)2

p1(1 − p1)(βγ + α)2
, (2.12)

where p1 is the % of patients assigned to treatment 1 (Zi = 1). Properties of the

random effects in the trajectory do not play a significant role in the sample size and

power determination for the overall treatment effect at the design stage. However,

correct assumptions must be made with regard to the overall treatment effect (βγ +α).

If the longitudinal effect is a biomarker, α and βγ should have the same sign (aggregated

treatment effect). We acknowledge that under the proposed longitudinal and survival

model, the ratio of the hazard functions of the two treatment groups will be non-

proportional, as the trajectory is time-dependent. However, the method of using the

partial likelihood can readily be generalized to allow for non-proportional hazards. It

is unlikely that the proportional hazard assumption is ever exactly satisfied in practice.

When the assumption is violated, the coefficient estimated from the model will be the
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“average effect” over the range of time observed in the data (Allison 1995). Thus the

sample size formula developed using the partial likelihood method should provide a

good approximation of the power for estimating the overall treatment effect in a joint

modeling setting.

The simulation studies presented in Table 2.4 show that formula (2.12) works ap-

proximately well in the two-step inferential approach when the primary objective is to

investigate the overall treatment effect. The power is not sensitive to Σθ, and works

well with different sizes of β and γ. We show in Sections 2.6 and 2.7 that the two-

step inferential approach and the full joint likelihood approach yield similar unbiased

estimates of the overall treatment effect and have similar efficiency.

2.6 Biased Estimates of the Treatment Effect When

Ignoring the Longitudinal Trajectory

When a treatment has an effect on the longitudinal process (i.e., γ 	= 0 in equation

(2.2)) and the longitudinal process is associated with survival (i.e., β 	= 0 in equation

(2.1)), the overall treatment effect on the time-to-event is (βγ +α). Thus, it is obvious

that ignoring the longitudinal process in the proportional hazards model would result

in a biased estimate of the treatment effect on survival. When the longitudinal process

is not associated with the treatment (i.e, γ = 0 in equation (2.2)), it is not obvious that

ignoring the longitudinal trajectory in the proportional hazards model would result in

an attenuated estimate of the hazard ratio for the treatment effect on survival (i.e.,

bias towards the null). This attenuation is known in the econometrics literature as the

attenuation due to unobserved heterogeneity (Horowitz 1999, Abbring et al. 2007), and

has been discussed in the work by Gail et al. (1984.

We demonstrated in simulation studies (Table 2.5) that the bias associated with

ignoring the longitudinal effect is related to the size of β in the joint modeling setting.
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TABLE 2.4: Validation of formula (2.12) for testing the overall treatment effect α+βγ
Power for Estimating

Overall Treatment Effect βγ + α

β γ V ar(θ0i) V ar(θ1i) Cov(θ0i, θ1i) Empirical a Calculated b

0.3 -0.1 1.2 0.7 0.2 69.2 67.2
0.3 -0.4 1.2 0.7 0.2 85.8 85.9
0.3 -0.8 1.2 0.7 0.2 96.7 97.1
0.3 -1.2 1.2 0.7 0.2 99.4 99.6
0.1 -0.4 1.2 0.7 0.2 65.8 62.7
0.4 -0.4 1.2 0.7 0.2 92.3 92.6
0.8 -0.4 1.2 0.7 0.2 98.7 99.8
0.3 -0.4 1.2 1 0.2 86.2 85.9
0.3 -0.4 1.2 1.5 0.2 86.4 85.9
0.3 -0.4 1.2 2 0.2 86.5 85.9
0.3 -0.4 1.2 4 0.2 85.5 85.9
0.4 -0.4 1.2 0.7 -0.8 92.7 92.6
0.4 -0.4 1.2 0.7 -0.4 92.2 92.6
0.4 -0.4 1.2 0.7 0.4 91.4 92.6
0.4 -0.4 1.2 0.7 0.8 92.0 92.6

aEmpirical power was based on the two-step inferential approach in 1000 simulations, each with
150 subjects per arm. Minimum follow-up time is 0.75 years (9 months), and maximum follow-up
time is 2 years. The event time is simulated from an exponential distribution with λ0 = 0.85,
α = −0.3, E(θ0i) = 0, and E(θ1i) = 3. The longitudinal data is measured at years 0, 0.5, 1, 1.5 and
at exit with a linear trajectory and σ2

e = 0.16.

bCalculated based on mean number of deaths from simulations and fixed value of p1 = 0.5, β, γ,
and α.

2.7 The Full Joint Modeling Approach Versus the

Two-Step Inferential Approach

When the true trajectory is unknown, we examined two joint modeling approaches.

The first one was a two-step inferential approach proposed by Tsiatis et. al. (1995),

which has been described in detail in previous sections. The second approach was based

on the full joint likelihood as specified in (2.3). Wulfsohn and Tsiatis (1997) developed

an EM algorithm of the model in (2.3) to obtain the parameter estimates. Guo and

Carlin (2004) develop a fully Bayesian version and implemented it via Markov chain
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TABLE 2.5: Effect of β on the estimation of direct treatment effect on survival (α)
based on different models

λi(t) = λ0(t) exp(αZi) λi(t) = λ0(t) exp{β(θ0i + θ1i)t + αZi}
exp(α̂)a based on exp(α̂) based on exp(α̂) based on exp(α̂) based on full

Cox partial known two-step approach joint likelihood
β likelihood trajectory (partial likelihood) b as specified in (2.3)
0 0.668 (0.062) 0.667 (0.062) 0.667 (0.062) 0.667 (0.062)

0.4 0.697 (0.057) 0.668 (0.053) 0.667 (0.053) 0.667 (0.053)
0.8 0.755 (0.063) 0.670 (0.050) 0.673 (0.050) 0.668 (0.051)
1.2 0.800 (0.068) 0.670 (0.049) 0.684 (0.051) 0.668 (0.051)

aexp(α̂) is the average value based on 1000 simulations, each with 200 subjects per arm. Minimum
follow-up time is set to be 0.75 years (9 months), and maximum follow-up time is set to be 2 years.
The baseline hazard is assumed constant with λ0 = 0.85, and the true direct treatment effect on
survival α = −0.4 (i.e., HR = 0.670).

bLongitudinal data is measured at years 0, 0.5, 1, 1.5 and at exit with a linear trajectory and
σ2

e = 0.16

Monte Carlo (MCMC) methods using the WinBUGS software. We used a standard SAS

procedure, NLMIXED, which fits nonlinear mixed models by maximizing an approxi-

mation to the likelihood integrated over the random effects using a dual quasi-Newton

algorithm (SAS Online Documentation for Version 9.1.3). Standard deviations for the

estimates are based on the 2nd derivatives of the log-likelihood function. Data was sim-

ulated based on a fully parametric exponential model with constant baseline hazard.

The two-step inferential approach is based on Cox’s partial likelihood. It is expected

that the full joint modeling approach using exactly the same exponential model will

have more efficiency over the partial likelihood model. However, in practice, we rarely

use a fully parametric model with constant hazard to analyze the time-to-event data.

To have a fair comparison of efficiency, we simulated survival data based on a piecewise

exponential model with two time intervals in which the baseline hazard changed from

λ01 to λ02 at time tq. We used the same parameters in both periods, and therefore, β is

the same. Five repeated measurements of the longitudinal data were simulated based

on the θ’s. The measurements were set to be missing after an event or censoring.

We show in Table 2.6 that the full joint modeling approach based on a paramet-

ric exponential model is more efficient than the two-step inferential approach based
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TABLE 2.6: Comparison of the two-step inferential approach with the full joint
modeling approach in testing β and the overall treatment effect

λ01 λ02 Two-Step Approach Full Joint Modeling
[0, 0.75] (0.75, ∞) Parameter Estimates (StdErr) Power Estimates (StdErr) Power

0.85 0.85 β̂ 0.203 (0.074) 79.9 0.206 (0.054) 96.4

α̂ + β̂γ̂ 0.319 (0.162) 50.0 0.321 (0.163) 49.6

0.85 0.65 β̂ 0.204 (0.075) 78.4 0.164 (0.053) 85.5

α̂ + β̂γ̂ 0.322 (0.164) 50.8 0.328 (0.164) 51.5

0.85 0.45 β̂ 0.208 (0.077) 76.2 0.108 (0.053) 52.0

α̂ + β̂γ̂ 0.326 (0.167) 49.7 0.339 (0.167) 51.6

0.65 0.85 β̂ 0.208 (0.073) 80.10 0.248 (0.054) 99.4

α̂ + β̂γ̂ 0.323 (0.168) 49.1 0.318 (0.170) 45.7

Note: Estimates were based on 1000 simulations, each with 100 subjects per arm. Survival
time was simulated with a piecewise exponential model, minimum follow-up time is 0.75 years (9
months), and maximum follow-up time is 2 years. α = 0.3, γ = 0.1, β = 0.2, E(θ0i) = 0, E(θ1i) = 3,
Var(θ0i) = 0.7, Var(θ1i) = 1.2, Cov(θ0i, θ1i) = 0.2, and σ2

e = 0.16 A maximum of 5 repeated
measurements were simulated with missing data after an event or censoring. Both analyses assumed
an unknown Σθ.

on Cox’s partial likelihood. However, the full joint exponential model is sensitive to

whether the baseline hazard is constant over time. When this is true, it yields an unbi-

ased estimate of β; but yields biased estimates of β when the constant baseline hazard

assumption is violated. In this case, it overestimates the trajectory effect when the

baseline hazard increases after time tq. Furthermore, it underestimates the trajectory

effect when the baseline hazard decreases after time tq. The larger the difference be-

tween the two baseline hazards, the larger the bias. The two-step inferential approach

may be more robust, although less efficient. The impact is smaller when testing the

overall treatment effect. Both approaches have similar efficiency, but the misspecified

exponential joint model yields a slightly biased estimate of the treatment effect. This

finding is not surprising, as it corresponds to known theory between parametric and

semi-parametric modeling. A retrospective power analysis from a real study data is

provided in Section 2.10, Appendix B.
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Wulfsohn and Tsiatis (1997) found that the asymptotic standard error of β̂ when us-

ing the joint estimation procedure is slightly larger than that from the two-step model.

It was suggested that it might be because the random effects were assumed to be influ-

enced by the uncertainty in the estimated trajectory parameters, and more variability

is incorporated. Therefore, although the full joint estimation approach should be more

efficient as compared to the two-step model, since it uses information more efficiently.

It may not turn out to be the case in real data settings if the real data violate the

modeling assumptions. Wulfsohn and Tsiatis (1997) cited earlier work concerning bi-

ased estimates of the trajectory effect when using the two-step model (slightly towards

the null) and suggested that the estimate from the joint model is further away from

the null, and therefore more likely to reduce the bias. We found in the simulation

studies that the trajectory effect can be over-estimated or under-estimated in the fully

parametric joint model if the model assumptions, such as a constant baseline hazard in

the case of the exponential model, is violated. The two step model in this case may be

more robust. Further studies are needed to compare the two joint modeling approaches

and other parametric or semi-parametric models. These topics are beyond the primary

focus of this paper.

2.8 Discussion

In this paper, we have provided a closed form sample size formula for estimating the

effect of the longitudinal data on time-to-event and discussed optimal data collection

strategies. The number of events required to study the association between event time

and the longitudinal process for a given follow-up period is related to the covariance

matrix of the random effects (coefficients for the p-polynomial), within subject vari-

ability, frequency of repeated measurements, and timing of the repeated measurements.

Only a few parameters are required in the sample size formula. The median event time
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and mean follow-up time are needed to calculate the truncated moments. The mean

follow-up time can be approximated by the average of the minimum and maximum

follow-up times under the assumption of uniform censoring. A structured covariance

matrix can be used when we do not have prior data to determine each element of Σθ.

More robust estimates can be achieved by assuming an unknown Σθ. An unknown Σθ

requires further assumptions about the number and timing of repeated measurements,

and the percentage of subjects who are still on-study at each scheduled measurement

time. This is exactly what the researchers should consider during the design stage. It

is helpful to consider a few different scenarios and compare them with the calculated

power. When the measurement error is small, estimates with known Σθ also provide a

good approximation of power.

We have also extended Schoenfeld’s (1983) sample size estimation formula to the

joint modeling setting for estimating an overall treatment effect. When the longitudinal

data is associated with treatment, the overall treatment effect is an aggregated effect

on time-to-event directly and on the longitudinal process. When the longitudinal data

is not associated with treatment, ignoring the longitudinal data will still lead to atten-

uated estimates of the treatment effect due to unobserved heterogeneity. The degree

of attenuation depends on the degree of the association between the longitudinal data

and time-to-event data. Use of a joint modeling analysis strategy leads to reduction

of bias and increase in power in estimating the treatment effect. However, joint mod-

eling is not yet commonly used in designing clinical trials. Most applications of joint

modeling in the literature focus on estimating the effect of the longitudinal outcome

on time-to-event.

Finally, we mention here that missing longitudinal data in practice is typically

nonignorably missing in the sense that the probability of missingness depends on the

longitudinal variable that would have been observed. In order to examine the robust-

ness of our sample size formulas to nonignorable missingness, we conducted several
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simulation studies in which the empirical power was computed under a noningnorable

missing data mechanism using a selection model. Under several scenarios, our cal-

culated powers based on the proposed sample size formulas were quite close to the

empirical powers, therefore illustrating that our sample size formulas are quite robust

to nonignorable missing data. Developing exact sample size formulas in the presence

of nonignorable missing data is a very challenging problem that requires much further

research.

One of the limitations of this method is that we did not consider the treatment-

by-time interaction in the model, which precludes the random slopes model. Although

simulations and distributional assumptions of the random effects in this paper were

based on a Gaussian distribution, such distributional assumptions are not required for

the formula. It may be applied to more general joint modeling design settings. To the

best of our knowledge, this is the first paper that addresses trial design aspects using

joint modeling.

2.9 Appendix A: Derivation of Sample Size For-

mula for Testing the Trajectory Effect

The sample size formula was derived from the score test following Schoenfeld’s (1983)

framework. Let D denote the number of subjects who had the event in the trial, and

let N denote the number of subjects in the trial. let Ti and Ci denote the event and

censoring times, respectively; Si = min(Ti, Ci) and Δi = I(Ti ≤ Ci). Let Zi be a

treatment indicator, and let Xi(u) be the longitudinal process (also referred to as the
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trajectory in the paper) at time u ≥ 0. Define

ei{(Xk(Si))
q} =∑N

k=1 I(Sk ≥ Si)exp{βXk(Si) + α̂Zk}(Xk(Si))
q∑N

k=1 I(Sk ≥ Si)exp{βXk(Si) + α̂Zk}

and

Gi{(Xk(Si))
q} =

∑N
k=1 I(Sk ≥ Si)exp{α̂Zk}(Xk(Si))

q∑N
k=1 I(Sk ≥ Si)exp{α̂Zk}

,

where Xk(u) = θ0k + θ1ku + θ2ku
2 + · · ·+ θpku

p + γZk, and q = 1, 2, . . . . For the hazard

function h(S) = λ0(S)exp{βX(S) + αZ}, the partial likelihood is given by

Li =

{
exp{βXi(Si) + αZi}∑N

k=1 I(Sk ≤ Si)exp{βXk(Si) + αZk}

}Δi

.

The score statistic for Cox’s partial likelihood can be expressed as

Sscore =
N− 1

2

∑
i∈D Xi(Si) − Gi{Xk(Si)}{

N−1
∑

i∈D Gi{(Xk(Si))2} − (Gi{Xk(Si)})2
} 1

2

.

Now, rewrite the score statistic as

Sscore =
N− 1

2

∑
i∈D(Xi(Si) − ei{Xk(Si)}){

N−1
∑

i∈D Gi{(Xk(Si))2} − (Gi{Xk(Si)})2
} 1

2

+
N− 1

2

∑
i∈D(ei{Xk(Si)} − Gi{Xk(Si)}){

N−1
∑

i∈D Gi{(Xk(Si))2} − (Gi{Xk(Si)})2
} 1

2

.

∑
i∈D(Xi(Si) − ei{Xk(Si)}) is the score function of the partial likelihood, and thus,

the numerator of the first term is asymptotically normal with mean 0 and variance

N−1
∑

i∈D ei{(Xk(Si))
2}−(ei{Xk(Si)})2. As in Schoenfeld (1983) and Ewell & Ibrahim

(1997), consider alternatives, which are location shifts of known distribution functions,
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such that β is O(n− 1
2 ). As ei{(Xk(Si))

q} → Gi{(Xk(Si))
q} when β → 0, the first term

→ N(0, 1) when β → 0.

Expanding the numerator of the 2nd term in a Taylor’s series about β = 0 shows

that

ei{Xk(Si)} − Gi{Xk(Si)} ≈

β
{
Gi{(Xk(Si))

2} − (Gi{Xk(Si)})2
}

.

The 2nd term approaches

β

{
D∑

i=1

{Gi{(Xk(Si))
2} − (Gi{Xk(Si)})2

} 1
2

.

Since Zk is a fixed treatment indicator and assuming that each treatment group is large,

Gi{(Xk(Si))
q} =

1
N

∑N
k=1 I(Sk ≥ Si)exp{α̂Zk}(Xk(Si))

q

1
N

∑N
k=1 I(Sk ≥ Si)exp{α̂Zk}

→ E {I(Sk ≥ Si)(Xk(Si))
q}

E {I(Sk ≥ Si)} . (2.13)

When β → 0, Sk is independent of the θk’s and I(Sk ≥ Si) is independent of Xk(Si)

conditional on Si, thus (2.13) → E {(Xk(Si))
q}. Then

Gi{(Xk(Si))
2} − (Gi{Xk(Si)})2 →

E
{
(Xk(Si))

2
}− {E(Xk(Si))}2 = Var{Xk(Si)}
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as β → 0. It follows that

βD
1
2

{
1

D

∑
i∈D

{Gi{(Xk(Si))
2} − (Gi{Xk(Si)})2

} 1
2

→ βD
1
2

{
1

D

∑
i∈D

Var(Xk(Si))

} 1
2

= βD
1
2

{
1

D

∑
i∈D

(1 Si . . . Sp
i )Σθ (1 Si . . . Sp

i )
T

} 1
2

= βD
1
2

{
1

D

∑
i∈D

Si Σθ ST
i

} 1
2

, (2.14)

where Σθ is the covariance matrix of (θ0k θ1k . . . θpk). Note that

1

D

∑
i∈D

Sq
i =

N

D

1

N

∑
i∈D

T q
i → E {I(T ≤ t̄f )T

q} /τ,

where τ = D
N

is the event rate, and t̄f is the mean follow-up time in all subjects. It

is a truncated moment of T q, as we do not observe all Ti’s. Therefore (2.14) above

converges to

β
{
Dσ2

s

} 1
2 ,

where

σ2
s = Var(θ0k) +

p∑
j=1

Var(θjk)E{I(T ≤ t̄f )T
2j}/τ

+ 2

p∑
j=0

p∑
l>j

Cov(θjk, θlk)E{(I ≤ t̄f )T
j+l}/τ, (2.15)

and p is the degree of polynomial in the trajectory. For example, when p = 1 (linear
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trajectory),

σ2
s = Var(θ0k) + Var(θ1k)E{I(T ≤ t̄f )T

2}/τ

+ 2Cov(θ0k, θ1k)E{I(T ≤ t̄f )T}/τ.

Thus, the score statistic, Sscore, is asymptotically normal with unit variance and

mean equal to β {Dσ2
s}

1
2 as D → ∞. It follows that the number of events required for

a one-sided level α̃ test with power β̃ is given by

D =
(zβ̃ + z1−α̃)2

σ2
sβ

2
,

where σ2
s is defined in (2.15).

2.10 Appendix B: Retrospective Power Analysis for

the ECOG Trial E1193

To illustrate parameter selection and the impact of incorporating Σθ̂i
in the power

calculation, we apply the sample size calculation formula retrospectively based on pa-

rameters obtained from the Eastern Cooperative Oncology Group (ECOG) E1193 trial

(Sledge et al. 2003). E1193 is a phase III cancer clinical trial of doxorubicin, pacli-

taxel, and the combination of doxorubicin and paclitaxel as front-line chemotherapy

for metastatic breast cancer. Patients receiving single-agent doxorubicin or paclitaxel

crossed over to the other agent at time of progression. Quality of life (QOL) was

assessed using the FACT-B scale at two time points during induction therapy. The

FACT-B includes five general subscales (physical, social, relationship with physician,

emotional, and functional), as well as a breast cancer-specific subscale. The maximum

possible score is 148 points. A higher score is indicative of better qualify of life. In this
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TABLE 2.7: Parameter Estimates with Standard Errors for the E1193 Data
Cox Model with

Parameters Treatment Only Two-Step Model Joint Model

Overall Treatment (α̂ + β̂γ̂) 0.251 (0.1302) 0.261 (0.1304) 0.271 (0.1413)
α̂ 0.245 (0.1362)
γ̂ -0.073 (0.1291)

β̂ -0.277 (0.0708) -0.445 (0.1184)

subset analysis, we analyzed overall survival after entry to the crossover phase (sur-

vival after disease progression), and its association with treatment and quality of life.

A total of 252 patients entered the crossover phase and have at least one QOL mea-

surement, 124 patients crossed over from paclitaxel to doxorubicin (median survival is

13.0 months in this subgroup), 128 patients crossed over from doxorubicin to paclitaxel

(median survival is 14.9 months in this subgroup). The data we used is quite mature,

with only 2 subjects who crossed over to doxorubicin and 6 subjects who crossed over to

paclitaxel were censored. We applied the Cox model with treatment effect only, the two

step model incorporating the two QOL measurements, and the proposed joint model as

specified in Section 2 of the paper, to analyze the treatment effect and effect of QOL.

Since there are only two QOL measurements, we fit a linear mixed model. To satisfy

the normality assumption for the longitudinal QOL, we transformed the observed QOL

to QOL
1
2 . Results are report in Table 2.7.

Treatment effects are similar between the two-step model and the joint model. The

difference in the QOL effect, β̂, is similar to that of Wulfsohn and Tsiatis (1997).

They reported a slightly larger β̂ and standard error in the joint model as compared

to the two-step model. In Section 6 of this paper, we used simulation studies to

demonstrate that β̂ is sensitive to whether the constant hazard assumption is sat-

isfied in the joint model we used. We obtained the following parameter estimates

for the retrospective power calculation: The median overall survival is 13.56 months,

Σθ

1
2 =

⎛
⎜⎝ 0.8417 0

0 0.0025

⎞
⎟⎠, σe = 0.7188, the mean measurement time for the first

40



Known Covariance Matrix Unknown Covariance Matrix

Po
w

er

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Number of Events

80 100 120 140 160 180 200 220 240 260 280 300 320

FIGURE 2.1: Retrospective Power Analysis for the E1193 Trial with Known and Un-
known Σθ

QOL is 0.052 months, the mean measurement time for the 2nd QOL is 2.255 months,

and 35% of the subjects had only one QOL measurement. If we assume a known Σθ,

the power with 243 events and β = 0.3 is 98%. When we assume an unknwon Σθ and

use a weighted average of Σθ̂i
, the power reduced to 90%. The relationship between

sample size and power for both known and unknown Σθ cases are illustrated in Figure

2.1.
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CHAPTER 3

Sample Size Determination in

Shared Frailty Models for

Multivariate Time-to-Event Data

3.1 Introduction

The need to study or analyze multiple correlated time-to-event data arises in many

experimental designs and observational studies. For example, we may wish to make

inferences about survival in individuals who share a common genetic makeup, or who

share a common environment. We may also study the time to occurrence of different

non-lethal diseases within the same individual. Subjects may experience the event

of interest more than once (recurrent events) during the course of the study. The

shared frailty model is quite popular for analyzing multivariate time-to-event data

(Oakes 1989, Peterson 1998, Duchateau et al. 2003, Cook and Lawless 2007, Zeng et

al. 2009, Rondeau 2010). A frailty, a concept introduced by Vaupel et al. (1979), is

an unobservable random effect. For multivariate time-to-event data, it represents the

unobserved covariates shared by correlated event times. The most common model for

a frailty is the shared frailty model, where the common random effect (frailty) has a



multiplicative effect on the individual hazard. It is assumed that conditional on the

frailty, the event times are independent and thus have hazards that are similar to the

univariate model.

One major consideration in frailty models is the choice of the frailty distribution.

Clayton (1978) and Oakes (1982) first considered frailty models with a gamma distri-

bution for the frailty. In the gamma frailty model, which is the model considered in this

paper, the frailty can be easily integrated out and thus the observed-data likelihood has

a closed form. Hougaard discussed multivariate failure models, where the frailty fol-

lows a positive stable distribution (Hougaard 1986a) or a power variance family (PVF)

distribution (Hougaard 1986b). Whitmore and Lee (1991) proposed a model with an in-

verse Gaussian frailty and constant hazard. The compound Poisson frailty model was

considered by Aalen (Aalen 1988, 1992). The Lognormal frailty model (McGilchrist

and Aisbett 1991, Korsgaard et al. 1998) has gained popularity recently especially

in Bayesian models. The selection of the family of frailty distributions, based on the

properties of the various models was discussed by Hougaard (1995).

Besides the shared frailty model, other frailty models have been considered to handle

more complex multivariate time-to-event data. Price and Manatunga (2001) considered

the use of cure frailty models to analyze leukaemia recurrence with a cured fraction.

The nested frailty model that accounts for the hierarchical clustering of the data by

including two nested random effects is considered by Rondeau et al. (2006). Most re-

cently, joint frailty models for modeling recurring events and death have been proposed

(Rondeau et al. 2007). There has been very limited research that focus on design issues

for studies involving multivariate time-to-event data. Manatunga and Chen (2000) con-

sidered sample size determination for survival outcomes in cluster-randomized studies

with small cluster sizes, and provided a sample size formula using bivariate marginal

distributions for the survival times. Jiang (1999) considered design aspects of group
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sequential trials with recurrent time-to-event endpoints, allowing frailty of event fre-

quencies in a Poisson process. Jiang’s approach is an extension of Cook and Lawless’

(1996) idea of using robust pseudo-score statistics that do not necessarily have an inde-

pendent increments structure. Jiang’s paper focused on the asymptotic joint distribu-

tion of the sequential test statistics and derived an iterative algorithm for calculating

stopping boundaries and planning sample size. Xia and Hoover (2007) also considered

a group sequential procedure for comparative Poisson trials based on exact conditional

binomial distributions for the number of events. The method of Manatunga and Chen

(2000) cannot be applied to clinical trials with general multivariate time-to-event data.

The Poisson model can only be applied to recurrent event times and focuses on the

number of recurrent events given a fixed follow-up period instead of focusing on time

to each recurrent event. Sample size determination methodology in studies with gen-

eral multivariate time-to-event data is greatly lacking in the literature. In this paper,

we develop a sample size determination method for the shared Gamma frailty model

to investigate the treatment effect on multivariate correlated event times. A closed

form sample size formula is derived. Time-to-recurrent events is discussed as a special

case in the general multivariate time-to-event setting. We first consider sample size

determination for testing a common treatment effect on all correlated event times in

Section 3.2. In Section 3.3, we consider sample size determination for testing the treat-

ment effect on one time-to-event while treating the other event times as nuisance, and

compare the power from a multivariate frailty model to that of a univariate parametric

or semi-parametric survival model.
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3.2 Sample Size Determination for Testing a Com-

mon Treatment Effect

3.2.1 The Shared Frailty Model

Assume that the event time for the ith subject and the jth event type (i = 1, . . . , N, j =

1, . . . , K) is drawn from a Weibull frailty model with shape parameter γ and frailty ωi.

The hazard function of the event time for the ith subject and the jth event type, tij, is

λij(tij) = ωiγtγ−1
ij exp(β0 + βjxij),

where xij denotes the explanatory variable for subject i and the jth event type, and β0

and βj are the intercept and the coefficient of the explanatory variable xij, respectively.

We consider a model with gamma frailty ωi, and thus f(ωi) = θθ

Γ(θ)
ωθ−1

i exp(−θωi), with

mean 1 and variance 1
θ
. Conditional on ωi, the survival times are assumed independent.

Thus the observed-data likelihood is given by

L(θ, β) =
n∏

i=1

∫ ∞

0

K∏
j=1

[
ωiγtγ−1

ij exp(β0 + βjxij)exp(−ωit
γ
ijexp(β0 + βjxij))

]νij

×
[
exp(−ωit

γ
ijexp(β0 + βjxij))

]1−νij θθ

Γ(θ)
ωθ−1

i exp(−θωi)dωi, (3.1)

where νij is the censoring indicator (which equals 0 for censoring, 1 otherwise), and tij

denotes the event time for subject i for the jth event type. After ωi is integrated out

in (3.1), the observed-data likelihood is given by

L(θ, β) =
n∏

i=1

Γ(θ + Di)

Γ(θ)

(
θ

θ + tγi .(β)

)θ(
γ

θ + tγi .(β)

)Di

× exp

( K∑
j=1

νij(β0 + βjxij)

) K∏
j=1

t
(γ−1)νij

ij , (3.2)
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where Di =
∑K

j=1 νij and tγi .(β) =
∑K

j=1 tγijexp(β0 + βjxij).

3.2.2 Sample Size Determination for Testing a Common

Treatment Effect

For ease of exposition, let treatment be the only explanatory variable and therefore

xi = xi1 = xi2 = · · · = xiK in this particular setting. When testing a common treatment

effect, we have β = β1 = · · · = βK . And the null hypothesis, H0, is β = 0. We assume

that the follow-up time for the study is Bf , which determines how many events will be

observed at the end of the study, and therefore is an important design parameter. In

an actual clinical trial, Bf is different for different subjects. For the purpose of sample

size determination, we can use the mean follow-up time. It is shown in Appendix A

that the score statistic, Sscore, of likelihood (3.2) is asymptotically normal with unit

variance and mean equal to β
√

nΨ as n → ∞. It follows that the total number of

subjects required for a one-sided level α̃ test with power β̃ is given by

n =
(zβ̃ + z1−α̃)2

Ψβ2
, (3.3)

where

Ψ =
K∑

m=0

(θ + m)

(
K

m

)
Em,t[Cm(t) − C2

m(t)], (3.4)

Cm(t) =
eβ0(
∑m

j=1 tγj + (K − m)Bγ
f )

θ + eβ0(
∑m

j=1 tγj + (K − m)Bγ
f )

, (3.5)
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and

Em,t[Cm(t) − C2
m(t)]

=

∫ Bf

0

. . .

∫ Bf

0

∫ ∞

Bf

. . .

∫ ∞

Bf

[Cm(t) − C2
m(t)]

f(t1, . . . , tK)dtK . . . dtm+1dtm . . . dt1. (3.6)

The quantities
(

K
m

)
and f(t1, . . . , tK) in equation (3.6) denote the number of unique

combinations of m non-censored times out of K possible event times, and the density

function of (t1, . . . , tK) respectively. Based on the observed-data likelihood in (3.2), we

have

f(t1, . . . , tK) =
Γ(θ + K)

Γ(θ)
θθγK

(
1

θ + eβ0
∑K

j tγj

)θ+K

eKβ0

K∏
j=1

tγ−1
j . (3.7)

Em,t[Cm(t) − C2
m(t)] can be easily evaluated numerically. Many mathematical and

statistical packages have numerical integration procedures for evaluating multidimen-

sional integrals. The package “cubature” in R carries out adaptive multidimensional

integration over hypercubes. It is based on the algorithms described in Genz and Ma-

lik (1980), and Berntsen et al. (1991). R code to calculate Em,t[Cm(t) − C2
m(t)] and

power for K = 3 is provided in Appendix B. eβ0 in (3.2) and (3.7) is the event rate, or

number of events per time unit. In most confirmatory clinical trials, there are only two

treatment arms. If the treatment covariate, xi, is coded as {0, 1}, eβ0 will be the event

rate in the control arm. If we make any assumptions about β0, observations from the

control arm would not contribute to the power determination. To take into account

variation from both arms and for ease of exposition, we used the {−1, 1} coding so

that the event rate is exp(β0−β) for the control arm and exp(β0 +β) for the treatment

arm. The hazard ratio under this coding will be exp(2β). The formula in (3.3) can
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then be rewritten with respect to the hazard ratio as

n =
4(zβ̃ + z1−α̃)2

Ψ(log(HR))2
,

where “HR” refers to the hazard ratio and the calculation of Ψ follows from (3.4), (3.5)

and (3.6).

In addition to the hazard ratio and the mean follow-up time, the power of the test

is determined by the size of Ψ. Larger Ψ leads to higher power and Ψ increases as θ

increases. This implies that smaller variation in the frailty, that is, a smaller correlation

between the event times requires a smaller sample size to achieve the desired power.

Since 0 < Cm(t) < 1, Cm(t) − Cm(t)2 is maximized when Cm(t) = 0.5, the shape

parameter γ contributes little to the power.

3.2.3 Simulation Studies

We carried out simulation studies to verify the sample size determination algorithm

described in Section 3.2.2. We first simulate the frailty, ωi based on a one-parameter

gamma distribution. Conditional on ωi, we simulate independent event times based

on a Weibull survival model. The censoring time is independently simulated from a

uniform distribution on [4, 12]. The mean follow-up time, Bf , is considered to be 8

months for the calculation of Em,t[Cm(t) − C2
m(t)]. If tj is greater than the censoring

time, Bi, the subject will be censored at Bi. We assume that the sample size for each

simulation is 300 and the subjects were randomized to two treatment arms in a 1:1 ratio.

Table 4.1 summarizes the empirical power and the power that is calculated based on

the formula and algorithm described in Section 3.2.2 for different model parameters.

Empirical power refers to the % of simulated datasets, out of 1, 000 simulated datasets,

that has a p-value smaller than 0.05 for estimating β. The simulated studies show

very good agreement in power determination based on our formula as compared to the
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TABLE 3.1: Comparison of Empirical Power and Calculated Power for Testing a
Common Treatment Effect with Different Model Parameters

Power

θ exp(β0) exp(2β) (HR) γ K Empirical Calculated
2 0.05 0.706 2 3 85.0 85.0
1 0.05 0.706 2 3 64.8 64.4

1.5 0.05 0.706 2 3 76.7 77.5
2 0.05 0.810 2 3 42.9 44.1
2 0.02 0.706 2 3 80.1 81.9
2 0.05 0.706 4 3 86.8 85.5
2 0.05 0.706 2 5 92.7 91.9

empirical power. It also shows that the power increases as K, the number of event

types, increases which is likely due to increases of the total number of events. Besides

exp(β0) = 0.05, % censoring also depends on 1
θ
, the variance of the frailty. When θ = 2

and exp(β0) = 0.05, approximately 19% of the observations are censored. When θ = 2

and exp(β0) = 0.02, approximately 40% of the observations are censored.

3.2.4 Recurrent Events

Recurrent event times are a special case of multivariate time-to-event data. The formula

and algorithm discussed in Section 3.2.2 can be applied to testing a common treatment

effect for recurrent events with minor adjustments. There are two differences we should

consider when applying the shared frailty model for recurrent events: i) time to the first

event during the study period is defined from study entry. Subsequent recurrent events

will start from the end of the previous event time. For some of the event types, it may

be difficult to determine when the event ends. Therefore, it is common to consider the

time of the previous event as the baseline for the subsequent recurrent event, ii) event

m can only occur if there is event m − 1.
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The observed-data likelihood based on the recurrent-event model is given by

L(θ, β) =
n∏

i=1

Γ(θ + Di)

Γ(θ)

(
θ

θ + tγi .(β)

)θ(
γ

θ + tγi .(β)

)Di

× exp

( Ki∑
j=1

νij(β0 + βjxij)

) Ki∏
j=1

t
(γ−1)νij

ij ,

where Di =
∑Ki

j=1 νij and tγi .(β) =
∑Ki

j=1 tγijexp(β0 + βjxij). Compared to the observed-

data likelihood function in (3.2) of Section 3.2.1, a subscript is added to K, allowing

the number of events to differ for different subjects. Ψ for the sample size formula (3.3)

in Section 3.2.2 is also modified as

Ψ =

max(Ki)∑
m=0

(θ + m)Em,tm+1 [Cm(t) − C2
m(t)].

The factor
(

K
m

)
is removed because recurrent events can only occur in sequential

order. Em,t[Cm(t)−C2
m(t)] is replaced with Em,tm+1 [Cm(t)−C2

m(t)], which means that

the expectation is taken with respect to {t1, . . . , tm+1, 0 ≤ m ≤ Ki}, as subjects who

have m events can be censored for the (m + 1)st event. Unlike events that can occur

simultaneously, we cannot assume the same follow-up time for all m recurrent events.

If the total follow-up time is assumed to be Bf , and the mean event time is t̄, the

follow-up time for the mth event will be Bf − (m− 1)t̄. For example, the mean follow-

up time for the first event is Bf , the mean follow-up time for the 2nd event is Bf − t̄,

and the mean follow-up time for the 3rd event is Bf − 2t̄, etc. Denoting the follow-up

time for the mth event as Bfm, m = 1, 2, . . . , we have

Cm(t) =
eβ0
(∑m

j=1 tγj + Bγ
fm

)
θ + eβ0

(∑m
j=1 tγj + Bγ

fm

) ,
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and

Em,tm+1 [Cm(t) − C2
m(t)]

=

∫ Bf1

0

. . .

∫ Bfm

0

∫ ∞

Bf(m+1)

[Cm(t) − C2
m(t)]f(t1, . . . , tm+1)dtm+1 . . . dt1.

3.3 Testing the Treatment Effect on One Time-to-

Event While Treating the Other Event Times

as Nuisance

3.3.1 Simulation Studies

Although multiple events can occur, one is often interested in testing whether a treat-

ment has an effect for one particular event. Also, it may not be reasonable to assume

a common treatment effect on all event times. When the interest is only on a specific

time-to-event, a common practice is to use a univariate Cox model or Weibull model

for the time-to-event of interest without considering other event times in the statis-

tical design. In this section, we compare the empirical power of testing β1 from the

multivariate frailty model with that of a univariate model based on simulation studies.

Assumptions for simulating the data are similar to what is described in Section 3.2.3

except that each event time was simulated with a different βj based on the Weibull

model described in Section 3.2.1. In our simulation study, we consider the impact of

the following parameters on the empirical power, which is defined as the % of p-values

less than 0.05 out of 1,000 simulated datasets:

1. The correlation between the event times, which is reflected by the variance of the

frailty, 1
θ
. Large values of θ, that is, a small variance of the frailty implies less

correlation between the event times. When θ → ∞, this represents independence
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between the event times.

2. The size of the βj’s (j 	= 1), and

3. The baseline event rate which will result in a different percentage of censoring

between the event of interest and the nuisance event times.

The results are summarized in Table 4.2 and Table 4.3. When the data is correlated,

the multivariate frailty model yields unbiased estimates of β1, β2 and β3. The power

from the frailty model is substantially higher compared to that of the univariate Weibull

or Cox model when the variance of the frailty is large, that is, when the event times

are highly correlated. When θ = 0.5, the Pearson correlation coefficient between t1

and t2 (or t3) is approximately 0.85 in simulated data without censoring. This level of

correlation results in a 23% difference in power between the multivariate frailty model

and the univariate model. The difference decreases quickly as the time-to-event data is

less correlated, and disappears when θ = 5, which translates into a Pearson correlation

coefficient of 0.18 in simulated data without censoring. When the event times are

independent, the performance of the univariate model is the same as the multivariate

frailty model. When the event times are correlated, the loss in power seems to be

mainly due to an attenuated biased estimate of β1. The Cox model yields a more

biased estimate of β1, but only a small difference in the empirical power. The impact

of the size of β2 and β3 on the power seems to be small. In Table 4.3, we consider

different baseline event rates so that the percentage of censoring can be different for

the K event times. We also change the shape parameter in the Weibull distribution to

examine its impact on the difference in power between the multivariate model and the

univariate model, since the shape parameter is related to the censoring rate based on

eβ0 . The power for testing β1 from the multivariate frailty model is similar to that of

the univariate model when the variance of the frailty is small regardless of the censoring

rate. When the event times are more highly correlated, there is a larger difference when
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TABLE 3.2: Estimating and Testing β1 in Multivariate Time-to-Events with K = 3
and eβ0 = 0.05 Using Different Models

Simulation
Parameters Frailty Modelb Weibull Modelb Cox Model

Na θ eβ1 eβ2 eβ3 eβ̂1 Power (%) eβ̂1 Power (%) eβ̂1 Power (%)
600 0.5 0.8 0.9 0.6 0.802 76.3 0.837 53.6 0.910 52.6
500 1 0.8 0.2 0.3 0.797 86.7 0.820 78.9 0.868 78.2
500 1 0.8 5.0 3.3 0.797 84.3 0.820 76.9 0.868 76.6
500 1 0.8 1 1 0.800 85.0 0.822 75.8 0.870 74.5
400 2 0.8 0.2 0.3 0.800 88.6 0.812 84.6 0.846 83.6
400 2 0.8 5.0 3.3 0.798 89.6 0.810 88.0 0.845 86.4
400 2 0.8 1 1 0.799 89.4 0.811 85.8 0.846 84.9
300 3 0.8 0.2 0.3 0.799 82.7 0.807 81.8 0.834 80.8
300 3 0.8 5.0 3.3 0.801 83.6 0.809 81.6 0.834 79.8
300 3 0.8 1 1 0.799 85.4 0.806 82.5 0.833 82.1
240 4 0.8 0.9 0.6 0.801 81.4 0.803 80.7 0.833 78.0
240 5 0.8 0.9 0.6 0.797 84.8 0.799 85.3 0.824 83.0
200 ∞c 0.8 0.9 0.6 0.824 81.9 0.800 84.6 0.798 83.0

aOverall sample size.

bThe shape parameter for the Weibull distribution is 2 in simulated data.

cEvent time is simulated independently with different eβ0 and γ.

the censoring rate is low in t1. The impact of censoring on t2 or t3 is small. Even when

t1 has a high censoring rate and t2, t3 have a high event rate, the multivariate model

does not seem to “borrow” more strength from the other time-to-event data.

3.3.2 Sample Size Determination for Testing β1

When considering different treatment effects on {t2, . . . , tK}, one needs to make as-

sumptions regarding K − 1 parameters. This is usually difficult at the design stage.

Even if we can make reasonable assumptions on these parameters based on prior data,

assumptions on known {β2, . . . , βK} will result in an over-estimate of the power, com-

pared to a model that treats {β2, . . . , βK} as unknown parameters. In Section 3.3.1,

we show that the sizes of β2 and β3 have a minimal effect on the power when testing

β1, but the variance of the frailty has a significant impact. Instead of using the mul-

tivariate frailty model, we suggest using a univariate frailty model that will take into

account the frailty but will eliminate {β2, . . . , βK} from the formula. We believe that

incorporating the frailty in a univariate model will correct the bias from the classical
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TABLE 3.3: Estimating and Testing β1 Using Different Models by Different Baseline
Event Rates

Simulation Parameters Frailty Model Weibull Model Cox Model

% t1 not % t2 not % t3 not

Na γ censored censored censored eβ̂1 Power (%) eβ̂1 Power (%) eβ̂1 Power (%)

When variance of the frailty = 1
3

300 1 90.2 74.6 80.6 0.798 85.6 0.808 83.9 0.836 82.5
500 1 43.3 26.5 21.2 0.800 84.9 0.806 85.1 0.815 84.8
400 1 43.2 74.6 80.7 0.800 74.6 0.808 74.0 0.816 73.9
300 2 86.6 73.6 78.7 0.801 83.0 0.809 82.2 0.837 81.3
500 2 43.3 23.0 18.5 0.799 82.9 0.806 83.2 0.816 82.5
500 2 43.3 73.6 78.8 0.797 86.8 0.803 85.9 0.814 85.7

When variance of the frailty = 1
500 1 78.5 69.2 72.9 0.805 89.2 0.828 77.1 0.875 76.0
600 1 38.3 23.3 19.2 0.800 82.9 0.814 78.4 0.836 78.5
600 1 38.3 69.1 72.9 0.808 79.3 0.818 76.1 0.838 75.8
500 2 75.9 67.9 71.1 0.802 89.9 0.822 77.4 0.872 75.7
600 2 38.2 20.4 16.8 0.802 77.0 0.817 74.9 0.841 74.9
600 2 38.1 68.0 71.1 0.801 77.9 0.816 74.6 0.840 74.4
500 2 75.9 20.4 16.8 0.799 83.7 0.822 77.3 0.872 76.6

Notes: K = 3 with β1 = 0.8, β2 = 0.2, β3 = 0.3.

aOverall sample size.

univariate Weibull model or Cox model, and thus will result in only small power loss

when the event times are highly correlated.

Based on the observed-data likelihood for the univariate frailty model,

L(θ, β1) =
n∏

i=1

Γ(θ + νi1)

Γ(θ)

(
θ

θ + tγi1e
β0+β1xi

)θ(
γ

θ + tγi1e
β0+β1xi

)νi1

× exp
(
νi1(β0 + β1xi)

)
t
(γ−1)νi1

i1 ,

the sample size formula we derived in Section 3.2.2 can be modified for testing the

hypothesis that H0: β1 = 0. The score statistic, Sscore, for testing β1 is also asymp-

totically normal with unit variance and mean equal to β1

√
nΨ1 as n → ∞. The total

number of subjects required for a one-sided level α̃ test with power β̃ is given by

n =
(zβ̃ + z1−α̃)2

Ψ1β2
1

, (3.8)
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where

Ψ1 =
1∑

ν1=0

(θ + ν1)Eν1,t1 [C1(t1) − C2
1(t1)], (3.9)

and

C1(t1) =
eβ0tγν1

1 B
γ(1−ν1)
f

θ + eβ0tγν1

1 B
γ(1−ν1)
f

. (3.10)

Similarly,

E0,t1 [C1(t1) − C2
1(t1)] =

∫ ∞

Bf

[C1(t1) − C2
1(t1)]f(t1)dt1,

E1,t1 [C1(t1) − C2
1(t1)] =

∫ Bf

0

[C1(t1) − C2
1(t1)]f(t1)dt1,

and

f(t1) =
Γ(θ + 1)

Γ(θ)

(
θ

θ + tγ1e
β0

)θ(
γ

θ + tγ1e
β0

)
× exp(β0)t

(γ−1)
1 .

In Table 3.4, we provide the power based on the above formula and the empirical

power from the multivariate frailty model as specified in (3.1) where both β2 and β3

are considered unknown, as in Tables 4.2 and 4.3 of Section 3.3.1. The approximation

is very good even when the correlation between the event times is as high as 0.67. The

formula tends to underestimate the power when the event times are highly correlated

(a Pearson correlation coefficient greater than 0.67).
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TABLE 3.4: Estimating and Testing β1: Empirical and Calculated Power by Different
Correlation Between Event Times (K = 3, γ = 2, eβ0 = 0.05, and eβ1 = 0.8)

Simulation Parameters Empirical Power (%) Calculated

Na θ Correlationb eβ2 eβ3 Multivariate Frailty Model Power (%)
600 0.5 0.85 0.9 0.6 76.3 68.3
500 0.8 0.75 0.9 0.6 80.1 75.6
460 1 0.67 0.2 0.3 81.1 78.4
460 1 0.67 0.9 0.6 79.9 78.4
400 1.5 0.51 0.2 0.3 82.6 82.5
400 1.5 0.51 0.9 0.6 83.8 82.5
340 2 0.41 0.2 0.3 84.3 82.0
340 2 0.41 0.9 0.6 83.1 82.0
320 2.5 0.33 0.2 0.3 83.3 83.6
320 2.5 0.33 0.9 0.6 82.7 83.6
300 3 0.29 0.2 0.3 82.7 84.0
300 3 0.29 0.9 0.6 84.5 84.0
240 4 0.22 0.9 0.6 81.4 79.4

aOverall sample size.

bPearson correlation coefficient between t1 and t2/t3 prior to censoring. It is the average in two
treatment groups.

3.3.3 A Real Data Example

In this section, we re-analyze data from a real longitudinal study where multiple highly

correlated event times were collected, and compare p-values from the multivariate frailty

model with that of the univariate Cox model. The main purpose is to verify the con-

clusion from Section 3.3.1, with a real data analysis, that the multivariate frailty model

is more powerful than a univariate model when the event times are highly correlated.

This is a prospective, population-based cardiovascular health study to assess

whether polymorphisms in the C-reactive protein (CRP) gene are associated with

plasma CRP, carotid intima-media thickness and cardiovascular disease events (Lange

et al. 2006). In this study, 4 tag single-nucleotide polymorphisms SNPs) (1919A/T,

2667G/C, 3872G/A, 5237A/G) were genotyped in 3941 white participants ≤ 65 years; 5

tag SNPs (plus 790A/T) were genotyped in 700 black participants ≤ 65 years. Subjects

were followed up between 1989 and 2003 for cardiovascular events (myocardial infarc-

tion, stroke, and CVD mortality) with a median follow-up time of 13 years. Event

rates range from 11% to 14% in whites, from 9% to 12% in blacks. We re-tested the

association between SNP 3872 genotypes and the three event times using the frailty
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model described in Section 3.2.1, and compared the conclusion (p-value) with that in

the original paper where the association was tested using a univariate Cox model. In

the original paper (Lange et al. 2006), SNP 3872 was found to be associated with

CVD mortality, but no association with stroke was evident in white participants based

on a Cox proportional hazard model. SNP 3872 was not found to be associated with

myocardial infarction, stroke or CVD mortality in black participants. The database we

obtained has the same number of subjects but has slightly different number of events,

likely due to timing of data cutoff. SNP 3872 genotype AA seems to be associated with

risk of stroke and CVD mortality, while genotypes AA or AG seem to be associated

with risk of myocardial infarction. For demonstration purposes, we investigate associ-

ation between risk of stroke and genotype AA in white participants, and association

between risk of myocardial infarction and genotypes AA or AG in black participants.

In white participants, we found a very strong association between the risk of stroke

and SNP 3872 genotype AA. The estimated hazard ratio is 0.66 (p-value = 0.008) from

the frailty model. The estimate of the frailty variance is 3.4 (θ = 0.2942), suggesting

a very strong correlation between the event times. The estimated hazard ratio is 0.74

(p-value = 0.068) from the Cox model, consistent with results reported in the paper. In

black participants, we also found a significant association between the risk of myocardial

infarction and SNP genotypes AA or AG. The estimated hazard ratio is 0.50 (p-value

= 0.029) from the frailty model. The estimated variance of the frailty is 4.5. The

estimated hazard ratio is 0.54 (p-value = 0.044) from the Cox model.

This example confirms findings from our simulation study in Section 3.3.1. When

the primary analysis is based on a multivariate frailty model, sample size calculation

based on the univariate Cox model can greatly over-power the study. The sample size

formula provided in Section 3.3.2 provides a better approximation.
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3.4 Discussion

In this paper, we derived a closed form sample size determination formula for testing a

common treatment effect in a shared Gamma frailty model based on a Weibull hazard

for the event times. This is applicable to highly correlated events, such as recurrent

events, where a common treatment effect can be assumed. The results from Table

4.1 and Table 4.2 suggest that testing a common treatment effect when the treatment

effects are similar is more powerful than testing a single event time alone. This is intu-

itive, as the total number of events is much larger when testing a common treatment

effect. Therefore, the typical sample size determination for univariate survival analysis

will underestimate the power for the multivariate survival analysis. The Weibull hazard

covers a wide range of parametric event time distributions with a different shape pa-

rameter, and is adequate for modeling monotonic hazard rates. However, the Weibull

family is inappropriate if the hazard rate is u-shaped or n-shaped. If a u-shaped or

n-shaped hazard rate is expected, the sample size determination formula provided in

this paper may not be applicable.

For recurrent events, the methodology described in Section 3.2.4 has certain limita-

tions. As the expected value of [Cm(t)−C2
m(t)] is based on large sample theory, it will

be problematic if a few subjects had many more recurrent events compared to the rest

of the subjects. If this is expected, the following two solutions are recommended: 1) we

can ignore these subjects in the sample size determination. As the number of subjects

involved is small, it should have limited impact on the power of the study. 2) Use an al-

ternative model. Earlier work by Cook & Lawless (1996) and Jiang (1999) considered a

sample size determination algorithm based on a Poisson process with frailty. The model

focused on counting the number of events given a fixed follow-up period. Compared

to the multivariate time-to-event model, the Poisson model has its own limitations. It

can result in a significant loss of power due to censoring as it is almost impossible to
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have a fixed follow-up period for every subject.

In Section 3.3, we discussed whether the power can still be improved by using a

multivariate frailty model when the interest is to test the treatment effect on t1, as

compared to a univariate survival model. We found that the difference depends on the

variance of the frailty, that is, the correlation between the event times. When the event

times are highly correlated, such as progression-free survival and overall survival in

some oncology studies, the multivariate frailty model will have substantial advantages

over the univariate model. The univariate survival model can lead to an attenuated

biased estimate of β1 and thus can result in a substantial loss of power. However, when

the correlation is small, there is no obvious advantage of using the multivariate frailty

model. We found in our simulation studies that when the correlation is ≤ 0.2, the

advantage of the frailty model is diminished. However, this cutoff point likely depends

on other model parameters, such as the Weibull shape parameter and baseline hazard.

We found that the power difference between the multivariate model and the uni-

variate model is also related to the event rates, with larger differences when the event

rate is high for t1. This can be explained by the fact that the correlation between

the event times is reduced due to censoring even though the correlation between event

times without censoring is high. However, in the real data example, we demonstrated

a significant difference in the estimates of the hazard ratio and p-values even when the

event rates are extremely low. The frailty also has a significant impact on the event

rate even when eβ0 is fixed. The number of subjects required to test the same treatment

effect seems to decrease as θ increases, that is, when the event times are less correlated.

This is simply due to higher event rates when θ is large when eβ0 is fixed.

Sample size determination based on the typical univariate model will greatly un-

derestimate the power when the event times are highly correlated. Unfortunately, it

is difficult to make any assumptions about βj (j = 2, . . . , K) at the design stage. We

suggest an algorithm based on a univariate frailty model taking into account the frailty,
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which induces correlation in the multivariate time-to-event data. We found that the

approximation provided in formula (3.8) to (3.10) provides a very good estimate of the

power from the multivariate model even when the correlation coefficient between the

event times is as high as 0.67. Although this cutoff probably also depends on other

model parameters, it is likely true that the method proposed here will be reasonably

good for moderate to high correlation between event times. The proposed method is

simple and makes no assumptions about the size of the other nuisance βj’s. Further

simulation studies will be needed to assess the performance of the method on other

models with a wider range of model parameters.

3.5 Appendix A: Derivation of Sample Size For-

mula for Testing a Common Treatment Effect

on Multivariate Time-to-event

Let l be the log likelihood of (3.2). Then

∂l

∂β
=

n∑
i=1

−(θ + Di)
xie

β0+βxi
∑K

j=1 tγij

θ + eβ0+βxi
∑K

j=1 tγij
+ xiDi,

and

∂2l

∂β2
=

n∑
i=1

−(θ + Di)

[
x2

i e
β0+βxi

∑K
j=1 tγij

θ + eβ0+βxi
∑K

j=1 tγij
−
(

xie
β0+βxi

∑K
j=1 tγij

θ + eβ0+βxi
∑K

j=1 tγij

)2]
.

Define

Ci(ti) =
eβ0
∑K

j=1 tγij

θ + eβ0
∑K

j=1 tγij
,
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and

ei(ti) =
eβ0+βxi

∑K
j=1 tγij

θ + eβ0+βxi
∑K

j=1 tγij
.

The score statistic is given by

Sscore =

∑n
i=1 xiDi − (θ + Di)xiCi(ti)√∑n
i=1(θ + Di)x2

i [Ci(ti) − C2
i (ti)]

.

Now, rewrite the score statistic as

Sscore =

∑n
i=1 xiDi − (θ + Di)xiei(ti)√∑n
i=1(θ + Di)x2

i [Ci(ti) − C2
i (ti)]

+

∑n
i=1(θ + Di)xi[(ei(ti) − Ci(ti)]√∑n
i=1(θ + Di)x2

i [Ci(ti) − C2
i (ti)]

.

The quantity
∑n

i=1 xiDi − (θ + Di)xiei(ti) is the score function of the likelihood, and

thus, the numerator of the first term is asymptotically normal with mean 0 and variance

n−1
∑n

i=1(θ+Di)x
2
i [ei(ti)−e2

i (ti)]. As in Schoenfeld (1983) and Ewell & Ibrahim (1997),

consider alternatives which are location shifts of known distribution functions, such that

β is O(n− 1
2 ). As ei(ti) → Ci(ti) when β → 0, the first term → N(0, 1) when β → 0.

Expanding the numerator of the 2nd term in a Taylor’s series about β = 0 shows

that

n∑
i=1

(θ + Di)xi[(ei(ti) − Ci(ti)] ≈ β
n∑

i=1

(θ + Di)x
2
i [Ci(ti) − C2

i (ti)].

Here, xi is a fixed treatment indicator, and we assume that there are two treatment

groups with xi = {−1, 1}. For large n, the 2nd term can be approximated by

√
nβ

√√√√1

n

n∑
i=1

(θ + Di)[Ci(ti) − C2
i (ti)].

61



Since Di = {0, 1, . . . , K},

1

n

n∑
i=1

(θ + Di)[Ci(ti) − C2
i (ti)]

=
1

n

n0∑
i∈{Di:0}

(θ + 0)[Ci(ti) − C2
i (ti)] +

1

n

n1∑
i∈{Di:1}

(θ + 1)[Ci(ti) − C2
i (ti)]

+ · · · + 1

n

nK∑
i∈{Di:K}

(θ + K)[Ci(ti) − C2
i (ti)],

where nm, m = {0, 1, . . . , K}, is the number of subjects with m events. Assume that

the censoring time, Bf , is the same for all subjects, which implies that any time-to-event

greater than Bf will be censored at Bf . Then if subject i has m events,

Ci(ti) =
eβ0(
∑m

j=1 tγij + (K − m)Bγ
f )

θ + eβ0(
∑m

j=1 tγij + (K − m)Bγ
f )

.

Let Cm(t) be the population counterpart of Ci(ti) when the subject has m events,

that is,

Cm(t) =
eβ0(
∑m

j=1 tγj + (K − m)Bγ
f )

θ + eβ0(
∑m

j=1 tγj + (K − m)Bγ
f )

.

Then,

1

n

nm∑
i∈{Di:m}

(θ + m)[Ci(ti) − C2
i (ti)]

→
(

K

m

)
Et

{
[Cm(t) − C2

m(t)]I(t1 < Bf , . . . , tm < Bf , tm+1 ≥ Bf , . . . , tK ≥ Bf )

}

=

(
K

m

)∫ Bf

0

. . .

∫ Bf

0

∫ ∞

Bf

. . .

∫ ∞

Bf

[Cm(t) − C2
m(t)]

f(t1, . . . , tK)dtK . . . dtm+1dtm . . . dt1,

where
(

K
m

)
denotes the number of unique combinations of m non-censored times out of

K possible event types, and f(t1, . . . , tK) is the joint density function of (t1, . . . , tK).
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Let Em,t[Cm(t) − C2
m(t)] denote Et

{
[Cm(t) − C2

m(t)]I(t1 < Bf , . . . , tm < Bf , tm+1 ≥

Bf , . . . , tK ≥ Bf )

}
. Then,

1

n

n∑
i=1

(θ + Di)[Ci(ti) − C2
i (ti)]

→
K∑

m=0

(θ + m)

(
K

m

)
Em,t[Cm(t) − C2

m(t)]

= Ψ.

It follows that the score statistic is asymptotically normal with unit variance and

mean equal to β
√

nΨ.
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CHAPTER 4

Flexible Stopping Boundaries When

Testing Different Parameters at

Different Interim Analyses in

Clinical Trials

4.1 Introduction

It is fundamental to have clinical trials that are properly designed to answer specific

scientific questions, such as whether the drug improves overall survival. Every trial

design is striving to answer this question with as much robustness and accuracy as

possible while involving the fewest number of patients, reasonable costs and the shortest

duration of time. Methodology for group sequential clinical trials has developed largely

during the past few decades so that a trial can be stopped early if there is strong

evidence of efficacy during any planned interim analysis. Pocock (1977) first proposed

that the crossing boundary be constant for all equally spaced analyses. O’Brien and

Fleming (1979) suggested that the crossing boundaries for the kth analysis, zc(k), be

changed over the total number of analyses K such that zc(k) = zOBF

√
K/k. In both



procedures, the number of interim analyses and the timing of the interim analyses

need to be pre-determined. The O’Brien-Fleming boundaries have been used more

frequently because they preserve a nominal significance level at the final analysis that

is close to that of a single test procedure. Earlier work by Haybittle and Peto (1971,

1976) in a less formal structure suggested the use of an arbitrarily large value for the

crossing boundary for each interim analysis, and the boundary for the final analysis

should be determined such that the overall type I error rate be preserved. Wang and

Tsiatis (1987) examined a class of group sequential boundaries that yield approximately

optimal results with respect to minimizing the expected sample size.

The alpha spending function developed by Lan and DeMets (1983) over the course

of a group sequential clinical trial is a more flexible group sequential procedure that

does not require the total number nor the exact time of the interim analyses to be

specified in advance. Other parametric alpha spending functions have been considered,

which include the gamma spending function (Hwang et al. 1990), and the rho spending

function (Kim & DeMets 1987, Jennison & Turnbull 2000). A high degree of flexibility

has been well developed with respect to timing of the analyses and how much type I

error (alpha) to spend at each analyses. One concern about the alpha spending function

procedure is that one can change the frequency of the analyses as the results come closer

to the boundary. Later work by Lan and DeMets (1989) showed that if a Pocock-like

or O’Brien-Fleming like continuous spending function is adopted, the impact on the

overall alpha is very small. Proschan et al. (1992) also did a thorough research to

address the issue of changing the frequency of interim analyses.

Earlier development of the alpha spending function was based on the assumption

that the information accumulated between each interim analysis is statistically indepen-

dent. However, this assumption does not apply to longitudinal studies in a sequential

test of slopes for which the total information is unknown. Sequential analysis using the

linear random-effects model suggested by Laird and Ware (1982) has been considered by
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Lee and DeMets (1991), and Wu and Lan (1992). There have been debates on whether

the alpha spending function can still be used since the independent increment structure

does not hold and the information fraction is unknown (Wei et al. 1990, Su & Lachin

1992). It was argued by DeMets and Lan (1994) that the alpha spending function can

still be used with a more complex correlation between successive test statistics. The key

to using the alpha spending function is being able to define the information fraction.

Although the correlation between successive test statistics will not be exactly known,

it can be estimated by a “surrogate” of the information fraction. Stopping boundaries

for studies that stop early to reject the null hypothesis H0 were generalized to studies

that stop early to reject either H0 or H1 (the alternative hypothesis) by Pampallona et

al. (1995, 2001).

The motivation of this paper came from a design of a phase III trial in patients with

glioblastoma multiforme (GBM). GBM is the most common and most aggressive type

of primary brain tumor in humans, and has the worst prognosis of any central nervous

system (CNS) malignancy, despite multimodality treatments. An innovative treatment

option that can provide any hope to these patients should be made available to the

medical society as early as possible, especially when a few patients from a small phase

II study had survived more than 12 months at the time. The treatment being studied

is a targeted therapy with little safety issues compared to most chemotherapies. Given

its orphan drug status, the investigator wishes to design the study using progression-

free survival (PFS) as the primary endpoint in the interim analysis, while using overall

survival as the primary endpoint to be tested at the final analysis. The motivation for

this type of design is the low event rate for overall survival at early interim analysis

times while the PFS event rate is much more mature at these earlier interim analysis

times. Also, in recurrent event studies, one may be interested in examing different

recurrent events at different interim analyses. For example, at time of the first interim

analysis, most subjects may have the first occurrence of the event, while very few have
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the second occurrence. Thus, it would not be appropriate to use time to 2nd occurrence

as the primary endpoint. As time progresses, time to 2nd or 3rd occurrence may be of

interest to the investigator and may be a more appropriate primary endpoint at these

later analyses. Chen et al. (2003) considered a special case based on the log rank

statistic where mortality was used as the primary endpoint at interim analysis while a

composite endpoint was used as the primary endpoint at final analysis.

With advances in medical research, such as in the area of biomarker discovery,

clinical study design is also becoming more complex. For example, in the case of a

good biomarker that is collected over time, the longitudinal data will be associated

with both the time-to-event and the treatment. There may be sufficient power to test

these associations at early interim analyses while testing the direct association between

the time-to-event and treatment may require a substantially larger sample size. In

this paper, we extend the alpha spending function methodology to derive stopping

boundaries when our interest focuses on examining different endpoints (parameters) at

different analysis times. Statistically, this is equivalent to testing different hypotheses

at different interim analyses. In Section 4.2, the newly derived stopping boundaries

are compared to the boundaries without changing the parameters, using the Pocock

and O’Brien-Fleming like spending functions proposed by Lan and DeMets (1983).

Applications to biviarate survival models and joint models of longitudinal and time-to-

event data are discussed in Sections 4.3 and 4.4. We close the article with a discussion

in Section 4.5.

4.2 Stopping Boundaries for Testing Different Pa-

rameters at the Interim and Final Analysis

The alpha spending function is described in Section 1.4, and notations in this chapter

follow those in Section 1.4. In general, if different interim analyses involve different
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parameters, the covariance structure is unknown; and we cannot obtain the asymptotic

joint distribution of
(
Z(1), Z(2), . . . , Z(k)

)
. Thus, deriving zc(k) will be problematic.

When the parameters we are testing at the interim analysis and the final analysis are

from the same likelihood function, however, the covariance is known and is computed

from the expected Fisher information matrix.

To make our ideas clear, let θ1 denote the parameter to be tested at the lth interim

analysis, and let θ2 be the parameter to be tested at the kth interim analysis. The

null hypotheses are H0: θ1 = θ01 for testing θ1, H0: θ2 = θ02 for testing θ2. Let

lk denote the log-likelihood at the kth analysis from nk independent samples, lk =

lnL(θ1, θ2|ynk
). Further assume that Z(l) and Z(k) are the score statistics at the lth and

kth interim analysis, and the information accumulated between each interim analysis

is independent. Define

Sl =
∂ll
∂θ1

|θ1=θ01 , S∗
k =

∂lk
∂θ2

|θ2=θ02 ;

Il = −E

[
∂2ll
∂θ2

1

]
|θ1=θ01 , I∗

k = −E

[
∂2lk
∂θ2

2

]
|θ2=θ02 .

It can be shown that

Cov{Z(l), Z(k)} = E(Z(l)Z(k)) = E

(
SlS

∗
k√

IlI∗
k

)

=
E{Sl(S

∗
l + S∗

k−l)}√
IlI∗

k

=
E{SlS

∗
l } + E{SlS

∗
k−l}√

IlI∗
k

=
E
(

∂ll
∂θ1

∂ll
∂θ2

)
|θ1=θ01,θ2=θ02√
IlI∗

k

=

√
nl

nk

I12(θ01, θ02)√
I11(θ01)I22(θ02)

, (4.1)

where I12(θ01, θ02) is the off diagonal element of the expected Fisher information matrix,

and I11(θ01), I22(θ02) are the diagonal elements of the expected Fisher information
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matrix. Note that E{SlS
∗
k−l} = 0 when the k − l observations are independent of

the l observations (independent increments of information). Therefore, when we test

different hypotheses at different interim analyses, the stopping boundaries will not only

depend on the information fraction, they will also depend on the information matrix of

the two parameters under H0. Thus, there will not be one set of stopping boundaries

that can be used for all likelihood functions or all parameters. The investigators in this

case must derive their own stopping boundaries for different study designs.

Let w = I12(θ01,θ02)√
I11(θ01)I22(θ02)

, it can be shown that

w =
E
(

∂l
∂θ1

∂l
∂θ2

)
√

E

((
∂l

∂θ1

)2
)

E

((
∂l

∂θ2

)2
) |θ1=θ01,θ2=θ02

=
Cov

(
∂l

∂θ1
, ∂l

∂θ2

)
√

Var
(

∂l
∂θ1

)
Var
(

∂l
∂θ2

) |θ1=θ01,θ2=θ02 ,

where l is the log-likelihood based on a sample of size 1. Thus w is the correlation

coefficient of the score function, and |w| ≤ 1. Since the covariance matrix of the test

statistics (Z(1), Z(2), . . . , Z(k)) is positive definite, the value of w is also bounded by a

number that is ≥ −1. When we test the same parameter between the lth and the kth

interim analysis, w = 1. We next calculate different stopping boundaries by assuming

different values of w. In Table 4.1, we compare the boundaries computed from α1(t
∗)

and α2(t
∗), the O’Brien-Fleming-like, and the Pocock-like alpha spending functions

proposed by Lan & DeMets (1983). The comparison is made for a one-sided test with

significance level α = 0.025, K = 5, and the test parameter is θ1 for j = 1, 2, θ2 for

j = 3, 4, 5 (j = 1, . . . , 5), and t∗j = j/5.

Note that between (j = 1, 2) and (j = 3, 4, 5), the value of w is still 1. The
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TABLE 4.1: One-sided Boundaries for Different Values of w with α = 0.025 and
K = 5 (The test parameter is assumed to be θ1 for j = 1, 2, θ2 for j = 3, 4, 5, where
j = 1, . . . , 5, t∗j = j/5.)

O’Brien-Fleming Like Alpha Pocock Like Alpha
Spending Function α1(t

∗) Spending Function α2(t
∗)

w zc(1) zc(2) zc(3) zc(4) zc(5) zc(1) zc(2) zc(3) zc(4) zc(5)
1 4.88 3.36 2.68 2.29 2.03 2.44 2.42 2.41 2.40 2.39

0.8 4.88 3.36 2.69 2.29 2.03 2.44 2.42 2.50 2.43 2.42
0.5 4.88 3.36 2.70 2.30 2.03 2.44 2.42 2.57 2.46 2.44
0 4.88 3.36 2.70 2.30 2.03 2.44 2.42 2.60 2.50 2.45

-0.5 4.88 3.36 2.70 2.30 2.03 2.44 2.42 2.60 2.50 2.45
-0.7 4.88 3.36 2.70 2.30 2.03 2.44 2.42 2.60 2.50 2.45

covariance matrix for (Z(1), . . . , Z(5))T is

⎛
⎜⎜⎜⎜⎜⎝

1
p

1/2
p

1/3w∗ p
1/4w∗ p

1/5w∗
p

1/2 1
p

2/3w∗ p
2/4w∗ p

2/5w∗
p

1/3w∗ p
2/3w∗ 1

p
3/4

p
3/5

p
1/4w∗ p

2/4w∗ p
3/4 1

p
4/5

p
1/5w∗ p

2/5w∗ p
3/5

p
4/5 1

⎞
⎟⎟⎟⎟⎟⎠,

where w∗ 	= 1. We can see that the covariance matrix can be partitioned into four sub-

matrices

⎛
⎜⎝ Σθ1 Σθ1,θ2

Σ′
θ1,θ2

Σθ2

⎞
⎟⎠. Solving for (zc(1), . . . , zc(K)) in equation (1.6) requires

numerical integration. The quadrature method by Armitage et al (1969) cannot be

applied here with this covariance structure since the statistics are not the same in the

sequential procedure. The method solves the density function fn(sn) recursively based

on a recursive relationship between fn(sn) and fn−1(sn−1). Such a recursive relationship

is not available in our methodologic setup. Here, we used the adaptive integration

method by Genz (1992) to evaluate zc(k). Compared to a Monte Carlo algorithm

and the subregion adaptive algorithm, the adaptive integration method of Genz (1992)

reliably computes multivariate normal probabilities with as many as ten variables in

a few seconds. For example, the average absolute error for 6 variables ranged from

0.00016 for a constant covariance matrix to 0.00174 for a random covariance matrix
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TABLE 4.2: One-sided Boundaries for the 5th Analysis zc(5) When α = 0.025 and
K = 5 (The test parameter is assumed to be θ1 for j = 1 − 4, θ2 for j = 5, where
j = 1, . . . , 5, t∗j = j/5.)

w

Alpha Spending Function 1 0.8 0.5 0 -0.5 -0.7
O’Brien-Fleming Like Function, α1(t

∗) 2.03 2.13 2.19 2.23 2.23 2.23
Pocock Like Function, α2(t

∗) 2.39 2.54 2.64 2.70 2.70 2.70

(Genz 1992).

When we compare our boundaries to a group sequential procedure that do not

change parameters at different interim analyses, the boundaries are very close when the

alpha spending function is α1(t
∗). However, the boundaries are substantially different

when the alpha spending function is α2(t
∗).

We next consider a scenario where we change the parameter at the final (5th)

analysis. Our stopping boundary for the first 4 analyses will be the same as the ones

in Lan and DeMets (1983). The 5th boundary was calculated for different values of w

(Table 4.2). The boundary is substantially different than the Lan-Demets boundary.

This shows that when the parameter is changed when α is minimally spent prior to the

change, as in early interim analyses using α1(t
∗), the impact on the stopping boundaries

is small. The more α is spent prior to the change of the parameters, the more significant

the impact is on the boundaries. In Table 4.3, we compare the boundaries computed

from α1(t
∗) and α2(t

∗) for a one-sided α = 0.025 test with K = 2 and t∗j = j/2.

Tables 4.1, 4.2, and 4.3 confirm these properties. If the test parameter is changed after

spending a substantial α, there is also a substantial penalty involved. There are also

cumulative penalties when the test parameter is changed more than once.

In practice, accurate assumptions about the size of w may be difficult to make. In

this case, researchers can use more conservative boundaries by assuming a smaller w.

In cases when not much of the α has been spent at interim analyses when the test

parameter changes, the penalty involved is minimal.
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TABLE 4.3: One-sided Boundaries for Different Values of w with α = 0.025, K = 2
and t∗j = j/2.)

O’Brien-Fleming Like Alpha Pocock Like Alpha
Spending Function α1(t

∗) Spending Function α2(t
∗)

w zc(1) zc(2) zc(1) zc(2)
1 2.96 1.97 2.16 2.20

0.8 2.96 1.98 2.16 2.25
0.5 2.96 1.98 2.16 2.30
0 2.96 1.99 2.16 2.34

-0.5 2.96 1.99 2.16 2.34
-0.8 2.96 1.99 2.16 2.34
-1 2.96 1.99 2.16 2.34

Although w can be < 0, there seems to be no further impact on the stopping

boundaries in the scenarios we presented above. For a given alpha spending function,

the right-hand side of equation (1.6) is fixed, and the left-hand side is the tail probability

of the multivariate normal distribution function, which is an ellipsoid scaled by the

eigenvalues of the covariance matrix and rotated by the eigenvectors of the covariance

matrix. Solving equation (1.6) sequentially involves finding the smallest critical values

in a sequential order such that the tail probability is no larger than the value defined on

the right hand side of the equation. For a fixed set of critical values in the region that we

are interested in, the tail probability increases as w decreases, with negligible increases

beyond w = 0. Thus, solving equation (1.6) will result in smaller critical values (smaller

penalty) when w is larger. Recall that w is the correlation coefficient of two efficient

scores ∂l
∂θ1

and ∂2
∂θ2

, and the sign of w is determined by the off-diagonal element of the

expected Fisher information matrix, which is determined by the covariance of β̂1 and

β̂2, where are the unbiased estimators of β1 and β2. When w < 0, the covariance of β̂1

and β̂2 is positive.
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4.3 Application to a Bivariate Survival Model

In this section, we show an application for a bivariate survival model where we are

interested in testing whether PFS or the first recurrence time is associated with treat-

ment (H0 : β1 = 0) in an earlier interim analysis, but change to testing whether overall

survival or second recurrence time is associated with treatment (H0 : β2 = 0) in a later

interim, or final analysis. Alternatively, one may want to focus on mortality or cause

specific mortality during the interim analysis, and PFS or total mortality at the end

of the trial. Assume that the event time for the ith subject and the jth event type

(i = 1, . . . , N, j = 1, 2) is drawn from a Weibull distribution with shape parameter γ

and frailty ωi. Thus the hazard function of event time of the ith subject and the jth

event type, Tij, is

λij(tij) = ωiγtγ−1
ij exp(β0 + βjxij),

where xij denotes the explanatory variable for subject i and the jth event type. β0

and βj are the intercept and the coefficient of the explanatory variable respectively.

We consider a model with gamma frailty ωi, and thus f(ωi) = θθ

Γ(θ)
ωθ−1

i exp(−θωi), with

mean 1 and variance 1
θ
. Conditional on ωi, the survival times are assumed independent.

Thus the observed data likelihood is

L(θ, β) =
n∏

i=1

∫ ∞

0

2∏
j=1

[
ωiγtγ−1

ij exp(β0 + βjxij)exp(−ωit
γ
ijexp(β0 + βjxij))

]νij

×
[
exp(−ωit

γ
ijexp(β0 + βjxij))

]1−νij θθ

Γ(θ)
ωθ−1

i exp(−θωi)dωi, (4.2)

where νij is the censoring indicator (equals 0 for censoring, 1 otherwise), and tij denotes

the event time for subject i and the jth event type. After ωi is integrated out in (4.2),
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the observed data likelihood is given by

L(θ, β) =
n∏

i=1

Γ(θ + Di)

Γ(θ)

(
θ

θ + tγi .(β)

)θ(
γ

θ + tγi .(β)

)Di

× exp

( 2∑
j=1

νij(β0 + βjxij)

) 2∏
j=1

t
(γ−1)νij

ij , (4.3)

where Di =
∑2

j=1 νij and tγi .(β) =
∑2

j=1 tγijexp(β0 + βjxij).

For ease of exposition, let treatment be the only explanatory variable and therefore

xi = xi1 = xi2 in this particular setting. In most confirmatory clinical trials, there are

only two treatment arms. Based on the likelihood function (4.3) and using the reference

cell coding for convenience (xi = {0, 1}),

w =
I12(β01, β02)√
I11(β01)I22(β02)

=

−E

(
∂2l(β)
∂β1∂β2

)
√(

−E(∂2l(β)

∂β2
1

)
)(

−E(∂2l(β)

∂β2
2

)
) |β1=0,β2=0

=
−E
[
b(t1)b(t2)

]
√

E
[
(b(t1) − b2(t1))

]
E
[
(b(t2) − b2(t2))

] ,

where l(β) = lnL(θ, β) and b(tk) =
tγkexp(β0)

θ+
P2

j=1 tγj exp(β0)
. E

[
b(t1)b(t2)

]
, and E

[
(b(t1) −

b2(t1))
]

can be solved numerically, since the joint density of the survival times, (t1, t2),

is given by

f(t1, t2) =
Γ(θ + 2)

Γ(θ)

θθexp(
∑2

j=1 β0 + βjxi)γ
2tγ−1

1 tγ−1
2[

θ +
∑2

j=1(t
γ
j e

β0+βjxi)
]θ+2

.

However, regardless of the choice of θ, γ, or β0, the value of w will be negative,

meaning that the covariance between β̂1 and β̂2 (the off diagonal elements of the in-

verse expected Fisher information matrix) is positive. As discussed in Section 4.2, the
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boundaries will be the same as the boundaries for the case when w = 0. Further

calculation of w will not be necessary.

4.4 Application to Joint Modeling of Longitudinal

and Time-to-Event Data

Most time-to-event studies also collect repeated measurements of potential biomarkers.

A powerful method to take into account the dependency of time-to-event data and re-

peated measurements of biomarkers is joint modeling of these two data types (Wulfsohn

& Tsiatis 1997, Henderson et al. 2000, Tsiatis & Davidian 2004). Application of joint

models in studying surrogate endpoints was particularly discussed in Taylor and Wang

(2002). It has been demonstrated through simulation studies that use of joint modeling

leads to correction of biases and improvement of efficiency (Hsieh et al. 2006, also refer

to results in Chapter 2). Since joint models contain multiple parameters that may be

related to the treatment effect in a joint likelihood, this modeling situation presents an

unique opportunity and advantage of testing different parameters at different interim

analyses.

4.4.1 Motivation for Testing Different Parameters at Different

Interim Analysis in Joint Models

In this section, we consider a joint model described in Section 2.2. Based on the hazard

function (2.1) and the trajectory model (2.2), we can see that the overall treatment

effect is βγ+ξ, where γ is the treatment effect on the longitudinal marker, ξ is the direct

treatment effect on time-to-event, and β is the association between the longitudinal

marker and time-to-event. β can also be viewed as measuring the degree of “surrogacy”

between the longitudinal marker and time-to-event. It was suggested by Taylor and
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Wang (2002) that the quantity βγ
βγ+ξ

represents

treatment effect on survival through marker

overall treatment effect on survival
,

which is a measure of surrogacy suggested by Freedman et al. (1992). If Yij is a good

surrogate, the values of β and γ will be relatively large compared to the value of ξ.

In the case of a real surrogate, directly testing the treatment effect may require sub-

stantially more subjects and take longer to observe enough events. A natural question

is whether we can test β and γ jointly. If β 	= 0 and γ 	= 0, then βγ 	= 0. And if βγ and

ξ have the same sign, which is typically the case, the overall treatment effect βγ+ξ 	= 0.

Simulations were carried out to examine the power of testing β, γ and βγ + ξ from

the joint model (2.3). In this simulation study, the event time was simulated from an

exponential model with λi(t) = λ0 exp{βXi(t) + ξZi}, where Xi(t) = θ0i + θ1it + γZi

and λ0 = 0.85. To ensure a minimum follow-up time of 0.75 years (9 months) and max-

imum follow-up time of 2 years, right censoring was generated from a uniform [0.75, 2]

distribution. The (θ0i θ1i) were assumed to follow a bivariate normal distribution with

μθ =

⎛
⎜⎝ 0

3

⎞
⎟⎠ and Σθ =

⎛
⎜⎝ 1.2 0

0 0.7

⎞
⎟⎠. We simulated 1000 datasets and each dataset

had 200 subjects (100 subjects per treatment group). Power was determined as the %

of datasets with a p-value from the score test ≤ 0.05 for testing

⎧⎪⎨
⎪⎩

H0 : β = 0 or γ = 0

H1 : β 	= 0 and γ 	= 0
(4.4)

versus

⎧⎪⎨
⎪⎩

H0 : βγ + ξ = 0

H1 : βγ + ξ 	= 0
. (4.5)
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TABLE 4.4: Comparison of Power for Testing {β = 0 or γ = 0}, and βγ + ξ = 0 from
the Joint Model

H0 : β = 0 or γ = 0 H0 : βγ + ξ = 0

β γ ξ β Estimate (SE) γ Estimate (SE) Power Estimate (SE) Power
0.2 0.25 0.05 0.210 (0.056) 0.250 (0.130) 46.6% 0.095 (0.170) 9.7%
0.2 0.15 0.15 0.210 (0.056) 0.149 (0.130) 25.6% 0.176 (0.168) 18.8%

Rejecting H0 in (4.4) implies rejecting H0 in (4.5) unless the direct treatment effect

on time-to-event ξ has a complete opposite effect compared to βγ. Table 4.4 shows

substantial power advantages for testing β and γ jointly instead of testing βγ +ξ alone,

especially when the size of ξ is relatively small.

4.4.2 Stopping Boundaries in a Hypothetical Design

Let ϕ = βγ + ξ. The likelihood function (2.3) can be reparameterized in terms of β, γ

and ϕ by replacing ξ with ϕ−βγ. Let Zβ(l), Zγ(l), Zϕ(k) denote the score test statistics

of β and γ at the lth analysis, and of ϕ at the kth analysis. Then based on equation

(4.1) of Section 4.2, Cov
(
Zβ(l), Zϕ(k)

)
=
√

nl

nk

I(β0,ϕ0)√
I(β0)I(ϕ0)

, and Cov
(
Zγ(l), Zϕ(k)

)
=√

nl

nk

I(γ0,ϕ0)√
I(γ0)I(ϕ0)

, where I(β0), I(γ0) and I(ϕ0) are the diagonal elements of the expected

Fisher information matrix and I(β0, ϕ0) and I(γ0, ϕ0) are the off-diagonal elements of

the expected Fisher information matrix.

Suppose that in a study with two planned analyses, we are interested in testing Hy-

pothesis (4.4) in the interim analysis, and testing Hypothesis (4.5) in the final analysis.

To ensure the type I error will not exceed the planned level of 0.05 in two-sided tests,

the boundary values zc(1) and zc(2) can be determined successively so that

P0

{
|Zβ(1)| ≥ zc1(1) ∪ |Zϕ(2)| ≥ zc1(2)

}
= αβ(t∗k) (4.6)

P0

{
|Zγ(1)| ≥ zc2(1) ∪ |Zϕ(2)| ≥ zc2(2)

}
= αγ(t

∗
k). (4.7)

Note that both (4.6) and (4.7) need to be satisfied as the parameter space under
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H0 for the first interim analysis is the set {β : β = 0} ∪ {γ : γ = 0}. The two sets in

the null hypothesis parameter space can be completely disjoint.

The likelihood function of (2.3) does not have a closed form, thus a direct estimate

of the expected Fisher information matrix will be difficult. One possible solution is

to approximate the likelihood function by a Laplace approximation and obtain the

approximate expected Fisher information matrix. However, this can also be a daunting

task, and the estimates may not be accurate as it will also depend on the assumptions

regarding other nuisance parameters, such as σ2
e . Based on our simulated data, we

obtained negative
I(n)(β0,ϕ0)√

I(n)(β0)I(n)(ϕ0)
and

I(n)(γ0,ϕ0)√
I(n)(γ0)I(n)(ϕ0)

values, where I(n) stands for the

observed information. This is expected since the correlation between ϕ and β (or γ)

is usually positive, resulting in w < 0. Therefore it is fairly safe to derive a set of

boundaries by assuming w = 0 between β (or γ) and ϕ.

It is possible that a different alpha spending function can be used in (4.6) and

(4.7), and therefore result in different crossing boundaries for β and γ. However the

second stopping boundary should take the maximum of zc1(2) and zc2(2). In the joint

modeling setting, as additional longitudinal data may be collected for subjects who

are included in the previous interim analysis, information accumulated between each

interim analysis is not independent. The covariance between the test statistics has an

extra term b =
E(SlS

∗
k−l)√

IlI
∗
k

(refer to (4.1) in Section 4.2). As suggested by DeMets and Lan

(1994), the information fraction between successive test statistics will be more complex

and will not be exactly known. In this design, we argue that w < 0 implies negative

E( ∂l
∂β

, ∂l
∂ϕ

) and negative E( ∂l
∂γ

, ∂l
∂ϕ

). Therefore, the impact on the stopping boundaries

may be negligible.
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4.5 Discussion

In this paper, we have extended the concept of the alpha spending function to testing

different parameters at different interim analyses. Correlations between successive test

statistics not only depend on the number of accumulated subjects between interim anal-

yses, but they also depend on the expected Fisher information matrix. The correlation

between the two parameter estimates is inversely related to the off diagonal elements of

the expected Fisher information matrix. Thus, when w is positive, the two parameters

have negative association, and the additional penalty to pay to test different parame-

ters is smaller. When w is negative, the two parameters are positively associated, and

the additional penalty for testing different parameters is larger. The expected Fisher

information matrix should be evaluated under H0. However, assumptions about other

nuisance parameters may be required. In cases with complex likelihood functions, the

expected Fisher information matrix can be difficult to obtain. We suggest that future

stopping boundaries can be calibrated using the observed information matrix obtained

in interim analyses prior to changing the parameters. Although expression (4.1) is

derived based on the score test, the same boundaries can be applied to different test

statistics as the test statistics will have a similar covariance structure.

As discussed by Fleming and DeMets (1993), early termination of a clinical trial is

a complex process and cannot be simply reached by pre-specified stopping rules. For

example, even when the efficacy stopping boundary is crossed, a trial may need to be

continued to collect sufficient safety information. We simply provide a tool here to

facilitate the decision process and ensure that the type I error will be strictly under

control to its pre-specified level when testing different parameters at different interim

analyses. Furthermore, we are not advocating that when a particular hypothesis is not

performing well in terms of significance at a particular interim analysis, we test another

hypothesis at subsequent interim analyses. The hypothesis tests should be pre-specified
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before the trial begins, and the analysis should be based on the joint likelihood in all

interim and final analyses. If the analyses are based on different likelihood functions,

or the value of w cannot be reliably estimated, w should be set to 0, assuming no

correlation between the test statistics. This will result in the most conservative stopping

boundaries.

The application to joint modeling of longitudinal and time-to-event data is promis-

ing in the case that the longitudinal marker is a good surrogate for the time-to-event.

In reality, time-to-event data, such as overall survival, may be lengthy to obtain. Re-

searchers have been trying to find important predictors or surrogates which are strongly

associated with time-to-event which can be collected in a shorter period of time. With

recent advances in genetic research and other biomarker research, many potential sur-

rogates are being identified. For example, Circulating tumor cells (CTC’s) have been

found to be associated with progression-free survival and overall survival in patients

with metastatic breast cancer (Dawood et al. 2008, Liu et al. 2009). If both β 	= 0 and

γ 	= 0, it may be considered sufficient efficacy evidence to terminate the trial early. If

the longitudinal marker is a weak surrogate, this will allow the investigator to proceed

to the next analysis to test the hypothesis that βγ + ξ 	= 0.
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