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ABSTRACT

Preetesh Anand Kantak: Asset Prices, Local Prospects and the Geography of Housing Dynamics
(Under the direction of Riccardo Colacito)

I uncover a novel link between economic fundamentals and real estate returns. First, using

a measure of “local” (i.e. MSA) growth prospects from both industry level employment and fi-

nancial data, I am able to explain a substantial portion of variability in excess real estate returns

and price-to-rent ratios. A one standard deviation decline in local growth prospects is associated

with a 120bp drop in the housing risk premia and a 500bp increase in the price to rent ratio. Sec-

ond, I establish the underlying dynamics of relative, housing versus non-housing, consumption in

the MSA-level cross section of economic agents. I document that a one standard deviation de-

cline in local growth prospects is associated with a 1000bp rise in level and 700bp decrease in

variance of relative consumption. In contrast, a one standard deviation increase in local growth

prospects is also associated with a rise in relative consumption. This suggests that housing acts

as a hedge against long-run economic growth. I then investigate these empirical facts through the

lens of a consumption based, asset pricing model. I combine a persistent component in consump-

tion, Epstein and Zin (1989) preferences, and nonseparable consumption of non-housing goods

and housing services. Consumption of housing services provides a hedge to long-run growth

prospects. The model is able to replicate the excess returns and price to rent ratio regression re-

sults from the data.

iii



To my wife and best friend. You may not believe it, but I couldn’t have done any of this without you.
Thank you for your support and understanding along the way.

iv



ACKNOWLEDGEMENTS

Invaluable suggestions and advice were provided by all members of my committee. Without

them, I would not have completed this work. Additional important insight was provided by Robert

Connolly, Jennifer Conrad, Mariano Croce, Eric Ghysels and Adam Reed. I’d also like to thank

seminar participants at Kenan-Flagler Business School and the 2016 IPC Real Estate Conference

at the University of North Carolina. All errors are my own.

v



TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 MOTIVATIONAL EVIDENCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Low Frequency Cross-sectional Evidence . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Time-series Evidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 LITERATURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 DATA AND VARIABLE CONSTRUCTION . . . . . . . . . . . . . . . . . . . . . . . . 13

4.1 National Data Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.2 Price-to-dividend Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.3 Validity of Price-to-dividend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.4 Other Independent Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.5 Construction of Local Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5 HOUSING DYNAMICS ANALYSIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.1 Return Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.2 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.3 Capitalization Rate Regressions . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6 ECONOMIC FOUNDATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.1 Setup of the Economy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.2 Financial Markets and Equilibrium of the Economy . . . . . . . . . . . . . . . . . . 34

vi



6.3 Calibration of the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.4 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.5 Further Empirical Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

7 IDENTIFICATION OF DURABILITY . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7.1 Level Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7.2 Level Regression Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7.3 Variance Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

8 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

APPENDIX A Gauss-Newton Conversion Algorithm . . . . . . . . . . . . . . . . . . . . . 55

APPENDIX B Dividend and Repurchase Yield . . . . . . . . . . . . . . . . . . . . . . . . 58

APPENDIX C Annual GMM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

APPENDIX D Extending Annual GMM to Quarterly . . . . . . . . . . . . . . . . . . . . . 60

APPENDIX E Campbell-Shiller Decomposition . . . . . . . . . . . . . . . . . . . . . . . 63

APPENDIX F Cash Flow Component Extraction . . . . . . . . . . . . . . . . . . . . . . . 64

APPENDIX G Solving Model’s Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . 66

APPENDIX H Pricing of Aggregate Markets . . . . . . . . . . . . . . . . . . . . . . . . . 68

APPENDIX I Simulation Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

APPENDIX J Estimation of Composition Variance . . . . . . . . . . . . . . . . . . . . . . 71

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

vii



LIST OF TABLES

Table 1 Predictive Regressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Table 2 Pre-regression, Conversion Statistics . . . . . . . . . . . . . . . . . . . . . . . 15

Table 3 GMM and Business-cycle Parameter Summary . . . . . . . . . . . . . . . . . . 18

Table 4 Panel Summary Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Table 5 Return Regression Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Table 6 Return Regression Robustness Results . . . . . . . . . . . . . . . . . . . . . . 26

Table 7 Capitalization Rate Regressions . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Table 8 Model Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Table 9 Aggregate Calibration Regressions . . . . . . . . . . . . . . . . . . . . . . . . 38

Table 10 Identification Regressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Table 11 Identification Robustness Regressions . . . . . . . . . . . . . . . . . . . . . . 48

Table 12 Identification Auxiliary Regressions . . . . . . . . . . . . . . . . . . . . . . . . 51

viii



LIST OF FIGURES

Figure 1 Industry Concentration and Cross-sectional Evidence . . . . . . . . . . . . . . 7

Figure 2 Equilibrium Prices and Empirical Replication . . . . . . . . . . . . . . . . . . . . 41

Figure 3 Estimated Vart (sct+1) versus xt . . . . . . . . . . . . . . . . . . . . . . . . . . 52

ix



1 INTRODUCTION

This paper shows that the cross-section and time-series of long-run industry growth prospects

is a key factor in explaining the geographic differences in home prices. I use a market based mea-

sure of growth prospect to quantify the unique relationship between prospects and housing re-

turns. I document that a decline in local growth prospects is associated with a decrease in the ex-

pected housing risk premia and an increase in the price-to-rent ratio. I attribute these finding to the

hedging characteristics of housing assets and replicate them in a consumption based asset pric-

ing model in which (1) investors care about the temporal distribution of uncertainty, (2) consump-

tion of non-housing goods and housing services are exposed to time-varying, long-run growth

prospects, and (3) housing services provide a hedge against negative news about expected long-

run growth. In addition, I show strong empirical evidence of these hedging characteristics in the

geographic cross-section of consumption data.

Real estate is a significant portion of aggregate wealth in the United States. The total value

of household real estate is approximately $25 trillion, which is greater than the almost $23 tril-

lion households have in corporate equity. Even after netting this gross figure by the $9.3 trillion

in household mortgage liabilities, the portion of wealth concentrated in real estate is staggering.

U.S. GDP figures show a similar picture; expenditures on shelter account for almost 20% of the

nation’s annual consumption (Federal Reserve Q4 2015 statistical release). These aggregate fig-

ures, however, belie the inherent geographic differences in real estate wealth across the country

(see Gyourko, Mayer and Sinai (2013)).

Urban economists have shown that industries cluster for a wide array of reasons - e.g., close

proximity to suppliers or purchasers (see Rosenthal and Strange (2004) for overview of agglomer-

ation economies). Likewise, economists have studied how time variation in industry-specific pro-

ductivity drive variation in long-term economic growth (see Hsieh and Klenow (2009) and Bartels-
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man, Haltiwanger and Scarpetta (2013) for recent work). It follows from this evidence that growth

prospects of the local industry mix should be reflected in geographic differences in economic

growth and price dynamics of local (segmented) asset classes. Housing is the segmented asset

I use for my empirical analysis; its value is intimately tied to its location. For example, the struc-

tural transformation of the United States from a largely manufacturing to service based economy

has played out differently over long-horizons between the industrial Midwest and the globally in-

tegrated, finance and technology hubs on the coasts. My analysis shows that these differing eco-

nomic fundamentals have had important implications for local housing returns. This paper seeks

to understand how house prices move in the context of its role as both a local consumption asset

(i.e. provides access to local growth opportunities) and the primary store of wealth for the median

household. As such, my findings have important implications for, inter alia, the transmission of

monetary and fiscal policy to inclusive and broad sectoral economic growth, and long-run income

inequality.

I first generate a formal measure of heterogeneity in long-run expectations between different

regions; its construction depends on two assumptions. First, industry level price-to-dividend (PD)

ratios from a cross-section of 61 industries contain information about common and industry spe-

cific growth opportunities. As shown in Campbell and Shiller (1987), with all else equal, dividends

of high PD-ratio equities are either expected to grow faster or be less uncertain than those of low

PD-ratio equities. My results show there is valuable economic information in how these indus-

try PD-ratios vary through time and in the cross-section. Second, local growth prospects should

reflect the growth opportunities of the industries employing locally. Utilizing a procedure first de-

veloped by Bartik (1991), I weight industry prospects (PD-ratios) taken from the aggregate market

by the industry’s MSA (metropolitan statistical area) employment share to obtain a measure of

local prospects. Many important industries are highly concentrated - e.g., computer design and

finance (see figure (1A) for more detail). To the degree that an individual’s wealth (human capital

and real estate) is tied to their location, it is natural to think that the consumption choices and as-

set holdings of individuals living in areas where local industries have strong growth prospects will
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be different from those that do not. These two assumptions are similar to those made by Bekaert,

Harvey, Lundblad and Siegel (2007). In their study they compute measures of country-level growth

opportunities by weighting industry price-to-earnings (PE) ratios to understand the cross-section

of emerging market returns. In the same spirit, I weight industry PDs by local employment share to

understand the cross-section of MSA-level asset returns.

I run predictive regressions to show that my measure of local prospects explain a substantial

portion of variability in the cross-section and time-series of excess housing returns. I find that a

one standard deviation increase in my proxy of local prospects leads to a statistically significant

120bp increase in annual excess housing returns. In addition, I decompose my measure of local

prospects into a common (all-MSA or global) and orthogonal (local) component. A one standard

deviation increase in the global, and local component leads to an statistically and economically

significant 150bp and 35bp increase in annual excess returns, respectively. Surprisingly, although

my industry-level measures are taken from the aggregate markets, their impact is geographically

heterogenous due to differences in MSA-level employment composition. These return predictabil-

ity findings are robust to various business cycle controls from the literature (see, e.g., Abraham

and Hendershott (1994); Favilukis, Kohn, Ludvigson and Van Neiuwerburgh (2013); and Tuzel and

Zhang (2016)).

A present value decomposition of the price-to-rent (PS) ratio shows that PS-ratios are directly

proportional to expected growth in rent and inversely proportional to expected returns (similar to

Cambpell and Shiller (1987) PD decomposition). The urban economics literature finds a positive

link between expected economic growth and rent (see Glaeser and Gyourko (2005)). My pre-

dictive regression results also indicate a positive link between expected economic growth and

returns. Given the opposite sensitivities of PS-ratios to each component, I test which compo-

nent dominates by contemporaneously regressing MSA-level PS ratios onto my measure of lo-

cal prospects. I estimate the PS ratio as the inverse of surveyed cap-rates (expected operating

income dividend by net asset value) from local (62 MSAs) developers of multi-family residential

properties from Integra Realty Resources (IRR). I find that a one standard deviation increase in
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local prospects lowers the log price-to-rent by more than 500bps. The negative coefficient implies

that the expected return dominates the expected rent channel.

These risk based results stand in contrast to the findings of traditional predictive regressions.

In the equity market better prospects, which are typically associated with high PD-ratios, usually

imply less risk and therefore lower expected excess returns going forward (see Campbell and

Shiller (1988); Cochrane (2008); Lewellen (2004)). The key difference between housing and other

consumption assets, however, is the relative durability of the services that it provides. Housing is

an extremely durable asset: when local prospects are good they strongly influence plans to build

infrastructure and locate close to suppliers of capital and labor (i.e. agglomeration economies).

Once in place these pieces are both permanent in nature and geographically specific. For exam-

ple, New York City and San Francisco will likely continue to be centers of finance and technology

regardless of higher frequency economic fluctuations. Thus, in the context of risk to housing, this

permanence acts as a hedge against negative shocks to long-run local growth prospects. Urban

economists have argued that the durability of physical structures is key to understanding many

multi-decade phenomena in urban and labor economics (see Glaeser and Gyourko (2005) and

Notowidigdo (2013)). My argument is similar regarding the durability of the location specific ser-

vices housing provides.

To formalize how this characteristic impacts the profile of housing returns, I proposes a con-

sumption based model that is centered around the problem of a representative MSA. The MSA

is inhabited by an investor with Epstein and Zin (1989) recursive preferences defined over hous-

ing and non-housing consumption goods. I specify endowment processes for the growth rate of

consumption of non-housing and housing services of the representative MSA. Both endowments

are exposed to a highly persistent state variable. However, while the growth of the non-housing

endowment is symmetrically exposed to growth prospects - i.e. the endowment both conditionally

expands and contracts with the state variable - the growth rate of the endowment of housing ser-

vices is durably exposed. That is, housing services expand when prospects are good, but do not

contract when prospects are bad.
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First, recursive preferences are required to price persistent dynamics, such as those of my

measure of local prospects (see inter alia Bansal and Yaron (2004), Colacito and Croce (2011,

2013)). Second, the persistence of my state variable contains important information in that its

fluctuations embed long-horizon implications. This feature has immediate intuitive appeal when it

comes to the pricing of long-lived assets such as housing. The asymmetric exposure to prospects

reflects the hedging quality of housing services; once they are “built” they are difficult to take away.

In addition, both non-housing and housing endowments have short-run i.i.d. shocks. These shocks

reflect higher frequency business-cycle or MSA-level idiosyncratic shocks.

This simple setup means that the endowment of housing is exposed to two sources of risk

when growth prospects are high (short- and long-run), but only one when growth prospects are

low (short-run). The expected risk to housing thus becomes a function of the conditional probabil-

ity of being in a high expected growth state tomorrow. In addition, as growth prospects are highly

persistent, this probability is increasing in the expected growth rate of consumption, giving the re-

turn profile characteristics of a regime switching model. I then replicate my empirical results by

simulating 375 MSAs over 40yrs and conduct both the predictive excess return and contempora-

neous PS-ratio regressions on generated data. My average coefficients are close to their empirical

counterparts. A one standard deviation higher growth prospect leads to a 110bp increase in ex-

pected return. The model illustrates how durability of housing services with respect to long-run

growth prospects generates time varying volatility in the ratio of housing services versus non-

housing consumption (henceforth relative consumption), which has immediate implications for

return and pricing dynamics.

Finally, I provide empirical support for the key assumption of my model: the asymmetric ex-

posure of housing services to long-run growth prospects. I use the BLS consumer expenditure

survey (CEX) data to test for these dynamics in the cross-section of MSAs. The evidence of asym-

metry is statistically significant and economically large. During bad economic times (i.e. growth

prospects are below their long-run mean), a one standard deviation fall in prospects leads to a

1000bp rise in relative consumption. During good economic times, a one standard deviation rise
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in prospects leads to a much smaller rise in relative consumption. This suggests that the local

households raise consumption of housing services in lock step with non-housing consumption dur-

ing times of good long-run economic prospects, but do not drop them as much as non-housing

consumption during bad times. This evidence is not present in renter consumption data; I find that

a one standard deviation fall and rise in long-run growth prospects lead to an equally large rise

and fall of relative consumption. This suggests that “sticky” contracting issues are not the primary

driver of my results. I also confirm the profile of time varying volatility in the data. The variance

of relative consumption increases by more than 700bps from the low to high variance regime.

Given the high persistence of the underlying economic state variable, this increase in variance

has a long-horizon impact on housing consumption decisions. This verifies the model’s primary

risk channel.

The paper is organized as follows. Section (2) develops my research question using condi-

tional correlations between local economic growth prospects, output and housing returns. Section

(3) describes the contribution of my work to existing literature. Section (4) describes the data used

and variables constructed for my analysis. Section (5) has my first set of empirical results, which

motivates the connection between geographic heterogeneity in long-run prospects and excess

housing returns. Section (6) presents my model and quantitative results. Section (7) identifies

durability and the time-varying volatility channel in the cross-section of consumption data. Section

(8) concludes.
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2 MOTIVATIONAL EVIDENCE

I use the aggregate industry PD ratio to obtain measures of industry-specific growth oppor-

tunities for two reasons. First, I would like my measure to reflect heterogeneity in prospects only

because of geographic differences in industry clustering. Second, given its durable nature and

role as both a consumption good and component of wealth, housing is exposed in a fundamentally

different way than stocks, both in magnitude and direction, to long-run sources of economic risk.

It’s important that my measure captures this difference. In this section, I’ll show evidence that my

measure of long-run growth prospects satisfies both requirements.

2.1 Low Frequency Cross-sectional Evidence

Location specific measures of prospects (e.g., price-to-rent) are 1) limited in availability and

quality, and 2) confounded by geographic-specific information orthogonal to long-run growth prospects

(e.g., weather or regulatory factors). To better motivate the specific type of geographic risk in

which I am interested, I conduct a few conditional correlation tests using my main measure of local

prospects. In figure (1B) I project the average (1991-2000) local, employment share weighted PD-

ratios onto the map of the continental United States. I split their values into five equally sized buck-

ets (green-yellow-red scale). The highest PD-ratios occur on the technology and banking heavy

coastal areas, whereas the lowest PD-ratios occur in the industrial Midwest. In figure (1C), I show

the subsequent real per-capita output in the same MSAs over the subsequent decade (2001-

2010). The intra-decade spatial correlation of the two cross-sectional samples is almost 50% and

significant at a 5% level. This suggests that my localized measure of prospects does a good job of

predicting long-run future output growth. In figure (1D), I do the same for average MSA-level hous-

ing excess price appreciation for 2001-2010. The coasts and Midwest also have the highest and
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lowest excess price appreciation, respectively. The intra-decade spatial correlation between these

returns and the local average PD from 1991-2000 is more than 60% and significant at a 5% level.

There seems to be strong association between geographic heterogeneity in output and housing

returns and differences in industry prospects and employment composition.

2.2 Time-series Evidence

Table (1) highlights the difference between housing and stocks in their exposure to long-run

growth prospects using times-series regressions on aggregate indices on a quarterly basis. Col-

umn (1) is the classic Campbell and Shiller (1987) result using data from 1953-2014; the excess

return of the stock market is regressed onto my economic state variable, the lagged market PD

ratio (xglobal
t−1 ). The state variable predicts excess returns on housing with a statistically significant

negative coefficient. This results fits the intuition that high PD-ratios reflect a conditionally better

economic environment, signifying lower economic risk. The marginal agent thus demands a lower

risk premia in such circumstances. Cochrane (1994), Bansal and Yaron (2004), Lettau and Ludvig-

son (2005) and others have explored the underlying economic drivers of this result. In column (2)

I regress housing excess returns onto my state variable. Aggregate economic prospects predict

aggregate housing returns with a positive and statistically significant coefficient.

The balance of columns in table (1) are for robustness. As Ghysels, Plazzi, Torous, Valkanov

(2012) point out, returns estimated from repeat sales indices are by construction highly persis-

tent. In column (3), I add the lagged excess return to the regression in order to pre-whiten the

data. The excess return measure is still positive and statistically significant. Finally, in the last two

columns, I perform the same predictive regression on the REIT total return indices from the CRSP

Ziman real estate data series. Columns (4) and (5) are the result of regressing excess returns

from the general REIT universe and multi-family home REITS, respectively, onto my state variable.

The sign remains the same although the statistical significance falls as REIT data is only avail-

able starting in the early 1980s. The key difference in risk dynamics between stocks and housing

seems to be that the risk premia to housing falls when long-run economic prospects are bad. That
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Table 1: Predictive Regressions

This table reports results from predictive regressions of excess returns for the stock and hous-
ing markets onto the lagged market price-to-dividend, my state variable of interest (xglobal

t−1 ). The re-
gressions are on quarterly data. Following the methodology of Boudoukh, Michaely, Richardson and
Roberts (2007), my measure of dividend includes share repurchases. Model (1) is the classic Camp-
bell and Shiller (1987) result using data from 1953-today. Model (2) regresses housing excess returns
onto my state variable. Housing returns are computed from the Shiller repeat sales index available
online at http://www.econ.yale.edu/ shiller/data.htm. A national estimate of rent is then added to obtain
a proper return measure (see http://www.lincolninst.edu/). The 3m T-bill rate is then subtracted from
this measure. Repeat sales indices are highly persistent and demonstrate seasonality by construction;
in model (3) I include the excess return quarter and annual lag as regressors. Columns (4) and (5) are
the result from regressing excess returns on the general REIT universe and multi-family home REITS,
respectively, onto the lagged market price-to-dividend ratio (xglobal

t−1 ). The REIT indices are from the
CRSP Ziman real estate total return data series. The sample size falls from the Campbell-Shiller to
housing return regressions because rent and REIT data is only available after the 1980s.

Stocks Housing
(1) (2) (3) (4) (5)

xglobal
t−1 −0.0347∗ 0.0241∗∗∗ 0.0081∗∗ 0.0435 0.0567∗

[−1.92] [3.77] [2.26] [1.39] [1.81]

F-statistic 3.673 14.189 67.561 1.927 3.293
p-value 0.057 0.000 0.000 0.168 0.072
Observations 236 132 128 128 128

is housing acts as a hedge against downside risks to long-run economic prospects. This result

corroborates the findings from the low frequency cross-sectional correlations in the previous sec-

tion, but at a much higher frequency.
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3 LITERATURE

This paper extends work done in the long-run risk asset pricing literature. Bansal and Yaron

(2004) show that highly persistent, low-frequency dynamics in consumption and recursive pref-

erences (collectively known as long-run risk) are important in explaining the equity risk premia

puzzle. Colacito and Croce (2011, 2013) utilize these same dynamics and preferences to better

understand key international asset pricing dynamics such as the currency risk premia. My empir-

ical specification is similar to that of Gomes, Kogan, and Yogo (2009) and Eraker, Shaliastovich

and Wang (2016) in that I attribute heterogeneity in asset price dynamics to heterogeneity in long-

run dynamics of different firms or industries.

This paper also relates to a strand of the macroeconomic literature that links housing to asset

prices and consumption behavior. Piazzesi, Schneider and Tuzel (2007) show that non-separable

composition risk between housing and non-housing consumption can explain a significant por-

tion of the equity premium puzzle. Lustig and Van Nieuwerburgh (2005, 2009) find connections

between housing collateral, consumption and asset prices. My objective is somewhat more funda-

mental in that I seek to understand how persistent local growth prospects impact the risk premia of

home prices because of their inherent geographic heterogeneity rather than vice versa.

My geography-centric approach is largely related to work done in urban economics. Begin-

ning with Rosen (1979) and Roback (1982), urban economists have used spatial general equilib-

rium models to understand geographic heterogeneity in home prices and productivity.1 In terms of

higher frequency home fluctuations, Glaeser, Gyourko, Morales and Nathanson (2014), show that

a spatial equilibrium model with durable housing and lagged investment, explain certain housing

return “puzzles.” Their model and calibration, however, largely ignores the importance of time-

1See Glaeser and Gyourko (2005); Glaeser, Gyourko, and Sacks (2005); Van Nieuwerburgh and Weill (2010); Kline
and Moretti (2016); and others.
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varying expectations and risk aversion in prices. Hizmo (2015) blends a spatial equilibrium with a

real business cycle model to estimate the housing risk-premia in different cities. While risk aver-

sion plays an important role, agents ignore conditional dynamics of expectations when making

decisions on how much housing services to consume.

Finally, my empirical analysis is related to the growing literature connecting location to eco-

nomic activity and fundamentals. Dougal, Parsons and Titman (2015) illustrate the strong relation-

ship in investments between firms in close geographic proximity. Engleberg, Ozoguz and Wang

(2010) show strong comovement in fundamentals of firms in the same industry cluster. More re-

cently Tuzel and Zhang (2016) explore how the cyclicality of the local economy influences real

estate and asset prices. My work differs from theirs in the “frequency” of fluctuations in which I am

interested. While they primarily explore business-cycle dynamics, I attempt to capture the effects

of much longer economic cycles on house prices.

12



4 DATA AND VARIABLE CONSTRUCTION

In this section I present the sources of my data and the methods used to validate my estimate

of long-run prospects. I first introduce my aggregate measure of industry output. I then extract my

industry-level measure of prospects and show that it strongly predicts the industrial cross-section

of real per-capita output. I weight this measure of prospects using MSA-level employment compo-

sition data to obtain a local measure of long-term growth prospects. My methodology follows that

of Bekaert, Harvey, Lundblad and Siegel (2007). In keeping with an established literature, I occa-

sionally refer to these prospects as long-run risk (see Bansal, Kiku and Yaron (2012) and Colacito

and Croce (2011) for references).

4.1 National Data Computation

My measure of aggregate industry output is from The Bureau of Economic Analysis (BEA) -

US-wide (aggregate) value-added and employment data for approximately 60 broad industries

running from 1947 to today. The data is primarily at the 3 digit NAICS (North American Industry

Classification System) or 2 digit SIC (Standard Industry Classification) level. The NAICS data is

available from 1977 to today and SIC data from 1947 to 1997. I convert this data into a single clas-

sification system to properly identify the strengths of my measure of long-run industry prospects

(see section (4.3)). In order to best capture the more contemporary trends in GDP and employ-

ment away from manufacturing towards information technology and services, I convert the older

(SIC) to the newer (NAICS) system.

Unfortunately, there is not a 1-to-1 conversion between BEA-available SIC and NAICS ac-

counts. I utilize the 1-to-N crosswalk between 3-digit SIC and 6-digit NAICS codes available from

the Bureau of Labor Statistics (BLS) to conduct my conversion for non-overlapping years for both
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output and employment (see APPENDIX A for details on my conversion algorithm). Table (2A)

provides the summary statistics of the NAICS to SIC conversion weights. I now have an estimate

for value-added GDP and employment from 1947-2012 for a single industry classification. The

value-added GDP data is deflated by industry specific deflators. A per-capita measure is com-

puted by dividing each industry’s value-added GDP by its employment figure.

4.2 Price-to-dividend Computation

The regressions presented in section (5) require an estimate of the price-dividend (PD) ratios

for the same 61 NAICS industries for which I now have value-added GDP. I compute PD ratios us-

ing data from the Center of Research in Security Prices (CRSP).2 Following Boudoukh, Michaely,

Richardson and Roberts (2007), I also include share buybacks in my measure of dividend (see

APPENDIX B for details). Including this payout is critical in comparing industry prospects due

to heterogeneity in repurchases yields (RPt ) across industries. This is similar to what is done by

Gomes, Kogan and Yogo (2009), although on a more disaggregate industry basis.

For my analysis, I require both annual and quarterly PD ratios. Given its monthly frequency,

the dividends from CRSP are simply summed on both basis. For example, if there are N compa-

nies within industry i, dividends for annual or quarterly t are summed if they are in (t−m, t), where

m is 11 and 2 for each frequency, respectively. The dividend yield is thus

DPi
t =

∑
t
k=t−m ∑

N
j=1
(
ShrOut j,k

)(
Div j,k

)
∑

N
j=1
(
ShrOut j,t

)(
Px j,t

) .

For CRSP data, quarterly seasonality is minimal so this simple change in index is sufficient

to obtain accurate yields at both frequencies. This is not the case with repurchases, where taxes

and regulatory considerations affect timing of company actions. For my quarterly projections, I

thus evenly divide a given year-industry’s annual repurchases over the four quarters. My PD ratio

measure is the inverse of dividend and repurchase yield, 1/(DPt +RPt).

2See van Binsbergen and Koijen (2010) for references. CRSP distribution codes are restricted to all cash ordinary
(code 1xxx) and liquidation dividends (codes 2xx2/2xx8).
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Table 2: Pre-regression, Conversion Statistics

I use the crosswalk between 3-digit SIC and 6-digit NAICS codes from the Bureau of Labor Statis-
tics (BLS) to convert SIC to NAICS GDP. Indicators are given to each correspondence and then rolled-
up to the BEA-available primarily 3-digit SIC level. The first line of Panel A provides summary statistics
of how many NAICS industries each SIC account converts. The BEA SIC and NAICS GDP and em-
ployment data also have common years from 1977 to 1997. As detailed in APPENDIX A, using this
1-to-N correspondence and the common years, I use a iterative algorithm to estimate SIC-to-NAICS
conversion weights for the years NAICS data is not available. The balance of Panel A provides pro-
vides the summary statistics of these estimated weights over various subsamples. Panel B are the
summary statistics of my price-to-dividend ratio from 1947-2011. Cash dividend (distribution codes
1xxx and 2xx2/2) yields are estimated from the full CRSP database - I sum the dividends paid by a
given industry (for PDind

t ) or the “market” (for PDmkt
t ) over either the quarter or year and then divide by

the total market capitalization on the last month of said period. Intra-period dividends are reinvested at
the risk-free rate. Repurchase yields are computed from COMPUSTAT data. I compute repurchases
following Boudoukh, Michaely, Richardson and Roberts (2007). In order to remain internally consis-
tent, I remove each industry’s price and dividend information in the measure of its market PD-ratio.
PD-ratios are the inverse of the cash dividend plus repurchase yields.

A: SIC-to-NAICS Statistics

N Mean p25 p50 p75 max/min

SIC-to-NAICS Count 60 4.13 2.00 3.50 5.00 19.00

1977-1997 weights:
Employment 247 0.24 0.02 0.12 0.35 0.00
Value-added GDP 247 0.24 0.02 0.12 0.33 0.00

1977-only weights:
Employment 247 0.24 0.02 0.12 0.33 0.00
Value-added GDP 247 0.24 0.02 0.11 0.32 0.00

1997-only weights:
Employment 247 0.24 0.02 0.11 0.35 0.00
Value-added GDP 247 0.24 0.01 0.11 0.32 0.00

B: Price-to-Dividend Statistics

Composition PD statistics
n(max) n(min) mean sd skewness kurtosis

log(PDmkt
t ) : 8806 721 4.62 0.30 -0.11 2.49

log(PDind
t ):

p25 49 2 4.62 0.41 -0.20 2.75
p50 106 4 4.75 0.48 0.13 3.38
p75 219 15 5.02 0.76 0.71 5.14
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Summary statistics of my PD measure are presented in table (2B). As can be seen, over my

sample there is sharp increase in the number of companies at both the market and industry-specific

level over time. For example, during the early years almost 25% of industries have 3 or less char-

acteristic firms in my PD-ratio estimate. The sharpest increase in firm composition comes be-

tween the years 1960 to 1975, during which the AMEX and NASDAQ were introduced to CRSP.

4.3 Validity of Price-to-dividend

The premise of my analysis is that industry PD-ratios embed realistic expectations of an indus-

try’s future cash flow and riskiness. In this section, I use a predictive regression approach, initially

used in work by Harvey (1988), to show that this is in fact the case. More recently, Bansal, Kiku

and Yaron (2012) and Colacito and Croce (2011, 2013) use a similar approach in the long-run risk

context. Specifically, I show that the past industry and market PD-ratios computed in section (4.2)

project next period industry value-added GDP growth computed in section (4.1). Assuming that

expectations of GDP growth are, on average, correct, this intuition is captured in a simple regres-

sion for industry i,

∆yi,t+1 = βpdi,t + εi,t+1,

where lower case letters signify the log of each variable.

I can take this intuition a step further by decomposing the information embedded in a given

industry’s PD-ratio into two orthogonal components. Either industry i’s cash flow is directly tied

to broader underlying economic activity (e.g., shift from manufacturing to information technol-

ogy) or its distributional characteristics provide diversification benefits to the agent. In both in-

stances these dynamics are appropriately captured by the industry PD-ratio’s co-movement with

the market-wide PD-ratio. Industry i’s PD-ratio can also reflect industry-specific considerations.

This dynamic is captured by the residual from the decomposition regression. In addition, the risk-

free rate embeds information about market-wide prospects or long-run risk (see Bansal and Yaron
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(2004)). I thus include the annualized 3m treasury bill rate in the projection. Finally, these long-run

expectations of output and riskiness tend to be extremely persistence. I capture this persistence

as an AR(1) process. The motivating idea is that investment decisions, especially those of large

scale, entail projecting economic growth substantially in the future and are usually made ignoring

higher frequency, “temporary” economic (e.g., business) cycles. For example, Croce (2014) and

Colacito, Croce, Ho and Howard (2013) use persistent AR(1) process in TFP growth to capture

previously unexplained production and asset price puzzles.

My primary system of equations for any industry i is thus,

pdi,t = γi pd−i,t +ηi,t , (1)

∆yi,t+1 = βi pd−i,t +αiηi,t +δir
f
t + ei,t+1,

xi,t = βi pd−i,t +αiηi,t +δir
f
t = ρixi,t−1 + εi,t .

The first equation of system (1) captures the decomposition of the industry PD-ratio onto its

market (captured by γ) and industry-specific (ηt ) components. In order to remain internally consis-

tent, I remove each industry’s price and dividend information in the measure of its market PD-ratio

(i.e. pd−i,t ). The second equation of system (1) is the projection or predictive regression. If the

PD-ratio embed information about long-run expectations of industry cash flows, a negative β and

α implies that agents ascribe “safety” to the industry’s cash flows. Intuitively, one would assume

non-durable industries, such as food-manufacturing, would exhibit negative βs, whereas tech-

nology related industries, such as computer-manufacturing, would exhibit positive αs. The third

equation of system (1) parameterizes the persistence of these expectations.

For statistical inference, I jointly estimate each industry’s α, β, γ, and δ coefficients using GMM

(see APPENDIX C for orthogonality conditions). Separate GMM regressions are run for each

of my 61 NAICS industries from 1948 to 2012 with annual data. Table (3A) gives the results of

this estimation for the main parameters at the 25th, 50th, and 75th percentiles. The β coefficients

and volatility of the estimated conditional component, xt , match closely to those in Colacito and
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Table 3: GMM and Business-cycle Parameter Summary

This table reports the GMM parameter statistics from section (4.3). Separate GMM regressions
are run for each of my 61 NAICS industries from 1948 to 2012 with either annual (Panel A) or quarterly
(Panel B) data. This allows me to jointly estimate my projection equations. The moment conditions for
the quarterly GMM require minor modifications due to the mixed-frequency data. Those details are in
APPENDIX D. In addition, I provide results of a Wald statistic that test whether the main projection
coefficients are jointly different than zero, and estimates of the business-cycle beta from equation (2).
Results are given at the 25th, 50th, and 75th percentiles.

A: Annual Parameters and Statistics

count mean sd p25 p50 p75

Idiosyncratic P/D, α 61 -0.001 0.037 -0.016 0.000 0.007
Market P/D, β 61 0.019 0.032 0.001 0.009 0.037
Decomp. Coef., γ 61 1.014 0.467 0.804 0.937 1.116
Risk-free Rate, δ 61 0.021 0.274 -0.089 0.010 0.097
LRR Persistence, ρ 61 0.630 0.206 0.519 0.681 0.774
Wald p-values, α = β = δ = 0 61 0.319 0.356 0.007 0.111 0.625
Variance ratio, σ2

lrr/σ2
∆y 61 0.032 0.037 0.005 0.019 0.044

Business-cycle, βbc 61 0.550 0.665 0.200 0.447 0.697

B: Quarterly Parameters and Statistics

count mean sd p25 p50 p75

Idiosyncratic P/D, α 61 -0.001 0.005 -0.002 -0.000 0.001
Market P/D, β 61 0.002 0.007 -0.002 0.001 0.004
Decomp. Coef., γ 61 0.982 0.524 0.652 0.878 1.145
Risk-free Rate, δ 61 0.001 0.084 -0.035 -0.000 0.037
LRR Persistence, ρ 61 0.971 0.024 0.961 0.979 0.989
Wald p-values, α = β = δ = 0 61 0.170 0.259 0.000 0.026 0.226
Variance ratio, σ2

lrr/σ2
∆y 61 0.003 0.004 0.000 0.001 0.003

Business-cycle, βbc 61 0.550 0.665 0.200 0.447 0.697

18



Croce (2011) and Bansal, Kiku, Yaron (2012). In addition, high and low β industries are largely

composed of durables (e.g., autos) and non-durables (e.g., food), respectively. In addition, the null

for the Wald test α = β = δ = 0 is rejected for nearly 50% of the industries at a 5% level, pro-

viding evidence that past PD-ratio provide insight into future industry output. Much of the data I

use can also be extracted at an quarterly frequency. Table (3B) shows that higher frequency data

yields even stronger evidence of this predictive relationship (see APPENDIX D for methodology).

My result validate the usefulness of industry price-to-dividend as a measure of prospects. For the

specifications where an industry’s PD-ratio is split into its market and industry components, I sim-

ply use γi pd−i,t and ηi,t from system (1), respectively. Given the nomenclature used in system (1),

henceforth pdi,t , γi pd−i,t , ηi,t will be referred to as xi,t , xglobal
i,t and xlocal

i,t , respectively.

4.4 Other Independent Variables

From the Campbell-Shiller decomposition (see APPENDIX E for derivation), one can see that

the PD-ratio is a convolution of expected dividend growth and expected returns. Given the eco-

nomic story I developed in section (2), it would seem that the cash flow rather than the return com-

ponent of the PD-ratio would be the primary driver of real estate dynamic. I exploit the standard

ICAPM risk and return relationship to derive a measure of long-run industry prospect that seeks to

extract only the cash-flow portion from the industry price-to-dividend ratios (see APPENDIX F for

details). I refer to the alternative measure of industry prospect as xc f
t .

In addition, it is important that I isolate the impact of long-run industry prospects on housing

returns from those of higher frequency (henceforth business cycle) dynamics. Previous literature

has shown that housing returns are strongly effected by cycles of higher frequency (see Davis and

Heathcote (2005) for literature overview). For my analysis in section (5), I use three measures of

business cycle risks that are motivated in Tuzel and Zhang (2016). Two utilize the beta estimate,

βbc, from regressing my annual industry value-added GDP onto annual national GDP growth, i.e.

∆yi
t = βbc

4

∑
q=1

∆yq,t . (2)
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Details of the construction of these three measure are provided in the next section. The sum-

mary statistics from the cross-section of βs from this regression are also provided in tables (3A)

and (3B).

In summary, given consistent parameter estimates at two frequencies, I am comfortable con-

structing point estimates of the long-run industry prospects, xt , for all 61 aggregate NAICS indus-

tries. In addition, following Tuzel and Zhang, I estimate business cycle variables for these same

industries. The next step is to “localize” these aggregate measures.

4.5 Construction of Local Variables

I weight each industry variable estimated at the aggregate level with the industry’s employ-

ment share at the local MSA level and then sum to obtain my local variable. In the urban and labor

economics literature this methodology is called the Bartik (1991) procedure and is used to gener-

ate measures of local “demand” from aggregate market measures (see Bound and Holzer (2000),

Autor and Duggan (2002) and Luttmer (2005) for applications). In the financial context, Bekaert,

Harvey, Lundblad and Siegel (2007), Davidoff (2015), and Tuzel and Zhang (2016) have motivated

similar approaches in their analysis. I use the procedure to connect aggregate industry prospects

to growth prospects of local economies.

For example, my MSA-level long-run prospect measure for any period, t, and MSA, msa, is

xmsa,t =
I

∑
i=1

si,msa,txi,t , (3)

where si,msa,t is the fraction or share of total employment of industry i in msa at time t. My source

of MSA-level employment data is the BLS quarterly census of employment and wages (QCEW)

data. Applying the Bartik procedure, even dynamics that vary across only industry (e.g., βbc) will

now vary in both space and time due to changes in employment composition - e.g., βbc becomes

βbc
msa,t .

Given that geographic definition of MSAs are periodically updated with the addition and dele-
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tion of counties, it is important that my employment shares are consistent with my main dependent

variable, the MSA-level FHFA excess housing returns. I thus download county level employment

data and aggregate up to the MSA using the most recent BLS county-to-MSA crosswalk. My re-

gressions are also supplemented with four measure of business-cycle variation for each MSA. The

first is simply βbc
msa,t . The second is the aggregate GDP growth, ∆yt . The third is the expectation

of industry GDP growth given its beta exposure to the GDP shock, i.e. βbc
msa,t−1×∆yt . Finally, em-

ployment growth itself may be an important predictor of real estate returns. The fourth addition is

thus the MSA Bartik-localized employment growth, ∆empmsa,t .

Tables (4) provide summary statistics for my primary MSA-level dependent and independent

variables of interest. Most of my independent variables show significant non-normal behavior. This

is suggestive of persistent dynamics and correlated errors across MSAs. In my regressions, I thus

control for correlations in errors by clustering standard errors along either the MSA or time dimen-

sion and add MSA-level and date fixed effects. Additionally, my empirical analysis explains fluctu-

ations in the housing risk premium not the gross housing returns; this is an important distinction

versus some of the work listed in section (3). Given that the risk-free rate is expected to be higher

during good economic times, it would be unsurprising to find that xt , my local PD ratio, predicts

the gross real return to housing as well. In other words, housing returns, asset returns and the

risk-free may have common cycle components; by using the housing risk premia rather than real

returns as my independent variable, I should be able to better identify the main drivers of long-run

heterogeneity in house price dynamics. The lagged 3m risk-free security yield is subtracted to ob-

tain my MSA-level housing excess price appreciation, rp
t .
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Table 4: Panel Summary Statistics

This table reports summary statistics of my estimated MSA-level dependent variable and re-
gressors using the annual and quarterly frequency data. I localize these regressors by following the
Bartik (1991) procedure - each industry variable I estimate at the aggregate level is interacted with the
MSA-level employment share and then summed at a MSA-level. Summary statistics are also given on
samples collapsed either cross-sectionally (375 MSAs) or by time-series (35yrs). rp

t is the excess price
appreciation estimated by the MSA-level FHFA repeat sales indices. x̂t is my industry specific measure
of long-run risk - the demeaned industry pd-ratios, ε̂t is the residual from system (1), βbc is the busi-
ness cycle beta computed from equation (2) and ∆empt is the employment share weighted average
aggregate industry employment growth.

Annual Panel Quarterly Panel
mean sd skewness kurtosis mean sd skewness kurtosis

Full panel:
rp
t -0.011 0.065 -0.636 13.005 -0.003 0.026 -0.477 39.929

xt 0.074 0.396 -0.309 1.884 0.051 0.342 -0.158 1.893
ε̂t 0.020 0.269 0.441 3.043 0.009 0.146 0.082 4.481

β̂bc
t 0.462 0.058 1.232 11.129 0.462 0.059 1.150 12.074

∆empt 0.012 0.021 -1.100 5.420 0.003 0.004 -0.509 2.925

Time-series:
rp
t -0.010 0.057 -0.214 3.998 -0.002 0.024 -0.474 7.116

xt 0.086 0.395 -0.390 2.086 0.061 0.338 -0.215 1.998
ε̂t 0.022 0.273 0.431 2.932 0.010 0.146 0.105 3.829

β̂bc
t 0.462 0.032 0.029 2.576 0.462 0.032 0.046 3.005

∆empt 0.012 0.021 -1.209 5.164 0.003 0.004 -0.578 2.677

Cross-section:
rp
t -0.011 0.061 -0.295 4.213 -0.003 0.025 -0.517 7.812

xt 0.061 0.396 -0.266 1.941 0.040 0.337 -0.119 1.925
ε̂t 0.016 0.270 0.446 3.003 0.007 0.145 0.112 3.820

β̂bc
t 0.463 0.032 0.036 2.569 0.463 0.032 0.056 3.112

∆empt 0.013 0.021 -1.084 5.002 0.004 0.004 -0.530 2.712
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5 HOUSING DYNAMICS ANALYSIS

5.1 Return Regression

My full regression specification is,

rp
msa,t = bxxmsa,t−1 +Time FE+MSA FE+Controls+ εmsa,t . (4)

My business cycle control variables from section (4) are βbc
msa,t−1, which captures the expo-

sure or β of the local industry mix to changes in aggregate gdp; the interaction of this β and ag-

gregate GDP growth, βbc
msa,t−1×∆yt ; and the five year average local industry employment growth,

∆empmsa,t−1. Given that I have time fixed-effects, variation in credit supply and contemporaneous

shocks to GDP, will not drive my results (see Favilukis, Kohn, Ludvigson and Van Nieuwerburgh

(2013) for discussion). This is especially important due to the credit boom-bust cycle from 2006-

2009. In addition, I include the lagged MSA return premia, rp
msa,t−1, as a control due to the highly

degree of autocorrelation in return measures computed from repeat-sale indices (see Ghysels,

Plazzi, Torous, Valkanov (2012)).

My primary coefficient of interest is bx. In section (2) I showed that a geographic concentration

of high PD-ratio industries today seems to imply greater excess price appreciation going forward.

xmsa,t is a employment weighted average of the PD-ratios of industries within a particular MSA. I

would thus expect that bx is positive and significant. I conduct this analysis for annual xmsa,t ; the

results are presented in table (5). All variables are standardized, representing the marginal effect

from a one standard deviation move in the regressor.

bx is significant in the expected direction. A one standard deviation higher measure of prospects

implies a greater than 120bp higher price appreciation in the next period. In column (2) I split my
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Table 5: Return Regression Results

This table reports the regression results of equation (4) given annual data. I cluster standard er-
rors along MSA. The repeat-sales method used to computed the FHFA price indices has a high degree
of autocorrelation in returns by construction. I thus include the lagged MSA return premia, rp

t−1, as a
control. Model (1) is the regression on the full sample. Model (2) splits my measure of long-run local
growth prospects into its market-wide (global) and MSA-specific (local) components. Model (3) adds
the Tuzel and Zhang (2016) motivated business cycle variables. Model (4) adds the estimated local
expected employment growth. Model (5) uses the MSA-level rental data from Campbell, Davis, Gallin
and Martin (2009) for a cross section of 23 MSAs from 1975-2007. As this regerssion limits the time
series and cross-section, I do not include MSA and time fixed effects, but rather cluster along both di-
mensions. I also add the credit supply variable from Favilukis, Kohn, Ludvigson and Van Nieuwerburgh
(2013). *, **, and *** denote significance at the 10%, 5%, and 1% levels.

(1) (2) (3) (4) (5)
β

[t-stat]
β

[t-stat]
β

[t-stat]
β

[t-stat]
β

[t-stat]

xmsa,t−1 0.0126∗∗∗ 0.0120∗∗

[6.29] [2.32]
x̂global

msa,t−1 0.0155∗∗∗ 0.0141∗∗∗ 0.0175∗∗∗

[10.42] [8.43] [8.73]
x̂local

msa,t−1 0.0036∗∗ 0.0038∗∗ 0.0036∗∗

[2.21] [2.34] [2.24]

Inc. rp
t−1 + + + + +

Inc. ε̂t + + + + +
BC Controls + + +
Inc. ∆empt−1 + +
FKLVcs +

Observations 10,003 10,003 10,003 10,003 586
R2 0.5078 0.5084 0.5089 0.5100 0.5349
Wald Test 0.0000 0.0733 0.0001

measure of industry long-run prospects into its market-wide (x̂global
i,t = γi pd−i,t ) and orthogonal

industry-specific (x̂local
i,t = ηi,t ) components in the regression (see equation (1)). These are em-

ployment share weighted according to equation (3) to obtain a common, xglobal
msa,t and local, xlocal

msa,t ,

portion of long-run prospects across MSAs. Both parts of long-run prospects load significantly and

positively on expected future price appreciation. In addition, I test if disentangling these orthogo-

nal components give us any additional predictive power. The null that the coefficients are equal is

24



rejected as seen by the Wald Test p-value. Column (3) and (4) add the business cycle variables.

While the business cycle regressors contribute to explaining the variation in excess returns (see

Wald tests p-values), they explain substantially less than the long-run prospect derived variable

(xmsa,t ). Finally, our measure of price appreciation is not a proper total return measure as it does

not include rent. Campbell, Davis, Gallin and Martin (2009) derive a measure of rent for a cross

section of 23 MSAs from 1975-2007 using Census data. I add rent to the price appreciation and

limit the regressions to these years and MSAs. The results are in column (5). As the cross-section

and time series are now limited, I no longer include MSA and time fixed effects, but cluster along

both dimensions following Petersen (2009). All results point to the same conclusion - the better the

conditional prospects the higher the expected returns next period.

5.2 Robustness

My results are robust to a variety of tests which I present in table (6). The first two columns

remove observations from the full-sample due to limitations of my data. First, as as described in

section (4.5), employment data between 1975-1989 was converted using the national employment

conversion matrix estimated by my Guass-Newton algorithm in section (4.1). I thus run equation

(4) on only the > 1989 sample, which reduces the number of observations by nearly 25%. The

significance of the regressors remains. Second, the QCEW database suppresses a substan-

tial number of county-industry employment figures due to disclosure restrictions. This is more

prevalent in less populated counties; during the computation of employment weights, I thus de-

fine a variable that captures the percentage of industry-county employment information that is

suppressed within an MSA. Column (2) restricts the sample over which I run regression (4) on

only those MSAs where < 10% of county-industries are suppressed. Although the sample is cut

by more than half, the statistical and economic significance of the coefficient of interest remains.

Column (3) limits the sample to the largest MSAs. Major cities tend to be the main source of a re-

gion’s economic dynamism. From an economic perspective, my findings would carry much less

importance if they were limited to smaller MSAs. Restricting the sample to MSA-level population
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Table 6: Return Regression Robustness Results

This table reports robustness results for the regressions presented in table (5). Details on standard
errors and controls are identical to those applied in that table. Model (1) uses data from 1990-2011,
which removes employment share estimates using converted employment data. Suppression of certain
count-year employment data from the QCEW may be a problem in estimating my coefficients. I specify
an indicator where each county-msa employment data is not disclosed. I then compute the percentage
of county-industries within an MSA with suppressed data. Model (2) restricts the sample over which
I run regression (4) to only those MSA-yearss where < 10% of its county-industries are suppressed.
Model (3) restricts the sample to MSA-level populations of > 680,000, which represents the top 25% of
MSA size. Model (4)- (5) tweaks my employment share measure to include lagged employment growth
to varying degrees; the tilt parameter, λ, is 1 and 5 for (5) and (6), respectively (see section (5.2) for
details). *, **, and *** denote significance at the 10%, 5%, and 1% levels.

(1) (2) (3) (4) (5)
β

[t-stat]
β

[t-stat]
β

[t-stat]
β

[t-stat]
β

[t-stat]

xmsa,t−1 0.0081∗∗∗ 0.0161∗∗∗ 0.0132∗ 0.0079∗∗∗ 0.0080∗∗∗

[4.20] [6.19] [1.89] [2.83] [2.93]

Inc. rp
t−1 + + + + +

Inc. ε̂t + + + + +
BC Controls + + + + +
Inc. ∆empt−1 + + + + +

Observations 8,087 4,589 2,565 10,003 10,003
R2 0.6213 0.4898 0.5855 0.5076 0.5073

of > 680,000, which is the 25th percentile of MSA size across my panel, the coefficient of interest

shows similar economic and statistical significance.

The area of greatest overlap between my paper and urban economics is the literature linking

local labor shocks, city population size and house prices. Glaeser and Gyourko (2005), in partic-

ular, explore how negative shocks to growth are linked to multi-decade employment growth and

house price movements. The proxy traditionally used for labor shocks is variations in employment

growth. Thus, another possible issues with my methodology is that while I weight my variables

by employment share, I ignore expectations in employment growth within my measure of indus-

try prospects. As an extreme example, assume an industry with high long-run prospects has a

current share of employment of 0% in a particular region. Expectations, however, are that em-
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ployment in that industry will grow to 10% share in the next year. One would assume that given

this scenario the industry’s prospects would contribute to the local long-run growth prospects far

beyond its current employment share. Columns (4) and (5) attempt to answer this question by

shifting MSA industry employment weights by relative average past 5-year industry employment

growth such that for each industry, i, in msa,

wi
msa,t =

empi
msa,t× exp

(
λ×∆empi

msa,t−5,t−1

)
∑

N
k=1 empk

msa,t× exp
(

λ×∆empk
msa,t−5,t−1

) .
This setup effectively shifts the weights on all variables towards industries with higher employ-

ment growth. Given that an industry’s employment growth is also an extremely persistent variable,

this analysis assumes that past growth is a good indicator of expectations of employment growth.

The quarterly regression specification was re-run with arbitrarily chosen shift parameters, λ, val-

ues of 1 (column (4)) and 5 (column (5)). These new weights were then used to localize the aggre-

gate industry dynamics to the MSA level. As seen in table (6) the results are robust to these shifts

as well.

5.3 Capitalization Rate Regressions

The motivating assumption of my empirical approach is that industry clustering generates geo-

graphic heterogeneity in local prospects. I proxy for these “local” prospects by weighting PD-ratios

of different industries by their employment share within a cross section of MSAs. A lower local

long-run prospect measure, xmsa,t signifies either lower expected cash flows, ∆ymsa,t+1+ j and/or

higher expected returns, rmsa,t+1+ j, for the local industry mix.

Housing assets, however, seem to include a hedge on xmsa,t in that expected excess price ap-

preciation is lower in bad than good times. This is implied by the robust positive coefficient when

running excess price appreciation onto the local economic state variable. This has immediate im-

plications on the price-to-rent ratios of real estate. If real estate income or rent (henceforth st ) is a
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valid proxy for the utility provided by housing, then from Campbell and Shiller (1987),

pt− st =
k

1−ρ
+

∞

∑
j=1

ρ
jEt
[
∆st+1+ j

]
−Et

[
rt+1+ j

]
, (5)

where lower case letters signify the logarithm of variables. In the spatial equilibrium models from

urban economics, housing acts as a wedge (Rosen (1979) and Roback (1982)). In order to main-

tain a no-arbitrage condition between cities, dynamics in income growth filter to both housing ser-

vices and non-housing consumption. Given that high local prospects should lead to future ex-

pected income gains, this implies that Et
[
∆smsa,t+1+ j

]
increases in xmsa,t . Additionally, from the

regressions above, expectations of future returns also increase in xt . As both cash flows and ex-

pected returns to housing assets are increasing in xmsa,t , a simple regression of the price-to-rent

ratio onto my measure of local growth prospects will clarify which channel dominates house price

dynamics.

To empirically tackle this question, I use the inverse of operating income-to-price or capital-

ization rate (henceforth cap-rates) data from Integra Realty Resources (IRR). IRR is a large real

estate valuation and advisory service provider with offices in 62 different MSAs (www.irr.com).

Annually from 1995-today IRR has been collecting cap-rate projections from major developers of

commercial property across their regional offices. I then run a simple contemporaneous regres-

sion, projecting the MSA-level cap-rates onto the local xt ,

ln
1

CapRatemsa,t
= bxxt +MSA FE+ εmsa,t . (6)

It is important to note that besides zeroing in on the the specific channel that drives the pric-

ing results of section (5), this regression also confers a robustness benefit. First, expected returns

computed via repeat sales indices (as in section (5)), tend to conflate past with future returns if

transaction volumes are extremely low as is the case in small MSAs and during economic down-

turns (see Ghysels, Plazzi, Torous, Valkanov (2012)). In regression (4) I attempted to control for

this with one-period lagged excess appreciation. The IRR data is survey rather than transactional
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Table 7: Capitalization Rate Regressions

The dynamics of long-run prospects seem to be a key driver of real estate dynamics. As seen in
sections (5) and (7), the link has both a expected return and cash flow component. This table reports
the results of regression (6), which empirically answers which process dominates. The capitalization
rate data is from Integra Realty Resources. I cluster along both the time and MSA dimension. Model
(1) runs the regression on the full sample of capitalization rates for urban multi-family home property
types. Model (2) adds the contemporaneous business cycle variables from section (4). Model (3) splits
my measure of long-run prospects into its global and local components. Model (4) and (5) seek to
mitigate spurious correlation issues as both the dependent and independent variables are highly per-
sistent. I first difference the PS-ratios and measure of long-run growth prospects. That is, I regress
the annual change in capitalization rate onto the change in local prospects (see equation (7)). Mod-
els (4) does this regression on urban multi-family home capitalization rates; model (5) on suburban
multi-family home capitalization rates. Both regressions are still clustered along the time dimension.

(1) (2) (3) (4) (5)
β

[t-stat]
β

[t-stat]
β

[t-stat]
β

[t-stat]
β

[t-stat]

xt −0.1274∗∗∗ −0.1214∗∗∗

[−6.71] [−6.92]
x̂global

t −0.0916∗∗∗ −0.0462∗∗∗ −0.0453∗∗∗

[−5.03] [−4.44] [−4.85]
x̂local

t −0.0745∗∗∗ −0.0356∗∗∗ −0.0375∗∗

[−2.97] [−3.11] [−2.90]

T-Z Beta + +
∆empt + +
FKLVcs + +

Observations 753 753 753 658 704
R2 0.489 0.536 0.540 0.213 0.211

data; to the degree that expectations will be immediately embedded in the surveyed price-to-rent

ratios, the contemporaneous regression presented in equation (6) will even better mitigated this

possible issue. Second, my return measure from earlier does not include rental income and is

thus not a proper martingale. The capitalization rate data implicitly includes a measure of rent.

Column (1) of table (7) gives the results of this regression over the sample of urban multi-

family home property types. I cluster standard errors along time and MSA and include MSA-level

fixed effects. When times are good (i.e. high xt ), the negative and statistically significant coeffi-

cient implies that the expected return impact dominates. That is in good times, the PS-ratio falls.

Column (2) adds the contemporaneous business cycle variables from section (4) - i.e. employ-
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ment growth and business cycle beta, and credit supply. As with the return regressions, both load

on these regressions, but their economic impact is smaller than that of long-run prospects. Col-

umn (3) splits my measure of long-run prospects into its global and local components. Similar to

my return regressions, both components load significantly in the expected direction. As Plazzi,

Torous and Valkanov (2010), highlight from their capitalization rate data, the cross-sectional vari-

ation in cap rates is much greater then the time series variation. Given the high degree of per-

sistence, especially in panel, of both the right and left sides of equation (6) there is concern that

these results could be spurious. As robustness, I first difference the MSA-level PS-ratios and

measure of long-run local growth prospects. That is, I’m seeing how the price-to-rent (pst ) ratios

change with local prospects,

∆psmsa,t = bglobal∆xglobal
msa,t +blocal∆xlocal

msa,t + εmsa,t . (7)

Column (2) looks at this regression for urban multi-family homes whereas column (3) focuses

on suburban multi-family homes. Standard errors for both regressions are clustered in the time

dimension. All results seem to point to the same conclusion from my initial regression - the risk

premia of housing is higher in good than bad times.
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6 ECONOMIC FOUNDATIONS

In this section, I develop a representative agent model that helps account for my empirical find-

ings. First, the decision to build and the process of consuming local specific housing services in-

volve horizons that are longer than the duration of a typical business cycle fluctuation. My agent’s

post-trade endowment is thus exposed to a low volatility, highly persistent state variable that seeks

to reflect the dynamics of my local measure of long-run growth prospects. To properly internalize

the risk to their wealth from the dynamics in long-run prospects, my agent has recursive prefer-

ences (see Bansal and Yaron (2004)).

Second, my empirical findings in section (5) suggest that when the economic environment is

bad - i.e. expectations of future cash flow is low - for firms located within an MSA, the expected

risk premia of housing decreases. This implies that housing acts as a hedge to poor long-run

growth prospects. In my model, the location specific consumption provided by housing is thus

highly durable to the downside. This downside protection generates a regime switching dynamic

in the expected excess returns to housing. The transition between these states is gradually in-

creasing in my state variable as it is a function of the probability of being in a high growth state

tomorrow given the growth state today. This setup allows me to replicate my empirical findings and

then motivates a more in-depth empirical analysis of underlying consumption behavior in section

(7).

6.1 Setup of the Economy

The MSA is populated by a representative agent with Epstein and Zin (1989) recursive pref-

erences with unit intertemporal elasticity of substitution (IES), defined over a CES aggregate of
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housing (St ) and non-housing (Ct ) goods

Ut = (1−β) ln(ut)+β lnEt [exp(θUt+1)]
θ , where (8)

ut =

[
(1−α)C

ε−1
ε

t +αS
ε−1

ε

t

] ε

ε−1

,

where θ = 1
1−γ

and is a function of risk aversion, γ, ε is the intra-temporal elasticity of substitu-

tion, and α captures the agents relative preference for housing versus non-housing consumption.

I choose to limit my analysis to unitary IES as this corresponds to the average number estimated

in the empirical literature and several theoretical studies have already employed this specification

(e.g., Tallarini (2000); Colacito, Ghysels, Meng and Siwasarit (2016)). Epstein and Zin preferences

have been used extensively in RBC models to explain asset pricing puzzles although the analysis

as been largely limited to equities, bonds, and their derivatives (e.g., Bansal and Yaron (2004); Co-

lacito and Croce (2011); Gomes, Kogan, Yogo (2009); Eraker, Shaliastovich, and Wang (2016)).

Fillat (2008) uses a similar setup as mine with housing assets being priced, but largely focuses on

its impact on equity and bond prices.

By separating the risk (captured by θ) from inter-temporal consumption decisions (captured by

IES), EZ-preferences provide a channel through which a MSA’s long-run industry prospects play

an important role in an agent’s consumption behavior. This is illustrated by the additional variance

term if I assume the agents wealth follows a log-normal distribution,

Ut = (1−β) ln(ut)+βEt [Ut+1]+β
1

2θ
Vt [Ut+1] . (9)

In the case of housing returns, this framework has immediate intuitive appeal. To the degree

housing decisions factor into an agent’s wealth, one would think that even business frequency

cycles should not rest as heavily on their mind as say 15+ year dynamics. As discussed in section

(4.3), even small shocks to my prospects carry over long-horizons due to its persistent. Its impact

is felt through the riskiness of future utility (wealth) term in equation (9).
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I complete my local economy by specifying an endowment process for the MSA’s non-housing

good and housing service consumption growth. Both contain exposure to a AR(1) predictive com-

ponent, xt . In my monthly calibration the persistence coefficient, ρ, is close to but still less than

one, and matches the average persistence of my empirical measure of local long-run growth prospects.

I assume that the endowment of both goods is a function of the same underlying state variable, xt .

This is similar to Gomes, Kogan and Yogo (2009), who assume a single aggregate productivity

measure drives production for both non-durable and durable goods manufacturing firms.

∆ct+1 = µc +φcxt +
λ

2
(st− ct)+σcec,t+1, (10)

∆st+1 = µs + Ix>0φsxt−
λ

2
(st− ct)+ϕsσces,t+1, where

xt = ρxt−1 +ϕxσcεx,t .

µc and µs are the unconditional growth non-housing consumption and housing service endow-

ments, φc and φs are leverage exposures to underlying local prospects. The first and second

equations in system (10) also include a co-integration term, λ

2 (st− ct). As highlighted by Piazzesi,

Schneider and Tuzel (2007), housing as a share of total expenditures has stationarity proper-

ties over my sample horizon; this is not the case, for example, with durable versus non-durable

goods consumption. My no-bubble condition links non-housing and housing services consumption

across time to maintain this property (see Giglio, Maggiori and Stroebel (2016) for further discus-

sion on the existence of bubbles in housing markets). The parameter λ determines the rate of

convergence of the relative quantities. In addition, I assume that the shocks in system (10) are

standard normal and orthogonal.

Housing services are broadly defined - they include everything from housing capital to agglom-

eration economies. The key difference between it and non-housing goods, is that the production of

the former is highly durable and location dependent. Both tangible and intangible infrastructure are

built so that people and companies within a particular industry can be in close proximity. However,

once built, these accumulated “benefits” cannot be easily shifted given the externalities of agglom-

33



eration. Thus, in my model, while the endowment of non-housing goods is symmetrically exposed

to xt (following Bansal and Yaron (2004)), housing services can expand in “good” times, which is

activated by the indicator variable Ix>0, but not contract in “bad.” Given that xt is a mean zero pro-

cess, the kink resides at xt = 0. The assumption of a hard kink is admittedly extreme; however,

the model captures the more general idea that in bad times housing services cannot contract at

the same rate as non-housing consumption. That is the relative, not absolute, durability of housing

services is what is important from a pricing perspective.

6.2 Financial Markets and Equilibrium of the Economy

My empirical setup effectively assumes that each MSA acts in autarky for both consumption

goods - i.e. the representative agent in each MSA consumes only the good with which he is en-

dowed. If the implied prospects of the local industry mix is high, this is immediately reflected in the

consumption endowments locally for both non-housing goods and housing services. This setup

can be motivated as a segmented or post-trade economy.

As I allow long-run prospects and thus the composition of consumption (ln St
Ct

= sct ) to be con-

ditioned on past values, both xt and sct are state variables. I solve for equilibrium of my utility func-

tion and price-to-consumption ratios using standard iteration methods along a 3σ grid of xt and

sct . Expectations are computed across a 99-point gaussian quadrature, which randomly assigns

shocks for ec, es, and εx (see details of algorithm and derivations in APPENDIX G).

Using the non-housing good as the numeréaire, the stochastic discount factor is characterized

by

Mt+1 =

[
βexp(Ut+1/θ)

Et exp(Ut+1/θ)

][
ut+1

ut

] 1
ε
−1[Ct+1

Ct

]− 1
ε

. (11)

Equation (11) illustrates the components that will potentially impact an asset’s risk premia. The

last bracketed term is related to the consumption growth risk seen in traditional asset pricing mod-

els (e.g., Mehra and Prescott (1985)). The middle bracketed term is a function of the growth of
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aggregated bundle of non-housing goods and housing services and is thus a composition growth

risk term. Given that both non-housing and housing service endowment growth is a function of

highly persistent terms, the continuation utility (first) term is impacted by both risks in the SDF.

I then use the Euler equation, Et [Mt+1Rs,t+1] = 1, to pin-down expected excess returns for the

local housing. For the housing asset, the price-to-rent, ln Ps,t
st

, is

ln
Ps,t

st
= pst = lnEt [exp(mt+1 + log(exp(pst+1)+1)+∆st+1)]

where lower cases signify logs (see APPENDIX G for explicit recursive formulations). Given the

value functions of the price-to-rent, both the excess return, rs,t+1 = ln(exp(pst+1)+1)− pst +

∆st+1, and excess price appreciation, rs,t+1 = pst+1− pst + ∆st+1, can be computed for local

housing.

I assume that the aggregate, or non-segmented markets, are priced by a subset of people that

are not tied down to the location of housing services. That is they can allocate or trade housing

between multiple MSAs. One could think of these individuals as represented by representative

institutional money manager or a wealthy individual. I show in APPENDIX H that this representa-

tive agent then prices aggregate markets as in Bansal and Yaron (2004) with long-run risk and

stochastic volatility. Given this result, my empirical strategy immediately follows. I can identify

xt through information in the aggregate market price-to-dividend ratios to elucidate their effects

on my local asset, housing. There is empirical evidence of the existence of different marginal in-

vestors in aggregate versus local markets. As documented by Chen and Stafford (2016) histor-

ically only around 25-35% of households participate directly in the stock market. This is inverse

the home ownership rate of approximately 65%. In addition, as Babkin, Glover and Levine (2016)

show companies and wealthy executives readily move when local conditions do not suite (e.g.,

corporate inversion - Pfizer, Medtronic, Tyco; or Facebook’s Eduardo Saverin). The median home-

owner on the other hand does not have this option.
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Table 8: Model Calibration

This table reports the calibration used in my model. β, ρ, ϕx, and γ are taken from Bansal and
Yaron (2004). The utility weight parameter, α, on housing services is estimated as in Gomes, Kogan
and Yogo (2009). The elasticity of substitution between non-housing goods and housing service con-
sumption, ε, is estimated from the β when regressing expenditures of housing onto expenditures of
non-housing goods. µc, µs, ϕs, and λ are estimated from aggregate housing to non-housing consump-
tion data. φs is a free variable that is calibrated to match my empirical results from section (5).

Parameter Description Value

φs
Housing service leverage to long-run

consumption growth
5.0000 Match Return Regression β

α
Housing service versus non-housing consumption

preference parameter
0.1599 Simulated sc

ε
Intra-period elasticity of substitution between

housing services and non-housing consumption
2.2070 Expenditure Correlations

µc Average consumption growth 0.0023 Using National Data
σc Short-run consumption volatility 0.0057 . . .

ϕs
Ratio short-run housing service volatility

to short-run consumption volatility
1.4200 Implied from ε and National Data

λ
Mean reversion coefficient on housing

service to consumption ratio
0.0150 Predictive Regression

µs Average housing service growth -0.0021 Harding, et al (2007)
β Subjective discount factor 0.9980 Bansal & Yaron (2004)

ϕx
Ratio long-run growth volatility to short-run

consumption volatility
0.0602 . . .

ρ
Persistence coefficient on long-run

consumption growth
0.9790 . . .

γ Risk aversion 15.000 . . .

6.3 Calibration of the Model

Table (8) provides the monthly parameter values for my model. The parameters are chosen

at a monthly frequency in the spirit of work done by Bansal, Kiku, and Yaron (2012), who esti-

mate the decision frequency of agents in their economy to be roughly one month. The subjective

discount factor (β), persistence on long-run prospects (ρ), relative variance of long-run to non-

housing consumption shocks (ϕx) and risk aversion coefficient (γ) are taken directly from Bansal

and Yaron (2004). I equate the average housing service growth (µs) to depreciation; Harding,

Rosenthall and Sirmans (2007) estimates that housing depreciates at roughly -2.5% per year.

The relative dynamics of housing services to non-housing goods consumption is the compo-
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nent of the local stochastic discount factor (SDF) that determines excess housing returns. Coming

directly from the endowment equations (10), I can compute the level of this quantity,

log
St+1

Ct+1
= sct+1 = (1−λ)sct +µ+(φs−φc)Ix>0xt−φcIx<0xt + esc,t+1. (12)

NIPA provides quantity estimates which I can use to estimate this regression; however, the Bu-

reau of Labor Statistics’ (BLS) process of splitting housing expenditures into quantities and prices

is fraught with error. For example, Boskin, Dulberger, Gordon, Griliches, and Jorgenson (1998)

discuss the historical inconsistencies in how the BLS estimates housing services (quantities) and

rent (prices) due to changing surroundings and technology - e.g., agglomeration economies, pol-

lution and widespread use of electricity. To avoid these issues tainting my calibrations, I follow

Piazzesi, Schneider and Tuzel (2007) in using expenditure rather then price or quantity data to

estimate parameters.

This is straightforward given that prices and quantities of my assets are linked via the intra-

period equilibrium. Assuming that non-housing is the numeréaire,

us,t

uc,t
=

ps
t

pc
t
=

α

1−α

(
St

Ct

)− 1
ε

.

I define relative expenditures of housing services and non-housing goods as

ωt = ln
ps

t St

pc
t Ct

= ln
Shelter

Total Expenditure - Shelter
, (13)

where ps
t and pc

t are the equilibrium price of housing services and non-housing goods. The nu-

merator is designated expenditure on “shelter.” The denominator is then the total expenditures

minus expenditures on shelter. Using this relationship and equation (12), I obtain a simple expres-
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Table 9: Aggregate Calibration Regressions

This table reports the regression results of equation (14) using aggregate expenditure NIPA data
on an annual basis. The dependent variable is log housing to non-housing expenditures. All indepen-
dent variables are standardized so that expressions represent a one standard deviation change. Model
(1) uses all available data. Model (2) removes the boom-bust of the financial crisis, i.e. data post 2005.
Model (3) uses data from 1960 to 2005. Standard errors are Newey-West corrected with a lag of 4.
Given the annual frequency of the data, coefficients must be scaled when used as parameter estimates
for my monthly calibration. *, **, and *** denote significance at the 10%, 5%, and 1% levels.

(1) (2) (3)
β

(t-stat)
β

(t-stat)
β

(t-stat)

ωt−1 0.9554∗∗∗ 0.9550∗∗∗ 0.8555∗∗∗

[65.50] [62.91] [21.46]
Ix>0xt−1 0.0001 −0.0000 −0.0012

[0.07] [−0.01] [−0.65]
Ix<0xt−1 −0.0041∗∗∗ −0.0033∗∗ −0.0027∗

[−2.35] [−1.78] [−1.63]

Observations 211 190 118

sion for an OLS regression I run on national NIPA data at an annual frequency,

ωt = µ+(1−λ)ωt−1 +

(
1− 1

ε

)
(φs−φc)Ix>0xt−1−(

1− 1
ε

)
φcIx<0xt−1 +

(
1− 1

ε

)
esc,t . (14)

Table (9) reports the regression results. All right-hand-side variables are standardized; coeffi-

cients thus represent the effects of a one standard deviation change. Standard errors are Newey-

West corrected with a lag of 4. Column (1) is on the full sample, 1947-2011. Column 2 removes

the boom-bust of the recent financial crisis, i.e. post-2005 data. Column 3 runs the regression on

data from 1960-2005 as the data is a bit more volatile in the early sample. (1−λ) in particular is

extremely well identified in all cases. Given the annual frequency of the data, my monthly λ is esti-

mated as 0.0150. The kink is statistically identified, but economically weak in the national data. As

I will show in section (7), it is much stronger using MSA-level expenditure data.
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Given the extremely low λ, housing to non-housing consumption is also extremely persistent.

Correlation in expenditures of housing services and non-housing goods consumption should be

dominated by the higher volatility i.i.d. shocks in system (10). I can thus estimate the elasticity of

substitution (ε) via the covariance of growth in housing to non-housing expenditures in the data.

From the intra-period CES aggregator,

ln
(

ps
t+1St+1

ps
t St

)
=

(
1− 1

ε

)
∆st+1 +

1
ε

∆ct+1

The inverse of the β coefficient of expenditures will thus be my estimated value of ε. My es-

timate of 2.2070 is close to that estimated in the literature (see Piazzesi, Schneider and Tuzel

(2007)).

Given that non-housing consumption is my numeréaire and the orthogonality of short-run

shocks, I extract estimates of non-housing and housing consumption dynamic parameters (µc,

σc and ϕs) directly from the data. I compute an estimate of the ratio of short-run housing service

to short-run non-housing consumption volatility from the volatility of the expenditures of sct . My

model assumes that es,t+1 is orthogonal to ec,t+1; ϕs is therefore
√

σ2
sc−σ2

c/σc. Finally, using the

approach of Gomes, Kogan and Yogo (2009), I estimate the housing to non-housing consump-

tion preference parameter (α) from the mean aggregate expenditure ratio in the data and the men

housing to non-housing quantities from my model. The remaining free-parameter, φs, is calibrated

by matching the slope coefficients from my price appreciation empirical analysis in section (5).

6.4 Numerical Results

Given that ε > 1, housing services and non-housing goods are substitutes. The embedded

put in housing services to long-run local growth prospects will thus act has a hedge in bad times.

Figure (2A) illustrates the resulting equilibrium expected excess return from my model. As the em-

pirical regressions in section (5) are on excess price appreciation not returns, it’s important that

the equilibrium relationship of expected price appreciation with xt has a similar shape. Figure (2B)
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shows that this is in fact the case.

Both equilibrium figures also show the contours of the two risk regimes. When growth prospects

are extremely high housing is exposed to two sources of risk (short- and long-run), but only one

when prospects are extremely low. At the two extremes, expected excess returns and price ap-

preciation are effectively constant. Without recursive preferences the transition between regimes

would be immediate. The elongated transition zone from the low return to high return regime thus

allows for empirical identification of the positive relationship between long-run growth prospects

and expected excess price appreciation. During the time frame of our regressions, roughly 1975-

2011, local long-run prospect, across all MSAs, were roughly 0.45σ above the mean over the

longer CRSP industry PD-ratio sample. In addition, the shocks to local prospects, assuming the

AR(1) construct from my model, are approximately 80% correlated across MSAs. This implies that

the relationship between rp
t+1 and xt is squarely in this elongated zone during the sample from my

empirical exercise. In addition the relationship is well identified because of the large cross section

of MSAs.

To replicate the regressions in section (5), I simulate 375 MSAs over 40years on a monthly

basis at the 1975-2011 mean of long-run growth prospects and correlation of shocks. I then ag-

gregate the simulated xmsa,t , psmsa,t and rp
msa,t+1 on an annual basis and run the same pooled

coefficient regressions from section (5.1) and (5.3) on the simulated data, respectively

rp
msa,t = bxxmsa,t−1 + εmsa,t , and

pt− st = βxxt ++εmsa,t .

Figure (2C) illustrates the distribution of individual MSA estimated bx. The pooled bx is repre-

sented by the black line. My simulated bx is on average 0.011, which is very close to my empiri-

cal bx of 0.012. For my price-to-rent ratios regression I further restrict the regression to a random

sample similar in cross-section and time-series to my empirical work (62 MSAs over 16 years).

The simulated βx is -0.037, close to my empirical βx of -0.045 from the more robust first difference

40



Fi
gu

re
2:

E
qu

ili
br

iu
m

P
ric

es
an

d
E

m
pi

ric
al

R
ep

lic
at

io
n

Fi
gu

re
(2

A
)i

s
th

e
eq

ui
lib

riu
m

ex
pe

ct
ed

re
tu

rn
of

ho
us

in
g

gi
ve

n
th

e
st

at
e

va
ria

bl
e,

x t
,f

ro
m

m
y

m
od

el
.

M
y

re
gr

es
si

on
s

fro
m

se
ct

io
n

(5
)w

er
e

on
a

pr
ic

e
ap

pr
ec

ia
tio

n
m

ea
su

re
;fi

gu
re

(2
B

)p
re

se
nt

s
th

e
eq

ui
lib

riu
m

pr
ic

e
ap

pr
ec

ia
tio

n.
D

ur
in

g
th

e
pe

rio
d

of
m

y
sa

m
pl

e
of

ho
us

in
g

re
tu

rn
s,

x t
w

as
on

av
er

ag
e

0.
45

σ
hi

gh
er

th
an

av
er

ag
e

ov
er

th
e

fu
ll,

19
47

-2
01

1,
C

R
S

P
sa

m
pl

e.
In

ad
di

tio
n,

as
su

m
in

g
th

e
A

R
(1

)p
ro

ce
ss

fro
m

m
y

m
od

el
,s

ho
ck

s
to

lo
ng

-
ru

n
pr

os
pe

ct
s

ar
e

on
av

er
ag

e
80

%
co

rr
el

at
ed

in
m

y
sa

m
pl

e.
Is

im
ul

at
e

37
5

M
S

A
s

ov
er

40
ye

ar
s

on
a

m
on

th
ly

ba
si

s
ar

ou
nd

th
is

hi
st

or
ic

al
ly

hi
gh

m
ea

n
an

d
co

rr
el

at
io

n.
It

he
n

ag
gr

eg
at

ed
th

e
si

m
ul

at
ed

x m
sa
,t
,

ps
m

sa
,t

an
d

rp m
sa
,t
+

1
on

an
an

nu
al

ba
si

s
an

d
ru

n
pr

ed
ic

tiv
e

re
gr

es
si

on
s

si
m

ila
rt

o
th

os
e

in
m

y
em

pi
ric

al
ex

er
ci

se
.

Fi
gu

re
(2

C
)i

s
th

e
di

st
rib

ut
io

n
of

b x
fo

re
ac

h
M

S
A

.T
he

po
ol

ed
co

ef
fic

ie
nt

is
re

pr
es

en
te

d
by

th
e

bl
ac

k
lin

e.
Ta

bl
e

(2
D

)a
re

th
e

re
su

lts
fro

m
th

e
te

rc
ile

(m
od

el
(1

))
an

d
su

pp
ly

el
as

tic
ity

(m
od

el
(2

))
re

gr
es

si
on

s
fro

m
se

ct
io

n
(6

.5
).

A
:E

xp
ec

te
d

E
xc

es
s

R
et

ur
n

-6
-4

-2
0

2
4

6

x
t

#
1

0
-3

0

0
.0

0
5

0
.0

1

0
.0

1
5

0
.0

2

0
.0

2
5

Et[r
ex
msa,t+1]

B
:E

xp
ec

te
d

E
xc

es
s

A
pp

re
ci

at
io

n

-6
-4

-2
0

2
4

6

x
t

#
1

0
-3

-0
.0

3
1

-0
.0

2
5

-0
.0

1
9

-0
.0

1
3

-0
.0

0
7

Et[r
p
msa,t+1]

C
:E

m
pi

ric
al

R
ep

lic
at

io
n

-0
.0

0
2

0
.0

0
6

0
.0

1
4

0
.0

2
2

0
.0

3

b
x

0

0
.0

5

0
.1

0
.1

5

0
.2

0
.2

5

0
.3

Frequency

D
:F

ur
th

er
Im

pl
ic

at
io

ns

I tr
1
·x

t−
1

0.
01

27
∗∗
∗

[2
.8

3]
I tr

2
·x

t−
1

0.
01

83
∗∗
∗

[5
.2

3]
I tr

3
·x

t−
1

0.
01

43
∗∗
∗

[5
.6

1]
x t
−

1
0.

01
22
∗∗
∗

[4
.4

9]
lo

g
(η

m
sa
)
·x

t−
1

−
0.

00
56
∗∗
∗

[−
10

.4
3]

41



regressions in section (5.3). With this simple model I am able to closely replicate my empirical

findings.

6.5 Further Empirical Implications

There are two additional empirical implications of my model. First, the relationship between

long-run growth prospects and returns should not be linear. The sensitivity should be greatest

when prospects are good, but low when prospects are either extremely good or extremely bad. To

test this hypothesis, I run regression (4) with the full-set of controls described in section (5), but

split the sensitivity of returns, bx, into terciles of xt ,

rp
msa,t = b1Itr1xmsa,t−1 +b2Itr2xmsa,t−1 +b3Itr3xmsa,t−1 +Time FE+MSA FE+Controls+ εmsa,t .

The results of the regression are in the first column of table (2D). Visually, although their eco-

nomic difference is small, the difference in coefficient values fits the intuition developed from my

model. Statistically, the differences in sensitivity is significant. A Wald test of equality between all

three is rejected at a 10% level. The test statistic is largely driven by the rejection of equality of the

coefficients of the second and third terciles, both of which are extremely well identified.

Second, as discussed in section (6.1), my model results are a function of the relative, not ab-

solute, durability of housing services versus non-housing consumption. The degree of durability

could vary across MSAs. Elasticity of housing is generally a function of two variables: physical

limitations to the expansion of housing, and regulator restrictions on land-use (see Gyourko and

Molloy (2014) for references). For example, in weak zoning MSAs, such as Houston, poor local

growth prospects should lead to quicker shifts in industry composition. This implies that housing

services are not explicitly durable when prospects are bad and expected excess returns and price

appreciation should therefore display less sensitivity to the level of long-run growth prospects in

these cities. That is, cities that are less constrained would provide agents less of a hedge against

long-run growth prospects. Han (2014) makes a similar argument in the context of her empirical
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work.

In urban economics there is a rich literature relating house price levels to elasticity. For exam-

ple, Saiz (2010) generates empirical measures of MSA-level elasticity that embed both the phys-

ical and regulatory components of elasticity. As my analysis is looking at the risk-return tradeoff,

I’m interested in changes to the degree of predictability of long-run prospects on expected housing

returns given different levels of housing elasticity. I thus add the interaction of the Saiz measure,

ηmsa, and long-run local prospects to regression (4) to test my hypothesis.

rp
msa,t = bxxmsa,t−1 +bsaiz log(ηmsa)xmsa,t−1 +Time FE+MSA FE+Controls+ εmsa,t

The results of this regression are in the second column of table (2D). As hypothesized, the

sensitivity of expected excess returns to long-run growth prospects is lower in more elastic MSAs.

A one standard deviation higher elasticity reduces the sensitivity by nearly 60bps per year.
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7 IDENTIFICATION OF DURABILITY

Any result from the model presented in section (6) hinges on the durability of housing services.

Identifying the kink is thus key to understanding the driver of the pricing results seen in section

(5). I do this using the cross-section of consumer units (households) from the Consumer Expen-

diture Survey (CEX) public-use microdata from 1990- 2011. The CEX data, which has been used

in previous research (e.g., Piazzesi, Schneider, and Tuzel (2007), Meyer and Sullivan (2013)), pro-

vides households’ expenditures for various goods on a quarterly basis. I utilize entries for housing

services (shelter) and total expenditures over all households within a given principal-sample-unit

(henceforth PSU) to extract a cross-sectional estimate of the housing to non-housing expenditure

ratio (equation (13)) through time.

The survey also includes various characteristics of the individual households. The character-

istics I use to isolate “local” consumption behavior are the population bucket of the PSU in which

households reside (popsize), the state in which they reside (state), an indicator of whether they

reside in a MSA or not (smsastat), and whether they are owner-occupiers or renters (cutenure).

PSUs are composed of 1 or more (2.9 on average) MSAs and defined in a crosswalk available on

the Consumer Expenditure BLS website. Specific PSU identifiers are also available 2007 onward

for a sample of 22 PSUs with population greater than 1.25mm (popsize ≤ 2). The larger PSUs

compose nearly 50% of the households surveyed over these years. From 1990-2006, I identify

the PSU of residence by linking households within MSAs of the same popsize and state. Given

the time-series of PSU populations, which I can estimate from county-level population data, I can

produce accurate expenditure ratios for the 22 largest PSUs (see http://www.census.gov/popest/).

By limiting my analysis to just the largest popsizes (≤ 2), I isolate, with a high degree of certainty,

specific PSUs. Correlation between my generated measure and the CEX identified PSUs is a sta-
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tistically significant 65% for overlapping years (2007-2011). Although the CEX data runs from

1984, I only use data 1990 and after as there are no state identifiers before that year. Finally,

renters tend to lock in expenditures on an annual or greater basis through a leasing contracts;

given my quarterly data, I therefore focus on the consumption behavior of only owner-occupiers

(cutenure ≤ 3).

7.1 Level Regression

In order to use the CEX data there are two modifications that need to be made to equation

(12). First, the data is in expenditure rather than quantity terms. As discussed in section (6.3),

using the link between prices and quantities in equilibrium, I obtain equation (14). Second, my

model ignores seasonality in esc,t+1 by assuming i.i.d. shocks. For my empirical specification, I

need to add quarterly dummies. The modified regression formulation is

ωt+1 = µ′+(1−λ)ωt +

(
1− 1

ε

)
(φs−φc)Ix>0xt−(

1− 1
ε

)
φcIx<0xt +Quarter Dummies+

(
1− 1

ε

)
esc,t+1.

This reduces to a simple regression that I can run on the panel of CEX data,

ωpsu,t+1 = bλωpsu,t +bx>0Ix>0xpsu,t +bx<0Ix<0xpsu,t+

Quarter Dummies+PSU FE+ epsu,t+1. (15)

For my main results, as the number of PSU’s is small, I only cluster along the time dimension,

but include PSU-level fixed effects. First, given durability of housing services, I would expect the

coefficient in front of Ix<0xpsu,t to be less than zero. That is, expenditures on housing will fall less

than non-housing when times are bad. Second, given the model calibration, I would also expect

the coefficient in front of Ix>0xpsu,t , bx>0 = φs− 2φc, to be positive. I present the results of this

regression on the full-sample in the first column of table (10). All variables are standardized, rep-
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Table 10: Identification Regressions

This table reports the regression results of equation (15) and (16). As the number of principal-
sampling-units (PSUs), which are an amalgamation of an average 2.9 close-in-proximity MSAs, is
relatively small (22), I only cluster along the time dimension. I also include PSU-level fixed effects. All
regressors are standardized. Model (1) is the regression (15) on the full sample. As shown in Piazzesi,
Schneider and Tuzel (2007) using annual-national NIPA data, the expenditure share of housing exhibits
almost unit root behavior. As a check, in model (2), I deviate from my model by removing the no-bubble
condition (i.e. assume λ = 0 and µs = µc) in equation (15). Model (3) restricts the sample to < 2006.
Models (4)- (5) are results from the regression equation (16). Model (4) regresses (t+1) expected
variance onto my time t regressors. Model (5) regresses time (t+2) my time t regressors.

(1) (2) (3) (4) (5)
β

(t-stat)
β

(t-stat)
β

(t-stat)
β

(t-stat)
β

(t-stat)

Ixt>0xt 0.0053 0.0155∗∗ 0.0137∗∗

(0.73) (2.27) (1.97)
Ixt<0xt −0.0258∗∗∗ −0.0166∗∗ −0.0418∗∗∗

(−3.14) (−1.78) (−5.22)
P̂t (Ix>0 = 1) 0.0010∗∗∗ 0.0009∗∗∗

(6.12) (5.17)

Inc. ωt−1 + +
Quarter Indicators + + +

Inc. x2
t

(
P̂t− P̂2

t

)
+ +

Observations 1,776 1,776 1,412 1,333 1,355
R2 0.1217 0.0078 0.1173 0.0206 0.0169
Wald Test 0.0253 0.0095 0.0000

resenting the marginal effect from a one standard deviation move in the regressor. Our results

unequivocally show that bx<0 < 0. The evidence that bx>0 > 0 is mixed, although it is harder to

pinpoint empirically due to its dependence on two parameters, φs and φc. Ultimately, the strongest

test of the kink is a rejection of the null hypothesis that the two coefficients are equal, bx<0 = bx>0,

which is rejected at 5% significance level. The p-values for the Wald statistic are provided at the

bottom of table (10).

As shown in my calibration, the expenditure share of housing exhibits almost unit root behavior

- i.e. bλ close to 1. In the regressions presented in columns 1 of table (10), bλ ∈ (0.23,0.27). The

value of λ is significantly higher than those used in my model calibration and shown in my national
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data regressions. This may be a function of us pooling coefficients across different PSUs on a

quarterly frequency basis. There may for example be MSA-level variability in the coefficients on

quarterly dummies or in λ itself. A mis-specification of this sort could lead to non-i.i.d. errors and

perhaps some higher frequency correlations between ωt+1 and ωt . As a check, I deviate from my

model by removing the no-bubble condition (i.e. λ = 0 and µs = µc). My regression specification

thus simplifies to

ωpsu,t+1−ωpsu,t = bx>0Ix>0xpsu,t +bx<0Ix<0xpsu,t+

Quarter Dummies+PSU FE+ epsu,t+1.

In Column (2), I present the results of this specification. bx<0 is still significantly negative, while

bx>0 is now positive and significant. Column (3) is the same regression as column (1), but restricts

the sample to the pre-housing boom and bust cycle (< 2006). There is stronger evidence in this

regression that bx>0 is positive.

7.2 Level Regression Robustness

In table (11), I present various robustness specifications for the level regression. One con-

cern is that the results are due to differing “stickiness” between prices of non-housing goods and

housing services. If housing service prices were relatively sticky, a fall in xt would mechanically

lead to a greater fall in pc
t Ct than ps

t St , regardless of whether the kink existed. Of course the oppo-

site is also true; one would also expect the coefficient on Ix>0xt to be negative. In addition, mort-

gage payments tend to be fixed for long durations and are a fairly large portion of expenditures

on shelter. Although the rotating sampling done by the BLS when executing the survey will help

mitigate this issue, the stickiness may be institutional in nature. Columns (1)-(3) of table (11) uses

the renters data from the CEX panel dataset to estimate the expenditure shares, ωt . The hypoth-

esis would be that one should not see the kink in the rental sample; as rents tend to be fixed for

a year or more, expenditures would be extremely sticky to economic fluctuations. The regression
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Table 11: Identification Robustness Regressions

This table reports robustness results for regression (15). Details on standard errors, fixed effects
and controls are identical to those applied in table (10). One concern of ours is that results are due
to differing “stickiness” between prices of non-housing goods and housing services, primarily due to
fixed long-duration contracts. Models (1)-(4) uses renter- only data to estimate the dependent variable,
expenditure share (ωt ). Another concern is the possible dominance of data from the recent boom-crisis
period. The bust in particular has been argued to be the result of an abrupt contraction of credit and
financial liberalization. Models (2) and (4) restrict the sample to only the pre-boom-crisis subperiod
(< 2006). Models (3)-(5) uses the cash flow only residual (estimation described in section (5.1)) as my
measure of xt .

(1) (2) (3) (4) (5)
β

(t-stat)
β

(t-stat)
β

(t-stat)
β

(t-stat)
β

(t-stat)

Ixt>0xt −0.0218∗ −0.0115 −0.0146 −0.0081 0.0018
(−1.54) (−0.76) (−1.20) (−0.62) (0.26)

Ixt<0xt −0.0251∗∗ −0.0374∗∗ −0.0298∗∗∗ −0.0360∗∗∗ −0.0236∗∗∗

(−1.92) (−2.29) (−2.87) (−2.75) (−3.69)

Owner sample +
Rent-only sample + + + +
Quarter Indicators + + + + +

Observations 1,759 1,395 1,759 1,395 1,776
R2 0.1379 0.1179 0.1362 0.1165 0.1227
Wald Test 0.8951 0.3718 0.4572 0.2320 0.0274

results reflect this stickiness in the rental consumption data - the Wald statistic for bx<0 = bx>0 is

not statistically rejected. The main issue of using this subsample, however, is that the sample size

falls dramatically. On average there are approximately 100 homeowner households that make up

each of my PSU-level ωt estimates in table (10). My primary assumption is that over time these

100 households are representative of the general PSU population. As renters compose only about

35% of the broader sample, a firm statement on the owner vs. rental markets is difficult as the

smaller sample size significantly increases the variance in the dependent variable.

Another obvious concern is that the housing boom-crisis period (post 2005) dominates the rest

of the sample. The bust in particular has been argued to be the result of an abrupt contraction of

credit and financial liberalization (see Favilukis, Kohn, Ludvigson and Van Nieuwerburgh (2013) for

review of literature). As some households lost their homes during this period, in the context of my

48



model, the discontinuity in my sct process might be semi- rather than full-durability - i.e. the expo-

sure of ∆st to long-run prospects is positive when xt < 0, but smaller than when xt > 0. Columns

(2), (4), and (6) restrict the sample to only the pre-boom-crisis subperiod (< 2006). If anything, the

relationship becomes stronger, suggesting that additional dynamics (i.e. those outside my model)

were in play during the crisis.

Finally, as discussed in section (1) and (2), my motivation and model are largely based on a

cash-flow story. In section (4) I generated an alternative measure of xt that attempts to isolate the

cash-flow growth component of local prospects. Columns (3)-(6) use this measure of xt in regres-

sion (15). Economically, this alternative measure seems to have little impact on my results.

7.3 Variance Regression

The second dynamic that I seek to identify is the relationship between the variance of relative

consumption and local prospects due to the durability of housing services. This can be seen ex-

plicitly from equation (12),

log
St+1

Ct+1
= sct+1 = (1−λ)sct +µ+(φs−φc)Ix>0xt−φcIx<0xt + esc,t+1.

When xt > 0 the variance of sct+1 is a function of the variance of (φs−φc)xt and esc,t , whereas

when x < 0 the variance of sct+1 is a function of φcxt and esc,t . That is the variance of housing to

non-housing consumption has different regimes given the value of the state variable. Given my

calibrations (i.e. φs > 2φc), I would expect the variance of sct to increase in xt .

To properly see this relationship in the CEX data, I need to foil equation (12) two periods for-

ward given that my model is in discrete time. In addition, similar to equation (15), I need to ac-

count for the fact that this data is in expenditure rather than quantity terms using the intra-temporal

equilibrium relationship between prices and quantities. Details of this derivation are in APPENDIX
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J. My regression specification is

Vart (ωpsu,t+1) = bint

(
Ppsu,t (Ix>0 = 1)−Ppsu,t (Ix>0 = 1)2

)
︸ ︷︷ ︸

Term 1

×x2
psu,t︸︷︷︸

Term 2

+

bvar Ppsu,t (Ix>0 = 1)︸ ︷︷ ︸
Term 3

+Time FE+PSU FE+ηpsu,t+1. (16)

While equation (16) may seem complicated, it appeals to simple intuition. Term 1 is the vari-

ance of a binary random variable and is greatest at xt = 0. Given an unlinked processes, one

would assume that sct would have the greatest variance around the kink. However, st+1 and ct+1

are linked conditionally by xt ; when xt = 0 only the short-run shocks (i.e. es,t+1 and ec,t+1) mat-

ter in the expected variance estimate. As these two terms decay and increase at different speeds,

their interaction appears in equation (16). Term 1 × Term 2 is symmetric around xt = 0; for rea-

sonable values of xt it increases as one moves away from the kink. It also does not load signifi-

cantly in the regression results I will show. Term 3, on the other hand, reflects the a similar regime

switching dynamic as the endowment of housing service growth. Assuming φs > 2φc, the value of

term 3 will transition from 0 to 1 as xt goes from −∞ to ∞. In our regressions, bvar will reflects the

degree on average to which the variance of the expenditure ratio changes as the economy moves

from a very bad to very good economic growth prospect state.

Ppsu,t (Ix>0 = 1) can be estimated via a panel probit. I regress Ix>0 next period onto xpsu,t

today, where the coefficient βprobit is pooled across all 22 PSUs. Given the high persistence of

xpsu,t , bprobit is well identified (see table (12) for results). I then estimate the left hand side of equa-

tion (16) in a three step process. First, I estimate the expected levels of ωt+1 given today’s xt

from equation (15), subtracting it from the realized expenditure ratio tomorrow to compute an

estimate of the residual,
(
1− 1

ε

)
esc,t+1. Second, my measure of realized volatility, V̂ar

sc
t , is a

moving average of these residuals. In order to balance picking up the persistence of expected

volatility in the residuals with my relative short panel, I use the three-year (12 quarter) moving av-

erage to estimate this variable. Third, my measure of expected volatility of the expenditure ratio,
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Table 12: Identification Auxiliary Regressions

This table reports results from the auxiliary regressions in section (7.3). The coefficients from
these regressions are used to estimate the probability of xt > 0 next period given today’s economic
state and my measure of expected volatility in equation (16). Model (1) are the results from my pro-
bit regerssion. My measure of realized volatility, V̂arsc

t , is a three-year (12 quarter) moving average
of the residuals from equation (15). Expected volatility is then estimated from a pooled-panel AR(1)
regression. Model (2) are the results from that regression.

(1) (2)
β

(t-stat)
β

(t-stat)

xt 2.5701∗∗∗

(5.76)
V̂ar

sc
t 0.5194∗∗∗

(5.53)

Observations 1,619 1,355
R2 0.0461

Vart (ωpsu,t+1), is then computed from a predictive regression,

(
1− 1

ε

)2

e2
psu,t+1 = νpsu,0 +ρvar

(
V̂ar

sc
psu,t−νpsu,0

)
+ηpsu,t+1,

where epsu,t+1 is embedded in the error form equation (15) and νpsu,0 is a PSU-level fixed effect

representing the average variance of relative consumption. The estimated ρvar is presented in

table (12). The period t expectations of this auxiliary regression provides us with an estimate of

Vart (ωt+1). Similar to regression (15), I only cluster along the time dimension, but include PSU-

level fixed effects. I also standardize all regressors.

If φs > 2φc, I should expect bvar to be positive and significant. I present the results from this

regression on the full-sample of PSUs in column (4) and (5) of table (10). The term loads as ex-

pected were there a kink in the ∆st+1 process; βvar is positive and significant. One would expect

bint to load positively given that it corresponds to the model parameters φ2
s ρ2. Although it loads

negatively, the term is both statistically and economically insignificant. The non-monotonicity of
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Figure 3: Estimated Vart (sct+1) versus xt

This figure represents the increase in expected variance of the expenditure ratio of housing ser-
vices to non-durable consumption versus my measure of long-run prospects, xt . There are two vari-
ables in regression (16), one of which is non-monotonic. The net effect makes interpretation of the
regression coefficients presented in table (10) difficult. I thus plot Vart (ωt+1) given xt using the esti-
mated coefficients - bprobit , bint and breg - and average (across PSUs) fixed-effects from my regression
to show the underlying monotonicity of my result. ωt+1 is the relative expenditures of housing to non-
housing goods.

.0
12

6
.0

12
8

.0
13

.0
13

2
.0

13
4

.0
13

6
V

ar
t(ω

t+
1)

-.5 0 .5
xt

terms makes interpretation a little difficult across xt . Figure (3) plots Vart (ωt+1) given xt , using the

estimated coefficients - b̂probit , b̂int and b̂var - and average (across PSUs) fixed-effects from my

regression. Due to the durability of housing the variance of the expenditure ratio clearly increases

in xt , from roughly σ2
sc to breg +σ2

sc. This monotonic increase requires that Term 3 dominates Term

1 × Term 2 in terms of marginal effect.

The cross section of PSUs seems to provide power in identifying this slow moving, but multi-

period phenomenon. This, however, does not change the simple fact that the magnitude of σ2
x is

so much smaller than that of σ2
sc. This is exemplified in the low R2 of my fixed effects regression

results and captured in the small relative increase in variance over xt in figure (3).
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8 CONCLUSION

This paper studies how dynamics of local prospects influence local consumption behavior and

ultimate drive real estate price dynamics. I first generate a measure that captures heterogeneity in

long-run expected growth between different metropolitan areas. I source this heterogeneity from

both the cross-section of regional employment composition and industry prospects.

My measure of industry growth prospects is extracted from aggregate industry PD-ratios. My

local measure of long-run growth prospects are then estimated using the procedure from Bar-

tik (1991); each aggregate measure of industry prospects is weighted by the employment share

within each MSA. I find that when I regress the local excess housing returns onto these real mea-

sures of local long-run prospects, a one standard deviation increase in my proxy of local prospects

leads to a nearly 120bp increase in annual excess return to housing. Appealing to the Campbell

and Shiller (1987) decomposition, I then use novel real estate capitalization rate data from Integra

Realty Resource, to show that in “good” times the increase in risk premia dominates the condi-

tional increase in housing services. I find that a one standard deviation increase in local prospects

lowers the log price-to-rent by more than 500bps. That is, when prospects are good, the price-to-

rent contemporaneously falls.

This implies that bad news about local growth prospects lower the risk to local housing assets,

which suggests that housing acts as a hedge against long-run growth prospects. I then develop

a consumption based equilibrium model with explicitly durable housing services to better under-

stand this relationship. The durability of housing structures is key to understanding many multi-

decade phenomenon in urban and labor economics (see e.g., Glaeser and Gyourko (2005) and

Notowidigdo (2013)). I argue that this permanency can extend to the location specific services

housing provides. In the model, agents’ non-housing goods and housing service consumption
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growth are exposed to a common state variable that mimics my measure of long-run prospects,

which are highly persistent AR(1) processes. This persistence amplifies the effects of shocks to

local growth prospects on the agent’s actions over multiple periods via recursive Epstein and Zin

(1989) preferences. The effects of durability on housing’s excess returns can then be simulated in

my model. Using this simple economic framework, I am able to replicate my empirical findings.

In addition, durability creates endogenous time varying volatility in a key pricing variable, the

relative composition of housing services and non-housing good consumption (henceforth, rela-

tive consumption). Although small in magnitude the increase in volatility of relative consumption

as prospects increase is amplified by the processes persistence. This is the key channel for the

increase in risk premia for housing. I identify durability and the characteristics of the time varying

volatility in data from the consumer expenditure survey (CEX). During bad economic times, a one

standard deviation fall in prospects leads to a 1000bp rise in relative consumption. During good

economic times, a one standard deviation rise in prospects leads to a much smaller rise in rela-

tive consumption. This suggests that local households raise consumption of housing services in

lock step with non-housing consumption during times of good long-run growth prospects, but do

not drop them as much during times of bad long-run growth prospects. In addition, the variance of

relatively consumption increases by more than 700bps from the low to high growth states.

This paper extends work done in the long-run risk and housing asset pricing literature. Hous-

ing services are a major portion of household expenditures. Expenditures are also highly geo-

graphically heterogeneous. My empirical strategy makes use of this heterogeneity in understand-

ing the pricing of local assets. My study is different from recent macroeconomic work in housing in

that my framework also generalizes beyond just the recent financial crisis. Housing collateral and

financial liberalization played an outsized role in the boom-bust of the mid-to-late 2000s. However,

fluctuations in multi-decade local growth expectations should also weigh heavily on an agent’s

mind. In this regard, my study is similar to geography-centric work in urban economics. I add to

this literature by focusing on the role that fluctuations in “lower” frequency, long-run dynamics in

expectations play in housing returns.
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APPENDIX A Gauss-Newton Conversion Algorithm

Some industries do match 1-to-1 between classification systems - e.g., in manufacturing, min-

ing, agriculture and transportation (i.e. “old” industries). Many SIC accounts, however, are par-

tially split between many different NAICS accounts - e.g., services or information technology (i.e.

“new” industries). Indicators are given to each correspondence and then rolled-up to the BEA-

available primarily 3-digit level. The first line of table (2A) provide summary statistics of how many

NAICS industries, N, each SIC account converts. On average each of my 60 SIC industries con-

vert into roughly 4 NAICS accounts. This, however, belies the degree of skewness of this conver-

sion “count” number. While the maximum is 19, even at the 75th percentile a single SIC industry

only converts into 5 NAICS accounts.

The BEA SIC and NAICS data have common years from 1977 to 1997. Using the correspon-

dence computed above and these common years, I use a simple, iterative algorithm to estimate

SIC-to-NAICS conversion weights for the years NAICS data is not available (details below). These

weights are then used to convert SIC value-added and employment data to NAICS for 1947-1976.

They are also saved for conversion within other data sets where I have similar limitations. For ex-

ample, many now defunct or privatized companies are available before 2001 on CRSP and Com-

pustat, but only have associated SIC codes. For my price-to-dividend ratio computation, I aggre-

gate market-cap and dividends along the BEA SIC available accounts for these companies and

use the conversion matrices estimated from the Gauss-Newton algorithm on value-added GDP to

estimate their contributions to the PD’s of various NAICS accounts.

Given the count data, as I’d expect, the 60 SIC accounts map to roughly 240 (60 x 4) NAICS

accounts. The mean conversion weight is thus 1/4. As shown in table (2A), the 247 computed

weights are skewed towards 1 and 0. Given the industry composition change in employment and

output during this period, I also present the analysis using different samples (full 1977-1997, 1977-

only, and 1997-only) of weights. Overall the median mapping between SIC and NAICS seems to

be much closer to 1-to-1 than implied by the mean of 1-to-4 and is robust over my entire overlap-
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ping sample for both employment and GDP. This is unsurprising given that employment composi-

tional change is generally very slow. Both the high degree of correspondence in count and weight

statistics thus give me comfort that my converted data is accurate.

Details of Gauss-Newton Algorithm:

1. For the 1997 data an equal weight, w j
old = 1

N , is given for each NAICS account, j, into which

a single SIC account, i, converts for the initial iteration. An estimate of each NAICS account

is computed, N̂AICS
j
1997 = SICi

1997×w j
old .

2. Given that I know the actual NAICS value, the error in either GDP or unemployment is then

computed for each estimated account, NAICS j
1997− N̂AICS

j
1997 = ε

j
1997.

3. The old weight is updated to account for the relative size of error. By virtue of my adjust-

ment mechanism, NAICS accounts with larger errors will have relatively larger shifts up-

wards (positive error) or downwards (negative error). In addition, I maintain unity sum and

positive weights, i.e.

w j
new =

w j
old exp

(
ε

j
1997

)
∑

N
k=1 wk

old exp
(
εk

1997
) .

4. Steps 1-3 are repeated using a Gauss-Newton convergence algorithm, using a tolerance

parameter, η, and threshold parameter, τ, of 10−5 and 10−3, respectively. I stop the iterating

when

‖θ j+1−θ j‖
‖θ j‖+ τ

≤η, where, ‖θ‖=
(
w2

1 +w2
2 + · · ·+w2

N
) 1

2 .

5. Steps 1-4 are repeated backwards for each common year from 1997 to 1977. For each

year-iteration (step 4), the initial estimate is the converged upon weights from the Gauss-

Newton algorithm using the “proceeding” year’s data. The basic impetus for this approach

is that the weights likely shifted as new industries were born (e.g., internet) or changed in
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prominence (e.g., health care or banking). I seek to capture these dynamics by computing

year-by-year SIC-to-NAICS conversion weights. By using the forward (t) computed as the

initial guesses for the previous years (t-1) weights, I also maintain consistency and minimize

conversion errors for the 1947 to 1976 SIC data.

6. The 1947 to 1976 SIC data is converted to NAICS using the 1977 computed weights. The

BEA also provides NAICS “super” aggregate (e.g., general non-durable manufacturing ac-

count) value-added GDP and employment values. I thus scale my converted values such

that the sum of aggregate accounts (e.g., all non-durable manufacturing add-values) is

equal to the given super-aggregate value. My weights should accurately capture SIC to

NAICS conversions near 1977; however, as the years approach 1947, the error between

actual (unobserved) and estimated values will naturally increase. The scaling seeks to mit-

igate these errors. For these “later” years one would also assume that all else equal the

greatest errors in measurement will be for the super-aggregate accounts composed of the

greatest number of aggregate accounts. The three largest super-aggregate accounts are

durables, non-durables, and transportation. Fortunately these are generally “old” industries,

which also have the greatest number of 1-1 correspondences.
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APPENDIX C Annual GMM

System (1) generates 10 orthogonality conditions and is thus over-identified. In addition all

variables are demeaned (i.e. fixed effects ignored). The moments used are,

1. E
[
ηi

t
]
= 1

T ∑
2011
t=1947

(
pdi

t − γpdmkt
t
)
= 0,

2. E
[
pdmkt

t ηi
t
]
= 1

T ∑
2011
t=1947

(
ηi

t
)(

pdmkt
t
)
= 0,

3. E
[
ei

t
]
= 1

T ∑
2012
t=1948

(
∆yi

t−βpdmkt
t−1−αηi

t−1
)
−δr f

t−1 = 0,

4. E
[
ei

t pdmkt
t−1
]
= 1

T ∑
2012
t=1948

(
ei

t
)(

pdmkt
t−1
)
= 0,

5. E
[
ei

tη
i
t−1
]
= 1

T ∑
2012
t=1948

(
ei

t
)(

ηi
t−1
)
= 0,

6. E
[
ei

tη
i
t−1
]
= 1

T ∑
2012
t=1948

(
ei

t
)(

r f
t−1

)
= 0,

7. E
[
εi

t
]
= 1

T ∑
2011
t=1947

(
xi

t−ρxi
t−1
)
= 0,

8. E
[
εi

tx
i
t−1
]
= 1

T ∑
2011
t=1947

(
εi

t
)(

pdmkt
t−1
)
= 0,

9. E
[
εi

tx
i
t−1
]
= 1

T ∑
2011
t=1947

(
εi

t
)(

ηi
t−1
)
= 0,

10. E
[
εi

tx
i
t−1
]
= 1

T ∑
2011
t=1947

(
εi

t
)(

r f
t−1

)
= 0.

The specification above is for annual data - i.e. m=11 when computing PD-ratios in section

(4.2). In general, however, companies pay dividends on a quarterly basis. By aggregating dividend

data at the lower frequency, I am likely losing information when identifying long-run prospects.

Economically, the frequency of data for estimation can also be very important. First, as highlighted

by Bansal, Kiku and Yaron (2012), time aggregation is critical for consistently estimating model

parameters and accurately mapping annual sampled data to discrete time models where decisions

are made at a higher frequencies. Second, given the large cross section and short time series

of my dependent variable in the main set of empirical results, short-run and long-run shocks can

easily be conflated. Previous literature has shown that business cycle variations are important

determinants of local asset prices; this distinction may be important for my analysis.
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APPENDIX D Extending Annual GMM to Quarterly

Given that I am now working at different frequencies my notation will slightly change from the

annual GMM. In particular, q ∈ (1,2,3,4) refers to the quarter within a particular year t. The strat-

egy is to maintain an annual GMM structure, which is the lowest frequency data available, but

roll-up the quarterly data in a way that maintains the orthogonality of errors - i.e. maintains con-

sistency of parameter and standard error estimates.

For the first equation in system (1), given that pdmkt
q,t is exogenous I can simply collapse the

quarterly specification of my model within year for my mixed-frequency GMM, i.e.

4

∑
q=1

pdi
q,t = γ

4

∑
q=1

pdmkt
q,t +

4

∑
q=1

η
i
q,t . (17)

Defining ηi
t as ∑

4
q=1 ηi

q,t , I get the first two moment conditions. For the predictive equation,

collapsing the moments within year, i.e.

4

∑
q=1

∆yi
q,t︸ ︷︷ ︸

observable

=
4

∑
q=1

xi
q−1,t︸ ︷︷ ︸
∗

+
4

∑
q=1

ei
q,t︸ ︷︷ ︸

∗∗

,

would yield inconsistent parameter estimates since xi
t is an AR(1) process - i.e. * and ** are not

orthogonal. By expanding out * intra-year I obtain,

∆yi
t =
(
1+ρ+ρ

2 +ρ
3)x4,t−1+

ρ
(
ε

i
1,t + ε

i
2,t + ε

i
3,t
)
+ρ

2 (
ε

i
1,t + ε

i
2,t
)
+ρ

3 (
ε

i
1,t
)
+

4

∑
q=1

ei
q,t︸ ︷︷ ︸

=ei
t

. (18)

Aggregating the errors as above, I now satisfy error orthogonality and obtain the next four mo-

ment conditions for my GMM. For the autoregressive equation, I similarly need to expand and then
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collapse the errors intra-year to obtain the last two moment conditions, i.e.

4

∑
q=1

xi
q,t = ρ

4

∑
q=1

xi
q−1,t +

4

∑
q=1

ε
i
q,t

= ρ
(
1+ρ+ρ

2 +ρ
3)xi

4,t−1 + ε
i
t . (19)

The moment conditions used are thus,

1. 1
T ∑

2011
t=1947 ηi

t = 0,

2. 1
T ∑

2011
t=1947

(
∑

4
m=1 pdmkt

m,t
)

ηi
t = 0,

3. 1
T ∑

2012
t=1948 ei

t = 0,

4. 1
T ∑

2012
t=1948

(
ei

t
)

pdmkt
4,t−1 = 0,

5. 1
T ∑

2012
t=1948

(
ei

t
)

ηi
4,t−1 = 0,

6. 1
T ∑

2012
t=1948

(
ei

t
)

r f
4,t−1 = 0,

7. 1
T ∑

2011
t=1947 εi

t = 0,

8. 1
T ∑

2011
t=1947

(
εi

t
)

pdmkt
4,t−1 = 0.

9. 1
T ∑

2011
t=1947

(
εi

t
)

ηi
4,t−1 = 0.

10. 1
T ∑

2011
t=1947

(
εi

t
)

r f
4,t−1 = 0.

Table (3B) gives the results of my estimation for the quarterly GMM parameters at the 25th,

50th, and 75th percentiles. The interpretation of the coefficients are the same as with the annual

specification. Comparison between the two GMMs requires some explanation, however, due to the

change in frequency. First the parameters of the predictive regressions - β, α, and δ - need to be

scaled by a factor of 4. The persistence coefficient must also be adjusted such that ρann = ρ4
qtr.

The Wald test for α = β = δ = 0 shows a significant improvement in isolating the industry-level

long-run prospects versus the annual specification; the null hypothesis is rejected for more than
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55% of the industries at a 5% level. Overall, the parameters between the annual and quarterly

specifications seem to reflect the same dynamics as in the annual specification.
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APPENDIX E Campbell-Shiller Decomposition

As the return of any asset is it’s cash flow plus price appreciation, Rt+1 = Pt+1+Dt+1
Pt

, its price

can be iterated forward s.t.

Pt =
Pt+1 +Dt+1

Rt+1

=
Dt+1

Rt+1
+

Dt+2

Rt+1Rt+2
+ · · ·

=
∞

∑
j=1

Dt+ j

Rt,t+ j
.

Taking the log of the initial expression and performing a Campbell-Shiller log-linear approxima-

tion around the average price-to-dividend ratio,

rt+1 = log(Pt+1 +Dt+1)− log(Pt)

= dt+1 + log(exp(pdt+1)+1)− pt

≈ dt+1 + log
(
1+ exp pd

)
+

exp pd
1+ exp pd

(
pdt+1− pd

)
− pt

Letting ρ = exp pd
1+exp pd

and k = log
(
1+ exp pd

)
−ρpd,

pt−dt = pdt = ∆dt+1 +ρ(pt+1−dt+1)+ k− rt+1.

We can then iterate forward the above result to obtain the decomposition of the price-to-dividend

ratio into its expected cash growth and return components,

pt−dt =
k

1−ρ
+

∞

∑
j=0

ρ
j (

∆dt+1+ j− rt+1+ j
)
.
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APPENDIX F Cash Flow Component Extraction

From Cambpell-Shiller (1987),

pt−dt =
k

1−ρ
+

∞

∑
j=0

ρ
j (

∆dt+1+ j− rt+1+ j
)
.

Both ∆dt+1+ j and rt+1+ j are of quarterly frequency in my primary specification. In order to

isolate the cash flow component, I thus need a quarterly estimate of ∑
∞
j=0 ρ j

(
rex
t+1+ j + r f

t+1+ j

)
. I

use the standard ICAPM relationship, Et
[
rex
t+1
]
= µ+ γVart [rt+1], to do this.

I run a GARCH(1,1) on daily industry returns from 1947-2011, i.e.

ht = ω+αε
2
t−1 +βht−1.

Defining the unconditional variance, E [ht ] =
ω

1−α−β
, as σ2, I utilize the GARCH autoregressive

structure,

ht+1|t = σ
2 +(α+β)

(
ht−σ

2)
...

ht+k|t = σ
2 +(α+β)k (ht−σ

2) ,
to estimate of quarterly variance, i.e. the sum of the daily forecasts over the quarter

hq
t+1|t =

66

∑
l=1

σ
2 +(α+β)l−1

(
hd

t −σ
2
)
.

The residual, ec f , extracted from the regression

pt−dt = µ+ γhq
t+1|t + ec f ,
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for each NAICS industry, thus represents my alternative measure of long-run industry prospects.

As the conditional and persistent component of consumption drives both the dividend growth and

risk-free rate, it is next to impossible to separate the two. My measure will therefore include ex-

pected dynamics in both the dividend growth and risk-free rate.
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APPENDIX G Solving Model’s Equilibrium

From Epstein and Zin (1989) recursive preferences,

U
1− 1

ψ

t −1
1− 1

ψ

=
1

1− 1
ψ

(1−β)

(
u

1− 1
ψ

t −1
)
+β

Et

[
U1−γ

t+1

] 1− 1
ψ

1−γ −1

 .
Applying L’Hospital’s Rule and taking limψ→ 1,

lnUt = (1−β) lnut +β lnEt

[
U1−γ

t+1

] 1
1−γ

.

Defining Vt = lnUt− lnut and θ = 1
1−γ

, I obtain my value function,

Vt = βθ lnEt

[
exp
(

Vt+1 + lnut+1/ut

θ

)]
.

From the intra-temporal CES aggregator,

ln
ut+1

ut
= ln

1−α+α

(
St+1
Ct+1

)1− 1
ε

1−α+α

(
St
Ct

)1− 1
ε


1− 1

ε

+ ln
Ct+1

Ct
.

Defining ln St
Ct

= sct , the Bellman equation for my value function is thus,

Vt = βθ lnEt exp

[(
Vt+1 +

1
1− 1

ε

(
ln
(

1−α+αexp(sct+1)
1− 1

ε

)
− ln

(
1−α+αexp(sct)

1− 1
ε

)
+∆ct+1

))
/θ

]
.

I solve my value function using standard iteration methods along a 5σ grid of xt and sct . Ex-

pectations are computed across a 21-point gaussian quadrature, which randomly assigns shocks

for ec, es, ed and εx.
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The stochastic discount factor is then computed using the non-housing good as the numeréaire,

Mt+1 =

[
∂Ũt

∂Ct+1

]
/

[
∂Ũt

∂Ct

]
s.t.

∂Ũt

∂Ct
=

∂Ũt

∂ut︸︷︷︸
W1,t

· ∂ut

∂Ct︸︷︷︸
W11,t

and

∂Ũt

∂Ct+1
=

∂Ũt

∂ ˜Ut+1︸ ︷︷ ︸
W2,t

·∂
˜Ut+1

∂ut+1
· ∂ut+1

∂Ct+1
,

where I defined lnUt = Ũt . Computing these various partial derivatives I obtain

Mt+1 =
W2,tW1,t+1W11,t+1

W1,tW11,t
=

[
βexp

(
˜Ut+1/θ

)
Et exp

(
˜Ut+1/θ

)][ut+1

ut

] 1
ε
−1[Ct+1

Ct

]− 1
ε

. (20)

With algebraic manipulations similar to those done on the value funciton I obtain

lnMt+1 = mt+1 = lnβ+
Vt+1

θ
−
(

1− 1
θ
− 1

ε

)
ln

ut+1

ut
− 1

ε
∆ct+1−

Vt

βθ
.

Thus expectations of the SDF and therefore the risk-free rate (1/Et [Mt+1]) for any given state,

can be computed as I’ve characterized the value function.

Furthermore, I use the Euler equation restriction, Et [Mt+1Rt+1] = 1, to pin-down the price to

dividend ratios for my various assets.

pct = logEt exp
[

mt+1 log(exp(pct+1)+1)+µc +φcxt +
λ

2
(st− ct)+ ec,t+1

]
, (21)

pst = logEt exp
[

mt+1 log(exp(pst+1)+1)+µs + I(xt>0)φsxt +
λ

2
(st− ct)+σses,t+1

]
, (22)

where lower cases signify logs. Given that rs
t = ln(exp(pst+1)+1)− pst +∆st+1, I can now also

compute the conditional expected excess returns and excess price appreciation for housing.
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APPENDIX H Pricing of Aggregate Markets

My model mimics the spatial equilibrium models in urban economics, where housing acts as a

wedge (Rosen (1979) and Roback (1982)). In order to maintain a no-arbitrage condition between

cities, dynamics in income growth filter to both housing services and non-housing consumption;

although productivity levels can be heterogenous, net utility is identical across cities. In represen-

tative agent models this condition is established by existence of a “reservation” city where housing

is supplied completely elastically.

In a similar vein, in my model, a shock to “local” long-run prospects positively effect both the

consumption of housing services and the non-housing good. In addition, at the aggregate mar-

kets, I assume my “reservation” agent is someone who can consume housing services just as a

normal, non-housing good - that is they consume housing completely elastically. This marginal in-

vestor could, for example, be a high earner whose utility is not tied to a particular location and to

whom housing, therefore, does not provide a hedge. Using a simple two MSA example the con-

sumption endowments of the two goods is thus

∆ct+1 = w1,t∆c1,t+1 +(1−w1,t)∆c2,t+1

∆st+1 = w1,t∆s1,t+1 +(1−w1,t)∆s2,t+1.

This marginal investor wants zero exposure to housing in expectations and thus chooses w1,t

from

0 = w1,t (Ix1>0φsx1,t)+(1−w1,t)(Ix2>0φsx2,t) .

There are two implications for the marginal investor in the aggregate markets. First there is

no exposure to the conditional component of housing. They therefore do not price housing in

their consumption risk. In addition, w1,t changes period to period as the two state variables move

around. This means they have time varying consumption volatility as well. These two components
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lead to the setup of Bansal & Yaron (2004) with both long-run risk and stochastic volatility.
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APPENDIX I Simulation Equations

In section (6.4) I use simulations in order to replicate my empirical results from section (5).

What I present below is the formulation for the simulation I run.

ln
St+1

Ct+1
= st+1− ct+1 = st− ct +µs−µc︸ ︷︷ ︸

µ

+
(
I(xt>0)φs−φc

)︸ ︷︷ ︸
φ(xt>0)

xt +ϕses,t+1− ec,t+1︸ ︷︷ ︸
esc,t+1

.

This is an autogressive process; if I foil the expression J times I obtain

sct+1 = µ
J

∑
j=0

(1−λ) j +
J

∑
j=0

(1−λ) j esc,t+1− j +(1−λ)J+1 sct−J+

J−1

∑
j=0

j

∑
k=0

φ(xt−k>0) (1−λ)k
ρ

j−k
εx,t− j +

(
J

∑
j=0

φ(xt− j>0)ρ
J− j (1−λ) j

)
xt−J.

Taking J→ ∞,

sct+1 = µ
∞

∑
j=0

(1−λ) j +
∞

∑
j=0

(1−λ) j esc,t+1− j +
∞

∑
j=0

j

∑
k=0

φ(xt−k>0) (1−λ)k
ρ

j−k
εx,t− j.

As I now have sct in terms of only orthogonal shocks, I can run a simulation to match the sam-

ple of returns and price-to-rent ratios in my empirical specification.
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APPENDIX J Estimation of Composition Variance

As xt is the conditional component of sct+1, I need to foil out the composition relationship one

additional period to see its dependence on shocks to long-run prospects. In addition, I define

φ(xt>0) = φsI(xt>0)−φc. Thus,

sct+2 = (1−λ)2 sct +(1+1−λ)µ+(1−λ)φ(xt>0)xt +φ(xt+1>0)xt+1 +(1−λ)esc,t+1 + esc,t+2.

In order to compute the variance of sct+2, I take its time t expectations. One of the RHS ex-

pressions becomes Et
[
φ(xt+1>0)εx,t+1

]
= φsEt

[
I(xt>0)εx,t+1

]
− φcEt [εx,t+1]. Given that for any

binary and continuous random variable D and C, respectively,

E [DC] =


E [C] , with prob. p = P(D = 1)

0, with prob. 1− p,
(23)

this expectation will be zero as Et [εx,t+1] = 0. Therefore,

Vart (sct+2+) = Et

[((
I(xt+1>0)−Et

[
I(xt+1>0)

])
φsρxt +

(
I(xt+1>0)φs−φc

)
εx,t+1 + εsc,t+2 +(1−λ)εsc,t+1

)2
]
.

Given the relationship in equation (23), I can expand out the RHS to obtain

Vart (sct+2) = Et

[(
I(xt+1>0)−Et

[
I(xt+1>0)

])2
φ

2
s ρ

2x2
t +
(
I(xt+1>0)φs−φc

)2
ε

2
x,t+1 + ε

2
sc,t+2 +(1−λ)2

ε
2
sc,t+1

]
=
(

1+(1−λ)2
)

σ
2
sc +φ

2
cσ

2
x +
(

Pt
(
I(xt+1>0) = 1

)
−Pt

(
I(xt+1>0) = 1

)2
)

φ
2
s ρ

2x2
t +(

φ
2
s −2φcφs

)
σ

2
xPt
(
I(xt+1>0) = 1

)
.

Given the intra-temporal link between prices and quantities

Vart (ωt+2) =

(
1− 1

ε

)2

Vart (sct+2) .
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