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ABSTRACT 

 

KIMBERLY A. PORTER: Challenges to the Treatment of Malaria 
(Under the direction of Steven Meshnick) 

 
 

Malaria remains a significant cause of morbidity and mortality.  Successful 

treatment of malaria is threatened by widespread drug resistance and co-infections 

with HIV. 

This dissertation explored two challenges to malaria treatment.  The first aim 

addressed outcome misclassification in antimalarial treatment trials.  Without 

accurate classification of patients’ outcomes, estimates of drug efficacy are flawed.  

We identified factors related to outcome misclassification: transmission intensity, the 

distribution of genetic variants in parasite populations, multiplicity of infection, and 

PCR-insensitivity to minority variants; then used our findings to develop a Monte 

Carlo uncertainty analysis.   

Using the uncertainty analysis, we found that misclassification of new 

infections as treatment failures was common and underestimated treatment efficacy in 

the high transmission area.  The initial estimate of the cure rate in the high 

transmission area was 63.8%; after adjustment for uncertainty related to outcome 

misclassification, the 95% simulation interval of the cure rate was 74.6 to 83.3%.  

The initial estimate of the cure rate in the low transmission area was 94.0%; after the 



 
iii 

 

uncertainty adjustment the 95% simulation interval of the cure rate was 93.5 to 

96.5%.   

The second aim was to assess the effect of a co-formulation of HIV protease 

inhibitors (PI) on incidence of clinical malaria among HIV-infected adults.  

Laboratory evidence has demonstrated that HIV PIs inhibit growth of Plasmodium 

falciparum, a malaria-causing parasite.  We conducted an ancillary analysis of data 

collected by the Adult AIDS Clinical Trials Group in two trials comparing PI-based 

against non-nucleoside reverse transcriptase inhibitor (NNRTI)-based antiretroviral 

therapy on the incidence of clinical malaria in study participants residing in areas 

with endemic malaria. 

We used pooled logistic regression to calculate hazard ratios (HR) and 95% 

confidence intervals (CI).  There was no effect of PI-based therapy on incidence of 

clinical malaria (HR = 1.03, 95% CI (0.74 - 1.44)), nor was there modification of the 

HR by seasonality and use of concomitant medications. 

 Successful treatment of malaria is a global health priority.  This dissertation 

provides a novel way to estimate treatment efficacy and proposes that HIV PIs may 

not have antimalarial action in HIV-infected patients at risk of co-infection. 
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CHAPTER 1 

 

INTRODUCTION AND LITERATURE REVIEW 

 

Malaria, a major cause of morbidity and mortality, is a mosquito-borne disease 

caused by Plasmodium parasites.  In 2008, there were an estimated 243 million cases of 

malaria resulting in 863,000 deaths worldwide.(1)  Malaria can be controlled through 

environmental modification and prevention strategies; it has been successfully eliminated 

from several regions of the world including the United States.  In parts of the developing 

world, however, particularly Sub-Saharan Africa and Southeast Asia, the burden of 

malaria remains immense. 

 P. falciparum is the most pathogenic of the five human disease-causing 

Plasmodium species and is the focus of this work; from this point forward, malaria will 

refer exclusively to infection with P. falciparum.  P. falciparum, which is transmitted by 

the Anopheles mosquito, is highly prevalent in Sub-Saharan Africa and is the most 

common Plasmodium species in tropical and subtropical regions.(2)  

 The life-cycle of Plasmodium is complex and requires both a mosquito and 

vertebrate host.  Different Plasmodium species have slightly different life-cycles; the 

following refers to P. falciparum.  In the mosquito, gametocyte-stage parasites ingested 

from the vertebrate host undergo sexual reproduction developing first into zygotes, then 

ookinetes, which eventually rupture releasing sporozoites.  This is known as the 
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sporogonic cycle and lasts roughly two to three weeks.  The sporozoites infect the 

vertebrate host through the salivary gland of the mosquito when it takes a blood meal.  

Once inside the vertebrate host, sporozoites infect liver cells where they develop into 

tissue schizonts.  Each tissue schizont undergoes asexual replication generating 

merozoites; this is known the exo-erythrocytic cycle.  Finally, the merozoite-stage 

parasites rupture the liver cell and infect red blood cells.  There they undergo asexual 

reproduction and develop into immature trophozoites (referred to as ring-stage parasites).  

At that time, the parasites develop into either gametocytes or mature trophozoites which 

then develop into erythrocytic schizonts.  The gametocytes are taken up by a feeding 

mosquito; the erythrocytic schizonts rupture and release merozoites which start the 

erythrocytic cycle again.  (Figure 1) 

 

Figure 1. The life-cycle of Plasmodium.(3) 

 Malaria transmission intensity varies regionally and often seasonally.  

Transmission intensity is commonly measured by the entomological inoculation rate 

(EIR) and multiplicity of infection (MOI).  The EIR estimates the number of 
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infectious bites per person-year and can differ greatly among locations.  During the 

rainy season in Uganda’s Tororo District, the EIR is estimated to be 591(4); in a 

semi-urban area in Burkina Faso, the EIR is believed to be under five.(5) MOI is the 

patient’s number of infections (identified by the number of genotypes in a blood 

sample) and is positively correlated with transmission intensity.  It is also inversely 

associated with the host’s level of acquired immunity.(6) Acquired immunity 

provides protection against malaria in individuals with regular exposure, i.e. those 

living in areas of stable or high transmission.  In such areas, clinical disease is far 

more common in children who do yet possess sufficient immunity, and pregnant 

women, as pregnancy reduces immunity to malaria.(7) In low transmission areas, less 

immunity develops and clinical disease is more likely to occur at any age.(8) 

 Host defenses associated with acquired immunity help protect against 

infection, control levels of parasitemia and reduce incidence of clinical disease.(9) It 

is believed that this is in large part due to humoral responses with antibodies 

appearing to target different parasite stages.(2)  

 In addition to the specificity of antibodies to different parasite stages, 

evidence suggests that acquired immunity may be strain-specific.(10)  Acquired 

immunity takes years to develop and is dependent upon transmission intensity; it does 

not alleviate the need for effective antimalarial treatments. 

Antimalarial drugs act against different parasite stages.  Many antimalarials target 

blood stage parasites.  These drugs include quinine, chloroquine, and the artemisinin 

derivatives (Arteether, Artesunate, Artemether).  Others target other parasite stages; 
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primaquine has anti-gametocyte action. Some drugs appear to target more than one stage.  

For example, primaquine also acts against tissue schizonts.(2)    

Antimalarials also have different half-lives and each may be particularly useful in 

certain circumstances.  Treatments with long half-lives, such as mefloquine, may confer 

longer lasting protection and be especially important in areas of high transmission as they 

may be better able to decrease reinfection.(11) Drugs that are highly efficacious against 

primary blood stage infection or have shorter half-lives, such as chlorproguanil/dapsone 

(LapDap) and the artemisinin derivatives, may play a particularly important role in 

reducing the clinical illness that occurs during primary infections.(11)   

Current malaria treatment strategies employ combinations of drugs to help slow 

development of drug resistance.  Artemisinin-based combination therapy (ACT) has 

demonstrated high efficacy; it consists of a short-lived, fast-acting artemisinin derivative 

partnered with a drug with a longer half-life to kill remaining parasites.(12) Care must be 

taken to select partner drugs to which parasites in the region remain sensitive.   

Determining which treatments remain effective can be done through clinical 

trials, public health surveillance and observational epidemiologic studies.  Much of this 

work is carried out in areas with high EIR; therefore to accurately assess the drug’s 

effect, these approaches require the ability to distinguish between reinfection and 

recrudescence.  Resistance can also be detected through in vitro testing.(13)  

Antimalarial resistance threatens the success of malaria treatment programs.  

Effective treatment of malaria is also complicated by the biological, geographic, and 

therapeutic interactions between malaria and Human Immunodeficiency Virus (HIV) 

which will discussed in greater detail in following sections.   
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 This dissertation examined factors relevant to malaria treatment in two distinct 

frameworks.  The first aim was to explore the impact of misclassification on cure 

rates in antimalarial efficacy studies using simulations and to develop a Monte Carlo 

uncertainty analysis.  The second aim was to quantify the effect of a co-formulation 

of two HIV-1 protease inhibitors (PIs), lopinavir (LPV) and ritonavir (RTV), on 

malaria incidence using a discrete-time survival analysis. 

A.  Factors influencing PCR-corrected cure rates in antimalarial efficacy trials 

The World Health Organization (WHO) recommends that first-line antimalarial 

treatment policies be changed when a drug’s cure rate falls below 90%.(14) The cure rate 

is the proportion of patients who recover and become aparasitemic after receiving 

treatment.  To estimate that proportion, differentiating between reinfection and 

recrudescent infection is essential.  Polymerase chain reaction (PCR)-correction of cure 

rates, that is, genotyping paired samples from patients before and after treatment to 

classify whether recurrent parasitemia is a new infection or reflects treatment failure, has 

been in use for more than 20 years.  However, PCR-correction may produce erroneous 

results dependent upon the diversity of genetic markers in the local parasite population, 

the allelic frequency of those markers, and transmission intensity.  The insensitivity of 

PCR to minority variants may also lead to misclassification.  

 

1. Classification of recurrent parasitemia 

a. PCR-correction 



 6 

 

 PCR involves the use of primers (sequences of DNA that are complementary to 

regions of the genetic marker of interest), nucleotides and a DNA polymerase to amplify 

segments of DNA to observable quantities; it allows researchers to determine which 

genetic variants are present in a biological sample.  PCR-correction, the use of 

genotyping to distinguish between reinfection and recrudescent infection, is used to 

adjust cure rates (“cure rate” is commonly used in the literature and is the language we 

use here for consistency, however it is actually the proportion of patients who are treated 

successfully) in antimalarial efficacy studies.  By comparing parasite variants present in 

the patient before and after treatment, researchers can decide if the patient cleared the 

initial infection and has become reinfected, or if she has not cleared her initial infection 

(recrudescence).   

In a recent review, it was reported that the first use of PCR-correction was in 1997 

and it has become increasingly common.(15) One of the earlier assessments of PCR-

correction declared that to be successful in differentiating between reinfection and 

recrudescence, “the theoretical requirements would be: (1) ensured protection from 

additional mosquito bites; (2) coadministration of drugs effective against liver stages, 

such as primaquine; and (3) analysis of a sufficient number of consecutive samples.”(16) 

In the absence of such an ideal setting, the authors suggested that adequately reliable 

results can be achieved with sufficient sampling, PCR efficiency, and sufficient 

resolution to identify different alleles.(16)  

 The importance of PCR-correction is well-documented and understood.  In a 

review of antimalarial studies conducted from 1995 to 2005, 175 treatment arms were 

identified in which PCR-correction had been used.  In 41 treatment arms (26%), new 
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infections were responsible for 50-74% of recurrent infections.  In 36 treatment arms 

(23%), new infections were responsible for at least 75% of recurrent infections.(15)  In 

another evaluation of data from multiple studies, the authors concluded, “Without PCR 

genotyping, 36% of the recurrent parasitemias after day 14 (260/696 recurrences) would 

have been wrongly classified as failures.  This would have lead to 1,048 cases being 

considered failures by day 28 (352 by or before day 14 plus 696 between days 14 and 

28), thus overestimating the risk of failure by about one-third.”(17) Differences between 

crude and PCR-corrected failure rates greater than 10% have been reported 

elsewhere.(18)  Not all studies have found that many episodes of recurrent parasitemia 

were the result of reinfection; one study found that all recurrent parasitemias were the 

result of recrudescence though in that study all 12 participants carried isolates resistant to 

both treatments. (19)  

PCR-correction is not without limitation and misclassification of both reinfections 

and recrudescent infections can occur.  It is possible that a new infection will be of the 

same variant as the first and the recurrent parasitemia will erroneously be classified as a 

recrudescent infection.  Conversely, PCR may fail to identify all the genotypes in the pre-

treatment sample and the recurrent parasitemia may be falsely classified as a new 

infection.  Factors that play a role in these types of misclassification will be discussed in 

greater detail below.  

 b. Definitions of recrudescence  

 Different definitions of recrudescence appear in the literature; this changes 

analytical approaches with regard to how and which patients are considered when 

calculating the cure rate or other endpoint.  The WHO recommends that markers sharing 
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even a single band indicate recrudescence but if any of the markers genotyped do not 

share a band, indicating a new infection, then that is the patient’s classification.(20) Other 

definitions attempt a more nuanced approach.  Kwiek et al. considered recurrent 

parasitemias that shared a single, highly prevalent band (appeared in more than 10% of 

samples) indeterminate, not recrudescent.(21)  For indeterminate parasitemias, they used 

the frequency of the shared allele and the number of variants in recurrent samples to 

calculate an estimated probability of a chance-match.(21)  Cattamanchi et al., who had 

genotyped msp1 (the gene encoding merozoite surface protein 1) , msp2 (the gene 

encoding merozoite surface protein 2), and glurp (the gene encoding glutamate rich 

protein), explored different ways of addressing “indeterminate” recurrences, those in 

which the patient had both shared and new alleles.(22)  They considered three schemes: 

(1) all recurrences classified as recrudescent, (2) recurrent infections classified as 

reinfections if at least 50% of the post-treatment bands were new, or (3) all recurrences 

classified as reinfections. They found that using the second scheme generated hazard 

ratios most similar to their reference group (patients who had only shared or only new 

bands) and concluded, “Our analysis showed that the episodes initially classified as 

indeterminate were much more likely to be caused by reinfection than by 

recrudescence.”(22)   

Additionally, which samples are even subject to genotyping varies.  In a review 

by Collins et al. they found that, “Most trials only genotyped samples from episodes of 

recurrent parasitemia that occurred after a defined number of days following 

therapy.”(15) It is not uncommon for patients who fail within the first seven or even 14 

days after treatment to automatically be considered recrudescent.(17, 18, 22) This may be 
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unwise as unexpectedly high numbers of new infections among recurrent parasitemias 

have been identified as early as Day 7 (19%) and Day 14 (47.1%).(23)  Of course, these 

high numbers may also be the result of PCR-related misclassification of recrudescent 

infections. 

c. WHO and Medicines for Malaria Venture (MMV) recommendations 

 The WHO recommends that antimalarial efficacy trials follow patients for no 

fewer than 28 days and that PCR-correction be used to differentiate reinfection from 

recrudescence.(20) In 2007, recommendations for standardizing PCR-correction were 

issued by a collaboration of the WHO and MMV(20); they included: 

1. Definition of a new infection: Recurrent parasitemia “in which all alleles in the 

post-treatment sample…are completely different from those in the admission 

sample,” for at least one loci (Figure 2). 

2. Definition of a recrudescent infection: At each locus, one or more alleles are 

shared in pre- and post-treatment samples (Figure 2). 

 

 

Figure 2. WHO/MMV definitions of recrudescence and reinfection.  Used with 

permission.(20) 
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3. Only two samples are required (no consecutive sampling), one pre-treatment and 

one at the time of recurrent parasitemia. 

4. Use of commercial blood collection cards as opposed to untreated filter paper 

(this helps to ensure the success of genotyping).   

5. Use of capillary electrophoresis when possible (this increases the ability to 

distinguish between different alleles). 

6. Stepwise (stopping when a new infection is detected) nested PCR genotyping of 

all recurrent parasitemias for msp1, msp2, and glurp (Figure 3). 

7. Accreditation of laboratories to provide quality assurance. 

8. When the PCR-corrected cure rate falls below 90%, they recommend collecting 

and reporting additional information: existence of gametocytes at the time of 

recurrent parasitemia, the average multiplicity of infection and the distribution of 

alleles in the parasite population.  They state that these values can then be used to 

calculate chance-matches but do not make a specific recommendation for how to 

do this. 

      These recommendations are useful with regard to standardization, an important 

next step when considering the wide variety of genotyping techniques and definitions of 

recurrence, a shortcoming highlighted by Collins et al.(15)  However, the 

recommendations do not address all of the technical and biological factors that affect 

PCR-correction.  These factors are discussed below. 
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Figure 3. Stepwise genotyping with three markers.  Used with permission. (20) 

  

2. Technical considerations of PCR-correction 

a. Selection of genetic markers 

Frequently used markers for PCR-correction include msp1, msp2 and glurp.  They 

are considered useful because they: (A) contain variable regions that result in different 

sizes of PCR products, (B) tend to have high diversity within parasite populations, (C) 

and are single-copy genes on different chromosomes.    

Microsatellites, non-coding repeated sequences of nucleotides, have been 

suggested as alternatives to traditional markers.  The argument for their use includes the 

possibility that msp-coding genes and glurp may be under immune selective pressure.(10) 

In a study of microsatellite use, researchers compared analysis of a single polymorphic 

microsatellite to analyses of msp1 and msp2.  They found that the detection threshold was 
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similar to that of msp1 and an order of magnitude lower than msp2.  From a total of 69 

samples, 46 (67%) had been classified as recrudescent by using a combination msp1 and 

msp2; when the samples were then evaluated for the microsatellite, 23 of those 46 

samples (50%) appeared to be new infections.  Seven of 30 samples (23%) identified as 

recrudescent by microsatellite analysis were new infections according to analysis by the 

msp genes.(10)  

In addition to which markers are used, the number of markers must be decided 

upon.  Though an analysis of multiple studies found that, “use of at least three genotyping 

markers was not found to increase the odds of classification as new infection...”, (15) 

many have argued for the use of multiple markers.  This is primarily due to the increased 

allelic diversity afforded by multiple markers which may be especially important in low 

transmission areas where parasite diversity is thought to be low.(22)  The benefits of 

multiple markers need to be balanced against cost and the likelihood of results that are 

difficult to interpret.(22)  Additionally, the use of multiple markers increases the 

probability that at one locus PCR will fail to detect all pre-treatment genotypes possibly 

leading to misclassification of a true recrudescent infection.(5)  A stepwise approach to 

genotyping in which no additional markers are evaluated after one identifies a new 

infection has been used and is recommended by the WHO and MMV.(20)  

b. Consecutive-day sampling 

 Using a single pre-treatment and single post-treatment sample may result in an 

incomplete description of a patient’s infection resulting in outcome misclassification if 

within-host parasite population dynamics are highly changeable as they are in 
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asymptomatic patients.(24)  Whether population dynamics are similar in symptomatic 

patients has been the subject of some debate.   

 In a study of 13 cases of malaria who returned to Sweden after travel in malaria-

endemic areas and had blood samples taken at 12 hour intervals for a minimum of three 

days during and after treatment, 12 (92%) had the same genotypes in all samples (in some 

patients, the post-treatment samples had only a subset of the pre-treatment 

genotypes).(25)  This indicated that multiple samples may be less necessary in 

symptomatic patients when determining their parasite populations.  However, the authors 

did allow that, “follow-up analysis in drug trials distinguishing recrudescent parasites 

from new infections may still be favored by analysis of additional samples…since an 

asymptomatic parasitemia may confer dynamics other than the infection in the acute 

phase and a single sample may then only partly reflect the infection parasite 

population.”(25) In another study in which samples were drawn on Day 0 – 3, 7, 14, 21, 

28, 35, 42 and any day of recurring illness, standard single sample analysis performed 

similarly well to repeated sampling, identifying 27 of 33 recrudescences (82%) when 

genotyping msp2 and 17 of 21 (81%) when genotyping both msp1 and msp2.(26) 

However these authors also chose to recommend more than one pre- and post-treatment 

sample, suggesting instead that samples be taken on two consecutive days at the 

beginning of follow-up and on two consecutive days at the time of recurrent 

parasitemia.(26) Stronger support for the use of multiple samples came from a study that 

used a quantitative fragment-analysis, as opposed to standard PCR methods.  They found 

that parasite populations within symptomatic patients were highly changeable; 14 of 20 
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patients (70%) had clones that “showed major fluctuations,” with some clones 

disappearing and reappearing within two hours.(27)  

c. Sensitivity and resolution 

 Differentiating between two alleles is a requirement of distinguishing between 

reinfection and recrudescence.  The WHO/MMV genotyping recommendations provide 

guidance on the extraction of DNA and storage of samples (20); these issues certainly 

play an important role in the efficiency and sensitivity of PCR-correction.  For the 

purposes of this project, other factors affecting the identification of distinct alleles, 

namely PCR sensitivity and resolution of amplification products, are of greater interest. 

 Nested PCR (nPCR) which uses two rounds of amplification, thereby reducing 

non-specific amplification, is recommended by the WHO/MMV for genotyping and is a 

technique found frequently in the literature.  However it has at least two important 

limitations.  First, it only can detect differences in allelic size, not sequence.  Second, 

amplification products are frequently run on agarose gels; it is widely understood that it is 

impossible to resolve small differences in the position of bands on such a gel.  In 

appreciation of this, researchers have to decide how to “bin” the results which will 

determine how close two bands must be in size to be considered a match.  Greenhouse et 

al. chose a bin width of 20 base pairs (bp) for the results of their msp1 and msp2 analysis 

(this means that bands within a 20bp range were considered matches)(5); Brockman et al. 

used 40bp bins for msp1 and msp2 and 60bp bins for glurp.(28)  

 Heteroduplex tracking assays (HTAs), which use radiolabeled probes to bind to 

host amplicons, are more sensitive to size differences than PCR and are able to detect 

insertions, deletions, and clustered base-pair mismatches.(21, 29) Additionally, PCR 
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appears unable to detect minority populations of parasites, those that make-up less than 

10 to 20% of the total within-host population.(30, 31)  Using HTAs, one study found that 

five of six new infections (83%) identified by PCR-correction were actually true 

recrudescences.(29)  This was likely the result of PCR insensitivity to minority 

variants.(29)  Because HTAs use radioactive probes they are not available for use in 

much of the developing world, however a new HTA that uses a non-radioactive, 

chemiluminescent probe appears effective.(32)  The insensitivity of PCR to minority 

variants is troubling; when minority variants in the pre-treatment sample are not detected 

it can lead to misclassification of recrudescent infections which artificially inflates 

estimates of drug efficacy. 

 

3. Biological factors that complicate PCR-correction 

a. Gametocytes 

 Gametocytes are the sexual stage of malaria parasites and do not replicate or 

cause disease within a human host.  They circulate in the peripheral blood and are 

ingested by mosquitoes during feeding resulting in parasite transmission.  Gametocytes 

are not susceptible to many antimalarial drugs and have a longer life then other stages of 

the parasite, living up to 22 days.(2)   This is concerning in the context of PCR-correction 

because they may remain circulating after successful treatment, erroneously reflecting 

recrudescent parasitemia.  Traditional PCR can detect all parasite stages; gametocytes can 

only be identified differentially using reverse transcriptase-PCR to detect messenger 

RNA of genes only expressed during this stage.  This technique is not widely available 

and misclassification may occur as a result.  Some reassuring evidence was provided by a 
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study from Uganda that found only 16 of 371 paired samples (4%) had gametocytes, 

however the methodology they used to identify gametocytes was not reported.(22)  

 b. Sequestration and synchronicity 

Sequestration of parasites and synchronicity may also affect which parasite 

variants are circulating at detectable levels in the peripheral blood, in turn resulting in 

incorrect interpretation of genotyping results.  In synchronous infections where 

erythrocytes burst, releasing thousands of merozoite-stage parasites at the same time, 

parasite densities potentially fluctuate enough to fall below detectable levels.(16) 

Conversely, asynchronous infections also complicate the interpretation of findings.  

Snounou and Beck drew attention to this, “many P. falciparum infections are relatively 

asynchronous: the paroxysms can occur at any time, and two or more can be recorded in 

quick succession, reflecting an intricate dynamic pattern for the growth of different 

parasite broods.”(16) Snounou et al. also discuss the potentially misleading role of 

sequestration of parasites stating that, “late erythrocytic parasite stages are sequestered in 

the deep vasculature and therefore might not be present in a peripheral sample.”(16) 

Appreciating the potential role of these factors is important although assessing their true 

impact or adjusting for them in the analysis is beyond the scope of this project. 

 c. Distribution of alleles in the parasite population 

 The distribution of alleles in the parasite population impacts the likelihood of 

observing matching bands in pre- and post-treatment samples.  Numerous authors have 

emphasized that allelic diversity must be high enough to sufficiently reduce the 

probability that a new infection matches the initial infection by chance.(5, 16, 17, 21, 28, 

33) Greenhouse et al. used frequency distributions to calculate the probability of a 
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chance-match (homozygosity) and found values ranging from 0.047 (msp2) to 0.18 

(TA81, a microsatellite); an increase in allelic diversity reduces homozygosity.(5)  

 

4.  Adjustment of PCR-correction through the use of probability theory 

 PCR-correction is a useful and important tool, though clearly not without 

limitation.  Though impossible to simultaneously address each factor potentially affecting 

the accuracy of PCR-correction, generating one perfect estimate that truly quantifies drug 

efficacy, adjustments made based on the allelic distributions of the local parasite 

population seem an appropriate first step; “In order to optimize the use of PCR 

genotyping, it is important to calculate the pretest probability of the same genotype 

occurring in the same individual pre- and posttreatment.”(17) These adjustments use 

probability theory to calculate the probability of a chance-match, i.e. the likelihood of a 

reinfection matching the pre-treatment sample genotype simply by coincidence.(5, 21, 28, 

33)  It has been emphasized that patients with multiple infections have a higher 

probability of a chance-match.(5)  The techniques discussed below are a means to adjust 

for misclassification of new infections; it should be noted that they cannot address 

misclassification in the other direction (erroneously classifying a recrudescent infection 

as a new infection because of PCR insensitivity). 

Greenhouse et al. used a probability-based approach to help answer two 

questions, (1) how many markers are needed to accurately classify recurrent infections, 

and (2) how does transmission intensity affect genotyping results?(5)  They genotyped 

600 pre-treatment and post-treatment samples using msp2, msp1, and four microsatellites; 

they also used the pre-treatment samples to generate allele frequency distributions for 
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each marker.  Treating the frequency distributions as probability distributions, they 

calculated the probability that a pre- and post-treatment allele matched by chance (Pmatch) 

for each study participant in an area of low to moderate transmission and in a high 

transmission site.  They then adjusted the number of recrudescent infections in each 

treatment arm separately, as determined by PCR-correction, by the average Pmatch (a 

thorough description of their approach and their formulas are in Appendix B).  They also 

evaluated the effect of using multiple markers by multiplying the average Pmatch for each 

marker together to calculate an “overall” Pmatch and adjusted the PCR-corrected results 

using that value.  Their findings confirmed anticipated results: higher allelic diversity 

conferred a lower Pmatch and higher multiplicity of infection increased Pmatch.  The site 

with lower transmission intensity reached a very low overall Pmatch (0.02) within three 

markers, whereas the higher transmission site never reached a particularly low Pmatch 

value even with all six markers (0.16).  The authors concluded that in the lower 

transmission area, “treatment estimates adjusted by genotyping estimates became similar 

to those adjusted by both genotyping and chance matches… In [the high transmission 

site], however, the risk estimates remained dissimilar even after genotyping with all six 

markers...  This suggests that even genotyping with the six markers described in this 

report may substantially overestimate the true risk of treatment failure at very high 

transmission sites.”(5)  Overestimating drug failure could result in rejection of a 

potentially useful compound during drug development.   

Kwiek et al. evaluated all patients with recurrent parasitemias and calculated how 

closely they matched (the number of shared bands) and how prevalent the matching 

alleles were in the parasite population.(21)  They considered recurrent parasitemias 



 19 

 

sharing a single band that appeared in more than 10% of samples indeterminate (neither a 

new infection or recrudescence).  For indeterminate parasitemias, they then used the 

prevalence of the shared allele and the number of variants in the recurrent sample to 

calculate an estimated probability of a chance-match.  They multiplied the mean 

probability of treatment failure (1 – the mean of the chance-match probabilities) by the 

number of indeterminate infections and adjusted the proportion of treatment failures 

accordingly (Formula in Appendix C).  Like Greenhouse et al., they concluded that 

probability-based adjustments of genotype-corrected rates (they used HTAs, not PCR) 

may be useful in high transmission areas.(21)  

Not all researchers agree that chance-matches play an important role.(18, 23)  

However, the findings of studies that used probability-based adjustments of genotyped 

results(5, 21, 28, 33) strongly indicate that this is incorrect.   

 

5.  Uncertainty analyses 

 Traditional estimation of confidence intervals accounts only for random error.  

Bayesian methods can be used to incorporate prior information on biases and other 

methods have also been developed.(34-37)  An analysis presented by Jurek et al. 

corrected for outcome misclassification using a Monte Carlo analysis instead of a 

Bayesian analysis.  They argued this was sufficient because they were not specifying a 

prior distribution of the parameter of interest itself, only prior distributions related to the 

misclassification.(36)  Though their subject area was not infectious diseases, 

modifications to their approach would make it relevant to outcome misclassification in 

antimalarial efficacy trials. 
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In conclusion, PCR-correction is a useful first step in estimating treatment 

efficacy, but without the incorporation of additional information, such as the distribution 

of genetic variants in the parasite population and multiplicity of infection, it can result in 

misclassification of a patient’s outcome.  The ability of PCR-correction to correctly 

classify a patient’s outcome is also limited by the insensitivity of PCR to minority 

variants.  The use of probability-based adjustments, can take these factors into account, 

could potentially play an important role in generating more reliable estimates of cure 

rates. 

 

B.  The effect of HIV-1 protease inhibitors on incidence of malaria 

Protease inhibitors are not currently recommended for use as first-line ART in 

Sub-Saharan Africa.(38) However, the recent advent of a heat stable co-formulation of 

two PIs, lopinavir and ritonavir (LPV/r), coupled with the demonstrated resistance to 

first-line non-nucleoside reverse transcriptase inhibitor (NNRTI)-based therapy(39) 

makes it likely the use of PIs will increase.  Furthermore, laboratory evidence has shown 

that LPV/r and other HIV PIs inhibit the growth of P. falciparum; if this is found to also 

be true in humans, the use of HIV PIs in malaria-endemic parts of the world would be 

even more valuable.  

 The Adult AIDS Clinical Trials Group (AACTG) conducted a study 

comprising two phase III randomized clinical trials (RCT): one for HIV-1-infected, 

treatment-naïve women and one for HIV-1-infected women who have been exposed 
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to single-dose nevirapine (NVP) to prevent mother-to-child transmission of HIV-1.  

In each RCT there were two treatment arms; one in which patients received NNRTI-

based therapy, the other in which patients received protease inhibitor LPV/r-based 

therapy.(40)  We conducted an ancillary study using data collected by the AACTG 

trials to look at the effect of LPV/r on P. falciparum infection in adults. 

 

1.  Malaria and HIV-1 

The geographical overlap of malaria and HIV is striking.  It is estimated that 

almost one million people die of malaria every year; most of whom live in Sub-Saharan 

Africa.(1)  The Joint United Nations Programme on HIV/AIDS reported that roughly 

22.5 million people were living with HIV/AIDS in Sub-Saharan Africa in 2007; a far 

greater number than any other region of the world.(41)  

The biological interaction between HIV-1 and malaria is well documented (all 

references to HIV for the remainder of the document refer to HIV-1).  The reciprocal 

nature of the interaction – HIV increases malaria incidence and worsens clinical 

manifestations, malaria elevates HIV viral load – makes it crucial to understand its 

repercussions in an effort to improve prevention and treatment strategies.  Using a 

mathematical model, Abu-Raddad et al. estimated that in an adult population of 

approximately 200,000, and in an area in which both HIV and malaria are highly 

prevalent and malaria interventions not used, between 1980 and 2006 the interaction may 

have led to more than 8,000 excess cases of HIV and almost one million excess cases of 

malaria.(42)  
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a. The effect of HIV on malaria 

HIV is associated with increased parasitemia, clinical malaria and severe malaria.  

In 2000, Whitworth et al. described the role of HIV on parasitemia and episodes of 

clinical malaria.(43)  Based in a malaria-endemic region of Uganda, the study followed a 

cohort of 484 adults from 1990-1998 and conducted both scheduled and interim visits 

when participants felt ill.  HIV was associated with increased odds of both parasitemia 

and clinical malaria (Table 1).  Among HIV-infected individuals, those with lower CD4 

counts tended to have higher parasite burdens.(43)  

 

Table 1. Malaria status among study participants at routinely scheduled visits 

HIV status Parasitemia 

N/total (%) 

Odds ratio  

(95% CI)* 

Clinical Malaria 

N/total (%) 

Odds ratio  

(95% CI)* 

     
   Negative 231/3688 (6.3) - 26/3688 (0.7) - 

   Positive 328/2788 (11.8) 1.81 (1.43, 2.29) 55/2788 (2.0) 2.56 (1.53, 4.29) 

     
Data taken from Whitworth et al.(43)    *Odds ratios adjusted for age, sex and pregnancy 

 

Patnaik et al. evaluated the effect of HIV serostatus, viral load, and CD4 counts 

on parasitemia. They calculated hazard ratios (HR) and found that first-episode, second-

episode and overall incidence of parasitemia were all greater in HIV-infected adult study 

participants who were followed for a single rainy season in Malawi, a malaria-endemic 

country.(44) They found an increased rate of first-episode parasitemia associated with 

increased HIV RNA concentration (Adjusted HR (95% CI) per 1-log increase = 1.24 
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(1.02, 1.51)) and of second-episode parasitemia (Adjusted HR (95% CI) per 1-log 

increase = 2.12 (1.14, 3.92)). The direction of this association was the same when 

considering overall incidence of parasitemia though not statistically significant (Adjusted 

HR (95% CI) per 1-log increase = 1.24 (1.02, 1.51)). (It is of note that when assessing the 

effect of HIV RNA concentration they did not adjust for CD4 count.)  The hazard of a 

first-episode of malaria was lowest among individuals with ≥ 400 CD4 cells/µl.(44)  

 Clinical malaria is also associated with HIV and its resulting immunosuppression.  

Evidence suggests that there is an increased relative risk of clinical malaria among 

individuals with fewer CD4 cells and more advanced HIV disease.(43)  In a cohort of 

HIV-infected adults in Uganda, the rate of malarial febrile episodes among individuals 

with fewer than 200 CD4 cells/µl was more than twice that of the rate among individuals 

with > 500 CD4 cells/µl (139.8/1000 person-years compared to 57.3/1000 person-

years).(45)  

Grimwade et al. conducted a study in an area of unstable malaria transmission to 

observe the effect of co-infection among a population with lower levels of the partial-

immunity one would expect to find in endemic regions.(46) They reported a significant 

association between HIV and severe malaria disease among adults with confirmed 

malaria [Adjusted Odds Ratio (OR) (95% CI) 2.3(1.4, 3.9)].(46)   

In summary, HIV has been linked to increased parasitemia, clinical malaria, and 

the severity of malaria disease among adults.  This association is found in both endemic 

areas and areas of unstable transmission. 

 

b. The effect of malaria on HIV 
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Malaria also exacerbates HIV infection.  Kublin et al. conducted a prospective 

cohort study that followed HIV-infected patients at regularly scheduled and interim visits 

when participants experienced illness.(47) They measured the amount of HIV RNA at 

baseline, at the time a patient was found to be parasitemic and, on average, 8-9 weeks 

post-malaria.  They found that concentration of viral RNA, for patients with baseline 

CD4 >300/µl, nearly doubled during the episode of malaria; this effect was even stronger 

among patients with high levels of parasitemia (≥2000/µl) and fever.  They observed no 

significant difference in HIV RNA levels over time for participants who did not 

experience an episode of parasitemia.(47)  In another cohort of HIV-infected individuals, 

patients with clinical malaria had a median viral load almost seven times that of non-

parasitemic controls.(48)  Though the effect of high viral load may in fact have made the 

patient more susceptible to malaria (thereby confusing this effect), there was a 

progressive decline of median viral load after treatment for malaria and after four weeks 

there was no significant difference in median viral load between individuals recovering 

from malaria and the control group.(48) The mechanism by which malaria increases viral 

load is still under study; some evidence suggests it may be related to increased production 

of TNF-α.(49, 50)  

 Malaria is also associated with a decline in CD4 cells.(51) After adjusting for 

baseline variables, including baseline CD4 count, Mermin et al. reported that the average 

decline in CD4 cells was, per episode of malaria, 40.5/µl.  When compared to HIV-

infected individuals who experienced no episodes of malaria, people who had at least 

three episodes experienced an annual decrease in CD4 cells of more than 140/µl.(51)  

2.  The treatment of HIV-1 in Sub-Saharan Africa 
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 In the 2006 antiretroviral treatment (ART) guidelines for resource-poor countries 

issued by the WHO, a combination of three drugs was recommended: two nucleoside 

reverse transcriptase inhibitors (NRTI) and a single NNRTI (either efavirenz (EFV) or 

NVP).(52) NVP is less expensive than EFV and is widely used, however its use carries 

with it risk of severe rash and rarely hepatotoxicity.(52)    

The 2009 revisions to the WHO guidelines do not recommend PI-based therapy as 

a first-line treatment, only a second-line treatment.(38)  However the new availability of 

heat stable LPV/r in combination with observation that resistance to the complete class of 

NNRTI therapies can result from a single nucleotide polymorphism in HIV-1(52) makes 

reassessment of PI-based therapy important.  One aim of the AACTG study was to 

investigate the possibility that NNRTI-based ART is less effective in patients with 

previous NNRTI exposure (in the form of single-dose NVP) due to the selection of 

resistant virus resulting from that exposure.  This possibility makes the option of using 

PI-based therapy as a first-line treatment attractive and worthy of further consideration.  

Second line therapy use in the developing world is also increasing over time and is 

almost exclusively PI-based.   

       

3.  Diagnosis and treatment of co-infected individuals 

There are risks associated with concurrent use of antimalarials and 

antiretrovirals.(53, 54) Brentlinger et al. reviewed the diagnostic and treatment 

challenges resulting from the overlap of the two infections, highlighting the need for 

medications effective against both diseases.(53)  They proposed five reasons why “the 

HIV-infected patient residing where malaria is endemic or epidemic may be at risk of 
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misdiagnosis and mismanagement…” In summary they are: 1) symptoms of both 

conditions can be varied  “[making] clinical decision making…difficult”; 2) malaria may 

occur simulatneously with other infections or even adverse reactions to ART, causing 

difficulties for patient management; 3) a possible increase in unneeded malaria treatment 

in patients with fever, or alternatively failing to diagnosis malaria in a patient with 

symptoms associated with HIV or adverse reactions to ART; 4) insufficient information 

available for evidence-based concomitant treatment of both infections; and, 5) lack of 

clinical facilities to correctly diagnose malaria. The “overlapping adverse effect profiles” 

of certain antiretroviral and antimalarial drugs, and the known deliterious drug 

interactions between the two types of treatments(53), make the possability of a 

medication that can treat both diseases highly desirable. 

There are drugs used as chemoprophylaxis in HIV-infected patients that protect 

them from malaria.  For example, co-trimoxazole use in HIV-infected patients reduces 

incidence of malaria.(55).  Though co-trimoxazole reduces morbidity and mortality 

among those infected with HIV, it is does not treat or cure HIV.   

 

4.  Antimalarial action of protease inhibitors  

 The antimalarial properties of PIs were first demonstrated in laboratory studies 

more than a decade ago.  In Rosenthal’s 1995 article in Experimental Parasitology, he 

reported the deleterious effect of PIs on the malaria parasite.(56) Malaria parasites 

construct proteins by hydrolyzing the host erythrocyte’s hemoglobin and using the 

resulting amino acids.(57) Rosenthal cultured parasites with different chemical agents 

and found that cysteine PIs caused morphological changes in the food vacuole of the 
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parasite.(56) Aspartic PIs did not cause such an abnormality but were also toxic to the 

parasite.(56) This in vitro evidence warrented further investigation into the antimalarial 

nature of PIs. 

Experimental approaches to quantifying antimalarial effects relevant to this 

dissertation have primarily involved incubating cultured parasites, of various antimalarial 

drug sensitivities, with HIV PIs and measuring growth inhibition.  Skinner-Adams et al. 

published the “first report that antiretroviral PIs can directly inhibit in vitro growth of 

both drug-sensitive and drug-resistant P. falciparum parasites.”(58)  The observed 

efficacy against drug-resistant parasites is particularly important in the context of 

growing antimalarial drug-resistance.  Several agents were particularly harmful to the 

growth of the parasite including RTV, a component of LPV/r, whereas NVP had no 

effect.(58)  Growth inhibition resulting from exposure to concentrations of LPV (0.9-

2.1µM) which are lower than those found in the plasma of a  patient on LPV/r ART have 

also been described.(59)  It is of note, however, that LPV/r is 98-99% protein bound(60); 

this may indicate that the in vitro concentrations resulting in parasite growth inhibition 

may be higher than those freely available in a patient.  Parasites exposed to LPV alone, 

RTV alone, or LPV/r experienced growth inhibition and exposure to RTV alone resulted 

in morphological changes of the parasites.(61)  In an ex vivo experiment, parasites 

exposed to sera taken from HIV-infected patients taking LPV/r had a 50-95% reduction 

in growth when compared to serum from controls.(62)   

Andrews et al. provided the first evidence of an in vivo effect of LPV/r.(61)  They 

compared the efficacy of multiple chemotherapeutic agents against the non-lethal murine 

model of malaria, P. chabaudi.  LPV/r decreased the median peak parasitemia and 
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delayed onset of parasitemia by two days (compared to the control).(61) Evidence from a 

different murine model, P. yoelii suggested that HIV PIs, including LPV, also 

demonstrate action against pre-erythrocytic stage parasites.(63) 

 The mechanism for the observed antimalarial effect of HIV PIs is still unknown;  

initially it was believed that the agents interfered with plasmepsins I-IV (four of the ten 

P. falciparum aspartyl proteases) which function within the food vacuole.(58)     

Additional evidence bolstered this hypothesis: structural similarities between plasmepsin 

II and the HIV protease,(64) docking studies that suggested bonding interactions between 

HIV PIs and plasmepsins II and IV are possible,(61) and by measuring the inhibition of a 

“hemoglobin-based peptide substrate by recombinant plasmepsin II,” it was found that 

plasmepsin II was inhibited by LPV and RTV in vitro.(59)  

 New evidence, however, suggests that the antimalarial effect of HIV PIs may not 

be related to food vacuole plasmepsins.  In both drug interaction studies and experiments 

with knockout parasites, Parikh et al. concluded that HIV PIs do not act in the same way 

as pepstatin, an aspartic protease inhibitor known to have antimalarial action.(65) 

Experiments that measure the interaction of HIV PIs and chloroquine also support a non-

food vacuole mechanism of action.  The antimalarial action of chloroquine is not fully 

understood but it is believed to act on heme, the iron-containing prosthetic group of 

hemoglobin, after it is cleaved from the hemoglobin molecule by the food vacuole 

plasmepsins.(66)  Synergism between HIV PIs and chloroquine would therefore be 

unexpected if HIV PIs inhibit food vacuole plasmepsins.  However, synergism does 

occur.(67, 68)  Additionally, RTV and saquinavir (another HIV PI), suppress growth of 

P. vivax.(69)  P. vivax has only a single ortholog to a P. falciparum food vacuole 
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plasmepsin(70), and that ortholog is not transcribed during the ring stage, suggesting that 

the food vacuole plasmepsins are not the target of HIV PIs.(69)    Recent experiments 

that explored antimalarial activity throughout the parasite’s within-human life cycle, 

found that HIV PIs were responsible for the strongest growth inhibition during the 

trophozoite and schizont stages and also acted on gametocytes, leading the researchers to 

cautiously conclude, “that the primary target of the PIs is likely to be expressed in both 

gametocytes and intra-erythrocytic parasites…plasmepsins V, IX, and X appear to be the 

best candidate targets of these drugs.”(71)  

Nathoo et al. proposed that HIV PIs may have a beneficial consequence for 

patients with malaria independent of antiparasitic effects.(72) In vitro, they found a 

marked reduction in the expression of CD36, a human surface receptor associated with 

the binding of malaria parasites, after exposure to several ART compounds, including 

RTV.  They observed that the “induced CD36 deficiency [results] in decreased CD36-

mediated cytoadherence…of parasitised erythrocytes.”  The authors did, however, 

caution that decreased expression of CD36 could also potentially harm the patient, 

postulating that parasites may then simply bind to another surface receptor, ICAM-1, 

which is implicated in cerebral malaria.  Additionally, the decrease in CD36 also reduced 

phagocytosis of parasitized erythrocytes which may reduce the patient’s ability to fight 

the infection.(72)  

In conclusion, though laboratory evidence supports the antimalarial effect of HIV 

PIs on malaria parasites, the mechanism for that action remains unknown.  Additionally, 

HIV PIs may reduce the parasite’s ability to bind to host cells though the repercussions of 

this effect are not understood.  Currently there is nothing known about an antimalarial 
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effect of HIV PIs in humans.  Data from the AACTG trials provide the first opportunity 

to examine incidence of malaria among HIV-infected individuals on PI-based therapy.      

 

 



 

 

 

CHAPTER 2 

RESEARCH DESIGN AND METHODS 

 

A. Factors influencing PCR-corrected cure rates in antimalarial efficacy trials 

This aim had two objectives.  First, to demonstrate the effect of the distribution of 

allelic variants, transmission intensity and MOI on the probability of misclassification of 

recurrent infections.  Second, to develop a practical approach for adjusting PCR-

corrected results for misclassification of both reinfections and recrudescences, and 

provide a worked example using data from areas of both high and low transmission 

intensity.   

 

1. Characteristics affecting the probability of false positives 

We used simulations of the infection, cure, and re-infection process to 

demonstrate the effect of allelic diversity, transmission intensity and MOI on the 

probability of a false positive.  In this context, a false positive refers to a reinfection that 

is misclassified as a recrudescence because allelic variants in the day 0 and day R 

samples match by chance.  We used MATLAB R2008a (Natick, MA) software to 

simulate infections (and re-infections) of individual patients after specifying the 

population-wide distribution of allelic variants.  The parameters of these distributions 
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were based on values in the literature on relevant P. falciparum genetic markers.  For 

each of 100,000 simulated patients, we assigned a specified number of day 0 variants 

drawn randomly from the distribution.  We set treatment success at 100% and assigned a 

specified number of day R variants the same way.  We tested all patients for matching 

day 0 and day R variants, and calculated the probability of a false positive as the number 

of patients with a match divided by 100,000, the number of simulated patients.   

We first assessed the effect of allelic diversity in the parasite population on the 

probability of a false positive.  As in routine PCR-correction, allelic variants were 

distinguished by the number of base pairs (bp); due to the insensitivity of nPCR to small 

variations in the number of bp, variants that were different by no more than 20bp were 

considered to be the same to replicate the degree of precision routinely allowed.  We used 

allelic distributions appearing in the literature to inform a plausible mean, 350bp, and a 

wide range of variances, from 1575 to 6475, to generate ten negative binomial 

distributions.  The negative binomial distribution is believed to most accurately represent 

allelic distributions within parasite populations.(73)  For each distribution, we simulated 

the infection and reinfection of 100,000 patients by assigning each a single day 0 variant 

and a single day R variant drawn randomly from the distribution.   

 We assessed the effect of transmission intensity on the probability of a false 

positive by assigning each patient one day 0 variant and one, two, three or four day R 

variants, each reflecting an infectious bite (for simplicity, we assumed each infectious 

bite transmitted a single variant).  We simulated the effect of MOI similarly, assigning 

each patient one through four day 0 variants and the same number of day R variants.  
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2.  Monte Carlo uncertainty analysis 

a. Theory  

To accurately measure treatment success, estimates of the cure rate need to be 

adjusted for two types of misclassification: false positives (reinfections incorrectly being 

classified as recrudescent) and false negatives (true recrudescent infections misclassified 

as reinfections because a minority variant in the day 0 sample was not detected by 

nPCR).  To adjust for this misclassification, we developed an uncertainty analysis that 

requires two sources of external, or prior, information: the distributions of false positives 

and false negatives.  These distributions can be estimated using data from antimalarial 

efficacy studies.  

We developed a method for estimating the distribution of false positives that 

reflects our understanding of the factors that influence the probability of a chance match 

and exploits characteristics of the study data themselves, allowing the probability of a 

false positive to appropriately be tailored to the study setting.  False positive probabilities 

were calculated using the same simulation procedure described above, except that the 

number of allelic variants observed in each patient at day 0 and day R, and the 

population-wide distribution of allelic variants were set to match study data.  We used 

MATLAB R2008a (Natick, MA) to simulate the infection and reinfection of N patients, 

where N was the number of patients who participated in the study.  Each patient was 

assigned X day 0 variants and Y day R variants from the day 0 and day R distributions of 

allelic variants generated by genotyping parasites present in study samples (the X for 

each patient was randomly selected from the observed distribution of the number of day 0 

infections, the Y randomly selected from the distribution of the number of day R 
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infections) and tested for matches.  The false positive probability for this simulated study 

was then calculated as the number of chance matches divided by N.  We repeated this 

process 10,000 times (generating 10,000 false positive probabilities) to create the 

distribution of the proportion of recrudescent infections that were false positives. 

To estimate the distribution of false negatives, we made use of the observation 

that nPCR has limited sensitivity to variants comprising less than 20% of a patient’s 

parasite population.(30, 31)  Misclassification of a recrudescence as a reinfection, a false 

negative, requires that each day R variant be undetected in the day 0 variants, as a single 

shared variant will result in the classification of the recurrence as a recrudescence 

according to the MMV/WHO guidelines.(20)  To our knowledge, the only published 

information on the role of false negatives comes from Juliano et al. who used 

heteroduplex tracking assays (HTAs), a molecular method more sensitive to minority 

variants and genetic variation than nPCR, and found that five of six new infections (83%) 

identified by PCR-correction were truly recrudescent infections.(29)  However, their 

study population was at negligible risk of reinfection, likely making their results an 

overestimate in the context of an average antimalarial trial.  Therefore, to estimate the 

proportion of reinfections that were false negatives we used the median number of 

variants observed in the day R samples, assumed each variant carried with it a 20% 

chance of being missed in the day 0 sample, and calculated the probability that all were 

missed at day 0 resulting in a false negative using this formula: proportion of false 

negatives equals (0.2)v, where v is the median number of variants.  The 20% chance was 

based on existing literature and expert opinion.  We also conducted a sensitivity analysis 

varying the probability of a band being missed in the day 0 sample from 0 to 80%. 
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We conducted a Monte Carlo uncertainty analysis to adjust the observed number 

of recrudescent infections as determined by PCR-correction after genotyping msp2 by the 

estimated distributions of false positives and false negatives.  Using an approach similar 

to that described by Jurek et al.,(36) we calculate the adjusted cure rate using this 

formula: 

 

Adjusted cure rate = [Nt – (Nrecru – (Nrecru x FP) + (Nnew x FN))] / Nt (1) 

 

Where Nt is the total number of patients, Nrecru is the number of recrudescent infections 

identified by PCR-correction, FP is the proportion of recrudescent infections that were 

false positives, Nnew is the number of reinfections identified by PCR-correction, and FN 

is the proportion of reinfections that were false negatives.   

We used Oracle Crystal Ball, Fusion Edition (Redwood Shores, CA) software to 

run 100,000 trials in which the number of recrudescent infections as determined by PCR-

correction after genotyping msp2 in each study area was adjusted and the cure rate 

calculated using formula 1 (above).  As the last step in each trial, we included a bootstrap 

step to allow for sampling error by generating a random value from a binomial 

distribution in which the number of trials was equal to the number of patients in the study 

and the probability of success was the uncertainty-adjusted probability of treatment 

failure.  This approach is appropriate for estimating the sampling error of an estimated 

proportion.(74)  These random values were then used as the number of recrudescences to 

calculate the final cure rate, adjusted for both uncertainty and sampling error.  We also 

ran 100,000 trials without the bootstrap step to explore the effect of uncertainty in the 
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absence of sampling error, and finally, also calculated traditional 95% confidence 

intervals around the PCR-corrected cure rate with no adjustment for outcome 

misclassification to demonstrate the effect of sampling error in the absence of uncertainty 

about the outcome.  

b. Example data  

To provide an example of our proposed uncertainty analysis, we used genotyping 

data from two randomized antimalarial efficacy trials conducted in areas of differing 

transmission intensity.  The data from the high transmission area came from a study in 

Tororo, Uganda (N=401); the researchers were comparing the efficacy of an amodiaquine 

plus artesunate regimen compared to an atemether-lumefantrine regimen.(4)  The data 

from the low transmission area were generated by a study conducted in Bobo-Dioulasso, 

Burkina Faso (N=827); the researchers were comparing the efficacy of amodiaquine, 

sulfadoxine-pyrimethamine and amodiaquine plus sulfadoxine-pyrimethamine.(75)  In 

both studies, the different therapies did demonstrate different levels of efficacy(4, 75); 

however, because we are not interested in a particular treatment’s efficacy, and instead 

are simply providing an example of the uncertainty analysis, we did not stratify by 

treatment arm.  The data for each patient included the number and identity of allelic 

variants.  Greenhouse et al. used two sets of primers for amplification to capture two 

allelic families of msp2, IC3D7 and FC27.(5)  To prevent artificial chance-matches (a 

variant amplified with one set of primers that was 300bp is not the same as a variant of 

300bp amplified with the other set of primers), we added 1000bp to each variant 

identified by the FC27 primers to create a single distribution of msp2 variants that 

included both allelic families.   
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B.  The effect of HIV-1 protease inhibitors on incidence of malaria 

The AACTG conducted two phase III randomized clinical trials (ACTG5208) to 

measure HIV outcomes for HIV-infected women with and without previous NVP 

exposure when randomized to either LPV/r-based therapy or NNRTI-based therapy.  We 

conducted an ancillary study using the AACTG data to measure the association between 

LPV/r and clinical malaria in humans. 

 

1. ACTG5208 and selection of participants for ancillary study 

The AACTG screened and recruited HIV-infected, treatment-naïve women for 

participation in one of the two trials of which the parent-study was comprised.(40)  One 

trial enrolled women with no history of NVP exposure (N=502); the other trial enrolled 

women who had received single-dose NVP to prevent mother-to-child transmission of 

HIV(N=243).(40)  Once it was determined in which trial a participant was to be placed, 

she was randomly assigned (1:1) to a treatment arm.(40)   Participants were followed 

until 48 after weeks after the final participant was randomized.(40) 

In both trials, women were randomized to receive either LPV/r-based therapy or 

NNRTI-based therapy.  As a part of their therapy, all participants received two 

nucleoside reverse transcriptase inhibitors (NRTI) consistent with WHO treatment 

guidelines.(52)  The parent-study recommended emtricitabine and tenofovir; however 

clinicians at sites were encouraged to select the NRTIs used as he/she deemed most 

appropriate.(40)  
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   The AACTG enrolled women at least 13 years of age (or older as dictated by the 

study site IRB) with a CD4+ cell count < 200 cells/mm3 obtained within 90 days prior to 

study entry.  Additional biological parameters required for enrollment including: 

- Absolute neutrophil count ≥ 750/mm3 

- Hemoglobin ≥ 7.0 g/dL 

- Platelet count ≥ 50,000/mm3 

- Total bilirubin ≤ 2.5 x upper limits of normal   

 - Aspartate aminotransferase, Alanine aminotransferase, and  

   alkaline phosphatase ≤ 2.5 x upper limits of normal 

 - Negative pregnancy test within 45 days prior to study entry 

The study population was also subject to the following conditions: 

- All women who could potentially become pregnant must have agreed to use 

birth control for the duration of the study and for six weeks following the 

discontinuation of study medication. 

- All participants must have had a Karnofsky performance score ≥ 70 within 45 

days prior to study entry.  (A Karnofsky performance score characterizes 

functional impairment.)  

- Ability/willingness of participant (or legal guardian/representative) to give 

informed consent. 

- Intent to remain in current geographical area of residence and attend study visits 

as required. 
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 The study population did not include women confined in a correctional facility for 

legal reasons or in a medical facility for treatment of either a psychiatric or physical 

illness. 

 We used data from participants in both trials from all of the malaria-endemic 

study sites: Eldoret and Kericho, Kenya; Lilongwe, Malawi; Kampala, Uganda; Lusaka, 

Zambia; and Harare, Zimbabwe.   

 

2.  Study measures 

 a.  Main exposure 

 The main exposure was the therapeutic regimen to which the participant was 

randomized: LPV/r-based therapy or NNRTI-based therapy.  Participants receiving 

LPV/r were considered exposed; participants receiving an NNRTI were the referent 

group.  LPV/r is a co-formulation of two aspartic protease inhibitors used as part of 

antiretroviral regimens.  When used in combination, the RTV increases availability of 

LPV in the patient (the efficacy and tolerability of this combination of these drugs is 

reviewed in (76).  Aspartic protease inhibitors have exhibited antimalarial properties 

in multiple studies.(58, 59, 61-63, 71)  The NNRTI used in the study was NVP.  NVP 

is a widely used therapeutic agent, used in both NNRTI-based ART and as a single-

dose treatment to prevent mother-to-child transmission.  NVP has not demonstrated 

antimalarial action.(58, 62) 

 b.  Outcomes 

 We used two definitions of malaria: confirmed malaria and probable malaria 

(Table 2).  These definitions were developed by the trial staff.  Confirmed malaria 
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required both identification of Plasmodium sp. on a peripheral blood smear and 

“compatible clinical syndrome.” (ACTG materials)  Probable malaria required both a 

“compatible clinical syndrome” and antimalarial treatment employed or recommended. 

(ACTG material)  We also included patients who were prescribed antimalarials 

(amodiaquine, artemether/lumefantrine, artesunate, chloroquine phosphate, 

dihydroartemisinin/piperaquine, mefloquine HCl, pyrimethamine/sulfadoxine, quinine 

dihydrochloride, quinine sulfate or sulphalene/pyrimethamine) without a recorded 

diagnosis as probable cases.   

 Peripheral blood smears are used to identify parasites with microscopy and is 

considered the gold standard in malaria diagnosis.  Limitations to the approach 

include: low parasite densities may go undetected, variability in how samples are 

processed may lead to misdiagnosis and the microscopist must be highly trained.(77) 

An additional limitation in the context of this study was that the parent-study did not 

regularly collect blood smears as part of the protocol; instead they collected them 

when testing for malaria was appropriate based on the trial site’s standard of care 

guidelines.  Data describing the magnitude of participants’ parasitemia were 

unavailable.   

 c. Covariates:  The use of an intent-to-treat analysis simplifies our analysis as 

theoretically it controls for both measured and unmeasured confounders.  We 

stratified by trial and study site.   

 Use of concomitant medications with antimalarial activity, such as 

cotrimoxaole, could potentially modify the effect of the main exposure on the 

incidence of malaria.  Seasonal variation in malaria transmission intensity could also 
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modify that relationship.  We used product terms in the models to evaluate the impact 

of these two possible effect measure modifiers.  Using climate data from the National 

Oceanic and Atmospheric Administration and evidence from the literature(78-82), we 

created a dichotomous time-varying variable denoting rainy season (indicating a 

higher risk of malaria transmission).  We also created a time-varying dichotomous 

variable indicating current use of concomitant medications with antimalarial activity  

(azithromycin, clindamycin, diaminodiphenylsulfone, doxycycline hydrochloride, 

doxycycline monohydrate or trimethoprim/sulfamethoxazole). 

 

3.  Statistical analysis.   

 We conducted a discrete-time survival analyses (DTSA).  This required that 

the dataset be formatted so that each participant has multiple records, one for each 

period under observation until she either experienced the event (malaria) or 

completed follow-up (Appendix E).  We ran two final models: one in which both 

probable and confirmed cases were considered events and, as a sensitivity analysis, 

one in which only confirmed cases were considered events.  All analyses were intent-

to-treat.    

 a. Rationale and interpretation 

DTSA uses hazard functions to quantify the effect of predictors on event 

occurrence.  Hazard is the proportion of individuals at risk at the beginning of a time 

period experiencing the event (malaria), conditioned on having not experienced the event 

in an earlier time period.  DTSA affords several advantages.  By modeling not only event 

occurrence but also event timing, we were able to estimate the hazard of malaria across 
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different time periods, describing any patterns that exist and any difference in hazards 

between treatment arms over time.  Hazards may also be used to calculate survival 

probabilities, the proportion of the original study population that does not experience the 

event though successive time periods.  Survival analysis is a widely accepted approach 

with easily interpretable results.   

The parameters estimated by DTSA hazard models are simple to interpret (see 

Appendix F for the formula of the DTSA model); the alpha coefficients correspond to 

time period-specific baseline hazards (the hazards of the reference group), and the beta 

coefficients, when exponentiated, are the hazard ratio associated with a one unit change 

in the predictor in any time period.  (We used a pooled logistic regression model in which 

the exponentiated beta is a good estimate of the hazard ratio as long as the event 

proportion in all discrete time periods is less than 10%.)  In addition to presenting our 

estimated parameters and hazard ratios, we plotted logit hazards and survival 

probabilities to visualize the effect of therapeutic regiment on the hazard of malaria. 

 b. Assumptions  

Survival analyses include information from both censored and non-censored 

participants; this assumes that censoring is independent of event occurrence.  There are 

three key assumptions underlying the use of the discrete-time hazard model: 

1. Proportionality.  As in continuous-time survival analyses, the assumption of 

proportionality requires that the effect of a predictor does not vary across time; in the 

discrete-time survival analysis, this means that all of the logit-hazard profiles resulting 

from stratification by a predictor will have the same shape and be equidistant across all 

time periods.  It should be noted, however, that an interaction between time and another 
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predictor has been described as “the rule, rather than the exception.”(83)  Fortunately, a 

violation of this nature can be identified (and resolved) by including product terms 

(predictors*time) in the model and evaluating model fit.   

2. Linear additivity.  The discrete-time hazard model requires that one unit 

changes in the value of a predictor all have the same effect on the logit hazard.  One way 

this assumption can easily be tested is stratifying by predictor values, calculating the 

logit-hazard at each level of the predictor and plotting the values.  If single unit changes 

in the predictor generate equal displacements of the logit hazard, the assumption is met. 

Transformation or categorization of predictors that violate this assumption may achieve 

linearity.  On the logit scale, the combined effect of predictors is assumed to be additive 

(i.e. no statistical interaction).  This assumption will be explored by plotting stratified 

sample hazard functions and changes in model fit when interaction terms are included.    

3. No unmeasured heterogeneity.  “All variation in hazard profiles across 

individuals is hypothesized to depend solely on observed variation in the predictors.”(83)   

Unlike the other assumptions, violations of this assumption are not easily identified or 

rectified and the inclusion of an error term appears to be problematic.  However, because 

our data come from RCTs we do not anticipate that our models violated this assumption.   

            c. Model-building  

 The same model-building strategy was employed for both models (one in 

which either definition of malaria was considered an event, and when only confirmed 

cases were considered events).  The independent variable is the event indicator, a 

dichotomous variable that appears in each record of all participants.  We first created 

a model to assess the effect of time only.  We had weekly data with follow-up times 
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up to 144 weeks; creating indicator variables for each week, as is frequently done in 

DTSA, was inappropriate.  We explored multiple representations of time including: 

linear, quadratic, cubic, higher order polynomials, logarithmic transformations and 

restricted cubic splines using Harrell’s DASPLINE SAS macro.(84)  We used 

goodness of fit statistics to determine which representation of time improved model 

fit sufficiently to justify the reduction in parsimony.  Using product terms, we also 

explored whether the effect of therapy varied over time (if so, it would violate the 

proportionality assumption and the terms would be required in the model). 

Next we added our dichotomous exposure to the model (LPV/r-based therapy or 

NNRTI-based therapy).  We then added trial, study site, and other variables of interest 

into the model, one at a time.  Traditional model diagnostics such as deviance statistics 

and information criteria were employed to evaluate the benefit of adding these terms to 

the model.  We assessed effect measure modification through the inclusion of product 

terms and quantified their effect on the overall fit of the model using deviance statistics.   
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CHAPTER 3 

ADJUSTING FOR MISCLASSIFICATION IN ANTIMLALARIAL EFFICACY 

STUDIES 

 

A.  Summary 

Evaluation of antimalarial efficacy is difficult because recurrent parasitemia 

can be due to recrudescence (drug failure) or reinfection.  PCR is used to differentiate 

between recrudescences and reinfections by comparing parasite allelic variants before 

and after treatment.  However, PCR-corrected results are susceptible to 

misclassification:  false recrudescences, due to reinfection by the same variant present 

in the patient before treatment; and false reinfections, due to variants that are present 

but too infrequent to be detected in the pre-treatment PCR, but are then detectable 

post-treatment.  We explored factors affecting the probability of false recrudescences 

and proposed a Monte Carlo uncertainty analysis to adjust for both types of 

misclassification.  Higher levels of transmission intensity, increased multiplicity of 

infection, and limited allelic variation resulted in more false recrudescences.  The 

uncertainty analysis exploits characteristics of study data to minimize bias in the 

estimate of efficacy and can be applied to areas of different transmission intensity. 

 

 

 



 
47 

 

 

B.  Introduction 

The World Health Organization (WHO) recommends that first-line 

antimalarial treatment policies be changed when a drug’s cure rate falls below 90%, 

and that new treatments not be recommended unless they have a cure rate greater than 

95%.(14) However, defining the antimalarial cure rate is difficult in falciparum 

malaria clinical trials because recurrent parasitemias can result from either 

recrudescence (drug failure) or reinfection during follow-up.   

One tool used to distinguish between reinfection and recrudescence is PCR-

correction (or PCR-adjustment).  PCR-correction most often uses nested PCR (nPCR) 

to categorize recurrences by comparing size polymorphisms in genetic markers 

[merozoite surface proteins 1 and 2 (msp1, msp2) and glutamate rich protein (glurp)] 

before and after treatment.  PCR-correction of cure rates has been in use for more 

than 20 years and there is an extensive literature on the substantial impact it can have 

on estimates of treatment efficacy, as previously reviewed.(15, 17)  Variations in 

PCR-correction techniques exist, especially with regard to the interpretation of 

results.  In response to this variability, the Medicines for Malaria Venture (MMV) 

collaborated with the WHO to generate guidelines for PCR-correction including a 

definition of a recrudescent infection, namely a recurrence in which one or more 

allelic variants are shared in the pre-treatment (day 0) sample and the recurrent (day 

R) parasitemia.(20)  

PCR-correction is fallible.  Incorrect identification of a reinfection as a 

recrudescence occurs when the patient is infected with same variant before and after 

treatment; this is more likely to occur in an area with limited allelic diversity or high 
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transmission intensity.(5, 21) This type of misclassification results in underestimation 

of the cure rate.  Additionally, there are often multiple genetically distinct allelic 

variants present within a single host and nPCR is not capable of detecting minority 

variants representing <20% of the population.(85) Thus, PCR-correction could 

misclassify a recrudescence as a reinfection because an apparently “new” variant 

which appears in the day R sample was present, but not detected, in the day 0 

sample.(29)  This may be particularly important if drug resistant variants are at levels 

below detection initially but become more prevalent in the patient as other variants 

are cleared by the treatment.  This type of misclassification results in overestimation 

of the cure rate. 

This present work has two aims.  First, to demonstrate the effect of the 

distribution of allelic variants, transmission intensity and multiplicity of infection 

(MOI) on the probability of misclassification of recurrent infections.  Second, to 

develop a practical approach for adjusting PCR-corrected results for misclassification 

of both reinfections and recrudescences. A worked example using data from areas of 

both high and low transmission intensity is provided.   

 

C.  Methods 

1.  Characteristics affecting the probability of false positives 

We used simulations of the infection, cure, and re-infection process to 

demonstrate the effect of allelic diversity, transmission intensity and MOI on the 

probability of a false positive.  In this context, a false positive refers to a reinfection 

that is misclassified as a recrudescence because allelic variants in the day 0 and day R 
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samples match by chance.  We used MATLAB R2008a (Natick, MA) software to 

simulate infections (and re-infections) of individual patients after specifying the 

population-wide distribution of allelic variants.  For each of 100,000 simulated 

patients, we assigned a specified number of day 0 variants drawn randomly from the 

distribution.  We set treatment success at 100% and assigned a specified number of 

day R variants the same way.  We tested all patients for matching day 0 and day R 

variants, and calculated the probability of a false positive as the number of patients 

with a match divided by 100,000, the number of simulated patients.   

We first assessed the effect of allelic diversity in the parasite population on 

the probability of a false positive.  As in routine PCR-correction, allelic variants were 

distinguished by the number of base pairs (bp); due to the insensitivity of nPCR to 

small variations in the number of bp, variants that were different by no more than 

20bp were considered to be the same to replicate the degree of precision routinely 

allowed.  We used allelic distributions appearing in the literature to inform a plausible 

mean, 350bp, and a wide range of variances, from 1575 to 6475, to generate ten 

negative binomial distributions, shown in Figure 4.  The negative binomial 

distribution is believed to most accurately represent allelic distributions within 

parasite populations.(73)  For each distribution, we simulated the infection and 

reinfection of 100,000 patients by assigning each a single day 0 variant and a single 

day R variant drawn randomly from the distribution.   

 We assessed the effect of transmission intensity on the probability of a false 

positive by assigning each patient one day 0 variant and one, two, three or four day R 

variants, each reflecting an infectious bite (for simplicity, we assumed each infectious 
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bite transmitted a single variant).  We simulated the effect of MOI similarly, 

assigning each patient one through four day 0 variants and the same number of day R 

variants.  

 

2.  Monte Carlo uncertainty analysis 

To accurately measure treatment success, estimates of the cure rate need to be 

adjusted for two types of misclassification: false positives (reinfections incorrectly 

being classified as recrudescent) and false negatives (true recrudescent infections 

misclassified as reinfections because a minority variant in the day 0 sample was not 

detected by nPCR).  To adjust for this misclassification, we developed an uncertainty 

analysis that requires two sources of external, or prior, information: the distributions 

of false positives and false negatives.  These distributions can be estimated using data 

from antimalarial efficacy studies.  

We developed a method for estimating the distribution of false positives that 

reflects our understanding of the factors that influence the probability of a chance 

match and exploits characteristics of the study data themselves, allowing the 

probability of a false positive to appropriately be tailored to the study setting.  False 

positive probabilities were calculated using the same simulation procedure described 

above, except that the number of allelic variants observed in each patient at day 0 and 

day R, and the population-wide distribution of allelic variants were set to match study 

data.  We used MATLAB R2008a (Natick, MA) to simulate the infection and 

reinfection of N patients, where N was the number of patients who participated in the 

study.  Each patient was assigned X day 0 and Y day R infections from the observed 
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day 0 and day R distributions of allelic variants (the X for each patient was randomly 

selected from the observed distribution of the number of day 0 infections, the Y 

randomly selected from the distribution of the number of day R infections) and tested 

for matches.  The false positive probability for this simulated study was then 

calculated as the number of chance matches divided by N.  We repeated this process 

100,00 times (generating 10,000 false positive probabilities) to create the distribution 

of the proportion of recrudescent infections that were false positives. 

To estimate the distribution of false negatives, we made use of the observation 

that nPCR has limited sensitivity to variants comprising less than 20% of a patient’s 

parasite population.(30, 31)  Misclassification of a recrudescence as a reinfection, a 

false negative, requires that each day R variant be undetected in the day 0 variants, as 

a single shared variant will result in the classification of the recurrence as a 

recrudescence according to the MMV/WHO guidelines.(20) To our knowledge, the 

only published information on the role of false negatives comes from Juliano et al. 

who used heteroduplex tracking assays (HTAs), a molecular method more sensitive to 

minority variants and genetic variation than nPCR, and found that five of six new 

infections (83%) identified by PCR-correction were truly recrudescent infections.(29)  

However, their study population was at negligible risk of reinfection, likely making 

their results an overestimate in the context of an average antimalarial trial.  Therefore, 

to estimate the proportion of reinfections that were false negatives we used the 

median number of variants observed in the day R samples, assumed each variant 

carried with it a 20% chance of being missed in the day 0 sample, and calculated the 

probability that all were missed at day 0 resulting in a false negative using this 
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formula: proportion of false negatives equals (0.2)v, where v is the median number of 

variants.  The 20% chance was based on existing literature and expert opinion.  

Figure 5 shows our estimate of the effect of the number of variants in the day R 

sample on the probability that a recrudescence was misclassified as a reinfection (a 

false negative).  We also conducted a sensitivity analysis varying the probability of a 

band being missed in the day 0 sample from 0 to 80%. 

We conducted a Monte Carlo uncertainty analysis to adjust the observed 

number of recrudescent infections as determined by PCR-correction after genotyping 

msp2 by the estimated distributions of false positives and false negatives.  Using an 

approach similar to that described by Jurek et al.,(36) we calculate the adjusted cure 

rate using this formula: 

 

Adjusted cure rate = [Nt – (Nrecru – (Nrecru x FP) + (Nnew x FN))] / Nt (1) 

 

Where Nt is the total number of patients, Nrecru is the number of recrudescent 

infections identified by PCR-correction, FP is the proportion of recrudescent 

infections that were false positives, Nnew is the number of reinfections identified by 

PCR-correction, and FN is the proportion of reinfections that were false negatives.   

We used Oracle Crystal Ball, Fusion Edition (Redwood Shores, CA) software 

to run 100,000 trials in which the number of recrudescent infections as determined by 

PCR-correction after genotyping msp2 in each study area was adjusted and the cure 

rate calculated using formula 1 (above).  As the last step in each trial, we included a 

bootstrap step to allow for sampling error by generating a random value from a 
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binomial distribution in which the number of trials was equal to the number of 

patients in the study and the probability of success was the uncertainty-adjusted 

probability of treatment failure.  This approach is appropriate for estimating the 

sampling error of an estimated proportion.(74)  These random values were then used 

as the number of recrudescences to calculate the final cure rate, adjusted for both 

uncertainty and sampling error.  We also ran 100,000 trials without the bootstrap step 

to explore the effect of uncertainty in the absence of sampling error, and finally, also 

calculated traditional 95% confidence intervals around the PCR-corrected cure rate 

with no adjustment for outcome misclassification to demonstrate the effect of 

sampling error in the absence of uncertainty about the outcome.  

 

3.  Example data  

To provide an example of our proposed uncertainty analysis, we used 

genotyping data from two randomized antimalarial efficacy trials conducted in areas 

of differing transmission intensity.  The data from the high transmission area came 

from a study in Tororo, Uganda (N=401); the researchers were comparing the 

efficacy of an amodiaquine plus artesunate regimen compared to an atemether-

lumefantrine regimen.(4)  The data from the low transmission area were generated by 

a study conducted in Bobo-Dioulasso, Burkina Faso (N=827); the researchers were 

comparing the efficacy of amodiaquine, sulfadoxine-pyrimethamine and amodiaquine 

plus sulfadoxine-pyrimethamine.(75)  In both studies, the different therapies did 

demonstrate different levels of efficacy(4, 75); however, because we are not 

interested in a particular treatment’s efficacy, and instead are simply providing an 
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example of the uncertainty analysis, we did not stratify by treatment arm.  The data 

for each patient included the number and identity of allelic variants.  Greenhouse et 

al. used two sets of primers for amplification to capture two allelic families of msp2, 

IC3D7 and FC27.(5)  Alleles were considered different if they were from different 

allelic families or if they were not the same length.  

 

D.  Results 

1.  Characteristics affecting the probability of false positives 

The simulations compared the effect of transmission intensity and MOI on the 

probability of a false positive across ten negative binomial distributions comprising 

alleles with the same mean size (350bp) but different variances (Figure 4); increased 

variance signified higher levels of allelic (genetic) diversity in the population under 

study.  We drew 100,000 samples of allelic variants from each distribution, assumed 

100% treatment success, and drew a second variant to allow us to calculate the 

probability of a false positive.  We calculated these probabilities at different levels of 

transmission intensity and different MOI.    

At any level of allelic variance, the greater the number of post-treatment bites, 

or the more variants a patient had at day 0 and day R, the more likely a false positive.  

Conversely, higher levels of allelic diversity had lower probabilities of false positives 

regardless of transmission intensity or MOI (Figure 6). 

 

2.  Example of Monte Carlo uncertainty analysis 
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We used two data sets to provide examples of our Monte Carlo uncertainty 

analysis, which adjusted the number of recrudescent infections identified by PCR-

correction by false positives (the proportion of nPCR identified recrudescent 

infections misclassified due to a variant in the day 0 and day R sample matching by 

chance) and false negatives (the proportion of nPCR reinfections misclassified due to 

nPCR insensitivity).   

Patients from Tororo, the high transmission area, had one to eight day 0 

variants (median of four) and one to eight day R variants (median of three).  There 

were 40 variants in the day 0 sample when divided into 20 base pair bins with 

variants ranging in size from 181 to 1611bp (we had added 1000bp to variants 

amplified by primers specific to the FC27 allelic family to differentiate them from 

variants amplified by primers specific to the IC3D7 allelic family).  There were 38 

variants in the day R sample with sizes ranging from 212 to 1663bp. 

Patients from Bobo-Dioulasso, the low transmission area, had one to eight day 

0 variants (median of two) and one to six day R variants (median of two).  There were 

39 variants in the day 0 sample with sizes ranging from 195 to 1637bp.  There were 

25 variants in the day R sample with sizes ranging from 232 to 1565bp. 

a. False positives 

There was slightly less allelic diversity in Bobo-Dioulasso, however 

individuals with single pre-treatment and post-treatment variants had very similar 

probabilities of a false positive (in Tororo the probability was 0.050 vs. 0.045 in 

Bobo-Dioulasso).  In patients with the sites’ median numbers of pre-treatment and 

post-treatment variants (four and three respectively in Tororo; two and two in Bobo-
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Dioulasso), the probability of a false positive was considerably higher in Tororo 

(0.327) when compared to Bobo-Dioulasso (0.163). 

We used the probability of a day 0 and day R variant matching by chance to 

inform our distribution of false positives.  We did this by running 10,000 simulations, 

each with the number of participants in the study.  Each participant was assigned X 

day 0 and Y day R variants from the observed day 0 and day R distributions of allelic 

variants (the X for each patient was randomly selected from the observed distribution 

of the number of day 0 variants, the Y randomly selected from the distribution of the 

number of day R variants) and tested for matches.  We created a distribution of these 

10000 probabilities and determined its mean and standard error.  The mean 

proportion of recrudescent infections that were false positives was 0.423 in Tororo 

(standard error = 0.0007) and 0.193 in Bobo-Dioulasso (standard error = 0.0004). 

b. False negatives 

False negatives occur when a minority variant is undetected by the nPCR and 

results in misclassification of a recrudescent infection as a reinfection.  The 

proportion of variants likely to be false negatives was equal to (0.2)v, where 0.2 is the 

probability that a variant was missed in day 0 and v is the median number of variants 

in the site’s day R samples (Figure 5).  The proportion of reinfections that were false 

negatives was 0.008 in Tororo and 0.04 in Bobo-Dioulasso.   

c. Adjusted number of recrudescent infections 

There were 232 recurrent parasitemias among the 401 study participants from 

Tororo.  After genotyping msp2, 145 were classified as recrudescent and 87 as 

reinfection, corresponding to a cure rate of 63.8%.  After conducting our uncertainty 
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analysis, we determined that the 95% simulation interval of likely cure rates ranged 

from 74.6 to 83.3% (Table 1).   

Among the 827 study participants from Bobo-Dioulasso, there were 75 

recurrent parasitemias.  After genotyping msp2, 50 were classified as recrudescent 

and 25 as reinfection, corresponding to a cure rate of 94.0%.  After conducting our 

uncertainty analysis, we determined that the 95% simulation interval of likely cure 

rates ranged from 93.5 to 96.5% (Table 1).   

We evaluated the effect of uncertainty due to outcome misclassification and 

sampling error independently.  The adjustment for uncertainty regarding outcome 

misclassification was responsible for the upward shift of the cure rate (indicating 

greater efficacy) and sampling error increased the width of the simulation interval 

(Table 1).  

 

E.  Discussion 

Our simulations demonstrated the effect of allelic diversity, transmission 

intensity and MOI on the probability of a chance match between a day 0 and day R 

variant.  False positives were more common in areas with less diverse parasite 

populations and high transmission levels which would lead to underestimation of cure 

rates in those areas.  The most dramatic increase in the probability of a false positive 

was associated with increased MOI (Figure 6B).   

The results of the proposed uncertainty analysis indicated false positives 

(reinfections misclassified as recrudescences) were responsible for the majority of 

misclassification in both examples.  Selecting variants at random from the observed 
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distributions in Tororo resulted in false positives in more than one-third of the 

recrudescent infections, while in Bobo-Dioulasso the probability that a recrudescence 

was a false positive was less than 20%.  The discrepancy is primarily the result of the 

lower median day 0 and day R MOI in Bobo-Dioulasso, as both areas had similar 

levels of allelic diversity.  In Tororo, false positives resulted in an uncertainty interval 

of the cure rate that indicated greater efficacy than the original point estimate 

calculated after genotyping msp2.      

False negatives (recrudescences misclassified as reinfections) resulted in only 

a small amount of misclassification for two reasons.  First, multiple variants in the 

day R sample (observed in both study sites) decreased the probability of this type of 

misclassification exponentially (Figure 5).  Our sensitivity analysis indicated that 

even with a 30% chance that a day 0 variant was not detected, the impact of the 

observed number of variants in the day R samples resulted in a negligible effect of 

false negatives (data not shown). As the chance a day 0 variant was not detected 

increased past 40%, the impact began to increase more rapidly, however values 

greater or equal to 30% are highly unlikely.  Second, using PCR-correction there 

were very few recurrences identified as reinfections; regardless of the probability that 

a reinfection was truly a recrudescence, the contribution of this type of 

misclassification to overall uncertainty would be low. However, in areas of low 

transmission, such as Southeast Asia, where few variants are  

present a day 0, false negatives may be an important source of misclassification.(29)   

The uncertainty analysis was based on PCR-correction of a single marker.  

Though the use of multiple markers to perform PCR-correction (a common practice) 
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may reduce the probability of false positives, it increases the probability of false 

negatives because the MMV/WHO guidelines state that a single marker classified as a 

reinfection results in the recurrence being classified as such, regardless of the 

classification of other markers genotyped.  As additional information is generated 

regarding the probability of false negatives and how it changes with the use of 

multiple markers, it will be possible to refine this uncertainty analysis to 

accommodate multiple markers. 

The impact of misclassification with regard to WHO efficacy thresholds 

varied between the two sites.  Although ultimately the range of likely cure rates in 

Tororo did not cross a WHO cut-point, it did demonstrate that misclassification plays 

an important role.  In Bobo-Dioulasso, the area of low transmission, a WHO cut-point 

was included in the interval of likely cure rates (i.e. 93.5 to 96.5%).  The relatively 

few patients who had recurrent parasitemia in Bobo-Dioulasso resulted in a narrow 

interval of cure rates with values similar to the PCR-corrected point estimate, 

however a drug whose cure rate calculated the traditional way would have been just 

below the level of efficacy required for new drugs and may in turn have been 

rejected, when it should be eligible for consideration.  Misclassification should 

always be considered when policy decisions are made based on estimates of efficacy. 

Our approach to generating the distribution of false positives is probably not 

practical for use in all antimalarial efficacy studies.  However, we are optimistic that 

it is possible to generate three reasonable “stock” distributions of false positives, one 

for high, medium, and low transmission areas.  The uncertainty analysis itself is quite 

straightforward and can easily be carried out in Crystal Ball, a relatively inexpensive 
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addition to Microsoft Excel, and perhaps eventually in a free web-based tool.  It is our 

hope that future molecular research will allow us to provide researchers with 

distributions of false positives and false negatives, making this uncertainty analysis 

available for wide use. 

Misclassification of recurrent parasitemias resulting from PCR-correction has 

been previously described.  Adjustments of PCR-corrected trial results have been 

made using the distribution of allelic variants to calculate the probability of false 

positives leading to incorrect classification of the recurrence as a recrudescence when 

it is a reinfection.(5, 21, 28, 33) HTAs, which use radiolabeled probes to bind to host 

amplicons, are more sensitive to minority variants and genetic variation than 

nPCR(21, 30, 86, 87) and have been used to demonstrate that nPCR insensitivity can 

result in recrudescent infections being misclassified as reinfections.(29)  To our 

knowledge, simultaneous adjustment for both types of misclassification has not been 

undertaken previously. 

Traditional confidence intervals summarize only the effect of random error 

and do not capture or reveal any uncertainty resulting from bias, including 

misclassification or measurement error, in the study.  Adjusting results for 

misclassification was illustrated in previous work(36) and is grounded in methods 

proposed to estimate intervals that are an extension of traditional confidence intervals 

through use of simulations.(34)  Some researchers are uncomfortable with the explicit 

assumptions about misclassification that are required for uncertainty analyses.  

However, this approach is far preferable to assuming misclassification is entirely 
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absent, an implicit assumption in the traditional estimation of a PCR-corrected cure 

rate. 

A point estimate of the cure rate, the traditional outcome measure in 

antimalarial efficacy studies, is insufficient given the limitations of PCR-correction.  

This insufficiency is even more important given the policy implications of efficacy 

estimates.  A 95% simulation interval for the cure rate, instead of an estimate likely to 

be biased by outcome misclassification, may encourage more careful assessment of a 

treatment’s utility before policy decisions are made.  This work provides a template 

for adjusting for outcome misclassification in antimalarial efficacy studies that 

addresses both types of misclassification and can be applied to any study data that 

include information on the variants present in the patient population. 
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Figure 4. The ten negative binomial distributions of base pairs used for 

simulations.  These distributions all have the same mean (350 bp); the variance 

increases from top to bottom.  Each plot represents 100000 randomly assigned 

number of base pairs selected from the distribution.  x-axis: number of base pairs; y-

axis: frequency 
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Figure 5.  Multiplicity of infection and its effect on the probability of a false 

negative.  A false negative, or a recrudescent infection misclassified as a reinfection, 

occurs as a result of nPCR insensitivity to minority variants (those comprising less 

than 20% of a patient’s infection). 
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Figure 6. A) The effect of transmission intensity on the probability of a false 

positive, B) The effect of multiplicity of infection on the probability of a false 

positive.  x-axis: measure of allelic variation in parasite population (1 = least 

variance); y-axis: probability of a false positive (a false positive occurs when a day 0 

and day R variant match by chance); var = variant 
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Table 2. Results from the uncertainty analysis: estimates of cure rates from 

studies in Bobo-Dioulasso, Burkina Faso, and Tororo, Uganda.   

 Tororo 

N = 401 

Bobo-

Dioulasso 

N = 827 

Number of recurrent infections 232 75 

Number of recrudescent infections identified by 

PCR-correction based on genotyping of msp2 
145 50 

Cure rate (95% CIa) calculated by PCR-correction 

based on genotyping of msp2 (%) 

63.8 

(59.0 – 68.4) 

94.0   

(92.1 – 95.4) 

95% SIb of likely cure rates adjusted for only for 

uncertainty (%)c 
77.4 – 80.5  94.9 – 95.1 

95% SI of likely cure rates generated by Monte 

Carlo uncertainty analysis (%) 
74.6 – 83.3 93.5 – 96.5 

a. CI = confidence interval; b. SI = simulation interval; c. This interval does not take sampling error 

into account. 



 

 

 

 

CHAPTER 4 

HIV-1 PROTEASE INHIBITORS AND INCIDENT MALARIA: AN ANCILLARY 

STUDY TO ACTG5208 

 

A.  Summary 

HIV-1 protease inhibitors (HIV PIs) have antimalarial action in vitro and in 

murine models.  The effect of HIV PIs on malaria has never been studied in humans. 

We used data from ACTG5208 to compare incidence of clinical malaria in 

HIV-infected adult women randomized to PI-based antiretroviral therapy (ART) to 

women randomized to non-nucleoside reverse transcriptase inhibitor (NNRTI)-based 

ART.  We used pooled logistic regression to calculate hazard ratios and 95% 

confidence intervals.  We conducted a stratified analysis and explored effect measure 

modification by seasonality and concomitant medication use.   

 ART assignment was not associated with the hazard of malaria (HR = 

1.03; 95% CI: 0.73 - 1.44).  This finding was similar in analyses stratified by trial 

[Trial 1, HR = 1.37 (95% CI = 0.76 - 2.44); Trial 2, HR = 0.94 (95% CI = 0.62-

1.43)].  There was no modification of the HR by seasonality or use of concomitant 

medications.  

Clinical malaria among HIV-infected individuals was not reduced by PI-based 

ART.  This study is the first step in understanding whether HIV PIs will reduce 
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malaria and additional work focused on incidence of sub-clinical malaria and malaria 

in children may be warranted. 

 

B.  Introduction  

HIV and malaria are highly co-prevalent in some regions of the world, 

including Sub-Saharan Africa.  These infectious agents interact biologically such that 

each may increase incidence of the other.(42)  A treatment efficacious against both 

diseases or an antiretroviral that provided prophylaxis for malaria would offer a 

tremendous advantage to the millions of HIV-infected people in areas where co-

infection is common.   

The biological interaction between the two diseases is well documented 

though incompletely understood.  HIV infection increases incidence and worsens 

clinical manifestations of malaria(43-45); malaria elevates HIV viral load(47, 48) and 

decreases CD4 counts.(51)  The data on drug interactions between antiretroviral 

therapies (ART) and antimalarials are incomplete.  However, there are examples of 

harmful effects for the patient and alterations in the pharmacokinetics of the 

treatments, reviewed in (54)  The biological and pharmacological interactions make a 

treatment effective against both diseases highly desirable.  There is evidence that HIV 

protease inhibitors (PIs) may fill that role.(58, 59, 61-63, 71)   

Evidence that aspartic PIs (the group of PIs used in HIV ART) have 

antimalarial effects on Plasmodium falciparum, the most virulent of the human 

malaria-causing parasites, was first generated more than two decades ago.(88)  More 

recent in vitro studies have demonstrated that HIV PIs inhibit the growth of P.  
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falciparum, regardless of the parasites’ sensitivity to antimalarials(58, 59), and 

parasites exposed to sera taken from HIV-infected patients being treated with LPV/r 

had a 50 to 95% reduction in growth.(62) In vivo evidence from murine models also 

supports the antimalarial effect of HIV PIs.(61, 63)  Nathoo et al. proposed that HIV 

PIs may have an impact on patients with malaria independent of antiparasitic effects 

after observing in vitro that treating cells with HIV PIs resulted in a marked reduction 

in the expression of CD36, a human cell receptor associated with the binding of 

malaria parasites.(72)  

 Protease inhibitors are not currently recommended for first-line ART use in 

resource limited settings.(38)  However the recent advent of heat stable LPV/r, 

coupled with observed resistance to first-line non-nucleoside reverse transcriptase 

inhibitor (NNRTI)-based ART (39) and resistance to nevirapine (NVP) associated 

with use of single dose NVP for prevention of mother-to-child transmission of 

HIV(89), makes it likely the use of PIs in the developing world will increase.  If the 

antimalarial effect of HIV PIs is also found to be present in humans, their use in 

regions with endemic malaria would be even more valuable.  

The Adult AIDS Clinical Trials Group (AACTG) recently completed two 

phase III randomized clinical trials (ACTG5208) to compare the antiretroviral activity 

of LPV/r-based ART to NNRTI-based ART in HIV-infected women who either had 

been exposed to single dose NVP (Trial 1) or were treatment-naïve (Trial 2).  We 

conducted an ancillary study using the AACTG data to measure the association 

between LPV/r and clinical malaria in humans  
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C.  Methods  

1.  ACTG5208.   

The study consisted of two trials that followed participants for 48 weeks after 

the final participant was randomized.(40)  Trial 1 enrolled women who had received 

single-dose NVP to prevent mother-to-child transmission of HIV (N=243); Trial 2 

enrolled women with no history of NVP exposure (N=500).(40)  In both trials, 

women were randomized 1:1 to receive either LPV/r-based ART or NNRTI-based 

ART.  All participants received tenofovir DF and emtricitabine consistent with World 

Health Organization (WHO) guidelines.(52)  Participants had regularly scheduled 

study visits (at weeks 2, 4, 8, 12, 16, 24 and then every 12 weeks) and could also 

report to the study site for medical care as needed. 

 

2.  Study population.  

 ACTG5208 enrolled women greater than 13 years of age (or older as dictated 

by the study site IRB) with a CD4+ cell count < 200 cells/mm3 obtained within 90 

days prior to study entry.  Enrollment criteria are described in detail elsewhere.(40)  

We used data from participants in both trials from all of the study sites where malaria 

is endemic: Eldoret and Kericho, Kenya; Lilongwe, Malawi; Kampala, Uganda; 

Lusaka, Zambia; and Harare, Zimbabwe.   

 

3.  Exposure and outcome.   

 The main exposure was the therapeutic regimen to which the participant was 

randomized (i.e., LPV/r-based ART or NNRTI-based ART).  The primary outcome 
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was clinical malaria.  The trial staff classified this diagnosis as probable or confirmed.  

Probable malaria required both a “compatible clinical syndrome” and use or 

recommendation of antimalarial treatment.(40)  Confirmed malaria required both 

“compatible clinical syndrome” and identification of Plasmodium sp. on a peripheral 

blood smear.(40)  We also included patients who were prescribed antimalarials 

(amodiaquine, artemether/lumefantrine, artesunate, chloroquine phosphate, 

dihydroartemisinin/piperaquine, mefloquine HCl, pyrimethamine/sulfadoxine, 

quinine dihydrochloride, quinine sulfate or sulphalene/pyrimethamine) without a 

recorded diagnosis of malaria as probable cases.   

 

4.  Statistical analysis.   

 We counted person-time at risk from treatment initiation until the date of 

malaria, death, drop-out, or study completion. We used the hazard ratio (HR) as a 

measure of association and the 95% confidence interval (CI) as a measure of 

precision. To obtain the hazard ratio we fit pooled logistic regression models, 

which approximate Cox proportional hazards models(90) as long as the event 

proportion in all discrete time periods is less than 10%.; in our study the largest 

event proportion was 5.6%. Time-on-treatment was modeled using a 5-knot 

restricted cubic spline (Harrel’s DASPLINE(84)) to allow a flexible nonlinear 

association between time and malaria and all models included trial and study site.  

Because few patients had greater than 165 weeks of follow-up and there were no 

incidences of malaria after that time, we administratively censored all participants 

still at risk at 165 weeks.  
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 We examined seasonality and concomitant medication use as possible 

effect measure modifiers by the addition of product terms with exposure. Using 

climate data from the National Oceanic and Atmospheric Administration and 

evidence from the literature(78-82), we created a time-varying dichotomous 

variable denoting rainy season (indicating a higher risk of malaria transmission). 

We also created a time-varying dichotomous variable indicating current use of 

concomitant medications with antimalarial activity (azithromycin, clindamycin, 

diaminodiphenylsulfone, doxycycline hydrochloride, doxycycline monohydrate or 

trimethoprim/sulfamethoxazole). We examined the proportional hazards 

assumption by a plot of the log cumulative hazard by time as well as the addition 

of terms for the products of exposure and time (including spline coefficients). We 

conducted a stratified analysis in which we explored the effect of LPV/r in Trial 1 

and Trial 2 separately.  As a sensitivity analysis, we fit a model in which only 

confirmed malaria cases were considered to have experienced a malaria episode.  

Finally, we generated plots of survival by time for each exposure group.  All 

analyses were conducted using SAS statistical software (version 9.2; SAS 

Institute, Cary, NC).  

 

D.  Results  

 There were 145 women enrolled in Trial 1 from the relevant sites.  They  

were split almost evenly between treatment arms, were similarly aged, and had 

comparable baseline CD4 counts and HIV viral loads (Table 3).  Participants in 

Trial 1 were followed for up to 144 weeks; the average duration of follow-up was 
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63 weeks.  In Trial 1, 48 participants (33%) were identified as having probable or 

confirmed malaria at least once during follow-up (Table 4).  Of those, 20 (42%) 

participants had more than one episode of malaria. 

 There were 301 women enrolled in Trial 2 from the relevant sites (Table 

3).  There were seven more women randomized into the LPV/r-based ART arm 

compared to the NNRTI-based ART arm.  The average age in Trial 2 was slightly 

higher than in Trial 1 but similar across treatment arms within Trial 2.  Baseline 

CD4 counts and viral loads were similar although there was a slightly higher 

proportion of patients with a baseline CD4 count < 50 cell/mm3 in the LPV/r arm 

(Table 1).  Participants in Trial 2 were followed for up to 185 weeks; 23 were 

administratively censored at 165 weeks.  The average duration of follow-up was 

88 weeks.  In Trial 2, 89 participants (30%) were identified as having probable or 

confirmed malaria at least once during follow-up (Table 4).  Of those, 41 (46%) 

participants had more than one episode of malaria. 

 The proportional hazards assumption was met.  Neither seasonality nor 

concomitant use of medications with antimalarial effect modified the effect of 

treatment assignment on the hazard of malaria (results not shown).  When we 

adjusted for trial and site, treatment assignment was not associated with the 

hazard of malaria (HR = 1.03; 95% CI: 0.73 - 1.44).  A survival curve in which 

trial and site are collapsed is presented in Figure 7.  Trial and site-specific curves 

are available in Appendix H.     

 When we considered only laboratory confirmed cases of malaria, the 

results were very similar; there was no effect of treatment assignment on the 
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hazard of malaria (HR = 1.28; 95% CI: 0.58 - 2.82).  This finding was similar in 

analyses stratified by trial [Trial 1, HR = 1.37 (95% CI = 0.76 - 2.44); Trial 2, HR 

= 0.94 (95% CI = 0.62-1.43)].  Trial-specific curves are presented in Figure 8. 

 

E.  Discussion 

Laboratory evidence supports the antimalarial effect of HIV PIs. The effect 

has been shown in cultured parasites, both drug sensitive and drug resistant, and in 

mice using two murine species of Plasmodium.  Skinner-Adams et al. reported that 

ritonavir (RTV), one of the PIs used in ACTG5208, and another HIV PI inhibited 

growth in parasites in vitro whereas the antiretroviral NVP had no effect.(58)  These 

findings have been replicated and additional HIV PIs have demonstrated antimalarial 

effects at clinically relevant concentrations.(59, 62) 

Studies of murine models of malaria also have demonstrated the antimalarial 

effect of HIV PIs.  After infection with P. chabaudi, mice exposed to LPV/r had 

delayed onset of parasitemia by two days and a decrease in median parasitemia from 

20% to 4%.(61)  Evidence from a different murine model, P. yoelii, suggested that 

HIV PIs, including LVP, the other ACTG5208 PI, inhibit growth of preerythrocytic-

stage parasites.(63)  

Unlike these laboratory studies, we saw no evidence of an antimalarial effect.  

Patients randomized to LPV/r-based ART were as likely to develop malaria as those 

randomized to receive NNRTI-based ART. 

We propose two potential reasons that may help to explain why no effect was 

observed.  One possibility is that any antiparasitic action of the LPV/r occurs 

simultaneously with a reduction in the innate immune response to malaria resulting 
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from exposure to LPV/r, resulting in a null net benefit.  Nathoo et al. proposed that 

although the decrease in CD36 expression may be beneficial to the patient because of 

decreased cytoadherence of parasitized erythrocytes, it could also make it more 

difficult for a patient’s innate immune system to fight P. falciparum infections 

because of reduced phagocytosis which also resulted from the diminished expression 

of CD36.(72)   

Another possibility is that the antimalarial effects of PIs are highly 

concentration-dependent.  The in vitro studies of HIV PIs on malaria parasites strove 

to explore the effect using clinically relevant concentrations, including trough 

concentrations.(58, 59, 61, 62) However it is unknown if the parasites’ exposures to 

drugs in the laboratory studies are truly equivalent to the fluctuating serum drug 

concentrations one would anticipate in a patient on ART.  Carefully controlled 

laboratory experiments, isolated from the complex biological interactions among 

drugs, host acquired and innate immunity, and in vivo parasite growth dynamics, may 

simply not approximate the experience of HIV-infected patients on PI-based ART. 

Women assigned to NNRTI-based ART in Trial 1 were more likely to 

experience virologic failure when compared to the women randomized to LPV/r-

based ART.(CROI 2009 abstract)  This reduced control of HIV disease could have an 

impact on our findings as increased incidence of clinical malaria has been associated 

with low CD4 counts in HIV-infected individuals.(43, 45)  Had we observed a 

protective effect of LPV/r, it would have been important to consider that it may 

simply have resulted from the superior virologic response to that therapy.  It is of note 

that in Trial 2, LPV/r-based ART and NNRTI-based ART had comparable virologic 
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efficacy (CROI 2010 abstract) and in our stratified analyses there was no effect of 

LPV/r on incidence of malaria in either trial. 

Women who experienced virologic failure, as well as those with adverse 

reactions to their assigned medications, were eligible to switch antiretroviral therapies 

and receive the treatment available in the other study arm.  Among the 346 women 

included in this ancillary analysis, 50 (14%) did so; almost all moved from NNRTI-

based ART to LPV/r-based ART.  Because it is a relatively small percentage of 

patients who switched treatments and because fewer than 10% of the malaria episodes 

occurred after the participant had switched, we do not anticipate that this had a 

considerable effect on our findings.   

This work has several limitations primarily related to the outcome.  The 

sensitivity and specificity of clinical syndrome when used to diagnose malaria are 

notoriously limited (Steve Taylor, personal communication, (91)).  When an exposure 

is dichotomous, nondifferential misclassification (we do not anticipate the sensitivity 

and specificity would vary across treatment arm) usually drives effect estimates 

towards the null.  It is possible that this partially explains our null results.  

Additionally, the ACTG5208 study staff did not regularly collect blood smears as part 

of the protocol; instead they collected them when testing for malaria was appropriate 

based on the site’s standard of care guidelines.  The lack of systematically collected 

blood smears and the absence of information with regard to blood smears that were 

negative, made slide-positivity an unacceptable primary outcome.   

This work is only the first step in understanding the antimalarial effects of 

HIV PIs in humans.  “Probable” malaria without laboratory confirmation is an 
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imperfect outcome.  However, the comparable effect estimates generated by models 

that included both probable and confirmed cases, and the sensitivity analysis in which 

only confirmed cases were considered to have malaria strengthen our findings.   

The use of biological markers will allow future investigations into the impact 

of HIV PIs on sub-clinical malaria.  Further research is also warranted on the effects 

of these drugs in children, who are at greater risk of clinical malaria.  Additionally, 

laboratory evidence suggests that co-administering HIV PIs with chloroquine or 

mefloquine may enhance the antimalarial activity of the drugs even in resistant 

parasites; perhaps the utility of HIV PIs as antimalarials will result from co-

administration with existing therapeutics.  The optimism about HIV PIs having an 

antimalarial effect in HIV-infected individuals may need to be tempered, but there is 

still much to be learned. 
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Figure 7.  Survival curves by treatment assignment for participants in 

ACTG5208.   

 

 

Figure 8.  Trial-specific survival curves for participants in ACTG5208.  (A) 

Trial 1.  (B) Trial 2.   
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Table 3.  Participants in ACTG5208 by trial and treatment group from sites 

with endemic malaria. 

 Trial 1  

(n = 145) 

Trial 2 

(n = 301) 

 LPV/ra 

(n = 72) 

NPVb 

(n = 73) 

LPV/ra 

(n = 154) 

NPVb 

(n = 147) 

Age, years 30.5 30.7 35.8 34.8 

Site, n     

     Eldoret, Kenya 9 8 25 22 

     Kericho, Kenya 14 13 23 23 

     Lilongwe, Malawi 10 14 22 22 

     Kampala, Uganda 9 8 21 22 

     Lusaka, Zambia 12 12 21 19 

     Harare, Zimbabwe 18 18 42 39 

Baseline CD4,   

  mean cells/mm3 ± SDc 
126 ± 57 134 ± 62 123 ± 78 127 ± 81 

Baseline CD4 <50, n(%) 7 (9.7) 10 (13.7) 27 (17.5) 20 (13.6) 

Baseline HIV-1 RNA,       

  median copies/mLd 
157,453 161,630 131,175 112,401 

aLopinavir boosted with ritonavir–based antiretroviral therapy.  

 bNevirapine–based antiretroviral therapy.  

 cCD4-positive cells per mm3.  dLog HIV-1 viral load. 



 
79 

 

 

Table 4. Clinical malaria among participants of ACTG5208.    

 Trial 1 

n = 145 

Trial 2 

n = 301 

 LPV/r (n) NVP (n) LPV/r (n) NVP (n) 

All malaria, n     

     Eldoret, Kenya 5 5 5 8 

     Kericho, Kenya 8 6 12 10 

     Lilongwe, Malawi 7 5 7 8 

     Kampala, Uganda 3 0 6 9 

     Lusaka, Zambia 3 6 12 8 

     Harare, Zimbabwe 0 0 2 2 

Total  26 22 44 45 

     

Confirmed malaria, n 4 3 10 8 

 

 

 

 

 



 

 

 

CHAPTER 5 

DISCUSSION 

A.  Factors influencing PCR-corrected cure rates in antimalarial efficacy trials 

1.  Summary of findings 

  We identified factors that influence outcome misclassification and used them 

to develop a Monte Carlo uncertainty analysis; our findings suggested that false 

positives (incorrectly identified treatment failures) are common in antimalarial 

efficacy studies and result in underestimates of treatment efficacy.  We conducted an 

intuition-building exercise which relied exclusively on simulated data.  As 

anticipated, holding transmission intensity and multiplicity of infection constant, 

increased allelic diversity reduced the probability of the same variants being observed 

before and after treatment by chance (a false positive).  Conversely, holding allelic 

diversity constant, increased transmission intensity and multiplicity of infection 

increased that probability.  From our simulations, it was clear that we would need to 

consider these factors in the development of our Monte Carlo uncertainty analysis. 

 During the development of the Monte Carlo uncertainty analysis, we relied 

heavily on statistical methods employed by Jurek et al.(36) and probability-based 

corrections of molecular data used by malariologists(5, 21, 28, 33).  Having identified 

important factors associated with outcome misclassification in our simulation 

exercises and used the literature to estimate the likely role of PCR-insensitivity to 
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minority variants, we worked to design a practical approach that could be useful to 

clinicians and others associated with antimalarial treatment trials.   

 The model we created used a straight-forward approach, with some technical 

details:  (1) remove the proportion of infections believed to be false positives from the 

pool of study participants classified as treatment failures by PCR (this requires a 

distribution of the probability of false positives); (2) move the proportion of 

infections believed to be false negatives from the pool of patients classified as 

reinfections into the pool of treatment failures (this requires an estimate of the 

probability of false negatives); (3) use the adjusted pool of treatment failures to 

calculate a new cure rate; (4) use a nonparametric bootstrap step to generate random 

error around the cure rate; (5) repeat this process 100,000 times and generate a 95% 

simulation interval of likely cure rates.   

When we conducted the uncertainty analysis using data from two separate 

trials conducted in low and high transmission areas, we discovered that the 

probability of false positives was quite high in the high transmission site (33%) and 

lower but still unexpectedly high in the low transmission site (16%).  In both sites, the 

likely impact of false negatives appeared negligible.  The initial estimate of the cure 

rate in the high transmission area was 63.8%; after we used our uncertainty analysis 

to adjust the estimate for outcome misclassification, the 95% simulation interval of 

the cure rate was 74.6 to 83.3%.  The initial estimate of the cure rate in the low 

transmission area was 94.0%; after the uncertainty adjustment the 95% simulation 

interval of the cure rate was 93.5 to 96.5%. 
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2.  Findings in the context of current literature 

It is not uncommon in the literature to find mention of the possibility of 

outcome misclassification, especially the erroneous classification of new infections as 

treatment failures, but it is almost always dismissed as unimportant.  Publications that 

used data on the distribution of allelic variants in the parasite population to adjust 

estimates of treatment efficacy beyond those generated by PCR-correction have 

shown that using this additional source of information to assess the probability of 

false positives likely improves estimates of the cure rate.(5, 21, 28, 33)  

This project builds on those studies by incorporating not only information 

related to the probability of false positives but also uses data on PCR-insensitivity(30, 

31) to estimate the impact of false negatives.  To our knowledge, there is only one 

paper that has addressed the impact of false negatives and they estimated that a 

majority of “reinfections” were truly treatment failures.(29)  This is quite different 

then our findings, in which only a small percentage (1 to 4%) of patients were likely 

misclassified in that way.  However, their study population was not at risk for 

reinfection due to hospitalization throughout follow-up or very low local transmission 

intensity; this makes their results not generalizable to the majority of treatment trials.  

 

3.  Strengths and limitations  

a.  Strengths 

The uncertainty analysis we developed is straight-forward and, if study site-

appropriate distributions of false positives and negatives are provided, can be 

executed with little statistical expertise or knowledege of statistical software.   
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The ability to exploit characteristics of the study data themselves also makes 

this analysis a desirable option.  This allows for the inclusion of information we know 

to be important to misclassification, namely the distribution of genetic variants and 

the MOI.  Additionally, explicit assumptions regarding the degree of misclassification 

is unappealing to some researchers.  By tailoring these assumptions to the study site, 

and incorporating data that have been shown to be relevant to outcome 

misclassification, we demonstrate that these estimates of misclassification are not 

solely the results of “stastistical hand-waving.” 

b.  Limitations 

Malaria biology is complex.  Human host immunity, genetic diversity of 

parasites within a single infectious bite, and sequestration and synchronicity of 

parasites, are only a few of the factors at work in the complicated dynanmics of 

malaria infection.  Our analysis cannot address many of those factors and requires a 

number of assumptions. 

One particular component of the analysis which we believe could be improved 

upon as additional data are generated is the role of false negatives.  There is no 

relevant evidence to demonstrate their impact on study populations at risk for 

reinfection.  Using information on the insensitivity of nPCR to minority variants and 

relying on the WHO/MMV guidelines on classifying a recurrent infection as new, we 

were able to estimate what we hope is a reasonable approximation, but as additional 

molecular data become available that are generated using very sensitive and precise 

techniques to identify all variants present in a host it is likely an updated 

approximation would be closer to the truth.  
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 Our objective was to develop a tool that would be useful for clinicians and 

clinical trial specialists and would not require a great deal of statistical sophistication.  

Once the distributions of false positives and negatives have been developed, the 

actual adjustments we made are uncomplicated.  However, the generation of the 

distributions of false positives required a significant amount of programming in 

MATLAB R2008a (Natick, MA).  The programming would not be difficult to anyone 

accustomed to statistical software but it may be a disincentive to those without the 

inclination.  

 

4.  Implications 

 This project demonstrated that false positives may indeed have a large effect 

on estimates of the cure rate and that as currently calculated, PCR-corrected cure rates 

may underestimate drug efficacy. 

If reliable estimates of the distributions of false positives and negatives can be 

generated for a range of transmission areas, this project lays the groundwork for the 

development of a web-based tool to be used by antimalarial efficacy researchers.  

Members of our laboratory are in the process of developing highly sensitive 

molecular techniques to determine which variants are in a patient’s sample and they 

can then compare those findings with the variants identified by PCR.  These data will 

allow us to generate transmission intensity-specific probabilities of false negatives 

and we are also considering developing additional transmission intensity-specific 

distributions of  false positives.  We would then collaborate with programmers to 

generate a web-based tool that would allow researchers to enter their study results 



 
85 

 

 

based on PCR-correction and estimates of transmission intensity for their study site 

and have the uncertainty analysis run for them. 

Whether use of this analysis is adopted will rely on whether trialists and other 

researchers believe that it makes sense to incorporate this type of correction for 

outcome misclassification. 

If nothing else, this work demonstrates that ignoring outcome 

misclassification, as is so commonly done in this area of study, results in erroneous 

findings.  This makes the approach of using stringent cutpoints based on PCR-

corrected cure rates to determine what is a suitable antimalarial treatment policy 

undesirable. 

 

B.  The effect of HIV-1 protease inhibitors on incidence of malaria 

1.  Summary of findings. 

 There was no association between receipt of PI-based ART and incidence of 

malaria in this study.  We used pooled logitic regression to conduct a survival 

analysis comparing the incidence of clinical malaria between HIV-infected women 

assigned to LPV/r-based ART and women assigned to NNRTI-based ART.  We saw 

no evidence of an effect when we considered both confirmed and probable cases (HR 

= 1.03; 95% CI: 0.73 - 1.44), nor in our sensitivity analysis in which only confirmed 

cases were considered to have malaria (HR = 1.28; 95% CI: 0.58 - 2.82).  In analyses 

stratified by trial, we also saw no effect [Trial 1, HR = 1.37 (95% CI = 0.76 - 2.44); 

Trial 2, HR = 0.94 (95% CI = 0.62-1.43)]. 
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We assessed possible modification of the hazard ratio by seasonality and use 

of concomitant medications but did not observe such modification.   

 

2.  Findings in the context of current literature 

 This is the first time the effect of HIV PIs on incidence of malaria in humans 

has been studied.  Our finding of no effect is inconsistent with laboratory results.  In 

cultured parasites, both drug sensitive and drug resistant, and in mice using two 

murine species of Plasmodium, HIV PIs inhibit parasite growth.(58, 59, 61-63)  

Skinner-Adams et al. first reported that RTV, one of the PIs used in ACTG5208, as 

well as another HIV PI inhibited growth in parasites(58); these findings have been 

replicated and additional HIV PIs have demonstrated antimalarial effects at clinically 

relevant concentrations.(59, 62) 

Animal studies have also demonstrated the antimalarial effect of HIV PIs.  

After infection with P. chabaudi, mice exposed to LPV/r had delayed onset of 

parasitemia by two days and a decrease in median parasitemia from 20% to 4%.(61)  

Evidence from a different murine model, P. yoelii, suggested that HIV PIs, including 

LPV, the other ACTG5208 PI, inhibit growth of preerythrocytic-stage parasites.(63)  

There is, however, one article to our knowledge that may be consistent with 

our findings.  Nathoo et al. proposed that although the decrease in CD36 expression 

associated with exposure to LPV/r in vitro may be beneficial to the patient because of 

decreased cytoadherence of parasitized erythrocytes, it could also make it more 

difficult for a patient’s innate immune system to fight P. falciparum infections 

because of reduced phagocytosis which also resulted from the diminished expression.  
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(72)  Perhaps antiparasitic action of the LPV/r occurs simultaneously with a reduction 

in the innate immune response to malaria, resulting in a null net benefit.   

 

3.  Strengths and limitations 

a.  Strengths 

This was the first time the effect of HIV PIs on malaria in humans has been 

studied.  We had the benefit of longitudenal data from two randomized controlled 

trials conducted by the Adult AIDS Clinical Trials Group with follow-up times 

exceeding two years.  The use of intent-to-treat analysis allowed us to assess the 

impact of LPV/r therapy without confounding by other factors; randomized 

experiments are generally regarded as the gold standard for estimating a causal effect.  

Additionally, the drug used in the comparison group (NVP) has previously 

demonstrated no antimalarial action (Tina 2004 JID, Redmond AIDS 2007) easing 

interpretation of our results.   

b.  Limitations 

Clinical malaria is not an ideal outcome.  The sensitivity and specificity of 

clinical syndrome when used to diagnose malaria are notoriously limited (91),Steve 

Taylor, personal communication).  The ACTG5208 study staff did not regularly 

collect blood smears as part of the protocol; instead they collected them when testing 

for malaria was appropriate based on the site’s standard of care guidelines.  The lack 

of systematically collected blood smears and the absence of information with regard 

to negative blood smears, made slide-positivity an unacceptable primary outcome.   
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As a part of our future research plan, we hope to explore sub-clinical malaria 

in the cohort of patients we used in this ancillary analysis.  This will require a 

serological definition of malaria.  Initially, antigen testing (specifically testing for 

HRP2) was considered, though we now believe the serum samples that are available 

to us from the ACTG5208 will not be appropriate.  Our laboratory collaborators are 

currently working on looking at antibody titers over time to identify acute malaria 

infections and using rapid diagnostic test kits; in the future PCR may also be 

considered.  In addition to providing information on sub-clinical disease, these types 

of data likely have greater sensitivity and specificity than clinical syndrome and may 

improve the reliability of our findings. 

An additional limitation stems from a potential causal intermediate.  The 

degree to which an individual is immunocompromized due to HIV, which is 

associated with  ART, may affect the risk of clinical malaria.(43, 45).  Women 

assigned to NNRTI-based therapy in Trial 1 were more likely to experience virologic 

failure when compared to women randomized to LPV/r-based therapy.(CROI 2009 

abstract)  This reduced control of HIV disease could have an impact on our findings 

as immune status could be in intermediate on the hypothesized causal pathway 

between PI-based ART and incidence of malaria.  

Finally, our study used a valid intent-to-treat analysis; though this is the gold 

standard statistically, information from an appropriately executed per-protocol 

analysis may have provided some additional information.  Among the 346 women 

included in this ancillary analysis, 50 (14%) switched treatments due to virologic 

failure or toxicity associated with the regimen to which she was randomized.  
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Because a relatively small percentage of patients switched treatments and because 

fewer then 10% of the malaria episodes occurred after the participant had switched, 

we anticipate that in this study, the difference between findings from intent-to-treat 

and per-protocol analyses may have been modest.   

 

4.  Implications 

 This work is only the first step in understanding what, if any, the effect of PI-

based therapy has on incidence of malaria in people infected with HIV.  We feel 

confidant in our findings which were generated from longitudenal, clinical trials data.  

Our finding of no effect was similar across trials and was the same when we 

conducted a sensitivity analysis in which only laboratory-confirmed cases were 

considered to have experienced malaria.   

 Even given our confidence in our results, we know that there are still many 

unanswered questions and do not conclude that looking at the effect of HIV PIs on 

malaria in humans is not still worthwhile.  Information on subclinical disease through 

the use of biomarkers will provide additional insight, as will looking at the clincal 

effect in children, who are at greater risk for malaria. 

 One important implication is that our findings suggest that there may be an 

insufficient overlap between results obtained in the laboratory and those generated in 

vivo to warrant additional laboratory studies that employ the same techniques. 

 

C.  Conclusions 
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Malaria remains a significant cause of morbidity and mortality.  This 

dissertation explored two specific challenges to the successful treatment of malaria, 

two small attempts to address what remains a complex and important problem.  We 

developed a novel way to estimate treatment efficacy and discovered that HIV PIs 

may not have antimalarial action in HIV-infected patients at risk of co-infection. 
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APPENDIX A:  Human Subjects 

The proposed research uses only simulated and de-identified data and is 

exempt from Institutional Review Board (IRB) review.  A decision to this effect for 

Aim 2 was issued by the UNC-Chapel Hill School of Public Health (Public Health 

IRB # 09-0221, 2/6/2009).  
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APPENDIX B : Greenhouse et al.’s calculation of Pmatch and their true recrudescence 
formulas(5) 

[Text and formulas adapted or taken directly from Greenhouse et al.(5)] 

Pmatch (the estimated probability of a match occurring by chance) was calculated as 

follows: The relative probability of all possible combinations of the number of alleles 

in the post-treatment sample was estimated by multiplying together the frequency of 

each of the component alleles in the combination. Each possible combination was 

then compared to the alleles present in the pre-treatment sample to determine if there 

was at least one allelic match. Pmatch was calculated by taking the sum of the 

probabilities of combinations that matched the pretreatment sample and dividing by 

the sum of the probabilities of all combinations. 

They estimated the number of true recrudescent infections by combining the 

following two equations.  

 
(1) 

where nor is the number of observed recrudescent infections, nrecru is the estimated 

number of true recrudescent infections, and nnew is the estimated number of true new 

infections, and  

 
(2) 

where nrp is the number of recurrent-parasitemia samples. By solving equation 2 for 

nnew, substituting this into equation 1, and solving for nrecru, we arrive at equation 3:  
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APPENDIX C: Formulas from Kwiek et al.(21)  

Participant-specific probability of a chance-match in indeterminate episodes with a 

single pre- and post-treatment shared band = 1 – (1 – y)x  where, 

Y is the prevalence of the shared band and X is the number of variants in the 

recurrent parasitemia sample 

 

Mean of participant-specific probabilities = Reinf 

Number of indeterminate infections = Ind 

Number of infections classified as recrudescent by genotyping = Recru 

Estimated failure rate = [((1-Reinf) x Ind) + Recru]/Total number of participants 
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APPENDIX D: MATLAB code adapted from code provided by Dr. Christina 
Burch, UNC – Chapel Hill. 

param=[];      

false_pos_rate=[]; 

for i = 1:10 

reps = 10000; 

argh = (i)*ones(reps,1); 

pea = (argh/10); 

init_infect1 = nbinrnd(argh,pea); 

re_infect1 = nbinrnd(argh,pea); 

param(i)=i; 

test1 = init_infect1 == re_infect1; 

false_pos_single(i) = sum(test1)/reps; 
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APPENDIX E : Format of the person-period dataset for discrete-time survival 
analysis 

Study ID Treatment Time Period D8 D12 D24 D48 Malaria 
1 1 8 1 0 0 0 0 
1 1 12 0 1 0 0 0 
1 1 24 0 0 1 0 1 
2 0 8 1 0 0 0 1 
3 1 8 1 0 0 0 0 
3 1 12 0 1 0 0 1 
4 0 8 1 0 0 0 0 
4 0 12 0 1 0 0 0 
4 0 24 0 0 1 0 0 
4 0 48 0 0 0 1 0 
 

Treatment: LPV/r-based therapy = 1; NNRTI-based therapy = 0 

Time period: number of weeks on study 

Dj: Time period indicator variables 

Malaria: Occurrence = 1; Non-occurrence = 0
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APPENDIX F: Discrete-time survival analysis: Modeling the relationship between 
the population discrete-time hazard function and study treatment  
 

logit hazardij = [α8D8 + α12D12 + α24D24 + α48D48] + β1(Treatment) 
 
α8D8 = baseline logit hazard function at week 8 
 
α12D12 = baseline logit hazard function at week 12 
 
α24D24 = baseline logit hazard function at week 24 
 
α48D48 = baseline logit hazard function at week 48 
 
β1 = slope parameter reflecting the effect of LPV/r-based therapy compared to 

NNRTI-based therapy on malaria  
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APPENDIX G. Numerical example of the adjustment of recrudescent infections 

 

Subjects in trial, N = 100 

Number of subjects with recrudescent infections as classified by PCR-correction = 15 

Number of subjects with reinfections as classified by PCR-correction = 30 

Y = Value sampled from distribution of the probabilities of false positives (in this 

example, Y = 0.17) 

Z = Value sampled from distribution of the probabilities of false negatives (in this 

example, Z = 0.25) 

 

Adjusted number of recrudescent infections = 15 – (15 x 0.17) + (30 x .25) 

   = 15 – 2.55 + 7.5 = 19.95 

PCR-corrected cure rate = 1 – (15/100) = 0.85 or 85% 

Cure rate adjusted for outcome misclassification = 1 – (19.95/100) = .8005 or 80.05% 

 

 

 

 

 

 

 

 

 

APPENDIX H.  Site and trial-specific survival curves for ACTG5208. 
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Figure 1.  Survival curves for ACTG5208 participants in Eldoret, Kenya.  

(A) Trial 1.  (B) Trial 2.     

 

 

Figure 2.  Survival curves for ACTG5208 participants in Kericho, Kenya.  

(A) Trial 1.  (B) Trial 2. 

A B 

A B 
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Figure 3.  Survival curves for ACTG5208 participants in Lilongwe, Malawi.  

(A) Trial 1.  (B) Trial 2. 

 

  

Figure 4.  Survival curves for ACTG5208 participants in Kampala, Uganda.  

(A) Trial 1.  (B) Trial 2. 

A B 

A B 
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Figure 5.  Survival curves for ACTG5208 participants in Lusaka, Zambia.  

(A) Trial 1.  (B) Trial 2 

 

 

Figure 6.  Survival curves for ACTG5208 participants in Harare, Zimbabwe.  

(A) Trial 2.  No participants experienced malaria in trial 1. 

A B 

A 
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