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ABSTRACT 

 

MATTHEW VINCENT JOANNOU: Stereoselective Incorporation of Boron into Molecules via 

Additions of alpha-Borylated Organometallics to Electrophiles 

(Under the direction of Simon J. Meek) 

 

 

Â Chapter 1: Enantio- and Diastereoselective Synthesis of ɓ-Hydroxyboronates via Cu-

catalyzed Addition of gem-Diboronate Esters to Aldehydes.  The development of an enantio- and 

diastereoselective addition of gem-diboronate esters to aryl and alkenyl aldehydes in the presence of 

stoichiometric LiOt-Am is presented.  The reaction proceeds in up to 92% yield, >99:1 d.r., and 96:4 

e.r.  Mechanistic studies reveal the formation of a lithium tert-butylborate species that stereospecifically 

transmetallates to a copper catalyst, which then diastereoselectively adds to the aldehyde.   

 

 

Â Chapter 2: Ag(I)-Catalyzed Synthesis of anti-1,2-Hydroxyboronates through Ŭ-Boryl Alkyl 

Silver Additions to Aldehydes. The Ag(I)-catalyzed, diastereoselective addition of various gem-

diboronate esters to aryl, alkenyl, and alkyl aldehydes is discussed.  The reactions proceed in the 



iv 

 

presence of either stoichiometric KOt-Bu or n-BuLi at -25 °C in thf.  Mechanistic studies indicate an 

Ŭ-boryl-alkyl silver species as the active nucleophile in the reaction.  The hydroxyboronates are isolated 

in up to 77% yield and 99:1 d.r. favoring the anti diastereomer.   

 

 

Â Chapter 3: Enantio- and Diastereoselective Synthesis of 1-Hydroxy-2,3-Bisboronates via a 

CopperïCatalyzed Multicomponent Reaction. The multicomponent coupling of vinyl boronic acid 

pinacol ester, B2(pin)2, and various aldehydes in the presence of a copper-bis-phosphine catalyst is 

discussed.  The reaction can be accomplished both diastereoselectively and enantioselectively.  

Mechanistic investigations reveal that nitrile ligands have a deleterious effect on the enantioselectivity 

of the reaction, manifested in the isolation of a copper(keteneimide) complex, which is potentially the 

first ever of its kind to be reported.  The 1-hydroxy-2,3-bisboronate esters are isolable via silica gel 

chromatography in up to 84% yield, >99:1 d.r., and 97:3 e.r.   
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Chapter 1: Enantio- and Diastereoselective Synthesis of ɓ-Hydroxyboronates via Cu-catalyzed 

Addition of gem-Diboronate Esters to Aldehydes*1 

 
1.1 Introduction  

 
Enantiopure organoboron compounds are an extremely important class of molecules in 

chemical synthesis.   They are configurationally stable and can be stereospecifically transformed into a 

plethora of different functional groups, making them useful synthetic intermediates (Figure 1.1).1  

Carbon-boron bonds are most commonly oxidized to the corresponding alcohols or amines, but several 

carbon-carbon bond forming transformations have been developed, with the field still growing.  Besides 

being valuable building blocks in chemical synthesis, there are a number of boron-containing 

biologically active molecules and pharmaceutical products in use today.  Most notably Bortezomib 

(Velcade®), which is an FDA-approved drug for the treatment of several types of blood cancers 

(multiple myeloma, lymphoma, etc.), contains a stereogenic organoboron moiety in the molecule.2 

Stereoselective preparation of sp3-organoborons, therefore, is a valuable method in chemical synthesis 

worthy of further investigation and development.   

The enantioselective preparation of sp3-alkyl organoboron compounds has been accomplished 

via a number of methods, including: hydroboration3, diboration4, and conjugate boration5, among 

several others.  These approaches directly generate a carbon-boron bond through a metal-boryl 

intermediate.  These methodologies have been showcased in the efficient synthesis of several 

biologically active molecules, and highlights the utility of the alkyl organoboron products formed.   

                                                      
* A portion of this chapter appeared as a communication in the Journal of the American Chemical Society, the 

reference is as follows: Joannou, M. V.; Moyer, B. S.; Meek, S. J. J. Am. Chem. Soc. 2015, 137, 6176ï6179 
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Figure 1.1 List of Stereospecific Functionalizations of Boronic Acid Esters 

Over the past decade, Hoveyda and co-workers have developed a number of methodologies for 

the asymmetric conjugate addition of various nucleophiles to Ŭ,ɓ-unsaturated carbonyls.  In 2010, the 

group developed an enantioselective conjugate boration of Ŭ,ɓ-unsaturated esters and thioesters with 

chiral N-heterocyclic carbene copper catalysts.6  The tertiary boronate esters (1.2, 1.3, and 1.4) are 

produced in good to excellent yields, with good to excellent enantioselectivities.  The authors propose 

a mechanism that involves a copper-boryl intermediate (1.6) (formed from the transmetallation of a 

copper-alkoxide and B2(pin)2) inserting across the bound Ŭ,ɓ-unsaturated esters (an activated alkene).  

These organoboron products have been used by Hoveyda and co-workers as intermediates in the 

synthesis of several biologically active molecules, most notably crassinervic acid, a potent antifungal 

compound.7  This demonstrates the utility of enantiopure organoboron compounds as synthetic 

intermediates to efficiently and rapidly synthesize complex, single-enantiomer molecules. 
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Scheme 1.1 Stereoselective Conjugate Boration of Ŭ,ɓ-Unsaturated Esters and Thioesters with 

B2(pin)2 

 

Diboration of alkenes is another useful method for installing boron into molecules which has 

the added advantage of incorporating two boron moieties into a molecule, which in some cases may be 

selectively transformed into different groups.  Morken and co-workers disclosed an enantioselective 

diboration of terminal aryl and alkyl alkenes with bis(pinacolato)diboron, utilizing a platinum-

phosphoramidite catalyst system.4e  The 1,2-diboronate ester products are able to be isolated by silica 

gel column chromatography.  For ease of isolation and determination of enantioselectivity, the products 

were oxidized to the corresponding diols.  The diols are produced in good to excellent yields with 

varying levels of enantioselectivity; alkyl olefins produce the highest ee% values (90-96%), while 

styrenyl olefins give between 80-90% ee.  The mechanism of the reaction was elucidated through 

combined KIE, kinetics analysis, and computational studies.  The Pt(0) catalyst undergoes oxidative 

addition of B2(pin)2 to form the platinum bis-boryl compound (1.11).  Boryl insertion onto the bound 

olefin and subsequent reductive elimination forms the 1,2-diboronate ester (Scheme 1.2).  Morken 

demonstrates the value of this methodology in the total synthesis of pregabalin (Lyrica®), which is 

accomplished in 5 steps with a total yield of 36%, highlighting the usefulness of boron-containing 

molecules.8   
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Scheme 1.2 Platinum-Catalyzed Enantioselective Diboration of Terminal Olefins 

 

One of the oldest and most well-studied methods for incorporating boron into molecules is 

hydroboration.  There are multiple variants with and without a transition metal catalyst, but most 

enantioselective hydroborations utilize a transition metal catalyst.3a  Regioselectivity is often a problem 

and careful selection of both the borane and the olefin help to address these problems.  Hayashi and co-

workers developed a protocol for the enantioselective hydroboration of styrenes using a cationic 

rhodium bis-phosphine catalyst.9  With catecholborane (1.14) and 2 mol% of the cationic rhodium 

complex, styrene can undergo hydroboration in up to 96% ee and 92% yield.  The mechanism of the 

reaction is as follows: The initial Rh(I)-phosphine complex undergoes oxidative addition of 

catecholborane to form the cationic Rh(III) complex 1.15.  This species undergoes migratory insertion 

of the bound styrene with the hydride ligand to produce 1.16.  Reductive elimination of the benzyl and 

boryl ligands produces the carbon-boron bond and furnishes the product.   

All of the methods described in the previous section are extremely powerful synthetic tools and 

have been demonstrated in the synthesis of a wide variety of complex, biologically active molecules.  

In each of these methodologies, a single boron unit is incorporated into the molecule by inserting a 

metal-boryl species to an unsaturated C-C bond, generating a single stereogenic center.  This requires 

that the carbon scaffold (i.e., olefins, enones, etc.) already be in place before the addition of the boron 
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unit.  While there are countless ways to synthesize olefins, what if there was a methodology that could 

combine the synthesis of C-C bonds (i.e. the carbon skeleton of a molecule) with the stereoselective 

incorporation of boron into a single process?  One way to accomplish this is through the stereoselective 

synthesis and addition of alpha-borylated organometallics to carbonyl compounds.   

Scheme 1.3 Enantioselective Hydroboration of Styrenyl Olefins 

 

Figure 1.2 depicts a representative example of the addition of a substituted alpha-borylated 

organometallic species, I , to benzaldehyde.  The transformation produces the 1,2-hydroxyboronate 

ester, II  which contains a new carbon-carbon bond and two vicinal stereogenic centers.  One of those 

stereocenters contains a boronate ester group which can be functionalized into a number of different 

molecules.  Illustrated in the figure are three common and useful functionalizations.  Cross-coupling a 

vinyl bromide with II  produces the Ŭ-stereogenic alcohol III .  These types of products are usually 

formed by diastereoselective addition to Ŭ-chiral aldehydes, substrates that are oftentimes laborious to 

synthesize.   While Suzuki-Miyaura cross-couplings of secondary sp3-organoboron groups is a difficult 

problem in synthetic chemistry, recently, methodologies have emerged where this carbon-carbon bond 

forming reaction can be carried out under relatively mild conditions.10  Oxidation, a well-known 

functionalization of organoboron groups, allows the 1,2-hydroxyboronate ester to be converted into 

diol IV .  This transformation yields products similar to those of the Sharpless asymmetric 
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dihydroxylation, but with different chemoselectivity and bond disconnections.11  One-carbon 

homologation of organoboron compounds is another well-studied functionalization; first developed by 

Matteson and co-workers, homologation inserts a methylene unit (and other CH2R groups) into the 

boron-carbon bond.12  Oxidation of organoborons to the corresponding amine derivative has gained 

attention in recent years and a useful protocol for this transformation has been developed by Morken 

and co-workers.13  One-carbon homologation of II , followed by oxidation to the amine produces the 

aminoalcohol V, a moiety which is found a number of biologically active molecules.13  All  of these 

transformations are stereospecific, meaning that any stereochemical purity gained in the initial 

formation of II  is retained upon functionalization of the boron group.   

 

Figure 1.2 Strategy and application for the additions of Ŭ-boryl organometallic species to aldehydes: 

concomitant C-C bond formation and boron incorporation for further synthetic functionalizations 

Figure 1.2 highlights the significance of Ŭ-boryl organometallics, and how they can be utilized 

to (1) stereoselectively generate carbon-carbon bonds (2) stereoselectively incorporate boron into 

molecules (3) generate multiple stereocenters in a single transformation.   The 1,2-hydroxyboronate 

ester products formed are also versatile synthetic intermediates, and can be functionalized to access a 

number of different scaffolds relevant to the synthesis of biologically-active molecules.  While the 

synthesis of chiral racemic Ŭ-boryl metal species has been previously reported, these methods require 
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air/water sensitive reagents to generate them, and have only been shown in stoichiometric reactions 

with electrophiles.  Our strategy, depicted in Figure 1.3, involves catalytically generating Ŭ-boryl 

organometallic species from gem-diboronate esters.  These reagents are air and water stable and can be 

synthesized through a number of different methods, some developed by our own lab.  Utilizing a chiral 

transition metal catalyst, the gem-diboronate ester undergoes a stereoselective transmetallation to form 

the enantioenriched Ŭ-boryl metal species, which then reacts with an electrophile to form chiral sp3-

organoboron products and regenerate the catalyst.  The combined strategies depicted in Figures 1.2 and 

1.3 were applied to many of the reactions I studied throughout my graduate work and form the basis of 

my first two publications.   

 

Figure 1.3 Catalytic generation and addition of Ŭ-boryl metal species through stereoselective 

transmetallation of gem-diboronate esters to transition metal catalysts 

 

1.2 Background 

Polyborylated compounds have gained much attention in recent years, as they can be utilized 

in the synthesis of complex, multiple functional group-containing molecules.  Gem-diboronate esters 

have been shown to undergo several useful C ï C bond forming reactions such as cross-coupling, 

alkylation, 1,2-addition, and allylic substitution both racemically and stereoselectively.14-20 While their 

prevalence in organic methodologies is only a recent occurrence, the synthesis of gem-diboronate esters 

and other polyborylated alkanes has been known since the 1960ôs.  Matteson and co-workers 
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synthesized di, tri, and tetraborylmethane utilizing a novel bis(methoxy)chloroborate species, 1.19.21  

Two equivalents of trimethylborate react with BCl3 gas to form 1.19, which then reacts with a lithiated 

chloromethane to form a new boron ï carbon bond (releasing LiCl as a byproduct).  The lithiation and 

alkylation process is then repeated m-1 times (m=number of chlorines in the starting chloromethane) to 

form the desired borylated methane.  While the yields are low, the synthesis is amenable to large scales 

and allowed Matteson and co-workers to explore the properties and reactivity of these compounds (vide 

infra). 

Scheme 1.4 Preparation of di-, tris-, and tetraborylmethane via lithiation of chloromethanes and 

subsequent alkylation with bis(methoxy)chloroborate 

 

In the last decade, a number of syntheses of substituted and unsubstituted gem-diboronate esters 

have been published (Scheme 1.5).  In 2001, Srebnik and co-workers synthesized diborylmethane, 1.24, 

through a platinum catalyzed insertion of diazomethane into bis(pinacolato)diboron, 1.23.22  The yield 

is good, but the high platinum catalyst loading and excess diazomethane (a toxic and highly explosive 

reagent) prevent this reaction from being conducted on large, synthetically relevant scales (i.e. >500 

mg).  Shibata and co-workers developed a rhodium-catalyzed synthesis of gem-diboronate esters 

through the regioselective dihydroboration of terminal alkynes.23  The reaction has a broad substrate 

scope, but a limitation is that the substituents on the alkyne have to be aryl or large alkyl groups (e.g. 

tert-butyl, benzyl, etc.) to ensure good yields and high regioselectivity (1,1-hydroboration over 1,2-

hydroboration).  Recently, the lab of James P. Morken developed a copper-catalyzed diborylation of 
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1,1-dibromoalkanes to generate a number of gem-diboronate esters.20  The products are generated in 

good to excellent yields, and despite some limitations (excess 1.23 and 2 step synthesis of the dibromide 

starting material) it is still a useful methodology that can access a variety of gem-diboronate esters.   

Scheme 1.5 Preparation of substituted and unsubstituted gem-diboronate esters 

 

Scheme 1.6 Synthesis of diborylmethane using isopropylmagnesium chloride and B2(pin)2 
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During my graduate work, I developed an efficient, cost-effective, and scalable synthesis of 

diborylmethane, which could be further functionalized to other substituted variants.24  Reacting 

diiodomethane with isopropylmagnesium chloride at -78 °C results in magnesium-halogen exchange 

to form the Ŭ-iodomethyl Grignard, 1.27.  This then complexes to a boron on bis(pinacolato)diboron 

and enacts a 1,2 borotropic shift, releasing the iodide and generating diborylmethane.  The reaction is 

efficient and amenable to large scale syntheses, with an 86% yield on a 15 g scale (relative to B2(pin)2 

used).  Diborylmethane can also be used to generate substituted gem-diboronate esters utilizing a 

deprotonation/alkylation strategy.  The Ŭ-protons of diborylmethane are much more acidic than normal 

alkanes (pKa ~ 30), due to the stabilizing effect of the boryl groups, and can be deprotonated using 

hindered lithium amides.25  The resulting Ŭ-diboryl carbanion can be quenched with a variety of alkyl 

halides to produce substituted gem-diboronate esters in excellent yields.  This methodology has good 

functional group tolerance, as the alkylation is tolerant of arenes (1.29), alkenes (1.32), alkynes (1.31), 

esters (1.33), and silylethers (1.30) (Scheme 1.6).26  The reaction is limited to primary alkyl halides, as 

secondary alkyl bromides and iodides (e.g. cyclohexyl iodide) are formed in <25% yield.   
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Scheme 1.7 Synthesis of substituted gem-diboronate esters through alkylation of diborylmethane 

 

Gem-diboronate esters are stable to both air and moisture, but are readily activated by Lewis 

bases.  Figure 1.4 demonstrates that, when reacted with Lewis bases such as hydroxide, fluoride, and 

alkoxides, gem-diboronate esters form borate complexes, III , which can react with electrophiles in a 

deborylative fashion.  Electrophiles include alkyl halides, carbonyls, epoxides, transition metals, etc.  

Under certain conditions, III  has been known to deborylate in solution and form Ŭ-boryl carbanions, 

which can also react with electrophiles similar to III .20   Gem-diboronate esters can also be deprotonated 

at the base of the two boryl groups (Ŭ-position) when large amide bases are used (e.g. LiTMP, LiNCy2, 

LDA, etc.) which prevent complexation of the base to the boron through steric repulsion.25  The 

resulting carbanion is stabilized by both boryl groups and is stable in the solid state under an inert 

atmosphere, or in solution at low temperatures.  These carbanions can react with a similar scope of 
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electrophiles as borate complexes, however both boryl groups are retained in the product.  This is the 

species that is generated during the synthesis of substituted gem-diboronate esters in Scheme 1.7, where 

the electrophile is an alkyl iodide or bromide.   

Figure 1.4 Different reactivity patterns of gem-diboronate esters: Ŭ-deprotonation vs borate formation 

dependent on the Lewis base, i.e. non-coordinating vs. coordinating. 

 

 Even though gem-diboronate esters have been known for decades, their utilization in transition 

metal catalyzed processes has been a relatively recent development.  The first instance of their use in a 

transition metal catalyzed reaction was from the labs of Takanori Shibata in 2010.27  In their J. Am. 

Chem. Soc. communication, various substituted gem-diboronate esters are cross-coupled to aryl iodides 

using a palladium (0) catalyst and aqueous KOH as the activator (Scheme 1.8).  Two aspects of the 

methodology are of note: 1) the reaction occurs at ambient temperature and 2) the reaction is selective 

for gem-diboronate esters over primary boronate esters. Most Suzuki-Miyaura reactions that involve 

the formation of sp3-sp2 C ï C bonds (alkyl boronate esters with aryl halides) require elevated 

temperatures.  This demonstrates that gem-diboronate esters have a substantially lower energy barrier 

for activation and transmetallation to palladium than their monoboryl counterparts.   Shibata took 

advantage of this reactivity disparity and demonstrated that the cross-coupling of gem-boronate ester 
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1.34 with 1.35 produced 1.36 in 84% yield with >98% chemoselectivity for coupling the gem-

diboronate ester over the alkyl boronate ester (Scheme 1.8).    

Scheme 1.8 First example of gem-diboronate esters being used in transition metal catalysis: Pd-

catalyzed Suzuki-Miyaura cross coupling. 

 

 Shibata was able to shed light on why gem-diboronate esters are more easily activated by Lewis 

bases using Density Functional Theory (DFT). The optimized geometry and molecular orbitals for 

truncated diborylethane I  (Figure 1.5) (where the pinacol groups are reduced to ethylene glycol groups), 

were generated using a B3LYP level of theory with a 6-31G** basis set.  The LUMO of I  is depicted 

in Figure 1.5 on the left.  The LUMO is highly delocalized across each boron atom, most likely a 

combination of both p orbitals on boron.  This overlap lowers the relative energy of the LUMO 

compared to a monoboryl compound (7.1 kcal/mol lower than 1,2-diborylethane) and assists in the 

formation of borate complexes via Lewis base activation.    
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Figure 1.5 Left: LUMO of truncated diborylethane.  Right: HOMO of truncated diborylethane 

activated with a methoxide anion.  Both were generated using Gaussian09 with a B3LYP level of 

theory with a 6-31G** basis set for the left structure, and a 6-31++G** basis set for the right 

structure. 

I generated the optimized geometries and molecular orbitals for the methoxide-activated 

diborylethane II  using a similar basis set: 6-31++G** (see Experimental Section for details).  The ñ++ò 

is a diffuse functional on heavy atoms and hydrogen and assists in calculations involving anions such 

as borates.  The HOMO of II  is depicted in Figure 1.5 on the right.  It contains a large coefficient along 

the boron-carbon bond (expected for a borate, which is nucleophilic at carbon) but also has large lobes 

at the methoxy and ethylene glycoxy oxygens.  This might indicate that transmetallation of a borate 

like II  would involve initial coordination of the borate to the metal complex through an oxygen donor, 

followed by metal-carbon bond formation.  This is the mechanism that Shibata proposes for the Suzuki-

Miyaura reaction and is presented in Scheme 1.9.  Complex 1.37 is formed after phosphine dissociation 

and oxidative addition of the aryl iodide to the palladium pre-catalyst.  Borate 1.38 (which Shibata 

observes through 11B NMR studies) binds to the palladium catalyst and undergoes transmetallation to 

form the Ŭ-boryl palladium alkyl species 1.39.  Subsequent reductive elimination produces the cross-

coupled product and regenerates the palladium (0) catalyst.   
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Scheme 1.9 Activation of gem-diboronate ester and mechanism of transmetallation to palladium(II) 

phosphine catalyst 

 

In 2014, Morken and co-workers published a stereoselective version of the reaction Shibata 

disclosed in 2010.  Using a chiral phosphoramidite-bound palladium catalyst, Morken could cross-

couple a number of different substituted gem-diboronate esters to aryl iodides in good to excellent 

yields in good enantioselectivities (Scheme 1.10)20.  The use of 15 equivalents of KOH is essential for 

high yield and enantioselectivity, which Morken attributes to hydrolysis of the pinacol ester to the gem-

diboronic acid.  Boronic acids transmetallate faster and at lower temperatures than boronate esters.  

Dennis Hall and co-workers confirmed this hypothesis in a subsequent cross-coupling paper using 

similar ligands and substrates.28   

Scheme 1.10 Enantioselective cross-coupling of gem-diboronate esters to aryl halides.  Catalyst 

controlled stereoselective transmetallation of gem-diboronate ester. 

 

 To elucidate the mechanism of the transmetallation step of the reaction in Scheme 1.10, Morken 

and co-workers synthesized an enantioenriched,gem-diboronate ester, 1.43, where one boron was 




