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ABSTRACT

Steven Jae Doo Kim: Functional analysis of rs3811046 and rs3811047 variants in Caucasians
(Under the direction of Steven Offenbacher)
Inflammation is an essential for the survival of the host, not only to fight off pathogens but also
for immunotolerance to avoid autoimmunity. Turning off the inflammation is as important as turning
them on, because lack thereof will lead to uncontrolled chronic inflammation, unnecessary structural

damage, and compromised or delayed wound healing which do not benefit the host.

Periodontal disease is one of the example of such uncontrolled chronic inflammation.
Periodontitis is a combined result of pathogenic bacteria establishing themselves in the biofilm-gingival
interface, and the excessive and uncontrolled immune response to the bacteria and their byproducts. It
is actually the host immune response that destroys the periodontal attachment apparatus, and not the

direct destructive action of the pathogens.

Some individuals are more predisposed to inflammation. It can be due to genetic predisposition,
others could be due to systemic conditions. We describe one of such example where single nucleotide
polymorphisms can lead to pro-inflammatory profiles in Caucasian subjects. In chapter 1, we describe
how we honed in onto a number of SNPs that are on the coding region of a cytokine called IL-37.
Chapter 2, we created human recombinant IL-37b and observe the effects of variants on its anti-
inflammatory function. In chapter 3 we obtained human samples from known genotypes and observed
pro-inflammatory profiles in the subjects with the SNP variance. Finally in chapter 4, we discuss its

significance and future study directions.
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CHAPTER 1: INTRODUCTION

Based on 2009-2010 National Health and Examination Survey in the Unites States population, 47
percent of adults aged 30 years and older have periodontitis, and that number increases to 70.1 percent
for 65 years and older (Eke, Dye et al. 2012). Early on, clinicians had noticed there was a familial
predisposition to this widespread disease (Benjamin and Baer 1967, Jorgenson, Levin et al. 1975, Beaty,
Boughman et al. 1987), and its genetic basis needed to be investigated. The classic way of investigating
genetic effects on any disease are twin studies: Between 38 to 82% of the population variance of the
periodontal measures of disease was contributed to genetic factors (Michalowicz, Aeppli et al. 1991).
Periodontal disease does not follow Mendel’s law of inheritance, as demonstrated in monozygotic and
dizygotic twin studies (Corey, Nance et al. 1993). It became clear that a collection of risk variants
contribute to the onset of the seemingly common form of periodontal disease. To observe their collective
roles it became necessary to conduct large population based studies such as genome-wide association

study (GWAS).

Our lab had participated in, and had access to, GWAS in a cohort of 4910 Caucasians as the dental
part of the Atherosclerosis in Communities (ARIC) study. We had identified novel risk loci associated with
chronic periodontitis (Divaris, Monda et al. 2013). However, the association did not meet the strict criteria
(p value smaller than 107%- 10~7) to reach genome-wide significance, and could explain only a small
proportion of the total population variance. So instead of using clinical measurements (bleeding on
probing, probing depth, or loss of attachment) used to diagnose chronic periodontitis as the phenotype,

we focused on biomarkers of inflammation to define pro-inflammatory phenotype.



Our 4910 Caucasian GWAS data was re-analyzed. We used the upper quartile of IL-1b
concentration in gingival crevicular fluid (GCF) to define the pro-inflammatory phenotype. Biomarkers in
GCF is known to correlate well with periodontal disease progression (Engebretson, Grbic et al. 2002,
Zhong, Slade et al. 2007, Khalaf, Lonn et al. 2014, Kinney, Morelli et al. 2014). Looking into 2.5 million
SNPs in 22 somatic chromosomes, we identified a number of single nucleotide polymorphisms (SNPs) that
stood out in chromosome 2 [Figure 1.1]. Of particular interest, with the most significant association (p
values of less than 1x10721) and minor allele frequency (MAF) above 5%, were SNPs rs3811046 and
rs3811047. They were in strong linkage disequilibrium to each other, and caused missense mutation on a
gene coding for a cytokine called IL-37 [Figure 1.1]. A second, less common locus was also noted, with a p
value of 4.2x10~7. This time there were 5 SNPs (rs2708943, rs2723183, rs2723187, rs2708947, and
rs2723192) in strong linkage disequilibrium, all causing missense mutations on the IL-37 gene as well

[Figure 1.1].

The ancestral gene of rs3811046 (G/T) is guanine. Peculiarly enough, through the process of
evolution in Caucasians, the frequency of having guanine at rs3811046 location diminished over time, and
guanine became the minor allele, and conversely thymine became the major allele [Figure 1.2a]. This calls
for caution when interpreting UniProt data (G31V): For Caucasians, rs3811046 causes substitution of
valine to glycine at 31th location the IL-37b protein amino acid sequence, and not the other way around.
Similarly, caution is needed for interpreting rs3811047 (A/G, T42A), as the ancestral gene again happens
to be the minor allele in Caucasians: Guanine is the major allele and adenine is the minor allele, and the
polymorphism is causing missense mutation at the 42th amino acid location of IL-37b, substituting
Alanine to Threonine. There are no such cautions needed with the other 5 SNPs in Caucasians, as their
ancestral alleles stayed the same as their major alleles [Figure 1.2b]. It should be noted that rs2708943

(C/G, PSOR), rs2723183 (A/G, N54S), rs2723187 (C/T, P108L), rs2708947 (T/C, W164R), and rs2723192



(G/A, D218N) all also lead to missense mutations at their respectable amino acid locations [Figure 1.3a

and 1.3b].

No such SNP associations were observed when GWAS was conducted on our African American

population of 776 subjects (data not shown), indicating the effects of the 7 SNPs are ethnicity specific.

A web-based simulator was used to predict the effects of the aforementioned polymorphisms on
the IL-37 protein. PolyPhen-2 is a bioinformatics tool used to predict protein damage caused by missense
mutations. It calculates a score from 0 to 1, with 0 being “benign” and 1 being “possibly damaging”. The
algorithm is based on eight sequence-based and three structure-based predictive features (Adzhubei,
Schmidt et al. 2010). The program predicted that the mutation caused by rs3811046 is possibly damaging
with a score of 0.870. Polymorphisms in rs2708943, rs2723187 are probably damaging to the protein it is
coding for (scores of 0.964 and 0.999 respectively). Lastly, the missense mutation caused by rs2723192

SNP is predicted to be possibly damaging (0.940) [Figure 1.4].

With so many SNPs of interest coding for the same IL-37 gene at different exon locations, it
becomes necessary to know the normal function of IL-37 before understanding how those functions could
be adversely affected. It was formerly known as IL-1F7, and its presence was first predicted through in
silico research in 2000 (Dunn, Sims et al. 2001). Nold et al. first showcased its anti-inflammatory functions
on innate immunity, and coined a new name: IL-37 (Nold, Nold-Petry et al. 2010). Since the pioneering
report by the Nold group, scores of literature investigated diseases with chronic inflammation and found
significant correlation with IL-37 levels. Increased IL-37 levels were detected in plasma of individuals with
acute coronary syndrome (Ji, Zeng et al. 2014), systemic lupus erythematosus (Song, Qiu et al. 2013) and
endometriosis (Kaabachi, Kacem et al. 2017), in biopsy samples of inflammatory bowel disease patients
(Weidlich, Bulau et al. 2014), in bronchial tissues of patients with chronic obstructive pulmonary disease

(Di Stefano, Caramori et al. 2014), mRNA expression levels of peripheral blood monocytes of patients with



atrial fibrillation (Li, Li et al. 2017). On the other hand, downregulation of IL-37 mRNA and protein levels
was noted in tissue samples taken from individuals with Behcet’s disease (Ye, Wang et al. 2014), or
individuals showing aggravation of intervertebral disc degeneration (Wan, Sun et al. 2014). Clearly, IL-37 is
involved in a wide variety of diseases involving chronic uncontrolled inflammation. But correlation alone is
insufficient to elucidate the role of IL-37, especially when it is increased in some diseases and decreased in

others.

Regulatory cytokines are essential in turning off inflammation once it is not needed any more.
Lack of such regulation can not only lead to uncontrolled chronic inflammatory diseases, but also
autoimmunity. Immune tolerance is achieved through central tolerance in the thymus, as well as
peripheral tolerance where regulatory T (Treg) cells prevent the activation of autoreactive T cells
(Josefowicz, Lu et al. 2012). The Treg cells suppresses immune responses through direct cell contact and
cell factor dependent mechanisms, such as consumption of IL-2 or production of IL-10, IL-35, and TGF-B
(Vignali, Collison et al. 2008, Shevach 2009, Yamaguchi, Wing et al. 2011). IL-2, IL-10, and TGF-B are
considered the classic triad of the anti-inflammatory cytokines, and IL-35 is amongst the newly discovered

anti-inflammatory cytokines besides IL-27 and IL-37 (Banchereau, Pascual et al. 2012).

When IL-2 was discovered through its ability to induce in vitro growth of activated T cells (Malek
and Castro 2010), it was first predicted that IL-2 was pro-inflammatory, and its deficiency would lead to
immunodeficiency. However, IL-2 deletion in mice caused them to die prematurely, from activated T cells
with autoimmune anemia and inflammatory bowel disease (Kundig, Schorle et al. 1993). The discovery of
Treg cells with high density of CD25 (alpha chain of the IL-2 receptor) corrected such initial misconception,
and now IL-2 is considered an anti-inflammatory mediator (Sakaguchi, Sakaguchi et al. 2011). IL-2 is
critical for maintenance of Treg cells in the periphery, and neutralization of IL-2 results in autoimmunity

(Setoguchi, Hori et al. 2005). IL-2 inhibits TH17 differentiation (Laurence, Tato et al. 2007). IL-2 also



inhibits follicular helper T cell (TFH) development without affecting already differentiated TFH cells
(Ballesteros-Tato, Leon et al. 2012). Overall, IL-2 can prevent uncontrolled expansion of immune

responses and limit overall inflammation.

IL-10 superfamily includes IL-10, IL-19, IL-20, IL-22, IL-24, IL-26, IL-28, and IL-29. This IL-10
superfamily is highly pleiotropic, not all members of the superfamily are anti-inflammatory. While some
members mediate immune suppression and promote self-tolerance, others enhance antibacterial,
antiviral or antitumor activity (Commins, Steinke et al. 2008). IL-10 in particular, limits immune response
and prevents immune system mediated damage to the host (Li and Flavell 2008). IL-10 synthesis is a
characteristic of almost all leukocytes (Wolk, Kunz et al. 2002), but the main sources are mainly
monocytes, macrophages, and T helper cells (Seki, Osada et al. 1998, Roers, Siewe et al. 2004, Murai,
Turovskaya et al. 2009). IL-10 affects all three key functions of monocyte/macrophages: Release of
immune mediators, antigen presentation, and phagocytosis (Sabat, Grutz et al. 2010). IL-10 inhibits the
release of pro-inflammatory mediators such as TNF-a, IL-1pB, IL-6, IL-8, G-CSF, and GM-CSF from
monocyte/macrophages (de Waal Malefyt, Abrams et al. 1991, Fiorentino, Zlotnik et al. 1991). Other anti-
inflammatory mediators such as IL-1 receptor antagonist and soluble TNF-a receptor release are
enhanced by IL-10 (Jenkins, Malyak et al. 1994, Joyce, Gibbons et al. 1994, Hart, Hunt et al. 1996).
Independent of its inhibitory effects on antigen presenting cells, IL-10 inhibits both the proliferation and
the cytokine synthesis of CD4+ T cells (Del Prete, De Carli et al. 1993, Groux, Bigler et al. 1996). It should
be noted that IL-10 is not always inhibitory, as it has a potent effect of the growth and differentiation of B
cells (Defrance, Vanbervliet et al. 1992, Rousset, Garcia et al. 1992). Overproduction is as harmful as
underproduction, as excessive amounts of IL-10 are associated with systemic lupus erythematosus,
melanoma, leishmaniasis and tuberculosis (O'Garra, Barrat et al. 2008).

TGF-B exists in three isoforms in mammals: TGF-B1, 2, and 3. While TGF-B2 and 3 play a role in

muscle and bone development, TGF-B1 expression predominates in immune cells (Bauche and Marie



2017). TGF-B1 inhibits Thl cells, Th2 cells, and cytotoxic T cells, while inducing differentiation of Treg cells
and TH17 cells (Banchereau, Pascual et al. 2012). Working with IL-10 or IL-21, TGF-B1 also induces CD40-
activated B cells to switch isotypes from IgM+, IgD+ to IgA+ B cells, playing a pivotal role in mucosal
immunity (Banchereau, Pascual et al. 2012). TGF-B1 deficient mice develop early fatal inflammatory
disease, which starts before any major challenge with microbes. Such phenotype can be rescued with
depletion of either CD4+ or CD8+ T cells (Shull, Ormsby et al. 1992). Unlike IL-10, TGF-B is expressed in
most tissues and seems to have a role in immune homeostasis (Li, Mai et al. 2012). TGF-B is essential for
induction of Foxp3 in naive CD4+ T cells, leading to Treg Cells (Chen, Jin et al. 2003, Dardalhon, Awasthi et
al. 2008). TGF-B also induces the differentiation of naive T cells into TH17 cells, while inhibiting the
generation of TH1 and TH2 cells (Li, Wan et al. 2007). Consequently, the gut shows enrichment of Foxp3+
Treg cells and TH17 cells, and the balance between the two populations are tightly controlled (Dullaers, Li
et al. 2009). TGF-B is first translated as a dimeric pre-pro- TGF-B, then is cleaved to form a latent TGF-
(LTGF-B) complex composed of LAP (latency-associated peptide) that wraps around a homodimeric
mature TGF-B (Shi, Zhu et al. 2011). A second proteolytic cleavage generates three forms of TGF-B: 1)
small latent form of LTGF-B, 2) a larger latent form, composed of LTGF- linked to a binding protein, and
3) LTGF-B bound to a membrane protein (Tran, Andersson et al. 2009). Lastly, another proteolytic

processing finally frees up the active TGF-B component.

IL-27 is produced mainly by macrophages and dendritic cells (DCs). Just like IL-2, IL-27 was first
thought to be pro-inflammatory, as it was initially described to promote TH1 response (Pflanz, Timans et
al. 2002). Such misconception was corrected when it was observed that mice deficient of IL-27 specific
receptors had intact TH1 responses, yet succumbed to CD4+ T cell-mediated pathology when infected with
parasitic protozoa. This indicated IL-27 was required to limit inflammation in vivo (Hamano, Himeno et al.
2003, Villarino, Hibbert et al. 2003). Subsequent studies confirmed its anti-inflammatory roles in TH1, TH2,

and TH17 responses (Stumhofer and Hunter 2008). IL-27 prevents the development of TH2 and TH17 cells



(Wojno and Hunter 2012). Additionally, IL-27 was shown to induce T cells to produce the anti-
inflammatory cytokine IL-10 (Awasthi, Carrier et al. 2007, Fitzgerald, Zhang et al. 2007, Stumhofer, Silver
et al. 2007). The therapeutic use of IL-27 needs caution, as IL-27 also suppresses IL-2 thereby hampering
the growth of Treg cells (Wojno, Hosken et al. 2011). Through this mechanism, IL-27 can induce of colitis in
mice (Cox, Kljavin et al. 2011). IL-27 is composed of IL.-27p28 (also called IL-30) and Epstein Barr-induced
virus 1 subunit (EBI3) (Pflanz, Timans et al. 2002). IL-27p28, when acting alone, can act as an antagonist of
signal-transducing receptor gp130 (Stumhofer, Tait et al. 2010), leading to blockage of signaling mediated
by IL-6, IL-11, and even IL-27. Additional studies are required to fully understand the physiological and

pathological role of IL-27 and its individual subunits.

IL-35 is also a member of the IL-12 family, just like IL-27. EBI3 and IL-12p35 subunits form the IL-
35 heterodimer (Collison, Workman et al. 2007). IL-35 is not constitutively expressed in tissues (Li, Mai et
al. 2012), and is mainly produced by Treg cells (Hamano, Himeno et al. 2003). IL-35 is peculiar in that it is
capable of transforming CD4+ effector T cells into a novel Foxp3 negative Treg cell population, which in
turn can also produce IL-35 (Collison, Chaturvedi et al. 2010). IL-35 stimulated Treg cells can protect
against collagen-induced arthritis through IL-10 production (Kochetkova, Golden et al. 2010). Ectopic
expression of IL-35 in pancreatic beta cells can also prevent auto-immune diabetes (Bettini, Castellaw et

al. 2012).

IL-37 is the newest addition of the list of anti-inflammatory cytokines (Nold, Nold-Petry et al.
2010). IL-37 is a member of IL-1 family that share similar B-barrel structures. IL-37 has 6 exons in its
genomic DNA, and depending on which exons are used, 5 different isoforms can be created (IL-37a —
IL37e) (Boraschi, Lucchesi et al. 2011). Isoforms IL-37c and IL-37e are suspected to be nonfunctional
because they are missing exon #4, which is necessary to form the B-strands typical to the IL-1 family [use

Figure 1.5]. IL-37b is produced in a precursor form and its pro-peptide is cleaved off to form mature IL-37b



(Kumar, McDonnell et al. 2000). There are two reports of N-terminal sequencing results on the cleavage
location: One paper showed that amino acid 20 was the cleavage site and caspase-1 was the enzyme
responsible (Kumar, Hanning et al. 2002), while another reported that the cleavage location was at amino
acid 45 but the enzyme responsible was not elucidated (Pan, Risser et al. 2001) [Figure 1.3b]. Both pro IL-
37b and mature IL-37b can act on NK cells to reduce INF-y production, but the mature IL-37b is more
efficient (Bufler, Azam et al. 2002). IL-37b is known to act intracellularly and extracellularly. Only the
mature form of IL-37b can enter the nucleus (Sharma, Kulk et al. 2008, Ross, Grimmel et al. 2013) by
binding to phosphorylated SMAD3 (Nold, Nold-Petry et al. 2010), and affects transcription of
inflammatory mediators (Sharma, Kulk et al. 2008). On the other hand, both pro and mature forms of IL-
37b are secreted. Extracellular IL-37b is known to bind to receptor complexes composed of an alpha
subunit of IL-18 receptor (IL-18Ra) and a Single Ig IL-1-related receptor (SIGIRR, also known as IL-1R8) (Li,
Neff et al. 2015, Lunding, Webering et al. 2015) [Figure 1.5]. The anti-inflammatory role of IL-37 described
by the aforementioned Nold group was based on the following observations: 1) pro-inflammatory
cytokines were suppressed with IL-37 in macrophages, peripheral blood mononuclear cells, and epithelial
cells, 2) silencing IL-37 increased pro-inflammatory cytokines, 3) IL-37 transgenic mice were protected
from LPS induced shock (Nold, Nold-Petry et al. 2010). Since then, other studies confirmed IL-37 to have
anti-inflammatory functions in other experimental models. IL-37 transgenic mice experienced less colitis
(McNamee, Masterson et al. 2011). IL-37 reduced concanavalin A-induced hepatitis and Lipopolysaccaride
(LPS)-induced sepsis in mice (Bulau, Fink et al. 2011). IL-37 played a protective role against myocardial
ischaemia/reperfusion injury by inhibiting toll-like receptor (TLR)-4 expression and increasing IL-10 levels
(Wu, Meng et al. 2014). Our lab also demonstrated that recombinant IL-37 injected mice experienced less

alveolar bone loss in experimental periodontitis (in preparation).

The objective of this study is to identify how IL-37 function is affected by its genotype variants.

The hypothesis is that polymorphisms disrupt the anti-inflammatory function of IL-37. In chapter 2 we will



observe this in in vitro experiments and in vivo cell line experiments. In chapter 3, we will collect human

samples and observe the effects of the SNP variants on the primary cell responses.



1.1. Figures

Figure 1.1.1. GWAS results leading to 7 SNPs of interest
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The SMPs were on the coding region of a gene called IL-37,

and caused missense mutation in the final protein product

When upper quartile of GCF IL-1B concentration was used as the phenotype for GWAS,
statistically significant SNPs were found on the chromosome #2. Zoomed in diagram of the Manhattan
plot indicates a number of SNPs highly significant, which caused missense mutation on IL1F7 (IL-37). 7 of

such SNPs were noteworthy and their effects on IL-37 became our study of interest.
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Figure 1.1.2a. Population genetics of rs3811046 and rs3811047 based on 1000 genome project
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1000 genome project result shows that both rs3811046 and rs3811047 differ in their minor allele
frequency according to ethnicity of the subjects. Of particular note is the difference between Africans and

other ethnicities.
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Figure 1.1.2b. Population genetics of rs2708943, rs2723183, rs2723187, rs2708947, and rs2723192 based

on 1000 genome project
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Population genomics of SNPs from the 2" haplotype. Despite minor variations, the minor alleles

stayed the same throughout all ethnicities. Data pulled form SNP search at www.ensembl.org website.

AFR: Africans, AMR: Americans, ASN: Asians, EUR: Europeans, SAS: South Asians.
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Figure 1.1.3a. Gene sequence of IL-37b and SNP locations
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lllustration of genomic DNA of IL-37 and exons comprising the IL-37b isoform. SNPs of the 1%
haplotype are all located on the exon #2, while SNPs of the 2" haplotype are dispersed on exons 4, 5, and

6. These three exons code for the B-strands typical to the IL-1 family. Figure adopted and modified from

Boraschi et al. 2011.
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Figure 1.1.3b. Amino acid sequence of pro IL-37b and missense mutations
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Amino acid sequence of pro IL-37b, and critical locations of interests. The sequence was pulled
from UniProt website (http://www.uniprot.org/uniprot/QINZH6). There are two different reports
describing the pro-peptide length. 20 amino acid or 45. The enzyme that cleaves at location #20 is known
to be caspase-1. Amino acid substitutions are illustrated in red. The mutations caused by rs3811046 and
rs3811047 are close to the cleavage sites. Caution is needed in interpreting this UniProt data because they
assumed the ancestral amino acid to be the wild type. In Caucasians, that is not the case at two sites: The

WT has valine (V) at amino acid #31 location, and alanine (A) at amino acid #42 location.
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Figure 1.1.4. PolyPhen-2 predictions of the effect of SNPs on IL-37 function
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PolyPhen-2 predictions of the effects caused by the 7 SNPs of interest. Minor alleles in rs3811046,

rs2708943, and rs2723187 are probably damaging. Polymorphism in rs2723192 is possibly damaging.
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Figure 1.1.5. 5 possible isoforms of IL-37b
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nonfunctional. Figure was adopted from the work of Boraschi et al. 2011.
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Figure 1.1.6. IL-37b extracellular and intracellular pathways
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Extracellular and intracellular pathways of IL-37b. A number of agonists cause increase of pro IL-

37b production. Caspase-1 matures the pro IL-37b. Mature IL-37b can bind to phosphorylated SMAD3 and

translocate into the nucleus. Both pro and mature IL-37b are secreted extracellularly, and its presence can

be detected by a receptor complex composed of IL-18Ra subunit and orphan receptor SIGIRR subunit

(also known as IL-1R8). The interaction between the receptor complex and IL-37b is affected by IL-18

binding protein (IL-18BP). Both extracellular and intracellular pathways inhibits innate immune response

of the cell. Diagram was constructed based on papers published by Bufler et al. 2002, Boraschi & Dinarello

2006, Nold et al. 2010, Bulau et al. 2013, Bulau et al. 2014, Li et al. 2014, Wu et al. 2014, Li et al. 2015, and

Lundig et al. 2015.
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CHAPTER 2: Observe the effect of variants on IL-37 anti-inflammatory function with human
recombinant IL-37b

2.1. Material and Methods

2.1.1. Generation of human recombinant IL-37b using Escherichia coli

The starting material was an IL-37b cDNA containing plasmid with a PMV promoter, synthesized
through custom order by Blue Heron Biotech LLC (WA, USA). This was originally used for a different IL-37
related project by a post doc in our laboratory. As PMV promoters cannot be used in prokaryotic systems,
we created custom primers to meet our purpose: www.ncbi.nlm.nih.gov/nuccore/BC020637 was used to
find cDNA sequence of pre IL-37b. Vector chosen was pET30a(+), and a webcutter 2.0 web-based program
(rna.lundberg.gu.se/cutter2/) was used to confirm our restriction enzymes (Xhol and Ndel) do not cut the
gene insert. Forward and reverse primers where designed to include restriction enzyme cutting sites and
part of the cDNA sequence (forward primer: GGGCATATGTCCTTTGTGGGGGAGAA, reverse primer:
CCCCTCGAGATCGCTGACCTCACTGGGGCT). The cut and ligated pro IL-37b pET30a(+) were taken up by
DH5a E. coli for amplification. The new plasmids were sequenced both from the 5’ and 3’ ends for
confirmation, ruling out not only frame shift errors but also SNPs (or lack thereof), on our locations of
interests. BL21(DE3) E. coli cells were transformed with these newly expanded plasmids, and human
recombinant pro IL-37b was allowed to produce through stimulation with IPTG. After sonicating the
BL21(DE3) E. coli cells, the protein in the lysed mix was purified out using Ni-NTA agarose beads and
imidazole, utilizing the His tag on the C terminal of our human recombinant pro IL-37b. Lastly, protein

sizes less than 30 kDa was diffused away through dialysis. Both the wild (WT, V at amino acid #31 and A
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at amino acid #42) and mutant (V1, G at amino acid #31 and T at amino acid #42) human recombinant pro

IL-37b proteins were generated this way [Figure 2.4.1].

2.1.2. In vitro caspase-1 cleavage experiment, direct gel staining

Human recombinant active caspase-1 was purchased from Enzo Life Sciences (NY, USA). The
enzyme came in concentration of 100 U/uL in a solution that was composed of the following: 50 mM
HEPES, pH7.4, 100mM sodium chloride, 0.5% CHAPS, 1mM EDTA, 10% glycerol, and 10 mM DTT. The
solution was used directly without dilution. Aliquots were created for each time points: 300 units of active
caspase-1 enzyme and 0.5 pg of human recombinant pro IL-37b were mixed into each, 5 uL reaction mix.
The individual aliquots were immediately incubated at 37 degree Celsius for their corresponding minutes
(1, 3, 6,10, 20, 30, and 60), then its reaction was terminated by adding 4x loading buffer and further
denaturing the protein mix in 100 degree Celsius. Such experiment was done firstly with the human
recombinant WT pro IL-37b, and secondly with the human recombinant V1 pro IL-37b. Samples were run
through electrophoresis and the gel was directly stained using Coomassie blue (R-250 dye). The protein
stains now visible in the gels were digitally captured and Imagel program (National Institutes of Health.
MA, USA) was used for densitometry analysis. The amount of shift in the band from pro IL-37b to mature

IL-37b was compared between WT and V1.

2.1.3. In vitro caspase-1 cleavage experiment, Western blot with Km and Vmax calculation

Pilot experiment with Western blot indicated that the initial 10 to 30 minutes had the most
dynamic response. So the caspase-1 cleavage experiments were conducted for 0, 10, and 30 minutes with
substrate (i.e., pro IL-37b) concentrations of 0.012, 0.004, and 0.0013 pg/uL. Primary antibody used was
rabbit polyclonal anti-human IL37 from Abcam (Cambridge, UK). Western blot was conducted again, and

the chemiluminescent stained membranes were captured digitally for densitometry analysis. Lineweaver-
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Burk plot was used to derive Km and Vmax values for caspase-1 cleavage reactions when substrates were

either the wild (WT) or mutated form (V1) [Figure 2.4.3b].

2.1.4. Making better tools: EF.CMV. RFP vector for eukaryotic cells

EF.CMV.RFP vector for eukaryotic cell use was designed, where the transfected cells would
constitutively express pro IL-37b (by CMV promoter) and Red Fluorescent Protein (by EF promoter). 4
variations of pro IL-37b gene inserts were used: WT, reflecting the 7 major alleles observed in Caucasians;
V1, reflecting Caucasian minor alleles in the first haplotype (rs3811046 and rs3811047); V2 reflecting
Caucasian minor alleles in the second haplotype (rs2708943, rs2723183, rs2723187, rs2708947, and
rs2723192); V1V2, reflecting Caucasian minor alleles in both first and second haplotypes (rs3811046,
rs3811047, rs2708943, rs2723183, rs2723187, rs2708947, and rs2723192). Clonal expansion and
confirmation through sequencing was done in similar manner as in the previous description. Both
transient transfection (HEK293T, human embryonic kidney cell line) and permanent transfection (MPC11,

human plasma cell line) were confirmed by IL-37b and RPF bands in Western blots.

2.1.5. In vivo caspase-1 cleavage experiment in transfected HEK293T cells

With collaboration with Dr. Jenny Ting’s lab, NLRP3 reconstitution experiment was conducted on
pro IL-37b transfected HEK293T cells. Caspase-1 cleavage inside the cells, and amount of secreted IL-37b
were measured through Western blot of the cell lysate and supernatant. Transfection efficiency was

evaluated through microscope as well as RPF band strength of the lysate through Western blot.

2.1.6. LPS stimulation of HEK293T, THP-1 co-culture system

HEK293T cells were transfected with pro IL-37b and caspase-1 and incubated for 9 hours. Media

was replaced and left for 8 hours. THP-1 cells were added and the co-culture was incubated for 12 hours.
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25 ng/mL E. coli (strain 0111:B4) LPS was added and 6 hours later the spent media, HEK293T cells
(attached), and THP-1 cells (floating) were collected. IL-1B levels in the spent media was measured
through ELISA in triplicates. IL-37 levels in the supernatant and intracellular RFP and IL-37 levels of

HEK293T cells were measured through Western blots.

2.1.7. LPS stimulation of human recombinant IL-37b pretreated RAW263.7 cell line

RAW?263.7 cells were pretreated with 1, 10, and 100 pg/mL human recombinant pro IL-37b for 30
minutes. 10 ng/mL of E. coli (strain 0111:B4) LPS was added and spent media was collected at 12 hour

post stimulation. Pro-inflammatory cytokine levels were measured through ELISA in triplicates.
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2.2. Results

Densitometry analysis of the stained gels seemed to indicate that the variant pro IL-37b is more
readily cleaved by caspase-1 during the first 30 minutes [Figure 2.4.2]. This result proved that the caspase-
1 digestion experiment with human recombinant pro IL-37b was a viable experiment. However, protein
stains digitally captured from a 1mm thick translucent gel resulted in a blurry out of focus image, which
compromised the accuracy needed for finer analysis. The Coomassie blue stain was not sensitive enough
to detect substrates in low concentrations, such as 0.0013 pg/uL. Pierce Silver staining (Thermo Scientific.
MA, USA) of the gels was attempted, but despite its enhanced sensitivity, the very narrow detection range
was not conducible for our study (data not shown). Western blot was the next best alternative besides
ELISA. ELISA was not possible because antibodies specific enough to tell the pro or mature IL-37b apart
were not available. Western stain of in vitro caspase-1 experiment was analyzed through densitometry,
and through the Lineweaver-Burk plot. The Michaelis-Menten constant, Km, of WT pro IL-37b was 1.74 X
10710, whereas that of V1 pro IL-37b was 7.22 X 1071%, This meant the mutated V1 substrate had 4.25
times less affinity to the caspase-1 enzyme. Vmax of WT pro IL-37b was 0.5 X 1013 mol / (L X sec), and
V1 pro IL-37b was 1 X 1073 mol / (L X sec). Although the mutated V1 substrate may have less affinity to
the caspase-1 enzyme, when the substrates are saturated, V1 can overtake the WT reaction because it

has 2 times higher maximum reaction velocity [Figure 2.4.3b].

The EF.CMV.RFP vector was successfully used to transfect the pro IL-37b gene both transiently

(HEK293T) and permanently (MPC11). Confirmation was done with Western blots [Figure 2.4.4].

With the newly created vectors, the previous in vitro experiment was repeated in vivo, in
HEK293T cell line. The system worked, the reconstituted caspase-1 was digesting the pro IL-37 into
mature IL-37. However, the amount of mature IL-37b was not discernible through Western blot in the

lysate, and the mature IL-37b band detected in the supernatant was too faint for legible densitometry.
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This meant Km and Vmax cannot be derived with this system. It also became clear that despite same levels
of transfection (equivalent density of RFP bands), IL-37b proteins were not produced at same levels: More
pro WT was being produced than pro V1 intracellularly to begin with, and this lead to more of mature IL-
37b detected on the supernatant [Figure 2.4.5]. Additionally, it was found out that caspase-1 could be
self-activated if the transfection amount was 30 ng/well in the 24-well plate (data not shown).
Simplification of the experiment was possible as this meant ASC and NLRP3 gene transfections were not

necessary.

We realized that the differing amount of mature IL-37b needs to be reflected in our experiments.
The HEK293T & THP-1 co-culture experiment was designed with this in mind. When equivalently
transfected HEK293T cells, co-cultured with THP-1 cells were stimulated with E. coli (strain 0111:B4) LPS,
the IL-1PB levels in the WT transfected system were less than that of non-transfected control. HEK293T
only culture did not show any IL-1B response to LPS, so the result was contributed by THP-1 only. The
results reconfirmed the anti-inflammatory action of IL-37b (p=0.001). More importantly, The V1
transfected system exhibited higher IL-1pB levels compared to WT (p<0.001), indicating compromised anti-
inflammatory function, despite equivalent transfection levels. Western blot indicated that again, there
were differing amounts of mature IL-37b in the supernatants: WT had more mature IL-37b compared to

the V1 counterpart [Figure 2.4.6].

Lastly, we wanted to see if the mutated IL-37b had compromised anti-inflammatory functions on
its own. RAW264.7 cells were pretreated with the same controlled amount of WT or V1 pro IL-37b, then E.
coli (strain 0111:B4) LPS stimulation was done for 12 hours. IL-6 in the spent media was used as a
surrogate measure of the inflammatory response, as the RAW264.7 cells showed strongest IL-6 readout

compared to IL-1B and TNF-a (data not shown). Results showed that the human recombinant WT IL-37b
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created through E. coli was functional, as it could reduce the IL-6 response. On the other hand, the

mutated V1 IL-37b failed to reduce IL-6 response of RAW264.7 cells [Figure 2.4.7].
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2.3. Conclusions
The IL-37b first haplotype variant (V1) has less affinity to caspase-1 but will reach higher reaction

velocity.

V1 causes less production and secretion of IL-37b in both transient and permanently transfected

cells.

The decreased V1 environment causes LPS stimulated HPT-1 cells to overproduce IL-6 compared

to wild type IL-37b.

V1 IL-37b exhibit compromised anti-inflammatory ability in LPS stimulated RAW264.7 cells.
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2.4. Figures

Figure 2.4.1. Generating human recombinant pro IL-37b from E. coli
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Human recombinant pro IL-37b was produced using pET30(a)+ as the vector. Gene insert was
created with PCR with addition of Xhol and Ndel sites. Empty vector, and vector with gene insert was
cloned with DH5a first, then the proteins were produced in BL21(DE3) cells. After lysing away the cells
with a sonicator, Ni-NTA agarose beads were used to purify the proteins. After two overnight dialyses the
recombinant proteins were ready for experiments, such as in vitro caspase-1 cleavage. Our human
recombinant pro IL-37b has two segments at the C-terminal that do not exist in the natural form:

Sequences created by the remaining Xhol sequence and a polyhistidine-tag.
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Figure 2.4.2. Direct gel staining of caspase-1 treated pro IL-37b, and densitometry analysis
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Caspase-1 cleavage caused band shift from pro IL-37b to mature IL-37b. The gels stained with
Coomassie blue were digitally captured for densitometry analysis. The density value of mature IL-37b was

subtracted from the 0 hour band density value to create this plot. Plot of WT pro IL-37b was overlayed

with that of V1 pro IL-37b. Notable difference in the plot was observed during the first 30 minutes.
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Figure 2.4.3a. Western blot of in vitro pro IL-37b cleavage experiment and its densitometry analysis
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Densitometry analysis of Western blot. 3 different concentrations of substrates (human
recombinant pro IL-37b) were incubated for 3 different times (0, 10, and 30 minutes). For the V1
experiment, the exposure time had to be adjusted to capture the band strength where the faint mature
IL-37b band could be well detected, while the stronger pro IL-37b band was not overly exposed. This

ensured that the digitally captured band density still had linear relationship with the detected IL-37

proteins.
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Figure 2.4.3b. Km and Vmax calculation based on densitometry of Western blot
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* Km of wild WT was 1.74 x 1071°, V1 was 7.22 x 107 1°
* Vmaxof WTwas0.5x107 3, Vlwas1x10 13
* Mutant pro IL-37 has 4.25 times less affinity to the caspase-1 enzyme,

but can only reach half the maximum reaction velocity of the WT

With the known reaction time and substrate concentrations, reaction velocity could be calculated.
Lineweaver-Burk plot allowed us to derive the maximum reaction velocity (Vmax) and Michaelis-Menten

constant (Km) of each reactions for comparison.
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Figure 2.4.4. IL-37b transfection of eukaryotic cell lines, and confirmation of IL-37b productions via

Western blot
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IL-37b gene was inserted into EF.CMV.RFP vector, and the plasmids were transiently transformed
into HEK293T cell lines, permanently transfected into MPC11 plasma cell lines. Transformation success

was confirmed via Western blots of RFP and IL-37b proteins in the cell lysates.

30



Figure 2.4.5 IL-37b maturation by caspase-1 in vivo, through NLRP3 constitution experiment on HEK293T

cell line
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NLRP3 constitution through transfecting HEK293T cells with ASC, NLRP3, and pro caspase-1 genes
was successful. When pro IL-37 genes were introduced into the same cells, the system secreted mature IL-

37 into the supernatant. Pro IL-1p was used as positive control for caspase-1 action.
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Figure 2.4.6 HEK293T and THP-1 co-culture experiment
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HEK293T cells were transfected with pro capase-1 and pro IL-37b genes, then co-cultured with
THP-1 cells. After 10 hours of E. coli (strain 0111:B4) LPS stimulation, IL-1B levels of the spent media was
used as a surrogate to measure the innate immune response of THP-1 cells. Mature IL-37b levels were

measured with Western blot of the spent media, transfections were confirmed by the RFP band strengths

of the HEK293T cell lysates.
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Figure 2.4.7 RAW246.7 cells, E. coli (strain 0111:B4) LPS stimulation after pro IL-37b pretreatment
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RAW246.7 cells were pretreated with set concentrations of either WT or V1 pro IL-37b for 30
minutes and stimulated with E. coli (strain 0111:B4) LPS. Experiment was done in triplicates and IL-6

levels in the spent media were measured in triplicates via ELISA.
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CHAPTER 3: Observe the effect of variant of IL-37 in Caucasian human samples

3.1. Material and Methods

3.1.1. Screening process

The inclusion criteria for the human sample collection were as follows:

1)
2)
3)
4)
5)

6)

Caucasian ethnicity

Between the ages of 18 and 65 years old

Has minimum of 20 natural teeth, excluding third molars
Has at least 3 teeth in the posterior sextant

Able and willing to follow study procedures and instructions

Read, understood, and signed informed consent form

Exclusion criteria were:

1)
2)
3)

4)

5)

6)

Participant has chronic disease with oral manifestations, including diabetes

Participant is a smoker, or a previous smoker within the past 2 years

Participant has gross oral pathology other than periodontal disease

Participant had been treated with antibiotics for any medical or dental condition within 1 month
of the screening exam

Participant had been treated for two weeks or more with any medication that is known to affect
periodontal status within 1 month of the screening exam

Participant taking any ongoing medications initiated less than 3 months prior to enrollment
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7) Participant has any significant organ disease or bleeding disorder

8) Participant has infectious disease such as hepatitis, HIV, or tuberculosis

9) Participant has anemia or other blood dyscrasias

10) Participant is on anticoagulant therapy

11) Participant has dental or medical conditions that is likely to require antibiotic treatment during
the study period

12) Participant is pregnant, expecting to be pregnant, or nursing

13) Participant has anything that would place him/her at increased risk or preclude the individual’s

full compliance with or completion of the study

2 mL of saliva was collected from potential participants using OG-500 Oragene DNA collection kit
(DNA genotek. ON, USA). DNA was purified from the samples using PT-L2P-5 solution according to the

manufacturer’s instructions.

Custom forward and reverse primers were designed to amplify the region of interest from the
genomic DNA (biotin labelled forward primer: TGCTAACCTCACTGCGTCTGAC; reverse primer:
ATCACCTCACCCCGAGGC; sequencing primer: CCTTACTTGTGTGAACAAA). The forward primer was biotin
labeled at its 5’ end for downstream processing required by the pyrosequencer. The host DNA was PCR
amplified using the custom primers, and genotype discerned with the sequencing primer using a
pyrosequencer (PyromarkMD from QIAGEN. Hilden, Germany) [Figure 3.5.1]. The now genotyped
participants were contacted, and when the participants showed interest in, and consented for, further

participation, appointments were made for blood draws via venipuncture.

3.1.2. Blood collection and sample processing: Whole blood experiment

50 mL of whole blood was drawn from the participants with BD Vacutainer 10mL tubes with EDTA

as anticoagulant (BD. NJ, USA), and approximately 6 mL was set aside for whole blood stimulation
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experiment. E. coli (strain 0111:B4) LPS was added to 2 mL of aliquoted whole blood to create a final
concentration of 0, 0.01, and 0.1 pg/mL. The mix was incubated at room temperature with gentle
undulation for 2 hours as described by Offenbacher et al. (Barros, Wirojchanasak et al. 2010). mRNA was
purified from each aliquots using QlAamp RNA Blood Mini Kit (QIAGEN. Hilden, Germany). IL-1B, IL-6, and
TNF-a expression levels were measured and compared between WT homozyogote and V1 homozygote
groups. GAPDH (glyceraldehyde-3-phosphate) was used as internal control for AACt calculation [Figure

3.5.2].

3.1.3. Blood collection and sample processing: Dendritic cell differentiation and LPS stimulation

The remaining 44 mL of whole blood was diluted in phosphate buffered saline with 2mM EDTA.
Ficoll-Paque PLUS as used to isolate peripheral blood mononuclear cells. After lysing away any remnants
of erythrocytes and removing platelets, CD14 microbeads were used to isolate monocytes through
positive selection by magnetic cell sorting (Miltenyi Biotech. Bergisch Gladbach, Germany). Monocyte
purity and viability were > 95%. The isolated monocytes were plated in a 24-well plate, approximately 0.7-
1 million cells per well in 600 uL of RPMI with 100 U/mL penicillin, 100 pug/mL streptomycin, with 10%
fetal bovine serum in each wells. 500 U/mL of IL-4 and 1000 U/mL of GM-SCF were added to the media 2
hours after initial plating and at 3 days when media was changed. This methodology was a modification
from the description by Fordham et al. (Fordham, Naqvi et al. 2015). At 7 days, the media change did not
have IL-4 and GM-CSF in them. 3 hours after the last media change, E. coli (strain 0111:B4) LPS was added
to final concentration of 0, 0.01, and 0.1 pug/mL. The cells were harvested at 0, 1, 6, 12, and 24-hour time
points. mRNA was extracted using RNeasy Mini Kit (QIAGEN. Hilden, Germany). IL-1B expression levels
were measured and compared between WT homozyogote and V1 homozygote groups. GAPDH was used

as internal control for AACt calculation [Figure 3.5.2].
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3.1.4. GCF collection and inflammatory mediator assessment

Eight GCF samples (2 per quadrant) will be collected from the mesio-buccal and mesio-
lingual sites of each of the 1%t molars. If a first molar was missing, the collection was done on
mesio-buccal and mesio-lingual of the 2"¥ molar. When both the first and second molars were
not present, mesio-buccal and mesio-lingual sites of the 2" premolar was used for GCF
collection. GCF was collected with PerioPaper strips, and Periotron 8000 device (Oraflow Inc. NY,
USA) was used to measure its volume. The samples were kept in liquid nitrogen until they were
ready to be read. The frozen strips were thawed to room temperature and eluted out with
diluent. Luminex Multiplex assay was performed using Bio-Plex 200 system (Bio-Rad
Laboratories. CA, USA) to measure the amount of 6 mediators: IL-1B, IL-6, IL-8, TNF-a, G-CSF, and
MIP-1PB. The concentrations were calculated, and stratified according to the participant’s
genotypes. We had data of 36 such subjects, and Dental Atherosclerosis Risk in Community Study
(DARIC) data of 107 subjects were added to this. A total of 143 subjects with genotypes 1.1
(homozygous major alleles in the first haplotype, n=65), 1.2 (heterozygous for the major and
minor alleles in the first haplotype, n=66), 2.2 (homozygous minor alleles in the first haplotype,
n=12) were compared. PROC mixed model was used for analysis, with p<0.05 as defined to be

statistically significant.

3.1.5. Gingival tissue biopsy, isoform expression preference

Custom primers, specific for each IL-374a, b, ¢, d, and e isoform cDNAs were created [Figure 3.5.6].
Gingival biopsies from 4 individuals from 1.1, 4 from 1.2, and 4 from 2.2 genotypes were collected and

lysed using a buffer agitated with 7 mm beads and TissueLyser LT device (QIAGEN. Hilden, Germany).
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MRNA was extracted with RNeasy Mini Kit (QIAGEN. Hilden, Germany). Real time PCR result was used to
create expression ratio amongst the 5 isoforms in the gingival tissues. The ratio was compared among the

3 genotype groups.
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3.2. Results

Three hundred twenty seven people were screened, and they were genotyped into 1.1
(homozygous for the major allele in the 1°* haplotype), 1.2 (heterozygous for the major and minor alleles
in the 1% haplotype), and 2.2 (homozygous for the minor alleles in the 15t haplotype) groups [Table 3.4.1].
Whole blood was collected from 68 subjects for whole blood stimulation experiment. A comparison of
pro- IL-1B, IL-6, and TNF-a expression between 4 individuals with 1.1 genotype and 4 from 2.2 genotype
showed general trend of increased pro-inflammatory cytokines in the presence of SNP variants, with TNF-

o expression being statistically significant [Figure 3.5.3].

IL-1B was used as surrogate measure of inflammatory response of DCs to E. coli (strain 0111:B4)
LPS. For each subjects, 1 hour or 6 hour expression levels were the highest, with notable variance within
each groups. Such variance made it impossible to choose a single time point (e.g. 1 hour or 6 hour) for
overall comparison. Additionally, the pilot experiment showed that the IL-37 is expression level was
highest at 12 hour after LPS stimulation [Figure 3.5.2]. This meant the IL-1§3 levels at 12 and 24 hours
should be included in the analysis, as our purpose was to compare of the effects of IL-37 on the IL-1B
expression levels. Area under the curve (AUC) i.e., the sum of all fold values from 0, 1, 6, 12, and 24 hours,
was used as representative measure of individual immune response, and that value was compared
between 1.1 and 2.2 genotypes. A statistically significant difference between the genotype groups could

be observed, with 2.2 group having higher IL-1p expression levels [Figure 3.5.4].

A trend of dose response to the minor alleles, was observed when IL-1pB, IL-8, TNF-a, and MIP-1j
GCF concentrations were compared among 1.1, 1.2, and 2.2 groups. We observed statistically significant
increase of IL-1pB, IL-8 concentrations when the 1.1 group (n=65) was compared against 2.2 group (n=12)

[Figure 3.5.5].
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When the isoform expression ratio was measured from the gingival biopsies, we observed
increased ratio of the putative nonfunctional isoforms (IL-37c and IL-37e) in the 1.2 and 2.2 genotype

groups compared to 1.1 group.
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3.3. Conclusions
Human whole blood from the V1 genotype subjects showed tendency of hyper-inflammatory

profiles in terms of IL-1B, IL-6 and TNF-a expression when stimulated.

Dendritic cells differentiated from V1 genotype subjects also demonstrated hyper-inflammatory

profile in IL-1B expression.

There was a general trend of increased pro-inflammatory cytokine concentrations in the GCF,

when the subjects had minor alleles.

Gingival tissues collected from subjects with the minor allele had less active IL-37 isoforms in

terms of their ratio.

41



3.4. Tables

Table 3.4.1. Genotyping results

Screened & Whole blood Monocyte-DC Biopsy done
Genotyped experiment done experiment done
165 12 8

1sl
haplotype

27
144 30 18
18 11 11 8
327 68 41 24

Total of 327 subjects were screened for genotyping. 68 of them consented and participated in
blood draw and whole blood experiments. 41 of such subjects we conducted dendritic cell differentiation

of their peripheral monocytes. A smaller group, 8 of each genotypes we collected gingival biopsies.
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3.5. Figures

Figure 3.5.1. Pyrosequencing of human saliva DNA for genotyping
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Host DNA was purified from the saliva, DNA region of interest was PCR amplified, and genotyped

based on the rs3811046 and rs3811047 alleles (1% haplotype) through pyrosequencing. Principles of

pyrosequencing and sample analysis examples are illustrated.
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Figure 3.5.2. Blood experiments of the genotyped participants
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Whole blood was collected with venipuncture. 6 mL of the whole blood was stimulated directly

with E. coli (strain 0111:B4) LPS and RNA was isolated to measure pro-inflammatory cytokine expression.

The remaining blood were used to purify monocytes. IL-4 and GM-CSF stimulation for 7 days

differentiated the monocytes further to dendritic cell phenotypes, but it was the LPS stimulation that fully

differentiated them. It was during this LPS stimulation where we followed the cells up and collected RNA

and spent media at 0, 1, 6, 12, and 24 hours. The time points were based on pilot experiments, which

showed highest IL-37 mRNA expression at 12 hour time point.
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Figure 3.5.3. Whole blood experiment. IL-1B, IL-6, and TNF-a expression levels.
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Whole blood was stimulated at final concentration of 0, 0.01, and 0.1 ug/mL E. coli (strain
0111:B4) LPS for 2 hours at room temperature. Pro-inflammatory cytokine mRNA expression was derived

through 27224t calculation. GAPDH was used as internal control. Error bars indicates standard errors.
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Figure 3.5.4. DC stimulation with E. coli, IL-1B expression comparison between 1.1 and 2.2 genotypes
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6 subjects from the WT group (1.1 genotype in the 1%t haplotype) were compared against 6
subjects form the V1 group (2.2 genotype in the 1°* haplotype). Their differentiated dendritic cells (derived
from peripheral blood) were stimulated with 0.1 pg/mL E. coli (strain 0111:B4) LPS and followed up from
0,1, 6,12, and 24 hours. IL-1p expression was measured via qRT-PCR in triplicates in a single 384 reaction
plate. GAPDH was used as internal control. Fold expression values were individually normalized to 0 hour
non-stimulated controls within each subjects. Area under the curve (AUC) was compared between WT

(1.1) and V1 (2.2) groups and was found to be statistically significantly different (p < 0.05).
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Figure 3.5.5. Inflammatory mediator concentration in human GCF, compared among the 1.1, 1.2, and 2.2

genotypes
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The GCF levels of IL-1B, IL-6, IL-8, TNF-a, G-CSF, and MIP-1B were measured by immunobead
multiplexing for genotyped subjects in the DARIC population (n=107), supplemented with 36 subjects who
were genotyped for the 15 haplotype locus by pyrosequencing to enrich the population for the minor allelic
variant. A total of 143 subjects with genotypes 1.1 (n=65), 1.2 (n=66), 2.2 (n=12) are shown with Z scores
for each mediator, normalized to the mean GCF cytokine concentration levels of 1.1 genotype. Error bars

indicate standard errors.
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Figure 3.5.6. Isoform expression preference in human gingival tissues
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Human gingival tissues were collected from 4 individuals each, from 1.1, 1.2, or 2.2 genoytpe
groups. Isoform cDNA specific primers were designed and used to compare 5 different isoform

expressions. gRT-PCR results were plotted in ratios for each genotype groups.
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CHAPTER 4: DISCUSSION

The anti-inflammatory role of the IL-37b is being actively elucidated since it discovery, yet we
know very little on how polymorphisms in single nucleotides can affect those functions. Literature search
on SNP variants on IL-37 resulted in very few hits: Pei et al. had investigated the effects of rs3811047 and
reported they did not observe increased susceptibility of rheumatoid arthritis in Chinese Han population,
and they observed lower swollen joint count, swollen joint index, rest pain, and health assessment
questionnaire score in the 1.2 and 2.2 genotype groups compared to 1.1 group. Their data suggested that
the minor alleles were actually protective, and not destructive to the host (Pei, Xu et al. 2013). These
results should be interpreted with caution, because the findings are from observation on different
ethnicity. Ethnicity plays a crucial part in the study of SNP variants, as our GWAS showed statistically
significant association with a phenotype (upper quartile of GCF IL-1B concentration) in one ethnicity
(Caucasians) but not another (African Americans). Contrary to their report on ethnic Han Chinese, our
data on Caucasian samples suggests minor alleles in rs3811046 and rs3811047 (considered as one unit, or
haplotype, as the SNPs showed strong linkage equilibrium) causes disruption of IL-37b function, and leads

to hyper-inflammatory profile of the host.

Another article, just published in 2016, investigated the same SNPs on transfected cell lines and
primary cells pretreated with human recombinant IL-37b (Yan, Zhang et al. 2016). It was unfortunate that
they made the mistake of confusing the ancestral and the wild type genes at rs3811046 and rs3811047.
Regardless, their results were in conflict with ours, as they did not observe statistically significant

difference in the IL-37b function between WT (their “IL37-Var1”) and V1 (their “IL37-Ref”).
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Out of 7 SNPs of interest found through GWAS, we focused on two SNPs in the 1 haplotype, as
their minor allele frequency (MAF) was reported to be around 0.40. The other 2" haplotype (including
rs2708943, rs2723183, rs2723187, rs2708947, and rs2723192), the MAF was too low (0.08) for us to
investigate their effects in human subjects within the allotted schedule of our project. It would have

required considerably longer recruitment time for genotype screening due to its rarity.

As previously mentioned, the IL-37b is first produced in a precursor form, only to be matured
afterwards by removing a pro-peptide region at its N-terminal (Kumar, McDonnell et al. 2000). It has been
shown that a single mutation introduced at the amino acid #20 site totally abolished the caspase-1
cleavage, and therefore its maturation (Kumar, Hanning et al. 2002). The SNPs rs3811046 and rs3811047
are not located at the cleavage site (amino acid locations are on 31 and 42) and therefore expected not to
totally abolish the reaction. However, they are close enough to warrant an investigation if mutations at
those sites cause change in its maturation efficiency. On the other hand, the 5 SNPs of the second
haplotype are located on the 3 exons that make up the B-strands typical to the IL-1 family. Therefore, it
was suspected that they will affect the affinity of IL-37b to its receptor complex, and not caspase-1

cleavage.

With the premise that the caspase-1 cleavage reaction of pro IL-37b meets three assumptions
(steady-state approximation, free ligand approximation, and rapid equilibrium approximation), Michaelis-
Menten kinetics can be applied. In an in vitro experiment, where the substrate concentration, enzyme
amount, and reaction time is under control, the Michaelis-Menten constant (Km) and maximum reaction
velocity (Vmax) could be calculated and compared. The Km is defined as the concentration of the substrate
when the reaction velocity is equal to half of the maximum reaction velocity. It can be thought of as a
measure of the binding affinity of the substrate (pro IL-37b, WT or V1) to an enzyme (caspase-1). In a

reaction that follows Michaelis-Menten kinetics, the reaction velocity reaches a saturation as the
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substrate concentration increases. If the same phenomenon happens in vivo, that difference in the
enzyme affinity (4.25 times higher to capase-1 with the WT substrate compared to V1 substrate) may be
caught up by the V1 reaction because it is capable of reaching twice the maximum reaction velocity. But,
this scenario may only happen in systems with constant pro IL-37b overproduction and therefore,
substrate saturation (such as in transfected cell lines with constitutive CMV promoter), and not in cells in
a natural state. That said, it may be enough to compare WT vs. V1 caspase-1 reaction with just Km values
only: WT pro IL-37b is more readily matured than V1 pro IL-37b, and therefore subjects with WT genotype

will have more mature IL-37b in their system to regulate inflammation.

The production of recombinant proteins has revolutionized biochemistry. E. coli is one of the
organisms of choice for production for the following reasons: The bacteria has fast growth kinetics with
doubling time of 20 minutes (Sezonov, Joseleau-Petit et al. 2007), high cell density cultures can be easily
achieved (Lee 1996), rich complex media can be made from readily available and inexpensive
components, and transformation with exogenous DNA is fast and easy (Pope and Kent 1996). Despite
such convenience, the prokaryotic system is not without its faults. Post-translational modification, such as
protein glycosylation will not be possible with this system. So far we have not found evidence that IL-37b
goes through post-translational modification, and numerous papers have been describing IL-37b functions
based on recombinant IL-37b created with E. coli (Li, Neff et al. 2015, Cavalli, Koenders et al. 2016, Liu,
Xue et al. 2016, Zhu, Sun et al. 2016, Li, Zhai et al. 2017, Zeng, Song et al. 2017). Our experiments also
demonstrated that recombinant pro IL-37b created through such prokaryotic system retained its anti-

inflammatory functions.

NLRP3 is one of the cytoplasmic pattern recognition receptors. It detects pathogen-associated
molecular patterns (PAMPs) or nonmicrobial damage associated molecular signals (DAMPs). Upon

activation, NLRP3 oligomerize to form a multiprotein inflammasome complex that serve as a platform for
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recruitment, cleavage, and activation of caspases (Franchi, Eigenbrod et al. 2009). We had transfected
HEK293T cells with a battery of plasmids, each containing NLRP3, ASC, and pro caspase-1 so they can form
inflammasomes that led to active caspase-1 inside of the cells. The original purpose was to repeat our in
vitro caspase-1 cleavage experiment in vivo, but we quickly realized its limitations: We had limited control
over the reaction time, no control over the substrate concentrations, and the experiment had too many
variables that could affect the results. This was because each batch had to be transfected with a minimum
of 4 different plasmids, which was not consistently successful. Also, the matured IL-37b did not stay in the
cell, they were actively secreted out of HEK293T cells. If the mature IL-37b band in the in vitro experiment
was faint yet still readable, the diluted mature IL-37b band in the spend media of the in vivo experiment
was undetectable. Consequently, plans to use in vivo results for Km calculation was abandoned.
Nonetheless, the experiment did give us two interesting findings. Firstly, caspase-1 could be self-activated
at our transfection concentration, even in the absence of NLRP3. This allowed us to simplify our
experiment, by reducing the plasmids to transfect from four (NLRP3, ASC, pro caspase-1, and pro IL-37b)
to two (pro caspase-1 and pro IL-37b). Secondly, even with equal amount of EF.CMV.RFP IL-37b
transfections (confirmed by RFP band strength in Western blots) the V1 produced less IL-37b proteins.
The immunogen being recognized by our polyclonal primary IL-37 antibody (AF1975, R&D systems.
Validated for ELISA and Western blot) was Lys27-Asp192, and the antibody was created based on UniProt
accession number Q9NZH6-2. Not only does this indicate the antibody we used is designed to detect both
pro and mature IL-37b, but also that the antibody can detect V1 better than WT, as it was created based
on V1. Therefore, when we observe less V1 in the Western blot, this finding should be considered as

significant.

As the first step to confirm the functional effects of SNPs on IL-37b function, we had focused on
establishing the phenotypes. Animal projects are currently under way to see if such pro-inflammatory

phenotypes are observed not only in cell lines, primary human cell cultures, and GCF samples, but also in
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transgenic mice. Eventually, we will hone in onto specific pathways and how they are affected by these
missense mutations. There are a number of key pathways we could investigate: The mature IL-37b can
translocate into the nucleus (Sharma, Kulk et al. 2008, Bulau, Fink et al. 2011) after binding to
phosphorylated SMAD3 (Nold, Nold-Petry et al. 2010). SMAD3 binding is suspected to be crucial in this
process because mature IL-37b does not have a nuclear localization signal, but SMAD3 does (according to
a web-based prediction software, http://nls-mapper.iab.keio.ac.jp/cgi-bin/NLS_Mapper_form.cgi). This
will allow us to see if intracellular pathway of IL37b is also being affected by SNPs. The extracellular
function of IL-37b is peculiar, as the IL-37b binds with IL-18BP first, then forms a complex with IL-18Ra
(Bufler, Azam et al. 2002). It was suggested by the group that the IL-37b anti-inflammatory function acts
by depriving the IL-18 from binding to the receptor complex by taking one (IL-18a) of the two receptor
subunits (IL-18Ra and IL-18RB) away [Figure 1.1.6]. Such sequestering effects apparently are less
consequential in some cases, as another group reported that SIGIRR receptor subunit is required for the
innate immune response to be affected by extracellular IL-37 (Li, Neff et al. 2015). Through the 1L-18aq,
SIGIRR receptor complex, it was reported that the classical NF-kB pathway (Wu, Meng et al. 2014), as well
as MAP3K pathways were inhibited by extracellular IL-37b (Li, Neff et al. 2015). Last but not least, the
relationship between Treg cells and IL-37 was elucidated by Xu et al (Wang, Cai et al. 2015). They reported
that IL-37 was expressed in the cytoplasms of CD4+CD25+ Treg cells, and that the IL-37 levels were
elevated with their increased activity. When IL-37 was silenced in the CD4+CD25+ Treg cells, TGF-B, IL-10,
FOPX3, and CTLA-4 were significantly decreased. They also reported that CD4+CD25+ Treg cell IL-37 down-

regulation promoted proliferation and differentiation of co-cultured T cell, as well as IL-2 formation.

There are plans for our investigation to expand onto the functional effects of the 2" haplotype
variants. Since we were not confined by the low MAF when working on transfected cell lines, we already
were able to create recombinant V1 as well as V2 and V1V2 proteins in eukaryotic systems. Most

interesting observation was that despite equivalent mRNA levels [Supplemental Figure], V1 protein was
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produced less than WT [Figure 2.4.4]. On the other hand, V2 and V1V2 mRNAs were significantly reduced
compared to WT [Supplemental Figure] and naturally, these were reflected on reduced V2 and V1V2
protein productions [Figure 2.4.4]. Reduced protein despite equivalent mRNA indicates either the
translation efficiency is affected, or there are more destruction of the finished proteins products by the
host cell. Yan et al. described how IL-37b variants could be polyuniquitinated and degraded by
proteasome (Yan, Zhang et al. 2016). As for reduced mRNA, Bufler et al. had reported an instability
element present in exon #5 of the IL-37b gene (Bufler, Gamboni-Robertson et al. 2004). It is conceivable
that the change in mRNA structure by to the 5 SNP variants of the 2" haplotype causes the mRNA to

become even less stable. Further investigation is needed.

The significance of our study is that we confirmed our SNP variance could lead to hyper-
inflammatory profile of the host. Such propensity may not be the direct cause of, but makes them prone
to, a wide myriad of diseases, including periodontitis, by structural damage and dysfunction through

uncontrolled chronic inflammation.
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APPENDIX

Supplemental Figure. IL-37b mRNA expression of transiently transfected HEK293T cells
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HEK293 transfected with IL-37b containing EF.CMV.RFP vector shows there was equivalent IL-37b
mRNA expression between WT and V1, whereas presence of V2 (reflecting minor alleles in the 2™
haplotype) caused minimal mRNA expression. Cell ctrl, lipofectamine cell treatment only. RFP ctrl,

transfection with empty EF.CMV.RFP vector. Courtesy of Dr. Yizu Jiao, Dr. Offenbacher lab.
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