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ABSTRACT 

Lydia Tatiana Aybar: Characterization of Regulatory B cells in Patients with Anti-Neutrophil 
Cytoplasmic Autoantibody Vasculitis 

(Under the direction of Ronald J. Falk) 
 

ANCA-associated vasculitis (AAV) is B cell dependent; however, which B cell subsets 

modulate immunopathogenesis remains unknown. Although their phenotype is controversial, 

regulatory B cells (Bregs) play a critical role in immunological tolerance via secretion of IL-10. In 

this study, we investigate three B cell phenotypes reported to produce IL-10: CD5+, 

CD24hiCD38hi and CD24hiCD27+ B cells in patients with AAV. We further analyzed the CD5+ 

subsets of the CD24hiCD38hi and CD24hiCD27+ B cell populations.  

In our first investigation, we discovered a lower percentage of CD5+ B cells in patients 

with active AAV, whereas the percentage of CD5+ B cells from patients in remission was 

indistinguishable from healthy controls (HCs). After rituximab, median time to relapse was 31 

months in patients maintaining a normalized percentage of CD5+ B cells with or without 

maintenance immunosuppression. Among patients whose B cells repopulated with a low or 

sharply declining percentage of CD5, those who were on low or no maintenance 

immunosuppression relapsed sooner (median 17 months) than patients who were maintained 

on high levels of oral maintenance immunosuppression (29 months; p=0.002).  

The second phase of our investigation identified that the CD5+ subset of CD24hiCD38hi B 

cells was decreased in patients with active disease relative to patients in remission (p≤0.001) 

and HCs (p≤0.0001). B cells from patients with active disease produced less IL-10 than those 

from patients in remission (p=0.005) and HCs (p=0.001). As IL-10+, CD5+CD24hiCD38hi and 

CD24hiCD38hi B cells increased in disease remission within an individual, ANCA titers 

decreased. The CD5+ subset of CD24hiCD38hi B cells decreased in active disease and 
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rebounded during remission similarly to IL-10-producing B cells, suggesting that CD5 may 

identify functional IL-10-producing Bregs. These data indicate that Bregs malfunction during 

active disease due to reduced IL-10 expression, permitting ANCA production. 

CD5+ B cells, specifically the CD5+ subset of CD24hiCD38hi, may be useful indicators of 

disease activity, remission, and future relapse. These Breg subsets may be used to guide 

remission maintenance therapy after rituximab treatment to balance immunological B cell 

tolerance, maintain beneficial B cells, reduce pathogenic ANCA production, and sustain 

remission with minimal therapeutic interventions. 
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CHAPTER 1: B CELL IMMUNOLOGY AND REGULATION 

Introduction 

In the immune system, B cells dynamically participate in the innate, adaptive, cellular, 

and humoral immune responses that protect the body from infection. B cells play a diverse 

range of  roles in a healthy individual; they can present antigen to T cells, develop into memory 

B cells, initiate secondary immune responses, differentiate into plasma cells that secrete 

protective antibodies, and many more (1). To provide protection against infection without 

causing damage to the host, they must maintain the ability to distinguish foreign antigens from 

self antigens. Many B cell subsets exist, with different subsets performing effector and/or 

regulatory functions which can be accomplished through either antibody-dependent or antibody-

independent mechanisms (1). An important function of B cells is the maintenance of 

immunological homeostasis through secretion of anti-inflammatory cytokines, including the 

potent and pleiotropic cytokine Interleukin-10 (IL-10) (2-5). A specific subset of B cells, called 

regulatory B cells (Bregs) after their T cell counterparts, have been shown to inhibit 

inflammation, autoimmunity, and innate and adaptive immune responses through the production 

of IL-10 (3, 6, 7).  

B cells have unique antigen-specific B cell receptors (BCRs). The BCR is a form of 

membrane-bound immunoglobulin that can be secreted once the B cell has differentiated into a 

plasma cell, and can then target antigenic epitopes (8). The expression of this antigen-specific 

BCR distinguishes B cells phenotypically and functionally from other leukocytes. Upon binding 

of a cognate antigen to its BCR, the B cell is activated and clonally expands to become either an 

effector B cell that may further differentiate in to an antibody-secreting plasma cell (9), or a 

memory B cell (10). With each subsequent encounter of antigen, the immune response 

becomes more rapid and efficacious through an elaborate process of immunoglobulin class 
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switching and affinity maturation. Secreted antibodies are a soluble form of the BCR that can 

then neutralize viruses and bacteria, demonstrating the important role of B cells in infection and 

clearance of non-self antigens (11). Autoantibodies are destructive antibodies that are specific 

for self-antigens and may incite an immune response against self (12). If this process is not 

regulated, B cell immunopathogenicity can occur, which results in production of harmful 

autoantibodies, immune complexes, inflammatory cytokine secretion, ectopic 

neolymphogenesis, as well as dendritic cell and T cell activation (13).  

Self-tolerance is maintained by removing autoreactive B cells that would produce such 

potentially harmful antibodies at two checkpoints (14). Normally, B cells expressing an IgM 

molecule that recognizes a self-antigen are eliminated in the bone marrow (BM), the first 

checkpoint (central tolerance) (15). Here, >90% of high-affinity self-reactive and polyreactive 

immature B cells are removed by deletion (16), anergy (17), or receptor editing(18). 

Low-affinity self-reactive B cells can escape central tolerance and enter the blood and 

tissues, where they must pass a second checkpoint by complex and non-redundant peripheral 

tolerance mechanisms before the B cells mature into naive immunocompetent cells (19). 

Tolerance strategies at the second checkpoint in the periphery are not completely understood, 

but involve negative regulation by T cells via interaction of the T cell receptor, CD40 ligand 

(CD40L) and Fas ligand (FasL) with Major Histocompatibility Complex II (MHCII), CD40 and Fas 

respectively on B cells (20, 21). An additional checkpoint at the plasmablast to plasma cell 

transition has also been described in mice (22). Failure to remove auto-reactive B cells at either 

stage may result in circulating self-reactive B cells in the periphery. When auto-reactive B cells 

escape tolerance checkpoints and are activated by their cognate self-antigen, they may 

differentiate into autoantibody-secreting plasma cells, thereby increasing susceptibility to 

autoimmunity (23).  

Regulatory cells like regulatory T cells (Treg) and Bregs can contribute to peripheral 

tolerance through provision of IL-10 (2, 24). In several human autoimmune diseases, regulatory 
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cells are diminished in frequency or are dysfunctional (3, 25, 26). Tregs are present but lack 

suppressive ability in type 1 diabetes (T1D) (27, 28), systemic lupus erythematosus (SLE) (29), 

rheumatoid arthritis (RA) (30), multiple sclerosis (MS) (31), and AAV (32). Breg abnormalities 

have been reported in human autoimmune diseases such as SLE (3) and MS (33, 34), where 

they are phenotypically present but are unable to produce IL-10. Subsets of B cells isolated 

from patients with RA are unable to perform regulatory tasks and may promote disease (35). 

B cells from these patients are incapable of inducing functionally suppressive Tregs in order to 

prevent TH17 cell development (25). Patients with RA appear to have normal levels of 

CD24hiCD38hi, CD24hi CD27+, and CD5+ B cells; however, levels of B10 (B cells that are actively 

secreting IL-10) cells are lower in RA patients than in controls, particularly in patients with ≤ 5 

years disease duration. Further, B10 cells inversely correlate with rheumatoid factor. 

CD24hiCD38hi and CD24hiCD27+ B cells from patients with RA are also unable to induce Tregs 

(compared to CD24lo B cells) (35). In SLE, a CD24hiCD38hi Breg phenotype is reported to be in 

circulation, but it is unable to secrete IL-10 (3). More impressively, elimination of Bregs 

exacerbates inflammation and autoimmune disease in mouse models dependent on their 

production of IL-10 (36-41)  

Regulatory B cells, like other regulatory cells such as Type 1 regulatory T cells (Tr1) (42, 

43) exert suppressive effects through the secretion of IL-10, a cytokine that can drive a change 

in immunological response from T-Helper 1 (Th1) (44) to T-Helper 2 (Th2) (45). Fiorentino et al 

demonstrate that when murine splenic and peritoneal antigen presenting cells (APC) are 

incubated with IL-10 and co-cultured with TH1 clones, their ability to synthesize IFNγ is  

impaired (46). IL-10 is a protective agent in a spectrum of chronic inflammatory diseases (47, 

48). A lack of B cell-derived IL-10 is common to several relapsing and remitting inflammatory 

autoimmune diseases characterized by pathogenic B cells like MS (49) and SLE (3).  

B cell transfer in the experimental autoimmune encephalitis (EAE) mouse model of 

human inflammatory autoimmune disease and MS results in an IL-10-dependent increase in 
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Treg Foxp3 expression (50). IL-10 secreting B cells are essential for recovery in arthritis and 

EAE mice (28, 29). Interestingly, IL-10 expression protects from metabolic syndrome and T1D 

(51). Several groups, including ours, have begun to take great scientific and clinical interest in 

examining the impact of Breg phenotypes and their ability to secrete IL-10 in AAV (26, 52-54). 

Regulatory B Cells 

Immunoregulation and maintenance of peripheral tolerance is an important research 

topic in immunology and human autoimmune disease. Although we know Bregs are important 

and have a significant role in autoimmunity, the underlying mechanisms have not been well 

established, particularly in humans. Bregs are deficient or dysfunctional in several autoimmune 

diseases including SLE, RA and AAV, as discussed previously. Bregs from healthy individuals 

maintain immunological homeostasis through effects on a variety of other leukocytes by 

suppression of CD4+ T cell proliferation. They suppress naïve and memory T cell pro-

inflammatory cytokine production thus balancing TH1/TH2 responses, as well as neutrophil, 

natural killer (NK) cell, and effector T cell activation. Bregs can suppress monocytic 

inflammatory cytokine production (55) and promote iTreg (CD4+CD25+CD127lo Tregs) 

differentiation. In mice, Bregs suppress auto-antibody production. Flores-Borja et al showed that 

Bregs can prevent naive T cell differentiation into TH1 and TH17 cells (25). As previously 

discussed, these Breg functions require B cell-derived IL-10. 

IL-10 is Required for Regulatory B Cell Suppressive Functions 

IL-10 is an anti-inflammatory cytokine produced mainly by monocytes and lymphocytes. 

This cytokine has pleiotropic effects on immunoregulation and inflammation. IL-10 suppresses 

inflammation by multiple mechanisms, including down regulation of proinflammatory cytokines 

such as IFN-γ, IL-17, IL-3, TNFα and GM-CSF. IL-10 also down regulates the expression of Th1 

cytokines, MHC II antigens (56), and co-stimulatory molecules and thus decreases antigen 

presentation. IL-10 production is crucial in the maintenance of Foxp3 expression for Treg 

function. While IL-10 is required for Breg suppressive functions (3, 7), it is also important to B 
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cells as a growth factor that promotes B cell survival, proliferation and maturation to antibody- 

(or autoantibody-) secreting plasma cells (57).  

In several relapsing and remitting inflammatory autoimmune diseases characterized by 

pathogenic B cells, a common problem is lack of B cell-derived IL-10. For example, in patients 

with SLE CD24hiCD38hi Bregs are present but deficient in IL-10 production and do not suppress 

inflammatory cytokine secretion as seen in healthy controls (3). Patients with MS have a 

reduced percentage of IL-10-producing B cells (33). An IL-10 dependent increase in Foxp3 

expression, a Treg marker, has been shown in the central nervous system after B cell transfer in 

the EAE mouse model. IL-10 secreting B cells are essential for recovery in arthritis and EAE 

murine models of human inflammatory autoimmunity and MS (50). Human genetic research 

demonstrates that elevated IL-10 protects individuals from metabolic syndrome and diabetes 

mellitus (51). These data support IL-10 as an important mediator for Breg function and the 

notion IL-10 dysregulation may lead to autoimmune disease.  

In 2009, Hruskova and colleagues showed that patients with AAV in remission who 

relapsed produced significantly less circulating IL-10 than those without relapse (58). Patients 

with AAV have an increased frequency of the IL-10 -1082AA genotype that is associated with 

decreased IL-10 production (59).  

Regulatory B Cell Origin and Phenotype 

Multiple phenotypes of Bregs have been reported. Each may develop by different means 

or they all may derive from a common progenitor. Lack of consensus about Breg phenotype and 

function has led to multiple hypotheses for the ontogeny of Bregs. One hypothesis is that all 

Breg subsets have a common progenitor that differentiates into various subtypes of Bregs after 

exposure to environmental factors (60). A second is that they develop from toll-like receptor 

(TLR) engagement of naive follicular B cells and then are amplified via stimulation of CD40 and 

the BCR (61). Mauri and collaborators rationalize that multiple markers corresponding to those 

used to identify Type 2 marginal zone progenitor (T2-MZP) B cells recur amongst published 
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Breg subsets, and therefore Bregs may derive from a common T2-MZP B cell progenitor (60). 

Further support for Mauri’s hypothesis is that T2-MZP B cells can be autoantigen-specific and 

immature, and can respond quickly to environmental stimuli (62). Primary activation of a 

potentially autoreactive T2-MZP B cell by TLR stimulation induces IL-10 is secretion.  

Are Regulatory B Cells Antigen-Specific? 

BCR signaling is important for Breg IL-10 secretion; thus, IL-10 production may result 

from antigen-specific BCR activation. Mice lacking CD19, a BCR co-receptor, have fewer IL-10+ 

B cells (11) whereas hCD19Tg mice, which have increased CD19 expression and therefore 

amplified BCR signaling, have more IL-10+ B cells than wild-type mice (63). Anti-IgM stimulates 

the BCR, mimicking antigen stimulation, and causes Breg expansion in vitro. One reported 

phenotype of human Bregs includes CD27, a memory cell marker, suggesting that they are 

antigen-experienced (12). In adoptive transfer experiments, B10 cells isolated from antigen-

experienced mice suppress inflammation or disease more so than those from naive mice. 

Lastly, murine studies demonstrate B10 cells can differentiate into plasma cells that secrete IgM 

and IgG and are even enriched for autoantigen specific Ig compared to IgM generated from 

non-B10 cells (64). These data suggest that BCR drives IL-10 competence upon B cell antigen 

binding and that Bregs work in an antigen-specific manner. 

How Are Regulatory B Cells Produced ex vivo? 

B10 and B10pro are terms used to identify B cells that are actively synthesizing IL-10 

(B10) and those that are capable of Breg differentiation (B10pro). Circulating B10 cells are rare 

in mice and humans comprising less than 1% of the B cell repertoire. In humans, there is no 

consensus regarding a surface marker to identify cells capable of secreting IL-10.  

To evaluate B10 cells, cells must be cultured for 5 hours with phorbol 12-myristate 13-

acetate (PMA), ionomycin and a golgi inhibitor, such as monensin (PIM) to intracellularly 

sequester synthesized IL-10. They are then analyzed by flow cytometry to identify IL-10-
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producing B cells. This process destroys cellular viability rendering B10 cells useless for 

mechanistic studies.  

Multiple stimulants to induce B10pro cells are published giving a variety of ways to study 

them. To induce B cell IL-10 production, culture systems have included various concentrations 

of CD40L, agonistic CD40 mAb, LPS, alum, anti-IgM, cytosine-phosphate-guanosine (CpG) 

oligodeoxynucleotide (ODN) (a TLR9 agonist), PMA, ionomycin, monensin and brefeldin A. 

Since many research groups’ culture systems are unique, comparisons of the resulting Breg 

data becomes complicated thereby adding confusion to our understanding of Breg phenotype 

and function. 

Two seminal papers in the human Breg field were published in 2010 (3) and 2011(7). 

Tedder et al. have performed a substantial research of human and murine B10 and B10pro 

cells. This culture system includes enriched B cells, LPS, CpG DNA for 2 days and a final 

addition of PIM in the final 5 hours of culture. This line of research elucidated that T cell signals 

and factors may be important for Breg function because mice with B cells deficient in MHC class 

II or the IL-21 receptor are incapable of IL-10-dependent suppression of autoimmunity (65). 

Furthermore, they identified the cell surface phenotype of IL-10+ B cells as being CD24hiCD27+. 

Mauri and colleagues have also considerably contributed to the Breg literature. Their culture 

system includes enriched B cells, transgenic murine epithelial cells that express human CD40L, 

CpG DNA for 2 days and a final addition of PIM in the final 5 hours of culture. Mauri’s group 

showed that Il-10+ B cells are enriched in the CD24hiCD38hi B cell population (3). 

As mentioned previously, there is no unique marker(s) or transcription factor(s) that 

exclusively identifies human IL10+ Bregs without rendering them inert in mechanistic studies. 

Most phenotypes overlap with overarching marker sets like those ascribed to T2-MZP B cell 

(CD19+CD2hiCD23hiCD24hiIgDhiIgMhiCD1dhi) phenotypes and have been studied in murine 

splenocytes, which is an organ difficult to harvest in humans.  
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Murine Regulatory B Cells 

In mice, B10 and B10pro cells are enriched within the CD1dhiCD5+ B cell subset and 

develop an inhibitory function that suppresses IFN-γ and TNF-α expression in T cells (6), 

neutrophils and natural killer (NK) cells. Murine splenic B10 cells are IgMhiIgDloCD19hiMHC-

IIhiCD21int/highCD23loCD24hiCD43+/−CD93− (63). They reside primarily in the spleen (66), and can 

also be found in gut-associated lymphoid tissues, peripheral blood and lymph nodes (66, 67). A 

number of studies in mouse models of autoimmunity have shown that IL-10-producing B cells 

were capable of suppressing disease development. Murine B10 cells are integral for regulating 

autoimmune diseases in mouse models of EAE (41), inflammatory bowel disease (IBD) (68), 

contact hypersensitivity (CHS) (69), collagen-induced arthritis (CIA) (37) and SLE (70). 

Elimination of IL-10+ Bregs intensifies inflammation and autoimmune disease manifestations in 

diverse mouse models (36-41, 69, 71). In mice, CD5+CD1dhi B cells secrete IL-10 after 48 h of 

in vitro stimulation with either agonistic CD40 mAb or LPS (17). TLR stimulation is necessary for 

maturation and expansion of B10 cells (66) as evidenced by TLR9-deficient MRL/lpr mice that 

develop an exacerbated SLE-like disease (72). Administration of agonistic TLR9 stimulators 

suppresses the course of diabetes (73) and arthritis in mice (74). Other Bregs that have been 

phenotypically identified in murine models are reported to be TIM1+ (75), FASL+ (76) and 

CD19hiFcγRIIb+ (77). 

Human Regulatory B Cells 

IL-10-producing Bregs and their possible contribution to autoimmune responses have 

also been studied in humans. Several cell surface phenotypes to identify IL-10-producing Bregs 

in humans have been described, including CD24hiCD38hi, CD24hiCD27+ and CD25+ (3, 7, 52). 

Incidentally, the majority of Breg phenotypes studied in humans and mice are also CD5+. As 

mentioned earlier, dysregulated frequencies and/or defective function of Bregs have been 

identified in MS, SLE and RA. Overall, current evidence indicates that Bregs play an important 
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immunoregulatory role and suggests that alterations in either number or function of Bregs 

contribute to pathogenic immune responses in autoimmune diseases.  

Important Regulatory B Cell Subsets in Humans  

Iwata et al. show that in humans the majority of, ex vivo B10 and B10pro cells reside 

within the CD24hiCD27+ B cell subpopulation and that this subset using IL-10 can negatively 

regulate monocyte inflammatory cytokine production in vitro. This subset was enumerated in 

patients with several autoimmune diseases finding that circulating B10 cells were present and in 

some cases expanded in 91 patients with RA, SLE, primary Sjögren syndrome, autoimmune 

vesiculobullous skin disease, or MS (7). On B cells, CD24 (heat-stable antigen) is expressed at 

high levels on B cell progenitors and mature resting B cells. Blocking CD24 interaction with T 

cells inhibits T cell proliferation demonstrating that APC CD24 expression provides 

costimulation for CD28-independent proliferation of CD4 and CD8 T cells (78). CD27 is a 

marker for memory B cells, which suggests that they are potentially class-switched and antigen-

experienced. CD27 binds to CD70 and induces T-cell co-stimulation and B cell activation. Both 

markers support the Breg need for T cell engagement. 

Mauri’s group demonstrated that human B cells with the transitional markers 

CD24hiCD38hi were able to secrete IL-10. CD38 is a B cell activation marker that monitors 

intracellular calcium levels. In Breg/T cell co-culture studies this CD24hiCD38hi B cell subset was 

able to suppress T cell IFN-γ and TNF-α secretion. Lastly they discovered that B cell IL-10 is 

decreased due to a delay of STAT3 phosphorylation (3). Importantly, this subset was present 

but unable to produce IL-10 in patients with SLE. Flores-Borja et al. studied CD24hiCD38hi Bregs 

in RA and found that patients with active RA had lower numbers of CD24hiCD38hi Bregs in 

circulation and were insufficient to induce functionally suppressive Treg cells to inhibit TH17 

differentiantion (25).  

Since these discoveries, several groups have documented these two phenotypic 

subsets, CD24hiCD38hi or CD24hiCD27+, in several autoimmune diseases including AAV. 
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Generally, they report both Breg phenotypes are present in patients with AAV and harbor IL-10-

competent B cells. However, the ability of B cells to produce IL-10 and their capacity to 

suppress activation of other immune cells were not compromised in patients in clinical 

remission, implying that Bregs are functional in AAV patients with quiescent disease (26, 54). 

Data adding to the understanding of Breg phenotypes and B10pro cells in AAV are reported in 

chapters two and three. These reports will be analyzed in contrast to other Breg/AAV research 

in detail in the discussion. 

CD5 

CD5 is one of the first cell surface markers discovered to identify B10 cells in mice 

defined as CD5+CD1dhi thereby cementing CD5 as an important molecule in the Breg literature. 

CD5 is a scavenger-like lymphocyte receptor (also named T1, Tp67 in humans or Lyt-1 in 

mouse) that associates with the antigen specific receptor complexes on B and T cells to 

regulate signal transduction (79). CD5 is constitutively expressed on T cells and at higher levels 

on both natural Tregs (nTreg) (80) and induced Tregs (iTregs) (81). CD5 mutes B cell signaling 

and maintains immune tolerance via anergy (79, 82, 83). Transgenic CD5-/- mice that have a 

BCR specific for hen egg lysozyme (HEL) and membrane-bound self-antigen (HEL) mice have 

elevated levels of anti-HEL IgM, enhanced proliferative responses in vitro and increased 

intracellular Ca2+ levels. In the same transgenic mouse model with B cells with CD5, B cells are 

sequestered in the BM and undergo clonal deletion and are able to maintain tolerance (83). 

When CD5 levels are increased on both B and T murine lymphocytes, it renders them 

unresponsive to antigen (83, 84) through immunoreceptor tyrosine-based inhibitory motifs 

(ITIMs). CD5 is expressed by B-1a B cells that secrete natural polyreactive antibodies, as well 

as leukemic B cells (85). B cells can use two forms of CD5 by the modulation of exon 1 and can 

be expressed as a cell-surface form or a truncated cytoplasmic form (86). CD5 expression 

weakens the responsiveness of effector cell and is a clear marker to analyze for immune system 

regulation. It is unknown whether CD5 is necessary for B10 cell IL-10 production (79); however, 
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CD5 is reported to induce IL-10 expression and promote cell survival in human B cells (27), 

human chronic lymphocytic leukemia B cells (28) and mice (29). Many hospitals utilize CD5 in 

their repertoire of clinical laboratory analyses as one component to evaluate for disease 

progression. Preliminary results in patients with AAV demonstrate that repopulation with normal 

levels of CD5+ B cells portends a longer time to relapse than patients who repopulate with 

reduced levels of CD5+ B cells potentially making CD5 a feasible biomarker of disease. 

CD5 Ligand 

Several ligands have been proposed for CD5; however, none has been confirmed and 

thoroughly investigated. The pan-B cell marker, CD72, was the first ligand reported for CD5. 

CD5 has been shown to interact with CD72 and this interaction is blocked by anti-CD72 

antibodies (87). Anti-CD5 mAbs can be used to stimulate CD5 (88). Another candidate, in 

rabbits, for the ligand of CD5 is F(ab’)2 fragments of antibodies that express VH a2 framework 

sequences (IgG VH framework regions) (89). CD5 has been shown to function as a pathogen 

recognition receptor (PRR) that recognizes pathogen associated molecular patterns (PAMPs) 

on fungal but not bacterial surfaces (90). Other groups claim CD5 is its own ligand (91). 

Homophilic binding by CD5 domain 1 to CD5 has the potential to mediate interactions between 

cells, in trans or on the same cell, in cis (92).  

The Pathogenesis of Anti-Neutrophil Cytoplasmic Autoantibody (ANCA) Vasculitis 

AAV is a severe relapsing disease caused by pathogenic autoantibodies directed 

against myeloperoxidase (MPO) (93) and/or proteinase 3 (PR3) (94), which are called anti-

neutrophil cytoplasmic autoantibodies (ANCA). ANCA systemically activate neutrophils, which 

harbor MPO and PR3. This leads to inflammation and necrosis of small blood vessel walls 

thereby resulting in decreased organ function of highly vascularized tissues such as the kidney, 

lungs and skin (95). Clinical manifestations common to both MPO and PR3 serotypes of AAV 

may include fatigue, arthralgias, vasculitic skin lesions and necrotizing capillaritis leading to 

pulmonary hemorrhage and glomerulonephritis. AAV-like disease can be induced in mice upon 
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adoptive transfer of splenocytes, B cells, or ANCA alone (3-5). Therefore, ANCA are pathogenic 

in AAV and may be the “prime mover” of disease. The effectiveness of rituximab therapy that 

depletes B cells from circulation in patients with AAV (96, 97) is additional evidence that directly 

implicates B cells in the immunopathogenesis of AAV.  

AAV is associated with a breach in self-tolerance during B cell development leading to 

autoreactive B cells circulating in peripheral blood of patients. Healthy individuals have B cells 

that express autoreactive antibodies including some that are specific for the self-proteins MPO 

and PR3. They are normally IgM, polyreactive antibodies and are likely to be generated by gene 

rearrangement during early B cell development in the bone marrow. ANCA are predominantly 

somatically mutated, class-switched IgGs; therefore, they must be produced by antigen-

experienced B cells, suggesting a breach in the late stages of B cell tolerance. The checkpoint 

at which B cell tolerance is first broken in AAV is unknown. 

AAV Epidemiology and Genetics 

ANCA disease has a reported incidence of 10–20 cases per million per year worldwide 

that varies racially and geographically (98, 99). The severity of this disease leads to significant 

morbidity and mortality wherein 15% of patients die within the first year of diagnosis and 35% 

die within 5 years  

A mixture of predisposing genetic and environmental factors contributes to the etiology 

of AAV. Genetic studies implicate several genes associated with B cells, IL-10, and the immune 

system that predispose patients to AAV such as human leukocyte antigen (HLA), protein 

tyrosine phosphatase non-receptor type 22 (PTPN22), and Fcγ receptors. Patients with AAV 

have an increased frequency of the IL-10 -1082AA genotype that is associated with decreased 

IL-10 production (59).  

Current Treatment Options for Patients with AAV 

AAV is a systemic autoimmune disease often characterized by an alternating pattern of 

active disease (either new-onset or relapse) and remission. In order to induce disease 
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quiescence, immunosuppressive therapy comprised of corticosteroids and cyclophosphamide, 

azathioprine and/or mycophenolate mofetil (MMF) must be administered. The aforementioned 

treatment options are non-specific and have deleterious side effects that immunocompromise 

patients leaving them susceptible to infection – the leading cause of mortality in patients with 

AAV (100), and cancer. Therefore there is a need for safer and more specific therapies. 

Rituximab, a humanized monoclonal anti-CD20 antibody used in many B cell mediated 

autoimmune diseases and lymphomas to deplete circulating B cells, is the newest therapy 

approved for patients with AAV. Rituximab is an effective therapy for patients suffering from 

AAV (6,7) further supporting the integral nature of B cells in AAV pathogenesis (101, 102). 

Because of its efficacy, some clinicians and researchers propose that rituximab-induced 

continuous B cell depletion should become the mainstay of therapy for patients with AAV 

thereby rendering them permanently purged of B cells. One major side effect of this treatment 

can be increased risk of infection. Importantly, rituximab depletes peripheral B cells 

indiscriminately; thus, some would argue that rituximab could delay or prevent durable 

remission due to concomitant eradication of beneficial Bregs that may be necessary to induce 

and/or maintain immunological homeostasis. We are interested in AAV as a human disease as 

a model of humoral autoimmune disease in general to understand basic Breg biology and 

clinical relevance.  

Regulatory B cells in AAV 

The importance of B cells in the immunopathogenesis of AAV is underscored by the fact 

that ANCA cause disease in mice (103, 104) and by the therapeutic effectiveness of rituximab, a 

B cell-depleting therapy (96, 105). The concept that functional Bregs contribute to the 

maintenance of tolerance by means of IL-10 is robustly supported by results from animal 

models and human studies described in the previous sections (106). Along with the 

immunopathogenic role of certain B cells in AAV, Bregs negatively regulate the immune 

response and may be beneficial because they may play a role in the maintenance of 
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immunological tolerance. Recently several groups have investigated the role of Bregs in AAV 

and will be discussed in detail in chapter four. Of note these studies have not addressed the role 

of CD5+ Bregs or their suppression of autoantibodies. In the two following manuscripts (chapters 

two and three) we investigate Breg subsets in patients with AAV and modulation of these 

subsets during active and remission disease states. 

In chapter two, we tested the hypothesis that B cell phenotype might be used as an 

indicator of disease activity, response to treatment or future relapse. We investigate CD5+ B 

cells in patients during the course of disease activity and with response to rituximab therapy 

(107). We report a B cell population that partially overlaps with the immunophenotype for 

regulatory B cells and correlates with disease activity in patients with AAV. To further evaluate 

the relationship of CD5+ B cells and states of remission and relapse in AAV, we examined 

peripheral blood samples from patients who received rituximab therapy and underwent B cell 

depletion. We hypothesized that patients who repopulated with normalized %CD5+ B cells 

following rituximab would have a more sustained remission than patients who repopulated with 

low %CD5+ B cells. 

We show that B cells from patients with active AAV express low levels of CD5, a surface 

molecule that negatively regulates B cell signaling through the BCR to maintain immunological 

tolerance (82, 107). In contrast, patients who are in remission have CD5+ B cell levels 

comparable to those in healthy individuals (107). Moreover, we found that CD5+ B cells are a 

harbinger of relapse following rituximab therapy when low or in decline.  

In chapter three, we explore the role of regulatory B cells in patients with AAV, by (1) 

measuring the reported phenotypes, CD24hiCD38hi and CD24hiCD27+ as well as CD5+ subsets 

of these populations, (2) determined B cell IL-10 production and (3) correlated these findings 

with changes in ANCA titer. Herein, we show that the CD5+ subset of CD24hiCD38hi B cells 

(CD5+CD24hiCD38hi) is reduced in patients with active AAV compared with healthy controls and 

patients in remission. Moreover, IL-10-producing B cells also decrease during active disease. 
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As patients go into remission, both CD5+CD24hiCD38hi and IL-10-secreting B cells are present 

at levels similar to healthy controls. Although not significantly decreased during active disease, 

the CD24hiCD38hi B cell population expands during disease remission. Longitudinal analysis of 

paired active and remission samples from patients’ B cells reveals that CD24hiCD38hi, 

CD5+CD24hiCD38hi B cells, and IL-10+ B cells all increase upon disease remission. Our data are 

consistent with the hypothesis that functionally competent regulatory B cells characterized as 

CD5+CD24hiCD38hi or IL-10+ support long-term clinical remission and that absence of functional 

regulatory B cells may be associated with disease onset and relapse in patients with AAV.  

In conclusion, we demonstrate that a low percentage (≤30%) of circulating CD5+ B cells 

correlates with disease activity and a shorter time to relapse. Patients in remission had a 

percentage of CD5+ B cells similar to HCs, which was significantly higher than patients with 

active disease. After rituximab therapy, low or declining %CD5+ B cells was associated with a 

shorter time to disease relapse among patients on no or low dose maintenance therapy with 

mycophenolate mofetil (MMF). In the second study, CD5 appears again as a potential marker 

for IL-10+ B cells: specifically, the CD5+CD24hiCD38hi population, which modulates with AAV 

disease activity. Further, this study demonstrates that as Bregs increase (either CD24hiCD38hi, 

CD5+CD24hiCD38hi or IL-10+ B cells), circulating ANCA titers decrease, indicating an important 

function for human Bregs in autoimmune disease.  

Overall, these insights may contribute to the identification of biomarkers of disease 

activity and may facilitate the design of safe, targeted, therapeutic agents to improve induction 

of disease remission with the ultimate goal of ensuring that patients sustain durable remission 

without additional immunosuppression.  
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CHAPTER 2: DECREASED CD5+ B CELLS IN ACTIVE ANTI-NEUTROPHIL CYTOPLASMIC 
AUTOANTIBODY (ANCA) VASCULITIS AND RELAPSE AFTER RITUXIMAB1  

 

Summary 

Background and Objectives 

B cell significance in antineutrophil cytoplasmic autoantibody (ANCA) disease 

pathogenesis is underscored by the finding that ANCA alone can cause disease in mouse 

models and by the effectiveness of rituximab as therapy in ANCA-small vessel vasculitis 

(ANCA-SVV). To avoid infections and adverse events from therapy, clinicians require improved 

markers of disease activity and impending relapse to guide immunosuppression strategies post-

rituximab.  

Design, Setting, Participants, and Measurements 

We investigated B cell phenotype in patients with active ANCA-SVV and in remission. 

From 2003 to 2009, 54 patients were followed longitudinally for 4 to 99 months and compared to 

68 healthy controls. In a subset of 19 patients we examined B cell immunophenotype in 

samples following rituximab. 

Results 

Patients with active ANCA-SVV had lower %CD5+ B cells, whereas %CD5+ B cells from 

patients in remission were indistinguishable from healthy controls. After rituximab, median time 

to relapse was 31 (IQR=25,48; n=7) months in patients maintaining normalized %CD5+ B cells, 

with or without maintenance immunosuppression. Among patients whose B cells repopulated 

with low %CD5+ B cells or had a sharply declining %CD5+ B cells, those who were on low or no 

                                                           
1  This chapter previously appeared as an article in the Clinical Journal of the American Society of 
Nephrology. The original citation is as follows: Bunch DO, McGregor JAG, Khandoobhai NB, Aybar LT, 
Burkart ME, Hu Y, et al. Decreased CD5+ B Cells in Active ANCA Vasculitis and Relapse after Rituximab. 
Clinical Journal of the American Society of Nephrology 8 :382-391, 2013. PMID: 23293123. 
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maintenance immunosuppression relapsed sooner (median=17 (12,20) months; n=7) than 

patients who were maintained on high levels of oral maintenance immunosuppression (29 

(29,35) months; n=5; p= 0.002).  

Conclusions 

The %CD5+ B cells, as a component of the human B regulatory cell phenotype, is a 

useful indicator of disease activity, remission and future relapse, and therefore, may guide 

remission maintenance therapy following rituximab.  

Introduction 

Anti-neutrophil cytoplasmic autoantibody-small vessel vasculitis (ANCA-SVV) is a severe 

relapsing disease wherein B cells produce autoantibodies directed against myeloperoxidase 

(MPO) (1) or proteinase 3 (PR3) (1,2). These autoantibodies can cause disease in mouse 

models (3-5). Recently, rituximab (a B cell depleting monoclonal antibody) has been shown to 

be effective in treating ANCA-SVV, suggesting that B cells play an important role in the 

pathophysiology of this disease (6,7). We predicted that B cell phenotype might be used as an 

indicator of disease activity, response to treatment or future relapse. CD5 mutes B cell signaling 

and maintains immune tolerance via anergy (8-12). Recently, human B regulatory cells 

characterized as CD24hi and either CD38hi (13) or CD27+ (14) were described. These cells are 

also noted to be CD5+ (13). We investigated CD5+ B cells in patients during the course of 

disease activity and with response to rituximab therapy.  

We report a B cell population that partially overlaps with the immunophenotype for 

regulatory B cells and correlates with disease activity in patients with ANCA-SVV. To further 

evaluate the relationship of CD5+ B cells and states of remission and relapse in ANCA-SVV, we 

examined peripheral blood samples from patients who received rituximab therapy and 

underwent B cell depletion. We hypothesized that patients who repopulated with normalized 

%CD5+ B cells following rituximab would have a more sustained remission than patients who 

repopulated with low %CD5+ B cells.  
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Study Population and Methods 

Patient and Healthy Control Samples 

We performed flow cytometry analysis of lymphocyte samples from 54 patients with 

ANCA-SVV and 68 healthy controls between the years 2003 and 2009. Informed consent was 

obtained in accordance with our Institutional Review Board’s guidelines for human subjects. 

Peripheral blood samples were collected from patients positive for MPO-ANCA and/or PR3-

ANCA by either indirect immunofluorescence or antigen-specific ELISA. Patients with Churg-

Strauss Syndrome, anti-GBM or overlap ANCA/anti-GBM disease were excluded. Forty-nine of 

54 patients had biopsy-proven ear, nose and throat, pulmonary, renal or dermatologic small 

vessel vasculitis. Clinical and serological data were gathered during routine clinic visits at the 

time of blood draw for B cell analysis. Patients in end-stage kidney disease were excluded from 

this study unless there were overt extra-renal manifestations of vasculitis.  

Patient Groups 

Vasculitis disease activity was measured using the Birmingham Vasculitis Activity Score 

(BVAS) (15). Patients with a BVAS ≥1 were considered to have active disease. When possible, 

“active” samples were obtained at disease onset; otherwise, the sample corresponding to the 

highest BVAS score was used in these analyses. Samples were classified as “remission” if 

patients were in remission for 3 months before and after the collection date. “Active” versus 

“remission” samples were compared in rituximab-naive patients.  

When available, blood samples were evaluated before and after rituximab treatment. We 

examined the last sample obtained before rituximab treatment and samples obtained after 

rituximab treatment where the %CD19+ B cells were ≥1%. For post-rituximab evaluation, 

patients were separated into 3 groups. Patients whose %CD5+ B cells measured at >30% 

(“normal” based on the mean of healthy controls) at the time of B cell repopulation and in the 

samples following B cell repopulation were labeled Group 1 regardless of remission 

maintenance therapy dose. Patients whose %CD5+ B cells measured ≤30% at the time of B cell 
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repopulation, or decreased to ≤30% within 12 months, were sub-divided based on the dose of 

mycophenolate mofetil (MMF) received post-rituximab treatment. Patients who had low-dose 

MMF (≤1 gram/day) were labeled Group 2, whereas those maintained on higher doses of MMF 

(>1 gram/day) post-rituximab infusion were labeled Group 3. Only two of our patients were on 

any steroids in addition to the MMF dose stated for maintenance therapy after Rituximab 

infusion. One of our Group 2 patients was on 100 mg/d cyclosporine and 6 mg/d prednisone 

instead of MMF. One of our Group 3 patients (on 2 g/d of MMF) was also on 10 mg prednisone 

every other day following B cell recovery through time of flare. Since there were only 2 patients 

taking prednisone as part of their maintenance therapy and this dose was quite minimal, we did 

not consider the prednisone dose in our division of patients with low %CD5+ B cells into low and 

high immunosuppression sub-groups (Groups 2 and 3).  

We performed a sensitivity analysis by regrouping the patients based on CD5+ B cells at 

the time of B cell repopulation only, without considering the subsequent trend of CD5+ B cells, 

and then reanalyzing the data as done for the primary analysis.  

Cell Preparation and Cell Surface Staining 

Peripheral blood mononuclear cells were purified from heparinized peripheral blood 

samples by centrifugation in cell preparation tubes (Becton, Dickinson and Company, Franklin 

Lakes, NJ). Cells were washed in phosphate-buffered saline, resuspended in Hank’s buffered 

salt solution (2% fetal calf serum, 0.1% sodium azide) and stained with CD19-APC (HIB19) in 

combination with 2 of the following either FITC- or PE-fluorescently labeled antibodies to: CD21 

(B-ly4), CD24 (ML5), CD27 (M-T271), CD38 (HIT2), CD5 (UCHT2), IgM (G20-127) or IgD (IA6-

2) (BD Pharmingen, San Diego, California). After fixation with 1% paraformaldehyde, cells were 

analyzed using a FACSCalibur flow cytometer. B cells were gated based on CD19+ staining. 

Data was analyzed with Summit (DakoCytomation) or FlowJo (Treestar, Ashland, OR) software. 
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Statistical Analysis 

Mean and standard deviation (SD) or median and interquartile range (IQR) were used to 

describe demographic and clinical characteristics as appropriate. Wilcoxon rank-sum or 

Kruskal-Wallis tests were used to compare groups for continuous variables and Fisher’s exact 

tests were used for categorical variables. Paired Wilcoxon signed rank test tested the paired 

difference of B cell phenotypes in the subgroups. P-values reported with a two-side p value of 

≤0.05 indicate a significant difference. Analyses were conducted using SAS 9.1 (SAS Institute, 

Cary, NC).  
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Results 

The %CD5+ B Cells is Reduced in Patients with Active Disease and Before Relapse  

We first examined %CD5+ B cell expression in rituximab-naïve ANCA-SVV patients. 

Samples were evaluated at the time of either active disease (BVAS≥1, n=24) or remission 

(BVAS=0, n=19) (Table 2-1). There were no significant differences between active disease 

patients compared to those in remission with respect to age, sex, ethnicity, ANCA type, disease 

category, organ involvement or peak creatinine at disease onset (Table 2-1). Patients with 

active disease had significantly lower %CD5+ B cells (median=17%, IQR=10,28) than those in 

remission (26%, IQR=21,36, p=0.02) and healthy controls (28%, IQR= 21,35, p<0.001) (Figure 

2-1A, Table 2-1). The %CD5+ B cells during remission did not differ significantly from the 

percentage found in healthy controls. Although patients were significantly older than healthy 

controls, the %CD5+ B cells did not correlate with age in healthy controls, patients with active 

disease or patients in remission (data not shown). In patients for whom active and remission 

samples were available, the %CD5+ B cells increased from a median of 14% (IQR=10,17) in 

active disease to a median of 25% (IQR=17,45; p=0.008) as patients entered remission (Figure 

2-1B). When %CD5+ B cells were compared to disease activity over time, downward trends in 

CD5 were associated with relapse (representative Figure 2-1C). An example of a patient who 

maintained >30% of CD5+ B cells and remained in remission without maintenance 

immunosuppression with a persistently high MPO-ANCA titer for 82 months is shown in Figure 

2-1D.  

B Cell Phenotypes Following Rituximab Therapy 

To further elucidate the relationship between %CD5+ B cells and disease activity, we 

studied a subset of 19 patients who received rituximab (Table 2-2). The %CD5+ B cells were 

measured following B cell repopulation after rituximab. Group 1 (patients who repopulated with 

>30% CD5+ B cells) was diverse with regard to MMF dose; there were 3 patients on no 

immunosuppression, 2 on low immunosuppression and 2 on high immunosuppression with a 
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mean dose of 0.75 ±0.8 g/day (Table 2-2). By definition, patients who repopulated with ≤30% 

CD5+ B cells and were maintained on ≤1g/day MMF (Group 2) were prescribed 75% less MMF 

(mean 0.43±0.5 g/day) than Group 3 patients who also repopulated with ≤30% CD5+ B cells but 

were maintained on >1g/day MMF (mean 1.95±0.7 g/day) (p=0.005). On average, Group 2 and 

Group 1 were similar with regard to immunosuppression dose (p=0.4). All patients treated with 

oral remission maintenance therapy following rituximab infusion were prescribed MMF with the 

exception of two patients who received low dose cyclosporine (<1 mg/kg/d) in addition to MMF. 

Patient characteristics were similar across the 3 groups (Table 2-2).  

Group 1 had a significantly higher %CD5+ B cells (median=57%, IQR 48,70) at the time 

of B cell repopulation than Group 2 (18%, IQR 11,31, p=0.003, Table 2-2). Group 3 had a 

similarly low %CD5+ B cells (23%, IQR 13,53) but did not reach statistical significance due to 

the small number of patients. The median %CD5+ B cells at the last sample available prior to 

flare for Group 1 was 34% CD5+ B cells (IQR 27,41). Median %CD5+ B cells at the time 

proximal to flare was 16% (IQR 15,18) and 4% (IQR 4,16) for Groups  2 and 3 respectively. 

Time to relapse following rituximab infusion was significantly shorter when CD5 was ≤30% at 

the time of B cell repopulation (Group 2) (p=0.002, Table 2-2). In patients who had CD5 levels 

>30% at the time of B cell repopulation and remained >30% for all subsequent samples 

evaluated (Group 1), but similarly low levels of oral remission maintenance therapy, time to flare 

was 18 months longer on average than Group 2 (Table 2-2). Group 3 patients had similarly low 

CD5 levels to Group 2 patients (p=0.52), but were maintained on significantly higher doses of 

MMF (p=0.005). Their time to flare after rituximab infusion was on average 20 months longer 

than Group 2 (p=0.006, Table 2-2). Time to flare from B cell repopulation was also significantly 

different between Group 2 patients and either patients whose %CD5+ B cells remained >30% 

following B cell repopulation maintained on similarly low remission maintenance therapy 

(p=0.002, Group 1) or when oral remission maintenance therapy was maintained at significantly 

higher doses (Group 3) (p=0.006, Table 2-2).  
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Sensitivity Analysis 

Sensitivity analysis was performed to evaluate whether the association between %CD5+ 

B cells and time to relapse held up after regrouping patients based strictly on %CD5+ B cells at 

the time of B cell recovery (Supplemental Table S2-1). Patients having >30% CD5+ B cells at 

the time of B cell repopulation became Group 1S (n=10) regardless of whether the %CD5+ 

decreased below 30% subsequently. Group 2S (n=6) had ≤30% CD5+ B cells at B cell 

repopulation and were on ≤1 gram of MMF daily (mean = 0.33±0.5 g/d). Group 3S (n=3) had 

≤30% CD5+ B cells at B cell repopulation and were on >1 gram of MMF daily (mean = 2±1 g/d), 

(p=0.04 compared to Group 2S). By definition, Group 1S repopulated with higher %CD5+ B cells 

(median = 55%, IQR 48,70) compared to both Group 2S (17%, IQR 11,30) and Group 3S (13%, 

IQR 12,23 ) (p=0.001) after rituximab. The time to flare post-rituximab therapy for Group 2S was 

significantly shorter (median = 16 months, IQR 12,18) compared to both Group 1S (28 months, 

IQR 25,34) and Group 3S (35 months, IQR 29,65) (p=0.002). The %CD5+ B cells at the time of 

documented flare did not differ for Group 1S and Group 2S (median = 26% and 16% 

respectively, p=0.18), whereas the %CD5+ B cells were lower when relapses occurred in Group 

3S (4%, p=0.05).  

To evaluate %CD5+ B cells with respect to clinical disease activity in patients treated 

with rituximab, %CD5+ B cells were plotted against BVAS and MMF dose. Three examples 

depict the consistent decline in %CD5+ B cells we observed prior to disease relapse (Figure 2-2, 

A-C). Time to relapse appears delayed if higher levels of remission maintenance therapy were 

given when CD5 levels were <30%.  

Other B cell populations including naïve, switched and non-switched memory, 

IgD,CD27-double negative, and pre-germinal center founder (Bm2’3δ) cells, are different in 

ANCA patients compared to controls but do not correlate with disease activity (Supplemental 

Table S2-2). CD21 differs between active disease and remission (p<0.001) but is not clearly 

associated with time to relapse.  
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CD5 as a Surrogate Marker for Putative B Regulatory Cells 

Because of its role as a negative regulator of B cell receptor signaling and its inclusion in 

the immunophenotype reported for B regulatory cells, we compared CD5+ B cells with other 

phenotypes reported for B regulatory cells. CD5+ B cells correlate well with the CD24hiCD38hi 

population of B regulatory cells that has been shown to secrete IL-10 (R2 = 0.50, Figure 2-3A) in 

all samples for which both stains were available (n=21 HC, 17 Active, 13 Remission). When flow 

cytometric data was available for all 3 stain sets (CD24hiCD38hi, IgM+CD5+, and CD5+) these B 

cell populations correlated well over time (representative patients shown in Figure 2-3B).  

Discussion 

The last two decades have witnessed a marked improvement in the induction treatment 

of patients with ANCA vasculitis, with remission rates around 80% (16-18). A major remaining 

challenge in the long term management of patients pertains to the prevention and treatment of 

relapses. The risk of relapse is not uniform for all patients with ANCA vasculitis. PR3-ANCA (as 

compared to MPO-ANCA), lung disease, upper respiratory tract disease, a clinical diagnosis of 

GPA (as compared to MPA or renal limited disease), cardiovascular involvement and a lack of 

renal impairment (creatinine <200 µmoles/liter) have been reported as risk factors for relapse 

(19-21). Nevertheless, no clinical or serologic measure is currently available that allows effective 

disease monitoring and distinguishes patients in long-term stable remission from those at 

imminent risk of relapse (22-26). Such a tool would allow physicians to better tailor the duration 

and intensity of immunosuppressive therapy based on the individual patient’s needs. Our goal 

was to evaluate whether certain B cell subpopulations could be used to assess immunologic 

disease activity or a patient’s risk of relapse. Although limited to a small number of patients, we 

determined that a low percent (≤30%) of circulating CD5+B cells correlates with disease activity 

and a shorter time to relapse. Patients in remission had %CD5+ B cells similar to healthy 

controls and significantly higher than patients with active disease. After rituximab therapy, low or 

declining %CD5+ B cells was associated with a shorter time to disease relapse among patients 
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on no or low dose maintenance therapy with MMF. The use of full dose MMF was associated 

with a longer time to relapse in the setting of a low %CD5+ B cells. Additional data will be 

required to definitively address the correlation of %CD5+B cells with sustained remission. 

If our findings are confirmed in a larger population, then the clinical implications of our 

results may pertain to the decision to use maintenance immunosuppression following rituximab 

and its timing. Our data suggest that patients whose %CD5+ B cells remain low or decline after 

a period of normalization following rituximab therapy would be at higher risk of subsequent 

relapse and likely benefit from maintenance immunosuppression. Conversely, such 

immunotherapy could be avoided in patients who maintain a normal %CD5+ B cells.  

Our results are consistent with current knowledge of B cell subtypes and function. B 

regulatory cells, defined by their ability to suppress INF-γ and TNF-α expression in T cells via 

expression of IL-10, have been described as having a CD24hiCD38hi phenotype (13). B 

regulatory cells were also reported to be CD5+IgM+/hiIgD+/hiCD10low/+CD27negCD1dhi, although 

consensus on their immunophenotype is not yet fully established (14). We propose that the CD5 

marker is an acceptable measure of B regulatory (Breg) cells based on our data demonstrating 

a high correlation with CD24hiCD38hi and IgM+CD5+ subpopulations. CD5 is reported to induce 

IL-10 expression and promote cell survival in human B cells (27), human chronic lymphocytic 

leukemia B cells (28), and mice (29). In mice, CD5+CD1d+ B cells secrete IL-10 and have a 

regulatory function evidenced by their inhibition of INF-γ and TNF-α expression in T cells (30). 

Our results add to accumulating evidence that a paucity of, or non-functional B regulatory cells 

are associated with increased disease activity in autoimmune disease (13,14,31). Years ago, 

when dogma was that CD5+ B cells were increased in autoimmune disease (32), patients with 

active Kawasaki disease were reported to have a decreased %CD5+ B cells (33). These and our 

findings raise the possibility that a robust Breg subpopulation could be a goal of immunotherapy, 

as well as a means of monitoring its efficacy. This hypothesis would best be tested 

prospectively as part of a clinical trial.  
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Other B cell populations including naïve, switched and non-switched memory, 

IgD,CD27-double negative, and pre-germinal center founder (Bm2’3δ) cells have been reported 

to correlate with response to rituximab therapy in SLE and RA (34-36). Neither these B cell 

populations nor ANCA titer correlated with disease activity or time to flare after rituximab 

therapy in our patient cohort. 

Patients in our study were treated with rituximab for induction of remission after a clinical 

relapse (to avoid repeat exposure to cyclophosphamide) or because of persistent disease 

activity despite cyclophosphamide and corticosteroids. Although B cell phenotype data emanate 

from rituximab-treated patients, they may not be restricted to this form of therapy. Indeed, 

treatment with cyclophosphamide results in peripheral B cell depletion albeit more slowly and to 

a lesser magnitude than with rituximab (6). Studies are ongoing to assess whether similar 

effects on the CD5+ B cell subpopulation are detectable with cyclophosphamide-based 

therapies.  

The optimal choice and duration of maintenance therapy is the subject of current clinical 

investigations. In this study, the choice of MMF as maintenance therapy after rituximab was not 

predetermined by protocol, and antedates the published results on the International 

Mycophenolate Mofetil Protocol to Reduce Outbreaks of Vasculitides (IMPROVE) study in which 

azathioprine was associated with a statistically significant decrease in the rate of relapses 

compared to MMF (24). The demonstrated efficacy of rituximab in treating active ANCA-SVV 

has raised the question as to its possible role in maintenance therapy, given at regular intervals 

regardless of clinical signs of disease activity (37). It will be interesting to test the validity of our 

hypothesis in a setting where a robust CD5+ Breg population may be suppressed by a regimen 

of prolonged B cell depletion. It is possible that a state of immune tolerance may require the 

presence of robust Breg and/or Treg populations, which would be prevented by sustained B cell 

depletion.  
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There are limitations to our study. The relatively small sample size of patients with 

longitudinal data limits our ability to evaluate the correlation between %CD5+ B cells and time to 

relapse while correcting for other risk factors such as PR3-ANCA, organ involvement or disease 

phenotype. Although we attempted to obtain patient samples every 3 months, the timing of our 

blood collections was not standardized. Samples were obtained from patients whenever they 

presented for care. 

A future research direction will be to validate our findings in a larger cohort of patients 

treated with either rituximab or cyclophosphamide-based regimens, while formally assessing the 

time to relapse from the time of decline in %CD5+ B cells. We aim to study the relationship 

between CD5 levels, IL-10 expressing B regulatory cells, and disease activity in ANCA-SVV. 

The expression of an alternatively spliced variant of CD5 resulting in reduced membrane 

expression of CD5 through methylation changes driven by IL-6 has recently been described 

(38), which may regulate the function of B regulatory cells. The impact, if any, of the CD5 splice 

variant on disease activity or response to therapy will be interesting to evaluate.  

In summary, we identified a CD5+ B cell subpopulation as a potential immunological 

marker of sustained remission when robust, or a harbinger of subsequent relapse when low or 

declining. These findings may offer a clinical tool to monitor disease activity and modulate 

maintenance immunotherapy.  

Disclosures 

None 
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Table 2-1. Demographic Characteristics of Patient Groups and Healthy Controls 

 Active 
N=24 

Remission 
N=19 

Healthy Controls 
N=68 

P value* 

Age  
  Mean ± SD 
  Median, IQR 

 
55±19 b 

58(48,68) 

 
54±17b 

58(38,66) 

 
35±12 a 

34(25.46) 

<0.001 

Sex  
  Female 

 
11(46%) 

 
13(68%) 

 
41(60%) 

0.32 

Ethnicity 
  Non-white 
  White 

 
5(21%) 
19(79%) 

 
5(26%) 
14(74%) 

 
20(29%) 
48(71%) 

0.76 

  ANCA  
  MPO 
  PR3 

 
8(33%) 
16(67%) 

 
12(63%) 
7(37%) 

N/A 0.07 

Disease 
  GPA 
  MPA 
  ANCA GN (Renal limited) 

 
10(42%) 
8(33%) 
6(25%) 

 
8(42%) 
10(53%) 

1(5%) 

N/A 0.23 

Organ involvement 
   Upper Respiratory 
   Pulmonary 
   Renal 

 
12(50%) 
14(58%) 

N=16 
15(94%) 

 
14(74%) 
11(58%) 

N=15 
14(93%) 

N/A  
0.13 

>0.99 
 

>0.99 
Peak serum creatinine at disease onset 
(mg/dl) 

N=22 
3±2 

3(1,5) 

N=18 
3±3 

3(1,5) 

N/A 0.97 

BVAS  N=32 
12±6 

12(7,16) 

N=19 
0 

0(0,0) 

N/A <0.001 

%CD5+ B Cells N=32 
21±13 

17(11,28)a 

N=19 
30±14 

26(21,36)b 

N=68 
30±13. 

28(21,35)b 

0.003 

ANCA titer¥ (U/ml) 
 
 
 

N=33 
62±63 
43(98) 

N=17 
36±40 
19(67) 

 
N/A 

 
0.36 

 

MPO-ANCA titer (U/ml) 
 

N=14 
51±37 

50(19,71) 

N=12 
26±24 

19(8,37) 

 
N/A 

 
0.11 

PR3-ANCA titer (U/ml) 
 

N=19 
101±64 

102(50,162) 

N=5 
107±42 

117(76,121) 

 
N/A 

 
0.94 

Data are summarized as mean ± SD and median with IQR. B cell data are reported as a 

percentage of CD19+ B cells. ANCA titers were determined by the McLendon Clinical 

Laboratories at the University of North Carolina using ELISA kits specific for either MPO or PR3 

(Inova Diagnostics, San Diego, CA). Negative titers are ≤ 20 U/ml. 
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¥ANCA titer indicates the MPO-ANCA titer for MPO-ANCA patients or the PR3-ANCA titer for 

PR-3 patients combined together as a group for all patients in either remission or active 

disease. 

*p values were calculated by Kruskal-Wallis test for comparison in three groups and Wilcoxon 

two sample test for two groups. Different superscript letters indicate a statistically significant 

difference between groups after a Bonferroni correction (p <0.017). 
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Table 2-2. Comparison of Patient Groups after Treatment with Rituximab 

 Group 1 
N=7 

Repopulation with 
normal %CD5+  B 

cells 

Group 2 
N=7 

Repopulation with low 
%CD5+ B cells (≤30%), 

low remission 
maintenance medication♯ 

Group 3 
N=5 

Repopulation with low 
%CD5+ cells (≤30%), 

high remission 
maintenance 
medication§ 

 
 

P 
values* 

Age  
   Mean ± SD 
   Median, IQR  

 
51±14 

59(32,61) 

 
50±16 

52(45,59) 

 
51±16 

51(38,58) 

0.93 

Sex 
  Female N (%) 

 
1(14%) 

 
6(86%) 

 

 
2(40%) 

0.03 

Ethnicity 
  Black N (%) 
  Other N (%) 
  White N (%) 

 
0(0%) 

1(14%) 
6(86%) 

 
0(0%) 

1(14%) 
6(86%) 

 
1(20%) 
0(0%) 
4(80) 

0.80 
 

ANCA (PR3)   
  MPO N (%) 
  PR3 N (%) 
  PR3&MPO N (%) 

 
3(43%) 
4(57%) 
0(0%) 

 
0(0%) 

6(86%) 
1(14%) 

 
2(40%) 
3(60%) 
0(0%) 

0.18 

Disease 
  GPA N (%) 
  MPA N (%) 
  ANCA GN (Renal 
limited) N (%) 

 
5(71%) 
1(14%) 
1(14%) 

 
4(57%) 
3(43%) 
0(0%) 

 
4(80%) 
1 (20%) 
0(0%) 

0.70 

Organ involvement 
N (%) 
    Upper 
Respiratory N (%) 
    Pulmonary N 
(%) 
    Renal N (%) 

 
4(57%) 
5(71%) 
5(83%) 

 
5(72%) 
7(100%) 
4(100) 

 
5(100%) 
3(60%) 
4(80%) 

 
0.35 
0.25 

>0.99 

Peak serum 
creatinine  
at disease onset 
(mg/dl) 

N=7 
1.9±1.0 

1.7(1.0,2.9) 

N=5 
2.9±1.9 

2.5(1.8,2.9) 

N=4 
1.5±0.5 

1.6(1.2,1.8) 

 
 

0.28 

%CD5+ B cells at 
time  
of B cell 
repopulation  

58±16 
57(48,70)a 

22±13 
18(11,31)b 

34±26 
23(13,53)a,b 

 
0.02 

%CD5+ B cells at 
last sample 
available prior to 
flare  

N=2 
34±10 

34(27,41) 

N=5 
15±5 

16(15,18) 

N=4 
10±11 
4(4,16) 

 
 

0.06 

Dose of MMF for 
remission 
maintenance 
(g/day) 

0.75±0.78 
1.00(0,1.25)a,b 

0.43±0.53 
0(0,1.0)a 

1.95±0.67 
2.0(1.5,2)b 

 
0.007 

Time to relapse 
from  
rituximab (months) 

34±11 
31(25,48)a 

16±5 
17(12,20)b 

37±16 
29(29,35)a 

 
0.002 

Time to relapse 25±9 7±4 29±15  
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from  
B cell repopulation 
(months) 

22(17,36)a 7(3,11)b 22(20,27)a 0.002 

Total B cell 
number (x104/ml 
blood) 

7.5±6.0 
5.7(2.4,15.0) 

2.4±2.1 
1.7(1.0,3.2) 

3.6±2.1 
3.9(2.4,4.5) 

 
0.15 

ANCA titer¥ (U/ml) 
 

49±43 
39(10,95) 

52±39 
52(5,71) 

16±14 
8(6,24) 

 
0.28 

Values for variables examined in patient groups after rituximab therapy are reported as Mean ± 

standard deviation (SD) and Median (IQR). ANCA titers were determined by the McLendon 

Clinical Laboratories at the University of North Carolina using ELISA kits specific for either MPO 

or PR3 (Inova Diagnostics, San Diego, CA). Negative titers are ≤ 20 U/ml. 

¥ANCA titer indicates the MPO-ANCA titer for MPO-ANCA patients or the PR3-ANCA titer for 

PR3 patients combined together as a group for all patients in either Group 1, 2 or 3. 

*P values were calculated by Fisher exact test for categorical variables and Kruskal-Walls Test 

for continuous variables. Different superscript letters indicate a statistically significant difference 

between groups after a Bonferroni correction (p <0.0167).♯One group 2 patient was on 

Cyclosporine (50mg, BID) and prednisone (6 mg/day) 

§One group 3 patient was on MMF (1g, BID) and prednisone (10 mg every other day) following 

Rituximab therapy concurrent with 7 monthly intravenous doses of cyclophosphamide 
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Supplemental Table S2-1. Sensitivity Analysis of Patient and Disease Characteristics in 
Rituximab Treated Population 
 
 Group 1S 

N=10 
Group 2S 

N=6 
Group 3S 

N=3 
P value* 

Age  
   Mean ± SD 
   Median, IQR  

 
51±13 

55(38,61) 

 
50±17 

49(45,59) 

 
54±19 

51(36,74) 

 
0.98 

Sex 
  Female N (%) 

 
2(20%) 

 
6(100%) 

 
1(33%) 

 
0.005 

Ethnicity 
  Black N (%) 
  Other N (%) 
  White N (%) 

 
0(0%) 

2(20%) 
8(80%) 

 
0(0%) 
0(0%) 

6(100%) 

 
1(33%) 
0(0%) 

2(67%) 

0.16 
 

ANCA    
  MPO N (%) 
  PR3 N (%) 
  PR3&MPO N (%) 

 
3(30%) 
7(70%) 
0(0%) 

 
0(0%) 

5 (83%) 
1(17%) 

 
2(67%) 
1(33%) 
0(0%) 

0.11 
 

Disease 
  GPA N (%) 
  MPA N (%) 
  ANCA GN (Renal limited) N (%) 

 
7(70%) 
1(10%) 
2(20%) 

 
3(50%) 
0(0%) 

3 (50%) 

 
3(100%) 

0(0%) 
0(0%) 

0.57 
 

Organ involvement N (%) 
    Upper Respiratory N (%) 
    Pulmonary N (%) 
    Renal N (%) 

 
6(60%) 
7(70%) 
8(89%) 

 
5(83%) 

6(100%) 
3(100%) 

 
3(100%) 
2(67%) 
2(67%) 

 
0.49 
0.32 
0.66 

Peak serum creatinine  
at disease onset (mg/dl) 

10 
1.7±0.9 

1.8(1.0,2.1) 

4 
3.2±2.1 

2.7(1.8,4.5) 

2 
1.6±0.0 

1.6(1.6,1.6) 

 
 

0.33 
%CD5+ B cells at time  
of B cell repopulation  

58±15 
55(48,70)a 

19±10 
17(11,30)b 

16±6 
13(12,23)b 

 
0.001 

%CD5+ B cells at last sample available prior to flare  24±14 
26(18,27) 

14±5 
16(11,17) 

4.0±0.2 
4.0(3.9,4.2) 

 
0.05 

Dose of MMF for remission maintenance (g/day) 0.90±0.69 
1.0(0,1.25) 

0.33±0.51 
0(0,1.0) 

2.0±1.0 
2.0(1.0,3.0) 

 
0.01 

Time to relapse from  
rituximab (months) 

31±10 
28(25,34)a 

15±5 
16(12,18)b 

43±19 
35(29,65)a,b 

 
0.002 

Time to relapse from  
B cell repopulation (months) 

22±9 
20(17,25)a 

6.3±4.2 
7.0(3.0,8.5)b 

35±19 
27(22,56)a,b 

 
0.002 

Total B cell number (x104/ml blood) 6.0±5.5 
4.6(2.4,8.3) 

2.7±2.2 
1.9(1.4,3.2) 

3.8±2.8 
3.9(1.0,6.5) 

 
0.49 

ANCA titer¥ (U/ml) 42±38 
38(10,50) 

53±42 
60(5,71) 

17±18 
8.3(6.0,38) 

 
0.55 

 

ANCA titers were determined by the McLendon Clinical Laboratories at the University of North 

Carolina using ELISA kits specific for either MPO or PR3 (Inova Diagnostics, San Diego, CA). 

Negative titers are ≤ 20 U/ml. 
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¥ANCA titer indicates the MPO-ANCA titer for MPO-ANCA patients or the PR3-ANCA titer for 

PR-3 patients combined together as a group for all patients in either remission or active 

disease. 

* P values were calculated by Kruskal-Wallis Test for continuous variables and by Fisher Exact 

Test for categorical variables. Different superscript letters indicate a statistically significant 

difference between groups after a Bonferroni correction (p <0.017). 
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Supplemental Table S2-2. Comparison of Additional B Cell Subsets in Remission and Active 
Disease 
 
 Active Remission Healthy Control P value* 

CD21 median fluorescence intensity (MFI) 116±54 

123(58) 

220±102 

225(136) 

244±83 

234(102) 

 

<0.001 

% Naïve B cells 63±22 

69(30) 

65±19 

68(30) 

57±14 

57(17) 

 

0.04 

%IgD,CD27 Double-negative  

B cells  

10.4±6.9 

8.8(7.5) 

10.1±8.3 

8.0(7.7) 

6.8±4.7 

5.5(4.6) 

 

0.009 

%Switched memory B cells 17.3±12.5 

15.2(16.6) 

17.0±11.9 

14.5(12.4) 

22.2±8.8 

21.6(13.2) 

 

0.004 

%Non-switched memory B cells 8.4±6.3 

6.2(7.0) 

8.7±8.3 

5.7(7.7) 

14.1±7.6 

13.1(9.3) 

 

<0.001 

%IgM+CD5+  B cells 15.3±12.8 

11.0(13.7) 

20.7±9.4 

19.5(11.5) 

20.8±10.3 

20.2(12.4) 

 

0.01 

%Bm2’3δ B cells  7.6±12.3 

3.6(7.2) 

12.7±15.0 

8.4(14.0) 

8.8±4.7 

8.3(4.7) 

 

0.002 

 

B cell data are given as mean ± Standard Deviation (SD) and as median (range) for CD19+ B 

cells. 

*p values were calculated by Kruskal-Wallis test for comparison in three groups and Wilcoxon 

two sample test for two groups. 
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Figure 2-1. The %CD5+ B cells decreases in active ANCA disease and rebounds with 
remission 
 

 

Shown (1A) are the %CD5+ B cells in healthy controls (□, HC, n = 68), patients with active 

disease (◊, n = 24) and patients in remission (○, n = 19). Error bars represent the mean ± SD.  

The %CD5+ B cells is lower in patients with active disease (p < 0.001) and returns to levels 

similar to healthy controls during remission of disease (p=0.81). Paired active and remission 

samples from 8 patients demonstrate the increase in %CD5+ B cells observed as an individual 

transitions from active disease to remission (p=0.008) (B). The relationship between %CD5+ B 

cells (●) on the left axis and BVAS (▲) on the right axis over time is depicted (C and D); the 
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immunosuppression dose (g/day) is indicated on the right axis (D).  A reciprocal pattern of 

%CD5+ B cells and BVAS is observed in a patient (C) who is active at time 0, enters remission 

at 3 months as %CD5+ B cells reach normal levels and then relapses at 9 months after a steady 

decline in %CD5+ B cells. A representative example of a patient who maintained a normal 

%CD5+ B cells over 82 months and remained in remission off therapy with a persistently high 

MPO ANCA titer during this period is shown in D. 
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Figure 2-2. Decrease in %CD5+ B cells is associated with an increase in disease activity 
 

 

Examples of the longitudinal relationship between %CD5+ B cells (○) on the left axis compared 

to BVAS (∆) and CellCept (MMF) dose (□) on the right axis over time before and/or after 

rituximab are depicted (A – C). Patient 158 (A, Group 2) who had 85% CD5+ B cells prior to full 

B cell recovery (<1% B cells at 6 m, shadowed circle) showed a precipitous drop in CD5 during 

the next 3 to 6 months after B cell recovery. As this patient appeared to be in clinical remission, 

the CellCept dose was decreased during this time period and the patient flared 12 m post-

rituximab. Patient 1551 (B, Group 3) had a BVAS of 12 and 5.6% CD5+ B cells prior to rituximab 

treatment. Although the %CD5+ cells is initially normal at B cell repopulation, it steadily declines 
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over the next 2.5 to 20 months without overt clinical activity in the context of high 

immunosuppression until month 27. Another Group 3 patient 539 (C) had a decrease in %CD5+ 

cells from 9 to 23 months following rituximab therapy with “no signs of active disease” at months 

18 and 23. Upon self-discontinuation of CellCept while %CD5+ B cells were below normal, the 

patient flared prior to the clinic visit at 29m. The %CD5+ B cells, BVAS and Cellcept dose during 

the time period between 23 and 29 months are depicted by dashed lines to indicate inferred 

information. The %CD5+ B cells are assumed to be the same as the previous sample; the BVAS 

is assumed to be at least equal to the subsequent sample. Asterisks indicate the approximate 

time of flare gleaned from clinic notes for this time period.  
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Figure 2-3. The %CD5+ B cells reflect putative B regulatory cells 

 

The %CD5+ B cells correlates with the %B regulatory cells identified as CD24hiCD38hi B cells (R2 

= 0.50) (A). This correlation includes all samples for which both CD19+CD5+ and 

CD19+CD24hiCD38hi data were available (n=21 HC, 17 Active, 13 Remission). The correlation 

between percentages of CD24hiCD38hi (dash-dot line), IgM+CD5+ (dash-dash line), and CD5+ B 

cells (solid line) is shown for 2 representative patients for whom all 3 stain sets were available 

(B).  

  



49 

REFERENCES 

1.  Falk RJ, Jennette JC: Anti-neutrophil cytoplasmic autoantibodies with specificity for 
myeloperoxidase in patients with systemic vasculitis and idiopathic necrotizing and 
crescentic glomerulonephritis. New England Journal of Medicine 318: 1651-7, 1988. 

 
2.  Jennette JC, Falk RJ: Small-vessel vasculitis. New England Journal of Medicine 337: 

1512-23, 1997. 
 
3.  Xiao H, Heeringa P, Hu P, Liu Z, Zhao M, Aratani Y, Maeda N, Falk RJ, Jennette JC: 

Antineutrophil cytoplasmic autoantibodies specific for myeloperoxidase cause 
glomerulonephritis and vasculitis in mice. Journal of Clinical Investigation 110: 955-63, 
2002. 

 
4.  Little MA, Al-Ani B, Ren S, Al-Nuaimi H, Leite M, Jr., Alpers CE, Savage CO, Duffield JS: 

Anti-proteinase 3 anti-neutrophil cytoplasm autoantibodies recapitulate systemic 
vasculitis in mice with a humanized immune system. PLoS One 7: e28626, 2012. 

 
5.  McQueen F: A B cell explanation for autoimmune disease: the forbidden clone returns. 

Postgraduate Medical Journal 88: 226-33, 2012. 
 
6.  Stone JH, Merkel PA, Spiera R, Seo P, Langford CA, Hoffman GS, Kallenberg CG, St 

Clair EW, Turkiewicz A, Tchao NK, Webber L, Ding L, Sejismundo LP, Mieras K, 
Weitzenkamp D, Ikle D, Seyfert-Margolis V, Mueller M, Brunetta P, Allen NB, Fervenza 
FC, Geetha D, Keogh KA, Kissin EY, Monach PA, Peikert T, Stegeman C, Ytterberg SR, 
Specks U: Rituximab versus cyclophosphamide for ANCA-associated vasculitis. New 
England Journal of Medicine 363: 221-32, 2010. 

 
7.  Jones RB, Tervaert JW, Hauser T, Luqmani R, Morgan MD, Peh CA, Savage CO, 

Segelmark M, Tesar V, van PP, Walsh D, Walsh M, Westman K, Jayne DR: Rituximab 
versus cyclophosphamide in ANCA-associated renal vasculitis. New England Journal of 
Medicine 363: 211-20, 2010. 

 
8.  Berland R, Wortis HH: Origins and functions of B-1 cells with notes on the role of CD5. 

Annual Review of Immunology 20: 253-300, 2002. 
 
9.  Soldevila G, Raman C, Lozano F: The immunomodulatory properties of the CD5 

lymphocyte receptor in health and disease. Current Opinion in Immunology 23: 310-8, 
2011. 

 
10.  Youinou P, Renaudineau Y: The paradox of CD5-expressing B cells in systemic lupus 

erythematosus. Autoimmunity Reviews 7: 149-54, 2007. 
 
11.  Youinou P, Renaudineau Y: The antiphospholipid syndrome as a model for B cell-

induced autoimmune diseases. Thrombosis Research 114: 363-9, 2004. 
 
12.  Hippen KL, Tze LE, Behrens TW: CD5 maintains tolerance in anergic B cells. The 

Journal of Experimental Medicine 191: 883-90, 2000. 
 
13.  Blair PA, Norena LY, Flores-Borja F, Rawlings DJ, Isenberg DA, Ehrenstein MR, Mauri 

C: CD19(+)CD24(hi)CD38(hi) B cells exhibit regulatory capacity in healthy individuals 



50 

but are functionally impaired in systemic Lupus Erythematosus patients. Immunity 32: 
129-40, 2010. 

 
14.  Iwata Y, Matsushita T, Horikawa M, Dilillo DJ, Yanaba K, Venturi GM, Szabolcs PM, 

Bernstein SH, Magro CM, Williams AD, Hall RP, St Clair EW, Tedder TF: 
Characterization of a rare IL-10-competent B-cell subset in humans that parallels mouse 
regulatory B10 cells. Blood 117: 530-41, 2011. 

 
15.  Luqmani RA, Bacon PA, Moots RJ, Janssen BA, Pall A, Emery P, Savage C, Adu D: 

Birmingham Vasculitis Activity Score (BVAS) in systemic necrotizing vasculitis. QJM: An 
International Journal of Medicine 87: 671-8, 1994. 

 
16.  Novack SN, Pearson CM: Cyclophosphamide therapy in Wegener's granulomatosis. The 

New England Journal of Medicine 284: 938-42, 1971. 
 
17.  Nachman PH, Hogan SL, Jennette JC, Falk RJ: Treatment response and relapse in 

antineutrophil cytoplasmic autoantibody-associated microscopic polyangiitis and 
glomerulonephritis. Journal of the American Society of Nephrology 7: 33-9, 1996. 

 
18.  Holle JU, Gross WL, Latza U, Nolle B, Ambrosch P, Heller M, Fertmann R, Reinhold-

Keller E: Improved outcome in 445 patients with Wegener's granulomatosis in a German 
vasculitis center over four decades. Arthritis and Rheumatism 63: 257-66, 2011. 

 
19.  Pagnoux C, Hogan SL, Chin H, Jennette JC, Falk RJ, Guillevin L, Nachman PH: 

Predictors of treatment resistance and relapse in antineutrophil cytoplasmic antibody-
associated small-vessel vasculitis: Comparison of two independent cohorts. Arthritis and 
Rheumatism 58: 2908-18, 2008. 

 
20.  Pierrot-Deseilligny DC, Pouchot J, Pagnoux C, Coste J, Guillevin L: Predictors at 

diagnosis of a first Wegener's granulomatosis relapse after obtaining complete 
remission. Rheumatology (Oxford) 49: 2181-90, 2010. 

 
21.  Walsh M, Flossmann O, Berden A, Westman K, Hoglund P, Stegeman C, Jayne D: Risk 

factors for relapse of antineutrophil cytoplasmic antibody-associated vasculitis. Arthritis 
and Rheumatology 64: 542-8, 2012. 

 
22.  Tomasson G, Grayson PC, Mahr AD, LaValley M, Merkel PA: Value of ANCA 

measurements during remission to predict a relapse of ANCA-associated vasculitis--a 
meta-analysis. Rheumatology (Oxford) 51: 100-9, 2012. 

 
23.  Kalsch AI, Csernok E, Munch D, Birck R, Yard BA, Gross W, Kalsch T, Schmitt WH: Use 

of highly sensitive C-reactive protein for followup of Wegener's granulomatosis. Journal 
of Rheumatology 37: 2319-25, 2010. 

 
24.  Finkielman JD, Merkel PA, Schroeder D, Hoffman GS, Spiera R, St Clair EW, Davis JC, 

Jr., McCune WJ, Lears AK, Ytterberg SR, Hummel AM, Viss MA, Peikert T, Stone JH, 
Specks U: Antiproteinase 3 antineutrophil cytoplasmic antibodies and disease activity in 
Wegener granulomatosis. Annals of Internal Medicine 147: 611-9, 2007. 

 
25.  Monach PA, Tomasson G, Specks U, Stone JH, Cuthbertson D, Krischer J, Ding L, 

Fervenza FC, Fessler BJ, Hoffman GS, Ikle D, Kallenberg CG, Langford CA, Mueller M, 



51 

Seo P, St Clair EW, Spiera R, Tchao N, Ytterberg SR, Gu YZ, Snyder RD, Merkel PA: 
Circulating markers of vascular injury and angiogenesis in antineutrophil cytoplasmic 
antibody-associated vasculitis. Arthritis and Rheumatism 63: 3988-97, 2011. 

 
26.  Tomasson G, LaValley M, Tanriverdi K, Finkielman JD, Davis JC, Jr., Hoffman GS, 

McCune WJ, St Clair EW, Specks U, Spiera R, Stone JH, Freedman JE, Merkel PA: 
Relationship between markers of platelet activation and inflammation with disease 
activity in Wegener's granulomatosis. Journal of Rheumatology 38: 1048-54, 2011. 

 
27.  Gary-Gouy H, Harriague J, Bismuth G, Platzer C, Schmitt C, Dalloul AH: Human CD5 

promotes B-cell survival through stimulation of autocrine IL-10 production. Blood 100: 
4537-43, 2002. 

 
28.  Garaud S, Morva A, Lemoine S, Hillion S, Bordron A, Pers JO, Berthou C, Mageed RA, 

Renaudineau Y, Youinou P: CD5 promotes IL-10 production in chronic lymphocytic 
leukemia B cells through STAT3 and NFAT2 activation. Journal of Immunology 186: 
4835-44, 2011. 

 
29.  O'Garra A, Chang R, Go N, Hastings R, Haughton G, Howard M: Ly-1 B (B-1) cells are 

the main source of B cell-derived interleukin 10. European Journal of Immunology 22: 
711-7, 1992. 

 
30.  Yanaba K, Bouaziz JD, Haas KM, Poe JC, Fujimoto M, Tedder TF: A regulatory B cell 

subset with a unique CD1dhiCD5+ phenotype controls T cell-dependent inflammatory 
responses. Immunity 28: 639-50, 2008. 

 
31.  Knippenberg S, Peelen E, Smolders J, Thewissen M, Menheere P, Cohen Tervaert JW, 

Hupperts R, Damoiseaux J: Reduction in IL-10 producing B cells (Breg) in multiple 
sclerosis is accompanied by a reduced naive/memory Breg ratio during a relapse but not 
in remission. Journal of Neuroimmunology 239: 80-6, 2011. 

 
32.  Youinou P, Mackenzie LE, Lamour A, Mageed RA, Lydyard PM: Human CD5-positive B 

cells in lymphoid malignancy and connective tissue diseases. European Journal of 
Clinical Investigation 23: 139-50, 1993. 

 
33.  Kim HS, Noh GW, Kim DS, Lee KY, Lee HS, Lee HK, Lee SI: Decreased CD5+ B cells 

during the acute phase of Kawasaki disease. Yonsei Medical Journal 37: 52-8, 1996. 
 
34.  Anolik JH, Friedberg JW, Zheng B, Barnard J, Owen T, Cushing E, Kelly J, Milner EC, 

Fisher RI, Sanz I: B cell reconstitution after rituximab treatment of lymphoma 
recapitulates B cell ontogeny. Clinical Immunology 122: 139-45, 2007. 

 
35.  Leandro MJ, Cambridge G, Ehrenstein MR, Edwards JC: Reconstitution of peripheral 

blood B cells after depletion with rituximab in patients with rheumatoid arthritis. Arthritis 
and Rheumatism 54: 613-20, 2006. 

 
36.  Roll P, Dorner T, Tony HP: Anti-CD20 therapy in patients with rheumatoid arthritis: 

predictors of response and B cell subset regeneration after repeated treatment. Arthritis 
and Rheumatism 58: 1566-75, 2008. 

 



52 

37.  Rhee EP, Laliberte KA, Niles JL: Rituximab as maintenance therapy for anti-neutrophil 
cytoplasmic antibody-associated vasculitis. Clinical Journal of the American Society of 
Nephrology 5: 1394-400, 2010. 

 
38.  Garaud S, Le DC, de Mendoza AR, Mageed RA, Youinou P, Renaudineau Y: IL-10 

production by B cells expressing CD5 with the alternative exon 1B. Annals of the New 
York Academy of Sciences 1173: 280-5, 2009.



53 

 

 

CHAPTER 3: REDUCED CD5+CD24HICD38HI AND IL10+ REGULATORY B CELLS IN ACTIVE 
ANTI-NEUTROPHIL CYTOPLASMIC AUTOANTIBODY ASSOCIATED VASCULITIS PERMIT 

INCREASED CIRCULATING AUTOANTIBODIES2  
 

Summary 

Pathogenesis of ANCA-associated vasculitis is B cell dependent yet, how particular B 

cell subsets modulate immunopathogenesis remains unknown. Although their phenotype 

remains controversial, regulatory B cells (Bregs), play a role in immunological tolerance via IL-

10. Putative CD19+CD24hiCD38hi and CD19+CD24hiCD27+ Bregs were evaluated in addition to 

their CD5+ subsets in 69 patients with AAV. B cell IL-10 was verified by flow cytometry following 

culture with CD40 ligand and CpG DNA. Patients with active disease had decreased levels of 

CD5+CD24hiCD38hi B cells and IL10+ B cells compared to patients in remission and HCs. As IL-

10+ and CD5+CD24hiCD38hi B cells normalized in remission within an individual, ANCA titers 

decreased. The CD5+ subset of CD24hiCD38hi B cells decreases in active disease and rebounds 

during remission similarly to IL-10-producing B cells. Moreover, CD5+ B cells are enriched in the 

ability to produce IL-10 compared to CD5neg B cells. Together these results suggest that CD5 

may identify functional IL-10-producing Bregs. The malfunction of Bregs during active disease 

due to reduced IL-10 expression may thus permit ANCA production.  

Introduction 

Anti-neutrophil cytoplasmic autoantibody (ANCA) associated vasculitis (AAV) is an 

autoimmune disease where pathogenesis is dependent on autoantibodies that target the self-

antigens myeloperoxidase (MPO) and/or proteinase 3 (PR3) (1, 2). The importance of B cells in 

                                                           
2
 This chapter previously appeared as an article in the Journal of Clinical and Experimental Immunology. 

The original citation is as follows: Aybar LT, McGregor JG, Hogan SL, Hu Y, Mendoza C, Brant EJ, 
Poulton CJ, Henderson C, Falk RJ, Bunch DO. Reduced CD5+ CD24hi CD38hi and IL10+ Regulatory B 
Cells in Active Anti-Neutrophil Cytoplasmic Autoantibody Associated Vasculitis Permit Increased 
Circulating Autoantibodies. Clinical and Experimental Immunology 180: 178-88, 2015. PMID: 25376552. 
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the immunopathogenesis of AAV is underscored by the fact that these autoantibodies cause 

disease in mice (3, 4) and by the effectiveness of rituximab, a B cell-depleting therapy (5, 6). 

However, a key subset of B cells, referred to as regulatory B cells (Bregs), also play a role in the 

maintenance of immunological tolerance. Bregs, which control immunological homeostasis via 

the hallmark immunosuppressive cytokine interleukin-10 (IL-10) (7-11), have been reported in 

mice and humans, but are not well characterized in humans.  

We recently demonstrated that B cells from patients with active AAV express low levels 

of CD5, a surface molecule which negatively regulates B cell signaling through the B cell 

receptor (BCR) to maintain immunological tolerance (12, 13). In contrast, patients who are in 

remission have CD5+ B cell levels comparable to those in healthy individuals (13). Moreover, we 

found that CD5+ B cells are a harbinger of relapse following rituximab therapy when low or in 

decline. In mice, CD5+CD1dhi B cells secrete IL-10 and have a regulatory function evidenced by 

their inhibition of INF-γ and TNF-α expression in T cells (14). We surmised that CD5 might serve 

as a marker of regulatory B cells. Two phenotypes for IL-10-producing regulatory B cells in 

humans have been described, CD24hiCD38hi and CD24hiCD27+ (7, 11).  

To explore the role of regulatory B cells in patients with AAV, we (1) measured the 

reported phenotypes, CD24hiCD38hi and CD24hiCD27+ as well as CD5+ subsets of these 

populations, (2) determined B cell IL-10 production and (3) correlated these B cell populations 

with changes in ANCA titer. Herein, we show that the CD5+ subset of CD24hiCD38hi B cells 

(CD5+CD24hiCD38hi) is reduced in patients with active AAV compared with healthy controls 

(HC) and patients in remission. Moreover, IL-10-producing B cells also decrease during active 

disease. As patients go into remission, both CD5+CD24hiCD38hi and IL-10-producing B cells are 

present at levels similar to HCs. In contrast, the CD24hiCD38hi B cell population does not 

significantly decrease during active disease, but expands during disease remission. Longitudinal 

analysis of patients’ B cells reveals that CD5+CD24hiCD38hi B cells and IL-10+ B cells normalize 

upon disease remission. Our data are consistent with the hypothesis that functionally competent 
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regulatory B cells characterized as CD5+CD24hiCD38hi or IL-10+ support long-term clinical 

remission and that absence of functional regulatory B cells may be associated with disease 

onset and relapse in patients with AAV.  

Study Population and Methods 

Patient and Healthy Control Samples 

Peripheral blood mononuclear cell (PBMC) samples were collected from 30 HCs and 69 

patients with AAV (see Table 3-1) after informed consent was obtained in accordance with the 

University of North Carolina’s Institutional Review Board. Patient inclusion required diagnosis of 

AAV in accordance with criteria established by the Chapel Hill Consensus Conference (15). 

Diagnosis of microscopic polyangiitis (MPA) or granulomatosis with polyangiitis and/or 

crescentic glomerulonephritis without overt signs of systemic vasculitis were based on 

previously established criteria (16, 17). Individuals with anti-glomerular basement membrane 

disease, immunoglobulin A nephropathy, eosinophilic granulomatosis with polyangiitis or any 

other glomerular disease process in addition to AAV were excluded. Patients who had reached 

end stage renal disease (on dialysis or a renal transplant recipient) were excluded. Clinical and 

serological data were gathered during routine clinic visits at the time of blood draw for B cell 

analysis.  

Disease activity was classified, in part, based on the Birmingham Vasculitis Activity 

Score (BVAS) (18). Charts were reviewed extensively to distinguish persistent or recurrent 

disease from disease quiescence or non-vasculitic symptoms. Patients were classified as being 

in remission at the time of the sample only if they had a BVAS of 0 and had no clinical evidence 

of active disease for at least 3 months before and 3 months after the sample date. Patients were 

classified as having active disease if they had a BVAS greater than 0 and had clear clinical 

evidence of active disease (eg. hematuria). In those patients for whom BVAS and clinical 

presentation were discordant (BVAS = 0 with clinical signs and/or symptoms), clear clinical 

evidence of disease activity superseded BVAS, and these patients were classified as “active.”  
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Any patients designated as having “unclear” disease activity by clinical evaluation, regardless of 

BVAS, were not used in this study. 

The protocol for treatment has been extensively described (19, 20). All patients included 

in this study received immunosuppressive therapy with corticosteroids and cyclophosphamide 

or rituximab at disease onset or at time of relapse. Remission maintenance therapy included 

azathioprine (AZA), mycophenolate mofetil (MMF) or rituximab. Patients with ≥1% B cells at the 

time of sample collection were included in our analysis. Patients not requiring remission 

maintenance treatment were followed at close intervals during periods of remission off therapy. 

ANCA titers were determined by the McLendon Clinical Laboratories at the University of North 

Carolina using enzyme-linked immunosorbent assay (ELISA) kits specific for either MPO or PR3 

(Inova Diagnostics, San Diego, CA). 

Blood Collection 

Whole blood was collected in Sodium Heparin tubes (BD, Franklin Lakes, New Jersey). 

To facilitate erythrocyte removal, 1 part HetaSep (STEMCELL Technologies Inc., Vancouver, 

Canada) was added per 5 parts heparinized whole blood and centrifuged at room temperature 

at 90 x g with the brake off for 6 minutes. The leukocyte-rich supernatant was harvested and 

layered onto 5 mls of Histopaque®-1077 (Sigma-Aldrich, St. Louis, MO) and centrifuged at room 

temperature at 400 x g with no brake for 30 minutes. The buffy coat was washed twice and 

resuspended in Hank's Balanced Salt Solution (HBSS, Life Technologies, Grand Island, NY) 

supplemented with 2% fetal bovine serum (FBS). 

Flow Cytometric Analysis 

The expression of cell surface molecules reported to designate Bregs was examined by 

flow cytometry at the time of blood collection. First, cells were stained with Human TruStain 

FcX™ Fc Receptor Blocking Solution (Biolegend, San Diego, California) to prevent non-specific 

antibody binding to Fc receptors. Next, cells were stained with the following fluorochrome-

labeled anti-human antibodies: CD19 Pacific Blue (clone HIB19 Biolegend, San Diego, 
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California), CD38 PerCP-CY5.5 (clone HIT2, Biolegend, San Diego, California), CD24 PE-CY7 

(clone ML5 Biolegend, San Diego, California), CD27 Alexa Fluor-647 (clone O323 Biolegend, 

San Diego, California), and CD5 PE (clone UCHT2 Biolegend, San Diego, California) and then 

fixed with 1% paraformaldehyde. Cells were analyzed using a LSRII (BD, Franklin Lakes, New 

Jersey) flow cytometer. Data was analyzed with FlowJo software (Treestar, Ashland, OR). After 

selection of the lymphocyte population based on forward and side scatter, B cells were gated 

based on CD19+ staining and categorized according to their expression of CD38 and CD24, 

CD24 and CD27 and CD5+ subsets of these populations. The gating strategy for each B cell 

phenotype examined is provided in Supplemental Figure S3-1. 

Cell Culture 

Human PBMCs  were cultured in Iscove's Modified Dulbecco's Medium (IMDM, Gibco® 

Life Technologies, Carlsbad, USA) supplemented with 100 U/µg/ml penicillin/streptomycin (Life 

Technologies, Carlsbad, USA) and 10% FCS (Gibco® Life Technologies, Carlsbad, USA).To 

ascertain B cell ability to produce IL-10, PBMCs were stimulated with 1 µg/ml recombinant 

human CD40 ligand (CD40L) (R&D Systems, Inc. Minneapolis, MN) and 1 µg/ml CpG 

oligodeoxynucleotide (ODN) 2006 (Invivogen, San Diego, CA) for 96 hours. PBMC were 

cultured for the final 6 hours with 1µl/mL GolgiPlug (BD Biosciences, Franklin Lakes, New 

Jersey), 50 ng/mL phorbol myristate acetate (PMA; Sigma-Aldrich), St. Louis, Missouri) and 1 

µg/mL ionomycin (Sigma-Aldrich, St. Louis, Missouri). CD19+IL-10+ B cells were measured by 

intracellular cytokine staining. To exclude dead cells from our analysis, cells were labeled using 

the LIVE/DEAD® Fixable Blue Dead Cell Stain Kit (Life Technologies, Carlsbad, USA). To 

prevent non-specific antibody binding, cells were incubated with Human TruStain FcX™ Fc 

Receptor Blocking Solution (Biolegend, San Diego, California) and stained with CD19 Pacific 

Blue (clone HIB19 Biolegend, San Diego, California). Post surface staining, cells were fixed and 

permeablilized using the FIX & PERM® cell fixation and cell permeabilization kit (Life 

Technologies, Carlsbad, USA). Permeabilized cells were stained with anti-IL-10 antibody (PE, 
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clone JES3-9D7, Biolegend, San Diego, California). IL-10 expression in CD19+ B cells was 

assessed relative to a fluorescence minus one (FMO) control where the IL-10 antibody was 

omitted (21).  

Sorting of B Cell Populations 

Leukocytes were obtained from healthy controls (Gulf Coast Regional Blood Center; 

Houston, Texas) and processed as described above to obtain a buffy coat containing 

lymphocytes. Cells were stained with antibodies to CD19 and CD5 and sorted into CD19+CD5+ 

and CD19+CD5neg populations using a FACSAria II flow cytometer (Becton Dickinson). Cells 

were collected into Iscove’s Modified Dulbecco’s Medium (IMDM) containing 50% FBS (unless 

otherwise specified, all culture reagents from Life Technologies; Grand Island, NY). Sorted 

populations were washed twice and then cultured in IMDM containing 5% human AB serum, 

1µg/ml CpG, 0.1µg/ml CD40L and PenStrep in U-bottom 96-well plates (Falcon, Corning 

Incorporated; Corning, NY) at 2.5 x 106 cells per ml. After 72-96 hours, cells were processed for 

IL-10 intracellular staining as described above. 

Statistical and Graphical Analysis 

Demographic and clinical characteristics were summarized by descriptive statistics. P-

values were calculated by Fisher’s exact test for categorical variables and Wilcoxon two-sample 

tests and Kruskal-Wallis test for continuous variables. A paired signed rank test was used to test 

the paired difference of B cell phenotypes in the subgroups. P-values reported with a two-side 

p-value of ≤ 0.05 indicate a significant difference. A Bonferroni correction was used in all 

analyses that compared more than two groups making values ≤ 0.0056 significant. Analyses 

were conducted using SAS 9.1 (SAS Institute, Cary, NC). Graphs were created using GraphPad 

Prism (GraphPad Software, Inc.; La Jolla, CA).  
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Results 

Cohort Description  

To investigate regulatory B cells in patients with AAV, we analyzed PBMC samples from 

69 patients with AAV and 30 HCs by flow cytometry (Table 3-1). Patient samples were 

evaluated at the time of either active disease or remission. There were no significant differences 

between active disease patients compared to those in remission with respect to age, sex, 

ethnicity, ANCA serotype, disease diagnosis, or peak creatinine at disease onset (Table 3-1). A 

higher proportion of patients with renal limited organ involvement were in remission compared 

with active disease (22% versus 4%; p=0.04). HCs were significantly younger than patients; 

however, B cell phenotype and IL-10 production did not correlate with age in patients or healthy 

individuals (data not shown). Patient therapy is summarized in Table 3-2. Standard induction 

therapy was high dose prednisolone and cyclophosphamide. Maintenance therapy was 

comprised of AZA or MMF in combination with low-dose prednisolone. More patients with active 

disease were treated with cyclophosamide and corticosteroids as well as prednisone than 

patients in remission (Table 3-2); however, median values of CD24hiCD38hi and 

CD5+CD24hiCD38hi B cells did not differ between active patients on medication compared to 

patients prior to initiation of therapy. A greater percentage of patients in remission had been 

previously treated with rituximab than patients in active disease; however, median values for B 

cell populations did not differ from those for rituximab-naïve patients with comparable disease 

activity (data not shown). 

CD24hiCD38hi B Cells Do Not Correlate with Disease Activity 

For our initial examination of putative regulatory B cells in patients with AAV, we 

analyzed B cells with the CD24hiCD38hi and CD24hiCD27+ phenotypes (Supplemental Figure 

S3-1). When compared to healthy individuals (median = 11, [IQR = 8,12]), CD24hiCD38hi B cells 

did not differ in patients with AAV during active disease (8, [3,22]; Figure 3-1A; Table 3-3). 

Patients in remission, however, had elevated percentages of CD24hiCD38hi B cells (17, [10, 32]) 
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compared to HCs. The trend of increased percentages of CD24hiCD38hi B cells during disease 

remission when compared to HCs was observed in patients with both MPO and PR3 serotypes, 

but only reached significance in patients with PR3-AAV (p=0.002, Figure 3-1A). In patients with 

an MPO-ANCA serotype, CD24hiCD38hi B cells were significantly increased in remission (15 [10, 

27] when compared to patients in active disease (5 [2,11]); p=0.002; Figure 3-1A), but not HCs 

(p=0.03). In patients who were in remission and had previously been treated with rituximab, 

there was a modest expansion of CD24hiCD38hi B cells (median=22%) compared to patients 

with no prior rituximab treatment (median=12%). In contrast, there was no difference in the 

median CD24hiCD38hi Bregs in patients with active disease whether they had been treated with 

rituximab (median=13%) or not (7%). Regardless of whether patients had prior treatment with 

rituximab or not, there was no difference in CD24hiCD38hi Bregs during active disease 

compared to disease remission. No differences were observed in CD24hiCD27+ B cells when 

patients with active or quiescent AAV were compared to HCs or when patients with active 

disease were compared to patients in remission (Supplemental Figure S3-2A). 

CD5+CD24hiCD38hi B Cells are Reduced During Active Disease and Rebound Upon Disease 
Remission 
 

CD5 is a negative regulator of B cell receptor signaling, and in concert with CD1d (14), 

CD5 is known to be a marker of B cells that secrete IL-10 in mice. We previously investigated 

CD5 on total B cells and established its importance as an indicator of AAV disease activity and 

future relapse when decreasing or low (13). To examine the CD24hiCD38hi B cell subpopulation 

expressing this inhibitory protein, we analyzed the CD5 marker on CD24hiCD38hi B cells in 

patients with AAV and healthy individuals. Patients with active disease have significantly lower 

percentages of the CD5+ subset of CD24hiCD38hi B cells (CD5+CD24hiCD38hi) (median = 28 

[17,40]) than HCs (74 [IQR=50,92], p≤0.0001, Figure 3-1B; Table 3-3). This decrease in 

CD5+CD24hiCD38hi B cells during active disease was observed in patients of both MPO (24 

[0,50]), p<0.003) and PR3 (29 [20,39]), p<0.0001) serotypes compared to HCs (Figure 3-1B). 



61 

Further, the reduced percentage of CD5+CD24hiCD38hi B cells during active disease increased 

to an intermediate level not different from HCs during remission for all AAV patients together (54 

[31,65], p=0.0064) as well as both MPO (54 [39,59], p=0.05) and PR3 ANCA (48 [30,76], 

p=0.02) serotypes (Figure 3-1B). The percentage of CD5+CD24hiCD38hi B cells did not differ in 

patients with active disease whether they had prior treatment with rituximab (median=31%) or 

not (28%). Likewise, patients in remission had comparable levels of CD5+CD24hiCD38hi B cells 

whether they had been treated with rituximab (52%) or not (55%). Moreover, the percent 

CD5+CD24hiCD38hi B cells remains significantly lower (median=28%, p=0.006) in patients with 

active disease compared to patients in remission (median=55%) when only patients who had 

not been treated with rituximab are considered. In contrast, examination of the CD5+ subset of 

CD24hiCD27+ B cells did not reveal a B cell population that correlated with disease activity. No 

significant differences were observed in CD5+CD24hiCD27+ B cells when patients with AAV were 

compared to HCs or when patients with active disease were compared to patients in remission 

(Supplemental Figure S3-2B). 

B Cells in Patients With Active Disease Have Reduced Production of IL-10  

To determine the competency of B cells to produce IL-10, 33 patients with AAV and 14 

HCs were examined for IL-10 producing B cells after 96 hours of stimulation with CD40 ligand 

and CpG DNA. Percentages of IL-10-producing B cells in patients with AAV during remission 

(24 [17,34]), of either MPO (24 [23,32]) or PR3 (34 [13,41]) serotype, were similar to healthy 

individuals (25 [22,34]) with regard to IL-10 producing B cells (Figure 3-1C; Table 3-3). In 

contrast, B cells from patients with active disease (13 [4,19]) produced significantly less IL-10 

than patients in remission (p=0.005) and HCs (p=0.001).  

CD5+CD24hiCD38hi and IL-10+ B Cells Normalize as Individual Patients Transition from Active 
Disease to Remission 
 

To eliminate any inter-patient variation, B cells of individual patients with AAV were 

analyzed during times of disease activity and remission. Although levels during active disease 
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did not differ from the baseline level of HCs, paired active disease and remission samples from 

9 patients exhibited a significant expansion (p=0.004) of CD24hiCD38hi B cells as individuals 

transitioned from active disease into remission (Figure 3-2A). Inclusion of CD5 as a marker 

denoted a B cell population that was significantly decreased in our population studies. This 

finding was substantiated in our paired analysis. When CD5 was included as a marker, 6 out of 

7 paired active and remission disease samples demonstrated an increase of CD5+CD24hiCD38hi 

B cells as individuals transitioned from active disease to remission (p=0.05, Figure 3-2B). 

Likewise, paired active and remission disease samples from 6 patients demonstrated a 

significant increase (p=0.02) in IL-10-producing B cells as individuals transitioned fromina active 

disease to remission (Figure 3-2C) in all 6 cases.  

CD5+ B cells are Enriched in B cells Capable of Producing IL-10 

Given the similar decrease of CD5+CD24hiCD38hi and IL-10+ B cells during active AAV 

and similar rebound during disease remission, we tested whether CD5+ B cells contained a 

population of B cells capable of producing IL-10. Enriched B cells, CD5+ B cells and CD5neg B 

cells were evaluated for IL-10 producing B cells after 72-96 hours of stimulation with CD40 

ligand and CpG DNA. CD5+ B cells are enriched in IL-10 producing B cells (median=19%) when 

compared to CD5neg B cells (11%) or total B cells (16%, n=2). Representative flow histograms 

depicting the percentage of IL-10+ B cells in cultured populations of total B cells (Figure 3-3A), 

CD5neg B cells (3B) and CD5+ B cells (3C) demonstrate that CD5+ B cells are enriched in IL-10-

producing B cells compared to CD5neg and total B cells. 

As CD24hiCD38hi, CD5+CD24hiCD38hi or IL-10+ Regulatory B Cells Increase, Circulating ANCA 
Titers Decrease   
 

To determine if the increase in CD24hiCD38hi, CD5+CD24hiCD38hi and IL-10+ B cells 

during disease remission had a suppressive effect, the influence on circulating ANCA titers was 

calculated. ANCA titers are reported from either MPO-ANCA or PR3-ANCA tests as 

appropriate. In paired active and remission samples from the same patient, the percentage of 
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each B cell phenotype during active disease (A) was subtracted from the value during remission 

(R) to generate the change or delta (∆; R - A = ∆). Likewise, the ANCA titer during active 

disease was subtracted from the ANCA titer during remission for each patient. The change in 

each B cell phenotype is a positive integer when the percent B cells at the remission time point 

is greater than the percent B cells in active disease. Conversely, the ANCA titer values are 

negative integers when the ANCA titer is higher in active disease than in disease remission. 

Figure 4 contains graphical representations of how the B cell phenotype relates to the change in 

ANCA titer during remission compared to active disease for CD24hiCD38hi (Figure 3-4A), 

CD5+CD24hiCD38hi (Figure 3-4B), and IL-10+ B cells (Figure 3-4C). In all 3 analyses, the trend 

indicates that as CD24hiCD38hi, CD5+CD24hiCD38hi and IL-10+ B cells increase, ANCA titer 

decreases (p=0.02, 0.02 and 0.03 respectively).  

Discussion 

In this study, we demonstrate that the CD5+ subset of CD24hiCD38hi B cells and IL-10+ B 

cells are reduced in patients with active AAV compared with HCs and patients in remission. As 

patients go into remission, both CD5+CD24hiCD38hi and IL-10-producing B cells are present at 

levels similar to HCs. These data suggest that CD5+CD24hiCD38hi B cells may infer IL-10-

producing B cells. In our population-based examinations, two of the phenotypes reported for 

human regulatory B cells, CD19+CD24hiCD38hi and CD19+CD24hiCD27+, did not correlate with 

disease activity. Although patients with active disease do not show a significant decrease in 

CD24hiCD38hi B cells, we did observe an expansion of this population as patients went into 

remission. In paired, longitudinal analysis of the same patient, CD5+CD24hiCD38hi B cells and 

IL-10+ B cells are similarly decreased during active disease and increased upon disease 

remission. Moreover, we show that CD5+ B cells are enriched in IL-10 producing cells compared 

to CD5neg B cells. Importantly, for the first time, we demonstrate that an increase in 

CD24hiCD38hi B cells, CD5+CD24hiCD38hi B cells and IL-10+ B cells correlates with a decrease 

in autoantibody titer, specifically ANCA titer. 
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In humans, regulatory B cells have not been distinguished from their reported 

CD5+CD1dhi (14, 22), CD19hiFcγRIIb+ (23), FASL+ (24), or IL-10-producing counterparts in mice. 

Human B cells with the phenotype CD24hi and either CD38hi (7) or CD27+ (11) have been 

described as IL-10+ regulatory B cells. These multiple immunophenotypes reported for 

regulatory B cells may simply indicate multiple Breg subsets with different functions. In a chronic 

inflammatory environment, a murine antigen-specific CD1dhiCD5+ B cell subset has been shown 

in vitro and in vivo to differentiate and suppress T cells via IL-10, IL-1β and STAT3 activation 

and secretion of TGF-α, IFN-γ, and IL-12 (10, 25). CD5 is one of the surface molecules that 

defines most murine Breg subsets (14). Although not included in the reported definitions of 

human regulatory B cells, a subset of both of these phenotypes also expressed CD5 in healthy 

individuals. We have recently shown that CD5 marks B cells that portended active disease 

when low or decreasing (13), a pattern expected for B cells with a regulatory function. Moreover, 

CD5 is reported to induce IL-10 expression and promote cell survival in a human Daudi B cell 

line (26), human chronic lymphocytic leukemia B cells (27), and mice (28). Our own data 

confirm that CD5+ B cells are enriched in IL-10-producing B cells when compared to CD5neg B 

cells.  

In several autoimmune diseases including type 1 diabetes (29), systemic lupus 

erythematosus (SLE), and AAV (30), regulatory T cells (Treg) are present but lack suppressive 

ability (7, 31). Regulatory B cells and Type 1 regulatory T cells (Tr1) (32, 33) exert suppressive 

effects through IL-10, a cytokine which can drive a change in immunological response from T-

helper 1 to T-helper 2. A lack of B cell IL-10 is common to several relapsing and remitting 

inflammatory autoimmune diseases characterized by pathogenic B cells like multiple sclerosis 

(MS) (34) and SLE (7). IL-10 deficiency infers regulatory B cell malfunction. IL-10-producing B 

cells have been proven to diminish clinical symptoms in MS (34). An IL-10 dependent increase 

in Foxp3 expression, a Treg indicator, was shown in the central nervous system after B cell 

transfer in the experimental autoimmune encephalitis (EAE) mouse model (35). IL-10 secreting 
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B cells are essential for recovery in arthritis and EAE murine models of human inflammatory 

autoimmune disease and MS (9, 36). Interestingly, a high capacity to produce IL-10 protects 

from metabolic syndrome and diabetes mellitus in geriatric adults (37). Much evidence 

implicates IL-10 as a protective agent in a spectrum of chronic inflammatory diseases. Our 

findings indicate that IL-10 producing B cells are decreased during active disease and reappear 

in disease remission at levels similar to healthy individuals. These findings are in line with those 

of Hruskova and colleagues who showed that patients with AAV in remission who relapsed 

produced significantly less circulating IL-10 than those without relapse; however, these 

investigators did not determine the source of IL-10 (38). Patients with AAV have an increased 

frequency of the IL-10-1082AA genotype that is associated with decreased IL-10 production 

(39). Our results confirm and extend those of Wilde et al. who showed that B cells from 11 

patients with active AAV produced less IL-10 (40). In contrast, these investigators also reported 

a significant decrease in IL-10+ B cells during disease remission, whereas we observed an 

increase in IL-10+ B cells during remission to a level that did not differ from that observed in 

HCs. Todd (41) and Lepse et al. (42) also investigated Breg subsets in AAV. Todd et al. found 

that CD19+CD24hiCD38hi cells are more decreased in remission than during active disease; 

conversely, the ‘tolerant’ patient population (defined as: ‘those with a history of active AAV who 

subsequently became negative for ANCA by ELISA, remaining free from pathology after 

withdrawal of treatment for a minimum of 2 years’ (41) had the highest values of CD24hiCD38hi  

B cells that were indistinguishable from the HC population. In their study of patients with PR3-

AAV, Lepse et al. reported the frequency of CD19+CD24hiCD38hi cells was not different in 

patients in remission compared with HCs, but was decreased in patients with active disease 

compared to either HCs or patients in remission. Our findings with regard to CD24hiCD38hi B 

cells differed from both of these groups which also differed from each other. Our results greatly 

extend the analysis of this putative Breg phenotype by investigating the CD5+ subset of 

CD24hiCD38hi B cells and demonstrating that CD5+CD24hiCD38hi B cells are decreased during 
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disease activity and normalize upon remission as expected for a regulatory B cell population. 

Furthermore, whereas Lepse’s group found that CD24hiCD27+ B cells were significantly 

decreased in both remission and active patients when compared with HCs, we found no 

significant differences in either CD24hiCD27+ or CD5+CD24hiCD27+ B cell populations 

(Supplemental Figure S3-2).  

The differences in our observations could be due to our strict definition of remission that 

disallowed inclusion of patients with clinically active disease within 3 months of remission time 

points or our inclusion of CD40L in B cell cultures for IL-10 stimulation. Although culture 

conditions were different (2 vs 4 days and slight concentration differences in CpG and CD40L), 

our findings are in concert with those of Todd et al. (41) where  IL-10+ B cells in ANCA 

remission patients do not differ in frequency from HCs. Of note, this is the first demonstration 

that patients in active disease have fewer IL-10+ B cells that rebound to HC levels when the 

patient goes into remission. 

One strength of this study is the inclusion of patients with both MPO- and PR3-ANCA, as 

we now realize these are genetically and serologically distinct diseases with different risks for 

relapse (16, 43). CD5+CD24hiCD38hi B cells and IL-10 producing B cells were decreased in 

patients with active disease and were similar to healthy individuals when patients were in 

remission regardless of ANCA serotype. The strongest evidence presented is our analysis of 

paired samples from the same patient over time demonstrating that a significant increase in 

CD24hiCD38hi, CD5+CD24hiCD38hi and IL-10+ B cells was observed when patients transitioned 

from active disease to remission. Our results suggest that CD5+CD24hiCD38hi and IL-10+ B cell 

phenotypes can be used as indicators of disease activity since these B cell populations are 

decreased during active disease and rebound to levels similar to HCs during remission. 

Furthermore, it could logically be proposed that therapeutic up-regulation of these regulatory B 

cells in patients with humoral autoimmune disease could promote disease quiescence. 
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Rituximab treatment eradicates all peripheral CD20+ B cells indiscriminately and is a 

prominent, effective therapy for AAV (5, 6). The high values of CD24hiCD38hi B cells (>40% of 

total B cells) observed in some patients with AAV may be influenced by the repopulation of B 

cells post rituximab treatment; however, only patients who had repopulated to ≥1% B cells in 

their lymphocytes were included in our studies. Additionally, there was no correlation between 

the percentage of total B cells present and the percentages of CD24hiCD38hi, 

CD5+CD24hiCD38hi or IL-10+ B cells detected (data not shown). Moreover, prior rituximab 

therapy did not significantly alter median values for B cell populations relative to those for 

rituximab-naïve patients with comparable disease activity. Regardless of whether patients had 

been treated with rituximab or not, there was no difference in CD24hiCD38hi B cells during active 

disease compared to disease remission. In contrast, the percent CD5+CD24hiCD38hi B cells 

remained significantly lower in patients with active disease compared to patients in remission 

when only rituximab-naïve patients were considered.  

Patients with SLE that repopulated with CD24hiCD38hi B cells, which have been 

described as both transitional and regulatory, had a longer time to relapse post-rituximab 

therapy, suggesting that the phenotype of repopulating B cells may be important to follow with 

respect to disease outcome (44). Our own previous findings demonstrate that repopulation with 

a low percentage of CD5+ B cells portends a shorter time to relapse after B cell depletion with 

rituximab (13). Addition of CD5 to this CD24hiCD38hi B cell phenotype denotes a crucial B cell 

subpopulation that not only correlates inversely with active disease but also parallels IL-10 

production and suppressive function. 

Elucidation of crucial molecules that define and orchestrate the regulatory functions of B 

cells including the suppression of pathogenic autoantibodies is crucial to the development of 

more directed and safer therapies for individuals who suffer from AAV and conceivably, 

autoimmune diseases as a whole. Our data are consistent with the hypothesis that functionally 

competent regulatory B cells characterized as CD5+CD24hiCD38hi and IL-10+ support long-term 
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clinical remission by inhibiting production of autoantibodies that drive disease pathogenesis. 

Whether the CD5+CD24hiCD38hi or IL-10 producing B cells can prospectively guide 

immunosuppressive therapy in patients to prevent unnecessary treatment and ensure treatment 

when appropriate is an open question that would be best answered in a clinical trial. 
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Table 3-1. Patient and Healthy Control Demographic Characteristics 

 

Data are summarized as number (n) and percent (%) or median with interquartile range (IQR). 

MPO, myeloperoxidase; PR3, proteinase 3; GPA, granulomatosis with polyangiitis; MPA, 

microscopic polyangiitis; ANCA, antineutrophil cytoplasmic autoantibody; GN, 

glomerulonephritis; BVAS, Birmingham Vasculitis  Activity Score; n, number of observations; N, 

total number of patients.  

*P values were calculated by Fisher Exact Test for categorical variables and Wilcoxon Two-

Sample Tests and Kruskal-Wallis Test for continuous variables.  

Characteristic Active  
(n=28) 

Remission  
(n=41) 

Healthy Controls  
(n=30) P value* 

Age     <0.0001 

Median (IQR) 60 (42, 69) 59 (54, 72) 32 (26, 48) 
 

Sex  0.43 
                                Female 16 (57%) 26 (63%) 22 (73%) 

    
Ethnicity 

   
0.47 

                                   Asian 0 (0%) 1 (2%) 2 (7%) 
 

                                   Black 4 (15%) 8 (20%) 2 (7%)  
                              Hispanic 1 (4%) 2 (5%) 0 (0%)  
                                   White 21 (81%) 30 (73%) 25 (86%)  
ANCA   NA 0.34 

                                     PR3 15 (54%) 17 (41%) 
  

                                    MPO  13 (46%) 24 (59%) 
  

Disease   NA 0.18 
                                    GPA 9 (39%) 14 (34%) 

  
                                    MPA 13 (57%) 18 (44%) 

  
  GN 1 (4%) 9 (22%) 

  
Organ involvement 

  
NA 

 
               Upper Respiratory 11 (48%) 24 (60%)  0.43 
                           Pulmonary 13 (57%) 18 (44%)  0.43 
                      Renal Limited 1 (4%) 9 (22%) 

 
0.04 

Peak Creatinine at disease onset 
  

NA 0.12 

                                       n/N 20/28 38/41   
                       Median (IQR) 2.1 (1.4, 3.0) 1.4 (0.9, 2.8) 

  
BVAS  

  
NA <0.0001 

                                      n/N 26/28 41/41 
  

                       Median (IQR) 6.5 (2, 12) 0 (0, 0) 
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Table 3-2. Medications  

 Active 
N=27* 

Remission 
N=39 

 
P values** 

Cyclophosphamide and corticosteroids 12 (44%) 1(3%) 0.000034 

Mycophenolate mofetil (MMF) 6 (22%)  8 (21%) 1.0000 

Azathioprine 3 (11%) 5 (13%) 1.0000 

Prednisone 11 (46%) 6 (15%) 0.0176 

Off therapy 6 (22%) 17 (44%) 0.1144 

Prior rituximab therapy (>1% B Cells) 9 (33%) 29 (74%) 0.0012 

 

*n=1 active and n=3 remission patients had no medications documented in clinic records  

**P values were calculated by Fisher’s exact test. 
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Table 3-3. Regulatory B cell Phenotypes in Healthy Controls and Patients with ANCA Vasculitis 
 

 
B Cell Population 

Healthy 
Controls 

All 
ANCA 
Active 

All ANCA 
Remission 

MPO 
Active 

MPO 
Remission 

PR3 
Active 

PR3 
Remission 

CD24hiCD38hi  
(%CD19+ B cells) 

(IQR) 
number 

 
11  

(8, 12) 
n=30 

 
8  

(3, 22) 
n=29 

 
17a 

(10, 32) 
n=43 

 
5c 

(2, 11) 
n=13 

 
15 

(10, 27) 
n=25 

 
14 

(4, 35) 
n=16 

 
23a 

(12, 33) 
n=18 

CD5+CD24hiCD38hi  
(%CD24hi38hi B 
cells) 

 
74 

(50, 92) 
n=23 

 
28a, b 

(17, 41) 
n=24 

 
54 

(31, 65) 
n=35 

 
24a 

(0, 50) 
n=10 

 
54 

(39, 59) 
n=18 

 
29a 
(20, 
39) 

n=14 

 
48 

(30, 76) 
n=17 

IL-10+ B cells 
(%CD19+ B cells) 

 

 
25  

(22, 34) 
n=14 

 
13a, b 

(4, 19) 
n=10 

 
24 

(17, 34) 
n=23 

 
7 

(4, 14) 
n=5 

 
24 

(23, 32) 
n=15 

 
19 

(12, 
19) 
n=5 

 
34 

(13, 41) 
n=7 

 

Data are presented as the median and interquartile range (IQR). The number of samples 

examined (n) is also given. P values were calculated by a Wilcoxon two sample test. Due to 

multiple comparisons between groups, a Bonferroni correction was applied resulting in a p value 

≤ 0.006 being considered statistically significant.  

aStatistically different from healthy control 

bStatistically different from all ANCA remission 

cStatistically different from MPO-ANCA remission 
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Figure 3-1. CD5+CD24hiCD38hi and IL-10+ B cells decrease during active disease and rebound 
during remission 
 

Population analysis of the percentage of CD24hiCD38hi B cells (A), the CD5+ subset of 

CD24hiCD38hi B cells (B) and IL-10+ B cells (C) is shown for healthy controls (HC, n=14-30), 

patients with active AAV (ANCA ACT, n=10-29), remitting AAV (ANCA REM, n=23-43), active 

MPO-ANCA  (MPO ACT, n=5-13), remitting MPO-ANCA (MPO REM, n=15-25), active PR3-

ANCA (PR3 ACT, n=5-16), and remitting PR3-ANCA (PR3 REM, n=7-18). IL-10 producing B 

cells (C) were analyzed after 96 hours of PBMC stimulation with CD40 ligand and CpG DNA. 

Aggregate data show increased CD24hiCD38hi B cells during disease remission (A) but no 

significant change during active disease. Percentages of both the CD5+ subset of CD24hiCD38hi 

B cells and IL-10+ B cells decrease during active disease and rebound during remission. Lines 

indicate median values. * indicates p≤0.005; ** indicates p≤0.001 and *** indicates p≤0.0001.
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Figure 3-2. CD24hiCD38hi, CD5+CD24hiCD38hi and IL-10+ B cells increase during remission in 
paired active and remission samples. 
 

 

Paired active and remission disease samples from 9 patients demonstrate an increase in 

CD24hiCD38hi B cells (A) as an individual transitions from active disease to remission. Paired 

active and remission disease samples from 7 patients demonstrate that the CD5+ subset of 

CD24hiCD38hi B cells (shown in B) decreased in patients with active disease and increased 

during remission. Paired active and remission disease samples from 6 patients demonstrate a 

similar increase in CD19+IL-10+ B cells (C) as all individuals transition from active disease to 

remission. The dashed line indicates the median value for healthy controls. 
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Figure 3-3. CD5+ B cells are enriched in B cells capable of producing IL-10 

 

Total B cells, CD5+ B cells and CD5neg B cells were evaluated for IL-10 producing B cells after 

72-96 hours of stimulation with CD40 ligand and CpG DNA. Shown are representative flow 

histograms depicting the percentage of IL-10+ B cells in cultured populations of total B cells (A), 

CD5neg B cells (B) and CD5+ B cells (C) demonstrating that CD5+ B cells are enriched in IL-10-

producing B cells compared to CD5neg and total B cells. 
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Figure 3-4. As CD24hiCD38hi, CD5+ CD24hiCD38hi or IL-10+ B cells increase, circulating ANCA 
titers decrease 
 

 

Paired active and remission sample data was used to generate the change (∆) in each B cell 

subset CD24hiCD38hi (A) CD5+CD24hiCD38hi (B) or IL-10+ (C) by the subtraction of the active 

value from the remission value (R - A = ∆). A positive value for ∆B cell subset indicates a 

greater percentage of B cells present during remission than during active disease. The change 

in ANCA titer was generated by subtracting the ANCA titer during active disease from the ANCA 

titer at remission utilizing the same time points used for B cell subset data. A negative value for 

∆ANCA titer indicates a greater titer during active disease than remission. Statistical 

significance was determined with a signed rank test; p≤0.05 is considered significant.
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Supplemental Figure S3-1. Gating strategies for B cell subpopulations 

 

Shown are the gating strategies for CD24hiCD38hi (A-C), CD5+CD24hiCD38hi (D-F), 

CD24hiCD27+ (G-I), CD5+CD24hiCD27+ (J-L) and IL-10+ B cells (M-O). Typical examples of 

these B cell subpopulations observed in HCs (A, D, G, J and M), patients with active AAV (B, E, 

H, K and N) and patients in remission (C, F, I, L and O) are provided. 
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Supplemental Figure S3-2. CD24hiCD27+ and CD5+CD24hiCD27+ B cells do not correlate with 
disease activity 
 

 

Percentages of CD24hiCD27+ B cells in healthy controls (n=11), patients with active ANCA 

(n=18), ANCA patients in remission (n=19), active MPO-ANCA (n=9), remission MPO-ANCA 

(n=9), active PR3-ANCA (n=8) and remission PR3-ANCA (n=9) are shown (A). Percentages of 

the CD5+ subset of CD19+CD24hiCD27+ B cells are depicted for healthy controls (HC, n=9), 

patients with active ANCA (n=13), ANCA patients in remission (n=15), active MPO-ANCA (n=5), 

remission MPO-ANCA (n=7), active PR3-ANCA (n=8) and remission PR3-ANCA (n=7) are 

presented (B).  
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CHAPTER 4: DISCUSSION   

Discussion 

In order to better treat patients with AAV, the role of regulatory B cells in this disease 

needs to be better defined. With this in mind, this work addresses the repertoire of regulatory B 

cell subsets and how their ability to secrete IL-10 (B10pro) impacts AAV patients. In the first 

study, we demonstrate that a low percentage (≤30%) of circulating CD5+ B cells correlates with 

disease activity and a shorter time to relapse. The percent of CD5+ B cells observed in 

remission patients was similar that of healthy controls (HC), and both were significantly higher 

than in patients with active disease. After Rituximab therapy, low or declining %CD5+ B cells 

was associated with a shorter time to disease relapse among patients on either no or low dose 

maintenance therapy with mycophenolate mofetil (MMF). The results of this study have recently 

been confirmed in a larger cohort of patients in collaboration with the clinical labs at UNC 

Hospital (manuscript pending publication in the Annals of Rheumatic Disease). In this study, 

patients were separated into assessment groups solely based on their CD5+ B cells at 

repopulation post-rituximab therapy. Patients who repopulated with low CD5+ B cells relapsed 

sooner than patients who repopulated with high CD5+ B cells (median 16 months (IQR=12, 19) 

vs. 23 months (18,30); p=0.005) after rituximab treatment (Figure 4-1). This study expands our 

finding that low %CD5+ B cells at B cell repopulation portends a shorter time to relapse following 

rituximab therapy regardless of immunosuppression dose. This indicates that monitoring CD5+ 

B regulatory cells repopulation may serve as an immunological biomarker to follow induction of 

remission or detect impending flare.  

Regulatory B Cells in AAV 

To date, three publications [Wilde et al. (2), Todd et al. (3) and Lepse et al. (4)] address 

Breg cell surface phenotypes, B10 cells and B10pro cells and their function in AAV. All three 
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publications document unique criteria for their cohorts and experimental design, i.e. 

inclusion/exclusion guidelines, activity status assessment, Breg subsets evaluated, and culture 

system timing and components. While these differences limit the ability to compare findings 

amongst research teams, they broaden the understanding of the role of Bregs in AAV and in 

human autoimmune disease. Importantly, all three studies have European cohorts and therefore 

include a predominance of patients with PR3-ANCA- rather than MPO-ANCA-associated 

disease. Thus, it is conceivable that the results, due to differences in genetic and epigenetic 

factors, cannot be extrapolated to patients with MPO-ANCA-associated disease. 

Our results confirm and add to those of Wilde et al., who show that B cells from 11 

patients with active AAV produced less IL-10 (2). Notably, these investigators reported a 

significant decrease in IL-10+ B cells in disease remission when compared to HCs, whereas we 

observed an increase in IL-10+ B cells during remission to a level that did not differ from that 

observed in HCs.  

Todd et al. (3) found that the frequency of circulating CD24hiCD38hi cells is decreased in 

AAV patients in remission more so than during active disease; however, the “tolerant” patient 

population (defined as: “those with a history of active AAV who subsequently became negative 

for ANCA, remaining free from pathology after withdrawal of treatment for a minimum of 2 

years” (3)) had the highest values of this subset of circulating Bregs, indistinguishable from the 

HC population. Lepse et al. (4) reported the frequency of circulating CD24hiCD38hi cells was not 

different in PR3-AAV patients in remission compared with HCs, but instead it was decreased in 

patients with active disease compared to either HCs or patients in remission.  

Our results greatly increase the phenotypic analyses of Bregs by investigating the CD5+ 

subset of CD24hiCD38hi B cells and demonstrate that modulations in these cells do occur in 

different disease states: CD5+CD24hiCD38hi B cells are decreased during disease activity and 

increase upon remission. Furthermore, we found no significant differences in either 

CD24hiCD27+ or CD5+CD24hiCD27+ B cell populations (Chapter 3, Supplemental figure S3-2), 
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whereas Lepse’s group found that CD24hiCD27+ were significantly decreased in both remission 

and active patients when compared with HCs (4). This may be an effect due to different 

protocols of therapeutic interventions, their effects on B cell sub-populations and small cohort 

sizes. A collaborative study with a larger cohort size would help to better understand the 

changes in B cell populations. Data from the RAVE trial will help elucidate the effects of 

medication on B cell population dynamics (the RAVE trial will be discussed in greater detail in a 

later section). 

An important difference between our study and the aforementioned studies is the 

inclusion of patients treated with rituximab, a CD20+ B cell depleting monoclonal antibody that is 

being used with increasing frequency in patients with AAV for induction therapy both at onset of 

disease and flare (5, 6), and even  to maintain durable remission (7). Neither Wilde et al. (2) nor 

Lepse et al. (4) included any rituximab-treated patients. Todd et al. (3) included a sub-cohort of 

7 patients who had been treated with rituximab between 6 months and 7 years prior to 

enrollment and analyzed their CD24hiCD38hi Bregs separately from their population studies. 

Among the non-rituximab-treated cohort, they observed no significant difference between 

patients with active disease compared to those in remission in percentage of B cell population 

comprising B10pro cells. However, 4 of the 7 rituximab-treated patients (3 were lost to follow-

up) were found to have up to 80% of their total B cell population comprising B10pro cells 

suggesting that rituximab therapy promotes Bregs, specifically B10 cell proliferation.  

The differences in our observations from those of Wilde et al. (2), Todd et al. (3) and 

Lepse et al. (4) could be a result of our strict definition of remission, which excluded patients 

with clinically active disease within 3 months of remission time points, or our inclusion of CD40L 

in B cell cultures. Although culture conditions were different (2-4 days, differences in stimulants 

like CpG, anti-IgM, and CD40L and in their concentrations), our findings are in concert with 

those of Todd et al. (3) where IL10+ B cells in ANCA remission patients do not differ in 

frequency from HC. Of note, our study used the largest cohort (almost doubling those published 
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in AAV/Breg literature) and is the first demonstration that patients with active disease, 

regardless of serotype, have fewer IL10+ B cells that then rebound, to levels seen in healthy 

individuals, as patients transition from active disease to remission. 

Another strength in our studies that differs from those previously published is the 

inclusion of equal amounts of patients with both MPO- and PR3-ANCA. This inclusion is 

important because we now realize these are genetically and serologically distinct diseases with 

different risks for relapse (8, 9). CD5+CD24hiCD38hi B cells and IL-10 producing B cells were 

decreased in patients with active disease and were similar to healthy individuals when patients 

were in remission regardless of ANCA serotype. The strongest evidence presented is our 

analysis of paired samples from the same patient over time demonstrating that, in all cases, a 

significant increase in CD24hiCD38hi, CD5+CD24hiCD38hi and IL-10+ B cells was observed when 

patients transitioned from active disease to remission.  

CD5 

CD5 is one of the surface molecules that defines most murine Breg subsets (10). CD5 is 

reported to induce IL-10 expression and promote cell survival in human B cells (11), human 

chronic lymphocytic leukemia B cells (12), and mice (13). In mice, CD5+CD1dhi B cells are 

enriched in B10 cells and have a regulatory function evidenced by their inhibition of INF-γ and 

TNF-α expression in T cells (10). Although not included in the phenotypic definitions of human 

Bregs (Table 4.1), a subset of both of these phenotypes also expressed CD5 in healthy 

individuals. The CD24hiCD38hi phenotype of Bregs was also reported to be 

CD5+IgM+/hiIgD+/hiCD10low/+CD27-CD1dhi (13). We propose that the CD5 marker is an important 

measure of Bregs based on our data demonstrating a correlation with CD24hiCD38hi and 

IgM+CD5+ subpopulations (shown in Chapter 2). We have recently shown that CD5 identifies B 

cells that portend active disease when percentages of CD5+ B cells are low or decreasing (14). 

As indicated previously, our second study ties CD5+ B cells with the published human Breg 

phenotypes, CD24hiCD38hi (15) and CD24hiCD27+(16) and sub-classifies them further by 



86 

analyzing their CD5+ subsets. We added CD5 to our analysis of the reported phenotypes for 

circulating regulatory B cells to better understand the putative functional role of CD5 in Bregs. 

None of the aforementioned Breg/AAV studies include CD5 analysis. CD5+ B cells are present 

in the periphery at a higher frequency and phenotypically overlap with many of the reported 

Breg phenotypes, including naïve and memory B cells, and therefore are a bridge between the 

two reported human Breg phenotypes: CD24hiCD38hi and CD24hiCD27+. A major challenge in 

connecting IL10+ and CD5+ B cells to confirm that they are the same subset is that, in our 

culture system, CD5 is down regulated and not detectable at the time that IL-10 is analyzed. 

Our hypothesis is that CD5 has transformed to an intracellular form. Our future work will 

investigate this hypothesis by measuring intracellular CD5 using a CD5 antibody that detects 

the intracellular form exclusively. Alternatively, CD5 may be sloughed from the surface, which 

could be measured by ELISA of culture supernatants. Both these experiments will yield data to 

increase our understanding of CD5 activity with relation to B cells. If either of these experiments 

relate to AAV disease activity, then they could possibly be translated into a non-invasive clinical 

test. 

Limitations 

This doctoral work contributes to the body of knowledge of Breg identification; however, 

until there can be agreement about which B cells to analyze, we are limited in our investigations. 

The relatively small sample size of patients with longitudinal data limits our ability to evaluate 

the correlation between the percentage of CD5+ B cells and time to relapse while correcting for 

other risk factors such as PR3-ANCA, organ involvement or disease phenotype. Although we 

attempted to obtain patient samples every 3 months, the timing of our blood collections was not 

standardized, as samples were obtained from patients whenever they presented for care. 

Another complication in the investigation of regulatory B cells is that we are limited to 

studying circulating B cells in humans. The majority of the regulatory B cell research has been 

done in murine models using spleen and tissue samples (17). As we work with human subjects, 
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it is difficult to obtain tissue samples from which viable B cells can be harvested for experimental 

studies. Unfruitful attempts were made in the beginning of this investigation to analyze B cells 

from urine, nasal lavage, and bronchoalveolar lavage samples from patients with AAV, as the 

signal to noise ratio compromised the data rendering it unreliable. 

Medications also confound the data pertaining to Bregs in the natural state of AAV 

during active disease and remission. To better understand the role of regulatory B cells, future 

studies should compare B10 frequency, IL-10 production, plasma cell differentiation, Ig isotype, 

and glycosylation among healthy individuals and patients with AAV during active disease and 

remission. These issues are being addressed with the study of new onset patients with ANCA 

who have not received any treatments and in long-term remission off-therapy (L-TROT). 

Future Directions 

What is the Cell Surface Phenotype of an IL-10+ B Cell? 

The first question to address is which B cell subset makes IL-10. To identify B10 and 

B10pro cells we will sort CD5+CD24hiCD38hi to culture for IL-10 production. Once this is 

established in healthy individuals, we can then survey patients with AAV to better understand if 

B cell IL-10 production is compromised. One limitation is cell number; B cells are a minority of 

even the lymphocyte population, and obtaining a yield that is culturable may be a challenge. 

This line of investigation may also help with B10 and B10pro biomarker identification that may 

lead to a consensus among investigators. Finally, we may be able to isolate these cells for 

better understanding of B10 mechanism, effects on other cells, characterization of other 

cytokines that may be essential for their suppressive actions, and expansion of regulatory B 

cells for adoptive cellular immunotherapies to use in patients for recalibration of immunological 

tolerance. 

Can Regulatory B Cells Suppress Autoantibody Production in Humans?  

To test the ability of B10pro cells to suppress ANCA production, we will culture B cells 

from ANCA patients and HCs with a cytokine cocktail including IL-21 to induce plasma cell 
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differentiation with MPO or PR3 to promote ANCA production (18, 19). Autologous B cells will 

be cultured separately with CD40L and CpG then added to the plasma cell cultures. Bregs will 

not be included in the positive control samples. We will then perform ANCA and total 

immunoglobulin ELISAs of culture supernatants and confirm plasma cell differentiation by flow 

cytometry. Understanding regulatory B cell functions will aid in the understanding of how 

immunological tolerance is broken and maintained in AAV immunopathogenesis. This will also 

allow clinicians to ensure that they are treating patients effectively and potentially change the 

regimen in which rituximab is used.  

How Do Therapeutic Interventions Affect Breg Populations? 

Rituximab in ANCA-Associated Vasculitis (RAVE) trial, a multicenter, randomized trial 

comparing the effects of rituximab compared with cyclophosphamide (CYC) followed by 

azathioprine (AZA) for the induction of remission generated B cell data for 197 subjects with 

ANCA-positive patients diagnosed with Granulomatosis with Polyangiitis (GPA) or Microscopic 

Polyangiitis (MPA) (5). This study has just been completed and all data from this trial are 

publicly available to the via the ITN TrialShare system at: 

https://www.itntrialshare.org/ar/figures.html. This will be a clear next step in further confirmation 

of CD5+ B cell population in AAV remission maintenance and will help glean information about 

how the medications rituximab, CYC and AZA impact changes in B cell populations. 

Can the Analysis of Circulating CD5+ and IL-10+ Regulatory B Cells Help Guide Clinical 
Decision-Making to Promote Durable Remission in AAV? 
 

Another future direction will be to test the hypothesis that normalization of IL-10-

secreting CD5+ regulatory B cells is protective of future relapse in a proof-of-concept, 

randomized clinical trial. CD5 is reported to drive IL-10 expression and therefore may identify 

Bregs poised to produce IL-10, underscoring the importance of this cellular marker (11, 12). To 

avoid adverse events from therapy (i.e., infections), clinicians require improved markers of 

disease activity and impending relapse to guide immunosuppression strategies post-rituximab 
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and induction of remission therapy. We hypothesize that CD5+ B cells and other Bregs studied 

in this investigation can serve as biomarkers of active disease. Our data suggest that patients 

whose %CD5+ B cells remain low or decline after a period of normalization following rituximab 

therapy would be at higher risk of subsequent relapse and would likely benefit from 

maintenance immunosuppression. Conversely, such immunotherapy should be avoided in 

patients who maintain a normal %CD5+ B cells. Our hypothesis is that numerical and functional 

changes in circulating CD5+, CD5+CD24hiCD38hi and B10pro B cell subsets are related to 

disease activity and predict response to treatment and disease relapse in AAV. To improve 

disease monitoring and enable prevention of relapse via identification of sensitive diagnostic 

and more specific therapeutic strategies, we will follow Breg populations in patients with AAV. 

Clinicians may use this information to make informed decisions concerning use maintenance 

immunosuppression and its timing. 

We propose a proof-of-concept prospective, randomized, open-label clinical trial 

whereby patients who recover a normal proportion of Bregs at the end of induction therapy will 

be followed expectantly without immunotherapy. Patients who do not recover regulatory B cells 

will be randomized to either maintenance immunosuppressive therapy or clinical monitoring with 

immunotherapy guided by clinical signs of active vasculitis (Figure 4-2). 

In the second study, CD5 appears again as a potential marker for IL-10+ B cells: 

specifically, the CD5+CD24hiCD38hi population, which modulates with AAV disease activity and 

may be a new (more specific CD5+ B cell subset) Breg cell surface marker phenotype to follow 

in patients. Further, this study demonstrates that as Bregs increase (either CD24hiCD38hi, 

CD5+CD24hiCD38hi or IL-10+ B cells), circulating anti-neutrophil cytoplasmic antibody (ANCA) 

titers decrease, indicating an important and protective role for Bregs in autoimmune disease (1). 

Breg Adoptive Cellular Immunotherapy 

Clinical trials using adoptive cellular immunotherapies (ACI) with expanded or genetically 

manipulated autologous cells for treatment of cancer and autoimmune diseases like T1D have 
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shown to be effective (20). The current immunosuppressive drug regimen for treatment of AAV 

non-specifically suppresses the immune system and compromises the patent, making them 

vulnerable to adverse events like infection, the leading cause of mortality for patients with AAV 

(21). Bregs are believed to work in an antigen-specific mechanism, and systemic administration 

of a cytokine like IL-10 may be ineffective due to its short half-life. Furthermore, IL-10 may be 

potentially harmful to the patient due to its pleiotropic action. Expanded autologous Bregs may 

deliver IL-10 in antigen specific manner directly to the cellular environment where it will be 

effective in attenuating the pathogenic autoimmune response. 

Bregs and Medications in AAV 

The last two decades have witnessed a marked improvement in the induction treatment 

of patients with AAV, with remission rates around 80% (16-18). In the second chapter, we 

determined that a low percent (≤30%) of circulating CD5+B cells correlates with disease activity 

and a shorter time to relapse. After rituximab therapy, low or declining %CD5+ B cells was 

associated with a shorter time to disease relapse among patients on no or low-dose 

maintenance therapy with MMF. The use of full dose MMF was associated with a longer time to 

relapse in the setting of a low %CD5+ B cells. Clinicians may monitor patients’ B cell CD5, which 

is available in many hospital rituximab panels, and if this population is ≤30% or declining, they 

may choose to use MMF. Conversely, if a patient is in remission and their %CD5+ B cells is 

>30% and rising, they may wean the subject off therapy and monitor them more closely. 

Because the risk of relapse is not uniform for all patients with AAV, Bregs may be 

important in identifying alternative treatment strategies. No clinical or serologic measure is 

currently available that allows effective disease monitoring and distinguishes patients in long-

term stable remission from those at imminent risk of relapse (22-26). Such a tool would allow 

physicians to better tailor the duration and intensity of immunosuppressive therapy based on the 

individual patient’s needs. Our goal was to evaluate whether certain B cell subpopulations could 

be used to assess immunologic disease activity or a patient’s risk of relapse. Our results 
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suggest that CD5+CD24hiCD38hi and IL-10+ B cell phenotypes can be used as indicators of 

treatment responsiveness and disease activity. Furthermore, it could also be proposed that 

therapeutic up-regulation of regulatory B cells in patients with humoral autoimmune disease 

could promote disease quiescence. 

Rituximab Therapy in AAV 

Patients in our study were treated with rituximab for induction of remission after a clinical 

relapse (to avoid repeat exposure to cyclophosphamide) or because of persistent disease 

activity despite cyclophosphamide and corticosteroids. Due to the efficacy of rituximab in 

treating active AAV, some clinicians view rituximab as a possible maintenance therapy to 

administer to patients at regular intervals regardless of clinical signs of disease activity, thus, 

permanently depleting them of B cells (37). It is possible that a state of immune tolerance may 

require the presence of robust Breg and/or Treg populations, which would be prevented by 

sustained B cell depletion. It will be interesting to test the validity of our hypothesis in a setting 

where a robust CD5+ Breg population may be suppressed by a regimen of prolonged B cell 

depletion. Patients with SLE that repopulated with CD24hiCD38hi B cells had a longer time to 

relapse post-rituximab therapy, suggesting that this may be an important B cell population to 

follow with respect for disease outcome (22). Addition of CD5 to this CD24hiCD38hi B cell 

phenotype denotes a crucial B cell subpopulation that not only correlates inversely with active 

disease but also parallels IL-10 production and suppressive function. 

Conclusion 

The main objectives of this investigation were to gain insight into regulatory (and 

potentially protective) B cells in patients suffering from AAV and to understand the contribution 

of regulatory B cells to maintenance of immunological homeostasis in order to harness them for 

safer, directed immunotherapeutics and ultimately improve patient care. B cells in patients with 

ANCA are autoantigen-specific and a subset of B cells produce pathogenic ANCA, which 

implicates them as one of the principal problems in this disease; thus, B cells are an important 
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target for therapy. Our results add to accumulating evidence that a paucity of Bregs or non-

functional Bregs are associated with increased disease activity in autoimmune disorders (13,14, 

31). Our findings suggest that a robust Breg subpopulation could be a goal of immunotherapy, 

as well as a means of monitoring its efficacy. This hypothesis would best be tested 

prospectively in a clinical trial setting. This study contributes to information pertaining to a B cell 

subset that may be important for patients to maintain disease remission and suppress 

pathogenic ANCA production. These data provide an initial window into the idea of tailoring 

individual therapies, and may lead to B cell-specific therapies that can induce durable remission 

in AAV.  

One of the main problems in harnessing the power of B10 cells is their basic 

identification. Distinct membrane markers or transcription factors are necessary for a more 

accurate and standardized identification. We may be analyzing many Breg subsets that obscure 

our ability to understand their qualities and function. Further, there is disagreement with regard 

to stimulation strategies ex vivo to harness their regulatory properties. This study begins to shed 

light on the phenotype of an IL-10 producing B cell and suggests that they have multiple 

functions, including Treg induction, monocyte suppression and control of autoantibody 

production. Furthermore, understanding how Bregs suppress pathogenic ANCA production is 

essential to AAV remission strategies and will shed light on basic mechanisms of Breg function.  

Despite a lack of consensus on the immunophenotype of Breg subsets, our data are still 

consistent with the generalized knowledge in this area and extend our understanding of this 

elusive cell type (14). We identified a CD5+ B cell subpopulation as a potential immunological 

marker of sustained remission when robust, or a harbinger of subsequent relapse when low or 

declining. We also demonstrate that the CD5+ subset of CD24hiCD38hi B cells and IL-10+ B cells 

are reduced in patients with active AAV compared with healthy controls and patients in 

remission. As patients go into remission, both CD5+CD24hiCD38hi and IL-10-secreting B cells 

are present at levels similar to healthy controls. These data suggest that CD5+CD24hiCD38hi B 
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cells may infer IL-10-secreting B cells. These findings may also offer a clinical tool to monitor 

disease activity and modulate maintenance immunotherapy. Finally, we demonstrate that an 

increase in B cells with these regulatory phenotypes correlates with a decrease in autoantibody 

titer, specifically ANCA titer. 

Based on these findings, we predict that CD5+ B cells (more specifically, the 

CD5+CD24hiCD38hi) are enriched in IL-10+ B cells. Furthermore, we predict that some of these 

cells are autoantigen-specific in patients with AAV. When Bregs are functioning properly in a 

healthy individual, we hypothesize that this cell subset can suppress MPO or PR3 inflammatory 

TH1 cells (usurping them to become iTregs), induce autoantigen-specific iTregs, suppress 

inflammatory monocytes, and importantly halt production of ANCA. Our data are consistent with 

the hypothesis that functionally competent regulatory B cells characterized as 

CD5+CD24hiCD38hi and IL-10+ support long-term clinical remission by inhibiting production of 

autoantibodies that drive disease pathogenesis. Whether the CD5+CD24hiCD38hi or IL-10 

producing B cells can prospectively guide immunosuppressive therapy in patients to prevent 

unnecessary treatment and ensure treatment when appropriate is an open question.  
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Table 4-1. Regulatory B Cell Phenotypes Reported in Humans  

Breg 
Phenotype 

Stimulation Breg Function 
Tested 

Disease 
Correlation 

Reference 
 

CD24hiCD38hi 
(enriched in IL-
10+ B cells) 

CD40L via 
CD154-CHO 
cells 

IL-10 production 
↓Th1 differentiation 
via IL-10, not TGF-β 
reversed by anti-
CD80 & anti-CD86 

(SLE)  
↓IL-10 response to 
CD40 stim 

Blair PA, et al., Immunity 
2010; 32:129 

CD24hiCD27hi 
(enriched in IL-
10+ B cells) 

CpG  plus 
CD40L 
(CD154) 

IL-10 production 
↓TNF-α secretion in 
T cells and 
monocytes  
Inhibition dependent 
on IL-10 

SLE, RA, SJS, BD, 
& MS 
Expanded 
compared to HC 

Iwata Y, et al., Blood 
2011;117:530 

CD25+, 
CD5+CD25+ 

Not tested Not tested AAV 
Expanded in 
remission  
Active not different 
from HC 

Eriksson P, et al., J 
Rheumatol  2010; 
37:2086 

CD5+ Not tested Not tested AAV 
Decreased in 
active disease 
Normalized in 
remission  

DO Bunch, et al., 
CJASN 2013; 8:382 

IL-10+ CpG IL-10 production 
Correlation with 
Tregs  
Correlation with INF-
γ+ Th1 cells 

AAV 
↓IL-10 in active & 
remission 
Pos. correlation w/ 
Tregs in rem 
Neg. correlation w/ 
INF-γ+ T cells 

B Wilde, et al., Ann 
Rheum Dis 2013; 
72:1416 

CD24hiCD38hi CD40L via 
CD154-CHO 
cells 

IL-10 production 
Th1 TNF-α & INF-γ 
not affected 
Failed conversion of 
naïve T cells to 
Tregs 
Differentiation of 
Th17 cells not 
blocked 

RA (in active 
disease) 
↓number & 
percentage  
↓IL-10+ 
↓ability to inhibit 
Th17 diff.  
↓ability to promote 
Tregs 

Flores-Borja F, et al., 
Sci Transl Med 
2013;5:173ra23 

CD24hiCD38hi CpG ± CD40L IL-10 production 
Th1 INFγ and TNFα  

AAV 
↓number in active 
& remission 
↓IL-10+  
Th1 INFγ and 
TNFα  not altered 

SK Todd, et al., 2014, 
Rheumatology, ePub 
ahead of print 

CD24hiCD38hi, 
CD24hiCD27hi 

CpG ± CD40L  IL-10 production 
Monocyte TNF-α 
suppression 

CD24hiCD38hi ↓ in 
active disease 
CD24hiCD27hi ↓ in 
active & rem 
IL-10 production 
not altered 
Monocyte TNF-α 
not altered 

N Lepse, et al., 
2014,Rheumatology, 
ePub ahead of print 
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CD5+ 
CD24hiCD38hi, 
IL-10+ 

CpG ± CD40L  IL-10 production 
Autoantibody 
production 
 

CD5+ 
CD24hiCD38hi ↓ 
active, ↑ rem 
IL-10 ↓ active 
disease, rebound 
in rem 
Negative 
correlation with 
ANCA titer 

LA Aybar, et al., 2014, 
Clinical and 
Experimental 
Immunology 
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Figure 4-1. Relapse-free from time of rituximab 

 

Patients who repopulated with ≤30%CD5+ B cells (●) relapsed sooner than patients who 

repopulated with >30% CD5+ B cells ( ; p=0.005). Open squares denote patients who did not 

relapse during the time of our study. Adjusting for differences in upper respiratory involvement, 

the low CD5 group at B cell repopulation remained significantly associated with a shorter time to 

relapse from time of rituximab (p=0.002) and from time of B cell repopulation (p=0.001).  
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Figure 4-2. Diagram of Breg clinical trial  

 

Immunosuppression guided by CD5+ B cells to avoid unnecessary treatment when protective 

CD5+ B cells are present and avoid relapse by proactive treatment when CD5+ B cells are 

declining could offer immeasurable benefit to patients. 



98 

REFERENCES 

 

1. Wilde B, Thewissen M, Damoiseaux J, Knippenberg S, Hilhorst M, van Paassen P, 
Witzke O, Tervaert JC. Regulatory B cells in ANCA-associated vasculitis. Annals of the 
Rheumatic Diseases 72: 1416-9, 2013. 

 
2. Todd SK, Pepper RJ, Draibe J, Tanna A, Pusey CD, Mauri C, Salama AD. Regulatory B 

cells are numerically but not functionally deficient in anti-neutrophil cytoplasm antibody-
associated vasculitis. Rheumatology 53: 1693-70, 2014. 

 
3. Lepse N, Abdulahad WH, Rutgers A, Kallenberg CG, Stegeman CA, Heeringa P. Altered 

B cell balance, but unaffected B cell capacity to limit monocyte activation in anti-
neutrophil cytoplasmic antibody-associated vasculitis in remission. Rheumatology 53: 
1683-92, 2014. 

 
4. Stone JH, Merkel PA, Spiera R, Seo P, Langford CA, Hoffman GS, Kallenberg CGM, St. 

Clair EW, Turkiewicz A, Tchao NK, Webber L, Ding L, Sejismundo LP, Mieras K, 
Weitzenkamp D, Ikle D, Seyfert-Margolis V, Mueller M, Brunetta P, Allen NB, Fervenza 
FC, Geetha D, Keogh KA, Kissin EY, Monach PA, Peikert T, Stegeman C, Ytterberg SR, 
Specks U. Rituximab versus Cyclophosphamide for ANCA-Associated Vasculitis. New 
England Journal of Medicine 363: 221-32, 2010. 

 
5. Jones RB, Cohen Tervaert JW, Hauser T, Luqmani R, Morgan MD, Peh CA, Savage 

CO, Segelmark Mr, Tesar V, van Paassen P, Walsh D, Walsh M, Westman K, Jayne 
DRW. Rituximab versus Cyclophosphamide in ANCA-Associated Renal Vasculitis. New 
England Journal of Medicine 363: 211-20, 2012. 

 
6. Rhee EP, Laliberte KA, Niles JL. Rituximab as Maintenance Therapy for Anti-Neutrophil 

Cytoplasmic Antibody-Associated Vasculitis. Clinical Journal of the American Society of 
Nephrology 5: 1394-400, 2010. 

 
7. Lyons PA, Rayner TF, Trivedi S, Holle JU, Watts RA, Jayne DRW, Baslund B, Brenchley 

P, Bruchfeld A, Chaudhry AN, Cohen Tervaert JW, Deloukas P, Feighery C, Gross WL, 
Guillevin L, Gunnarsson I, Harper L, HruÅ¡kovÃ¡ Z, Little MA, Martorana D, Neumann T, 
Ohlsson S, Padmanabhan S, Pusey CD, Salama AD, Sanders J-SF, Savage CO, 
Segelmark Mr, Stegeman CA, TesaÅ™ V, Vaglio A, Wieczorek S, Wilde B, Zwerina J, 
Rees AJ, Clayton DG, Smith KGC. Genetically Distinct Subsets within ANCA-Associated 
Vasculitis. New England Journal of Medicine 367: 214-23, 2012. 

 
8. Lionaki S, Blyth ER, Hogan SL, Hu Y, Senior BA, Jennette CE, Nachman PH, Jennette 

JC, Falk RJ. Classification of antineutrophil cytoplasmic autoantibody vasculitides: The 
role of antineutrophil cytoplasmic autoantibody specificity for myeloperoxidase or 
proteinase 3 in disease recognition and prognosis. Arthritis and Rheumatism 64: 3452-
62, 2012. 

 
9. Yanaba K, Bouaziz J, Haas K, Poe J, Fujimoto M, Tedder T. A regulatory B cell subset 

with a unique CD1dhiCD5+ phenotype controls T cell-dependent inflammatory 
responses. Immunity 28: 639-50, 2008. 



99 

10. Gary-Gouy Hln, Harriague J, Bismuth G, Platzer C, Schmitt C, Dalloul AH. Human CD5 
promotes B-cell survival through stimulation of autocrine IL-10 production. Blood 100: 
4537-43, 2002. 

 
11. Garaud S, Morva A, Lemoine S, Hillion S, Bordron A, Pers JO, Berthou C, Mageed RA, 

Renaudineau Y, Youinou P. CD5 promotes IL-10 production in chronic lymphocytic 
leukemia B cells through STAT3 and NFAT2 activation. The Journal of Immunology 186: 
4835-44, 2011. 

 
12. O'garra A, Chang R, Go N, Hastings R, Haughton G, Howard M. Ly-1 B (B-1) cells are 

the main source of B cell-derived interleukin 10. European Journal of Immunology 22: 
711-7, 2005. 

 
13. Bunch DO, McGregor JAG, Khandoobhai NB, Aybar LT, Burkart ME, Hu Y, Hogan SL, 

Poulton CJ, Berg EA, Falk RJ. Decreased CD5+ B Cells in Active ANCA Vasculitis and 
Relapse after Rituximab. Clinical Journal of the American Society of Nephrology 8: 382-
91, 2013. 

 
14. Blair PA, Norena LY, Flores-Borja F, Rawlings DJ, Isenberg DA, Ehrenstein MR, Mauri 

C. CD19(+)CD24(hi)CD38(hi) B Cells Exhibit Regulatory Capacity in Healthy Individuals 
but Are Functionally Impaired in Systemic Lupus Erythematosus Patients. Immunity 32: 
129-40, 2010. 

 
15. Iwata Y, Matsushita T, Horikawa M, DiLillo DJ, Yanaba K, Venturi GM, Szabolcs PM, 

Bernstein SH, Magro CM, Williams AD, Hall RP, St Clair EW, Tedder TF. 
Characterization of a rare IL-10-competent B-cell subset in humans that parallels mouse 
regulatory B10 cells. Blood 117: 530-41, 2011. 

 
16. Matsushita T, Tedder TF. Identifying regulatory B cells (B10 cells) that produce IL-10 in 

mice. Methods in Molecular Biology 677: 99-111, 2011. 
 
17. Hurtado PR, Jeffs L, Nitschke J, Patel M, Sarvestani G, Cassidy J, Hissaria P, Gillis D, 

Peh CA. CpG oligodeoxynucleotide stimulates production of anti-neutrophil cytoplasmic 
antibodies in ANCA associated vasculitis. BMC immunology 9: 34, 2008. 

 
18. Tadema H, Abdulahad WH, Lepse N, Stegeman CA, Kallenberg CG, Heeringa P. 

Bacterial DNA motifs trigger ANCA production in ANCA-associated vasculitis in 
remission. Rheumatology 50: 689-96, 2011. 

 
19. Aybar LT, McGregor JG, Hogan SL, Hu Y, Mendoza C, Brant EJ, Poulton CJ, 

Henderson C, Falk RJ, Bunch DOD. Reduced CD5+CD24hiCD38hi and IL10+ 
Regulatory B Cells in Active Anti-Neutrophil Cytoplasmic Autoantibody Associated 
Vasculitis Permit Increased Circulating Autoantibodies. Clinical and Experimental 
Immunology 180: 178-88, 2015. 

 
20. Xu X-J, Zhao H-Z, Tang Y-M. Efficacy and safety of adoptive immunotherapy using anti-

CD19 chimeric antigen receptor transduced T-cells: a systematic review of phase I 
clinical trials. Leukemia and Lymphoma 54: 255-60, 2013. 

 
21. McGregor JG, Negrete-Lopez R, Poulton CJ, Kidd JM, Katsanos SL, Goetz L, Hu Y, 

Nachman PH, Falk RJ, Hogan SL. Infectious Burden and Adverse Events from 



100 

Immunosuppressive Therapy in Antineutrophil Cytoplasmic Antibody Associated 
Vasculitis submitted manuscript 2014. 

 
22. Palanichamy A, Barnard J, Zheng B, Owen T, Quach T, Wei C, Looney RJ, Sanz Ia, 

Anolik JH. Novel human transitional B cell populations revealed by B cell depletion 
therapy. The Journal of Immunology 182: 5982-93, 2009. 

 
 


