Cytotoxic and Anti-HIV Principles from the Rhizomes of *Begonia* nantoensis

Pei-Lin Wu,^{*,a} Fu-Wen Lin,^a Tian-Shung Wu,^a Chang-Sheng KuoH,^b Kuo-Hsiung Lee,^c and Shiow-Ju Lee^d

^{*a*} Department of Chemistry, National Cheng Kung University; ^{*b*} Department of Biology, National Cheng Kung University; Tainan, 701, Taiwan: ^{*c*} Natural Products Laboratory, School of Pharmacy, University of North Carolina; Chapel Hill, North Carolina 27599, U.S.A.: and ^{*d*} Division of Biotechnology and Pharmaceutical Research, National Health Research Institutes; Taipei, 221, Taiwan. Received November 3, 2003; accepted December 4, 2003

Three new compounds: begonanline (1), nantoamide (2) and methyl (S)-glycerate (3) as well as forty-four known compounds have been isolated and characterized from the rhizomes of *Begonia nantoensis*. The structures of these compounds were determined by spectral analyses and/or X-ray crystallography. Among them, cucurbitacin B (4), dihydrocucurbitacin B (5), cucurbitacin E (6), dihydrocucurbitacin E (7), cucurbitacin I (8), and (-)-auranamide (9) showed cytotoxicity against four human cancer cell lines. 3β ,22 α -Dihydroxyolean-12-en-29-oic acid (10), indole-3-carboxylic acid (11), 5,7-dihydroxychromone (12), and (-)-catechin (13) demonstrated significant activity against HIV replication in H9 lymphocyte cells.

Key words Begonia nantoensis; Begoniaceae; cucurbitacin; dihydrocucurbitacin; cytotoxicity

Begonia nantoensis LAI & CHUNG (Begoniaceae), endemic to Taiwan, is a succulent and perennial herb.¹⁾ It is widely distributed in woodland undergrowths in the mountains of central Taiwan. In our preliminary assay, the crude methanol extract of dry rhizomes of *B. nantoensis* exhibited cytotoxic activity against gastric carcinoma (NUGC-3) and nasopharyngeal carcinoma (HONE-1) cell lines. This ethnopharmacological property has inspired our attention to *B. nantoensis*. As a result, forty-seven compounds including three new begonanline (1), nantoamide (2) and methyl (*S*)-glycerate (3) and forty-four known compounds (see Experimental) were isolated and identified from the rhizomes of this herb. The isolation and structural elucidation of compounds 1—3 and five cucurbitacins **4**—**8** are discussed herein.

Begonanline (1) was obtained as yellow syrup. The high resolution (HR) EI-MS gave the molecular ion at m/z242.0690 which was consistent with the molecular formula $C_{13}H_{10}N_2O_3$. The UV spectrum of 1 exhibited characteristic absorptions of a β -carboline chromophore at 206, 267, 316, 392 nm^{2} The IR absorption bands at $3400 \text{ and } 1706 \text{ cm}^{-1}$ were indicative of hydroxyl, amino and carbonyl functionalities. Accordingly, the ¹H-NMR spectrum displayed signals for NH and phenolic OH groups at δ 10.72 and 8.28, respectively. In the ¹H-NMR spectrum, a set of ABX aromatic signals at δ 7.19 (1H, dd, J=8.8, 2.5 Hz, H-7), 7.64 (1H, d, J=8.8 Hz, H-8), and 7.66 (1H, d, J=2.5 Hz, H-5) indicated the presence of a monosubstituted aromatic ring in β -carboline. The *ortho* coupled doublets at δ 8.22 and 8.42 with smaller coupling constant of 4.8 Hz were typical of heteroaromatic protons, H-4 and H-3 of β -carboline skeleton. The location of a phenolic OH (δ 8.28) on C-6 was determined by nuclear Overhauser enhancement spectroscopy (NOESY) experiment in which the OH proton showed NOEs with H-7 (δ 7.19) and H-5 (δ 7.66). In turn, H-5 showed NOE with H-4 (δ 8.22) and an indolic NH (δ 10.72) showed NOE with H-8 (δ 7.64). The remaining proton signal at δ 4.00 (3H, s) and two carbon signals at δ 52.3 and 167.4 suggested the presence of a methoxycarbonyl group at C-1. The heteronuclear multiple bond connectivity (HMBC) correlations fully supported these assignments. Hence, 1 was 6-hydroxy-1-methoxycarbonyl- β -carboline and was called begonanline.

Nantoamide (2) was isolated as colorless syrup. Its molecular formula was determined to be C₁₆H₁₅NO₃ by high resolution EI-MS (m/z 269.1056, $[M]^+$). In the IR spectrum, a broad NH absorption at 3325 cm^{-1} and a strong C=O absorption at 1642 cm^{-1} indicated the presence of an amide functional group in this compound. In the aliphatic region of the ¹H-NMR spectrum, an ethylene group bearing a NH substituent at one end was deduced by the mutually coupled proton signals at δ 2.89 (2H, t, J=7.2 Hz, H-7') and 3.58 (2H, td, J=7.2, 5.6 Hz, H-8'). In the aromatic region, a set of ABX proton signals at δ 6.86 (1H, d, J=8.0 Hz, H-5), 7.33 (1H, d, J=2.0 Hz, H-2) and 7.43 (1H, dd, J=8.0, 2.0 Hz, H-6) together with a signal at δ 6.05 (2H, s) constructed a 3,4methylenedioxyphenyl moiety in 2. The other set of five mutually coupled protons at δ 7.17 (1H, t, J=7.8 Hz, H-4') and 7.26 (4H, m, H-2', 3', 5', 6') indicated a monosubstituted benzene unit. The HMBC correlations of H-7' (δ 2.89) with C-2' and -6' (δ 129.6); H-8' (δ 3.58) with C-1' (δ 130.1) as well as the NOE between NH (δ 7.63) and H-6 (δ 7.43) defined the structure of 2 as N-(2-phenyl)ethyl-3,4-methylenedioxybenzamide and it was called as nantoamide.

Methyl (*S*)-glycerate (**3**), colorless oil, had the molecular formula $C_4H_8O_4$ from its high resolution EI-MS. In the ¹H-NMR spectrum, two diastereotopic methylene protons at δ 3.84 (1H, dd, *J*=9.9, 3.4 Hz, H-3a) and 3.91 (1H, dd, *J*=9.9, 3.4 Hz, H-3b) coupled with a methine proton at δ 4.28 (1H, t, *J*=3.4 Hz, H-2) inferred the partial structure HOCH₂CH(OH)–. A methyl ester group was indicated by an IR absorption at 1740 cm⁻¹, a carbonyl carbon signal at δ 173.5 and a methoxyl proton peak at δ 3.83. A broad IR band at 3417 cm⁻¹ revealed the presence of hydroxyl functionality in the molecule. These foregoing spectral data confirmed the structure of **3** as methyl glycerate. This is the first reported isolation of **3** from a natural source, although it has been synthesized asymmetrically by Welzel and his colleagues.³) The levorotatory optical rotation suggested the ab-

solute configuration of C-2 as *S*. Consequently, methyl (*S*)-glycerate was assigned for **3**.

In addition, the ¹H- and ¹³C-NMR signals for cucurbitacins 4—8 in acetone- d_6 were re-assigned unambiguously by the aid of correlation spectroscopy (COSY), heteronuclear multiple quantum coherence (HMQC), HMBC, and NOESY spectra, as shown in Tables 1 and 2, and it was evident that the values for H-19 and H-30; C-19 and C-30 had been reversely assigned in the literature.⁴⁾ For example, in cucurbitacin B (4) a proton signal at δ 1.01 exhibited key HMBC connectivities with carbons at δ 34.0 (C-10), 43.4 (C-8), and 212.7 (C-11) was assigned as H-19. A carbon signal at δ 20.1 was attributed to C-19, as it had HMQC correlation with H-19. Similarly, on the basis of HMBC cross peaks of a proton at δ 1.42 with carbons at δ 43.4 (C-8), 46.4 (C-15), and 48.8 (C-13), it was ascribed to H-30 and it connected to a carbon at δ 19.1 in the HMQC spectrum, which therefore was assigned as C-30. The configuration of the cucurbitacin E (6) was further supported by single-crystal X-ray diffraction study as shown in Fig. 1.

Compounds 2, 4—13, and some others were subjected to anti-HIV evaluation. Among them, the four compounds 10— 13 inhibited HIV replication in H9 lymphocyte cells with EC_{50} values of 5.65, 2.41, 18.65, and 14.32 µg/ml and their therapeutic indexes (IC_{50}/EC_{50}) of 4.40, 6.79, 1.34, and 1.75, respectively (Table 3). Those compounds were also examined for their cytotoxicity and cucurbitacins 4—8 exhibited strong cytotoxic activity against two human cancer cell lines, NUGC-3 and HONE-1. Compound 9 showed moderate activity against NUGC-3 and HONE-1 cell lines (Table 4). Furthermore, compounds 2, 4, 6, 8—13, were assayed for an-

Table 1. The ¹H-NMR Data of Cucurbitacins **4**—**8** (Acetone- d_6 , δ , Multiplicity, J, Hz in Parentheses)

	4	5	6	7	8
H-1	<i>α</i> : 2.09 m	α: 2.11 ddd (12.6, 6.2, 3.6)	5.75 d (2.5)	5.76 d (2.5)	5.76 d (2.9)
	β: 1.13 q (12.6)	β: 1.11 q (12.6)			
H-2	4.52 m	4.56 ddd (12.6, 6.2, 4.5)	—		—
H-6	5.81 m	5.81 m	5.80 m	5.80 m	5.79 m
H-7	α: 1.97 m	α: 2.04 m	α: 2.05 m	α: 2.08 m	α: 2.06 m
	β: 2.39 m	<i>β</i> : 2.40 m	β: 2.38 m	β: 2.38 m	<i>β</i> : 2.37 m
H-8	1.94 m	1.96 m	2.03 m	2.07 m	2.04 m
H-10	3.00 br d (12.6)	3.02 dd (12.6, 3.6)	3.65 m	3.65 m	3.67 d (2.9)
H-12	α: 3.38 d (14.6)	α: 3.44 d (15.0)	<i>α</i> : 3.38 d (14.7)	α: 3.44 d (14.8)	α: 3.43 d (14.6)
	β: 2.50 d (14.6)	β: 2.54 d (15.0)	β: 2.54 d (14.7)	β: 2.58 d (14.8)	β: 2.60 d (14.6)
H-15	α: 1.40 m	α: 1.42 m	α: 1.45 m	α: 1.44 m	α: 1.43 m
	β : 1.83 dd (12.5, 8.9)	β : 1.82 dd (13.0, 8.5)	β : 1.85 dd (12.4, 8.7)	β: 1.85 m	β : 1.84 dd (12.8, 9.0)
H-16	4.45 m	4.35 m	4.46 m	4.38 m	4.44 m
H-17	2.64 d (7.1)	2.66 d (7.3)	2.66 d (7.1)	2.66 m	2.66 d (7.1)
H-18	0.90 s	0.93 s	0.93 s	0.95 s	0.95 s
H-19	1.01 s	1.02 s	0.96 s	0.96 s	0.96 s
H-21	1.39 s	1.39 s	1.40 s	1.40 s	1.38 s
H-23	6.79 d (15.8)	2.63 and 2.91 m	6.81 d (15.7)	2.68 and 2.94 m	6.85 d (15.3)
H-24	6.97 d (15.8)	1.99 t (7.8)	6.98 d (15.7)	2.03 m	6.96 d (15.3)
H-26	$1.50 \mathrm{s}^{a)}$	1.41 s	$1.51 \mathrm{s}^{a}$	1.40 s	1.29 s
H-27	$1.54 \mathrm{s}^{a)}$	1.41 s	$1.54 s^{a}$	1.40 s	1.29 s
H-28	1.31 s	1.32 s	1.24 s	1.24 s	1.24 s
H-29	1.27 s	1.28 s	1.29 s	1.29 s	1.30 s
H-30	1.42 s	1.44 s	1.46 s	1.47 s	1.46 s
2-OH	3.85 d (4.2)	3.83 d (4.5)	6.97 s	6.96 s	6.98 s
16-OH	3.65 d (5.0)	3.89 d (4.2)	3.66 d (4.5)	3.88 d (4.5)	3.68 d (4.8)
20-OH	4.51 s	4.41 s	4.50 s	4.41 s	4.48 s
25-OH	_	_		_	4.00 s
25-OAc	1.96 s	1.89 s	1.95 s	1.88 s	_

a) Assignments in each column may be interchangeable.

Table 2. The ¹³C-NMR Data of Cucurbitacins **4**—**8** (Acetone- d_6 , δ)

	4	5	6	7	8
C-1	36.9	37.0	115.7	115.8	115.8
C-2	72.2	72.2	146.0	146.1	146.0
C-3	213.6	213.6	198.8	198.9	198.9
C-4	51.0	51.0	48.5	48.6	48.5
C-5	141.8	141.9	138.0	138.1	138.0
C-6	120.7	120.7	121.3	121.4	121.3
C-7	24.5	24.5	24.3	24.4	24.3
C-8	43.4	43.4	42.6	42.6	42.6
C-9	49.0	49.0	49.4	49.5	49.4
C-10	34.0	34.1	35.3	35.3	35.2
C-11	212.7	212.6	213.5	213.5	213.5
C-12	49.3	49.6	49.5	49.9	49.7
C-13	48.8	49.0	48.9	49.1	48.9
C-14	51.3	51.4	51.3	51.4	51.4
C-15	46.4	46.5	46.6	46.8	46.7
C-16	71.2	71.0	71.3	71.1	71.1
C-17	59.0	58.6	58.9	58.7	58.7
C-18	20.5	20.4	20.5	20.5	20.5
C-19	20.1	20.1	20.2	20.3	20.3
C-20	79.5	80.0	79.5	80.1	79.1
C-21	25.0	25.4	25.0	25.5	25.2
C-22	203.4	214.5	203.3	214.5	203.6
C-23	122.1	31.7	122.2	31.8	120.6
C-24	150.9	35.4	150.9	35.5	155.3
C-25	80.0	81.7	80.0	81.8	70.1
C-26	26.3^{a}	26.1^{a}	26.4^{a}	26.1^{a}	29.8
C-27	26.9^{a}	26.2^{a}	27.0^{a}	26.3 ^{a)}	29.8
C-28	29.7	29.5	28.2	28.2	28.1
C-29	21.7	21.7	20.6	20.7	20.6
C-30	19.1	19.1	18.6	18.7	18.6
OCOCH ₃	170.2,	170.3,	170.2,	170.4,	
	21.8	22.2	21.8	22.3	

a) Assignments in each column may be interchangeable.

Fig. 1. The X-Ray Structure of Cucurbitacin E (6)

other two human cancer cells, breast carcinoma (MCF-7) and lung carcinoma (A549). Compounds **4**, **6**, **8**, and **9** showed strong cytotoxic activity. **11** exhibited marginal cytotoxicity against A549 and MCF-7 (Table 5). This is an interesting result about cucurbitacins not only due to their potency but also to the consistency with recently reported anti-cancer activity.^{5,6)}

Experimental

General Procedures UV spectra were recorded on an Agilent 8453 spectrophotometer. IR spectra were measured on a Nicolet Magna FT-IR spectrophotometer. NMR spectra were recorded on Bruker AMX-300 and AMX-400 FT-NMR spectrometers; all chemical shifts were given in ppm from tetramethylsilane as an internal standard. Mass spectra were obtained on Finnigan Trace and VG 70-250S spectrometer by a direct inlet system.

Table 3. Inhibition of HIV Replication in H9 Lymphocytic Cells for Compounds from the Rhizomes of *Begonia nantoensis*

Compound	$\begin{array}{c} \mathrm{IC}_{50} \\ (\mu \mathrm{g/ml})^{a)} \end{array}$	EC_{50} $(\mu g/ml)^{b)}$	$\mathrm{TI}^{c)}$
Nantoamide (2)	>25	$NS^{d)}$	$NS^{d)}$
3β ,22 α -Dihydroxyolean-12-en- 29-oic acid (10)	>25	5.65	4.40
Indole-3-carboxylic acid (11)	16.40	2.41	6.79
5,7-Dihydroxychromone (12)	>25.00	18.65	1.34
(-)-Catechin (13)	>25	14.32	1.75
AZT	500	0.0007	737207

a) Concentration that inhibits uninfected H9 cell growth by 50%. *b*) Concentration that inhibits viral replication by 50%. *c*) Therapeutic index= IC_{50}/EC_{50} . *d*) No suppression.

Table 4. Cytotoxicity of the Compounds from the Rhizomes of *Begonia nantoensis* toward Two Human Cancer Lines NUGC-3 and HONE-1^a)

Compound	$IC_{50} (\mu g/ml)^{b)}$		
Compound	NUGC-3	HONE-1	
Nantoamide (2)	>20 (2)	>20 (3)	
Cucurbitacin B (4)	0.22	0.05	
Dihydroucurbitacin B (5)	3.26	1.55	
Cucurbitacin E (6)	0.34	0.08	
Dihydroucurbitacin E (7)	8.60	2.68	
Cucurbitacin I (8)	2.14	0.89	
(-)-Auranamide (9)	17.12	8.68	

a) NUGC-3=human gastric carcinoma; HONE-1=human nasopharyngeal carcinoma. b) If inhibition <50% at 20 μ g/ml, percent observed is the value in brackets.

Table 5. Cytotoxicity of the Compounds from the Rhizomes of *Begonia nantoensis* toward Two Human Cancer Lines A549 and MCF-7^{a)}

Compound	$EC_{50} (\mu g/ml)^{b)}$		
Compound	A549	MCF-7	
Nantoamide (2)	>20 (17)	>20 (47)	
Cucurbitacin B (4)	<2.5 (87)	<2.5 (91)	
Cucurbitacin E (6)	<2.5 (81)	<2.5 (82)	
Cucurbitacin I (8)	<2.5 (82)	<2.5 (78)	
(-)-Auranamide (9)	<2.5 (81)	<2.5 (78)	
Indole-3-carboxylic acid (11)	4.6	12.9	

a) A549=human lung carcinoma; MCF-7=human breast carcinoma. b) If inhibition >50% at 2.5 μ g/ml or inhibition <50% at 20 μ g/ml, percent observed is the value in brackets.

Plant Material The rhizomes of *Begonia nantoensis* were collected from Nanto Hsien, Taiwan, Republic of China, in February 2002; the plant was authenticated by Professor C. S. Kuoh. A voucher specimen (No: PLW-020001) was deposited in the Herbarium of National Cheng Kung University, Tainan, Taiwan.

Extraction and Isolation The air-dried rhizomes of *Begonia nantoensis* (5.5 kg) were powdered and extracted under reflux with MeOH 6 times. The combined extracts were concentrated under reduced pressure to give dark brown syrup. The syrup was then suspended in H₂O and partitioned with hexane, CHCl₃ and EtOAc, successively. The concentrated hexane layer (64 g) was fractionated on a silica gel column with a gradient of hexane and Me₂CO (5:1 to pure Me₂CO) into nine fractions. Fraction 2 was chromatographed on silica gel eluting with hexane–EtOAc (99:1 to 9:1) to obtain 2,4-diphenylbut-1-ene (2 mg)⁷ and 2,4,6-triphenylhex-1-ene (4 mg).⁸ Fractions 3 and 4 were chromatographed on silica gel column with exane–EtOAc (5:1) eluent to yield a mixture of β -sitosterol and stigmasterol (850 mg)⁹ and stigmast-4-en-3-one (38 mg),¹⁰ respectively. Fraction 5 was further purified by silica gel column chromatography using a hexane–EtOAc

(3:1) mixture as eluent to give nantoamide (2, 9 mg), oleanoic acid (1 mg),¹¹ (-)-auranamide (9, 7 mg),¹² glyceryl-1-tetracosanoate (6 mg),¹³ lutein (3 mg),¹⁴⁾ methyl vanillate (2 mg),⁹⁾ vanillin (4 mg),¹⁵⁾ and eudesmic acid (3 mg).¹⁶⁾ Fractions 6 and 7 were chromatographed on silica gel column with CHCl₃-MeOH (19:1) eluent to give 9-hydroxylinoleic acid (8 mg)¹⁷⁾ and a mixture of β -sitosteryl- β -D-glucoside (2.5 g).⁹⁾ The CHCl₃ layer (41 g) was fractionated on a silica gel column by eluting with a gradient of hexane and Me₂CO (3:1 to pure Me₂CO) to obtain seven fractions. Fraction 3 was chromatographed on silica gel column by eluting with hexane-EtOAc (5:1) to give a mixture of 6\beta-hydroxysitost-4-en-3-one and 6\beta-hydroxystigmasta-4,22-dien-3-one (46 mg).^{18,19} Fraction 4 was chromatographed on silica gel column with a gradient of i-Pr2O-MeOH (49:1 to pure MeOH) to give 2-(2hydroxytricosanoylamino)-1,3,4-hexadecanetriol (28 mg),²⁰⁾ methylparaben (1 mg),²¹⁾ p-hydroxybenzaldehyde (4 mg),²¹⁾ and trans-docosanylferulate (15 mg).²²⁾ Fraction 5, on repeated chromatography on silica gel column with a gradient of i-Pr₂O-MeOH (49:1 to pure MeOH) afforded cucurbitacin B (4, 60 mg),²³⁾ dihydrocucurbitacin B (5, 5 mg),²⁴⁾ cucurbitacin E (6, 18 mg),⁴⁾ dihydrocucurbitacin E (7, 4 mg),²³⁾ cucurbitacin I (8, 3 mg),⁴⁾ dihydrocucurbitacin I (1 mg),⁴⁾ 3β ,22 α -dihydroxyolean-12-en-29-oic acid (10, 5 mg),²⁵⁾ indole-3-carboxaldehyde (15 mg),²⁶⁾ indole-3-carboxylic acid (11, 4 mg),²⁷⁾ 5,7-dihydroxychromone (12, 4 mg),²⁸⁾ (*S*)-*N*-(1-hydroxymethyl-2-phenylethyl)benzamide (5 mg),²⁹ vanillic acid (4 mg),⁹ piperonylic acid (1 mg),³⁰ benzoic acid (20 mg),³¹ and caffeic acid (2 mg).¹⁵ The concentrated EtOAc layer (16g) was subjected to column chromatography over silica gel and eluted with a gradient of i-Pr₂O-MeOH (5:1 to pure MeOH) to give nine fractions. Purification of fraction 2 by silica gel column with CHCl3-MeOH (9:1) furnished daidzein (2 mg),³²⁾ protocatechuic acid (6 mg),³³⁾ protocatechuic acid methyl ester (11 mg),³⁴⁾ 4-hydroxybenzoic acid (5 mg),⁹⁾ and *p*coumaric acid (1 mg).9) Further separation of fraction 3 on silica gel column with a gradient of CHCl3-MeOH (9:1 to pure MeOH) yielded begonanline (1, 5 mg), methyl (S)-glycerate (3, 9 mg), and (-)-catechin (13, 998 mg).³⁵⁾ Fraction 6 was chromatographed on silica gel column with CHCl₃-MeOH (5:1) eluent to yield vitexin $(50 \text{ mg})^{36}$ and fraction 9 give nicotinic acid $(5 \text{ mg})^{37}$ uracil $(3 \text{ mg})^{9}$ 1,2,4-trihydroxybenzene $(2 \text{ mg})^{38}$ and cucurbitacin F (0.6 mg).³⁹⁾

Begonanline (1): Yellow syrup. UV λ_{max} (MeOH) nm (log ε): 206 (3.82), 267 (3.04), 316 (2.56), 392 (2.04). IR (film) v_{max} cm⁻¹: 3400, 1706, 1602, 1492. ¹H-NMR (acetone- d_6) δ : 4.00 (3H, s, OCH₃), 7.19 (1H, dd, J=8.8, 2.5 Hz, H-7), 7.64 (1H, d, J=8.8 Hz, H-8), 7.66 (1H, d, J=2.5 Hz, H-5), 8.22 (1H, d, J=4.8 Hz, H-4), 8.28 (1H, s, 6-OH), 8.42 (1H, d, J=4.8 Hz, H-3), 10.72 (1H, br s, NH). ¹³C-NMR (acetone- d_6) δ : 52.3 (OCH₃), 106.8 (C-5), 113.9 (C-8), 119.3 (C-4), 119.8 (C-7), 122.3 (C-4b), 130.8 (C-4a), 131.8 (C-1), 136.5 (C-8a), 138.2 (C-9a), 138.4 (C-3), 152.7 (C-6), 167.4 (C=O). EI-MS m/z: 242 (M⁺, 67), 210 (20), 182 (100); HR-EI-MS m/z: 242.0690 [M]⁺ (Calcd for C₁₃H₁₀N₂O₃: 242.0691).

Nantoamide (2): Colorless syrup. UV λ_{max} (MeOH) nm (log ε): 293 (2.88). IR (film) v_{max} cm⁻¹: 3325, 1642, 1604, 1544, 1503. ¹H-NMR (acetone- d_6) δ : 2.89 (2H, t, J=7.2 Hz, H-7'), 3.58 (2H, td, J=7.2, 5.6 Hz, H-8'), 6.05 (2H, s, H-7), 6.86 (1H, d, J=8.0 Hz, H-5), 7.17 (1H, t, J=7.8 Hz, H-4'), 7.26 (4H, m, H-2', 3', 5', 6'), 7.33 (1H, d, J=2.0 Hz, H-2), 7.43 (1H, dd, J=8.0, 2.0 Hz, H-6), 7.63 (1H, br s, NH). ¹³C-NMR (acetone- d_6) δ : 36.5 (C-7'), 42.1 (C-8'), 102.6 (C-7), 108.1 (C-2), 108.4 (C-5), 122.6 (C-6), 126.9 (C-4'), 129.2 (C-3' and -5'), 129.6 (C-2' and -6'), 130.1 (C-1), 140.6 (C-1'), 148.7 (C-3), 151.6 (C-4), 166.3 (C-8). EI-MS *m*/*z*: 269.1056 [M]⁺ (Calcd for C₁₆H₁₅NO₃: 269.1052).

Methyl (S)-Glycerate (**3**): Colorless oil; $[\alpha]_D - 8.4^{\circ}$ (c=0.44, CH₃OH, lit.³⁷⁾ -10.71°). UV λ_{max} (MeOH) nm (log ε): 204 (3.11), 222 (2.97). IR (film) v_{max} cm⁻¹: 3417, 1740, 1441. ¹H-NMR (CDCl₃) δ : 3.72 (1H, br s, OH), 3.83 (3H, s, OCH₃), 3.84 (1H, dd, J=9.9, 3.4 Hz, H-3a), 3.91 (1H, dd, J=9.9, 3.4 Hz, H-3b), 4.28 (1H, t, J=3.4 Hz, H-2). ¹³C-NMR (CDCl₃) δ : 52.9 (OCH₃), 64.0 (C-3), 71.5 (C-2), 173.5 (C-1). EI-MS *m/z*: 121 ([M+H]⁺, 20), 120 (4), 105 (45), 91 (49), 88 (40), 78 (89), 57 (80), 55 (100). HR-EI-MS *m/z*: 121.0500 [M+H]⁺ (Calcd for C₄H₉Q₄: 121.0501).

X-Ray Crystal Data for Cucurbitacin E (6) Data were acquired on a Simens Smart CCD 1000 diffractometer. All intensity measurements were performed using graphite monochromated Mo-K α radiation (λ =0.71073 Å). Cucurbitacin E (6), C₃₂H₄₄O₈ 556.69, was obtained as orthorhombic crystals, space group P2₁2₁2₁ with cell dimensions *a*=8.0423 (5), *b*= 16.5503 (10), *c*=22.0277 (13) Å, α = β = γ =90°, *V*=2931.9 (4) Å³, *Z*=4, *F*(000)=1208, ρ_{calcd} =1.266 mg·m⁻³, μ =0.090 mm⁻¹, $2\theta_{max}$ =56.66°, crystal dimensions 0.30×0.20×0.10 mm³. The crystal structure was solved by a direct method. Full-matrix least-squares refinement of atomic parameters (anisotropic C, O; isotropic H) converged at *R*₁=0.0798, *wR*₂=0.16988 over

7039 reflections with $I \ge 2\sigma(I)$. The absolute stereochemistry cannot be directly determined from X-ray data, but it is correct as shown based on transformation of 4 to the known di-*p*-iodobenzoate ester of cucurbitacin D.⁴⁰

Anti-HIV Assay The anti-HIV assay was carried out according to the procedure described in the literature.⁹

Cytotoxicity Assay The cytotoxicity assay was carried out according to the procedure described in the literature.⁹⁾

Acknowledgments The authors would like to thank the National Science Council of the Republic of China for financial support (NSC 91-2323-B-006-003).

References

- 1) Liao J. C., "Flora of Taiwan," 2nd ed., Vol. 1, Editorial Committee of the Flora of Taiwan, Taipei, 1993, pp. 851—852.
- Hashimoto Y., Kawanishi K., *Phytochemistry*, 14, 1633—1635 (1975).
 Eichelberger U., Mansourova M., Henning L., Findeisen M., Giesa S.,
- Muller D., Welzel P., *Tetrahedron*, **57**, 9737—9742 (2001).
 Velde V. V., Lavie D., *Tetrahedron*, **39**, 317—321 (1983).
- 4) velde v. v., Lavie D., *Tetrahedron*, **39**, 517—521 (1985)
- Blaskovich M. A., Sun J. Z., Cantor A., Turkson J., Jove R., Sebti S. M., *Cancer Res.*, 63, 1270–1279 (2003).
- Frei B., Heinrich W., Herrmann D., Orjala J. E., Schmitt J., Sticher O., Planta Med., 64, 385–386 (1998).
- 7) Yayli N., Indian J. Chem., Sec. B, 33, 556-561 (1994).
- Ayer W. A., Muir D. J., Chakravarty P., *Phytochemistry*, 42, 1321– 1324 (1996).
- 9) Wu P. L., Su G. C., Wu T. S., J. Nat. Prod., 66, 996–998 (2003).
- Wu T. S., Yang C. C., Wu P. L., Liu L. K., *Phytochemistry*, 40, 1247– 1250 (1995).
- Zhang Z., Koike K., Jia Z., Nikaido T., Guo D., Zheng J., Chem. Pharm. Bull., 47, 388–393 (1999).
- Jakupovic J., Chen Z. L., Bohlmann F., *Phytochemistry*, 26, 2777– 2780 (1987).
- Sultana N., Armstrong J. A., Waterman P. G., *Phytochemistry*, 52, 895—900 (1999).
- 14) Khachik F., Steck A., Pfander H., J. Agri. Food Chem., 47, 455–461 (1999).
- 15) Wu T. S., Tsang Z. J., Wu P. L., Lin F. W., Li C. Y., Teng C. M., Lee K. H., *Bioorg. Med. Chem.*, 9, 77–84 (2001).
- 16) Chang Y. C., Chang F. R., Wu Y. C., J. Chin. Chem. Soc., 47, 373–380 (2000).
- 17) Kato T., Nakai T., Ishikawa R., Karasawa A., Namai T., *Tetrahedron: Asymmetry*, **12**, 2695–2701 (2001).
- Arai Y., Nakagawa T., Hitosugi M., Shiojima K., Ageta H., Abdel-Halim O. B., *Phytochemistry*, 48, 471–474 (1998).
- Anjaneyulu V., Satyanarayana P., Viswanadham K. N., Jyothi V. G., Rao K. N., Radhika P., *Phytochemistry*, **50**, 1229–1236 (1999).
- 20) Inagaki M., Isobe R., Kawano Y., Miyamoto T., Komori T., Higuchi R., *Eur. J. Org. Chem.*, 1, 129–132 (1998).
- 21) Wu T. S., Yeh J. H., Wu P. L., Phytochemistry, 40, 121-124 (1995).
- 22) Kuo Y. H., Chen W. C., J. Chin. Chem. Soc., 46, 819-824 (1999).
- 23) Afifi M. S., Ross S. A., el Sohly M. A., Naeem Z. E., Halaweish F. T., J. Chem. Ecol., 25, 847–860 (1999).
- 24) Nishida R., Fukami H., Tanaka Y., Magalhaes B. P., Yokoyama M., Blumenschein A., Agric. Biol. Chem., 50, 2831–2836 (1986).
- 25) Kutney J. P., Hewitt G. M., Lee G., Piotrowska K., Roberts M., Rettig S. J., *Can. J. Chem.*, **70**, 1455—1480 (1992).
- 26) Yue Q., Miller C. J., White J. F. Jr., Richardson M. D., J. Agric. Food Chem., 48, 4687–4692 (2000).
- 27) Chan Y. Y., Leu Y. L., Wu T. S., Chem. Pharm. Bull., 47, 887–889 (1999).
- 28) Kuo Y. H., Yeh M. H., J. Chin. Chem. Soc., 44, 379-383 (1997).
- 29) Lee K. Y., Kim Y. H., Park M. S., Oh C. Y., Ham W. H., J. Org. Chem., 64, 9450—9458 (1999).
- 30) Koike K., Ohmoto T., Phytochemistry, 29, 2617-2621 (1990).
- 31) Leu Y. L., Chan Y. Y., Hsu M. Y., Chen I. S., Wu T. S., J. Chin. Chem. Soc., 45, 539—542 (1998).
- 32) Kanakubo A., Koga K., Isobe M., Fushimi T., Saitoh T., Ohshima Y., Tsukamoto Y., *Tetrahedron*, 57, 8801–8806 (2001).
- 33) Wu T. S., Chang F. C., Wu P. L., Kuoh C. S., Chen I. S., J. Chin. Chem. Soc., 42, 929–934 (1995).
- 34) Kita Y., Arisawa M., Gyoten M., Nakajima M., Hamada R., Tohma H., Takada T., J. Org. Chem., 63, 6625–6633 (1998).
- 35) Martin T. S., Kikuzaki H., Hisamoto M., Nakatani N., J. Am. Oil

Chem. Soc., 77, 667-673 (2000).

- 36) Lin Y. L., Kuo Y. H., Shiao M. S., Chen C. C., Ou J. C., J. Chin. Chem. Soc., 47, 253—256 (2000).
- 37) Chen C. Y., Chang F. R., Teng C. M., Wu Y. C., J. Chin. Chem. Soc., 46, 77—86 (1999).
- 38) Hiramoto K., Li X. H., Makimoto M., Kato T., Kikugawa K., Mutat.

Res., 419, 43-52 (1998).

- 39) Sarker S. D., Whiting P., Sik V., Dinan L., *Phytochemistry*, **50**, 1123– 1128 (1999).
- 40) Kupchan S. M., Sigel C. W., Guttman L. J., Restivo R. J., Bryan R. F., J. Am. Chem. Soc., 94, 1353—1354 (1972).