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ABSTRACT

YUNXIAO LIU: Essays in High-frequency Financial Econometrics
(Under the direction of George Tauchen and Chuanshu Ji)

With the advent of intraday high-frequency data of financial assets since the late 1990s,

the research of financial econometrics has entered into a “big data” era. New theoretical

techniques using the theory of continuous time stochastic processes has been extensively

developed, and new empirical evidence has been documented. In particular, due to its

far-reaching applications in various fields such as risk management and option pricing, the

study of volatility, which quantitatively measures the uncertainty of prices of financial as-

sets, has drawn substantial attention from researchers and there has been a large amount

of literature devoted to this topic, including both modelling and prediction. In this dis-

sertation, we are firstly concerned with the statistical inference of the so-called integrated

volatility functionals, which is a general class of quantities that are computed from volatil-

ity. Secondly, we also devise a simulation method to recover the probability distribution of

prices of financial assets by taking advantage of the information contained in sampled price

data.

Accordingly, the dissertation consists of two parts. In the first part, we focus on the

estimation of integrated volatility functionals, where the volatility process is assumed to

be a long memory Itô semimartingale (LMIS), which is defined as the sum of an Itô semi-

martingale and a process satisfying certain regularity assumptions that in particular is able

to capture the long memory property of financial volatility that has been vastly documented

in literature. We provide central limit theorem (CLT) in such context. Furthermore, un-

der the such LMIS assumption, we consider both parametric and nonparametric bootstrap

inference methods of integrated volatility functionals, and we show the validity of both

bootstrap methods by providing CLTs. Furthermore, with the usual assumption of volatil-

ity being Itô semimartingale, we consider an empirical-process form of integrated volatility
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functionals, and offer functional CLTs when the indexing parameter is of arbitrary finite

dimensions. We also consider bootstrap inference in this empirical-process setting.

In the second part, we consider Euler method with estimated spot volatility, from which

we are able to regenerate and realize the stochastic dynamics of price of financial asset by

taking advantage of the information contained in the observed prices. We provide both

theoretical foundation and empirical application of this method.
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CHAPTER 1

Introduction

With the advent of intraday high-frequency data of financial assets since the late 1990s,

the research of financial econometrics has entered into a “big data” era. New theoretical

techniques using the theory of continuous time stochastic processes has been extensively

developed, and new empirical evidence has been documented. In particular, due to its far-

reaching applications in various fields such as risk management and option pricing, the study

of volatility, which quantitatively measures the uncertainty of prices of financial assets, has

drawn substantial attention from researchers and there has been a large amount of literature

devoted to this topic. In this Introduction, we offer an overview of the dissertation including

the basic set-up, the research questions we are to explore, the main results we have obtained

and a direction of future work.

We start with the basic statistical setting. For simplicity, we only consider one-

dimensional case in the Introduction and the multivariate setting will be discussed in the fol-

lowing chapters. Consider a filtered probability space (Ω,F , (Ft)t≥0,P) satisfying the usual

conditions (see e.g., (Jacod and Shiryaev, 2003)), on which are defined a one-dimensional

Brownian motion W and a Poisson random measure µ on R+×E with deterministic inten-

sity ν(dt, dz) = dt⊗λ(dz). Here E is a Polish space. As is usual the case (e.g. (Aı̈t-Sahalia

and Jacod, 2014)), we model the logarithm of the price process Xt of a given stock as an

Itô semimartingale in the following Grigelionis form:

Xt = x0 +

∫ t

0
bsds+

∫ t

0
σsdWs + (δ1{‖δ‖≤1}) ∗ (µ− ν)t + (δ1{‖δ‖>1}) ∗ νt,

where σ is an R−valued predictable (or simply progressively measurable) process on

(Ω,F , (Ft)t≥0,P), and δ is a predictable R−valued function on Ω × R+ × E. Through-

out the dissertation, all stochastic processes, unless otherwise specified, are assumed to be

1



Figure 1.1: A typical price path and return

(a) The price path and returns of SPY from 01/03/2007-12/31/2015, based on 5-min data.

càdlàg adapted and hence locally bounded. A typical stock price path can be seen from

Figure 1.1.

In finance and econometrics, the process σt is called the spot (or local) volatility of Xt,

and accordingly the spot (local) variance process is defined as ct = σ2
t . Since mathematically

the sign of σt cannot be identified and ct is always nonnegative, it is more straightforward

to consider ct in study, which, abusing the terminology, we still call volatility. Moreover,

since ct is latent (not observable), it can only be recovered by using the data of X sampled

with high-frequency via certain statistical estimation procedures.

A typical high-frequency sampling setting goes as follows: given a fixed time span

[0, T ], which typically can be a trading day, the price process X is discretely sampled with

equidistant step size ∆n. Hence for any i = 1, 2, . . . , [T/∆n], the log-return of X over

2



interval [(i− 1)∆n, i∆n] is given by

∆n
i X = Xi∆n −X(i−1)∆n

.

We consider infill asymptotics where the mesh ∆n of grid of sampling asymptotically tends

to 0 as n→∞.

Recall that in a traditional “low frequency” setting, the daily risk has been measured

using daily squared returns, see e.g. (Engle, 1982) and (Bollerslev, 1986), or daily range

(difference between maximum and minimum within one day), see e.g. (Alizadeh et al.,

2002). With the availability of intraday high-frequency data sampled as above, however, a

new measure, which is defined as ∫ T

0
csds

and called integrated volatility, becomes prevailing. A consistent and efficient estimator for

the intergrated volatility is realized volatility, which is defined as the sum of squared intraday

returns. Such a method is proposed by (Andersen and Bollerslev, 1999) and popularized

by, e.g., (Andersen et al., 2001a) and (Andersen et al., 2003a). More generally, it would be

interesting to study the random object of the form

S(g) ≡
∫ T

0
g(cs)ds,

for some (possibly nonlinear) function g, which is called integrated volatility functional and

accommodates many quantities that are related to volatility, including integrated volatility

as a special case when g(x) = x. For other representative examples of g, see Chapter 3.

The first part of this dissertation, which includes Chapter 3, 4 and 5, focuses on the

statistical inference for S(g) under various conditions on the variance process ct and test

function g. More precisely, for given g, the estimator for S(g) can be constructed in two

steps: firstly, we nonparametrically recover the spot variance ct over the sampling grid by

employing a local average of sum of squared truncated returns (see (Jacod and Protter,

3



2012), Chapter 9 and 13), that is, for any 0 ≤ i ≤ Nn ≡ [T/∆n]− kn, let

ĉi∆n ≡
1

kn∆n

kn∑
j=1

(
∆n
i+jX

)2
1{||∆n

i+jX||≤un},

where kn is a sequence of integers that goes to infinity representing the number of increments

employed in a local window and un determines the truncation threshold for eliminating

jumps in X, see (Mancini, 2001). Next, plugging the estimated spot volatilities into a

Riemann approximation framework, the estimator of S(g) is given by

Sn(g) ≡ ∆n

[T/∆n]−kn∑
i=0

(
g(ĉi∆n)− 1

kn
g′′(ĉi∆n)ĉ2

i∆n

)
, (1.1)

where a higher order bias term is subtracted off.

Assuming that the volatility process follows an Itô semimartingale, (Jacod and Rosen-

baum, 2013a) shows a CLT (see (4.5) in Chapter 4 below) for Sn(g) approximating S(g) with

rate
√

∆n provided test function g and its derivatives satisfy a polynomial growth condition.

By a local spatialization argument, (Li et al., 2016a) extends the CLT result to the case of g

satisfying a much weaker condition given as Assumption 3.2.1, and (Li and Xiu, 2016) shows

an empirical-process-type CLT in a similar setting. However, all these results assume that

volatility process is an Itô semimartingale, which is actually not able to capture the long

memory property of volatility dynamics that has been widely documented in literature, see

for example, (Comte and Renault, 1998). In contrast, in Chapter 3 we derive the same CLT

result for Sn(g) approximating S(g) with rate
√

∆n for a larger class of volatility processes:

we assume the volatility process follows a long-memory Itô semimartingale (LMIS) which

is given by

σt = σ1,t + σ2,t,

where σ1,t is an Itô semimartingale and σ2,t can be a fractional Brownian motion or a Weiner

integral with respect to fractional Brownian motion. We state the result below, which can

be viewed as one-dimensional version of Theorem 3.4.1.
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Theorem 1.0.1. Under Assumptions 3.1.1-3.4.1, it holds that

1√
∆n

(Sn(g)− S(g))
L-s−→MN (0, V (g)),

where MN (0, V ) is a centered mixed normal distribution with conditional variance

V (g) ≡ 2

∫ T

0

(
g′(cs)

)2
c2
sds.

Here
L-s−→ denotes stable convergence in law which will be elaborated in Chapter 2.

In light of Theorem 1.0.1, inference can be done for S(g): for example, one can con-

struct confidence intervals provided that the asymptotic variance V (g) can be consistently

estimated, as Corollary 3.7 in (Jacod and Rosenbaum, 2013b). On the other hand, however,

a consistent estimator for S(g) is not indispensable to obtain confidence intervals for S(g),

as one may turn to bootstrap method.

In Chapter 4, under the assumption that the volatility process σt follows LMIS, we

propose algorithms for constructing confidence intervals for S(g) via both parametric boot-

strap method and nonparametric bootstrap method. Given bootstrap samples of returns

D∗n ≡ {∆n
i X
∗, i = 1, . . . , n} generated either parametrically or nonparametrically, the boot-

strap estimator for S(g) is given by, not surprisingly, an analogue form of (1.1):

Sn(g;D∗n) ≡ kn
n

[n/kn]−1∑
i=0

(
g(ĉ∗n,i)−

1

kn
g′′(ĉ∗n,i)ĉ

∗2
n,i

)
,

where

ĉ∗n,i =
n

kn

kn∑
j=1

(
∆n
ikn+jX

∗)2
are bootstrap spot covariance estimators using D∗n. Here we take T = 1,∆n = 1/n and

both ĉ∗n,i and Sn(g;D∗n) are constructed over non-overlapping blocks [ikn/n, (i+ 1)kn/n] for

i ∈ In ≡ {0, . . . , [n/kn] − 1}. Then the bootstrap confidence interval of coverage 1 − α is

formed as

[Sn(g;Dn) + S̃n(g;Dn)− q1−α/2(Sn(g;D∗n)), Sn(g;Dn) + S̃n(g;Dn)− qα/2(Sn(g;D∗n))],
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where qα/2(Sn(g;D∗n)) and q1−α/2(Sn(g;D∗n)) are the α/2 and 1−α/2 quantiles of Sn(g;D∗n)

respectively, computed from a large number of bootstrap repetitions, and

S̃n(g;Dn) =
kn
n

[n/kn]−1∑
i=0

g(ĉn,i)

is the uncorrected estimator for S(g). Here we use Dn ≡ {∆n
i X, i = 1, . . . , n} to denote

the set of original returns, in contrast to its bootstrap counterpart D∗n. Theoretically, the

asymptotic coverage rate of 1 − α is guaranteed by Theorem 1.0.2. In the sequel, we use

Zn
L|F−→ Z to denote L(Zn|F)

P−→ L(Z|F) for a sequence of random variables (Zn)n≥1 and

Z, namely, the conditional distribution of Zn given F converges to that of Z in probability

under Prokhorov metric. Such a mode of convergence in commonly used in the setting of

bootstrap, as well as together with stable convergence in law.

Theorem 1.0.2. Suppose the Assumption 3.1.1-3.4.1, it follows that

√
n
(
Sn(g;D∗n)− S̃n(g;Dn)

) L|F−→MN (0, V (g)),

where

V (g) ≡ 2

∫ T

0

(
g′(cs)

)2
c2
sds.

Furthermore, we implement Monte Carlo simulation to study the coverage rates of

both the parametric and nonparametric bootstrap confidence intervals in finite sample, the

results of which validate our theoretical asymptotic result given in Theorem 1.0.2.

Chapter 5 considers a more general form of test function g. We focus on a functional

form of the test function g, namely,

g : V ×Θ→ R,

where V ⊂ R is the range space of spot volatility, and Θ ⊂ Rdimθ is the space of some

indexing parameter θ. So for each fixed value ct, g(ct, ·) is a function over Θ. For example,

when g(x) = exp(−ux) for u ∈ (0,∞), S(g) is the Laplace transform of the volatilty

occupation time (Todorov and Tauchen, 2012b), which summarizes the complete spatial
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information of the volatility process within the time span. See also (Li and Xiu, 2016)

Section 3.3 for other econometric applications in this context.

Our goal is to (uniformly) estimate the quantity of the form

S(g; θ) ≡
∫ T

0
g(cs; θ)ds.

Similarly as in (Li and Xiu, 2016), the proposed estimator is

Sn(g; θ;Dn) ≡ ∆n

[T/∆n]−kn∑
i=0

(
g(ĉi∆n ; θ)− 1

kn
∂2
c g (ĉi∆n ; θ) ĉ2

i∆n

)
.

Under the assumption that the volatility process σt is an Itô semimartingale, plus other

regularity conditions, we are able to obtain the following functional central limit theorem.

Theorem 1.0.3. Suppose Assumption 3.1.1 with σ2 = 0, and Assumption 3.2.2. Moreover,

assume g : V × Θ → R satisfies Assumption 3.2.1 with respect to the first variate and is

continuously differentiable with respect to θ ∈ Θ, where Θ ⊂ Rdimθ is a compact set, with

dimθ <∞. Then the sequence ∆
−1/2
n (Sn(g; ·;Dn)− S(g; ·)) of processes converges F−stably

in law under the uniform metric to a process ξ(·) which, conditional on F , is centered

Gaussian with covariance function Sg(·, ·), where Sg(·, ·) is defined as, for any θ, θ′ ∈ Θ,

Sg(θ, θ
′) ≡ 2

∫ T

0
∂cg(cs; θ)∂cg(cs; θ

′)c2
sds.

Furthermore, in this functional setting we also develop both parametric and nonpara-

metric bootstrap algorithms to conduct statistical inference as regard to S(g; ·). The al-

gorithms are very similar to the ones in Chapter 4 and we provide empirical-process-type

asymptotic results to justify both bootstrap algorithms. From an application point of view,

such asymptotic results could help constructing (empirical) uniform confidence region for

S(g; ·).

The second part of the dissertation consists of Chapter 6 alone, where we develop Euler

method with estimated spot volatility. In the field of financial econometrics, there is always
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need to simulate the following diffusion process

dXt = btdt+ σtdWt,

where W is Brownian motion. Very often X denotes the log-price of financial asset, say

stock, and σ is referred to as the volatility process related to X. The most commonly used

method to simulate X is the so-called Euler-Maruyama approximation, which is named

after Leonhard Euler and Gisiro Maruyama, and is actually a simple generalization of the

Euler method for ordinary differential equations to stochastic differential equations. More

precisely, to obtain the value of X at terminal time T over a fixed time span [0, T ], one uses

the recursive equation:

Xτn+1 = Xτn + bτn(τn+1 − τn) + στn(Wτn+1 −Wτn),

with given discretization grid 0 = τ0 < τ1 < · · · < τN = T . Usually, the equidistant

discretization scheme is used, namely, τi+1 − τi = δ for some time step 0 < δ < T . For

a thorough treatment on Euler-Maruyama approximation and its extensions, see (Kloeden

and Platen, 1992).

However, to implement such procedure, the values of (bt)t≥0 and (σt)t≥0 have to be

prespecified (or simulated) beforehand, which might not replicate the true world as much

as possible, even if the specified values for parameters are claimed to be “calibrated to the

real world”.

Alternatively, instead of specifying particular dynamics for (σt)t≥0, we can use estimated

spot volatility based on high-frequency data in the Euler method. In other words, we would

like to design a data generating mechanism, via Euler method, to regenerate data that

mimics the real world more realistically, by taking advantage of the information contained

in the observed real data. As seen below, “mimic the real world” is in the sense that the

probability distribution of the simulated data generated by our Euler method with estimated

spot volatility uniformly approximates (measured by Wasserstein metric) to that of the true

data, under certain assumptions. In fact, we have already used this method in constructing
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parametric bootstrap confidence interval for integrated volatility functionals (see Algorithm

1 in Chapter 4).

Put it more precisely, we assume that the log-price process follows

dXt =
√
ctdWt

X0 = 0

where T is the terminal time, c is the variance process and W is one-dimensional Brownian

Motion introduced above. In particular, X has neither a drift part nor a jump part. We

consider an equally spaced time discretization grid over [0, T ] for Euler approximation, i.e.,

for some δ > 0, let

τ0 = 0, τi = iδ.

where i ∈ {0, 1, . . . , bTδ c}. At each discretization time point iδ, the spot volatility estimation

is given by

ĉiδ =
1

kn∆n

kn∑
`=1

(
∆n
d iδ

∆n
e+`X

)2

.

Then for fixed n and δ, the global Euler approximation with estimated spot volatility is

given by the process:

Y n,δ
t =

[t/δ]−1∑
i=0

√
ĉiδ(W̃(i+1)δ − W̃iδ), 0 ≤ t ≤ T,

where W̃ is Brownian motion on the simulation space, which is independent of all the

information living in the real world. In particular, for Y n,δ to be well-defined, the condition

δ > ∆n has to be satisfied.

We derive the theoretical results associated with Y n,δ. The very first thing one should

notice is that since in simulation only W̃ is available, Y n,δ is a “consistent estimator” for

the simulated log-price defined by

X̃t =

∫ t

0

√
csdW̃s, 0 ≤ t ≤ T,
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rather than the true price observed process Xt, which has the same distribution as X̃t under

the no leverage assumption, i.e., the volatility process ct and Brownian motion Wt, both of

which are defined from the real world, are independent. To derive the convergence rate of

Y n,δ approximating X̃, we have

Theorem 1.0.4. Suppose Assumptions 6.2.1 and 6.2.3. Assume further that {ct : t ≥ 0}

has sample paths satisfying for any t > s > 0,

E|ct − cs|2 ≤ K|t− s|2ρ, 0 < ρ ≤ 1,

for some constant K. Then it holds for any fixed discretization distance δ ∈ [∆n, T ) that

E

(
sup

0≤t≤T
|Y n,δ
t − X̃t|

)
≤ K

(
1√
kn

+ (kn∆n)ρ + δρ +

(
δ log

(2T

δ

)) 1
2

)

for some constant K.

From Theorem 1.0.4 we are able to derive the “optimal” simulation scheme in the sense

of fastest convergence rate: to make Y n,δ converges to X̃ as fast as possible, one should

first take δn → 0 as small as possible, i.e.

δn = ∆n,

which means taking each data sampling point as a discretization point; then we strike

balance between statistical error and target error arising from spot volatility estimation, by

requiring

k
ρ+ 1

2
n ∆ρ

n → β ∈ (0,∞),

or equivalently kn ∼ ∆
− ρ

ρ+ 1
2

n . In this fashion, our “optimal” Euler approximation becomes:

Y n
t =

bt/∆nc−1∑
i=0

√
ĉi∆n∆n

i W̃ , 0 ≤ t ≤ T,
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with convergence rate

E

(
sup

0≤t≤T
|Y n
t − X̃t|

)
≤ K

(
1√
kn

+
(
kn∆n

)ρ
+ ∆ρ

n +

(
∆n log

( 2T

∆n

)) 1
2

)

∼ ∆

1

2+ 1
ρ

n .

We show that such a convergence rate is actually exact (not only an upper bound).

As far as applications are concerned, we are able to evaluate the accuracy of estimation

of diffusive beta (see (Reiss et al., 2015)). Simply speaking, it is done by obtaining the

sampling distribution of the diffusive beta. More generally, we can use the Euler method

with estimated volatility to obtain the sampling distribution for any functional of the path

of log-price process.
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Future Work: The results obtained above give us a solid foundation for future work.

As for the project of bootstrap inference, we have the following to do

• Consider the over-lapping case, besides the non-overlapping case studied already;

• Prove a similar asymptotic result when the volatility process is of the mixed form

considered in Chapter 3.

• Prove a similar asymptotic result when g is a functional, characterized by another

indexing parameter θ, as the setting in Chapter 5.

As for the project of Euler method with estimated spot volatility, we can continue the

study in both theory and application:

• Theory: An interesting direction to generalize our Euler method with estimated

volatility is to take into account the so-called leverage effect, which refers to the

negative correlation between volatility and returns. Since the Brownian motion W̃

used in simulation is independent of everything in the real world, to create (negative)

correlation between the simulated prices and volatility, we need to use the same W̃

to regenerate volatility process, which requires to model volatility process as an Itô

semimartingale as well and estimate the volatility of volatility (vol. of vol.). As one

may imagine, the convergence rate in this situation would be even slower than ∆
1/4
n

as both volatility and vol. of vol. are latent.

• Application: The daily range of a given price process X, defined as the difference

between maxXt and minXt within one day, had been a popular measure to quantify

daily risk. Obviously, the daily range depends on the whole price path over a single

day, and hence its sample distribution can be realized by the Euler method with

estimated volatility. Consequently, we are able to implement empirical study using

the Euler method developed here.
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CHAPTER 2

Preliminaries

We start with notation that will be used throughout the paper. For a vector B, we use

Bj to denote its j-th component. For an integer d > 0, Md denotes the space of d × d

nonnegative semidefinite matrices. For a matrix A, we use Aij and Aᵀ to denote its (i, j)

element and transpose, respectively. For a matrix valued process At, the notations Aijt

and Aᵀt are interpreted similarly. For a matrix A ∈ Md and a differentiable function g

defined on Md, the first two partial derivatives of g are denoted as ∂jkg(A) = ∂g(A)/∂Ajk

and ∂2
jk,lmg(A) = ∂2g(A)/∂Ajk∂Alm respectively. For a set B, 1B(·) denotes the indicator

function of set B. The symbol ≡ indicates equality by definition. || · || denotes the Frobenius

norm. For any two (possibly random) real-valued sequences (an)n≥1 and (bn)n≥1, we write

an = Op(bn) if an/bn is bounded in probability and write an = op(bn) if an/bn converges to

0 in probability. All limits are for n→∞. We use
P−→,

L−→ and
L-s−→ to denote convergence

in probability, convergence in law and stable convergence in law, respectively. We use K to

denote a generic constant which may vary from line to line.

In this section we give a brief introduce to two important notions that will be used

frequently in the rest of dissertation. Section 2.1 introduces Itô semimartingale, which

is a basic class of stochastic processes commonly used in econometrics and finance. Sec-

tion 2.2 discusses the so-called stable convergence in law, which is stronger than the usual

convergence in law (or weak convergence).

2.1 Itô semimartingale

We begin with the definition of general semimartingale. For a comprehensive treat-

ment on this topic, together with other notions in stochastic analysis, such as theory of

Itô integral, (Poisson) random measures and stochastic integral with respect to random
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measures, see (Jacod and Shiryaev, 2003), (Jacod and Protter, 2012) and (Aı̈t-Sahalia and

Jacod, 2014). We consider a filtered probability space (Ω,F , (Ft)t≥0,P), where the filtration

(Ft)t≥0 satisfies the usual condition as given in (Jacod and Shiryaev, 2003) p.2. Through-

out the paper, all stochastic processes, unless otherwise specified, are assumed to be càdlàg

adapted and hence locally bounded.

Definition 2.1. (a) A semimartingale is a process X of the form X = X0 +M+A where

X0 is finite-valued and F0−measurable, M is a local martingale with M0 = 0, and A

is a stochastic process of finite variation.

(b) A special semimartingale is a semimartingale X which admits a decomposition X =

X0 +M +A as above, with a process A that is predictable.

Given an Rd−valued process X, the jump measure associated with X is defined as

µX =
∑

s>0:∆Xs 6=0

ε(s,∆Xs),

where εa denotes the Dirac measure sitting at a. Then we can rewrite a semimartingale as

Xt = X0 +A′t +Mt +
∑
s≤t

∆Xs1{‖∆Xs‖>1}

where M0 = A′0 = 0 and A′ is of finite variation and M is a local martingale. Then the

semimartingale A′ +M by construction has jumps of size always smaller than 1. Hence by

Lemma 4.24 in (Jacod and Shiryaev, 2003), A′ +M is special and we can write

A′ +M = B +N,

where N0 = B0 = 0 and N is a local martingale and B is a predictable process of finite

variation.

Definition 2.2. The characteristic of a Rd−valued semimartingale X is the following triple

(B,C, ν):

(i) B = (Bi)1≤i≤d is the predictable process of finite variation defined above;
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(ii) C = (Cij)1≤i,j≤d is the quadratic variation of the continuous local martingale part Xc

of X, that is, Cij = 〈Xi,c, Xj,c〉;

(iii) ν is the predictable compensating measure of the jump measure µX of X.

One should note that the characteristic triple does NOT characterize the law of the

process except for special cases. An important special case of semimartingale is Levy

process, the characteristic triple of which is

Bt(ω) = bt, Ct(ω) = ct, ν(ω, dt, dx) = dt⊗ F (dx),

which are not random actually. For a general treatment of Lévy process, see (Bertoin,

1998).

In financial modelling, it is common to use a special class of semimartingales, but which

is also a direct extension of Lévy process:

Definition 2.3. A Rd−valued semimartingale X is an Itô semimartingale if its character-

istic (B,C, ν) are absolutely continuous with respect to the Lebesgue measure, in the sense

that

Bt =

∫ t

0
bsds, Ct =

∫ t

0
csds, ν(dt, dx) = dtFt(dx),

where b = (bt) is an Rd−valued process, c = (ct) is a process with values in Md, and

Ft = Ft(ω, dx) is for each (ω, t) a measure on Rd.

Now we come to give a fundamental representation theorem for Itô semimartingale,

which is usually referred to as the Grigelionis form of Itô semimartingale. The following

theorem is Theorem 2.1.2 in (Jacod and Protter, 2012). Let d′ be an arbitrary integer with

d′ ≥ d, E be a Polish space with a σ−finite measure λ having no atom, and q(dt, dx) =

dt⊗ λ(dx).

Theorem 2.1.1. Let X be a d−dimensional Itô semimartingale on the space

(Ω,F , (Ft)t≥0,P), with characteristics (B,C, ν). There is a very good filtered extension

(Ω̃, F̃ , P̃) of (Ω,F ,P), on which are defined a d′− dimensional Brownian motion W and a
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Poisson random measure p on R+ × E with Lévy measure λ, such that

Xt = x0 +

∫ t

0
bsds+

∫ t

0
σsdWs + (δ1{‖δ‖≤1}) ∗ (p− q)t + (δ1{‖δ‖>1}) ∗ pt, (2.1)

and where σ is an Rd ⊗ Rd′−valued predictable (or simply progressively measurable) on

(Ω,F , (Ft)t≥0,P), and δ is a predictable Rd−valued function on Ω× R+ × E.

For a more detailed description of extension of probability space, see (Jacod and Protter,

2012) p.36-37. The point of Theorem 2.1.1 is that any d−dimensional Itô semimartingale

can be expressed in terms of a Brownian motion and a Poisson random measure, and in

fact, (2.1) can be used as the definition for Itô semimartingales, up to extending the space.

Itô semimartingales of form (2.1) have been widely used in modelling prices of financial

assets for various reasons. At first, it has been widely known that the prices of financial

assets, say stocks, have jumps, which for example occurs when there is significant macroeco-

nomic announcements. Although we consider Poisson random measure with a compensator

of product form, dt ⊗ λ(dx), which is time-homogeneous, the whole jump part in (2.1) is

actually time-inhomogeneous since the jump size function δ is random and time-varying.

As a consequence the jump part of stock price is driven by a very general class of processes.

As for continuous part, the drift part captures the persistence in the process, and also rep-

resents the compensation for risk and time, while the continuous martingale part given as

a stochastic integral models the small moves.

In fact, as (Back, 1991) points out, special semimartingale appears to be the most

general concept of a gains process for which the notion of a local risk premium can be

well-defined. On the other hand, (Barndorff-Nielsen and Shephard, 2004a) (Remark 1) and

(Barndorff-Nielsen et al., 2006) (Remarks 3) demonstrate the generality of the continuous

(local) martingale part
∫ t

0 σsdWs in (2.1). More precisely, by a representation theorem of

local martingale as stochastic integral (e.g., (Karatzas and Shreve, 1991) p.170-172), all

continuous local martingales with absolutely continuous quadratic variation can be written

in the form of
∫ t

0 σ̃sdWs for some process σ̃t. Using the Dambis-Dubins-Schwartz theorem,

the difference between the class of continuous local martingale and the class of stochastic

integrals with respect to Brownian motion is the local martingales with continuous, but not
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absolutely continuous quadratic variation. Thus the form of continuous (local) martingale

part we consider here is only slightly smaller the class of general continuous local martingale.

2.2 Stable convergence in law

In this subsection we introduce the notion of stable convergence in law, which is stronger

than the usual convergence in law or weak convergence. We first review the definition of

the latter for illustrative purpose.

Let E be a Polish space, with Borel σ-field E . Let {Zn} be a sequence of E-valued

random variables, allowing each of them defined on its own probability space (Ωn,Fn,Pn).

Definition 2.4. We say that Zn converges in law if there is a probability measure µ on

(E, E) such that

E (f(Zn)) −→
∫
f(x)µ(dx).

for all (Lipschitz) continuous bounded functions f on E.

Usually, one could “realize” the limit as a E-valued random variable Z on some proba-

bility space (Ω,F ,P), then the above convergence reads as

E (f(Zn)) −→ E (f(Z)) .

However, the usual convergence in law defined as above may not be enough in the area

of financial econometrics. As one can see, quite often we will be in the following scenario: we

need to estimate some (multivariate) parameter θ and we propose a sequence of consistent

estimators θ̂n. We are able to show a central limit theorem with certain convergence rate,

say
√
n and mixed normal limiting distribution, namely,

√
n
(
θ̂n − θ

)
L−→ N (0,Σ).

Very often the limiting variance Σ is random as well, especially in the case of stochastic

volatility. In order to do statistical inference from CLT (for example, to construct confidence

intervals for θ), one needs to scale the limiting distribution to (multivariate) standard normal
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distribution. However, this may not be achieved even if Σ can be consistently estimated, as

Zn
L−→ Z, Yn

P−→ Y

do NOT in general imply

(Zn, Yn)
L−→ (Z, Y ),

the only exception being Y is a constant, which is case of the so-called Slutsky Theorem.

We hence need a stronger version of convergence in law to make sure the joint convergence

(Zn, Yn)
L−→ (Z, Y ), still holds even if Y is random.

We require E-valued sequence {Zn} of random variables to be defined on the same

probability space (Ω,F ,P).

Definition 2.5. We say that Zn stably converges in law if there is a probability measure

η on the product space (Ω× E,F ⊗ E), such that η(A× E) = P(A) for all A ∈ F and

E (Y f(Zn)) −→
∫
Y (ω)f(x)η(dω, dx)

for all bounded (Lipschitz) continuous functions f on E and all bounded random variables

Y on (Ω,F).

As before, we can “realize” the limit Z on an (arbitrary) extension (Ω̃, F̃ , P̃) of (Ω,F ,P),

then the stable convergence in law above can be written as

E (f(Zn)) −→ Ẽ (Y f(Z)) ,

provided P̃(A ∩ {Z ∈ B}) = η(A×B) for all A ∈ F and B ∈ E . Then we say Zn converges

stably to Z, denoted by

Zn
L−s−→ Z.

By definition, it immediately follows that stable convergence in law implies convergence

in law. Moreover, we do have the desired property

Zn
L−s−→ Z, Yn

P−→ Y =⇒ (Zn, Yn)
L−s−→ (Z, Y ).
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In fact, stable convergence in law is very much like convergence in probability: when the

limiting variable Z is defined on the same space Ω as all Zn, it follows that

Zn
L−s−→ Z ⇐⇒ Zn

P−→ Z.

We end this section with a brief literature retrospection. The notion of stable conver-

gence in law dates back to (Rényi, 1963), and is developed by (Aldous and Eagleson, 1978),

(Jacod, 1997) and (Jacod and Protter, 1998). An early use of this concept in econometrics

is (Phillips and Ouliaris, 1990). For a brief summary of stable convergence in law used in a

high-frequency financial econometrics setting, see (Jacod and Protter, 2012), Section 2.2.1,

and a more detailed exposition in general context of stochastic analysis is in (Jacod and

Shiryaev, 2003), Chapter VIII 5c. See also (P. and Heyde, 1980) for some different insights

on the topic.
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CHAPTER 3

Efficient Estimation of Integrated Volatility Functionals with General
Volatility Dynamics

3.1 Setting

We start with introducing the formal setup for our analysis. Consider a complete filtered

probability space (Ω,F , (Ft)t≥0,P). Throughout the chapter, all stochastic processes, unless

otherwise specified, are assumed to be càdlàg adapted and hence locally bounded. Our basic

assumptions of underlying processes are collected in Assumption 3.1.1.

Assumption 3.1.1. For some constant r ∈ [0, 1), and a sequence of a sequence (τm)m≥1

of stopping times increasing to ∞, we have

(i) The process Xt is a d−dimensional Itô semimartingale with the form

Xt = x0 +

∫ t

0
bsds+

∫ t

0
σsdWs+Jt, Jt =

∑
s≤t

∆Xs =

∫ t

0

∫
R
δ (s, z)µ (ds, dz) , (3.1)

where the drift bt is d−dimensional; the spot volatility process σt is Rd⊗Rd valued; Wt

is a d−dimensional Brownian motion; µ is a Poisson random measure on R+×E for

an auxiliary Polish space E with the deterministic intensity measure ν(dt, dz) = dt⊗

λ(dz) for some σ−finite measure λ on E; δ : Ω×R+×E → Rd is a predictable function.

Moreover, there are a sequence (Jm)m≥1 of nonnegative λ−integrable deterministic

functions on E such that ||δ(ω, t, z)||r ∧ 1 ≤ Jm(z) for all t ≤ τm(ω) and z ∈ E.

(ii) The spot volatility process σt is of the form

σt = σ1,t + σ2,t. (3.2)
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Moreover, both σ1,t and c1,t = σ1,tσ
ᵀ
1,t ∈ Md are Itô semimartingales of the following

Grigelionis form

σ1,t = σ1,0 +

∫ t

0
b(σ1)
s ds+

∫ t

0
σ(σ1)
s dWs +

∫ t

0

∫
R
δ(σ1)(s, z)1{||δ(σ1)(s,z)||>1}µ(ds, dz)

+

∫ t

0

∫
R
δ(σ1)(s, z)1{||δ(σ1)(s,z)||≤1}(µ− ν)(ds, dz)

c1,t = c1,0 +

∫ t

0
b(c1)
s ds+

∫ t

0
σ(c1)
s dWs +

∫ t

0

∫
R
δ(c1)(s, z)1{||δ(c1)(s,z)||>1}µ(ds, dz)

+

∫ t

0

∫
R
δ(c1)(s, z)1{||δ(c1)(s,z)||≤1}(µ− ν)(ds, dz)

where W and µ are the same as in (3.1); b(σ1), b(c1), δ(σ1), δ(c1) are d× d−dimensional

and σ(σ1), σ(c1) are d×d×d−dimensional; δ(σ1), δ(c1) are predictable functions such that

for a sequence of nonnegative λ-integrable functions J̃m on E, ||δ(σ1)(ω, t, z)||2 ∧ 1 ≤

J̃m(z) and ||δ(c1)(ω, t, z)||2 ∧ 1 ≤ J̃m(z) for all t ≤ τm(ω) and z ∈ E.

On the other hand, σ2,t is a stochastic process satisfying, for some ε > 0,

E
(
||σ2,t − σ2,s||2

)
≤ K(t− s)1+2ε (3.3)

In finance area, X is usually the logarithm of price of a given stock and σ is the asso-

ciated volatility process. For a proper introduction to Itô semimartingale, see (Jacod and

Protter, 2012), Chapter 2. In particular, up to expanding dimensions, it is no restriction

to let all Itô semimartingales be driven by the same Brownian motion and Poisson random

measure. We note that Assumption 3.1.1 accommodates a large class of models commonly

used in finance and economics, which allows for jumps in both price and volatility processes

and for arbitrary dependence structure between components within the model. More im-

portantly, the volatility structure (3.2) considered in Assumption 3.1.1 consists of a general

Itô semimartingale plus a component satisfying certain regularity conditions, which cov-

ers fractional Brownian motion (and related processes) that may be used to capture the

long-memory property of the volatility process. We refer the readers to the seminal works

by Comte and Renault (1996,1998), which for the first time introduce the modelling of

long-memory property in finance area. In view of such a mixture of Itô semimartingale
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and long-memory process, in the sequel we refer to model (3.2) as the long-memory Itô

semimartingale (LMIS) volatility model.

On the technical level, as long as σ1 is an Itô semimartingale, c1 is also an Itô semimartin-

gale by Itô’s formula. The processes b(c1), σ(c1) and δ(c1) can be expressed as deterministic

functions of σ1, b(σ1), σ(σ1) and δ(σ1), but we do not need this here. On the other hand,

as far as the conditions imposed on the process σ2 is concerned, since σ2 may not be a

martingale any more (e.g., when σ2 is fractional Brownian motion), the conditional expec-

tation of σ2,t − σ2,s given Fs could be difficult to compute and hence complicates the proof

of Theorem 3.4.1 below. This is the reason why more smoothness on the second moment

(3.3) is needed, which can be seen as compensation for the loss of martingale property.

Now we state the statistical setting in this chapter. At stage n, we assume that the

process X is sampled at times i∆n for some time step ∆n, for 0 ≤ i ≤ n ≡ bT/∆nc, within

the fixed time interval [0, T ]. For any process Y , the increments of Y are denoted by

∆n
i Y ≡ Yi∆n − Y(i−1)∆n

, i = 1, . . . , n. (3.4)

Below, we consider an infill asymptotic setting, that is, ∆n → 0 as n→∞.

3.2 Integrated volatility functional

With model (3.1), the spot (co)variance process of X is given by c = σσᵀ, which is also

Md-valued. The (random) object of interest considered in this chapter is the integrated

volatility functional of the form

S(g) ≡
∫ T

0
g(cs)ds, (3.5)

for some (possibly nonlinear) test function g : Md → R, which is assumed to satisfy the

following assumption. Below, for a compact set K ⊂ Md and ε > 0, we denote the ε-

enlargement about K by

Kε ≡ {M ∈Md : inf
A∈K
||M −A|| < ε}.
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Assumption 3.2.1. There exist a localizing sequence of stopping times (τm)m≥1 and a

sequence of convex compact subsets Km ⊆Md such that ct ∈ Km for t ≤ τm and g ∈ C3(Kεm),

the space of three times continuously differentiable functions on Kεm for some ε > 0.

Assumption 3.2.1 is easily verified in specific setting, which in particular holds, in one-

dimensional case, for g(c) = log(c) or
√
c, provided that both ct and 1/ct are locally bounded

with Km being compact intervals on (0,∞).

Many quantities of interests in finance and econometrics can be written in the form of

(3.5), with Assumption 3.2.1 satisfied. For example, when c is scalar, g(x) = x corresponds

to the so-called integrated volatility S(g) =
∫ T

0 ctdt, which has been a popular measure of

volatility in high-frequency setting, see (Andersen and Bollerslev, 1999), (Andersen et al.,

2001b) and (Andersen et al., 2003b). Moreover, g(x) = x2 corresponds to the integrated

quarticity, which is the (half of) asymptotic variance when using realized volatility to ap-

proximate integrated volatility. The more generally defined power variation S(g) =
∫ T

0 cptdt

for some p > 0 is associated with polynomial test function g(x) = xp, see for example,

(Barndorff-Nielsen and Shephard, 2003), (Barndorff-Nielsen and Shephard, 2004b) and (Ja-

cod, 2008). In bivariate case, the beta for the diffusive movement of the stock with respect to

the market is given by βt ≡ c12,t/c11,t, where the market and the stock are labelled by 1 and

2 respectively, with the test function being g(A) = A12,t/A11,t for A ∈ M2, see (Mykland

and Zhang, 2009). Moreover, the idiosyncratic spot covariance of the stock can thus be ex-

pressed as c22,t−β2
t c11,t = c22,t−c2

12,t/c11,t, with test function g(A) = A22,t−A2
12,t/A11,t, see

(Mykland and Zhang, 2006). Other examples include: correlation/leverage effect (Kalnina

and Xiu, 2016), volatility Laplace transform (Todorov and Tauchen, 2012b), variance betas

(Li et al., 2016b), eigenvalues (Aı̈t-Sahalia and Xiu, 2015). Moreover, general forms of S (g)

also serve as integrated moment conditions in specification tests and estimation problems in

economic models (Li and Xiu, 2016), following which we will consider a functional version

of function g in Chapter 5. We also note that early discussion on the estimation of diffusion

process and the sampling frequency of data goes back to (Merton, 1980) and (Zhou, 1996).

In order to give the estimator of S(g) for a given function g, we first nonparametrically

recover the spot variance ci∆n by employing a local average of sum of squared truncated

23



returns (see (Jacod and Protter, 2012), Chapter 9 and 13), that is, for any 0 ≤ i ≤ Nn ≡

[T/∆n]− kn, let

ĉlmi∆n
≡ 1

kn∆n

kn∑
j=1

∆n
i+jX

l∆n
i+jX

m1{||∆n
i+jX||≤un}

where 1 ≤ l,m ≤ d, kn is a sequence of integers that goes to infinity representing the number

of increments employed in a local window and un determines the truncation threshold for

eliminating jumps in X, see (Mancini, 2001) and (Mancini, 2009). If X is continuous, then

there is no need to truncate in forming ĉ by taking un = ∞ . The conditions on tuning

parameters kn and un are collected in Assumption 3.2.2. We note that the study of spot

covariance estimation dates back to (Foster and Nelson, 1996), which features a continuous

setting; one can also see (Aı̈t-Sahalia and Jacod, 2014) on this topic in a more general

setting.

Assumption 3.2.2. kn ∼ ∆−γn and un ∼ ∆$
n for some constants γ and $ satisfying

r

2
∨ 1

3
< γ <

1

2
,

1− γ
2− r

≤ $ <
1

2
.

In particular, kn∆n → 0 and k2
n∆n →∞.

We then define the estimator for S(g) as

Sn(g) ≡ ∆n

[T/∆n]−kn∑
i=0

g(ĉi∆n)− 1

2kn

d∑
j,k,l,m=1

∂2
jk,lmg(ĉi∆n)× (ĉjli∆n

ĉkmi∆n
+ ĉjmi∆n

ĉkli∆n
)

(3.6)

Assuming that the volatility process is an Itô semimartingale, (Jacod and Rosenbaum,

2013a) shows a CLT for Sn(g) approximating S(g) with rate
√

∆n provided test function g

(and its derivative) satisfy a certain growth condition. (Li et al., 2016a) extends the CLT

result to the case of g only satisfying Assumption 3.2.1, and (Li and Xiu, 2016) shows an

empirical-process-type CLT in a similar setting, while both papers still assuming volatility

process is an Itô semimartingale. In contrast, in this chapter we want to derive an associated

CLT for Sn(g) approximating S(g) with convergence rate
√

∆n and the same asymptotic
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variance as in the aforementioned papers for a larger class of volatility processes given as

LMIS (3.2).

3.3 Examples

In this section we provides some concrete examples for the process σ2 satisfying certain

regularity conditions introduced in Assumption 3.1.1. We begin with fractional Brownian

motion in Section 3.3.1, and then proceed to Wiener integrals with respect to fractional

Brownian motion in Section 3.3.2.

3.3.1 Fractional Brownian motion

Fractional Brownian motion (fBm) (BH
t )t≥0 with Hurst index H ∈ (0, 1) is a centered

Gaussian process with the covariance function

E(BH
t B

H
s ) =

1

2
(s2H + t2H − |t− s|2H),

where for simplification we assume BH
0 = 0. The process was introduced by (Kolmogorov,

1940), followed by pioneering works including (Hurst, 1951), (Hurst, 1956) and (Mandelbrot,

1983). Fractional Brownian motion has been widely used in hydrology, engineering and

finance. When H = 1
2 , the process reduces to the usual standard Brownian motion.

For a more comprehensive description of fractional Brownian motion, see, e.g., (Duncan

et al., 2000), (Nualart, 2005), (Nualart, 2006) and (Mishura, 2008). We briefly summarize

some important properties of fractional Brownian motion below:

1. Self-similarity: for any a > 0, {BH
au, u ∈ R} d

= aH{BH
u , u ∈ R}, where

d
= denotes the

equality in any finite-dimensional distributions. This property can be regarded as a

“fractal property” in probability.

2. Stationary increments and moment estimates: From definition it follows that the

increment of BH over a finite time interval [s, t] is normally distributed with mean

zero and variance

E
((
BH
t −BH

s

)2)
= |t− s|2H .
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Indeed, for any integer k ≥ 1, we have

E
((
BH
t −BH

s

)2k)
=

(2k)!

k!2k
|t− s|2Hk.

Then by Kolmogorov’s continuity criterion (e.g. (Revuz and Yor, 1999), Theorem 2.1

in Chapter 1), BH has a version whose sample paths are γ−Hölder continuous for any

γ < H.

More generally (see, e.g., Corollary 3.11 in (Duncan et al., 2000)), for any α > 1,

there is a Cα <∞ such that

E
∣∣BH

t −BH
s

∣∣α ≤ Cα|t− s|αH . (3.7)

3. Long memory property when H > 1
2 : Let r(n) ≡ Cov

(
BH

1 , B
H
n+1 −BH

n

)
be the

autocovariance function, then if H > 1/2, we have
∑∞

n=1 r(n) =∞, in which case we

call that the fractional Brownian motion exhibits long-range dependence.

4. Non-semimartingale: BH is not a semimartingale when H 6= 1/2. This can be proved

by studying the p−th variation of BH , see, e.g., Proposition 7.1.1 of (Pipiras and

Taqqu, 2016).

5. Prediction formula: The conditional expectation of BH
t given the past information

is given as (3.8). This is first proved by (Gripenberg and Norros, 1996) for the case

H > 1/2, and extended to H ∈ (0, 1/2) by (Pipiras and Taqqu, 2001) (Theorem 7.1).

To state the result more easily, let κ = H − 1/2, then for any 0 ≤ s ≤ t ≤ T and

κ ∈ (−1/2, 1/2), we have

E
(
Bκ
t

∣∣Bκ
v , v ∈ [0, s]

)
= Bκ

s +

∫ s

0
Ψκ(s, t, v)dBκ

v , (3.8)

where for v ∈ (0, t),

Ψκ(s, t, v) =
sin(πκ)

π
v−κ(s− v)−κ

∫ t

s

zκ(z − s)κ

z − v
dz.
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We note that the function Ψκ(s, t, v) is related to the so-called Appell’s hypergeometric

function, see e.g., Remark 6.4.5 in (Pipiras and Taqqu, 2016).

(Comte and Renault, 1996) and (Comte and Renault, 1998) for the first time introduced

fractional Brownian motion to modelling the price and volatility processes of financial as-

sets. In fact, the long memory property of volatility processes has been documented in

economics and finance for a long time. As one may expect, it is the long range dependence

property described above that makes fractional Brownian motion an ideal stochastic process

to capture such features exhibited by volatility. As a consequence, in the remainder of this

chapter we will only consider fractional Brownian motion BH with H > 1/2, as well as its

continuous version. Then BH satisfies the conditions imposed on σ2 in Assumption 3.1.1.

Remark 3.3.1. On the technical level, since BH is not a semimartingale, and also in light

of the prediction formula (3.8), it would be rather hard to verify the estimate

|E
(
BH
t+s −BH

t

∣∣Ft) | ≤ Ks
for some constant K, which is always true for any Itô semimartingale under certain bound-

edness conditions (see Lemma 2 in the Proofs). The lack of such an estimate complicates

the proof of Theorem 3.4.1 when σ2 = BH . However, the difficulty is overcome by the more

smoothness BH provides as shown in (3.7) when H > 1/2.

3.3.2 Wiener integrals w.r.t. fractional Brownian motion

In this example, we focus on the integral over an finite interval [0, T ] of the form

∫ t

0
f(u)dBH

u , 0 ≤ t ≤ T, (3.9)

where BH is a fractional Brownian motion with H > 1/2. Since fractional Brownian motion

is no longer semimartingale, the usual theory of Itô integral cannot be applied to defining

stochastic integrals with respect to fractional Brownian motion. Indeed, one needs the

theory of Malliavin calculus to define such stochastic integral. However, when f(u) is a
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deterministic function, (3.9) can be defined in a relatively easier fashion, in which case (3.9)

is called fractional Wiener integral.

The integration with respect to general Gaussian processes has been studied for a long

time and we refer readers to (Huang and Cambanis, 1978) for an extensive presentation.

(Pipiras and Taqqu, 2000) discussed some related questions of Wiener integral of determin-

istic integrand w.r.t fractional Brownian motion over the real line, and (Pipiras and Taqqu,

2000) discussed that of over a finite interval, which is the case of (3.9) we consider here. The

basic idea is to define (3.9) first with f being elementary(step) functions, and then extend

the definition to some bigger classes of f in the L2(Ω) sense using isometry. Indeed, when

H > 1/2, (3.9) can be defined for each of the following four increasing classes of integrands:

L2[0, T ] ⊂ L1/H [0, T ] ⊂ |Λ|κT ⊂ ΛκT ,

where κ = H − 1/2 and

ΛκT ≡
{
f : [0, T ]→ R such that

∫ T

0
[s−κ(IκT−u

κf(u))(s)]2ds <∞
}
,

|Λ|κT ≡
{
f : [0, T ]→ R such that

∫ T

0

∫ T

0
|f(u)||f(v)||u− v|2κ−1dudv <∞

}
.

Here IκT− is (right-sided) fractional integral operator of order κ defined as

(IκT−f)(s) =
1

Γ(κ)

∫ T

s
f(u)(u− s)κ−1du, s ∈ (0, T ), f ∈ L1[0, T ].

For definition of (3.9) for each specific class of integrands, see (Pipiras and Taqqu, 2001) and

references therein. For our purpose, it would be sufficient to consider the space L1/H [0, T ],

as seen from the properties of (3.9) listed below. Moreover, as the theory of fractional

Brownian motion is closed related to fractional integrals and fractional derivatives, we refer

readers to (Samko and Marichev, 1993) for a comprehensive treatment on this topic.

When H > 1/2 (or equivalent κ > 0), (3.9) has the following properties:

1. Continuity: As explained in (Mishura, 2008), Section 1.11, when f ∈ L1/H [0, T ], the

process
{∫ t

0 f(u)dBH
u

}
0≤t≤T

is continuous in t.
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2. Moment estimates: For any p ≥ 1, 0 ≤ a < b ≤ ∞, define

‖f‖Lp(a,b) ≡
(∫ b

a
|f(u)|pdu

)1/p

.

As proved in Theorem 1.1 in (Mémin et al., 2001), there exists a constant c(H,α)

such that for every α > 0 and for every a, b with 0 ≤ a < b <∞, we have

E

(∣∣∣∣∫ b

a
f(u)dBH

u

∣∣∣∣α
)
≤ c(H,α) ‖f‖αL1/H(a,b) . (3.10)

3. Prediction formula: Similar to (3.8), for any 0 ≤ s < t ≤ T and f ∈ ΛκT , we have

E
(∫ t

0
f(v)dBκ

v

∣∣∣∣Bκ
v , v ∈ [0, s]

)
=

∫ s

0
f(v)dBκ

v +

∫ s

0
Ψκ
f (s, t, v)dBκ

v , (3.11)

where for v ∈ (0, t),

Ψκ
f (s, t, v) =

sin(πκ)

π
v−κ(s− v)−κ

∫ t

s

zκ(z − s)κ

z − v
f(z)dz.

(3.11) is proved in Lemma 1 of (Duncan, 2006). One can see (Fink et al., 2013) for

derivation of conditional variance, .

By moment estimates (3.10), if f is uniformly bounded from above by some constant M > 0

(as in Assumption 3.5.1 in the Proofs), we have

E

(∣∣∣∣∫ b

a
f(u)dBH

u

∣∣∣∣α
)
≤ c(H,α) ‖f‖αL1/H(a,b) ≡

(∫ b

a
|f(u)|1/Hdu

)Hα
≤ c(H,α)Mα(b− a)Hα,

which is the RHS of (3.7). Therefore, together with the continuity in time, the process{∫ t
0 f(u)dBH

u

}
0≤t≤T

satisfies the conditions imposed on σ2.

3.4 Results

In this section we state our main result. In order for the CLT to hold under the setting

described in Section 3.1, we need one more assumption on the smoothness of the second

moment of σ2.
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Assumption 3.4.1. Assume ε > γ
2(1−γ) .

Under Assumption 3.4.1, it holds that k1+ε
n ∆ε

n → 0, which plays an important role

in the proof of Theorem 3.4.1. In light of Assumption 3.2.2, Assumption 3.4.1 implies

that ε > 1/4, which in the case of fractional Brownian motion corresponds to the Hurst

parameter H > 3/4. Such a requirement is consistent with the empirical results documented

in (Comte and Renault, 1998), (Andersen and Bollerslev, 1997), (Andersen et al., 2001b)

and (Bollerslev et al., 2013). In particular, those papers estimate the fractional parameter

of the underlying volatility process under both low frequency and high frequency settings,

and all of the estimated fractional parameters have a value larger than 0.25.

Now we state our main result.

Theorem 3.4.1. Under Assumptions 3.1.1-3.4.1, it holds that

1√
∆n

(Sn(g)− S(g))
L-s−→MN (0, V (g)),

where MN (0, V ) is a centered mixed normal distribution with conditional variance

V (g) =

d∑
j,k,l,m=1

∫ T

0
∂jkg(cs)∂lmg(cs)

(
cjls c

km
s + cjms ckls

)
ds.

We give some comments as follows on Theorem 3.4.1.

1. Theorem 3.4.1 extends the results in (Jacod and Rosenbaum, 2013a), (Li et al., 2016a)

and (Li and Xiu, 2016) by establishing the asymptotic distribution of Sn (g) under the

LMIS volatility dynamics. In particular, in the absence of the long-memory component

σ2, Theorem 3.4.1 coincides with those in prior work. Since both the convergence rate

and the asymptotic variance remain the same as shown in those papers, the estimator

Sn(g) is still efficient in the sense of (Jacod and Rosenbaum, 2013a) under the more

general LMIS volatility dynamics.

2. The “cost” of including the long-memory component is that we need an additional

upper bound for the divergence rate of the local window size kn, that is, γ < 2ε/(1+2ε).

This restriction is weaker when ε is larger, which corresponds to the case with “longer”
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memory. In the extreme case with ε = 1/2 (i.e., σ2 has locally Lipschitz path under

the L2-norm), this restriction is absent, because σ2 then behaves essentially like a

drift term.

3. As already pointed previously, the condition (3.4.1) implicitly imposes a restriction

on ε, that is, ε > 1/4. In other words, σ2 is Hölder-continuous under the L2-norm

with an index at least 3/4, which shows an apparent discrepancy relative to the

1/2 Hölder continuity of the Itô semimartingale component. This “gap” arises as

a compensation for the lack of martingale property in the long-memory component,

whereas the martingale property is heavily exploited in previous work based on the Itô

semimartingale volatility dynamics. The proofs in the more general LMIS framework

thus contains nontrivial additional complications.

4. Last but not least, as far as the application of Theorem 3.4.1 is concerned, one can

conduct statistical inference, constructing confidence interval for example, for S(g).

More specifically, as shown in (Jacod and Rosenbaum, 2013a), a consistent estimator

for the asymptotic variance V (g) is given by

S̃n(h̄,Dn) ≡ ∆n

[T/∆n]−kn∑
i=0

h̄(ĉi∆n),

where h̄(x) ≡
∑d

j,k,l,m=1 ∂jkg(x)∂lmg(x)
(
xjlxkm + xjmxkl

)
. In particular, S̃n(h̄,Dn)

is robust to the long memory assumption of volatility. Then it follows that

S̃n(h̄,Dn)
P−→ V (g),

and hence

Sn(g,Dn)− S(g)√
∆nS̃n(h̄,Dn)

L-s−→ N (0, 1),

Confidence intervals for S(g) can be constructed accordingly.
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3.5 Proofs

Throughout this section, we use K to denote a generic constant that may change from

line to line; we sometimes emphasize the dependence of this constant on some parameter q

by writing Kq. Recall that Nn ≡ [T/∆n]− kn, we write
∑

i for
∑Nn

i=0 for simplicity.

3.5.1 Preliminaries

By a standard localization procedure (see Lemma 4.4.9 in (Jacod and Protter, 2012)),

it is enough to show Theorem 3.4.1 under a stronger version of Assumption 3.1.1.

Assumption 3.5.1. We have Assumption 3.1.1. The process σ takes value in a convex

compact set of Md. Moreover, the processes b, b(σ1), b(c1) and σ(σ1), σ(c1) are bounded and

there is a bounded λ−integrable function J : E → R, such that for all ω ∈ Ω, t ∈ [0, T ] and

z ∈ E we have ||δ(ω, t, z)||r ≤ J(z) and ||δ(σ1)(ω, t, z)||2 ∨ ||δ(σ1)(ω, t, z)||2 ≤ J(z).

In the following analysis, it would be much more convenient to consider the continuous

part of the process Xt defined by

X ′t =

∫ t

0
bsds+

∫ t

0
σsdWs, 0 ≤ t ≤ T.

Accordingly, define for each i = 0, 1, . . . , Nn,

ĉ′i∆n
=

1

kn∆n

kn∑
j=1

∆n
i+jX

′∆n
i+jX

′ᵀ.

Then we introduce the following notations that will be used throughout the Proofs, most

of which are analogues to those used in (Jacod and Rosenbaum, 2013a):

αn,i ≡ ∆n
i X
′∆n

i X
′ᵀ − c(i−1)∆n

∆n

c̃n,i ≡ ĉ′i∆n
− ci∆n =

1

kn∆n

kn∑
j=1

(αn,i+j + (c(i+j−1)∆n
− ci∆n)∆n)
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With any process Z we associate the variables

ηt,s(Z) ≡ sup
v∈(0,s]

||Zt+v − Zt||2

ηni,j(Z) ≡
√
E
(
η(i−1)∆n,j∆n

(Z)
∣∣F(i−1)∆n

)
ηni (Z) ≡ ηni,kn(Z)

and we recall Lemma 3.1 of (Jacod and Rosenbaum, 2013b).

Lemma 3.5.1. For all t > 0 and all bounded càdlàg processes Z, we have

∆nE(
∑[t/∆n]

i=1 ηni (Z)) → 0, and for all j, k such that j + k ≤ kn, we have

E
(
ηni+j,k(Z)|F(i−1)∆n

)
≤ ηni (Z).

We collect some standard estimates for Itô semimartingale in the following lemma, the

proof of which depends heavily on the decomposition of ct − cs for 0 ≤ s < t ≤ T ,

ct − cs = (σ1,t + σ2,t)(σ1,t + σ2,t)
ᵀ − (σ1,s + σ2,s)(σ1,s + σ2,s)

ᵀ

= (σ1,tσ
ᵀ
1,t − σ1,sσ

ᵀ
1,s) + (σ2,tσ

ᵀ
2,t − σ2,sσ

ᵀ
2,s) + (σ1,tσ

ᵀ
2,t + σ2,tσ

ᵀ
1,t − σ1,sσ

ᵀ
2,s − σ2,sσ

ᵀ
1,s)

= c1,t − c1,s + c2,t − c2,s + (σ1,t − σ1,s)σ
ᵀ
2,s + σ1,t(σ

ᵀ
2,t − σ

ᵀ
2,s). (3.12)

+σ2,s(σ
ᵀ
1,t − σ

ᵀ
1,s) + (σ2,t − σ2,s)σ

ᵀ
1,t

Notice that the third and fourth terms are transposes of the fifth and sixth terms, respec-

tively. Moreover, we have for i = 1, 2 (in fact we only need i = 2 below, as c1,t is itself an

Itô semimartingale by Itô’s lemma),

ci,t − ci,s = σi,tσ
ᵀ
i,t − σi,sσ

ᵀ
i,s

= (σi,t − σi,s)σᵀi,t + σi,s(σ
ᵀ
i,t − σ

ᵀ
i,s) (3.13)

One will see both decompositions (3.12) and (3.13) will be repeatedly used in the sequel.

Lemma 3.5.2. Under Assumption 3.5.1, we have
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(1) for any s, t ≥ 0 and q ≥ 0,

E

(
sup
v∈[0,s]

||X ′t+v −X ′t||q
∣∣Ft) ≤ Kqs

q/2,

||E
(
X ′t+s −X ′t

∣∣Ft) || ≤ Ks,

E

(
sup
v∈[0,s]

||σ1,t+v − σ1,t||q
∣∣Ft) ≤ Kqs

1∧q/2,

||E
(
σ1,t+s − σ1,t

∣∣Ft) || ≤ Ks,

E

(
sup
v∈[0,s]

||c1,t+v − c1,t||q
∣∣Ft) ≤ Kqs

1∧q/2,

||E
(
c1,t+s − c1,t

∣∣Ft) || ≤ Ks.

(2) Let c2,t = σ2,tσ
ᵀ
2,t, for any s, t ≥ 0,

E (||σ2,t − σ2,s||) ≤ K(t− s)1/2+ε

E (||c2,t+s − c2,t||q) ≤ KE (||σ2,t+s − σ2,t||q) , q = 1, 2, 3, 4

||E
(
ct+s − ct

∣∣Ft) || ≤ K
(
||E
(
c1,t+s − c1,t

∣∣Ft) ||+ ||E (σ1,t+s − σ1,t

∣∣Ft) ||
+E

(
||σ2,t+s − σ2,t||

∣∣Ft))
E (||ct+s − ct||q) ≤ K (E (||σ1,t+s − σ1,t||q) + E (||σ2,t+s − σ2,t||q)) , q = 1, 2, 3, 4.

In particular, as one can see from the proof of the third estimate in (2), it would suffice to

consider σ1,t − σ1,s and σ2,t − σ2,s when it comes to the difference ct − cs in the sequel.

Proof. The estimates in (1) follow from (4.3) in (Jacod and Rosenbaum, 2013a), as X ′ has

no jump part and both σ1,t and c1,t are Itô semimartingales.

For part (2), the first estimate is implied by (3.3). For q = 1, 2, 3, 4, by (3.13) and the

fact that for any matrix A, ||A|| = ||Aᵀ|| and that σ2 is bounded, it follows

E (||c2,t+s − c2,t||q) ≤ E
(
||(σ2,t+s − σ2,t)σ

ᵀ
2,t+s + σ2,t(σ

ᵀ
2,t+s − σ

ᵀ
2,t)||

q
)

≤ KE
(
||(σ2,t+s − σ2,t)σ

ᵀ
2,t+s||

q
)

+KE
(
||σ2,t(σ

ᵀ
2,t+s − σ

ᵀ
2,t)||

q
)

≤ KE (||(σ2,t+s − σ2,t)||q) .
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Hence the second estimate is proved. For the third one, by (3.12)

||E
(
ct+s − ct

∣∣Ft) || = ||E (c1,t+s − c1,t + c2,t+s − c2,t

+(σ1,t+s − σ1,t)σ
ᵀ
2,t + σ1,t+s(σ

ᵀ
2,t+s − σ

ᵀ
2,t)

+σ2,t(σ
ᵀ
1,t+s − σ

ᵀ
1,t) + (σ2,t+s − σ2,t)σ

ᵀ
1,t+s

∣∣Ft) ||
≤ ||E

(
c1,t+s − c1,t

∣∣Ft) ||+ ||E((σ1,t+s − σ1,t)σ
ᵀ
2,t

∣∣Ft) ||
+||E

(
σ2,t(σ

ᵀ
1,t+s − σ

ᵀ
1,t)
∣∣Ft) ||+ ||E (c2,t+s − c2,t

∣∣Ft) ||
+||E

(
σ1,t+s(σ

ᵀ
2,t+s − σ

ᵀ
2,t)
∣∣Ft) ||+ ||E((σ2,t+s − σ2,t)σ

ᵀ
1,t+s

∣∣Ft) ||
= ||E

(
c1,t+s − c1,t

∣∣Ft) ||+ ||E ((σ1,t+s − σ1,t)
∣∣Ft)σᵀ2,t||

+||σ2,tE
(

(σᵀ1,t+s − σ
ᵀ
1,t)
∣∣Ft) ||+ ||E (c2,t+s − c2,t

∣∣Ft) ||
+||E

(
σ1,t+s(σ

ᵀ
2,t+s − σ

ᵀ
2,t)
∣∣Ft) ||+ ||E(σ2,t+s − σ2,tσ

ᵀ
1,t+s

∣∣Ft) ||
≤ K

(
||E
(
c1,t+s − c1,t

∣∣Ft) ||+K||E
(
(σ1,t+s − σ1,t)

∣∣Ft) ||)
+K

(
E
(
||c2,t+s − c2,t||

∣∣Ft)+ E
(
||σ2,t+s − σ2,t||

∣∣Ft))
≤ K

(
||E
(
c1,t+s − c1,t

∣∣Ft) ||+ ||E (σ1,t+s − σ1,t

∣∣Ft) ||
+E

(
||σ2,t+s − σ2,t||

∣∣Ft)) ,
as desired.

As for the last estimate, by (3.15) and the fact that c1, σ1 and σ2 are all bounded,

E (||ct+s − ct||q) ≤ K (E (||c1,t+s − c1,t||q) + E (||σ1,t+s − σ1,t||q) + E (||σ2,t+s − σ2,t||q))

≤ K (E (||σ1,t+s − σ1,t||q) + E (||σ2,t+s − σ2,t||q)) .

3.5.2 Proof of Theorem 3.4.1

In light of a spatial localization argument as in the proof of Theorem 2 in (Li et al.,

2016a), we assume that the test function g satisfying Assumption 3.2.1 is indeed compactly

supported, and thus both function g and its existent derivatives are bounded from above

by some positive constant. This assumption will not be recalled in the sequel.
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The next two results are analogues to Lemma 4.1 in (Jacod and Rosenbaum, 2013a),

but more involved since the volatility process σ under Assumption 3.1.1 may not be Itô

semimartingale any more.

Lemma 3.5.3. Under Assumption 3.5.1, we have

∣∣E (∆n
i X
′j∆n

i X
′m|F(i−1)∆n

)
− cjm(i−1)∆n

∆n

∣∣
≤ K∆3/2

n

(
ηni,1(b) +

√
∆n

)
+K

∫ i∆n

(i−1)∆n

E
(
||σ2,s − σ2,(i−1)∆n

||
∣∣F(i−1)∆n

)
ds

E
∣∣E (∆n

i X
′j∆n

i X
′m|F(i−1)∆n

)
− cjm(i−1)∆n

∆n

∣∣
≤ K∆3/2

n

(
E
(
ηni,1(b)

)
+
√

∆n + ∆ε
n

)

Proof. For the first claim, by using Itô’s formula for f(x, y) = xy, we have

∆n
i X
′j∆n

i X
′m − cjm(i−1)∆n

= bj(i−1)∆n

∫ i∆n

(i−1)∆n

(X ′ms −X ′m(i−1)∆n
)ds+ bm(i−1)∆n

∫ i∆n

(i−1)∆n

(X ′js −X
′j
(i−1)∆n

)ds

+

∫ i∆n

(i−1)∆n

(X ′ms −X ′m(i−1)∆n
)(bjs − b

j
(i−1)∆n

)ds+

∫ i∆n

(i−1)∆n

(X ′js −X
′j
(i−1)∆n

)(bms − bm(i−1)∆n
)ds

+

∫ i∆n

(i−1)∆n

(cjms − c
jm
(i−1)∆n

)ds+Mi∆n (3.14)

where

Mt =

∫ t

(i−1)∆n

(X ′ms −X ′m(i−1)∆n
)[σs]j,·dWs +

∫ t

(i−1)∆n

(X ′js −X
′j
(i−1)∆n

)[σs]m,·dWs

is martingale vanishing at time (i−1)∆n, and [σs]j,· denotes the j−th row of the matrix σs.

Since b is bounded, by Lemma 3.5.2 and Cauchy-Schwartz inequality, the absolute value of

F(i−1)∆n
-conditional expectation of the first four terms of RHS of (3.14) is of order

∆3/2
n ηni,1(b) + ∆2

n.
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Now, for the term
∫ i∆n

(i−1)∆n
(cjms − cjm(i−1)∆n

)ds, note that

cjm = cjm1 + cjm2 +
d∑
i=1

(
σji1 σ

im
2 + σji2 σ

im
1

)

and hence for any 0 ≤ s < t ≤ T , we have a component-wise analogue of (3.12)

cjmt − cjms = (cjm1,t − c
jm
1,s ) + (cjm2,t − c

jm
2,s ) +

d∑
i=1

(
(σji1,t − σ

ji
1,s)σ

im
2,s + σji1,t(σ

im
2,t − σim2,s)

+ σji2,s(σ
im
1,t − σim1,s) + (σji2,t − σ

ji
2,s)σ

im
1,t

)
, (3.15)

as well as a component-wise analogue of (3.13)

cjm2,t − c
jm
2,s =

d∑
i=1

(
σji2,tσ

im
2,t − σ

ji
2,sσ

im
2,s

)
=

d∑
i=1

(
(σji2,t − σ

ji
2,s)σ

im
2,t + σji2,s(σ

im
2,t − σim2,s)

)
(3.16)

Then in view of (3.16) and Lemma 2 (2), it yields

∫ i∆n

(i−1)∆n

∣∣∣E(cjms − cjm(i−1)∆n
|F(i−1)∆n

)∣∣∣ ds
≤ K∆2

n +K

∫ i∆n

(i−1)∆n

E
(
||σ2,s − σ2,(i−1)∆n

||
∣∣F(i−1)∆n

)
ds.

Moreover, by Fubini’s Theorem and double expectation theorem, plus Lemma 3.5.2 (2), we

have

E

(∫ i∆n

(i−1)∆n

E
(
||σ2,s − σ2,(i−1)∆n

||
∣∣F(i−1)∆n

)
ds

)
≤ K∆3/2+ε

n ,

and hence the second claim follows.

Lemma 3.5.4. Under Assumption 3.5.1, we have

E
∣∣E(∆n

i X
′j∆n

i X
′k∆n

i X
′l∆n

i X
′m|F(i−1)∆n

)
−(

cjk(i−1)∆n
clm(i−1)∆n

+ cjl(i−1)∆n
ckm(i−1)∆n

+ cjm(i−1)∆n
ckl(i−1)∆n

)
∆2
n

∣∣
≤ K∆5/2

n
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Proof. As in the proof of Lemma 4.1 in (Jacod and Rosenbaum, 2013a), by Itô’s formula,

4∏
l=1

∆n
i X
′jl = M̃i∆n +

4∑
l=1

∫ i∆n

(i−1)∆n

bjls
∏

1≤m≤4,m 6=l
(X ′jms −X ′jm(i−1)∆n

)ds

+
1

2

∑
1≤l 6=l′≤4

∫ i∆n

(i−1)∆n

(
c
jljl′
s − cjljl′(i−1)∆n

) ∏
1≤m≤4,m 6=l,l′

(X ′jms −X ′jm(i−1)∆n
)ds

+
1

2

∑
1≤l 6=l′≤4

c
jljl′
(i−1)∆n

∫ i∆n

(i−1)∆n

∏
1≤m≤4,m 6=l,l′

(X ′jms −X ′jm(i−1)∆n
)ds.

where M̃t is a martingale vanishing at (i−1)∆n. Then by the first estimate in Lemma 3.5.2,

Cauchy-Schwartz inequality and the fact that b is bounded, the absolute value of the

F(i−1)∆n
−conditional expectation of the second term above is of stochastic order ∆

5/2
n .

In view of the last estimate in Lemma 3.5.2, Cauchy-Schwartz inequality yields that the

F(i−1)∆n
−conditional expectation of the second term above is of stochastic order ∆

5/2
n as

well. For the fourth term, note that

cjk(i−1)∆n

∫ i∆n

(i−1)∆n

(X ′ls −X ′l(i−1)∆n
)(X ′ms −X ′m(i−1)∆n

)ds

= cjk(i−1)∆n

∫ i∆n

(i−1)∆n

(
(X ′ls −X ′l(i−1)∆n

)(X ′ms −X ′m(i−1)∆n
)− clm(i−1)∆n

)
ds

+cjk(i−1)∆n
clm(i−1)∆n

∆2
n

Then the second claim in Lemma 3.5.3, plus the fact that ηni,1(b) is bounded, yields the

result for the fourth term.

Lemma 3.5.3 and 3.5.4 offer us a way to obtain estimates of the statistical error arising

from nonparametrically estimating spot covariance, the result of which is summarized in

the following lemma.

Lemma 3.5.5. Under Assumption 3.5.1, we have

(1) For any q ≥ 0, E
(
||αn,i||q|F(i−1)∆n

)
≤ kq∆q

n

(2) E||E(αn,i|F(i−1)∆n
)|| ≤ K∆

3/2
n

(
E(ηni,1(b)) +

√
∆n + ∆ε

n

)
(3) E

∣∣∣∣E(αjkn,iαlmn,i|F(i−1)∆n

)
−
(
cjl(i−1)∆n

ckm(i−1)∆n
+ cjm(i−1)∆n

ckl(i−1)∆n

)
∆2
n

∣∣∣∣ ≤ K∆
5/2
n
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Proof. The first claim is directly derived from Lemma 3.5.2, or is just (4.10) in (Jacod and

Rosenbaum, 2013a). The second claim is exactly the second claim of Lemma 3.5.3, in view

of the definition of αn,i.

To show (3), Recall that αn,i = ∆n
i X
′∆n

i X
′ᵀ − c(i−1)∆n

∆n, we have

αjkn,iα
lm
n,i −

(
cjl(i−1)∆n

ckm(i−1)∆n
+ cjm(i−1)∆n

ckl(i−1)∆n

)
∆2
n

=
(

∆n
i X
′j∆n

i X
′k − cjk(i−1)∆n

∆n

)(
∆n
i X
′l∆n

i X
′m − clm(i−1)∆n

∆n

)
−
(
cjl(i−1)∆n

ckm(i−1)∆n
+ cjm(i−1)∆n

ckl(i−1)∆n

)
∆2
n

= ∆n
i X
′j∆n

i X
′k∆n

i X
′l∆n

i X
′m

−
(
cjk(i−1)∆n

clm(i−1)∆n
+ cjl(i−1)∆n

ckm(i−1)∆n
+ cjm(i−1)∆n

ckl(i−1)∆n

)
∆2
n

+∆nc
lm
(i−1)∆n

(
∆nc

jk
(i−1)∆n

−∆n
i X
′j∆n

i X
′k
)

+∆nc
jk
(i−1)∆n

(
∆nc

lm
(i−1)∆n

−∆n
i X
′l∆n

i X
′m
)
.

Then by Lemma 3.5.4 and the second claim in Lemma 3.5.3, plus the fact that c and ηni (b)

are both bounded, the result follows.

With the help of Lemma 3.5.5, we are able to obtain the bounds on spot volatility

estimation error

c̃n,i = ĉ′i∆n
− ci∆n =

1

kn∆n

kn∑
j=1

(αn,i+j + (c(i+j−1)∆n
− ci∆n)∆n).

Define the “spot covariation” of the continuous martingale parts of X and c1 and σ1,

respectively, as

(
c

(X,σ1)
t

)i,jk
=

d∑
w=1

σiwt

(
σ

(σ1)
t

)jk,w
,
(
c

(X,c1)
t

)i,jk
=

d∑
w=1

σiwt

(
σ

(c1)
t

)jk,w
.

Then both c(X,σ1) and c(X,c1) are càdlàg adapted.

Lemma 3.5.6. Under Assumption 3.5.1, we have
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(1) For q = 2, 3, 4,

E (‖c̃n,i‖q) ≤ K
(
k−q/2n + kn∆n + E

(∥∥σ2,i∆n − σ2,(i−1)∆n

∥∥q)+

1

kn

kn∑
j=1

E
(∥∥σ2,(i+j−1)∆n

− σ2,i∆n

∥∥q)
(2)

E
∣∣∣∣E(c̃jkn,ic̃lmn,i∣∣Fi∆n

)
− 1

kn

(
cjli∆n

ckmi∆n
+ cjmi∆n

ckli∆n

)∣∣∣∣
≤ K

√
∆n

(
k−1/2
n + kn

√
∆n + k1/2+ε

n ∆ε
n + E(ηni+1(b))

+E
(
ηni+1(c(X,c1))

)
+ E

(
ηni+1(c(X,σ1))

))

Proof. For the first claim, we have by definition,

E (‖c̃n,i‖q) ≤ KE

∥∥∥∥∥∥ 1

kn∆n

kn∑
j=1

αn,i+j

∥∥∥∥∥∥
q+KE

∥∥∥∥∥∥ 1

kn

kn∑
j=1

(c(i+j−1)∆n
− ci∆n)

∥∥∥∥∥∥
q

For the second term on the RHS above, by Jensen’s inequality since q ≥ 2, and Lemma 3.5.2

(2), we have

E

∥∥∥∥∥∥ 1

kn

kn∑
j=1

(c(i+j−1)∆n
− ci∆n)

∥∥∥∥∥∥
q ≤ 1

kn

kn∑
j=1

E
(∥∥c(i+j−1)∆n

− ci∆n

∥∥q)

≤ K

kn∆n +
1

kn

kn∑
j=1

E
(∥∥σ2,(i+j−1)∆n

− σ2,i∆n

∥∥q)
We need a bit more work on the first term E

(∥∥∥ 1
kn∆n

∑kn
j=1 αn,i+j

∥∥∥q). First note that

E

∥∥∥∥∥∥
kn∑
j=1

αn,i+j

∥∥∥∥∥∥
q ≤ K(A1,n,i +A2,n,i),
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where

A1,n,i = E

∥∥∥∥∥∥
kn∑
j=1

(
αn,i+j − E(αn,i+j |F(i+j−1)∆n

)
)∥∥∥∥∥∥
q

A2,n,i = E

∥∥∥∥∥∥
kn∑
j=1

E
(
αn,i+j |F(i+j−1)∆n

)∥∥∥∥∥∥
q .

Since A1,n,i is the q−th moment of the sum of a martingale difference, by Burkholder-Davis-

Gundy inequality, Jensen’s inequality (note q ≥ 2) and double expectation theorem, plus

the first estimate in Lemma 3.5.5, we have

E(A1,n,i) ≤ Kkq/2n ∆q
n.

On the other hand, by Jensen’s inequality, and the first estimate in Lemma 3.5.3,

E(A2,n,i) ≤ Kkq−1
n

kn∑
j=1

E
(∥∥E (αn,i+j |F(i+j−1)∆n

)∥∥q)
≤ Kkqn(∆3q/2

n + ∆2q
n )

+Kkq−1
n

kn∑
j=1

E

(∫ (i+j)∆n

(i+j−1)∆n

E
(
||σ2,s − σ2,(i+j−1)∆n

||
∣∣F(i−1)∆n

)
ds

)q
≤ Kkqn(∆3q/2

n + ∆2q
n )

+Kkq−1
n

kn∑
j=1

∆q−1
n

∫ (i+j)∆n

(i+j−1)∆n

E
(
||σ2,s − σ2,(i+j−1)∆n

||q
)
ds

≤ Kkqn(∆3q/2
n + ∆2q

n ) +Kkqn∆q
nE
(∥∥σ2,i∆n − σ2,(i−1)∆n

∥∥q)
Therefore

E

∥∥∥∥∥∥ 1

kn∆n

kn∑
j=1

αn,i+j

∥∥∥∥∥∥
q ≤ K (k−q/2n + ∆q/2

n + E
(∥∥σ2,i∆n − σ2,(i−1)∆n

∥∥q))

and hence the first claim in Lemma 3.5.6 follows as k2
n∆n → 0.

Now for the second claim, as in (Jacod and Rosenbaum, 2013a), we let

ζni,j = αn,i+j + (c(i+j−1)∆n
− ci∆n)∆n,
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then c̃n,i = 1
kn∆n

∑kn
j=1 ζ

n
i,j , and we can write

c̃jkn,ic̃
lm
n,i =

1

k2
n∆2

n

kn∑
u=1

ζn,jki,u ζn,lmi,u +
1

k2
n∆2

n

kn−1∑
u=1

kn∑
v=1

ζn,jki,u ζn,lmi,v +
1

k2
n∆2

n

kn−1∑
u=1

kn∑
v=1

ζn,lmi,u ζn,jki,v .(3.17)

For the first term 1
k2
n∆2

n

∑kn
u=1 ζ

n,jk
i,u ζn,lmi,u in (3.17), we have

1

k2
n∆2

n

kn∑
u=1

ζn,jki,u ζn,lmi,u − 1

kn

(
cjl(i−1)∆n

ckm(i−1)∆n
+ cjm(i−1)∆n

ckl(i−1)∆n

)
= R1,n,i +R2,n,i +R3,n,i

where

R1,n,i ≡
1

k2
n∆2

n

kn∑
u=1

(
ζn,jki,u ζn,lmi,u − αjkn,i+uα

lm
n,i+u

)
R2,n,i ≡

1

k2
n∆2

n

kn∑
u=1

(
αjkn,i+uα

lm
n,i+u −∆2

n

(
cjl(i+u−1)∆n

ckm(i+u−1)∆n
+ cjm(i+u−1)∆n

ckl(i+u−1)∆n

))
R3,n,i ≡

1

k2
n

kn∑
u=1

(
cjl(i+u−1)∆n

ckm(i+u−1)∆n
+ cjm(i+u−1)∆n

ckl(i+u−1)∆n
− cn,jli∆n

ckmi∆n
− cjmi∆n

ckli∆n

)
.

As derived in the Lemma 4.3 of (Jacod and Rosenbaum, 2013a), it holds that

∣∣∣ζn,jki,u ζn,lmi,u − αjkn,i+uα
lm
n,i+u

∣∣∣ ≤ 2∆n

∥∥c(i+u−1)∆n
− ci∆n

∥∥ ‖αn,i+u‖+ ∆2
n

∥∥c(i+u−1)∆n
− ci∆n

∥∥2

In light of the first estimate in Lemma 3.5.5 and the last estimate in Lemma 3.5.2, Cauchy-

Schwartz inequality, plus triangle inequality, yield

E (|R1,n,i|) ≤ Kk−1/2
n

√
∆n.

Next, by successive conditioning(tower property), triangle inequality and the third claim in

Lemma 3.5.5, we have

E (|E (R2,n,i|Fi∆n)|) = E
(∣∣E (E (R2,n,i|F(i+u−1)∆n

)
|Fi∆n

)∣∣)
≤ E

(∣∣E (R2,n,i|F(i+u−1)∆n

)∣∣)
≤ Kk−1

n ∆−1
n .
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As for R3,n,i, observe that

cn,jl(i+u−1)∆n
cn,km(i+u−1)∆n

− cn,jli∆n
cn,kmi∆n

=
(
cjl(i+u−1)∆n

− cjli∆n

)
ckm(i+u−1)∆n

+ cjli∆n

(
ckm(i+u−1)∆n

− ckmi∆n

)
.

By the last estimate in Lemma 3.5.2 and the fact that ct is bounded, we have

E
(∣∣∣cjl(i+u−1)∆n

ckm(i+u−1)∆n
− cjli∆n

ckmi∆n

∣∣∣) ≤ K√kn∆n.

The same results holds for cjm(i+u−1)∆n
ckl(i+u−1)∆n

− cjmi∆n
ckli∆n

. Therefore

E (|R3,n,i|) ≤ Kk−1/2
n

√
∆n.

So we have shown that

E

∣∣∣∣∣E
(

1

k2
n∆2

n

kn∑
u=1

ζn,jki,u ζn,lmi,u

∣∣∣∣Fi∆n

)
− 1

kn

(
cjli∆n

ckmi∆n
+ cjmi∆n

ckli∆n

)∣∣∣∣∣ ≤ Kk−1/2
n

√
∆n.

At last we come to deal with the cross-product term 1
k2
n∆2

n

∑kn−1
u=1

∑kn
v=1 ζ

n,lm
i,u ζn,jki,v in

(3.17), and the other term 1
k2
n∆2

n

∑kn−1
u=1

∑kn
v=1 ζ

n,jk
i,u ζn,lmi,v could be dealt with similarly by

interchanging the superscript. Recall that,

ζn,jki,u = αjkn,i+u + (cjk(i+u−1)∆n
− cjki∆n

)∆n,

we have the following decomposition by tower property

E
(
ζn,lmi,u ζn,jki,v

∣∣Fi∆n

)
= E

(
E
(
ζn,lmi,u ζn,jki,v

∣∣F(i+u)∆n

) ∣∣Fi∆n

)
= E

(
ζn,lmi,u E

(
ζn,jki,v

∣∣F(i+u)∆n

) ∣∣Fi∆n

)
= E

(
Z1,n,i + Z2,n,i + Z3,n,i + Z4,n,i

∣∣Fi∆n

)
(3.18)
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where

Z1,n,i ≡ ζn,lmi,u

[
E
(
ζn,jki,v

∣∣F(i+u)∆n

)
−
(
cjk(i+u)∆n

− cjki∆n

)
∆n

]
Z2,n,i ≡ αlmn,i+u

(
cjk(i+u)∆n

− cjk(i+u−1)∆n

)
∆n

Z3,n,i ≡ αlmn,i+u

(
cjk(i+u−1)∆n

− cjki∆n

)
∆n

Z4,n,i ≡
(
clm(i+u−1)∆n

− clmi∆n

)(
cjk(i+u)∆n

− cjki∆n

)
∆2
n.

We proceed from easy to hard. For Z4,n,i, by Cauchy-Schwartz inequality and the last

estimate in Lemma 3.5.2, we have

E
∣∣E (Z4,n,i

∣∣Fi∆n

)∣∣ ≤ ∆2
nE
(∣∣∣(clm(i+u−1)∆n

− clmi∆n

)(
cjk(i+u)∆n

− cjki∆n

)∣∣∣)
≤ Kkn∆3

n

For Z3,n,i, by tower property and double expectation theorem, and the fact that ct is

bounded, we have

E
∣∣E (Z3,n,i

∣∣Fi∆n

)∣∣ = E
∣∣E (E (Z3,n,i

∣∣F(i+u−1)∆n

) ∣∣Fi∆n

)∣∣
≤ E

∣∣E (Z3,n,i

∣∣F(i+u−1)∆n

)∣∣
= ∆nE

∣∣∣(cjk(i+u−1)∆n
− cjki∆n

)
E
(
αlmn,i+u

∣∣F(i+u−1)∆n

)∣∣∣
≤ K∆nE

∣∣∣E(αlmn,i+u∣∣F(i+u−1)∆n

)∣∣∣
≤ K∆5/2

n

(
E(ηni+u,1(b)) +

√
∆n + ∆ε

n

)
.

On the other hand, by Lemma 3.5.7 and Lemma 3.5.8 respectively, we have

E
∣∣E (Z1,n,i

∣∣Fi∆n

)∣∣ ≤ K∆5/2
n

(
E
(
ηni+1(b)

)
+ kn

√
∆n + k1/2+ε

n ∆ε
n

)
.

E
∣∣E (Z2,n,i

∣∣Fi∆n

)∣∣ ≤ K∆5/2
n

(
E
(
ηni+1(c(X,c1))

)
+ E

(
ηni+1(c(X,σ1))

)
+ ∆ε

n +
√

∆n

)
.

Combine all the results derived above, and recall from Lemma 3.5.1 that E
(
ηni+j,k(Z)

)
≤

E (ηni (Z)) for all bounded càdlàg adapted processes Z and all j, k such that j + k ≤ kn,
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then we have

E

∣∣∣∣∣E
(

1

k2
n∆2

n

kn−1∑
u=1

kn∑
v=1

ζn,lmi,u ζn,jki,v

∣∣Fi∆n

)∣∣∣∣∣
≤ 1

k2
n∆2

n

kn−1∑
u=1

kn∑
v=1

E
∣∣∣E(ζn,lmi,u ζn,jki,v

∣∣Fi∆n

)∣∣∣
≤ 1

k2
n∆2

n

kn−1∑
u=1

kn∑
v=1

E
∣∣E (Z1,n,i + Z2,n,i + Z3,n,i + Z4,n,i

∣∣Fi∆n

)∣∣
≤ K

√
∆n

(
kn
√

∆n + E(ηni+1(b)) + k1/2+ε
n ∆ε

n + E
(
ηni+1(c(X,c1))

)
+E

(
ηni+1(c(X,σ1))

)
+
√

∆n + ∆ε
n

)
.

Thus we prove the second claim in Lemma 3.5.6.

Lemma 3.5.7. In the context of Lemma 3.5.6, we have

E
∣∣∣∣E [ζn,lmi,u

(
ζn,jki,v −

(
cjk(i+u)∆n

− cjki∆n

)
∆n

) ∣∣∣∣Fi∆n

]∣∣∣∣
≤ K∆5/2

n

(
E
(
ηni+1(b)

)
+ kn

√
∆n + k1/2+ε

n ∆ε
n

)
.

Proof. By definition, observe that

ζn,jki,v = ∆n
i+vX

′j∆n
i+vX

′k − cjki∆n
∆n,

simple calculation yields

ζn,jki,v −
(
cjk(i+u)∆n

− cjki∆n

)
∆n = ∆n

i+vX
′j∆n

i+vX
′k −

cjk(i+v−1)∆n
∆n +

(
cjk(i+v−1)∆n

− cjk(i+u)∆n

)
∆n.
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Hence by triangle inequality and tower property, we have

∣∣∣E(ζn,jki,v −
(
cjk(i+u)∆n

− cjki∆n

)
∆n

∣∣F(i+u)∆n

)∣∣∣
≤
∣∣∣E(∆n

i+vX
′j∆n

i+vX
′k − cjk(i+v−1)∆n

∆n

∣∣F(i+u)∆n

)∣∣∣
+
∣∣∣E((cjk(i+v−1)∆n

− cjk(i+u)∆n

)
∆n

∣∣F(i+u)∆n

)∣∣∣
≤
∣∣∣E(E(∆n

i+vX
′j∆n

i+vX
′k − cjk(i+v−1)∆n

∆n

∣∣F(i+v−1)∆n

) ∣∣F(i+u)∆n

)∣∣∣
+
∣∣∣E(cjk(i+v−1)∆n

− cjk(i+u)∆n

∣∣F(i+u)∆n

)∣∣∣∆n

≤ E
(∣∣∣E(∆n

i+vX
′j∆n

i+vX
′k − cjk(i+v−1)∆n

∆n

∣∣F(i+v−1)∆n

)∣∣∣ ∣∣F(i+u)∆n

)
+
∣∣∣E(cjk(i+v−1)∆n

− cjk(i+u)∆n

∣∣F(i+u)∆n

)∣∣∣∆n

≤ KE
(

∆3/2
n ηni+v,1(b) + ∆2

n

+

∫ (i+v)∆n

(i+v−1)∆n

E
(
||σ2,s − σ2,(i+v−1)∆n

||
∣∣F(i+v−1)∆n

)
ds

∣∣∣∣F(i+u)∆n

)
+
(
kn∆n + E

(
||σ2,(i+v−1)∆n

− σ2,(i+u)∆n
||
∣∣F(i+u)∆n

))
∆n

where for the last inequality we first use the first claim in Lemma 3.5.3 but replace i by

i+ v, and Lemma 3.5.2.

Therefore, by tower property again, we have

∣∣∣∣E [ζn,lmi,u

(
ζn,jki,v −

(
cjk(i+u)∆n

− cjki∆n

)
∆n

) ∣∣∣∣Fi∆n

]∣∣∣∣
=

∣∣∣∣E [ζn,lmi,u E
(
ζn,jki,v −

(
cjk(i+u)∆n

− cjki∆n

)
∆n

∣∣F(i+u)∆n

) ∣∣∣∣Fi∆n

]∣∣∣∣
≤ E

(∣∣∣ζn,lmi,u

∣∣∣ ∣∣∣E(ζn,jki,v −
(
cjk(i+u)∆n

− cjki∆n

)
∆n

∣∣F(i+u)∆n

)∣∣∣ ∣∣Fi∆n

)
= W1,n,i +W2,n,i +W3,n,i +W4,n,i,
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where

W1,n,i ≡ E
(∣∣∣ζn,lmi,u

∣∣∣E(ηni+v,1(b)

∣∣∣∣F(i+u)∆n

) ∣∣Fi∆n

)
∆3/2
n

W2,n,i ≡ E
(∣∣∣ζn,lmi,u

∣∣∣ ∣∣Fi∆n

)
(∆2

n + kn∆2
n)

W3,n,i ≡ E
(∣∣∣ζn,lmi,u

∣∣∣×
E

(∫ (i+v)∆n

(i+v−1)∆n

E
(
||σ2,s − σ2,(i+v−1)∆n

||
∣∣F(i+v−1)∆n

)
ds

∣∣∣∣F(i+u)∆n

)∣∣Fi∆n

)
W4,n,i ≡ E

(∣∣∣ζn,lmi,u

∣∣∣E (||σ2,(i+v−1)∆n
− σ2,(i+u)∆n

||
∣∣F(i+u)∆n

) ∣∣Fi∆n

)
∆n.

By the first estimate in Lemma 3.5.5, tower property and and the fact that ct is bounded,

we have

E
(∥∥ζni,u∥∥ ∣∣Fi∆n

)
≤ K∆n, E

(∥∥ζni,u∥∥2 ∣∣Fi∆n

)
≤ K∆2

n. (3.19)

Then in view of (3.19), by definition of ηni+v,1(b) and Cauchy-Schwartz inequality, we have

E (W1,n,i) ≤ ∆3/2
n E

(
ηni+1(b)

√
E
(∥∥∥ζni,u∥∥∥2 ∣∣Fi∆n

))
≤ K∆5/2

n E
(
ηni+1(b)

)
.

By (3.19) again, we have

E (W2,n,i) ≤ Kkn∆3
n.

Moreover, by using Jensen’s inequality multiple times and Cauchy-Schwartz inequality, plus

(3.3), it follows

E (W3,n,i) ≤

√
E
(∥∥∥ζni,u∥∥∥2

)√
∆n

∫ (i+v)∆n

(i+v−1)∆n

E
(
||σ2,s − σ2,(i+v−1)∆n

||2
)
ds

≤ K∆5/2+ε
n .
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At last, by Cauchy-Schwartz inequality, (3.19) and (3.3), it holds that

E (W4,n,i) ≤ ∆n

√
E
(∥∥∥ζni,u∥∥∥2

)√
E
(
||σ2,(i+v−1)∆n

− σ2,(i+u)∆n
||2
)

≤ K∆2
n(kn∆n)1/2+ε

= K∆5/2
n k1/2+ε

n ∆ε
n.

Combine all the results above, we obtain

E
∣∣∣∣E [ζn,lmi,u

(
ζn,jki,v −

(
cjk(i+u)∆n

− cjki∆n

)
∆n

) ∣∣∣∣Fi∆n

]∣∣∣∣
≤ K∆5/2

n

(
E
(
ηni+1(b)

)
+ kn

√
∆n + ∆ε

n + k1/2+ε
n ∆ε

n

)
≤ K∆5/2

n

(
E
(
ηni+1(b)

)
+ kn

√
∆n + k1/2+ε

n ∆ε
n

)
.

Hence we prove the lemma.

Lemma 3.5.8. In the context of Lemma 3.5.6, we have

E
∣∣∣E(αlmn,i+u (cjk(i+u)∆n

− cjk(i+u−1)∆n

)
∆n

∣∣Fi∆n

)∣∣∣
≤ K∆5/2

n

(
E
(
ηni+1(c(X,c1))

)
+ E

(
ηni+1(c(X,σ1))

)
+ ∆ε

n +
√

∆n

)

Proof. By tower property and double expectation theorem, we have

E
∣∣∣E(αlmn,i+u (cjk(i+u)∆n

− cjk(i+u−1)∆n

) ∣∣Fi∆n

)∣∣∣∆n

= E
∣∣∣E [E(αlmn,i+u (cjk(i+u)∆n

− cjk(i+u−1)∆n

) ∣∣F(i+u−1)∆n

) ∣∣Fi∆n

]∣∣∣∆n

≤ E
∣∣∣E(αlmn,i+u (cjk(i+u)∆n

− cjk(i+u−1)∆n

) ∣∣F(i+u−1)∆n

)∣∣∣∆n

In view of (3.15), (3.16) and Lemma 3.5.2 (2), we make the following decompositions

E
(
αlmn,i+u

(
cjk(i+u)∆n

− cjk(i+u−1)∆n

) ∣∣F(i+u−1)∆n

)
= D1,n,i +D2,n,i

48



where D1,n,i involves the differences cjk1,(i+u)∆n
− cjk1,(i+u−1)∆n

and σjk1,(i+u)∆n
− σjk1,(i+u−1)∆n

,

and D2,n,i involves only difference σjk2,(i+u)∆n
−σjk2,(i+u−1)∆n

(recall that by (3.16) the differ-

ence cjk2,(i+u)∆n
− cjk2,(i+u−1)∆n

can be expresses via the difference σjk2,(i+u)∆n
− σjk2,(i+u−1)∆n

).

By Cauchy-Schwartz inequality, Lemma 3.5.5 (1), (3.3) and the fact that both σ1 and

σ2 are bounded, we have

E(D2,n,i) ≤ K

√
E(‖αn,i+u)‖2

√
E
(
||σ2,(i+u)∆n

− σ2,(i+u−1)∆n
||2
)

≤ K∆3/2+ε
n .

As for D1,n,i, we are going to show

E|D1,n,i| ≤ K∆3/2
n

(√
∆n + E

(
ηni+1(c(X,c1))

)
+ E

(
ηni+1(c(X,σ1))

))
,

for which it suffices to show

∣∣∣E(αlmn,i+u (cjk1,(i+u)∆n
− cjk1,(i+u−1)∆n

) ∣∣F(i+u−1)∆n

)∣∣∣
≤ K∆3/2

n

(√
∆n + ηni+1(c(X,c1))

)
(3.20)∣∣∣∣∣E

(
αlmn,i+u

d∑
w=1

[(
σjw1,(i+u)∆n

− σjw1,(i+u−1)∆n

)
σwk2,(i+u−1)∆n

+σjw2,(i+u−1)∆n

(
σwk1,(i+u)∆n

− σwk1,(i+u−1)∆n

)] ∣∣F(i+u−1)∆n

)∣∣∣∣
≤ K∆3/2

n

(√
∆n + ηni+1(c(X,σ1))

)
(3.21)

(3.20) is derived from a word-for-word reproduction of the proof of Lemma 3.2 (c) in (Jacod

and Rosenbaum, 2013b), plus the estimates in Lemma 3.5.2. More precisely, for any i ≥ 1,

we have

αlmn,i = Bi∆n +Mi∆n ,

cjk1,i∆n
− cjk1,(i−1)∆n

= B′i∆n
+M ′i∆n

,
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where Bt and Mt are respectively the drift part and continuous martingale part of

(
X ′lt −X ′l(i−1)∆n

)(
X ′mt −X ′m(i−1)∆n

)
− clm(i−1)∆n

, t ∈ {(i− 1)∆n, i∆n}.

Likewise, B′t and M ′t are the drift and (possibly discontinuous) martingale part of cjk1,t −

cjk1,(i−1)∆n
, respectively. In particular, M ′ may contain the compensated big jumps and

the subtraction of the compensator, which is well-defined under Assumption 3.5.1 and is

absolutely continuous with respect to Lebesgue measure, is then contained in B′. By (3.14)

and Lemma 3.5.2, we have

E
(
B2
i∆n

∣∣F(i−1)∆n

)
≤ K∆3

n, E
(
M2
i∆n

∣∣F(i−1)∆n

)
≤ K∆2

n.

Moreover, since cjk1,t − cjk1,(i−1)∆n
is itself an one dimensional Itô semimartingale, by

Lemma 3.5.2,

|B′i∆n
| ≤ K∆n, E

(
M ′2i∆n

∣∣F(i−1)∆n

)
≤ K∆n.

Then it follows by (conditional) Cauchy-Schwartz inequality that the absolute values of the

F(i−1)∆n
− conditional expectations of Bi∆nB

′
i∆n

, Bi∆nM
′
i∆n

and Mi∆nB
′
i∆n

are smaller

than K∆2
n. As for Mi∆nM

′
i∆n

, notice that

E
(
Mi∆nM

′
i∆n
|
∣∣F(i−1)∆n

)
= E

(
〈M,M ′〉i∆n |

∣∣F(i−1)∆n

)
and

〈M,M ′〉i∆n =

〈(∫ i∆n

(i−1)∆n

σ(c1)
s dWs

)jk
,

∫ i∆n

(i−1)∆n

(X ′ms −X ′m(i−1)∆n
)[σs]l,·dWs

〉

+

〈(∫ i∆n

(i−1)∆n

σ(c1)
s dWs

)jk
,

∫ i∆n

(i−1)∆n

(X ′ls −X ′l(i−1)∆n
)[σs]m,·dWs

〉

=

∫ i∆n

(i−1)∆n

(
c(X,c1)
s

)l,jk
(X ′ms −X ′m(i−1)∆n

)ds

+

∫ i∆n

(i−1)∆n

(
c(X,c1)
s

)m,jk
(X ′ls −X ′l(i−1)∆n

)ds,
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where the first term can be further written as

∫ i∆n

(i−1)∆n

(
c(X,c1)
s

)l,jk
(X ′ms −X ′m(i−1)∆n

)ds

=
(
c

(X,c1)
(i−1)∆n

)l,jk ∫ i∆n

(i−1)∆n

(X ′ms −X ′m(i−1)∆n
)ds

+

∫ i∆n

(i−1)∆n

((
c(X,c1)
s

)l,jk
−
(
c

(X,c1)
(i−1)∆n

)l,jk)
(X ′ms −X ′m(i−1)∆n

)ds.

Note X ′ is continuous Itô semimartingale, by Lemma 2 and (conditional) Cauchy-

Schwartz inequality, the F(i−1)∆n
−conditional expectation of the above term is smaller

than K∆
3/2
n

(√
∆n + ηni+1(c(X,σ1))

)
. It is also true for the term with l and m interchanged.

On the other hand, (3.21) can be proved in a similar fashion, in view of the facts that

σ2,(i+u−1)∆n
is F(i+u−1)∆n

−measurable and that σ2 is bounded.

Therefore, we have shown that

E
∣∣∣E(αlmn,i+u (cjk(i+u)∆n

− cjk(i+u−1)∆n

) ∣∣Fi∆n

)∣∣∣∆n

≤ K∆3/2
n

(
E
(
ηni+1(c(X,c1))

)
+ E

(
ηni+1(c(X,σ1))

)
+ ∆ε

n +
√

∆n

)
∆n

= K∆5/2
n

(
E
(
ηni+1(c(X,c1))

)
+ E

(
ηni+1(c(X,σ1))

)
+ ∆ε

n +
√

∆n

)
,

as desired.

Proof of Theorem 3.4.1. With all the preparations above we can move on to the proof

of Theorem 3.4.1. As in (Jacod and Rosenbaum, 2013a), we consider the following decom-

position

1√
∆n

(Sn(g)− S(g)) =
5∑
i=1

Vi,n,
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where

V1,n = ∆1/2
n

∑
i

(
g(ĉi∆n)− g(ĉ′i∆n

)

− 1

2kn

d∑
j,k,l,m=1

(
∂2
jk,lmg(ĉi∆n)(ĉjli∆n

ĉkmi∆n
+ ĉjmi∆n

ĉkli∆n
)

−∂2
jk,lmg(ĉ′i∆n

)(ĉ′jli∆n
ĉ′kmi∆n

+ ĉ′jmi∆n
ĉ′kli∆n

)
))

V2,n = ∆−1/2
n

∑
i

∫ (i+1)∆n

i∆n

(g(ci∆n)− g(cs)) ds−∆−1/2
n

∫ T

(Nn+1)∆n

g(cs)ds

V3,n = ∆1/2
n

∑
i

d∑
l,m=1

∂lmg(ci∆n)
1

kn

kn∑
u=1

(
clm(i+u−1)∆n

− clmi∆n

)

V4,n = ∆1/2
n

∑
i

(
g(ĉ′i∆n

)− g(ci∆n)−
d∑

l,m=1

∂lmg(ci∆n)c̃lmn,i

− 1

2kn
∂2
jk,lmg(ĉ′i∆n

)
(
ĉ′jli∆n

ĉ′kmi∆n
+ ĉ′jmi∆n

ĉ′kli∆n

))
V5,n = ∆−1/2

n k−1
n

∑
i

d∑
l,m=1

∂lmg(ci∆n)

kn∑
u=1

αlmn,i+u.

In view of this, Theorem 3.4.1 is the consequence of the following claims

Vi,n
P−→ 0, i = 1, 2, 3, 4

V5,n
L-s−→ MN (0, V (g)).

Now we proceed to show these claims one by one.

Case i = 1: Here we extend the proof of (A.18) in (Li and Xiu, 2016) to multidimen-

sional case. Define

hn(x) = g(x)− 1

2kn

d∑
j,k,l,m=1

∂2
jk,lmg(x)(xjlxkm + xjmxkl).
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Since g(·) is compactly supported and hence uniformly bounded, so is h(·). Then by mean

value theorem, we have

E|V1,n| ≤ K∆1/2
n

∑
i

E
(∥∥ĉi∆n − ĉ′i∆n

∥∥)
≤ K∆1/2

n

∑
i

an∆(2−r)$
n

≤ Kan∆(2−r)$−1/2
n ,

for some sequence an tending to 0, where for the second inequality we use (4.8) in (Jacod

and Rosenbaum, 2013a). By Assumption 3.2.2, (2− r)$ ≥ 1/2, hence V1,n = op.

Case i = 2: The remainder term ∆
−1/2
n

∫ T
(Nn+1)∆n

g(cs)ds = op(1) can be proved as in

(Jacod and Rosenbaum, 2013a). On the other hand, by Taylor expansion up to the second

order

∆−1/2
n

∑
i

∫ (i+1)∆n

i∆n

(g(cs)− g(ci∆n)) ds = V ′2,n + V ′′2,n,

with

V ′2,n = ∆−1/2
n

∑
i

∫ (i+1)∆n

i∆n

d∑
l,m=1

∂lmg(ci∆n)
(
clms − clmi∆n

)
ds

V ′′2,n = ∆−1/2
n

∑
i

∫ (i+1)∆n

i∆n

d∑
j,k,l,m=1

∂2
jk,lmg(ξn,i(s))

(
cjks − c

jk
i∆n

)(
clms − clmi∆n

)
ds,

where ξn,i(s) lies between cs and ci∆n . Since ∂2
jk,lmg(·) is bounded, Lemma 3.5.2 gives

E|V ′′2,n| ≤ K∆−1/2
n

∑
i

∫ (i+1)∆n

i∆n

E
(
||cs − ci∆n ||2

)
ds

≤ K∆−1/2
n

∑
i

∫ (i+1)∆n

i∆n

E
(
||σ1,s − σ1,i∆n ||2

)
ds

≤ K∆1/2
n .
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As for V ′2,n, in view of (3.15), (3.16) and Lemma 3.5.2 (2), it suffices to show

V ′2,n,1 ≡ ∆−1/2
n

∑
i

∫ (i+1)∆n

i∆n

d∑
l,m=1

∂lmg(ci∆n)
(
σlm1,s − σlm1,i∆n

)
ds = op(1), (3.22)

V ′2,n,2 ≡ ∆−1/2
n

∑
i

∫ (i+1)∆n

i∆n

d∑
l,m=1

∂lmg(ci∆n)
(
σlm2,s − σlm2,i∆n

)
ds = op(1). (3.23)

(3.22) can be proved using the martingale difference argument used in (Jacod and Protter,

2012), p.153-154. For (3.23), we have by Lemma 3.5.2 (2)

E
∣∣V ′2,n,2∣∣ ≤ K∆−1/2

n

∑
i

∫ (i+1)∆n

i∆n

E
(∥∥σ2,(i+u−1)∆n

− σ2,i∆n

∥∥) ds
≤ K∆ε

n,

which vanishes as n→∞.

Case i = 3: We want to show V3,n = op(1). In view of (3.15), (3.16) and Lemma 3.5.2

(2), it suffices to show that

V ′3,n ≡ ∆1/2
n

∑
i

d∑
l,m=1

∂lmg(ci∆n)
1

kn

kn∑
u=1

(
σlm1,(i+u−1)∆n

− σlm1,i∆n

)
= op(1) (3.24)

V ′′3,n ≡ ∆1/2
n

∑
i

d∑
l,m=1

∂lmg(ci∆n)
1

kn

kn∑
u=1

∣∣∣σlm2,(i+u−1)∆n
− σlm2,i∆n

∣∣∣ = op(1). (3.25)

(3.24) is proved exactly as in (Li and Xiu, 2016), p.7-8 in their Appendix, observing that

σlm is an one dimensional Itô semimartingale. On the other hand, by Lemma 3.5.2 (2), we

have

E|V ′′3,n| ≤ K∆1/2
n

∑
i

1

kn

kn∑
u=1

E
(∥∥σ2,(i+u−1)∆n

− σ2,i∆n

∥∥)
≤ K∆−1/2

n (kn∆n)1/2+ε

≤ Kk1/2+ε
n ∆ε

n

which tends to 0 by Assumption 3.4.1.
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Case i = 4: By Lemma 3.5.6 and Assumption 3.4.1, we have

∆1/2
∑
i

E
(
‖c̃n,i‖3

)
→ 0

k−1
n ∆1/2

∑
i

E (‖c̃n,i‖) → 0

kn−1∑
j=0

√
k−1
n (kn∆n)a4 → 0

Then by a multidimensional version of the argument in (Li and Xiu, 2016), we have V4,n =

op(1).

Case i = 5: Now we deal with the leading term V5,n, which can be rewritten as

V5,n = ∆−1/2
n

[T/∆n]−1∑
i=0

d∑
l,m=1

wlmn,i+1α
lm
n,i+1,

where

wlmn,i+1 = k−1
n

i∧(kn−1)∑
j=(i−[T/∆n]+kn)+

∂lmg(c(i−j)∆n
).

Note that in our notations, wlmn,i+1 and αn,i+1 are Fi∆n and F(i+1)∆n
measurable, respec-

tively. Then by Theorem 2.2.15 in (Jacod and Protter, 2012), it suffices to show

∆−1/2
n

[T/∆n]−1∑
i=0

wlmn,i+1E
(
αlmn,i+1

∣∣Fi∆n

)
P−→ 0, (3.26)

∆−1
n

[T/∆n]−1∑
i=0

wjkn,i+1w
lm
n,i+1E

(
αjkn,i+1α

lm
n,i+1

∣∣Fi∆n

)
P−→
∫ T

0
∂jkg(cs)∂lmg(cs)

(
cjls c

km
s + cjms ckls

)
ds, (3.27)

∆−2
n

[T/∆n]−1∑
i=0

‖wn,i+1‖4 E
(
‖αn,i+1‖4

∣∣Fi∆n

)
P−→ 0, (3.28)

∆−1/2
n

[T/∆n]−1∑
i=0

wlmn,i+1E
(
αlmn,i+1∆n

i+1N
∣∣Fi∆n

)
P−→ 0, (3.29)
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where N = W k for some k = 1, . . . , d, or is an arbitrary bounded martingale that is

orthogonal to the driving Brownian motion W .

Recall g(·) is compactly supported, ∂g(·) is bounded and so is wn,i. Hence by

Lemma 3.5.5 (2) and (1), respectively, we have (3.26) and (3.28). Moreover, note c is

càdlàg adapted with no fixed time of discontinuity since both σt and σ2 are so, the proof of

(4.16) in (Jacod and Rosenbaum, 2013a) gives (3.27).

At last as for 3.29, when N = W k, (3.29) holds because of (3.20) with c1 replaced by W k.

On the other hand, if N is a bounded martingale orthogonal to W , the “usual argument”

gives the result, see (Jacod and Rosenbaum, 2013a) p.21 and the reference therein.
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CHAPTER 4

Bootstrap Inference for Integrated Volatility Functionals

In this chapter we introduce alternative ways to do statistical inference for integrated

volatility functionals. In the last comment that follows Theorem 3.4.1, it is shown how

statistical inference could be done for integrated volatility functionals using the asymptotic

result. In this chapter, we propose both parametric and nonparametric bootstrap algorithms

to construct confidence intervals for integrated volatility functionals. We justify the two

bootstrap methods by both asymptotic results and Monte Carlo simulation.

4.1 Setting

The basic set-up of this chapter is similar to the one in Chapter 3. To make it more

convenient for readers to directly start this chapter without going over the previous one, we

give a brief introduction to the setting here. In particular, we slightly update the notation

to accommodate the bootstrap setting considered in this chapter.

Throughout this chapter, all processes are assumed to be càdlàg adapted. We consider

a d-dimensional multivariate Itô semimartingale process X defined on a filtered probability

space (Ω,F , (Ft)t≥0,P) with the form

Xt = X0 +

∫ t

0
bsds+

∫ t

0
σsdWs + Jt, (4.1)

where b is the d-dimensional drift process, σ is the (co)volatility process taking values in

the space Md, W is a d-dimensional Brownian motion and J denotes the jump process of

X. This setting covers most models used in continuous-time economics and finance (see

e.g., (Merton, 1992)), allowing for stochastic volatility, jumps and leverage effects.

On the statistical side, we assume that the process X is sampled at times ti = i/n for

i = 0, 1, . . . , n, over a fixed time interval [0, T ], which may represent a typical trading day.
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Without loss of generality, we assume T = 1. The increments of X are denoted as

∆n
i X ≡ Xi/n −X(i−1)/n, i = 1, . . . , n,

and asymptotically the sampling interval tends to 0 as n→∞.

4.1.1 Integrated volatility functionals

With model (4.1), the spot (co)variance process of X is given by c = σσᵀ, which also

takes values in Md. The goal of this chapter is to provide bootstrap confidence intervals

for integrated volatility functionals of the form

S(g) ≡
∫ 1

0
g(cs)ds,

for some (possibly) nonlinear test function g.

The estimation problem of S(g) with its asymptotic results has been studied in the

recent literature, see (Jacod and Rosenbaum, 2013b), (Jacod and Rosenbaum, 2013a) and

(Li et al., 2016a). Define

S̃n(g;Dn) =
kn
n

[n/kn]−1∑
i=0

g(ĉn,i) (4.2)

where for each i ∈ In ≡ {0, . . . , [n/kn]− 1}

ĉn,i =
n

kn

kn∑
j=1

(
∆n
ikn+jX

) (
∆n
ikn+jX

)ᵀ
1{||∆n

ikn+jX||≤un} (4.3)

is the local approximation for the spot covariance ct over the (non-overlapping) interval

[ikn/n, (i+ 1)kn/n], and Dn ≡ {∆n
i X, i = 1, . . . , n} represents the set of returns calculated

from the sampled data with the letter D denoting “data”. This is in contrast to the

bootstrapped data set D∗. As in Chapter 3, here the tuning parameter kn is the number

of increments employed in a local window and un determines the truncation threshold for

eliminating jumps in X.

Under mild regularity conditions, S̃n(g;Dn) is a consistent estimator for S(g); see (Jacod

and Protter, 2012). However, for the associated unbiased central limit theorem with rate
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√
n to hold, a prior de-biasing term has to be added, see (Jacod and Rosenbaum, 2013a).

More specifically, define

Sn(g;Dn) =
kn
n

[n/kn]−1∑
i=0

g(ĉn,i)−
1

2kn

d∑
j,k,l,m=1

∂2
jk,lmg(ĉn,i)

(
ĉjln,iĉ

km
n,i + ĉjmn,i ĉ

kl
n,i

) , (4.4)

then under the Assumptions 3.1.1-3.4.1, Theorem 3.4.1 shows that

√
n (Sn(g;Dn)− S(g))

L−s−→MN (0, V (g)) (4.5)

with asymptotic variance

V (g) =
d∑

j,k,l,m=1

∫ 1

0
∂jkg(cs)∂lmg(cs)

(
cjls c

km
s + cjms ckls

)
ds. (4.6)

Some of early works that develop this asymptotic result, under more restricted conditions,

though, include (Jacod and Rosenbaum, 2013a) and (Li et al., 2016a).

Based on the asymptotic result (4.5), confidence intervals for S(g) can be formed pro-

vided that the asymptotic variance V (g) could be consistently estimated; see (Jacod and

Rosenbaum, 2013a). Alternatively, such statistical inference can be done via boostrap

methods, which is the goal of the present chapter. In section 4.2, we describe the algorithm

to construct parametric bootstrap confidence intervals for S(g), together with theoretical

results which justify the algorithm. The nonparametric way, which we call “local IID boos-

trap”, to construct bootstrap confidence intervals using resampling with replacement will

be introduced in section 4.3. We emphasize that in this setting we assume the same as-

sumptions that are imposed in Chapter 3, which are Assumption 3.1.1, 3.2.1, 3.2.2 and

3.4.1.

4.2 Parametric Bootstrap

4.2.1 Algorithm

We pick a sequence kn of width of local window for spot covariance estimation and

un of truncation threshold for eliminating jumps of X according to Assumption 3.2.2 as
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given in Chapter 3. Then for a given confidence level α ∈ (0, 1
2), the parametric bootstrap

confidence interval for S(g) with (asymptotic) coverage probability 1−α can be constructed

using the following algorithm.

Algorithm 1. (Parametric Bootstrap Confidence Intervals)

Step 1. For each i ∈ In, estimate ĉn,i according to (4.3), and compute S̃n(g;Dn) and

Sn(g;Dn) according to (4.2) and (4.4) respectively.

Step 2. For each i ∈ In, simulate ∆n
ikn+jX

∗ ∼ N
(
0, 1

n ĉn,i
)

for j = 1, . . . , kn.

Step 3. Compute bootstrap spot covariance estimators using ∆n
i X
∗, namely,

ĉ∗n,i =
n

kn

kn∑
j=1

(
∆n
ikn+jX

∗) (∆n
ikn+jX

∗)ᵀ .
Step 4. Compute bootstrap estimator for S(g) as

Sn(g;D∗n) ≡ kn
n

[n/kn]−1∑
i=0

g(ĉ∗n,i)−
1

2kn

d∑
j,k,l,m=1

∂2
jk,lmg(ĉ∗n,i)

(
ĉ∗jln,i ĉ

∗km
n,i + ĉ∗jmn,i ĉ

∗kl
n,i

) , (4.7)

where D∗n ≡ {∆n
i X
∗, i = 1, . . . , n} represents the set of returns calculated from parametric

bootstrap samples generated from Step 2.

Step 5. Repeat Step 2 - 4 for a large number of times. Set qα/2(Sn(g;D∗n)) and

q1−α/2(Sn(g;D∗n)) as the α/2 and 1−α/2 quantiles of Sn(g;D∗n) respectively. The parametric

bootstrap confidence interval of coverage 1− α is then formed as

[Sn(g;Dn) + S̃n(g;Dn)− q1−α/2(Sn(g;D∗n)), Sn(g;Dn) + S̃n(g;Dn)− qα/2(Sn(g;D∗n))]. (4.8)

As one can readily see, the confidence interval (4.8) is constructed via parametric boot-

strap as bootstrap samples ∆n
ikn+jX

∗ are generated from normal distribution.

4.2.2 Result

Theorem 4.2.1 below justifies the confidence interval (4.8) has asymptotic 1 − α cov-

erage probability. Intuitively, the bootstrap confidence interval is (asymptotically) valid if
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Sn(g;D∗n)−S̃n(g;Dn) enjoys the same asymptotic result, conditional on the realized original

sample, as that of Sn(g;Dn)− S(g) in (4.5), see e.g. (van der Vaart, 1998).

In the sequel, we use Zn
L|F−→ Z to denote L(Zn|F)

P−→ L(Z|F) for a sequence of random

variables (Zn)n≥1 and Z, namely, the conditional distribution of Zn given F converges to

that of Z in probability under Prokhorov metric. Such a mode of convergence in commonly

used in the setting of bootstrap, as well as together with stable convergence in law. For

the latter situation, see e.g., (Barndorff-Nielsen et al., 2008) Proposition 5 and (Li and Xiu,

2016) Lemma A3.

Theorem 4.2.1. Suppose the Assumption 3.1.1, 3.2.1, 3.2.2 and 3.4.1 given in Chapter 3

hold, and let Sn(g;D∗n) be given by Algorithm 1. It follows that

√
n
(
Sn(g;D∗n)− S̃n(g;Dn)

) L|F−→MN (0, V (g)), (4.9)

where

V (g) =

d∑
j,k,l,m=1

∫ 1

0
∂jkg(cs)∂lmg(cs)

(
cjls c

km
s + cjms ckls

)
ds. (4.10)

Several comments are worth mentioning. Firstly, under the same assumptions as im-

posed in Theorem 3.4.1, both the convergence rate and the asymptotic variance in Theo-

rem 4.2.1 are exactly the same as that in (4.5) and (4.6), which validates the constructed

confidence interval given in (4.8), as argued in (van der Vaart, 1998). Secondly, a closer

observation reveals that the left side of (4.9) has only one bias correction that is included

in Sn(g;D∗n), while there is no biased correction term in S̃n(g;Dn). This is in line with the

original asymptotic result (4.5) where the only bias correction occurs within Sn(g;Dn).

4.3 The Local IID Bootstrap

In this section we introduce the algorithm to construct local IID bootstrap confidence

interval for S(g). The wording “local IID” emerges from the fact that the bootstrap samples

in this method are generated by resampling with replacement over each nonoverlapping local

window. The theoretical results to justify this procedure is also provided.
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4.3.1 Algorithm

Pick a sequence kn of width of local window for spot covariance estimation and un of

truncation threshold for eliminating jumps of X according to Assumption 3.2.2 as given in

Chapter 3. For a given confidence α ∈ (0, 1), the local IID bootstrap confidence interval for

S(g) with (asymptotic) coverage probability 1 − α can be constructed using the following

algorithm.

Algorithm 2. (Local IID Bootstrap Confidence Intervals)

Step 1. For each i ∈ In, estimate ĉn,i according to (4.3), and compute S̃n(g;Dn) and

Sn(g;Dn) according to (4.2) and (4.4) respectively.

Step 2. For each i ∈ In, compute bootstrap spot covariance estimators

ĉ∗n,i =
n

kn

kn∑
`=1

(
∆n
ikn+j∗i,`

X
)(

∆n
ikn+j∗i,`

X
)ᵀ

1{||∆n
ikn+j∗

i,`
X||≤un}, (4.11)

where for each i and `,

j∗i,` ∼ i.i.d. Uniform{1, . . . , kn}.

Step 3. Compute bootstrap estimator for S(g) as

Sn(g;D∗n) ≡ kn
n

[n/kn]−1∑
i=0

g(ĉ∗n,i)−
1

2kn

d∑
j,k,l,m=1

∂2
jk,lmg(ĉ∗n,i)

(
ĉ∗jln,i ĉ

∗km
n,i + ĉ∗jmn,i ĉ

∗kl
n,i

) .

(4.12)

where Dn ≡ {∆n
i X
∗, i = 1, . . . , n} represents the set of returns calculated from local IID

bootstrap samples generated from Step 2.

Step 4. Repeat Step 2 - 3 for a large number of times. Set qα/2(Sn(g;D∗n)) and

q1−α/2(Sn(g;D∗n)) as the α/2 and 1 − α/2 quantiles of Sn(g;D∗n) respectively. The local

IID bootstrap confidence interval of coverage 1− α is then formed as

[Sn(g;Dn)+S̃n(g;Dn)−q1−α/2(Sn(g;D∗n)), Sn(g;Dn)+S̃n(g;Dn)−qα/2(Sn(g;D∗n))]. (4.13)

Algorithm 2 forms the bootstrap confidence interval in a nonparametric way, featuring

that the bootstrap samples ∆n
ikn+jX

∗ are generated from i.i.d. resampling with replacement
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over each (nonoverlapping) interval [ikn/n, (i+1)kn/n], instead of using normal distribution

as in the parametric case.

4.3.2 Result

Theorem 4.3.1 below justifies the confidence interval (4.13) has asymptotic 1−α coverage

probability.

Theorem 4.3.1. Suppose the Assumption 3.1.1, 3.2.1, 3.2.2 and 3.4.1 given in Chapter 3

hold, and let Sn(g;D∗n) be given by Algorithm 2. It follows that

√
n
(
Sn(g;D∗n)− S̃n(g;Dn)

) L|F−→MN (0, V (g)), (4.14)

where

V (g) =
d∑

j,k,l,m=1

∫ 1

0
∂jkg(cs)∂lmg(cs)

(
cjls c

km
s + cjms ckls

)
ds. (4.15)

Theorem 4.3.1 implies that the local IID confidence interval has the same asymptotic ef-

ficiency as the parametric method, in spite of the lack of local Gaussianity. On the technical

level, this is because the i.i.d. resampling of bootstrap samples ∆n
ikn+jX

∗ with replacement

is only implemented locally over each (nonoverlapping) interval, rather than over the whole

time span [0, 1] as, for example, in (Gonçalves and Meddahi, 2009). Therefore, the con-

structed confidence interval (4.13) has the desired coverage as argued in (van der Vaart,

1998).

4.4 Monte Carlo Study

4.4.1 The Monte Carlo Set-up

In this section we validate the confidence intervals constructed in (4.8) and (4.13) via

Monte Carlo study, where we consider the integrated idiosyncratic variance as mentioned

before. We set the time span T = 60 days which is almost one business quarter, with

the time unit being one year or equivalently, 250 trading days. Each day contains 390 1-

minute sampled returns, corresponding to 6.5 transaction hours. We also consider 10-minute
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returns in the study. All continuous-time processes are simulated using Euler scheme with

a 5-second mesh. There are 1000 Monte Carlo trials and 500 bootstrap trials.

We consider a bivariate setting, in which the data generating process (DGP) is given

as follows:

dZt =
√
cZZ,tdWt + dJZ,t,

dYt = βt
√
cZZ,tdWt +

√
cε,tdW̃t + dJY,t

where W and W̃ are two independent Brownian motions, and JZ and JY are two inde-

pendent compound Poisson processes with intensity equal to 2 jumps per year and jump

distribution N (0, 0.022). One can consider Z as the log-price process of the market portfolio

and Y as that of some individual asset. The process β, measuring the exposure of Y to Z,

follows:

βt = 0.5 + 0.1 sin(100t).

The market variance processes cZZ and idiosyncratic variance process cε satisfy the following

factor structure:

σZZ,t = bt + f1,t, cε,t = 0.1 + f2,t (4.16)

where bt is a fractional Brownian Motion with Hurst parameter 0.91, and the factors fj , for

j = 1, 2, are simulated according to

d log(fj,t) = 5
(
log(0.32)− log(fj,t)

)
dt+ 5

(
ρfdWt +

√
1− ρ2

fdBj,t

)
+ dJfj,t,

where the negative correlation ρf = −0.5 represents the “leverage effect”, and (Jfj )j=1,2

are compound Poisson processes, which are mutually independent and independent of other

components in the DGP, with intensity equal to 4 jumps per year and jump size distribution

being exponential with mean 0.1.

1We thank Professor Vladas Pipiras for generously sharing the Matlab code for simulating fractional
Brownian motion.
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In this setting, the volatility functional under consideration is the so-called idiosyncratic

spot covariance of Y , given by

g(ct) = cY Y,t − β2
t cZZ,t = cY Y,t − c2

ZY,t/cZZ,t,

where cZY,t = β2
t cZZ,t + cε,t. We would like to examine the coverage probabilities of the

confidence intervals for S(g;Dn) =
∫ T

0 g(s)ds as constructed by (4.8) and (4.13).

Tuning parameters in the implementation are set as follows. The truncation threshold

for day t is given by 3.5σ̄t∆
0.49, where σ̄t is the annualized bipower variation (see (Barndorff-

Nielsen and Shephard, 2004c)). We consider two sets of local window kn ∈ {45, 60, 75} when

∆ = 1 minute and kn ∈ {12, 14, 16} when ∆ = 10 minutes, so as to check the robustness of

our inference procedure to the choice of tuning parameters.

4.4.2 Results

Monte Carlo coverage probabilities of confidence intervals formed by (4.8) and (4.13) are

reported in Table 4.1. The coverage probabilities for both parametric bootstrap confidence

intervals and local IID bootstrap confidence intervals are very close to the corresponding

nominal confidence levels, and the results are robust to the choices of local window kn.

Astute readers may find that the performance for parametric bootstrap method is slightly

better than the local IID method, which is not surprising in this artificial simulation setting

as the underlying process dynamics is designed to be normally distributed given the real-

ization of volatility. Other finer observations include, for example, given ∆ = 10 minutes,

the performance of local IID method of kn = 14 and kn = 16 is better than that of kn = 12.

Overall, the simulation results reported here are consistent with our asymptotic theory, and

moreover, validate our inference procedure in the finite sample setting.

4.5 Future Work

So far, we have only considered non-overlapping case. It would be interesting to de-

rive the same asymptotic result in the overlapping case from a smoothness point of view.

Moreover, althought the bootstrap method could produce confidence intervals for estimat-
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Table 4.1: Monte Carlo coverage probabilities for non-overlapping bootstrap confidence intervals.

∆ = 1 minute ∆ = 10 minutes
kn = 45 kn = 60 kn = 75 kn = 12 kn = 14 kn = 16

Panel A. Parametric Bootstrap Method
α = 1% 0.984 0.986 0.988 0.993 0.992 0.993
α = 5% 0.947 0.952 0.947 0.946 0.959 0.956
α = 10% 0.901 0.888 0.899 0.901 0.911 0.912

Panel B. Local IID Bootstrap Method
α = 1% 0.978 0.976 0.975 0.973 0.983 0.980
α = 5% 0.926 0.932 0.935 0.916 0.943 0.947
α = 10% 0.873 0.884 0.876 0.860 0.894 0.891

Note: Panel A reports the coverage probabilities for the parametric bootstrap method.
Panel B reports the coverage probabilities for the local IID Bootstrap method. The left
(resp. right) panel reports results for 1-minute (resp. 10-minute) sampling. Rows and
columns respectively correspond to various choices of confidence level α and local window
width kn.

ing integrated volatility functionals without computing the asymptotic variance, it is still

required to compute the second order derivatives of the test function g, which could be

quite cumbersome in practice. In view of the most recent work in (Li and Xiu, 2017), it

would be desired to derive a bootstrap method that has no bias correction term.

4.6 Proofs

In this section, we provide regularity conditions and formal proofs for Theorem 4.2.1

and 4.3.1 in the main text. To do so, we need to complement the notations to be used in

the sequel. We use K to denote a positive generic constant, which might vary from line to

line. EF (·) and VarF (·) denote F-conditional expectation and variance, respectively. For

two (possibly random) real-valued sequences (an)n≥1 and (bn)n≥1, we write an = Op(bn)

if an/bn is bounded in probability and write an = op(bn) if an/bn is converges to 0 in

probability.

We point out here that the conditions under which Theorem 4.2.1 and 4.3.1 hold are

exactly the same as in Chapter 3. More specifically, we assume the dynamics of X and

σ follows Assumption 3.1.1, where, in particular, σ is a LMIS. Furthermore, we assume

the test function g satisfies Assumption 3.2.1, and tuning parameters kn and un satisfy
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Assumption 3.2.2 noting that ∆n = 1/n in current setting. Also, we have Assumption 3.4.1

to compensate for the fact that the long memory part of σ might not be a martingale.

In the following we are going to present formal proofs for Theorem 4.2.1 and 4.3.1.

By a standard localization procedure (Lemma 4.4.9 in (Jacod and Protter, 2012)), we can

without loss of generality assume all locally bounded process are actually bounded. In light

of Lemma 2 in (Li et al., 2016a), we can restrict our attention to the set with probability

approaching to 1 on which local covariance estimates ĉn,i are uniformly bounded for i ∈ In.

Moreover, by using the spatial localization argument as in the proof of Theorem 2 in (Li

et al., 2016a), we can assume that test function g is compactly supported, and hence both

function g and its existent derivatives are bounded from above by some positive constant.

4.6.1 Proof of Theorem 4.2.1

Observe that the left hand side of (4.9) can be written as

√
n
(
Sn(g;D∗n)− S̃n(g;Dn)

)
=

[n/kn]−1∑
i=0

kn√
n
Hn,i

where

Hn,i = g(ĉ∗n,i)− g(ĉn,i)−
1

2kn

d∑
j,k,l,m=1

∂2
jk,lmg(ĉ∗n,i)

(
ĉ∗jln,i ĉ

∗km
n,i + ĉ∗jmn,i ĉ

∗kl
n,i

)
.

In light of Theorem 2.2.14 in (Jacod and Protter, 2012), which is a set of Lyapunov-type

conditions and by subsequence principle, it suffices to show

EF
(√

n
(
Sn(g;D∗n)− S̃n(g;Dn)

))
P−→ 0 (4.17)

EF
(√

n
(
Sn(g;D∗n)− S̃n(g;Dn)

))2 P−→ V (g) (4.18)

and
[n/kn]−1∑
i=0

EF
(√

n
kn
n
Hn,i

)4
P−→ 0, (4.19)

which will be proved via the following three steps.
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Step 1. We first show (4.17). Simple calculation using normality of ∆n
ikn+jX

∗ gives

EF (ĉ∗jkn,i ) = ĉjkn,i, EF
(
ĉ∗jkn,i − ĉ

jk
n,i

)4
= Op(k

−2
n )

EF
[(
ĉ∗jkn,i − ĉ

jk
n,i

)(
ĉ∗lmn,i − ĉlmn,i

)]
=

1

kn

(
ĉjln,iĉ

km
n,i + ĉjmn,i ĉ

kl
n,i

)
.

Then by Taylor expansion and the fact that ĉn,i is F-measurable, we have for any i ∈ In,

EF
(
g(ĉ∗n,i)− g(ĉn,i)

)
=

1

2kn

d∑
j,k,l,m=1

∂2
jk,lmg(ĉn,i)

(
ĉjln,iĉ

km
n,i + ĉjmn,i ĉ

kl
n,i

)
+Gn,i,

where by Cauchy-Schwartz inequality Gn,i is the higher order term satisfying

EF |Gn,i| ≤ K
d∑

j,k,l,m,u,v=1

EF
[(
ĉ∗jkn,i − ĉ

jk
n,i

)(
ĉ∗lmn,i − ĉlmn,i

) (
ĉ∗uvn,i − ĉuvn,i

)]
= Op(k

−2/3
n ).

By Assumption 3.2.2, k3
n/n→∞, it follows that

√
nEF

(
Sn(g;D∗n)− S̃n(g;Dn)

)
=

kn√
n

[n/kn]−1∑
i=0

ηn,i + op(1)

where

ηn,i =
1

2kn

d∑
j,k,l,m=1

∂2
jk,lmg(ĉn,i)

(
ĉjln,iĉ

km
n,i + ĉjmn,i ĉ

kl
n,i

)

− 1

2kn

d∑
j,k,l,m=1

EF
[
∂2
jk,lmg(ĉ∗n,i)

(
ĉ∗jln,i ĉ

∗km
n,i + ĉ∗jmn,i ĉ

∗kl
n,i

)]
.

By mean value theorem and Cauchy-Schwartz inequality, one can readily derives that

E|ηn,i| ≤ Kk−3/2
n ,

which, plus the fact k3
n/n→∞, gives (4.17).
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Step 2. Next we show (4.18). In view of step 1, we have uniformly in i,

√
nHn,i = op(1).

Since Hn,i and Hn,j are conditionally independent if i 6= j, we have

nEF
((
Sn(g;D∗n)− S̃n(g;Dn)

))2
=
k2
n

n

[n/kn]−1∑
i=0

EF (H2
n,i) + op(1).

Hence it remains to show

k2
n

n

[n/kn]−1∑
i=0

EF (H2
n,i)

P−→ V (g) (4.20)

To show (4.20), Taylor expansion up to second order yields the following decomposition

Hn,i = H1,n,i +H2,n,i

where

H1,n,i =
d∑

j,k=1

∂jkg(ĉn,i)
(
ĉ∗jkn,i − ĉ

jk
n,i

)

and, by Cauchy-Schwartz inequality and the fact that EF
(
ĉ∗jkn,i − ĉ

jk
n,i

)4
= Op(k

−2
n )

EF (H2
2,n,i) = Op(k

−2
n ).

As for H1,n,i, an adaption of Theorem 9.4.1 of (Jacod and Protter, 2012) to the nonover-

lapping case yields

k2
n

n

[n/kn]−1∑
i=0

EF (H2
1,n,i)

=
k2
n

n

[n/kn]−1∑
i=0

d∑
j,k,l,m=1

∂jkg(ĉn,i)∂lmg(ĉn,i)EF
[(
ĉ∗jkn,i − ĉ

jk
n,i

)(
ĉ∗lmn,i − ĉlmn,i

)]

=
kn
n

[n/kn]−1∑
i=0

d∑
j,k,l,m=1

∂jkg(ĉn,i)∂lmg(ĉn,i)
(
ĉjln,iĉ

km
n,i + ĉjmn,i ĉ

kl
n,i

)
P−→ V (g)
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Therefore, by Cauchy-Schwartz inequality

k2
n

n

[n/kn]−1∑
i=0

EF (H2
n,i) =

k2
n

n

[n/kn]−1∑
i=0

EF (H2
1,n,i + 2H1,n,iH2,n,i +H2

2,n,i)

=
k2
n

n

[n/kn]−1∑
i=0

EF (H2
1,n,i) +Op(k

−1/2
n ) +Op(k

−1
n )

P−→ V (g).

Thus we prove (4.20), and (4.18) follows.

Step 3. At last we show (4.19). By mean value theorem and simple calculation, it holds

that

EF (H4
n,i) ≤ KEF

(
g(ĉ∗n,i)− g(ĉn,i)

)
+Op(k

−4
n )

= Op(k
−2
n ).

Plugging this into the left hand side of (4.19) gives the result.

Hence we finish the proof for Theorem 4.2.1.

4.6.2 Proof of Theorem 4.3.1

In this section we provide formal proof for Theorem 4.3.1, in which the bootstrap

samples are generated using resampling with replacement. One could expect that the proof

for Theorem 4.3.1 would be more involved than that of Theorem 4.2.1, due to the lack of

(local) Gaussianity.

4.6.2.1 Elimination of jumps and truncation

In the spirit of (Jacod and Rosenbaum, 2013a), we find it useful to replace truncated

returns by diffusive returns at the very beginning. To do so, define

X ′t =

∫ t

0
b′sds+

∫ t

0
σsdWs,
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where

b′t = bt +

∫
δ(s, x)1{||δ(s,x)≤1||}λ(dx). (4.21)

Correspondingly, define

ĉ′n,i ≡
n

kn

kn∑
j=1

(
∆n
ikn+jX

′) (∆n
ikn+jX

′)ᵀ
S̃′n(g;Dn) ≡ kn

n

[n/kn]−1∑
i=0

g(ĉ′n,i)

In the local IID bootstrap setting, we also need to define

ĉ
′∗
n,i ≡

n

kn

kn∑
`=1

(
∆n
ikn+j∗i,`

X ′
)(

∆n
ikn+j∗i,`

X ′
)ᵀ

S
′
n(g;D∗n) ≡ kn

n

[n/kn]−1∑
i=0

g(ĉ
′∗
n,i)−

1

2kn

d∑
j,k,l,m=1

∂2
jk,lmg(ĉ

′∗
n,i)
(
ĉ
′∗,jl
n,i ĉ

′∗,km
n,i + ĉ

′∗,jm
n,i ĉ

′∗,kl
n,i

)
We will show that under Assumption 3.2.2, it would be enough to consider the diffusive

returns ∆n
ikn+jX

′, in place of the truncated returns
(

∆n
ikn+jX

)
1{||∆n

ikn+jX||≤un}, which is

mainly due to the following lemma on the convergence in conditional law.

Lemma 4.6.1. Suppose (Xn)n≥1 and (Yn)n≥1 are two sequences of random variables such

that

Xn
L|F−→ L, EF |Yn|

P−→ 0, (4.22)

for some distribution L. Then it holds that Xn + Yn
L|F−→ L.

Proof. By definition of convergence in conditional law (e.g., Definition A1 in (Li and Xiu,

2016)), it suffices to show that for any bounded Lipschitz continuous function f ,

EF (f(Xn + Yn))
P−→
∫
f(z)L(dz).
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Note that

∣∣∣∣EF (f(Xn + Yn))−
∫
f(z)L(dz)

∣∣∣∣
≤ |EF (f(Xn + Yn))− EF (f(Xn))|+

∣∣∣∣EF (f(Xn))−
∫
f(z)L(dz)

∣∣∣∣ .
The first term converges to 0 because of f being Lipschitz and the second condition in

(4.22), while the second term vanishes in probability due to the condition Xn
L|F−→ L in

(4.22).

The following result officially allows us to replace truncated returns by diffusive returns.

Proposition 4.6.1. To show
√
n
(
Sn(g;D∗n)− S̃n(g;Dn)

) L|F−→MN (0, V (g)), it suffices to

show
√
n
(
S
′
n(g;D∗n)− S̃′n(g;Dn)

) L|F−→MN (0, V (g)).

Proof. Observe that

Sn(g;D∗n)−S̃n(g;Dn) = Sn(g;D∗n)−S′n(g;D∗n)+S
′
n(g;D∗n)−S̃′n(g;Dn)+S̃′n(g;Dn)−S̃n(g;Dn),

In the spirit of Lemma 4.6.1, it suffices to show

√
nEF

∣∣∣Sn(g;D∗n)− S′n(g;D∗n)
∣∣∣ P−→ 0, (4.23)

√
nE
∣∣∣S̃′n(g;Dn)− S̃n(g;Dn)

∣∣∣ P−→ 0. (4.24)

To show (4.23), let

h(x) = g(x)− 1

2kn

d∑
j,k,l,m=1

∂2
jk,lmg(x)(xjlxkm + xjmxkl) (4.25)
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which is in C1
c , since g ∈ C3

c . By mean value theorem,

√
nEF

∣∣∣Sn(g;D∗n)− S′n(g;D∗n)
∣∣∣ ≤ kn√

n

[n/kn]−1∑
i=0

EF
∣∣∣h(ĉ∗n,i)− h(ĉ

′∗
n,i)
∣∣∣

≤ kn√
n

[n/kn]−1∑
i=0

d∑
j,k=1

EF
∣∣∣ĉ∗jkn,i − ĉ′∗jkn,i

∣∣∣
where

EF
∣∣∣ĉ∗jkn,i − ĉ′∗jkn,i

∣∣∣ ≤ n

kn

kn∑
`=1

EF
∣∣∣∣(∆n

ikn+j∗i,`
Xj
)(

∆n
ikn+j∗i,`

Xk
)

1{||∆n
ikn+j∗

i,`
X||≤un}

−
(

∆n
ikn+j∗i,`

X
′j
)(

∆n
ikn+j∗i,`

X
′k
)∣∣∣

=
n

kn

kn∑
`=1

∣∣∣(∆n
ikn+`X

j
) (

∆n
ikn+`X

k
)

1{||∆n
ikn+`X||≤un}

−
(

∆n
ikn+`X

′j
)(

∆n
ikn+`X

′k
)∣∣∣

≤ Kann
(r−2)$

for some sequence of reals an converging to 0, and the last inequality is by the argument in

page 15 of (Jacod and Rosenbaum, 2013a). Therefore,

√
nEF

∣∣∣Sn(g;D∗n)− S′n(g;D∗n)
∣∣∣ ≤ Kann(r−2)$+ 1

2

which vanishes since $ ≥ 1−γ
2−r >

1
2(2−r) by Assumption 3.2.2. Hence (4.23) follows.

(4.24) can be proved in the similar (and in fact simpler) way.

4.6.2.2 Proof for the continuous case

In the spirit of Proposition 4.6.1, we will show

√
n
(
S
′
n(g;D∗n)− S̃′n(g;Dn)

) L|F−→MN (0, V (g)). (4.26)

As in the case of parametric bootstrap, we will again use Theorem 2.2.14 in (Jacod and

Protter, 2012) plus subsequence principle. To do so, we have to obtain the order of mag-

nitude of returns and spot volatility estimates computed based on bootstrap samples using

73



diffusive returns, which is more involved than the case of parametric bootstrap due to the

lack of local Gaussianity. We collect the results in the following lemma, and again we

restrict our attention to the set on which spot covariance estimates are uniformly bounded.

Lemma 4.6.2. We have for any i ∈ In,

EF (ĉ
′∗jk
n,i ) = ĉ

′jk
n,i , EF

(
ĉ
′∗jk
n,i − ĉ

′jk
n,i

)4
= Op(k

−2
n )

EF
[(
ĉ
′∗jk
n,i − ĉ

′jk
n,i

)(
ĉ
′∗lm
n,i − ĉ

′lm
n,i

)]
=

1

kn

(
ĉ
′jl
n,iĉ

′km
n,i + ĉ

′jm
n,i ĉ

′kl
n,i

)
+Op(k

−3/2
n ).

Moreover, for any p ≥ 1,

EF
(
ĉ
′∗jk
n,i − ĉ

′jk
n,i

)p
= Op(1).

Proof. The first identity can be obtained by simple calculations. Furthermore, note that

ĉ
′∗jk
n,i − ĉ

′jk
n,i =

1

kn

kn∑
`=1

Zjkn,i,`

where Zjkn,i,` =
(√

n∆n
ikn+j∗i,`

X
′j
)(√

n∆n
ikn+j∗i,`

X
′k
)
− ĉ

′jk
n,i . By the fact that |ĉ

′jk
n,i | < K and

the standard estimates for continuous Itô semimartingale, it follows for any p ≥ 1,

EF
[(
Zjkn,i,`

)p]
≤ EF

[(√
n∆n

ikn+j∗i,`
X
′j
)p (√

n∆n
ikn+j∗i,`

X
′k
)p]

=
1

kn

kn∑
`=1

(√
n∆n

ikn+`X
′j
)p (√

n∆n
ikn+`X

′k
)p

= Op(1)

Then the second equality in Lemma 4.6.2 follows from a direct calculation and the last one

can be deduced from Jensen’s inequality.

The third claim in Lemma 4.6.2 is a bit more involved. For notational simplicity, let

Rjklmn,i,` = ∆n
ikn+`X

′j∆n
ikn+`X

′k∆n
ikn+`X

′l∆n
ikn+`X

′m.
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Direct calculation yields that

EF
[(
ĉ
′∗jk
n,i − ĉ

′jk
n,i

)(
ĉ
′∗lm
n,i − ĉ

′lm
n,i

)]
=

1

kn

(
n2

kn

kn∑
`=1

Rjklmn,i,` − ĉ
′jk
n,i ĉ

′lm
n,i

)

Then it suffices to show

n2

kn

kn∑
`=1

Rjklmn,i,` − ĉ
′jk
n,i ĉ

′lm
n,i − ĉ

′jl
n,iĉ

′km
n,i − ĉ

′jm
n,i ĉ

′kl
n,i = Op(k

−1/2
n ), (4.27)

The proof for (4.27) relies on the decomposition

n2

kn

kn∑
`=1

Rjklmn,i,` − ĉ
′jk
n,i ĉ

′lm
n,i − ĉ

′jl
n,iĉ

′km
n,i − ĉ

′jm
n,i ĉ

′kl
n,i = R1,n,i +R2,n,i +R3,n,i

where

R1,n,i =
1

kn

kn∑
`=1

[
n2Rjklmn,i,` − EF

(
n2Rjklmn,i,`

∣∣∣∣F(ikn+`−1)/n

)]

R2,n,i =
1

kn

kn∑
`=1

[
EF
(
n2Rjklmn,i,`

∣∣∣∣F(ikn+`−1)/n

)
− cjk(ikn+`−1)/nc

lm
(ikn+`−1)/n

−cjl(ikn+`−1)/nc
km
(ikn+`−1)/n − c

jm
(ikn+`−1)/nc

kl
(ikn+`−1)/n

]
R3,n,i =

1

kn

kn∑
`=1

(
cjk(ikn+`−1)/nc

lm
(ikn+`−1)/n + cjl(ikn+`−1)/nc

km
(ikn+`−1)/n + cjm(ikn+`−1)/nc

kl
(ikn+`−1)/n

−ĉ
′jk
n,i ĉ

′lm
n,i − ĉ

′jl
n,iĉ

′km
n,i − ĉ

′jm
n,i ĉ

′kl
n,i

)
.

Note that R1,n,i is the sum of a martingale difference sequence, by the standard estimates

for Itô semimartingale, it readily deduces

R1,n,i = Op(k
−1/2
n ). (4.28)

Moreover, by Lemma 3.5.4 in the proof of Theorem 3.4.1 from Chapter 3, we have

R2,n,i = Op(n
−1/2). (4.29)
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Finally, for R3,n,i, by estimates of the error of local covariance approximation under LMIS

assumption, as given in the first claim of Lemma 3.5.6, we have

E|R3,n,i| ≤ n−1/2 + k−1/2
n + (kn/n)1/2 (4.30)

since k2
n/n→ 0 by Assumption 3.2.2, the leading term is k

−1/2
n .

Combining (4.28) - (4.30) gives (4.27), and hence proves the lemma.

Now we come to show (4.26). Write

√
n
(
S
′
n(g;D∗n)− S̃′n(g;Dn)

)
=

[n/kn]−1∑
i=0

kn√
n
H ′n,i

where

H ′n,i = g(ĉ
′∗
n,i)− g(ĉ′n,i)−

1

2kn

d∑
j,k,l,m=1

∂2
jk,lmg(ĉ

′∗
n,i)
(
ĉ
′∗jl
n,i ĉ

′∗km
n,i + ĉ

′∗jm
n,i ĉ

′∗kl
n,i

)
.

In light of Theorem 2.2.14 in (Jacod and Protter, 2012) and subsequence principle, it suffices

to show

EF
(√

n
(
S
′
n(g;D∗n)− S̃′n(g;Dn)

))
P−→ 0 (4.31)

EF
(√

n
(
S
′
n(g;D∗n)− S̃′n(g;Dn)

))2 P−→ V (g) (4.32)

[n/kn]−1∑
i=0

EF
(√

n
kn
n
H ′n,i

)4
P−→ 0, (4.33)

all of which, with the help of Lemma 4.6.2, can be produced word for word as in the

parametric case. Hence we finish the prove of (4.26) and hence Theorem 4.3.1.
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CHAPTER 5

Empirical-process-type CLTs for Estimating Integrated Volatility Func-
tionals

In this chapter we further generalize the results from Chapter 3 and Chapter 4 on esti-

mating and statistically inferring integrated volatility functionals. We consider a functional

form of integrated volatility functionals where the test function has an extra indexing pa-

rameter. We extend an empirical-process-type asymptotic result in (Li and Xiu, 2016) to

the case of allowing the indexing parameter to be of arbitrary finite dimension. We pro-

pose both parametric and nonparametric bootstrap algorithms which provide alternatives

for statistically inferring integrated volatility functionals in this setting. As is the case

with Chapter 4, we justify the two bootstrap methods by giving empirical-process-type

asymptotic results. We emphasize that this project is still on-going with several potential

applications to be done in the future.

5.1 Setting

The basic set-up in this chapter is quite similar to that of Chapter 3 and Chapter 4,

except for two differences: the first one is that in this chapter we only assume the volatility

process is an Itô semimartingale, which in particular does not contain a long-memory part

as considered in Assumption 3.1.1; the second difference is that we will consider a functional

form of the test function g given by

g : V ×Θ→ R,

where V ⊂ R is the range space of spot volatility, and Θ ⊂ Rdimθ is the space of indexing

parameter θ. Thus for each fixed value ct, which is already defined in the previous two

chapters, g(ct, ·) is a function over Θ. Given T > 0, which may be a typical trading day,
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our goal is to (uniformly) estimate the quantity of the form

S(g; θ) ≡
∫ T

0
g(cs; θ)ds, θ ∈ Θ.

Before we proceed to the estimation and statistical inference of S(g, θ), we give a couple

examples to show the importance of S(g, θ) defined as such in economics and finance.

• In the degenerate case where θ is fixed, S(g; θ) reduces to the ordinary integrated

volatility functionals S(g) =
∫ T

0 g(cs)ds given in (3.5). Then the specific examples in-

clude integrated volatility, quarticity, power variation, beta and idiosyncratic variance

etc, see Section 3.2 for a more detailed discussion of this case.

• In general, θ varies over some parameter space Θ. In this case, a typical example

would be

g(x, θ) = exp(−θx), θ ∈ (0,∞) ,

in which case

S(g; θ) =

∫ T

0
e−θcsds, θ ∈ (0,∞)

is the empirical Laplace Transform of ct, which summarizes the complete spatial in-

formation of the volatility process within the time span. We refer readers to (Todorov

and Tauchen, 2012b), (Todorov et al., 2012) and (Todorov and Tauchen, 2012a) for

more details on realized Laplace transform.

• (Li and Xiu, 2016) considers a variant of GMM setting where moment conditions take

the form of temporally integrated functionals of the sample paths of state variables

including latent stochastic volatility. More specifically, let Xt be the price of an

underlying asset, and Yt be the price of a derivative contract written on it. Set

Zt = (t,Xt, rt, dt) with short interest rate rt and dividend yield dt. If (Zt, ct) is

Markovian under the risk-neutral measure, then

Yi∆n = f(Zi∆n , ci∆n ; θ∗) + ai∆nχi,
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where f is a R−valued function, θ∗ arises from the risk-neutral model for the dynamics

of Zt, and at is the stochastic volatility of pricing errors χi which in turn satisfies

E(χi|F) = 0,

where F denotes the whole information set defined over the underlying probability

space. Then one can consider the integrated moment condition

S(g; θ∗) =

∫ T

0
g(Yt, Zt, ct; θ

∗)dt = 0,

with

g(Yt, Zt, ct; θ) =

∫
[Yt − f(Zt, ct; θ)]Pχ(dχ)

where Pχ(dχ) denotes the marginal law, independent of F , of pricing errors χi. To

infer θ∗, we need to estimate S(g, θ) and study the associated statistical properties.

5.2 An Empirical-process-type Central Limit Theorem

Throughout the rest of this chapter, we assume Assumption 3.1.1 with σ2 = 0. That

is, the log-price process X is an Itô semimartingale with jumps of finite variation and

the volatility process σ is a general Itô semimartingale. In particular, unlike the case of

Chapter 3 and 4, we do not impose a long memory part on the volatility process.

We assume that only the process X is sampled at equidistant times i∆n with step size

∆n at stage n, for 0 ≤ i ≤ bT/∆nc, within the fixed time interval [0, T ]. Furthermore, the

increments of X over [(i− 1)∆n, i∆n] are denoted by

∆n
i X ≡ Xi∆n −X(i−1)∆n

, i = 1, . . . , n.

Below, we consider an infill asymptotic scheme, that is, ∆n → 0 as n→∞, while T is fixed.
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Generalizing the estimator of S(g, θ) given in (Li and Xiu, 2016) to a multivariate case,

the proposed estimator is

Sn(g; θ;Dn) ≡ ∆n

[T/∆n]−kn∑
i=0

(
g(ĉi∆n ; θ)

− 1

2kn

d∑
j,k,l,m=1

∂2
jk,lmg(ĉi∆n ; θ)× (ĉjli∆n

ĉkmi∆n
+ ĉjmi∆n

ĉkli∆n
)

)
,

where, following the convention in Chapter 4, Dn ≡ {∆n
i X, i = 1, . . . , n} represents original

returns. Note here that the (usual) spot volatility estimator is, for any 0 ≤ i ≤ [T/∆n]−kn

and 1 ≤ l,m ≤ d,

ĉlmi∆n
≡ 1

kn∆n

kn∑
j=1

∆n
i+jX

l∆n
i+jX

m1{||∆n
i+jX||≤un}

where kn is a sequence of integers denoting the number of increments employed in a local

window and un determines the truncation threshold for eliminating jumps in X. Assump-

tion 3.2.2 states the exact conditions imposed on the tuning parameters kn and un.

Based on the proof of (Li and Xiu, 2016), we have the following empirical-process-type

central limit theorem:

Theorem 5.2.1. Suppose Assumption 3.1.1 with σ2 = 0, and Assumption 3.2.2. Moreover,

assume g : V × Θ → R satisfies Assumption 3.2.1 with respect to the first variate and is

continuously differentiable with respect to θ ∈ Θ, where Θ ⊂ Rdimθ is a compact set. Then

if

dimθ < 2(1− γ)/γ, (5.1)

the sequence ∆
−1/2
n (Sn(g; ·;Dn)− S(g; ·)) of processes converges F−stably in law under

the uniform metric to a process ξ(·) which, conditional on F , is centered Gaussian with

covariance function Sg(·, ·), where Sg(·, ·) is defined as, for any θ, θ′ ∈ Θ,

Sg(θ, θ
′) ≡

d∑
j,k,l,m=1

∫ T

0
∂jkg(cs; θ)∂lmg(cs; θ

′)
(
cjls c

km
s + cjms ckls

)
ds.

80



However, Theorem 5.2.1 is not quite satisfactory due to the restriction (5.1). Put it

more precisely, because of Assumption 3.2.2, it follows that 2(1− γ)/γ < 4. As a result, it

shold hold that dimθ < 4, which is not only restrictive from a theoretical point of view, but

confines the scope of applications.

We point out here that in the proof of (Li and Xiu, 2016), the condition (5.1) arises when

showing the stochastic equicontinuity of the empirical-process-type central limit theorem.

Nevertheless, by using a method which separates the jump part and the continuous part of

the underlying volatility process, we are able to get rid of (5.1), namely,

Theorem 5.2.2. Suppose Assumption 3.1.1 with σ2 = 0, and Assumption 3.2.2. Moreover,

assume g : V × Θ → R satisfies Assumption 3.2.1 with respect to the first variate and is

continuously differentiable with respect to θ ∈ Θ, where Θ ⊂ Rdimθ is a compact set, with

dimθ <∞. Then the sequence ∆
−1/2
n (Sn(g; ·;Dn)− S(g; ·)) of processes converges F−stably

in law under the uniform metric to a process ξ(·) which, conditional on F , is centered

Gaussian with covariance function Sg(·, ·), where Sg(·, ·) is defined as, for any θ, θ′ ∈ Θ,

Sg(θ, θ
′) ≡

d∑
j,k,l,m=1

∫ T

0
∂jkg(cs; θ)∂lmg(cs; θ

′)
(
cjls c

km
s + cjms ckls

)
ds.

Several comments are worth mentioning, besides the condition (5.1) is removed. Firstly,

in order to prove the functional central limit theorem stated in the theorem, we need to

show the convergence of finite dimensional distributions and the stochastic equicontinuity.

Since the convergence of finite dimensional distributions is easily implied by Theorem 3.4.1

with Cramér-Wold device, we only need to show the stochastic equicontinuity, the details

of which are presented in the Proofs of this chapter.

Secondly, as far as the efficiency is concerned, although it has not been proved that in

such functional setting the asymptotic variance Sg(·, ·) is the smallest, Sg(θ, θ
′) turns out

to be smaller than the asymptotic variance of the functional central limit theorem proved

in (Todorov and Tauchen, 2012b) for some specific values of θ and θ′.

Last but not least, from an application point of view, we can use Theorem 5.2.2 to

construct confidence band (region) for {Sn(g; θ;Dn), θ ∈ Θ ⊂ Rdim(θ)} by taking advantage
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of the fact that the “sup” functional is a continuous mapping on the space of continuous

functions, together with the continuous mapping theorem.

5.3 Bootstrap Inference

As pointed out above, Theorem 5.2.2 can be used to construct confidence region for

Sn(g; ·). However, in practice the critical values for confidence region may not be determined

from the asymptotic covariance when Θ is not finite, see (Kosorok, 2007). Alternatively,

one may turn to bootstrap methods. In the sequel we introduce both parametric and

nonparametric bootstrap methods in this functional setting and provide empirical-process-

type asymptotic results to (theoretically) justify the two methods.

As is the case with Chapter 4, we only consider non-overlapping case and we defer

the study of overlapping case for future research. In view of this change we redefine the

aforementioned quantities as follows: for each i ∈ In ≡ {0, . . . , [T/kn∆n]− 1}, let

ĉi∆n =
1

kn∆n

kn∑
j=1

(
∆n
ikn+jX

) (
∆n
ikn+jX

)ᵀ
1{||∆n

ikn+jX||≤un}

S̃n(g; θ;Dn) = kn∆n

[T/kn∆n]−1∑
i=0

g(ĉi∆n ; θ)

Sn(g; θ;Dn) = kn∆n

[T/kn∆n]−1∑
i=0

(
g(ĉi∆n ; θ)

− 1

2kn

d∑
j,k,l,m=1

∂2
jk,lmg(ĉi∆n ; θ)

(
ĉjli∆n

ĉkmi∆n
+ ĉjmi∆n

ĉkli∆n

))
.

5.3.1 Parametric Bootstrap

We start with the parametric bootstrap method, which regenerates the bootstrap return

samples by using normal distribution.

Algorithm 3. (Parametric Bootstrap)

Step 1. For each i ∈ In, estimate ĉi∆n , and compute S̃n(g; θ;Dn) and Sn(g; θ;Dn),

respectively

Step 2. For each i ∈ In, simulate ∆n
ikn+jX

∗ ∼ N (0,∆nĉi∆n) for j = 1, . . . , kn.
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Step 3. Compute bootstrap spot covariance estimators using ∆n
i X
∗, namely,

ĉ∗i∆n
=

1

kn∆n

kn∑
j=1

(
∆n
ikn+jX

∗) (∆n
ikn+jX

∗)ᵀ .
Step 4. Compute bootstrap estimator for S(g; θ) as

Sn(g; θ;D∗n) ≡ kn∆n

[T/kn∆n]−1∑
i=0

(
g(ĉ∗i∆n

; θ)

− 1

2kn

d∑
j,k,l,m=1

∂2
jk,lmg(ĉ∗i∆n

; θ)

(
ĉ∗jli∆n

ĉ∗kmi∆n
+ ĉ∗jmi∆n

ĉ∗kli∆n

))
,

where D∗n ≡ {∆n
i X
∗, i = 1, . . . , n} represents the set of returns calculated from bootstrap

return samples generated from Step 2. Then the empirical distribution of any statistic of

Sn(g; θ;Dn) could be calculated accordingly.

In theory, such parametric bootstrap method is justified by the following asymptotic

result:

Theorem 5.3.1. Under the same assumptions as in Theorem 5.2.2, and let Sn(g; θ;D∗n) be

given by Algorithm 3 (parametric algorithm). It follows that

∆
− 1

2
n

(
Sn(g; ·;D∗n)− S̃n(g; ·;Dn)

) L|F−→MN (0, Sg(·, ·)),

under uniform metric, where for any θ, θ′ ∈ Θ,

Sg(θ, θ
′) ≡

d∑
j,k,l,m=1

∫ T

0
∂jkg(cs; θ)∂lmg(cs; θ

′)
(
cjls c

km
s + cjms ckls

)
ds.

.

The proof of Theorem 5.3.1 consists of two parts: the convergence of finite dimensional

distributions under “L|F” with Cramér-Wold device, which is true by Theorem 4.2.1, and

the stochastic equicontinuity under “L|F”.
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5.3.2 The Local IID Bootstrap Bootstrap

Now we proceed to the nonparametric bootstrap method. As in Section 4.3, the name

“local IID” comes from the fact the bootstrap return samples are generated by resampling

with replacement. The algorithm goes as follows:

Algorithm 4. (Local IID Bootstrap)

Step 1. For each i ∈ In, estimate ĉi∆n , and compute S̃n(g; θ;Dn) and Sn(g; θ;Dn),

respectively.

Step 2. For each i ∈ In, compute bootstrap spot covariance estimators

ĉ∗i∆n
=

1

kn∆n

kn∑
`=1

(
∆n
ikn+j∗i,`

X
)(

∆n
ikn+j∗i,`

X
)ᵀ

1{||∆n
ikn+j∗

i,`
X||≤un},

where for each i and `,

j∗i,` ∼ i.i.d. Uniform{1, . . . , kn}.

Step 3-4 are the same as in Algorithm 3.

The theoretical justification of Algorithm 4 is given by the following theorem.

Theorem 5.3.2. Under the same assumptions as in Theorem 5.2.2, and let Sn(g; θ;D∗n) be

given by Algorithm 4 (local IID algorithm). It follows that

∆
− 1

2
n

(
Sn(g; ·;D∗n)− S̃n(g; ·;Dn)

) L|F−→MN (0, Sg(·, ·)),

under uniform metric, where for any θ, θ′ ∈ Θ,

Sg(θ, θ
′) ≡

d∑
j,k,l,m=1

∫ T

0
∂jkg(cs; θ)∂lmg(cs; θ

′)
(
cjls c

km
s + cjms ckls

)
ds.

.
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5.4 Future Work

It would be interesting to explore the efficiency of the asymptotic result given in The-

orem 5.2.2, namely, whether or not the asymptotic variance Sg(·, ·), which is essentially

a kernel function, is small enough. In particular, it is worth comparing Sg(·, ·) with that

of the asymptotic result proved in (Todorov and Tauchen, 2012b), in the special case of

estimating empirical Laplace transform of volatility.

On the other hand, we would like to see the finite sample performance of the proposed

estimator in such functional setting. We would also like to add more econometric applica-

tions, including misspecification test, in this setting. Furthermore, we want to see whether

the same asymptotic results would hold for volatility process being LMIS and the overlap-

ping case. Last but not least, it might be possible to estimate S(g; θ;Dn) without explicit

bias correction in the sense of (Li and Xiu, 2017).

5.5 Proof

The proof in this section follows the proof in (Li and Xiu, 2016). To reduce repetition,

we only lay out the steps that are crucial to the theorems under proof, and we refer readers

to (Li and Xiu, 2016) for the context.

5.5.1 Proof of Theorem 5.2.2

Following the proof of Lemma A4 in (Li and Xiu, 2016), it suffices to show the uniform

convergence of R3,n(θ) and R4,n(θ) with respect to θ. Moreover, we inherit the notations

from (Li and Xiu, 2016) to facilitate the understanding of the proof here with that of (Li

and Xiu, 2016). In particular, we use Vt, instead of ct, to denote the stochastic covariance

process in the proof of Theorem 5.2.2. By polarization argument, we assume d = 1.
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5.5.1.1 Uniform Convergence for R3,n(θ) w.r.t. θ

R3,n(θ) ≡ ∆1/2
n

∑
i

∂Z̃f(Z̃i∆n ; θ)k−1
n

kn∑
u=1

(V(i+u−1)∆n
− Vi∆n).

We want to show

sup
θ∈Θ
||R3,n(θ)|| = op(1). (5.2)

In order to do so we need to separate the continuous part and the jump part for the volatility

process Vt: recall that by Assumption 3.1.1,

Vt = V0 +

∫ t

0
b̃sds+

∫ t

0
σ̃sdWs +

∫ t

0

∫
R
δ̃(s, x)1{||δ̃(s,x)≤1||}(µ− ν)(ds, dx)

+

∫ t

0

∫
R
δ̃(s, x)1{||δ̃(s,x)>1||}(µ− ν)(ds, dx)

Define

V cts
t ≡ V0 +

∫ t

0
b̃sds+

∫ t

0
σ̃sdWs

V jump
t ≡

∫ t

0

∫
R
δ̃(s, x)1{||δ̃(s,x)≤1||}(µ− ν)(ds, dx)

+

∫ t

0

∫
R
δ̃(s, x)1{||δ̃(s,x)>1||}(µ− ν)(ds, dx)

and correspondingly R3,n(θ) decomposes into two parts

R3,n(θ) = Rcts3,n(θ) +Rjump3,n (θ),

where

Rcts3,n(θ) ≡ ∆1/2
n

∑
i

∂Z̃f(Z̃i∆n ; θ)k−1
n

kn∑
u=1

(V cts
(i+u−1)∆n

− V cts
i∆n

)

Rjump3,n (θ) ≡ ∆1/2
n

∑
i

∂Z̃f(Z̃i∆n ; θ)k−1
n

kn∑
u=1

(V jump
i∆n

− V jump
(i+u−1)∆n

).

86



By the martingale difference argument in Li and Xiu (2016), it is known that

sup
θ∈Θ
||Rcts3,n(θ)|| = op(1).

Then to show (5.2), it is left to show

sup
θ∈Θ
||Rjump3,n (θ)|| = op(1).

which is proved as follows.

First of all, since ∂vf(·) is uniformly bounded, we have

||Rjump3,n (θ)|| ≤ ||∆1/2
n

∑
i

∂Z̃f(Z̃i∆n ; θ)k−1
n

kn∑
u=1

(V jump
i∆n

− V jump
(i+u−1)∆n

)||

≤ ∆1/2
n

∑
i

k−1
n

kn∑
u=1

||V jump
i∆n

− V jump
(i+u−1)∆n

||.

Since the right hand side does not depend on θ, taking supreme over θ ∈ Θ on the left hand

side and then the expectation on both sides gives

E
(

sup
θ∈Θ
||Rjump3,n (θ)||

)
≤ ∆1/2

n

∑
i

k−1
n

kn∑
u=1

E||(V jump
i∆n

− V jump
(i+u−1)∆n

)||︸ ︷︷ ︸
≤kn∆n

≤ ∆1/2
n

∑
i

kn∆n

= kn∆1/2
n → 0.

where we have used the standard estimates of first moments for both compensated small

jumps process (Lemma 2.1.5 in Jacod and Protter (2012)), and big jumps process (Lemma

2.1.7 in Jacod and Protter (2012)).

5.5.1.2 Uniform Convergence for R4,n(θ) w.r.t. θ

Recall

R4,n(θ) = R′4,n(θ) +R′′4,n(θ).
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It is already known that

sup
θ∈Θ
||R′4,n(θ)|| = op(1),

see equation (A.37) in Li and Xiu (2016).

Then it remains to show

sup
θ∈Θ
||R′′4,n(θ)|| = op(1), (5.3)

where

R′′4,n(θ) ≡ ∆1/2
n

∑
i

1

2
∂2
Z̃
f(Z̃i∆n ; θ)

(
ṽ2
n,i − E(ṽ2

n,i|Fi∆n)
)

ṽn,i ≡ V̂ ′i∆n
− Vi∆n .

Decompose the local estimation error ṽn,i into statistical error Sn,i and target error Dn,i

as follows

ṽn,i = V̂ ′i∆n
− V i∆n + V i∆n − Vi∆n ≡ Sn,i +Dn,i

with

V i∆n ≡
1

kn∆n

∫ (i+kn)∆n

i∆n

Vsds.

Plug this into R′′4,n(θ) we obtain

R′′4,n(θ) = R′′4,n,S(θ) +R′′4,n,SD(θ) +R′′4,n,D(θ)

where

R′′4,n,S(θ) = ∆1/2
n

∑
i

1

2
∂2
Z̃
f(Z̃i∆n ; θ)

(
S2
n,i − E(S2

n,i|Fi∆n)
)

R′′4,n,SD(θ) = ∆1/2
n

∑
i

1

2
∂2
Z̃
f(Z̃i∆n ; θ) (2Sn,iDn,i − E(2Sn,iDn,i|Fi∆n))

R′′4,n,D(θ) = ∆1/2
n

∑
i

1

2
∂2
Z̃
f(Z̃i∆n ; θ)

(
D2
n,i − E(D2

n,i|Fi∆n)
)
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By the argument used in Li and Xiu (2016), we know that

sup
θ∈Θ
||R′′4,n,S(θ)|| = op(1),

mainly due to the fact ||S2
n,i|| ≤ k−1

n .

In view of Cauchy-Schwartz inequality (to take care of R′′4,n,SD(θ)), it is only left to

show

sup
θ∈Θ
||R′′4,n,D(θ)|| = op(1),

the proof of which goes as follows:

Since ∂2
Z̃
f(·) is uniformly bounded, by triangle inequality

||R′′4,n,D(θ)|| = ||∆1/2
n

∑
i

1

2
∂2
Z̃
f(Z̃i∆n ; θ)

(
D2
n,i − E(D2

n,i|Fi∆n)
)
||

≤ ∆1/2
n

∑
i

(
||D2

n,i||+ E(D2
n,i|Fi∆n)

)
≤ ∆1/2

n

∑
i

(
||Dn,i||2 + E(D2

n,i|Fi∆n)
)

Note that the right hand side does not depend on θ (which is removed together with ∂2
vf(·)),

taking supreme w.r.t. θ gives

sup
θ∈Θ
||R′′4,n,D(θ)|| ≤ ∆1/2

n

∑
i

(
||Dn,i||2 + E(D2

n,i|Fi∆n)
)

and hence

E
(

sup
θ∈Θ
||R′′4,n,D(θ)||

)
≤ ∆1/2

n

∑
i

E
(
||Dn,i||2

)
. (5.4)
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Since

E(D2
n,i) = E(V i∆n − Vi∆n)2

= E

(
1

kn∆n

∫ (i+kn)∆n

i∆n

Vsds− Vi∆n

)2

= E

(
1

kn∆n

∫ (i+kn)∆n

i∆n

(Vs − Vi∆n)ds

)2

≤ E

(
1

kn∆n

∫ (i+kn)∆n

i∆n

(Vs − Vi∆n)2ds

)
Jensen’s inequality

=
1

kn∆n

∫ (i+kn)∆n

i∆n

E(Vs − Vi∆n)2︸ ︷︷ ︸
≤kn∆n

ds Fubini’s Thm

≤ kn∆n,

where we only use the standard estimate for Itö semimartingale for second moment, in

which case the magnitudes for both diffusive part and jump part are equal to one.

Substitute into (5.4), we obtain

E
(

sup
θ∈Θ
||R′′4,n,D(θ)||

)
≤ ∆1/2

n

∑
i

kn∆n = ∆1/2
n ∆−1

n kn∆n = kn∆1/2
n → 0,

and thus (5.3) is proved.

5.5.2 Proof of Theorem 5.3.1

Now we come to prove Theorem 5.3.1. We start with the following lemma.

Lemma 5.5.1. For any p ≥ 2, it holds that

EF‖ĉ∗i∆n
− ĉi∆n‖p = Op(k

− p
2

n )

90



Proof. By definition of ĉ∗i∆n
given in Algorithm 3, we have for some constant K > 0,

EF
∥∥ĉ∗i∆n

− ĉi∆n

∥∥p = EF

∥∥∥∥∥∥ 1

kn∆n

kn∑
j=1

(
∆n
ikn+jX

∗) (∆n
ikn+jX

∗)ᵀ − ĉi∆n

∥∥∥∥∥∥
p

= k−pn EF

∥∥∥∥∥∥
kn∑
j=1

((
∆n
ikn+jX

∗
√

∆n

)(
∆n
ikn+jX

∗
√

∆n

)ᵀ
− ĉi∆n

)∥∥∥∥∥∥
p

≤ Kk−pn EF

∥∥∥∥∥∥
kn∑
j=1

((
∆n
ikn+jX

∗
√

∆n

)(
∆n
ikn+jX

∗
√

∆n

)ᵀ
− ĉi∆n

)2
∥∥∥∥∥∥
p/2

= Kk−pn kp/2n EF

∥∥∥∥∥∥ 1

kn

kn∑
j=1

((
∆n
ikn+jX

∗
√

∆n

)(
∆n
ikn+jX

∗
√

∆n

)ᵀ
− ĉi∆n

)2
∥∥∥∥∥∥
p/2

≤ Kk−p/2n

1

kn

kn∑
j=1

EF
∥∥∥∥(∆n

ikn+jX
∗

√
∆n

)(
∆n
ikn+jX

∗
√

∆n

)ᵀ
− ĉi∆n

∥∥∥∥p
≤ Op(k

−p/2
n ),

where the first inequality is by Burkholder-Davis-Gundy inequality and the second last

inequality is by Jensen’s inequality. The last inequality follows by recognizing that

EF
∥∥∥∥(∆n

ikn+jX
∗

√
∆n

)(
∆n
ikn+jX

∗
√

∆n

)ᵀ
− ĉi∆n

∥∥∥∥p

is stochastically bounded because of the way the bootstrap returns ∆n
ikn+jX

∗ are generated.

Hence we prove the result.

Now we proceed to prove Theorem 5.3.1. In view of Theorem 5.2.2, is suffices to show the

stochastic equicontinuity of ∆
− 1

2
n

(
Sn(g; ·;D∗n)− S̃n(g; ·;Dn)

)
. We first have the following

decomposition by multivariate Taylor expansion,

∆
− 1

2
n

(
Sn(g; ·;D∗n)− S̃n(g; ·;Dn)

)
= R1,n(θ) +R2,n(θ) +R3,n(θ)
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where

R1,n(θ) = kn
√

∆n

[T/kn∆n]−1∑
i=0

d∑
j,k=1

∂jkg(ĉi∆n ; θ)(ĉ∗jki∆n
− ĉjki∆n

)

R2,n(θ) = kn
√

∆n

[T/kn∆n]−1∑
i=0

1

2

( d∑
j,k,l,m=1

∂2
jk,lmg(ĉi∆n ; θ)(ĉ∗jki∆n

− ĉjki∆n
)(ĉ∗lmi∆n

− ĉlmi∆n
)

− 1

kn

d∑
j,k,l,m=1

∂2
jk,lmg(ĉ∗i∆n

; θ)

(
ĉ∗jli∆n

ĉ∗kmi∆n
+ ĉ∗jmi∆n

ĉ∗kli∆n

))
,

R3,n(θ) = kn
√

∆n

[T/kn∆n]−1∑
i=0

×

1

6

d∑
j,k,l,m,u,v=1

∂3
jk,lm,uvg(c̃i∆n ; θ)(ĉ∗jki∆n

− ĉjki∆n
)(ĉ∗lmi∆n

− ĉlmi∆n
)(ĉ∗uvi∆n

− ĉuvi∆n
)

where c̃i∆n are intermediate values between ĉ∗i∆n
and ĉi∆n as is usual the case with Taylor

expansion.

It is easy to see that R3,n(θ) is stochastic equicontinuous. In fact, recall that we can

assume g is compactly supported according to Assumption 3.2.1, then it holds that

E
(

sup
θ∈Θ
‖R3,n(θ)‖

)
≤ Kkn

√
∆n

[T/kn∆n]−1∑
i=0

E‖ĉ∗i∆n
− ĉi∆n‖3

≤ ∆−1/2
n k−3/2

n ,

where the last inequality is due to Lemma 5.5.1. Then according to Assumption 3.2.2,

k3
n∆n →∞, and hence

sup
θ∈Θ
‖R3,n(θ)‖ = op(1).

Therefore, R3,n(θ) is stochastic equicontinuous.
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Next we deal with R1,n(θ). Note that by definition of ĉ∗i∆n
,

R1,n(θ) = kn
√

∆n

[T/kn∆n]−1∑
i=0

d∑
j,k=1

∂jkg(ĉi∆n ; θ)(ĉ∗jki∆n
− ĉjki∆n

)

= kn
√

∆n

[T/kn∆n]−1∑
i=0

d∑
j,k=1

∂jkg(ĉi∆n ; θ)

(
1

kn∆n

kn∑
`=1

∆n
ikn+`X

∗j∆n
ikn+`X

∗k − ĉi∆n

)

= ∆−1/2
n

[T/kn∆n]−1∑
i=0

d∑
j,k=1

∂jkg(ĉi∆n ; θ)

kn∑
`=1

(
∆n
ikn+`X

∗j∆n
ikn+`X

∗k −∆nĉi∆n

)
.

Then it follows that for any other θ′ ∈ Θ, we have for any p > 2,

EF‖R1,n(θ)−R1,n(θ′)‖p

= EF
∥∥∥∥∆−1/2

n

[T/kn∆n]−1∑
i=0

d∑
j,k=1

(
∂jkg(ĉi∆n ; θ)− ∂jkg(ĉi∆n ; θ′)

)
×

kn∑
`=1

(
∆n
ikn+`X

∗j∆n
ikn+`X

∗k −∆nĉi∆n

)∥∥∥∥p

≤ K∆−p/2n EF
∥∥∥∥ [T/kn∆n]−1∑

i=0

kn∑
`=1

d∑
j,k=1

(
∂jkg(ĉi∆n ; θ)− ∂jkg(ĉi∆n ; θ′)

)2 ×
(

∆n
ikn+`X

∗j∆n
ikn+`X

∗k −∆nĉi∆n

)2
∥∥∥∥p/2

≤ K∆−p/2n

(
1

kn∆n
kn

)p/2
EF
∥∥∥∥ (∂jkg(ĉi∆n ; θ)− ∂jkg(ĉi∆n ; θ′)

)2 ×
(

∆n
ikn+`X

∗j∆n
ikn+`X

∗k −∆nĉi∆n

)2
∥∥∥∥p/2

≤ K∆−pn EF
∥∥∥∥ (∂jkg(ĉi∆n ; θ)− ∂jkg(ĉi∆n ; θ′)

) (
∆n
ikn+`X

∗j∆n
ikn+`X

∗k −∆nĉi∆n

)∥∥∥∥p

where we have in order used Burkholder-Davis-Gundy inequality and Jensen’s inequality.

Then the continuous differentiability of g with respect to indexing parameter θ and the

stochastic boundedness of

EF
∥∥∥∥∆n

ikn+`X
∗j

√
∆n

∆n
ikn+`X

∗k
√

∆n
− ĉi∆n

∥∥∥∥p
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imply

E‖R1,n(θ)−R1,n(θ′)‖p ≤ K‖θ − θ′‖p.

Then by taking p > max(dim(θ), 2), we deduce that R1,n(θ) is stochastic equicontinuous.

For R2,n(θ), we observe the following decomposition

R2,n(θ) = R′2,n(θ) +R′′2,n(θ)

where

R′2,n(θ) = kn
√

∆n

[T/kn∆n]−1∑
i=0

1

2

( d∑
j,k,l,m=1

∂2
jk,lmg(ĉi∆n ; θ)(ĉ∗jki∆n

− ĉjki∆n
)(ĉ∗lmi∆n

− ĉlmi∆n
)

− 1

kn

d∑
j,k,l,m=1

∂2
jk,lmg(ĉi∆n ; θ)

(
ĉjli∆n

ĉkmi∆n
+ ĉjmi∆n

ĉkli∆n

))

R
′′
2,n(θ) = kn

√
∆n

[T/kn∆n]−1∑
i=0

(
1

2kn

d∑
j,k,l,m=1

∂2
jk,lmg(ĉi∆n ; θ)

(
ĉjli∆n

ĉkmi∆n
+ ĉjmi∆n

ĉkli∆n

)

− 1

2kn

d∑
j,k,l,m=1

∂2
jk,lmg(ĉ∗i∆n

; θ)
(
ĉ∗jli∆n

ĉ∗kmi∆n
+ ĉ∗jmi∆n

ĉ∗kli∆n

))
.

By mean value theorem, the fact that ∂3
jk,lm,uvg(·, θ) is uniformly bounded and that

EF‖ĉ∗i∆n
− ĉi∆n‖ = Op(k

− 1
2

n ),

we deduce that by Assumption 3.2.2

E
(

sup
θ∈Θ
‖R′′2,n(θ)‖

)
≤ ∆−1/2

n k−3/2
n → 0.

So we prove that R
′′
2,n(θ) is stochastic equicontinuous.

94



As for R
′
2,n(θ),

R′2,n(θ) = kn
√

∆n

[T/kn∆n]−1∑
i=0

1

2

( d∑
j,k,l,m=1

∂2
jk,lmg(ĉi∆n ; θ)(ĉ∗jki∆n

− ĉjki∆n
)(ĉ∗lmi∆n

− ĉlmi∆n
)

− 1

kn

d∑
j,k,l,m=1

∂2
jk,lmg(ĉi∆n ; θ)

(
ĉjli∆n

ĉkmi∆n
+ ĉjmi∆n

ĉkli∆n

))

= kn
√

∆n

[T/kn∆n]−1∑
i=0

1

2

d∑
j,k,l,m=1

∂2
jk,lmg(ĉi∆n ; θ)

(
(ĉ∗jki∆n

− ĉjki∆n
)(ĉ∗lmi∆n

− ĉlmi∆n
)

− 1

kn

(
ĉjli∆n

ĉkmi∆n
+ ĉjmi∆n

ĉkli∆n

))

Now for any other θ′ ∈ Θ, we have for any p > 2,

EF‖R′2,n(θ)−R′2,n(θ′)‖p

≤ Kkpn∆p/2
n EF

∥∥∥∥ [T/kn∆n]−1∑
i=0

d∑
j,k,l,m=1

(
∂2
jk,lmg(ĉi∆n ; θ)− ∂2

jk,lmg(ĉi∆n ; θ′)
)
×

(
(ĉ∗jki∆n

− ĉjki∆n
)(ĉ∗lmi∆n

− ĉlmi∆n
)− 1

kn

(
ĉjli∆n

ĉkmi∆n
+ ĉjmi∆n

ĉkli∆n

))∥∥∥∥p
≤ Kkpn∆p/2

n ‖θ − θ′‖pEF
∥∥∥∥ [T/kn∆n]−1∑

i=0

d∑
j,k,l,m=1

(
(ĉ∗jki∆n

− ĉjki∆n
)(ĉ∗lmi∆n

− ĉlmi∆n
)

− 1

kn

(
ĉjli∆n

ĉkmi∆n
+ ĉjmi∆n

ĉkli∆n

))∥∥∥∥p
≤ Kkpn∆p/2

n ‖θ − θ′‖p
d∑

j,k,l,m=1

EF
∥∥∥∥ [T/kn∆n]−1∑

i=0

(
(ĉ∗jki∆n

− ĉjki∆n
)(ĉ∗lmi∆n

− ĉlmi∆n
)

− 1

kn

(
ĉjli∆n

ĉkmi∆n
+ ĉjmi∆n

ĉkli∆n

))∥∥∥∥p
≤ Kkpn∆p/2

n ‖θ − θ′‖p
d∑

j,k,l,m=1

EF
∥∥∥∥ [T/kn∆n]−1∑

i=0

(
(ĉ∗jki∆n

− ĉjki∆n
)(ĉ∗lmi∆n

− ĉlmi∆n
)

− 1

kn

(
ĉjli∆n

ĉkmi∆n
+ ĉjmi∆n

ĉkli∆n

))2∥∥∥∥p/2
≤ Kkpn∆p/2

n ‖θ − θ′‖p(kn∆n)−p/2
1

kn∆n

[T/kn∆n]−1∑
i=0

EF
∥∥∥∥(ĉ∗i∆n

− ĉi∆n)2 − 1

kn

∥∥∥∥p

where we have in order used the continuous differentiability of ∂2g with respect to θ and fact

that ∂3g is uniformly bounded, Jensen’s inequality, Burkholder-Davis-Gundy inequality (in
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view of Lemma 4.6.2) and again, Jensen’s inequality. Then by Lemma 5.5.1, we deduce

that

E‖R′2,n(θ)−R′2,n(θ′)‖p ≤ Kk−p/2n ‖θ − θ′‖p

and hence R′2,n(θ) is stochastically equicontinuous.

Thus we prove the stochastic equicontinuity of R2,n and that of

∆
− 1

2
n

(
Sn(g; ·;D∗n)− S̃n(g; ·;Dn)

)
.

5.5.3 Proof of Theorem 5.3.2

The proof of Theorem 5.3.2 can be produced word for word as in the parametric case.

The only difference is that we should use Lemma 4.6.2 instead of the results given in Step

1 of the proof of Theorem 4.2.1.
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CHAPTER 6

Euler Method with Estimated Volatility

6.1 Motivation

In the field of financial econometrics, there is always need to simulate the following

diffusion process

dXt = btdt+ σtdWt,

where W is Brownian motion. Very often X denotes the prices of financial assets, say

stocks, and σ is referred to as the volatility process related to X. The most commonly used

method to simulate X is the so-called Euler-Maruyama approximation, which is named

after Leonhard Euler and Gisiro Maruyama, and is actually a simple generalization of the

Euler method for ordinary differential equations to stochastic differential equations. More

precisely, to obtain the value of X at terminal time T over a fixed time span [0.T ], one uses

the following recursive equation:

Xτn+1 = Xτn + bτn(τn+1 − τn) + στn(Wτn+1 −Wτn),

with given discretization grid 0 = τ0 < τ1 < · · · < τN = T . Usually, the equidistant

discretization scheme is used, namely, τ(i+1) − τi = δ for some time step 0 < δ < T . For

a thorough treatment on Euler-Maruyama approximation and its extensions, see (Kloeden

and Platen, 1992).

However, to implement such procedure, the values of (bt)t≥0 and (σt)t≥0 have to be

prespecified (or simulated) beforehand. For instance, consider a version of Heston model
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(Heston, 1993) given as

dXt = (µ− c1/2
t )dt+ c

1/2
t dWt

dct = κ(α− ct)dt+ γc
1/2
t dW ′t

where W and W ′ are two Brownian motion with possible dependence, and parameters

µ, α, κ and γ are constants. It is an important example of stochastic volatility models, and

to simulate such a system, one has to specify the values for µ, α, κ and γ. If the researcher

is only to verify certain stochastic theory via Monte Carol simulation (e.g., finite sample

performance of asymptotic theory in a statistical setting), prespecifying the values is totally

fine and is actually necessary; however, on the other hand, one has to keep in mind that the

values of X generated in this way might not replicate the true world as much as possible,

even if the specified values for parameters are claimed to be “calibrated to the real world”.

Alternatively, instead of specifying particular dynamics for (σt)t≥0, we can use esti-

mated spot volatility based on high-frequency data in the Euler method. In other words,

we would like to design a data generating mechanism, via Euler method, to regenerate

data that mimics the real world more realistically, by taking advantage of the information

contained in the observed real data. As seen below, “mimic the real world” is in the sense

that the probability distribution of the surrogate data generated by our Euler method with

estimated spot volatility is uniformly approximating to that of the true data, under cer-

tain assumptions. In particular, we need the notion of Wasserstein metric to measure the

distance between two distributions. With such properties, the data produced in this way

can be used to do other empirical studies including evaluating the accuracy of estimation

of diffusive beta as discussed in Section 6.5.

We note here that our Euler method with estimated spot volatility has a similar spirit

with resampling techniques in statistics, such as bootstrap, which also produces new data by

extracting information from the real data. In fact, the application we provide in Section 6.5

demonstrates how we can combine the Euler method with estimated spot volatility with

parametric bootstrap.
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This chapter is organized as follows. Section 6.2 gives the formal set-up and assump-

tions. Section 6.3 constructs the Euler approximation with estimated spot volatility. Sec-

tion 6.4 gives the main theoretical results. Section 6.5 gives an application of the Euler

method with estimated spot volatility, which is closely related to bootstrap. Section 6.6

concludes and offers the directions for future research.

6.2 Setting

6.2.1 Product Space

We consider two filtered probability spaces, (Ω1,F1, {F1
t },P1) and (Ω2,F2, {F1

t },P2).

Let {Wt, t ≥ 0} and {W̃t, t ≥ 0} be two Brownian Motions defined on (Ω1,F1, {F1
t },P1)

and (Ω2,F2, {F1
t },P2), respectively. In the context of high-frequency econometrics, one may

think of the first space as the original probability space on which the stock price processes

live, and the second space as the space for simulation (or equivalently, the space for random

number generator of MATLAB).

Now we take the product space, i.e., let

Ω = Ω1 × Ω2, F = F1 ⊗F2

Ft = ∩
s>t
F1
t ⊗F2

t , ∀t ≥ 0, P = P1 × P2.

Without loss of generality, we assume {Ft} are complete (otherwise, we can make it complete

by standard augmentation procedure). Under this construction, any random object defined

on either (Ω1,F1, {F1
t },P) or (Ω2,F2, {F2

t },P2) can be naturally extended to the new space

(Ω,F , {Ft},P1), and in particular, W ′(ω1, ω2) = W (ω1) and W̃ ′(ω1, ω2) = W̃ (ω2) are still

Brownian Motions with respect to {Ft}. For notational simplicity, we continue using W and

W̃ to denote them. At last, by construction of the new space, W and W̃ are independent

from each other on (Ω,F , {Ft},P).
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6.2.2 Basic models: no jump or leverage effect

For simplicity, throughout we will consider one-dimensional processes, and we conjecture

that all the results can be extended to multivariate case by polarization. Let Pt be the raw

stock price for a given stock, and define

Xt = 100× logPt, X0 = x0,

with x0 being known. Without loss of generality, we will assume in the following x0 = 0. Our

basic model is to assume the dynamics of {Xt : t ≥ 0} follows the following one-dimensional

stochastic differential equation (SDE)

dXt =
√
ctdWt (6.1)

X0 = 0

where 0 ≤ t ≤ T with T being the terminal time, c is the variance process and W is one-

dimensional Brownian Motion introduced above. In particular, X has neither drift part nor

jump part.

Note that we assume the drift term in the log-price process Xt to be zero. It is of

no restriction since we are considering a high-frequency setting in which the drift term is

almost negligible. In reality, there should be a drift in the stock price, but is only visible

if we consider a long time span (in years). This is the reason for assuming a log-price

dynamics without drift from a economic point of view. Mathematically, (Mykland and

Zhang, 2009) gives an argument to remove the drift part in X which involves change of

probability measure by using Girsanov theorem.

On the other hand, we can without loss of generality assume there is no jump in X

because if otherwise there are jumps in X, we can just truncate the jumps off from the real

date and then put them back to the simulate data. Such a step has nothing to do with the

Euler method we are going to develop.

We collect all the assumptions imposed on {ct : t ≥ 0} as follows.
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Assumption 6.2.1. There is no leverage effect, i.e., the volatility process ct is independent

of the driving Brownian motion W of the stock price dynamics.

The reason for assuming no leverage effect is two-folded. Firstly, on a technical level,

no leverage assumption enables us to use “conditioning on (ct)t≥0 argument”, see e.g.,

(Barndorff-Nielsen and Shephard, 2003) and (Barndorff-Nielsen and Shephard, 2004a).

More importantly, as will be seen soon, the Euler approximation considered in Section 6.3

can only simulate data without leverage, which makes such an assumption necessary.

Assumption 6.2.2. {ct : t ≥ 0} follows a continuous one-dimensional Itô semimartingale:

ct = c0 +

∫ t

o
b(c)s ds+

∫ t

0
σ(c)
s dW ′s,

where b(c) is locally bounded, σ(c) is càdlàg and W ′ is another Brownian motion living in

the original probability space. In the spirit of Assumption 6.2.1, we assume for the moment

that b(c), σ(c) and W ′ are all independent of W , which drives the log-stock price (6.1).

Assumption 6.2.3. {ct : t ≥ 0} is uniformly bounded (P1-almost surely no matter which

realization is) both from infinity and zero, i.e.

C := sup
0≤t≤T, P1−a.s.ω1∈Ω1

c(t, ω1) <∞,

εc := inf
0≤t≤T, P1−a.s.ω1∈Ω1

c(t, ω1) > 0.

Moreover, b(c) and σ(c) are bounded.

Mathematically, Assumption 6.2.3 can be justified by a standard localization procedure

as Lemma 4.4.9 in (Jacod and Protter, 2012). But from financial point of view, in reality

the volatility for stocks would just never be infinity or touch zero.

In many situations we may use a weaker condition relative to Assumption 6.2.2, in

which we only require the pathwise continuity of {ct : t ≥ 0} to certain extent.

Assumption 6.2.4. The process {ct : t ≥ 0} is a one-dimensional adapted stochastic

process with sample paths being locally Hölder-ρ continuous for some index ρ ∈ (0, 1], i.e.,
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for almost surely ω1 ∈ Ω1, ∀s, t ∈ [0, T ],

|c(t, ω1)− c(s, ω1)| ≤ A(ω1)|t− s|ρ,

for some constant A(ω1).

Remark 6.2.1. We do not consider ρ = 0, in which case the volatility path is only bounded

but may not be continuous.

Remark 6.2.2. Recall that the paths for a general Itô semimartingale are locally ρ′−Hölder

for all ρ′ < 1
2 (e.g., Brownian motion). So Assumption 6.2.2 implies Assumption 6.2.4. In

fact, (2.1.43) in (Jacod and Protter, 2012) for estimate for Itô semimartingale (ignoring the

jump part) implies that ∀s, t ∈ [0, T ], t > s

E
(
|ct − cs|2

)
≤ KE

((∫ t

s
|b(c)u |du

)2

+

∫ t

s
|σ(c)
u |2du

)
≤ K|t− s|,

where the second inequality follows from the assumption that b(c) and σ(c) are bounded in

Assumption 6.2.3.

Lastly, based on all assumptions above, ct is trivially progressively measurable, and

hence the stochastic integral in (6.1) is well-defined.

We end this section with the statistical side of our context. Equidistant observations of

X are sampled over a fixed finite time span [0, T ] with time step ∆n at stage n. For each

i = 1, 2, . . . , b T∆n
c and any stochastic process Z, define

∆n
i Z = Zi∆n − Z(i−1)∆n

to be the increment of Z over time increment [(i − 1)∆n, i∆n]. We will consider infill

asymptotics for which ∆n → 0 as n→∞.

6.3 Euler Approximation

In this section we construct our Euler approximation with estimated spot volatility

through two steps. In the first we nonparametrically recover the spot volatility from discrete
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samples of X over a given discretization grid of [0, T ] by using a local average of sum of

squared returns. Then we plug the spot volatility estimators into the Euler scheme to

generate the simulated data.

Consider equally spaced time discretization grid for Euler approximation, i.e., for some

δ > 0, let

τ0 = 0, τi = iδ,

where i ∈ {0, 1, . . . , bTδ c}. At each discretization time point iδ, the spot volatility estimation

is given by

ĉiδ =
1

kn∆n

kn∑
`=1

(
∆n
d iδ

∆n
e+`X

)2

,

where the integer-valued kn is the length of window we use to estimate spot volatility

satisfying

kn →∞ and kn∆n → 0.

The conditions imposed on the tuning parameter kn is quite common in nonparametric

statistics, which represents a trade-off between bias and variance. In fact, we have

ĉiδ − ciδ =
1

kn∆n

kn∑
`=1

(
∆n
d iδ

∆n
e+`X

)2

− ciδ

=
1

kn∆n

kn∑
`=1

(
∆n
d iδ

∆n
e+`X

)2

− 1

kn∆n

∫ (d iδ
∆n
e+kn)∆n

d iδ
∆n
e∆n

csds︸ ︷︷ ︸
Sn: statistical error

+
1

kn∆n

∫ (d iδ
∆n
e+kn)∆n

d iδ
∆n
e∆n

csds− ciδ︸ ︷︷ ︸
Dn: target error

.

The two errors Sn and Dn compete with rates
√
kn and 1

(kn∆n)ρ , respectively. More precisely,

let

k
ρ+ 1

2
n ∆ρ

n → β,
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Figure 6.1: Sampling and Discretization Grid when δ < ∆n

iδ (i+ 1)δ

(a) When δ < ∆n, there are two distinct discretization points, iδ and (i + 1)δ (represented by
crosses), between two data points sampled (represented by disks).

then if β = 0, Sn dominates; if β ∈ (0,∞), Sn and Dn are of the same magnitude ; if β =∞,

Dn dominates. The maximum rate is achieved in the second case with the rate being ∆
1/4
n ,

implying that the convergence rate for spot volatility estimation is (much) lower than that

of integrated volatility functions (which is ∆
1/2
n ).

We note that such an estimator for spot volatility estimation dates back to (Foster and

Nelson, 1996) under the name rolling volatility estimators; see also (Jacod and Protter,

2012) Chapter 9 and 13 for a detailed treatment of asymptotics.

Then for fixed n and δ, the global Euler approximation with estimated spot volatility

is given by the process:

Y n,δ
t =

[t/δ]−1∑
i=0

√
ĉiδ(W̃(i+1)δ − W̃iδ), 0 ≤ t ≤ T,

where W̃ is Brownian motion on the simulation space (Ω2,F2, {F2
t },P2), which is inde-

pendent of everything defined on (Ω1,F1, {F1
t },P1). In particular, Y δ,n depends on both

discretization grid δ and sampling grid ∆n.

For Y n,δ to be well-defined, the condition δ > ∆n is required. One may intuitively

understand this from the point of view of non-identifiability: once ∆n is given, the number

of observed data and hence the information provided by the data is given. Since we are

trying to mimic the reality from the information provided by the data via simulation, what

we can obtain from simulation at most would be no more than how much the data tell

us. In other words, the dimension of unknown local volatilities to be recovered (estimated)

should not exceed the dimension of known information (sampled data). Mathematically,

for given ∆n (and kn), there will be more than one discretization points between two data

points as soon as δ is small enough. For example, in Figure 6.1, there are two distinct

discretization points, iδ and (i + 1)δ (represented by crosses), between two data points

sampled (represented by disks).
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Then obviously d iδ∆n
e = d (i+1)δ

∆n
e and hence

ĉiδ =
1

kn∆n

kn∑
`=1

(
∆n
d iδ

∆n
e+`X

)2

=
1

kn∆n

kn∑
`=1

(
∆n

d (i+1)δ
∆n

e+`
X

)2

= ĉ(i+1)δ,

since they use the same kn data points which are right after to iδ. This fact suggests that

an arbitrarily small δ (relative to a given ∆n) may not always improve YT .

6.4 Main Results

In this section we present the theoretical results associated with the Y n,δ constructed

above. The very first thing one should notice is that since in simulation only W̃ is available,

Y n,δ is a “consistent estimator” for the simulated log-price defined by

X̃t =

∫ t

0

√
csdW̃s, 0 ≤ t ≤ T,

rather than the true price observed process Xt. The appearance of such a X̃ may look

strange at the very beginning, but it actually becomes natural once we recall that our goal is

to reproduce the probability distribution ofX, of which we think as a random variable taking

values in the Polish space C([0, T ] : R). Under the assumption of no leverage, it follows

immediately that X and X̃, which is also a random variable taking values C([0, T ] : R), have

the same probability distribution. Hence (Y n,δ) approximating X̃ is equivalent to (Y n,δ)

approximating the distribution of X. Mathematically, such an idea can be realized by using

Wasserstein metric, we will discuss this issue at the end of this section.

The second question to ask would be how well the data Y n generated by the Euler

method with estimated volatility approximate X̃. In light of Section 9.7 in (Kloeden and

Platen, 1992), Y n weakly converges (which is actually convergence of moments, and different
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from the usual synonym for convergence in distribution) to X̃ as

E(X̃t)− E(Y δ,n
t ) = E

(
Ec
(∫ t

0

√
csdW̃s

))
− E

Ec

bT/δc−1∑
i=0

√
ĉiδ∆i+1W̃


= 0− E

bt/δc−1∑
i=0

Ec
(√

ĉiδ∆i+1W̃
)

= 0, 0 ≤ t ≤ T,

where we have used the facts that conditioning on c,

∫ t

0

√
csdW̃s ∼ N

(
0,

∫ t

0
csds

)
,

and that ĉ, which only depends on the random objects living in the original probability

space, is independent of W̃ .

Apparently, convergence of moments alone is not enough for us. More interestingly, we

focus our attention on

sup
0≤t≤T

|Y n,δ
t − X̃t|, (6.2)

which globally measures the distance between Y n,δ and X̃. Then a natural question is

whether or not the quantity (6.2) tends to 0 as n → ∞ and δn → 0, in which case Y n

is called strongly convergent to X̃ uniformly over [0, T ] as in Section 9.6 of (Kloeden and

Platen, 1992). If it is, what should the optimal simulation scheme be? Namely, given ∆n,

what are the best choices of δn and kn such that the whole path of Y δ,n approximates the

path of X̃ as fast as possible? These questions will be answered step by step in Section 6.4.1.

6.4.1 Optimal simulation scheme and rate of convergence

Theorem 6.4.1. Suppose Assumptions 6.2.1 and 6.2.3, assume further that {ct : t ≥ 0}

has sample paths satisfying for any t > s > 0,

E|ct − cs|2 ≤ K|t− s|2ρ, 0 < ρ ≤ 1, (6.3)
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for some constant K. Then it holds for any fixed discretization distance δ ∈ [∆n, T ) that

E

(
sup

0≤t≤T
|Y n,δ
t − X̃t|

)
≤ K

(
1√
kn

+ (kn∆n)ρ + δρ +

(
δ log

(2T

δ

)) 1
2

)

for some constant K.

Note that (6.3) is weaker than pathwise Holder-ρ continuity, and if (ct)t≥0 is an contin-

uous Itô semimartingale, ρ = 1
2 .

Theorem 6.4.1 immediately implies the “consistency” of Y n,δ.

Corollary 6.4.1. Assume that kn →∞ and kn∆n → 0, then

lim
δ→0

lim sup
n→∞

E

(
sup

0≤t≤T
|Y n,δ
t − X̃t|

)
= 0,

lim
n→∞

lim sup
δ→0

E

(
sup

0≤t≤T
|Y n,δ
t − X̃t|

)
= 0.

More importantly, (6.4) provides a concrete structure of the convergence rate (upper

bound): the error arising from local volatility estimation (including the statistical error 1√
kn

and target error (kn∆n)ρ), the discretization error δρ from Euler scheme approximation, and

the residual error
(
δ log

(
2T
δ

)) 1
2 are separately additive, from which we are able to derive

the “optimal” simulation scheme in the sense of fastest convergence rate: to make Y n,δ

converges to X̃ as fast as possible, one should first take δn → 0 as small as possible, i.e.

δn = ∆n,

which means taking each data sampling point as a discretization point; then we strike

balance between statistical error and target error, by requiring

k
ρ+ 1

2
n ∆ρ

n → β ∈ (0,∞),

equivalently kn ∼ ∆
− ρ

ρ+ 1
2

n . In this fashion, our “optimal” Euler approximation becomes:

Y n
t =

bt/∆nc−1∑
i=0

√
ĉi∆n∆n

i W̃ , 0 ≤ t ≤ T, (6.4)
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with convergence rate

E

(
sup

0≤t≤T
|Y n
t − X̃t|

)
≤ K

(
1√
kn

+
(
kn∆n

)ρ
+ ∆ρ

n +

(
∆n log

( 2T

∆n

)) 1
2

)

∼ ∆

1

2+ 1
ρ

n .

We need to emphasize that there is an end-effect issue in the definition of Y n: when

i > bt/∆nc − kn, there will be no enough kn returns from the right side to give ĉi∆n . To

overcome this, we assume that we can sample data up to time T + h for some h > 0.

Asymptotically, as n→∞, kn∆n < h and Y n is well-defined.

Now we know that under the “optimal” simulation scheme, the upper bound of conver-

gence rate for Y n approximating X̃ is ∆

1

2+ 1
ρ

n . Then the next natural question is whether

this rate is sharp. The answer is, not surprisingly, affirmative. To prove this, we start with

the approximation |Y n
T − X̃T | at terminal time T .

We state the result in the following theorem. We say a sequence of random variables

Xn converges to 0 at rate an if both Xn
an

and an
Xn

are tight.

Theorem 6.4.2. Under Assumptions 6.2.1,6.2.3 and 6.2.4, assume further that δn = ∆n

and that

∆n → 0, k
ρ+ 1

2
n ∆ρ

n → β ∈ (0,∞) n→∞.

Conditioning on {ct : t ≥ 0}, the exact convergence rate for sup0≤t≤T |Y n
t − X̃t| is ∆

ρ
2ρ+1
n .

6.4.2 Special case: constant volatility

Up to now, we have only considered ρ-Hölder continuous for 0 < ρ ≤ 1. It is also

interesting to examine the case when ρ-Hölder continuous for ρ > 1, i.e., (ct)t≥0 = c for

some constant c, in which case

X̃t =
√
cW̃t.

Then the question is: should we still take a discretization scheme to track the volatility

path? Intuitively the answer should be negative as using spot volatility estimates to track a
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constant volatility path would invoke extra variance. More rigorously, we have the following

result.

Proposition 6.4.1. Assume ct ≡ c, where c > 0 is constant. Then for any fixed ∆n < δ <

T ,

E

(
sup

0≤t≤T
|Y n,δ
t − X̃t|

)
≤ K

(
1√
kn

+

(
δ log(

2T

δ
)

) 1
2

)

for some positive constants K1 and K2.

Here the approximation error decomposes into a statistical error part 1√
kn

, and a residual

part
(
δ log(2T

δ )
) 1

2 . Similarly as above, to maximize the convergence rate, one should first

take δn as small as possible, i.e., δn = ∆n; then take kn as big as possible, i.e. kn = b T∆n
c.

In fact, kn = b T∆n
c corresponds to using realized variance to estimate local volatility.

So, the optimal Euler approximation in the case of constant volatility is given by

Y RV
t ≡

√
RV

T
W̃t, 0 ≤ t ≤ T

where RV ≡
∑[T/∆n]

i=1 (∆n
i X)2 is the realized variance. In particular, there exists no residual

error from such formulation (otherwise, the residual error would have the dominating rate

(∆n log(2T/∆n))
1
2 ).

Theorem 6.4.3. Assume ct ≡ c, where c > 0 is constant, then it holds that

E

(
sup

0≤t≤T
|Y RV
t − X̃t|

)
≤ K

√
∆n,

for some constant K.

To demonstrate whether
√

∆n is the exact uniform convergence rate for sup0≤t≤T |Y RV
t −

X̃t|, we can use the exact rate for approximating X̃T at terminal time T.

Theorem 6.4.4. Assume ct ≡ c, where c > 0 is constant. Then it holds that

1√
∆n

(Y RV
T − X̃T )

L−→ N (0,
c

2
)N (0, 1),
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where the two normal random variables on the right hand side are independent.

Theorem 6.4.4, together with uniform integrability and Theorem 6.4.3 imply that

K1

√
∆n ≤ E

(
|Y RV
T − X̃T |

)
≤ E

(
sup

0≤t≤T
|Y RV
t − X̃t|

)
≤ K2

√
∆n,

and hence we conclude that the exact uniform convergence rate for sup0≤t≤T |Y RV
t − X̃t| is

√
∆n.

Important remark: In fact there is a generalization of Theorem 6.4.4: even if ct is not

a constant over [0, T ], we still have a CLT associated with Y n
T . More precisely, define the

integrated volatility IV ≡
∫ T

0 ctdt, then by a standard result on RV approximating IV

(e.g., (Aı̈t-Sahalia and Jacod, 2014), p.89-90), we have

1√
∆n

(RV − IV )
L−→ N

(
0, 2

∫ T

0
c2
tdt

)
,

conditionally on (ct)0≤≤T . Then the delta method gives

1√
∆n

(
Y RV
T −

√
IV

T
W̃T

)
L−→ N

(
0,

∫ T
0 c2

tdt

2
∫ T

0 ctdt

)
,

conditionally on (ct)0≤≤T . This implies that under the transitional kernel, Y RV
T is actually

a consistent “estimator” for
√

IV
T W̃T with convergence rate

√
∆n, which has the same

distribution as X̃T . In light of this, if one is only interested in regenerating the distribution

N (0,
∫ T

0 ctdt) of X̃ at terminal time T , Y RV
T would be better than Y n

T produced from the

Euler method with estimated volatility, as the former has a faster convergence rate
√

∆n.

However, Y RV
T can only be used for terminal time T while Y n uniformly approximates the

path of X̃ over [0, T ].

6.4.3 Closing the gap: coupling and Wasserstein metric

In this subsection we revisit an issue brought before. We construct Y n to approximate

the probability distribution of X via an intermediate object X̃. A mathematical way to

formulate such a relation is to use Wasserstein metric.
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Definition 6.1. Given metric space (Ω, d), the Wasserstein metric between two probability

measures µ and ν on (Ω, d) is defined as

dW (µ, ν) = inf
J
{E(d(X,Y )) : L(X) = µ,L(Y ) = ν} ,

where the infimum is taken over all joint distributions J with marginals µ, ν.

Intuitively, one can understand the convergence under Wasserstein metric as the usual

weak convergence plus first moment convergence. We note that there exist many metrics

on the space of probability measures on a given underlying space, and the choice of which

metric to use depends on the specific application at hand. For a brief summary of different

probability measure metrics and their relations, see (Gibbs and Su, 2002).

In our context, recall that

(Xt)0≤t≤T ∈ C([0, T ] : R),

(X̃t)0≤t≤T ∈ C([0, T ] : R),

(Y n
t )0≤t≤T ∈ D([0, T ] : R).

Take (Ω, d) = (D([0, T ] : R), dsk) where dsk denotes the Skorohod metric on D([0, T ] : R), it

holds that

dW (Y n, X) ≤ E
(
dsk

(
Y n, X̃

))
≤ E

(
sup

0≤t≤T
|Y n
t − X̃t|

)
≤ ∆

1

2+ 1
ρ

n .

Therefore, we emphasize that even if the exact convergence rate for sup0≤t≤T |Y n
t − X̃t|

is ∆

1

2+ 1
ρ

n , we only know that the distribution of Y n approximate that of X with rate at most

∆

1

2+ 1
ρ

n , as we are not able to examine over all random objects having the same distributions

as Y n and X.

Finally, on the technical level, one can see that when working together with Y n, X̃ is

much more tractable than X as the latter completely lives on the space Ω1. In probability

theory, this technique is generally called coupling: to study the convergence of distributions
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of two sequences of random objects, construct two copies on the same probability space and

show L1 convergence. For example, see (Asmussen, 2003) Chapter VII.

6.4.4 Summary: optimal simulation scheme

At this stage, let’s give a brief summary of the “optimal” simulation scheme for the

Euler method with estimated spot volatility in different contexts. In practice, we want to

choose δn and kn appropriately to maximize the convergence rate of Y n to X̃ uniformly over

[0, T ]. At first, we should take δn = ∆n, namely take discretization points in simulation as

many as that of sampling data. Notice that this is the finest discretization frequency we

can take, due to an identification issue. One may argue that the smoother the volatility

path is, the more sparse the discretization should be, with the concern being the possibility

of introducing bias due to fine discretization when ct is smooth enough. However, we do

not need to worry about this since when taking δn = ∆n, the bias term is always of order

∆ρ
n uniformly at each discretization point iδn. In fact, taking δn as such enables us to make

the best of data we have: if the volatility path is smooth, then the smooth local estimates

would be revealed; if the volatility path is volatile, then this feature would be captured by

such finest discretization scheme.

Once δn is fixed, the next question would be how to choose the (local) window width

kn. The answer is that the choice of kn depends on the knowledge of volatility.

(i) ρ > 1: constant volatility If ρ > 1, then ct has constant paths. Actually one just

can think of the Hölder exponent for constant as ∞. By Theorem 6.4.4, we should

use RV rather than track the path by using local volatility estimation.

(ii) ρ < 1
2 : Itô Semimartingale The common belief of the dynamics of {ct : t ≥ 0} is

Itô semimartingale, with ρ = 1
2 . However, one should note here that for a general Itô

semimartingale, it only satisfies 1
2 -Hölder continuity on average, i.e., for any t > s > 0,

E|ct − cs| ≤ K|t− s|
1
2 ,
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while its paths are ρ′-Hölder for all ρ′ < 1
2 (e.g., Brownian motion) and the continuity

constant depends on the path under consideration. With this fact in mind, if we have

no other information about the volatility path but Itô semimartingale, we can just

take ρ smaller than but arbitrarily close to 1
2 , with choosing window width according

to

kn ∼ ∆
− 2

2+ 1
ρ

n → ∆
− 1

2
n , as ρ ↑ 1

2
.

Then convergence rate for YT − X̃T approaches arbitrarily close to ∆−
1
4 , i.e.:

lim
ρ↑ 1

2

∆
− 1

2+ 1
ρ

n = ∆
− 1

4
n ,

but not achieved. We will discuss more about this case in Section 6.4.5.

(iii) 1
2 ≤ ρ ≤ 1: more than Itô semartingale If a researcher knows about the volatility

path more than just being an Itô semimartingale, namely, it has paths of ρ-Hölder

continuity (1
2 ≤ ρ ≤ 1), then s/he should choose kn according to

√
kn ∼ ∆

− 1

2+ 1
ρ

n

to achieve the maximum possible rate ∆
− 1

2+ 1
ρ

n .

On the other hand, if the true volatility path is of ρ-Hölder continuity but we do not

know this information, we would still treat it as an general Itö semimartingale and

choose

kn ∼ ∆−
1
2 .

Obviously the convergence rate would be slower than ∆
− 1

2+ 1
ρ

n .

Conclusively, the more information we have in hand, the better we design the (global)

Euler approximation with estimated volatility.

6.4.5 Extension: more than Hölder continuity

So far, we have been characterizing the path regularity of volatility by ρ-Hölder continu-

ity, as in Assumption 6.2.4. In fact, the theoretical results derived above for Euler method
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with estimated spot volatility can be extended to any modulus of continuity g(·). A function

g(·) is called a modulus of continuity for the function f : [0, T ] → R if 0 ≤ s < t ≤ T and

t− s < δ imply

|f(t)− f(s)| ≤ g(δ),

for all sufficiently small positive δ, see e.g., (Karatzas and Shreve, 1991). Suppose the

sample path of (squared) volatility process {ct : t ≥ 0} has modulus of continuity of g(·).

Then we could choose kn according to

√
kng(kn∆n)→ β ∈ (0,∞).

In the special case of ρ-Hölder continuity with ρ ∈ (0, 1], we have g(x) = |x|ρ.

The reason to introduce the general modulus of continuity g(·) is that it is well known

that almost surely sample paths of a general Itô process is of locally ρ-Hölder continuity

for any ρ < 1
2 , but not ρ = 1

2 . Then we may not properly choose kn according to the

mechanism introduced above since ρ could be arbitrarily close to 1
2 . However, the modulus

of continuity other than Hölder continuity might be obtainable in such situation.

Example 6.1(Brownian Motion). The first example would be that {ct : t ≥ 0} is just a

Browinan motion. Then we know the (uniform) modulus of continuity of Brownian path,

which is derived by Lévy (1937):

P

lim sup
δ→0+

sup
t,s∈[0,1],|t−s|=δ

|Wt −Ws|√
2δ log(1

δ )
= 1

 = 1,

which implies that there is a finite, non-negative random variable C(ω) such that for P-

almost surely ω ∈ Ω,

sup
t,s∈[0,1],|t−s|=δ

|Wt −Ws| ≤ C(ω)g(δ)

with

g(δ) =

√
δ log(

1

δ
)

114



for δ sufficiently small. Note that g(δ) → 0 as δ → 0 but is faster than any δ
1
2
−ε for any

ε > 0. In this case, we should choose kn such that

√
kn

√
kn∆n log(

1

kn∆n
) = kn∆

1
2
n

√
log(

1

kn∆n
)→ β ∈ (0,∞).

The exact convergence rate for Y n
T − X̃T is still

√
kn which is smaller than but arbitrarily

close to ∆
− 1

4
n . ♦

Example 6.2(A class of Itô processes). For the case of {ct : t ≥ 0} being general Itö

process, we investigate the case when {ct : t ≥ 0} satisfies Assumption 6.2.2, i.e.,

ct = c0 +

∫ t

o
b(c)s ds+

∫ t

0
σ(c)
s dW ′s

with b
(c)
t and σ

(c)
t being uniformly bounded from both above and below. Since the drift

term is always of higher order, we assume without loss of generality that b
(c)
t ≡ 0. Then

ct = c0 +

∫ t

0
σ(c)
s dW ′s

is a continuous local martingale with quadratic variation

[c]t =

∫ t

0
c(c)
s ds, c(c)

s = (σ(c)
s )2.

Note that [c]t is a strictly increasing process tending to infinity as t→∞. Then it is well-

known that {ct : t ≥ 0} can be time-changed to a Brownian motion run for all time, see,

for example, Theorem 9.3 in (Chung and Williams, 1990). More specifically, for any t ≥ 0,

ct = B∫ t
0 c

(c)
s ds
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for some Brownian motion B in R. Then the modulus of continuity of {ct : t ≥ 0} boils

down to that of the Brownian motion: for 0 < t− s sufficiently small

|ct − cs|2 = |B∫ t
0 c

(c)
u du
−B∫ s

0 c
(c)
u du
|2

≤
∫ t

s
c(c)
u du log(

1∫ t
0 c

(c)
u du

)

≤ K1(t− s) log(
1

K2(t− s)
)

= K1(log
1

K2
)(t− s) +K1(t− s) log(

1

t− s
)

where for the second last inequality we used the fact that c(c) is uniformly bounded from

both above and below. Since the second term in the last equality dominates, we conclude

that

|ct − cs| ≤
√

(t− s) log(
1

t− s
).

Namely in this case the pathwise modulus of continuity of the (squared) volatility process

is the same as that for Brownian motion and hence the window width kn can be chosen

accordingly as above. ♦

6.5 Application

Generally speaking, the way to generate Y n via Euler method with estimated spot

volatility can be viewed as parametric bootstrap in the high-frequency setting, as we use

the real sampled data to estimate the spot volatility, by which in turn we can regenerate the

data. However, different from the usual parametric bootstrap setting where one only needs

to estimate a few parameters, the volatility process itself we are to estimate is actually

nonparametric: we impose no parametric assumption on it except for certain regularity

conditions.

In light of this, as far as the application is concerned, we could use the Euler method

with estimated spot volatility the same way as (parametric) bootstrap, but under a high-

frequency setting. One such example is to evaluate the accuracy of estimation of regression

coefficient.
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6.5.1 Estimation accuracy of diffusive beta

We consider the setting proposed in (Reiss et al., 2015). Taking T = 1 and ∆n = 1/n,

we have the following bivariate Itô semimartingale

Xt = X0 + FXt +

∫ t

0
σsdWs

Yt = Y0 + F Yt +

∫ t

0
βsσsdWs +

∫ t

0
σ′sdW

′
s

where FXt and F Yt are finite variation processes (including both drift part and jump part)

and W and W ′ are two independent Brownian motions. This can be viewed as a continuous

version of CAPM model in finance: X plays the role of a systematic risk factor and Y is

of an individual asset. Then
∫ t

0 σsdWs is the diffusive part for X,
∫ t

0 σ
′
sdW

′
s is the so-called

idiosyncratic diffusive part for Y , and the process β (continuously) measures the exposure

of Y to X.

In such a continuous time regression setting, the coefficient β can be identified as

βt =
d〈Xc, Y c〉t
d〈Xc, Xc〉t

,

and a natural estimator for it is, after truncating jumps off from returns,

β̂ = argmin
β

n∑
i=1

(∆n
i Y − β∆n

i X)2, (6.5)

which is analogues to the least square estimator in the usual linear regression setting.

Whether the value of β remains constant over certain time interval has been studied in

finance for a long time. Economically, the constancy of β is important for justifying the asset

pricing model, while statistically, as Figure 6.2 shows, there is a strong linear relationship

between continuous returns of market and individual stock revealed from high-frequency

data.

(Reiss et al., 2015) develops a statistical procedure to test whether β remains constant

over a given time interval under high-frequency setting, and they document that for stocks

like IBM, XOM and GLD, a weekly window would be a safe choice for treating market beta
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Figure 6.2: Linear Relation between Market and Individual Stock

Continuous Market Returns

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

C
o
n
ti
n
u
o
u
s
 S

to
c
k
 P

ri
c
e
 R

e
tu

rn
s

-1.5

-1

-0.5

0

0.5

1

1.5
Diffusive Regression CVX vs. Market, Jan.2008

data1
   linear

(a) The 5-min continuous returns of CVX are regressed on those of SPY, for the data sampled over

Jan. 2008. The plot reveals a strong linear relation and β̂ = 1.0337.
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as constant in an asset pricing study. In contrast, what we are planning to do here is to

use the Euler method with estimated spot volatility to evaluate the accuracy of estimator

of β. There are at least two motivations for doing this: on one hand, the first step in the

testing procedure proposed by (Reiss et al., 2015) is to estimate β using (6.5); on the other

hand, once we accept that β is constant over a given time span (e.g., after the test), we will

estimate the value of it for some other empirical use. In either case, we would like to know

the accuracy of estimators.

We propose the following algorithm to evaluate the accuracy of β̂, which is pathwise

dependent:

Step 1: Regress the continuous part of an individual stock on that of market to obtain β̂;

Step 2: Estimate cX over the month, also estimate cε for ε = Y − β̂X;

Step 3: Use Euler method with ĉX and ĉε to simulate one month of market data X∗ and

residual data ε∗ respectively. Then form Y ∗ = β̂X∗ + ε∗;

Step 4: Re-estimate β̂∗ using simulated data X∗ and Y ∗;

Step 5: Repeat the above for M times, plot the histogram (kernel density estimation) of β̂∗.

Using the same dataset as in Figure 6.2, we obtain the sample distribution of β̂∗, see

Figure 6.3a, from which we may compute the corresponding confidence interval.

6.5.2 Parametric Bootstrap Inference for Integrated Volatility Function-

als

(Liu and Li, 2016) considers (parametric) bootstrap constructing confidence intervals

for the so-called integrated volatility functionals of the form

∫ T

0
g(cs)ds,

for some (nonlinear) function g over a fixed time of interval [0, T ]. The first few steps in the

algorithm to construct such confidence interval can be viewed as using the Euler method we

discuss in this paper: nonparametrically estimate the spot volatility first and then generate
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Figure 6.3: Sample Distribution of Diffusive Beta
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(a) The histogram and kernel density of β̂∗ generated by the Euler method with estimated with

spot volatility. The sample standard deviation of β̂∗ = 0.0299.
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bootstrap samples with these spot volatility estimators plugged in. However, they do not

consider the issue of convergence rate of the Euler method of estimated spot volatility but

rather use it in their bootstrap inference setting.

6.5.3 Extension: resampling functionals of prices

In the above example, β̂ is a statistic that depends upon the whole paths of prices X and

Y over [0, T ], to which our Euler method with estimated spot volatility can be applied as

the convergence of the method is uniform as in Theorem 6.4.2. In principle, our method can

be used to regenerate any functionals that depends on the whole sample path of observed

prices.

More precisely, consider a general functional G(·), and we would like to obtain the

sample distribution of the statistic G(X). An important example could be the daily range,

an easy measure of risk, that will be discussed in detail below.

Intuitively speaking, the algorithm to obtain the sample distribution of G(X) will gen-

erally go as follows:

Step 1: Estimate spot volatility using high-frequency observations of price process X;

Step 2: Plug estimated spot volatility into Euler method to regenerate a whole path X∗ of

price process, and compute G(X∗) ;

Step 3: Repeat Step 2 M times, and plot G(X∗1), . . . , G(X∗M ).

We end this section with a more intuitive illustration of how well the path of price

process, produced by our Euler method with estimated spot volatility, is able to replace the

true path. In Figure 6.4a and 6.5a, we employ the data used in Figure 6.2 to reproduce a

sample path of returns of market and an individual stock, respectively (middle panel). In

the upper panels of two figures depicted the true returns, and only for illustrative purpose,

the bottom panels show paths generated according to a CIR process specified in the Monte

Carlo setting of (Reiss et al., 2015) with parameters prespecified. As one can see, for both

market and individual stock, the paths produced by our Euler method are very much like

the true ones.
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Figure 6.4: Simulated Returns for Market
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(a) The top panel shows the 5-min continuous returns for SPY over Jan. 2008; the middle is
the continuous returns computed from the resampled prices by using Euler method with estimated
volatility; the bottom is simulated according to a CIR process for market prices dynamics with
parameters specified in the Monte Carlo study of (Reiss et al., 2015).
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Figure 6.5: Simulated Returns for Individual Stock
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(a) The top panel shows the 5-min continuous returns for CVX over Jan. 2008; the middle is
the continuous returns computed from the resampled prices by using Euler method with estimated
volatility; the bottom is simulated according to a CIR process for an individual asset price with
parameters specified in the Monte Carlo study of (Reiss et al., 2015).
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6.6 Future Work

We can continue the study in both theory and applications:

• Theory: An interesting direction to generalize our Euler method with estimated

volatility is to take into account the so-called leverage effect, which refers to the

negative correlation between volatility and returns. Since the Brownian motion W̃

used in simulation is independent of everything in the real world, to create (negative)

correlation between the simulated prices and volatility, we need to use the same W̃

to regenerate volatility process, which requires to model volatility process as an Itô

semimartingale as well and estimate the volatility of volatility (vol. of vol.). As one

may imagine, the convergence rate in this situation would be even slower than ∆
1/4
n

as both volatility and vol. of vol. are latent.

• Applications: The daily range of a given price process X, defined as the difference

between maxXt and minXt within one day, had been a popular measure to quantify

daily risk. Obviously, the daily range depends on the whole price path over a single

day, and hence its sample distribution can be realized by the Euler method with

estimated volatility. Consequently, we are able to implement empirical study using

the Euler method developed here.

6.7 Proofs

6.7.1 A Preliminary result

Lemma 6.7.1. Under Assumptions 6.2.1 and 6.2.3 (no Assumption 6.2.2 here). Fix a

discretization distance δ(≥ ∆n), for i = 0, 1, . . . , bTδ c − 1, the statistical error at time iδ is

given by

Si,n =
1

kn∆n

kn∑
`=1

(
∆n
d iδ

∆n
e+`X

)2

− 1

kn∆n

∫ (d iδ
∆n
e+kn)∆n

d iδ
∆n
e∆n

csds,
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then conditioning on {ct : t ≥ 0}, it holds that

E1
c(Si,n) = 0,

E1
c(Si,n)2 = O(

1

kn
),

E1
c(Si,n)3 = O(

1

k2
n

),

E1
c(Si,n)4 = O(

1

k2
n

),

and the unconditional moments are of the same order. In particular, the constant on the

RHS does not depend on i.

Proof. For notational simplicity, we drop the superscript i in the rest of the proof. We have

Sn =
1

kn∆n

kn∑
`=1

(
∆n
d iδ

∆n
e+`X

)2

− 1

kn∆n

∫ (d iδ
∆n
e+kn)∆n

d iδ
∆n
e∆n

csds

=
1

kn

kn∑
`=1

(
1

∆n

(
∆n
d iδ

∆n
e+`X

)2

− 1

∆n

∫ (d iδ
∆n
e+`)∆n

(d iδ
∆n
e+`−1)∆n

csds

)
︸ ︷︷ ︸

Zn`

:=
1

kn

kn∑
`=1

Zn` .

It is important to recognize that conditioning on c, Zn` are independent as ` varies, and we

will first estimate various moments of Zn` .

For each ` ∈ {1, 2, . . . , kn}, the first moment of Zn` are given by

E1
c(Z

n
` ) = E1

c

(
1

∆n

(
∆n
d iδ

∆n
e+`X

)2

− 1

∆n

∫ (d iδ
∆n
e+`)∆n

(d iδ
∆n
e+`−1)∆n

csds

)

=
1

∆n
E1
c

(
(∆n
d iδ

∆n
e+`X)2

)
− 1

∆n

∫ (d iδ
∆n
e+`)∆n

(d iδ
∆n
e+`−1)∆n

csds

=
1

∆n
E1
c

(∫ (d iδ
∆n
e+`)∆n

(d iδ
∆n
e+`−1)∆n

√
csdWs

)2
− 1

∆n

∫ (d iδ
∆n
e+`)∆n

(d iδ
∆n
e+`−1)∆n

csds

=
1

∆n

∫ (d iδ
∆n
e+`)∆n

(d iδ
∆n
e+`−1)∆n

csds−
1

∆n

∫ (d iδ
∆n
e+`)∆n

(d iδ
∆n
e+`−1)∆n

csds

= 0,
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and the second moment

E1
c

(
(Zn` )2

)
= E1

c

(
1

∆n

(
∆n
d iδ

∆n
e+`X

)2

− 1

∆n

∫ (d iδ
∆n
e+`)∆n

(d iδ
∆n
e+`−1)∆n

csds

)2

=
1

∆2
n

E1
c

(
(∆n
d iδ

∆n
e+`X)4

)
+

(
1

∆n

∫ (d iδ
∆n
e+`)∆n

(d iδ
∆n
e+`−1)∆n

csds

)2

−2
1

∆n
E1
c

(
(∆n
d iδ

∆n
e+`X)2

)
︸ ︷︷ ︸∫ (d iδ

∆n
e+`)∆n

(d iδ
∆n
e+`−1)∆n

csds

1

∆n

∫ (d iδ
∆n
e+`)∆n

(d iδ
∆n
e+`−1)∆n

csds

=
1

∆2
n

E1
c

(
(∆n
d iδ

∆n
e+`X)4

)
−

(
1

∆n

∫ (d iδ
∆n
e+`)∆n

(d iδ
∆n
e+`−1)∆n

csds

)2

=
1

∆2
n

3

(∫ (d iδ
∆n
e+`)∆n

(d iδ
∆n
e+`−1)∆n

csds

)2

−

(
1

∆n

∫ (d iδ
∆n
e+`)∆n

(d iδ
∆n
e+`−1)∆n

csds

)2

= 2

(
1

∆n

∫ (d iδ
∆n
e+`)∆n

(d iδ
∆n
e+`−1)∆n

csds

)2

∼ O(1),

where the last integral being of order 1 since {ct : t ≥ 0} is uniformly bounded from below

and above. Moreover

E1
c

(
(Zn` )3

)
= E

(
1

∆n

(
∆n
d iδ

∆n
e+`X

)2

− 1

∆n

∫ (d iδ
∆n
e+`)∆n

(d iδ
∆n
e+`−1)∆n

csds

)3

=
1

∆3
n

E

((
∆n
d iδ

∆n
e+`X

)6

− 3

(
∆n
d iδ

∆n
e+`X

)4 ∫ (d iδ
∆n
e+`)∆n

(d iδ
∆n
e+`−1)∆n

csds

+3

(
∆n
d iδ

∆n
e+`X

)2
(∫ (d iδ

∆n
e+`)∆n

(d iδ
∆n
e+`−1)∆n

csds

)2

−

(∫ (d iδ
∆n
e+`)∆n

(d iδ
∆n
e+`−1)∆n

csds

)3

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=
1

∆3
n

15

(∫ (d iδ
∆n
e+`)∆n

(d iδ
∆n
e+`−1)∆n

csds

)3

−9

(∫ (d iδ
∆n
e+`)∆n

(d iδ
∆n
e+`−1)∆n

csds

)2 ∫ (d iδ
∆n
e+`)∆n

(d iδ
∆n
e+`−1)∆n

csds

+3

∫ (d iδ
∆n
e+`)∆n

(d iδ
∆n
e+`−1)∆n

csds

(∫ (d iδ
∆n
e+`)∆n

(d iδ
∆n
e+`−1)∆n

csds

)2

−

(∫ (d iδ
∆n
e+`)∆n

(d iδ
∆n
e+`−1)∆n

csds

)3


= 8

(
1

∆n

∫ (d iδ
∆n
e+`)∆n

(d iδ
∆n
e+`−1)∆n

csds

)3

∼ O(1)

and

E1
c

(
(Zn` )4

)
= E1

c

(
1

∆n

(
∆n
d iδ

∆n
e+`X

)2

− 1

∆n

∫ (d iδ
∆n
e+`)∆n

(d iδ
∆n
e+`−1)∆n

csds

)4

=

(
1

∆n

∫ (d iδ
∆n
e+`)∆n

(d iδ
∆n
e+`−1)∆n

csds

)4

E1
c




∆n
d iδ

∆n
e+`X√∫ (d iδ

∆n
e+`)∆n

(d iδ
∆n
e+`−1)∆n

csds︸ ︷︷ ︸
∼N (0,1)



2

− 1



4

∼ O(1)

In fact, all the moments of Zn` are of order 1, due to the fact that {ct : t ≥ 0} is

uniformly bounded from below and above.
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With all the moments computed above, we can calculate the associated moments of Sn.

Then

E1
c(Sn) = 0

E1
c(S

2
n) = E1

c

(
1

kn

kn∑
`=1

Zn`

)2

=
1

k2
n

kn∑
`=1

E1
c

(
(Zn` )2

)
+ 0(product terms vanishes)

∼ 1

k2
n

knO(1) = O(
1

kn
)

E1
c(S

3
n) = E1

c

(
1

kn

kn∑
`=1

Zn`

)3

=
1

k3
n

Ec

 kn∑
`=1

(Zn` )3 + 3
∑
i 6=j

(Zni )2Znj + 6
∑
i 6=j 6=k

Zni Z
n
j Z

n
k


=

1

k3
n

kn∑
`=1

Ec(Zn` )3 ∼ O(
1

k2
n

).

At last, we have

E1
c(S

4
n) = E1

c

(
1

kn

kn∑
`=1

Zn`

)4

=
1

k4
n

Ec

 kn∑
`=1

(Zn` )4 + 6
∑
i 6=j

(Zni )2(Znj )2


∼ 1

k4
n

kn +
1

k4
n

kn(kn − 1) ∼ O(
1

k2
n

).

Since all the estimates of convergence order of moments of Sn do not depend on ct

(because {ct : t ≥ 0} is uniformly bounded from above and below), by law of iterated

expectation, the unconditional moments have the same convergence order as those of con-

ditional ones. Moreover, the convergence order does not depend on i, namely, does not

depend on which discretization time point iδ to consider, which can be easily seen from the

proof.
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6.7.2 Proof of Theorem 6.4.1

Fix finite horizon T , and at stage n, fix discretization frequency δ, sampling frequency

∆n and length of window kn for spot volatility estimation, consider Euler approximation

defined in Section 6.3:

Y n,δ
t =

[t/δ]−1∑
i=0

√
ĉiδ(W̃(i+1)δ − W̃iδ), 0 ≤ t ≤ T,

which is now viewed as a stochastic process with time index t. By convention, if t < δ, the

sum above is just Y n,δ
0 = 0. We are going to derive the global/pathwise approximation of

Y n,δ to (X̃t)0≤t≤T . First note that for any t ∈ [0, T ],

Y n,δ
t − X̃t =

[t/δ]−1∑
i=0

√
ĉiδ(W̃(i+1)δ − W̃iδ)−

∫ t

0

√
csdW̃s

=

[t/δ]−1∑
i=0

(
√
ĉiδ −

√
ciδ)(W̃(i+1)δ − W̃iδ)︸ ︷︷ ︸

local estimation problem

(6.6)

+

[t/δ]−1∑
i=0

√
ciδ(W̃(i+1)δ − W̃iδ)−

∫ [ t
δ

]δ

0

√
csdW̃s︸ ︷︷ ︸

discretization part

+

∫ [ t
δ

]δ

0

√
csdW̃s −

∫ t

0

√
csdW̃s︸ ︷︷ ︸

residual part

(6.7)

Then by triangle inequality it follows that

E

(
sup

0≤t≤T
|Y n,δ
t − X̃t|

)
≤ E

 sup
0≤t≤T

∣∣∣∣∣∣
[t/δ]−1∑
i=0

(
√
ĉiδ −

√
ciδ)(W̃(i+1)δ − W̃iδ)

∣∣∣∣∣∣


+E

 sup
0≤t≤T

∣∣∣∣∣∣
[t/δ]−1∑
i=0

√
ciδ(W̃(i+1)δ − W̃iδ)−

∫ [ t
δ

]δ

0

√
csdW̃s

∣∣∣∣∣∣


+E

(
sup

0≤t≤T

∣∣∣∣∣
∫ t

[ t
δ

]δ

√
csdW̃s

∣∣∣∣∣
)
.

The rest of the proof is to derive the above upper bound step by step.
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Step 1: Local estimation part. We first deal with the “local estimation” part. By

Hölder inequality,

E

 sup
0≤t≤T

∣∣∣∣∣∣
[t/δ]−1∑
i=0

(
√
ĉiδ −

√
ciδ)(W̃(i+1)δ − W̃iδ)

∣∣∣∣∣∣


≤

E

 sup
0≤t≤T

∣∣∣∣∣∣
[t/δ]−1∑
i=0

(
√
ĉiδ −

√
ciδ)(W̃(i+1)δ − W̃iδ)

∣∣∣∣∣∣
2

1
2

The natural next step is to apply Doob’s inequality to convert the supreme value of the

stochastic process over time interval [0, T ] into the value of the process at terminal time

T , which is easier to handle. However, to validate the use of Doob’s inequality, we have to

show that the stochastic process

Zn,δt :=

[t/δ]−1∑
i=0

(
√
ĉiδ −

√
ciδ)(W̃(i+1)δ − W̃iδ), 0 ≤ t ≤ T,

is a martingale associated with certain filtration.

Lemma 6.7.2. Define continuous-time filtration (Gt)0≤t≤T as

Gt = F1 ⊗F2
[ t
δ

]
, 0 ≤ t ≤ T.

Then the stochastic process (Zn,δt )0≤t≤T is a martingale associated with (Gt)0≤t≤T .
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The proof of the lemma is straightforward by the definition of martingale. In light of

this fact, by Doob’s inequality we have

E

 sup
0≤t≤T

∣∣∣∣∣∣
[t/δ]−1∑
i=0

(
√
ĉiδ −

√
ciδ)(W̃(i+1)δ − W̃iδ)

∣∣∣∣∣∣
2

= E

 sup
0≤t≤T

∣∣∣∣∣∣
[t/δ]−1∑
i=0

(
√
ĉiδ −

√
ciδ)(W̃(i+1)δ − W̃iδ)

∣∣∣∣∣∣
2

≤ 4E

[T/δ]−1∑
i=0

(
√
ĉiδ −

√
ciδ)(W̃(i+1)δ − W̃iδ)

2

evaluated at terminal time T

≤ K
(

1

kn
+ (kn∆n)2ρ

)

where the last inequality follows from Proposition 6.7.1 plus Assumption 6.2.3 and 6.2.4,

replacing ∆n by δ.

Step 2: Discretization part. Next we try to deal with the discretization part,

which is essentially a global approximation of discretization of a stochastic integral to the

stochastic integral itself. Define

c̃s =

[T/δ]−1∑
i=0

ciδ · 1[iδ,(i+1)δ)(s), s ∈ [0, T ],
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which is an adapted càdlàg process with paths being piecewise constant. Then we have

E

 sup
t∈[0,T ]

∣∣∣∣ [t/δ]−1∑
i=0

√
ciδ∆

n
i+1W̃ −

∫ [ t
δ

]δ

0

√
csdW̃s

∣∣∣∣


= E

(
sup
t∈[0,T ]

∣∣∣∣ ∫ [ t
δ

]δ

0
(
√
c̃s −

√
cs)dW̃s

∣∣∣∣
)

= E

 sup
t∈[0,[T

δ
]δ]

∣∣∣∣ ∫ t

0
(
√
c̃s −

√
cs)dW̃s

∣∣∣∣


≤ KE

(∫ [T
δ

]δ

0
(
√
c̃s −

√
cs)

2ds

) 1
2

by Burkholder-Davis-Gundy

≤ KE1

{∫ [T
δ

]δ

0
(c̃s − cs)2ds

} 1
2

ct is bounded away from 0

= K

{
E1

(∫ [T
δ

]δ

0
(c̃s − cs)2ds

)} 1
2

Jensen’s inequality

= K

{∫ [T
δ

]δ

0
E1(c̃s − cs)2ds

} 1
2

by Fubini’s theorem

= K


[T/δ]−1∑
i=0

∫ (i+1)δ

iδ
E1(c̃s − cs)2ds


1
2

= K


[T/δ]−1∑
i=0

∫ (i+1)δ

iδ
E1(ciδ − cs)2ds


1
2

by definition of c̃s

= K


[T/δ]−1∑
i=0

∫ (i+1)δ

iδ
(iδ − s)2ρds


1
2

by definition of c̃s

≤ K

[T/δ]−1∑
i=0

∫ (i+1)δ

iδ
δ2ρds

 1
2

≤ K
√
Tδρ.

Hence by using Burkholder-Davis-Gundy inequality, we show that the convergence rate

(upper bound) for the uniform “discretization part” is the same as that for only considering

the terminal time.

Step 3: Residual part. At last we deal with the residual part. It is not as easy as it

sounds like since we are essentially trying to control the moments of modulus of continuity
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of Itö process. Fortunately, (Fischer and Nappo, 2010) proves those results for us. More

specifically, by Theorem 1 in (Fischer and Nappo, 2010) and the assumption that (ct)t≥0 is

uniformly bounded from both below and above, we have

E

(
sup

0≤t≤T

∣∣∣∣∣
∫ t

[ t
δ

]δ

√
csdW̃s

∣∣∣∣∣
)
≤ K

(
δ log

(2T

δ

)) 1
2

,

as desired.

6.7.3 Proof of Theorem 6.4.2

We already know that under the optimal simulation scheme, we have upper bound

E

(
sup

0≤t≤T
|Y n
t − X̃t|

)
≤ K∆

1

2+ 1
ρ

n

for some constant K.

Since E
(
|Y n
T − X̃T |

)
≤ E

(
sup0≤t≤T |Y n

t − X̃t|
)
, it suffices to show that the exact

convergence rate for |Y n
T − X̃T | is of order ∆

1

2+ 1
ρ

n as well.
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Similar to the proof of Theorem 6.4.1, we decompose the difference between Y n
T and

X̃T as follows:

Y n
T − X̃T =

[T/∆n]−1∑
i=0

√
ĉi∆n∆i+1W̃ −

∫ T

0

√
csdW̃s

=

[T/∆n]−1∑
i=0

√
ĉi∆n∆i+1W̃ −

[T/∆n]−1∑
i=0

√
ciδ∆i+1W̃

+

[T/∆n]−1∑
i=0

√
ci∆n∆i+1W̃ −

∫ T

0

√
csdW̃s

=

[T/∆n]−1∑
i=0

(
√
ĉi∆n −

√
ci∆n)∆i+1W̃︸ ︷︷ ︸

local estimation problem

+

[T/∆n]−1∑
i=0

√
ci∆n∆i+1W̃ −

∫ [ T
∆n

]∆n

0

√
csdW̃s︸ ︷︷ ︸

discretization part

+

∫ [ T
∆n

]∆n

0

√
csdW̃s −

∫ T

0

√
csdW̃s︸ ︷︷ ︸

residual part

We first deal with the “residual part”. Note that

E

(∫ [ T
∆n

]∆n

0

√
csdW̃s −

∫ T

0

√
csdW̃s

)2

= E

(∫ T

[ T
∆n

]∆n

√
csdW̃s

)2

= E

(∫ T

[ T
∆n

]∆n

csds

)
by Itö isometry

≤ K∆n ct is bounded from above

It follows from Jensen’s inequality that

E

∣∣∣∣∣
∫ [ T

∆n
]∆n

0

√
csdW̃s −

∫ T

0

√
csdW̃s

∣∣∣∣∣ ≤ K∆
1
2
n .

As for the discretization part, by the Step 2 in proof of Theorem 6.4.1, we have
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E
∣∣∣∣ [T/∆n]−1∑

i=0

√
ci∆n∆n

i+1W̃ −
∫ [ T

∆n
]∆n

0

√
csdW̃s

∣∣∣∣ ≤ K√T∆ρ
n.

The local estimation part is the leading term, and is more involved to deal with.

Lemma 6.7.3. Under Assumptions 6.2.1, 6.2.3 and 6.2.4, assume that as n→∞

∆n → 0, k
ρ+ 1

2
n ∆ρ

n → β ∈ (0,∞)

Conditioning on {ct : t ≥ 0}, the following functional convergence in law holds

∑[·/∆n]−1
i=0

1
2
√
ci∆n

(ĉi∆n − ci∆n)∆n
i+1W̃

α·,n
=⇒Y on [0,T]

where Y is a continuous centered Gaussian process with independent increments having

E(Y 2
t ) = 1, ∀ t ∈ [0, T ]

and

α2
t,n =

[t/∆n]−1∑
i=0

∆n

4ci∆n

 2

k2
n

kn∑
`=1

(
1

∆n

∫ (i+`)∆n

(i+`−1)∆n

csds

)2

︸ ︷︷ ︸
due to statistical error in local estimation

+

(
1

kn∆n

∫ (i+kn)∆n

i∆n

csds− ci∆n

)2

︸ ︷︷ ︸
due to target error in local estimation

 .

Remark 6.7.1. {
√
tYt} : t ∈ [0, T ]} is standard Brownian motion on [0, T ].

Proof. Fix a sample point ω ∈ Ω. Throughout this proof, we will be conditioning on the

volatility path {ct(ω) : t ≥ 0}. To emphasize this, we use, for example, Ec(·) with subscript

c when taking expectation conditioning on {ct(ω) : t ≥ 0}.

By Assumption 6.2.4, there exists ρ ∈ (0, 1] such that ∀s, t ∈ [0, T ],

|c(t, ω)− c(s, ω)| ≤ A(ω)|t− s|ρ,
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for some constant A(ω). Here by requiring

k
ρ+ 1

2
n ∆ρ

n → β ∈ (0,∞),

we are actually taking

kn ∼ ∆
− ρ

ρ+ 1
2

n = ∆
− 2ρ

2ρ+1
n ,

or equivalently

k
− 1

2
n ∼ (kn∆n)ρ ∼ ∆

− 2ρ
2ρ+1

n ,

which means we strike the balance between the convergence rate of statistical error of local

estimation and that of target error. This immediately implies that

kn∆n ∼ ∆
1− ρ

ρ+ 1
2

n → 0.

We fit our setting into Theorem 2.2.13 in (Jacod and Protter, 2012): for each n ≥ 1

and i = 0, 1, . . . , [ T∆n
]− 1, define

ηni =
1

2
√
ci∆n

(ĉi∆n − ci∆n)∆n
i+1W̃

Gni = F1
(i+kn)∆n

⊗F2
(i+1)∆n

with stopping rule Nn(t) being deterministic b t
∆n
c (note here the index i starts from 0 while

in (Jacod and Protter, 2012) i starts from 1). Then immediately ηni ∈ Gni (in fact, we can

think of Gni as the filtration generated by ηni ).

Note that for any i = 0, 1, . . . , [ T∆n
]− kn,

ĉiδn = ĉi∆n =
1

kn∆n

d iδn
∆n
e+kn∑

j=d iδn
∆n
e+1

(∫ j∆n

(j−1)∆n

√
csdWs

)2

=
1

kn∆n

i+kn∑
j=i+1

(∫ j∆n

(j−1)∆n

√
csdWs

)2

δn = ∆n.
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Then as usual we decompose local estimation error into statistical error and target error:

ĉi∆n − ci∆n =
1

kn∆n

i+kn∑
j=i+1

(∫ j∆n

(j−1)∆n

√
csdWs

)2

− 1

kn∆n

i+kn∑
j=i+1

∫ j∆n

(j−1)∆n

csds︸ ︷︷ ︸
Si,n

+
1

kn∆n

i+kn∑
j=i+1

∫ j∆n

(j−1)∆n

csds− ci∆n︸ ︷︷ ︸
Di,n

:= Si,n +Di,n,

where Si,n can be written as

Si,n =
1

kn

i+kn∑
j=i+1

 1

∆n

(∫ j∆n

(j−1)∆n

√
csdWs

)2

− 1

∆n

∫ j∆n

(j−1)∆n

csds


:=

1

kn

i+kn∑
j=i+1

Zi,j,n

with Zi,j,n being centered and independent as j varies (recall the moments estimates for

Si,n are given by Lemma 6.7.1). Then for any t ∈ [0, T ],

α2
t,n = Ec

[t/∆n]−1∑
i=0

ηni

2

=

[t/∆n]−1∑
i=0

Ec (ηni )2

=

[t/∆n]−1∑
i=0

∆n

4ci∆n

Ec (ĉi∆n − ci∆n)2 =

[t/∆n]−1∑
i=0

∆n

4ci∆n

(
Ec(Si,n)2 +D2

i,n

)
=

[t/∆n]−1∑
i=0

∆n

4ci∆n

 2

k2
n

kn∑
`=1

(
1

∆n

∫ (i+`)∆n

(i+`−1)∆n

csds

)2

+D2
i,n


By undergraduate analysis, it follows that

kn

[t/∆n]−1∑
i=0

∆n

4ci∆n

2

k2
n

kn∑
`=1

(
1

∆n

∫ (i+`)∆n

(i+`−1)∆n

csds

)2

→ 1

2

∫ t

0
csds <∞

knD
2
i,n = (

√
knDi,n)2 < K(β)

1

4

∫ t

0

1

cs
ds <∞
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Therefore

knα
2
t,n ∼ O(1)

or in other words, the exact convergence rate of α2
t,n is kn.

Now note

Ec(ηni |Gni−1) = Ec(
1

2
√
ci∆n

(ĉi∆n − ci∆n)∆n
i+1W̃ |Gni−1)

= Ec(
1

2
√
ci∆n

(ĉi∆n − ci∆n)|Gni−1)Ec(∆n
i+1W̃ ) = 0

Then it suffices to show

1

α2
t,n

[t/∆n]−1∑
i=0

Ec(|ηni |2|Gni−1)
P−→ 1, ∀ t > 0 (6.8)

1

α4
t,n

[t/∆n]−1∑
i=0

Ec(|ηni |4|Gni−1)
P−→ 0, ∀ t > 0 (6.9)

To prove (6.8), first note

Ec

 1

α2
t,n

[t/∆n]−1∑
i=0

Ec(|ηni |2|Gni−1)− 1


2

=
1

α4
t,n

Ec


[t/∆n]−1∑
i=0

Ec(|ηni |2|Gni−1)− α2
t,n


2

=
1

α4
t,n

Ec


[t/∆n]−1∑
i=0

∆n

4ci∆n

Ec
(
(ĉi∆n − ci∆n)2|Gni−1

)
−

[t/∆n]−1∑
i=0

∆n

4ci∆n

Ec(ĉi∆n − ci∆n)2


2

=
∆2
n

α4
t,n

Ec


[t/∆n]−1∑
i=0

1

4ci∆n

(
Ec
(
(ĉi∆n − ci∆n)2|Gni−1

)
− Ec(ĉi∆n − ci∆n)2

)
2

:=
∆2
n

α4
t,n

Ec


[t/∆n]−1∑
i=0

Hi,n


2
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where Hi,n := 1
4ci∆n

(
Ec
(
(ĉi∆n − ci∆n)2|Gni−1

)
− Ec(ĉi∆n − ci∆n)2

)
, and in particular the

randomness of Hi,n is up to time (i+ kn − 1)∆n. Then we immediately have

Ec(Hi,n) = 0

Since

Ec(|ηni |2|Gni−1) = Ec(
1

4ci∆n

(ĉi∆n − ci∆n)2(∆n
i+1W̃ )2|Gni−1)

=
∆n

4ci∆n

Ec((ĉi∆n − ci∆n)2|Gni−1)

=
∆n

4ci∆n

(
Ec(S2

i,n|Gni−1) + 2Di,nEc(Si,n|Gni−1) +D2
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 1
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n
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j=i+1

Zi,j,n

2
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2
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n

(
1

∆n
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(i+kn−1)∆n
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)2

+
2Di,n
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i+kn−1∑
j=i+1

Zi,j,n +D2
i,n

 ,

it follows that

Ec(H2
i,n)

=
1

16c2
i∆n
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 1

k2
n

i+kn−1∑
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2

+
2
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n

(
1

∆n
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)2

+
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+D2
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}2

=
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16c2
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1
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)2

+
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i∆n
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n

Ec
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4

+
4
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n

(
1

∆n
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+

4D2
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n
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i+kn−1∑
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Zi,j,n

2

+ (Ec(S2
i,n))2


∼ O(

1

k2
n

)
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Therefore,
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 1

α2
t,n

[t/∆n]−1∑
i=0

Ec(|ηni |2|Gni−1)− 1


2

=
∆2
n

α4
t,n
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
[t/∆n]−1∑
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Hi,n


2

=
1

α4
t,n

[t/∆n]−1∑
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Ec(H2
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2

α4
t,n
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[t/∆n]−1∑
0≤i<m
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
=
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n

α4
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n

α4
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[t/∆n]−2∑
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Hi,n

[t/∆n]−1∑
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
=

∆2
n

α4
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[t/∆n]−1∑
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Ec(H2
i,n) +

2∆2
n

α4
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[t/∆n]−2∑
i=0
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Hi,n

min{[t/∆n]−1,i+kn−2}∑
m=i+1

Hm,n


=

∆2
n

α4
t,n

[t/∆n]−1∑
i=0

Ec(H2
i,n) +

2∆2
n

α4
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[t/∆n]−2∑
i=0

min{[t/∆n]−1,i+kn−2}∑
m=i+1

Ec {Hi,nHm,n}

≤ ∆2
n

α4
t,n

[t/∆n]−1∑
i=0

Ec(H2
i,n) +

2∆2
n

α4
t,n

[t/∆n]−2∑
i=0

min{[t/∆n]−1,i+kn−2}∑
m=i+1

√
Ec(H2

i,n)
√
Ec(H2

m,n)

∼ ∆n + kn∆n → 0,

where for the third equality is due to the fact that Hi,n and Hm,n are independent if

|m−i| > kn−1 (finite range dependence) and for the inequality we use the Cauchy-Schwartz
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inequality. Thus we have shown (6.8). Next to show (6.9)

Ec

∣∣∣∣∣∣ 1

α4
t,n

[t/∆n]−1∑
i=0

Ec(|ηni |4|Gni−1)

∣∣∣∣∣∣ ≤ 1

α4
t,n

[t/∆n]−1∑
i=0

Ec
∣∣Ec(|ηni |4|Gni−1)

∣∣
=

1

α4
t,n

[t/∆n]−1∑
i=0

Ec(|ηni |4)

=
1

α4
t,n

[t/∆n]−1∑
i=0

1

16c2
i∆n

Ec
(

(ĉi∆n − ci∆n)∆n
i+1W̃

)4

=
1

α4
t,n

[t/∆n]−1∑
i=0

1

16c2
i∆n

Ec(ĉi∆n − ci∆n)4Ec(∆n
i+1W̃ )4

=
3∆2

n

α4
t,n

[t/∆n]−1∑
i=0

1

16c2
i∆n

Ec(ĉi∆n − ci∆n)4

=
3∆2

n

α4
t,n

[t/∆n]−1∑
i=0

O(
1

k2
n

)

∼ ∆n → 0.

Therefore (6.9) holds and the theorem follows.

Proposition 6.7.1. Under Assumptions 6.2.1, 6.2.3 and 6.2.4, assume that as n→∞

∆n → 0, k
ρ+ 1

2
n ∆ρ

n → β ∈ (0,∞).

Then conditioning on {ct : t ≥ 0}, it holds that

∑[T/∆n]−1
i=0 (

√
ĉi∆n −

√
ci∆n)∆n

i+1W̃

αT,n

L−→ N (0, 1)

where

α2
T,n =

[T/∆n]−1∑
i=0

∆n

4ci∆n

 2

k2
n

kn∑
`=1

(
1

∆n

∫ (i+`)∆n

(i+`−1)∆n

csds

)2

︸ ︷︷ ︸
due to statistical error in local estimation

+

(
1

kn∆n

∫ (i+kn)∆n

i∆n

csds− ci∆n

)2

︸ ︷︷ ︸
due to target error in local estimation

 .

Proof. Fix a sample point ω ∈ Ω. As in the proof of Lemma 6.7.3, we will be conditioning

on the volatility path {ct(ω) : t ≥ 0} throughout this proof.
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By Taylor expansion, for each i = 0, 1, . . . , [T/∆n]− 1,

√
ĉi∆n =

√
ci∆n +

1

2
√
ci∆n

(ĉi∆n − ci∆n)− 1

8
ξ
− 3

2
i,n (ĉi∆n − ci∆n)2,

where ξi,n = θi,nĉi∆n + (1− θi,n)c with θi,n ∈ [0, 1]. Then

[T/∆n]−1∑
i=0

(
√
ĉi∆n −

√
ci∆n)∆n

i+1W̃

=

[T/∆n]−1∑
i=0

(
1

2
√
ci∆n

(ĉi∆n − ci∆n)− 1

8
ξ
− 3

2
i,n (ĉi∆n − ci∆n)2

)
∆n
i+1W̃

=

[T/∆n]−1∑
i=0

1

2
√
ci∆n

(ĉi∆n − ci∆n)∆n
i+1W̃︸ ︷︷ ︸

I

−1

8

[T/∆n]−1∑
i=0

ξ
− 3

2
i,n (ĉi∆n − ci∆n)2∆n

i+1W̃︸ ︷︷ ︸
II

.

Conditioning on {ct : t ≥ 0}, by Lemma 6.7.3 and continuous mapping theorem (pro-

jection to terminal time T), we have

∑[T/∆n]−1
i=0

1
2
√
ci∆n

(ĉi∆n − ci∆n)∆n
i+1W̃

αT,n

L−→ N (0, 1)

By Slutsky’s Theorem, what is left to show now is that the part II converges to 0 in mean

square (in probability) after being scaled by αT,n.

Ec

 1

αT,n

[T/∆n]−1∑
i=0

ξ
− 3

2
i,n (ĉi∆n − ci∆n)2∆n

i+1W̃

2

=
1

α2
T,n

[T/∆n]−1∑
i=0

Ec
(
ξ
− 3

2
i,n (ĉi∆n − ci∆n)2

)2

Ec(∆n
i+1W̃ )2

=
∆n

α2
T,n

[T/∆n]−1∑
i=0

Ec
(
ξ−3
i,n (ĉi∆n − ci∆n)4

)
.
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Notice that ∀i

Ec
(
ξ−3
i,n (ĉi∆n − ci∆n)4

)
= Ec

(
ξ−3
i,n (ĉi∆n − ci∆n)41{ĉi∆n>ci∆n}

)
+ Ec

(
ξ−3
i,n (ĉi∆n − ci∆n)41{ĉi∆n<ci∆n}

)
≤ Ec

(
c−3(ĉi∆n − ci∆n)41{ĉi∆n>ci∆n}

)
+ Ec

(
ĉ−3
i∆n

(ĉi∆n − ci∆n)41{ĉi∆n<ci∆n}

)
≤ Ec

(
(ĉi∆n − ci∆n)4

)︸ ︷︷ ︸
∼k−2

n

+Ec
(
ĉ−3
i∆n

(ĉi∆n − ci∆n)4
)
,

Recall that the exact convergence rate for α2
T,n is kn, so we have

∆n

α2
T,n

[T/∆n]−1∑
i=0

Ec
(
(ĉi∆n − ci∆n)4

)
∼ O(

1

kn
)→ 0.

On the other hand, note

Ec
(
ĉ−3
i∆n

(ĉi∆n − ci∆n)4
)
≤

√
Ec
(
ĉ−6
i∆n

)√
Ec(ĉi∆n − ci∆n)8

We first consider Ec
(
ĉ−6
i∆n

)
, note that

ĉi∆n =
1

kn∆n

i+kn∑
j=i+1

(∫ j∆n

(j−1)∆n

√
csdWs

)2

=
1

kn∆n

i+kn∑
j=i+1

∫ j∆n

(j−1)∆n

csds︸ ︷︷ ︸
≥εc∆n


∫ j∆n

(j−1)∆n

√
csdWs√∫ j∆n

(j−1)∆n
csds︸ ︷︷ ︸

∼N (0,1)



2

≥ 1

kn
χ2
kn,i

and hence

Ec
(
ĉ−6
i∆n

)
≤ k6

nEc

(
1

χ2
kn

)6
kn>12∼ k6

n · k−6
n ∼ O(1).
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Now we come to focus on
√
Ec (ĉi∆n − ci∆n)8).

Ec(ĉi∆n − ci∆n)8 = Ec(Si,n +Di,n)8

≤ Ec(S8
i,n) +D8

i,n

where as for D8
i,n,

D8
i,n =

(
1

kn∆n

∫ (i+kn)∆n

i∆n

csds− ci∆n

)8

≤

(
1

kn∆n

∫ (i+kn)∆n

i∆n

(cs − ci∆n) ds

)8

≤ 1

kn∆n

∫ (i+kn)∆n

i∆n

(cs − ci∆n)8 ds

≤ 1

kn∆n

∫ (i+kn)∆n

i∆n

((Kn + 1)∆n)8ρ ds

∼ (kn∆n)8ρ

∼ (k
− 1

2
n )8 ∼ k−4

n .

For Ec(S8
i,n), recall

Ec(S8
i,n) = Ec

 1

kn

i+kn∑
j=i+1

Zi,j,n

8
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with Zi,j,n being centered and independent as j varies. In particular, any moments of Zi,j,n

is of order 1 (behaves like constant), independent of i and j. Therefore,

Ec(S8
i,n) = Ec

 1

kn

i+kn∑
j=i+1

Zi,j,n

8

=
1

k8
n
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 i+kn∑
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i,j,n

+
∑
j 6=m

Z6
i,j,nZ

2
i,m,n +

∑
j 6=m

Z5
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3
i,m,n +

∑
j 6=m

Z4
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4
i,m,n

+
∑
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Z4
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2
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2
i,k,n +

∑
j 6=m 6=k

Z3
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3
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2
i,k,n

+
∑

j 6=m6=k 6=`
Z2
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2
i,m,nZ

2
i,k,nZ

2
i,`,n


∼ 1

k8
n

k4
n ∼ k−4

n ,

as the four additive terms are of order kn, kn(kn−1), kn(kn−1)(kn−2) and kn(kn−1)(kn−

2)(kn − 3), respectively. Taking all above together, we have

Ec
(
ĉ−3
i∆n

(ĉi∆n − ci∆n)4
)
≤

√
Ec
(
ĉ−6
i∆n

)√
Ec(ĉi∆n − ci∆n)8

∼ O(1)

√
O(k−4

n )

∼ O(k−2
n )

which implies

∆n

α2
T,n

[T/∆n]−1∑
i=0

Ec
(
ĉ−3
i∆n

(ĉi∆n − ci∆n)4
)
∼ O(

1

kn
) −→ 0.

Consequently, we prove

Ec

 1

αT,n

[T/∆n]−1∑
i=0

ξ
− 3

2
i,n (ĉi∆n − ci∆n)2∆n

i+1W̃

2

−→ 0
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and hence

1

αT,n

[T/∆n]−1∑
i=0

ξ
− 3

2
i,n (ĉi∆n − ci∆n)2∆n

i+1W̃
Q(ω,·)−→ 0,

where Q(ω, ·) is a transition probability kernel, given the volatility path ω being conditioned

on. Thus by Slutsky’s theorem, the result follows.

Continuation of Proof of Theorem 6.4.2: Now we come to decomposition 6.8. At this

stage we can blow up our original target Y n
T − X̃T by

√
kn ∼ ∆

− 1

2+ 1
ρ

n ,

which gives

∆
− 1

2+ 1
ρ

n (Y n
T − X̃T )

= ∆
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ρ

n
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(
√
ĉi∆n −

√
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i+1W̃ −
∫ [ T
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0

√
csdW̃s


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ρ

n
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]∆n

0

√
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∫ T

0

√
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)

=

(
αT,n∆
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ρ

n

)
︸ ︷︷ ︸

as constant

1
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(
√
ĉi∆n −

√
ci∆n)∆n

i+1W̃︸ ︷︷ ︸
→N (0,1), by Proposition 6.7.1

+

(
∆
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2+ 1
ρ

n ∆ρ
n

)
︸ ︷︷ ︸

→0
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]∆n

0

√
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︸ ︷︷ ︸
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+

(
∆
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ρ

n ∆
1
2
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︸ ︷︷ ︸
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∆
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2
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√
csdW̃s −

∫ T
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where we have used the facts that the exact convergence rate for αT,n is
√
kn ∼ ∆

− 1

2+ 1
ρ

n ,

and that for ρ > 0,

∆
− 1

2+ 1
ρ

n ∆ρ
n = ∆

(− 1
2ρ+1

+1)ρ
n = ∆

2ρ
2ρ+1

ρ
n → 0,

∆
− 1

2+ 1
ρ

n ∆
1
2
n = ∆

1
2
− 1

2+ 1
ρ

n → 0.

6.7.4 Proof of Proposition 6.4.1

When ct is constant, namely the pathwise continuity is of ρ > 1, we have for 0 ≤ t ≤ T ,

X̃t =

∫ t

0

√
cdW̃s =

√
cW̃t.

In light of (6.7), there exist neither the target error induced from spot volatility estimation

nor the discretization error, and as a result the convergence rate (upper bound) becomes

E

(
sup

0≤t≤T
|Y n,δ
t − X̃t|

)
≤ E

 sup
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∣∣∣∣∣∣
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√
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√
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√
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δ
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)

≤ K
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+
(
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2T

δ
)
) 1

2

)
.

6.7.5 Proof of Theorem 6.4.3

First note that

E

(
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t − X̃t|

)
= E

(
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∣∣∣∣∣
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,
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where the last equality is due to independence. Now, on one hand, we have

(
E

(
sup

0≤t≤T
|W̃t|

))2

≤ E

(
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0≤t≤T
|W̃t|

)2

= E

(
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)
≤ 4E(W̃ 2

T ) <∞,

where the two inequalities are due to Jensen’s inequality and Doob’s inequality, respectively.

On the other hand, we have
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Therefore, it holds that
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which implies

E

(∣∣∣∣∣
√
RV

T
−
√
c
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)
≤ K(∆n + ∆2

n)
1
2 ≤ K(

√
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as desired.

6.7.6 Proof of Theorem 6.4.4

Note W̃0 = 0 and that

Y RV
T − X̃T =

√
RV

T
(W̃T − W̃0)−

√
c(W̃T − W̃0)

=

(√
RV

T
−
√
c

)
(W̃T − W̃0)

=
1√
T

(
√
RV −

√
Tc)(W̃T − W̃0).

By a classical result from integrated volatility estimation (see, e.g.,(Aı̈t-Sahalia and Jacod,

2014)), we have the following central limit theorem

1√
∆n

(RV − Tc) L−→ N (0, 2Tc2).

By Delta’s method (f(x) =
√
x, f ′(x) = 1

2
√
x
), it follows that

1√
∆n

(
√
RV −

√
Tc)

L−→ N (0, 2Tc2)
1

2
√
Tc

∼ N (0,
c

2
).

Notice that ∀n, 1√
∆n

(
√
RV −

√
Tc) is independent of W̃T − W̃0, then

(
1√
∆n

(
√
RV −

√
Tc), W̃T − W̃0

)
L−→
(
N (0,

c

2
),N (0, T )

)
.

By continuous mapping theorem, it follows

1√
∆n

(
√
RV −

√
Tc)(W̃T − W̃0)

L−→ N (0,
c

2
)N (0, T ).
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Therefore,

1√
∆n

(
Y RV
T − X̃T

)
=

1√
∆n

1√
T

(
√
RV −

√
Tc)(W̃T − W̃0)

L−→ 1√
T
N (0,

c

2
)N (0, T )

∼ N (0,
c

2
)N (0, 1)
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