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ABSTRACT 

Britt Frisk Pados: Feeding the Medically Fragile Infant:  
Effects of Feeding Method and Milk Flow on Physiology and Behavior  

 (Under the direction of Dr. Suzanne M. Thoyre) 
 

Background: Oral feeding is a challenge for medically fragile infants, particularly those born 

preterm and with hypoplastic left heart syndrome (HLHS). Rate of milk flow from the bottle nipple affects 

physiologic stability during feeding in preterm infants, but little data is available on the flow rates of 

nipples used for feeding hospitalized infants. Changes in milk flow rate likely also affect physiologic 

stability of infants with HLHS during feeding, however no studies have evaluated responses of infant with 

HLHS to different feeding methods. Feeding interventions aim to reduce feeding stress in fragile infants to 

promote growth. Outcome measures that sensitively measure stress are needed. 

Purpose: This dissertation is composed of three studies. Chapter two presents milk flow rates of 

nipples used for feeding hospitalized infants. Chapter three examines the physiologic and behavioral 

responses of an infant with HLHS to variations in milk flow rate. Chapter four evaluates heart rate 

variability (HRV) as a feeding intervention outcome measure in the preterm infant. 

Methods: In chapter two, milk flow rates of ten each of 29 nipple types (n=290) were tested using 

a breast pump. In chapter three, a single-subject with HLHS was evaluated during feeding with either a 

slow-flow or standard-flow nipple. In chapter four, a secondary analysis of heart rate variability indices 

was conducted from a test of a co-regulated approach to feeding preterm infants (n=14).  

Results: In chapter two, flow rates varied widely between nipple types. Chapter three found that 

oral feeding was distressing for an infant with HLHS, regardless of flow condition. In chapter four, only 

SD12, a non-linear index of HRV, was found to significantly differentiate between feeding methods.  

Conclusions: Data on milk flow rates from nipples used in hospitals will guide clinicians in nipple 

selection. Information on flow rates of nipples used after discharge is needed. Further study of how 

infants with HLHS respond to oral feeding is necessary to identify supportive strategies. Research is also 

warranted to further evaluate the use of HRV, particularly non-linear indices, during feeding interventions. 
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CHAPTER 1: INTRODUCTION 

Background and Significance 

Feeding is one of the most basic tasks for sustaining life once an infant is no longer being 

nourished in utero. While in utero, the infant rehearses sucking, swallowing, and breathing behaviors but 

nutrition and oxygenation are supported by the placenta. As the infant transitions to the extra-uterine 

environment, survival is dependent on effective coordination of fluid management (sucking and 

swallowing) with respiration in order to take in enough milk for adequate growth while also sustaining 

oxygenation. Feeding is essential for survival, but it is not simple. It is extremely complex and its success 

is dependent on a variety of factors both internal and external to the infant. The infant must have the 

anatomic structure and neurologic capacity to perform the physical act of feeding as well as the 

physiologic support to maintain stability during this act. All of this must happen within an environment that 

is safe and supportive of the task of feeding.  

Given the complexity of feeding, even the healthy infant often encounters difficulty early on. 

Feeding difficulty is the inability to safely and/or effectively intake adequate nutrition for appropriate 

growth. These difficulties usually manifest as physiologic instability during feeding or early cessation of 

feeding prior to the ingestion of adequate nutrition. In the healthy infant, these difficulties are usually 

manageable given a supportive environment and attentive caregiver. As the infant matures in the first 

days and weeks of life, these feeding difficulties are typically overcome. On the other hand, the medically 

fragile infant, whose anatomic, physiologic, and/or neurologic systems are not supportive of feeding, is 

likely to encounter significant difficulty with feeding, which is much more challenging to manage and 

which may further compromise their already vulnerable systems. Infants with congenital heart disease 

(CHD) and infants born preterm (prior to 37 weeks post-menstrual age (PMA)) are two examples of 

medically fragile infants who frequently encounter difficulty feeding.  
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Etiology of Feeding Difficulties 

The etiology of feeding difficulties in infants born preterm and those with CHD is slightly different, 

although there are overlapping features. In this dissertation, chapter 3 focuses on a subset of infants with 

CHD who have hypoplastic left heart syndrome (HLHS) and chapter 4 focuses on infants born preterm. 

HLHS is a defect of the left side of the heart that results in a hypoplastic left ventricle. Survival is 

dependent on either heart transplantation or a series of three palliative reconstructive surgeries of the 

cardiac anatomy that results in a single right ventricle (RV) providing blood flow to both the pulmonary 

and systemic circulations (Feinstein, et al., 2012); the latter is the more common course of action. The 

first surgical procedure (stage 1 palliation (S1P)) typically occurs in the first week of life and the second 

procedure occurs around 4-6 months of age. The inter-stage period between S1P and stage 2 palliation 

(S2P) is a time associated with high mortality (Hehir, Cooper, Walters, & Ghanayem, 2011) and feeding 

difficulties have been implicated in contributing to inter-stage death (Hehir, et al., 2011). Infants with 

HLHS were chosen at the focus of chapter 3 because this particular group of infants is at high risk for 

feeding difficulty. 

Common risk factors for oral feeding difficulty among preterm infants and those with HLHS 

include prolonged periods of intubation or respiratory support and prolonged nasogastric tube feedings in 

conjunction with periods of time without oral feeding (Barlow, 2009; Dodrill, et al., 2004; Einarson & 

Arthur, 2003). Both groups also frequently have elevated respiratory rates at rest; preterms as a result of 

respiratory distress syndrome and infants with HLHS as a result of pulmonary overcirculation. Studies of 

nutritive sucking in infants have shown that ventilation is markedly reduced during the sucking phase of 

feeding, then stabilizes when the infant pauses to breathe (Mathew, 1991b). Physiologically normal 

infants are able to increase ventilation during these pauses by increasing respiratory rate and/or tidal 

volume (Mathew, 1991b). However, in physiologically compromised infants, the change in ventilation 

during the initial continuous sucking phase may be too great to recover from and/or the challenge of 

increasing ventilation to recover may interfere with their ability to continue nutritive sucking. Increased 

ventilation needs at rest results in limited capacity for ventilatory interruption and also increases the risk of 

aspiration associated with mistiming of the swallow (Barlow, 2009). Finally, both groups frequently 

experience gastroesophageal reflux disease, which contributes to risk for feeding aversion (Hyman, 
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1994), and are at risk for swallowing dysfunction. Infants with HLHS are at risk for swallowing dysfunction 

resulting from manipulation of the left recurrent laryngeal nerve during aortic arch reconstruction 

(Sachdeva, et al., 2007). Preterm infants who have undergone surgical closure of a patent ductus 

arteriosis are also at high risk for swallowing dysfunction (Benjamin, et al., 2010). 

In addition to these common risk factors for oral feeding difficulty, infants who are born preterm 

often encounter difficulty sucking and creating a latch to the bottle or breast as a result of immature oral 

musculature. They also experience difficulty coordinating sucking, swallowing, and breathing as a result 

of immature neurologic function (Barlow, 2009). Infants with HLHS have reduced oxygen levels as a 

result of mixing of oxygenated and deoxygenated blood in the common atrium, which limits their capacity 

for managing further decline in oxygen level resulting from ventilatory interruptions with oral feeding. 

Infants with HLHS also typically have some cardiac dysfunction, which limits their ability to respond to the 

activity of feeding, and both congenital and acquired neurologic abnormalities (Glauser, Rorke, Weinberg, 

& Clancy, 1990a, 1990b), which influence the coordination of sucking, swallowing, and breathing.  

Milk Flow 

When medically fragile infants experience difficulty with bottle-feeding in the hospital, a common 

strategy employed by nurses is to change the bottle nipple. This strategy is used across populations of 

infants and results in changes in milk flow rate, as flow rates have been found to vary considerably 

between different nipple types (Jackman, 2013; Mathew, 1988).  

Milk flow is the rate at which milk transfers from the bottle to the mouth during feeding (Mathew, 

1991b). Milk flow rate is one variable external to the infant that can affect the infants’ ability to safely 

coordinate swallowing and breathing, and therefore the degree of stress associated with oral feeding (al-

Sayed, Schrank, & Thach, 1994; Mathew, 1991a). Given the common anatomical structures for 

swallowing and breathing, swallowing requires closure of the airway and therefore a pause in respiration 

(Barlow, 2009). In order to recover from this pause in respiration, it is necessary for the infant to increase 

respiration in between swallows. It has been found, however, that some infants are not capable of 

increasing respiration during the pause and therefore have decreased minute ventilation during feeding, 

primarily as a result of decreased respiratory rates (al-Sayed, et al., 1994).  
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When milk flow is high, the infant is forced to either swallow at a frequency adequate to clear the 

oropharynx from fluid to prevent aspiration (at the expense of breathing) (al-Sayed, et al., 1994) or divert 

the milk away by allowing it to drool out his mouth or stop feeding altogether. Healthy, full-term infants 

have some capacity for self-regulating the flow of milk by changing sucking rate (Schrank, Al-Sayed, 

Beahm, & Thach, 1998) or pressure (Colley & Creamer, 1958; Mathew, Belan, & Thoppil, 1992). On the 

other hand, premature infants, with immature neurologic and respiratory systems, have limited ability to 

self-regulate flow (Mathew, et al., 1992). Unable to self-regulate milk flow, the premature infant exposed 

to higher flow during bottle-feeding exhibits greater reduction in ventilation than full-term infants (Mathew, 

1991a). Premature infants have also been found to drool more with high flow rates than full-term infants 

(Kao, Lin, & Chang, 2010; Schrank, et al., 1998).  

Jackman’s (2013) study is the only study of milk flow rates of currently available nipples. Her 

findings were limited in the number of nipples tested and the methods used. Additional data on milk flow 

rates between different types of nipples and variation in flow rate within a given type of nipple is needed 

to guide clinicians in making decisions about nipple selection for supporting physiological stability during 

oral feeding of medically fragile infants. The study presented in chapter 2 describes milk flow rates of 

bottle nipples used for feeding hospitalized infants. 

 Although there is fairly good evidence that slower milk flow is more appropriate for infants who 

are preterm (Kao, et al., 2010; Mathew, 1991a), it remains unknown how infants with HLHS respond to 

changes in milk flow and what capacity they have to self-regulate flow as they attempt to integrate fluid 

management and respiration despite both cardiac and respiratory compromise. No studies have 

examined the physiologic or behavioral responses of infants with HLHS to the challenge of oral feeding. 

More information is needed about this particularly fragile population of infants to identify strategies to 

support them during oral feeding. Chapter 3 presents a study of the effects of differing milk flow rates on 

an infant with HLHS. 

Theoretical Framework 

Physiologic homeostasis is coordinated by the autonomic nervous system (ANS), which is 

responsible for distributing resources, such as blood, oxygen, and nutrients, to meet the demands of the 

organism (Porges, 1992). In response to the challenge of feeding, physiologic changes in respiratory and 
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cardiac indices are expected. Physiologic changes can also manifest as behavioral changes during oral 

feeding (Thoyre & Carlson, 2003). Polyvagal theory (Porges, 1995) provides a theoretical basis for 

understanding the relationship between physiologic responses to stress and emotional, cognitive, and 

behavioral regulation as an infant faces the dynamic challenge of oral feeding. An overview of the key 

concepts of Polyvagal Theory will be presented as well as a conceptualization of feeding within the 

theory. 

Polyvagal Theory describes the physiologic response of mammals to stress as a function of the 

two pathways of the vagus nerve (Porges, 1995). Stress is defined as a disruption in homeostasis, where 

homeostasis is the stable state of an organism when internal needs are met (Porges, 1992). The 

Polyvagal Theory states that the evolutionary development of the vagus nerve resulted in two pathways: 

the myelinated nucleus ambiguous (NA) and the unmyelinated dorsal motor nucleus (DMNX) (Porges, 

1995, 2009). While the NA controls the muscles of the supradiaphragmatic structures, such as the larynx, 

pharynx, esophagus, soft palate, heart, head, and face, the DMNX controls the structures below the 

diaphragm, particularly regulating the digestive functions of the gastrointestinal (GI) tract (Porges, 1995; 

Rinaman, 2006). In addition to controlling the supradiaphragmatic structures, the NA is also responsible 

for the coordination of sucking, swallowing, and breathing during feeding (Porges, 1995). 

Polyvagal Theory explains the mammalian response to both low stress and high stress states. 

Mammals are distinguished from reptiles by high baseline vagal tone with temporary decreases in 

response to stress (Porges, 1995). During times of low stress, there is high vagal tone via the NA, 

resulting in low heart rate (HR); variability of the heart rate around baseline; increased tone in the inner 

ear for differentiation of human voices; preservation of metabolic resources for growth and restoration; 

coordination of sucking, swallowing, and breathing for feeding; and increased tone of the muscles of the 

head and face for social communication (Porges, 2007). Simultaneously, minimal input from the DMNX 

during times of low stress encourages digestion and absorption of nutrients from the GI tract (Porges, 

2001).  

Conversely, with elevated stress levels, there is a hierarchical activation of the two stress 

response systems. First, the sympathetic nervous system (SNS) responds by mobilizing resources to 

meet the demands of the situation, resulting in increased HR, decreased heart rate variability (HRV), 
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activation of the stress response system of the hypothalamic pituitary axis (e.g., release of cortisol), 

stimulation of the immune system (e.g., release of cytokines), and diversion of blood away from the GI 

tract to the more vital organs such as the heart, brain, and lungs (Porges, 1992, 2009). HRV is the 

fluctuation in the interval between consecutive normal heart beats and reflects the balance of input from 

the sympathetic and parasympathetic divisions of the ANS (Schroeder, et al., 2004). High HRV, or a wide 

range around baseline, indicates a well-functioning and adaptable ANS, while low HRV signifies inability 

to adapt to increased physiologic demands (Verklan & Padhye, 2004).  

If the SNS response is not able to reestablish homeostasis, the DMNX, the secondary system, is 

activated resulting in disengagement, hypotonia, apnea, and bradycardia (Porges, 2003). The 

unmyelinated DMNX is the portion of the vagus that is common to both mammals and reptiles and its 

purpose is to conserve resources during stressful events (Porges, 1995). In reptiles, this response is 

functional, allowing them to freeze in response to predators (Porges, 1995). Unfortunately, in mammals 

who have relatively high oxygen needs, activation of the DMNX response and the resulting apnea and 

bradycardia can result in life-threatening oxygen depletion (Porges, 2007). The three different functions of 

the vagus allow mammals to not only thrive in safe environments, but survive in dangerous and life-

threatening ones as well (Porges, 2009). 

Conceptualization of Feeding within the Polyvagal Theory 

Polyvagal Theory states that the perception of an event as stressful is subjective and dependent 

on the vulnerability of the individual at the time of the event (Porges, 1992; Porges, Doussard-Roosevelt, 

Stifter, McClenny, & Riniolo, 1999). An event may be perceived as stressful if it is environmentally or 

metabolically demanding or if it requires mental effort, attention, or social interaction (Porges, et al., 

1999). Feeding has the potential for being perceived as stressful by an infant for a number of reasons, 

especially if the infant is physiologically compromised at rest. If the infant enters the feeding with unstable 

physiology, this is compounded by the environmental, metabolic, and social interactional stresses of 

feeding. 

Feeding may be environmentally stressful because of light or noise. Feeding may also precipitate 

metabolic stress if the infant experiences pain or if feeding competes with the infant’s ability to maintain 

physiologic stability (Porges, 1992). The degree of ventilatory disruption associated with oral feeding, 
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combined with the respiratory needs of the infant at baseline, contribute to the degree of physiologic 

stress associated with feeding. Finally, feeding may be stressful because it requires a great deal of 

mental effort, attention, and social interaction, particularly if the infant is inexperienced with feeding, is 

immature, or if the feeder does not adequately or appropriately respond to the infant’s needs (Porges, 

2003).  

When stressed during feeding, Polyvagal Theory suggests that the infant would respond by 

withdrawal of vagal input from the NA, which would inhibit their ability to effectively coordinate sucking, 

swallowing, and breathing and to accurately give the feeder facial cues about their hunger and/or satiety, 

their level of fatigue, or their need to pause for respiration. Unknowingly, this may lead the feeder to either 

end a feeding before the infant is satiated or to push the infant to continue to feed despite the infant’s 

exhaustion or respiratory instability, which may further compromise an already physiologically vulnerable 

infant. These theoretical changes are consistent with evidence of behavioral disorganization seen during 

feeding of preterm infants (Pickler, Frankel, Walsh, & Thompson, 1996; Thoyre & Carlson, 2003) and 

infants with CHD (Lobo & Michel, 1995).  

Simultaneous with withdrawal of input from the NA, activation of the SNS would result in 

increased HR and decreased HRV (Verklan & Padhye, 2004). Although an increase in HR is expected 

with an activity such as feeding, the higher the HR, the more energy is expended to maintain physiologic 

homeostasis and the less energy is available for growth. Additionally, as the HR rises above 

approximately 180 beats per minute, ventricular filling time is diminished and oxygen consumption by the 

myocardium is increased (Gupta, 2014). This may be tolerated in a healthy heart, but is extremely 

problematic for infants with HLHS who are recovering from cardiac surgery and have reduced cardiac 

function at rest.  

Diversion of blood away from the GI tract inhibits the infant’s digestion and possibly places them 

at risk for developing necrotizing enterocolitis, a disease of the bowel that is initiated by damage to the 

intestinal mucosa from a hypoxic event and results in bacterial invasion, bowel necrosis, sepsis, and 

possibly death (Giannone, Luce, Nankervis, Hoffman, & Wold, 2008; McElhinney, et al., 2000).  

When feeding is supported in a manner that reduces the level of stress experienced by the infant, 

vagal input from the NA is supported, which allows the infant to communicate with caregivers, coordinate 
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sucking, swallowing, and breathing for feeding, and to digest and absorb what they have eaten. At the 

same time, a reduction in stress during feeding minimizes the risk of activation of the SNS and DMNX 

stress pathways and therefore conserves energy and minimizes oxygen-depleting events such as apnea 

and bradycardia. Since feeding is a frequent event, usually occurring approximately every three hours 

during early infancy, and because the first several years of life are a critical period in the development of 

the nervous system, the potential effects of the level of stress experienced during feeding go beyond 

each individual feeding and may have long-term effects (Beauchaine, Gatzke-Kopp, & Mead, 2007). 

If feeding is persistently stressful and accompanied by activation of the SNS and/or DMNX, the 

developing nervous system may be trained to remain in a state appropriate for dangerous situations even 

when the conditions are safe (Beauchaine, et al., 2007). This persistent activation may result in immune 

system dysfunction, respiratory inefficiency, and psychosocial disorder (Porges, 2003). In medically 

fragile children, immune system impairment and respiratory dysfunction may be further compromising and 

even life-threatening. 

Persistent activation of the SNS and/or DMNX and inability to appropriately alter vagal tone may 

be potentially damaging to the developing nervous system and contribute to development of psychiatric 

disorders associated with difficulties in social behavior, such as autism spectrum disorder (Porges, 2003). 

An over-responsive nervous system has been found to be associated with high trait anxiety, which when 

combined with poor vagal adjustment has been linked to anxiety and panic disorders (Beauchaine, et al., 

2007). Additionally, evaluation of a situation as being safe or dangerous is learned and if feeding is 

consistently determined to be dangerous, the child may identify feeding as unsafe long after their 

physiologic state has improved to make feeding safe, resulting in long-term difficulty with eating.  

On the other hand, if feeding is consistently a non-stressful event and the environment is 

perceived as safe, the nervous system is exercised to support social behavior, growth, and restoration 

(Porges, 2003). Infants with appropriate vagal tone responses have been found to have less 

temperamental difficulty (Stifter & Fox, 1990), better emotion regulation (Porter, Wouden-Miller, Silva, & 

Porter, 2003), better attachment (Izard, et al., 1991), better social competence (Eisenberg, et al., 1995), 

and more empathy towards others (Fabes, Eisenberg, & Eisenbud, 1993). Vagal activity from NA input 

has also been found to support weight gain in infants by increasing gastric motility and release of food 
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absorption hormones and has been correlated with shorter hospital stay (DiPietro & Porges, 1991; Field & 

Diego, 2008).  

Polyvagal Theory offers a theoretical framework for conceptualizing the complexity of infant 

feeding and the relationships between stress and emotional, cognitive, and behavioral regulation. The 

degree of stress experienced during oral feeding has the potential for profound short-term and long-term 

effects. As more research is done to evaluate feeding interventions to reduce feeding-related stress in 

medically fragile infants, outcome measures are needed that will measure stress sensitively and, ideally, 

provide early indicators of distress. Polyvagal Theory introduces HRV as a potential outcome measure of 

stress. While several studies have evaluated HRV during feeding (Brown, 2007; Cohen, Brown, & Myers, 

2009; Harrison, 2011; Harrison & Brown, 2012; Lappi, et al., 2007; McCain, Fuller, & Gartside, 2005; 

McCain, Knupp, Fontaine, Pino, & Vasquez, 2010; Portales, et al., 1997; Suess, et al., 2000), only 

McCain’s (2005) study has used HRV to evaluate the degree of stress experienced by infants during 

feeding. Further research is needed to determine whether HRV is a sensitive enough measure to detect 

alterations in the degree of stress related to different feeding strategies. The study presented in chapter 4 

explores the use of HRV as a feeding intervention outcome measure in preterm infants. 

Aims 

 This dissertation is composed of three studies that each contribute to the literature with regards to 

feeding medically fragile infants. Specifically, the aims were to: 

1. Present data on the milk flow rates and variability in flow of bottle nipples used for feeding 

hospitalized infants.  

2. Examine the physiologic and behavioral responses of an infant with HLHS to variations in milk 

flow rate. 

3. Evaluate the usefulness of HRV as a feeding intervention outcome measure in the preterm infant. 

Prepared Manuscripts 

The three-manuscript option was chosen in lieu of a traditional dissertation. Chapter one has 

been an introduction to the problem of feeding medically fragile infants and the theoretical framework 

within which the author conceptualizes this problem. Chapters two through four of this dissertation 

present three manuscripts, which have been prepared for publication. Please note that references to 
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appendices will be removed prior to submission for publication. Chapter five provides a discussion of the 

manuscripts, clinical implications of the findings, and presents plans for future study. 

Chapter two is titled “Milk flow rates from bottle nipples used for feeding hospitalized infants.” The 

purpose of this study was to evaluate milk flow rates from bottle nipples commonly used in hospitals for 

feeding medically fragile infants in order to provide clinicians with evidence with which to base decisions 

about nipple selection.  

Chapter three is a presentation of a single-case experiment of the effects of milk flow on the 

response to feeding in an infant with HLHS. This manuscript is titled “Effects of milk flow on the 

physiologic and behavioral response to feeding in an infant with hypoplastic left heart syndrome.” The 

purpose of this study was to examine the physiologic changes and observational indicators of distress 

that occur when an infant with HLHS is bottle-fed with either a standard-flow nipple or a slow-flow nipple.  

Chapter four is titled “Heart Rate Variability as a Feeding Intervention Outcome Measure in the 

Preterm Infant.” The purpose of this study was to investigate the use of heart rate variability as a measure 

of physiologic stress during feeding in a group of medically fragile preterm infants born at less than 35 

weeks post-menstrual age. 
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CHAPTER 2: MILK FLOW RATES FROM BOTTLE NIPPLES 
USED FOR FEEDING HOSPITALIZED INFANTS 

 
Overview 

Medically fragile infants often experience physiologic compromise during oral feeding. Milk flow is 

an easily manipulated variable that may contribute to the degree of physiologic instability experienced. 

Very little evidence is currently available to guide the selection of a bottle nipple for these infants. This 

study tested the milk flow rates and the variability in flow of currently available nipples used for bottle-

feeding hospitalized infants. Clinicians in three countries were informally surveyed regarding nipples used 

for feeding hospitalized infants. Twenty-nine nipple types were identified and 10 nipples of each type 

were tested by measuring the amount of infant formula expressed in one minute using a breast pump. 

Mean milk flow rate (mL/min) and coefficient of variation (CV) were used to compare nipples within brand 

and within category (i.e., Slow, Standard, Premature). Flow rates varied widely between nipples, ranging 

from 2.10 for the Enfamil Cross-cut to 85.34 mL/min for the Dr. Brown’s Y-cut. Variability of flow rates 

among nipples of the same type ranged from a CV of 0.05 for Dr. Brown’s Level 1 Standard- and Wide-

Neck to 0.42 for the Enfamil Cross-cut. Mean CV by brand ranged from 0.08 for Dr. Brown’s to 0.36 for 

Bionix. Given the wide range of flow rates and variability of nipples used for feeding hospitalized infants, 

nipple selection is an important decision in supporting the medically fragile infant during feeding. This 

study provides clinicians with information for choosing the best available nipple to support oral feeding in 

fragile infants. 

Keywords: bottle feeding, infant, premature infant, feeding methods 
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Introduction 

Feeding can be physiologically challenging for premature and medically fragile infants who are 

learning to orally feed. While breast-feeding may be the ultimate goal, most hospitalized infants will 

receive some bottle-feedings. Many variables contribute to the infant’s ability to bottle-feed safely and 

effectively, but one easily manipulated variable is the rate of milk flow from the bottle nipple. Milk flow is 

defined as the rate of transfer of milk from the bottle into the mouth during sucking. The rate of milk flow 

can affect infants’ ability to integrate fluid management with respiration and the degree of physiologic 

instability associated with feeding (al-Sayed, Schrank, & Thach, 1994; Mathew, 1991a). When an infant 

swallows, the airway is closed for about one second to prevent aspiration of milk (Mathew, 1991b). As 

milk flow increases and requires increased swallowing frequency, ventilation is increasingly interrupted 

and respiratory rate decreases (al-Sayed, et al., 1994). When milk flow slows, the swallow is delayed until 

a critical volume is accumulated (al-Sayed, et al., 1994), allowing the infant to breathe more and better 

maintain physiologic stability during feeding.  

Rate of milk flow varies considerably between different brands and types of nipples (Jackman, 

2013; Mathew, 1988). Healthy, full-term infants are typically resilient feeders and are able to alter sucking 

rate (Schrank, Al-Sayed, Beahm, & Thach, 1998) and pressure (Colley & Creamer, 1958; Mathew, Belan, 

& Thoppil, 1992) in order to regulate milk flow. On the other hand, medically fragile infants, such as those 

born preterm, have a limited ability to self-regulate flow (Mathew, 1991a). When milk flow is too high, the 

infant must either swallow at a frequency adequate to clear the oropharynx from fluid to prevent aspiration 

(at the expense of ventilation) (al-Sayed, et al., 1994); allow the milk to pool in the oropharynx (and risk 

aspiration); divert the milk away by allowing it to drool out their mouth (Schrank, et al., 1998); or stop 

feeding.  

Clinicians caring for hospitalized infants are faced with decisions about nipple selection to support 

medically fragile infants in learning to orally feed, however there is only one recently published study of 

flow rates from currently available nipples to support these decisions (Jackman, 2013). Jackman (2013) 

conducted a study of flow rates from 23 types of nipples, six of which she identified as used in neonatal 

intensive care units. Jackman (2013) found wide variability in the flow rates of nipples tested, ranging 

from 6 to 60 mL/min. Nipples marketed as “slow-flow” were not consistent in the flow rates delivered, with 
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some having three times the flow as others (Jackman, 2013). Finally, significant variation was reported 

between nipples of the same type (Jackman, 2013). Given the variability between nipples of the same 

type, Jackman’s study was limited in that only one nipple per type was tested for nipples intended for 

multiple use and three nipples per type were tested for single-use nipples. To account for the variability 

between nipples and determine an accurate mean flow rate of each nipple type, more tests were needed. 

No statistical analysis was presented in the report of this study.  

More information is needed to support clinicians in decision-making regarding nipple selection for 

feeding hospitalized infants. Without this information, infants are often exposed to multiple types of 

nipples in an effort to find a good match. The variability in nipples during early oral feeding may contribute 

to the length of time required to successfully feed and ultimately, to length of stay. This comparative, 

descriptive study tested the milk flow rates and variability of nipples used for bottle-feeding hospitalized 

infants.   

Methods 

Clinicians from the United States, Netherlands, and Australia were informally surveyed regarding 

nipples available to them for feeding infants in the hospital. Twenty-nine nipples were identified and 

tested (Table 2.1). A power analysis revealed that ten of each type of nipple was sufficient to compare 

flow rates between the nipple types with 80% power at an alpha of 0.05.  

All of the nipples except the Dr. Brown’s Level 1 Wide-Neck fit on a 60 mL Grad-U-Feed Nurser 

(Mead Johnson & Co, Glenview, IL) and were tested with this bottle. Bottles were filled with Similac 

Advance Stage 1 (20 calories/ounce) ready-to-feed formula (Abbott Laboratories, Abbott Park, IL). To 

ensure equal levels of hydrostatic pressure, the height from the level of the liquid surface to the tip of the 

nipple was maintained at 2.5 cm (Figure 2.1), requiring 50 mL of formula for nipples tested with the Grad-

U-Feed Nurser and 70 mL for the Dr. Brown’s Wide-Neck bottle. The formula was changed every ten 

tests to prevent increased viscosity as a result of denaturation of proteins from prolonged exposure to air.  

The bottle and nipple unit being tested were attached to a breast shield of a breast pump using a 

layer of plastic paraffin film followed by a silicone-based polymer to create a seal. The bottle and nipple 

unit were held at a 30 degree angle (Figure 2.2). A negative pressure system was created using a Pump 

in Style Advanced breast pump (Medela, Inc., McHenry, IL). The stimulation phase suction pattern with a 
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suction pressure of 180 mmHg was used for all tests. Given the opportunities for loss of suction from the 

pump to the nipple, negative pressure within the bottle was tested every 50 tests using the Samba 201 

Micro Pressure Measurement System (BIOPAC Systems, Inc., Goleta, CA). Mean suction rate was 110 

cycles per minute and mean negative pressure within the bottle was 14 mmHg. 

Formula was expressed for one minute into a 500 mL beaker situated on a calibrated platform 

scale (Thermo Fisher Scientific, Inc, Waltham, MA), accurate to 0.01 grams. At the conclusion of one 

minute, the weight of formula expressed was recorded. Outliers were re-tested to ensure accuracy of the 

measurement. Tests were video-recorded and measurements were confirmed by video review. Milk flow 

rates (mL/min) were calculated using the density of Similac Advance formula of 0.97 mL/gram (AVCalc, 

2014). 

The Bionix Controlled Flow Baby Feeder consists of two parts that may contribute to variability in 

milk flow: the nipple with the silicone inner channel and the flow restrictor (FR) system, consisting of the 

yellow flow restrictor, purple seal, and green flow adjuster (Bionix Medical Technologies, 2014). Since the 

nipple and FR system may contribute to flow in different ways, ten nipples were tested using the same FR 

system and separately ten FR systems were tested using the same nipple. For both the nipple and FR 

tests, the Bionix was tested on each of the five flow levels, resulting in a total of 100 tests. Also of note, 

the Dr. Brown’s nipples were tested with the venting system in place, which is how the nipple is intended 

to be used. The venting system comprises the cream colored vent insert and the blue vent resevoir 

(Handi-Craft Company, 2014a). The Medela SpecialNeeds Feeder was tested without the white circular 

valve membrane or the yellow circular disc (Medela Inc., 2014). The method used in this study for 

applying negative pressure to the nipple could not work with the valve membrane in place. The 

SpecialNeeds Feeder is intended to have three flow levels: zero flow, medium flow, and maximum flow, 

depending on the position of the slit opening in the infant’s mouth when positive pressure (i.e., 

compression) is applied by the infant’s mouth (Medela, Inc., 2014). In this study, no positive pressure was 

applied. In the presence of negative pressure only, the slit opening should, theoretically, respond similarly 

regardless of positioning, but nipples were tested in the same position for consistency.   

The methods used in this study were designed to test nipples under standardized conditions. The 

flow rates established by this method are not necessarily the flow rates that an infant will achieve when 
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feeding. Infants feed with varying sucking rates and pressures and will achieve different flow rates within 

and between feedings. Thus, this data should be interpreted only as a means to compare flow rates 

between nipples.  

Statistical Analysis 

Mean milk flow rate (mL/min) and SD were calculated for each nipple type. Variability within 

nipple types was assessed using the coefficient of variation (CV; SD/mean). To compare variability 

between nipple types, CV was categorized into three levels: low (< 0.1), moderate (0.1 – 0.2), and high  

(> 0.2). 

The Shapiro-Wilk statistic was used to assess nipples for normality with an alpha of 0.05 

considered significant. Comparisons between nipple types were made within brand and within category 

(Slow, Standard, and Premature) using one-way ANOVA when normally distributed; non-parametric one-

way ANOVA was used otherwise. Multiple comparison tests for the post-hoc analysis of one-way ANOVA 

utilized Duncan’s multiple range test, with an alpha of 0.05 being significant. When non-parametric one-

way ANOVA was utilized, pairwise comparisons were made using the Wilcoxon Rank Sum Test and the 

alpha was adjusted using a Bonferroni adjustment.  

For the purpose of comparing nipples within the categories of “Slow,” “Standard,” and 

“Premature,” nipples were categorized by name, with a few exceptions. The Bionix Level 1 is intended to 

“introduce taste” and the Level 2 is intended to deliver a slow flow (Bionix Medical Technologies, 2014); 

these two levels were categorized as “Slow.” The Bionix Level 5 is intended to deliver flow “at or near a 

flow rate of a Stage 1 nipple” (Bionix Medical Technologies, 2014) so this was categorized as “Standard.” 

For comparisons within category, the Bionix nipple and flow restrictor tests were combined for each level. 

Dr. Brown’s Preemie and Ultra-Preemie were included in the categories of both “Slow” and “Premature.” 

Dr. Brown’s Level 1 Wide- and Standard-Neck were categorized as “Standard.” The Medela 

SpecialNeeds Feeder was categorized as “Slow.”  

Results 

Flow rates varied widely between nipples, ranging from 2.10 for the Enfamil Cross-cut to 85.34 

mL/min for the Dr. Brown’s Y-cut (Figure 2.3). Variability of flow rates among nipples of the same type 
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ranged from a CV of 0.05 for Dr. Brown’s Level 1 Standard- and Wide-Neck to 0.42 for the Enfamil Cross-

cut (Figure 2.4). Mean CV by brand ranged from 0.08 for Dr. Brown’s to 0.36 for Bionix (Figure 2.5). 

Comparisons Within Brand 

Bionix Controlled Flow Baby Feeder. This system was tested to evaluate the flow and 

variability of the nipples (indicated by an “N” after the level in the text) and the flow restrictor (FR) systems 

(indicated by a “FR” after the level in text and figures) separately. For both the nipple and FR tests, milk 

flow increased overall in the direction intended (level 1 being the slowest and level 5 being the fastest). 

Within the nipple tests, each level provided a significantly different flow rate (p<0.001), with the exception 

of levels 2N and 3N, which were not significantly different. Within the FR tests, 2FR and 3FR were not 

significantly different and 4FR and 5FR were not significantly different.  

Comparing the FR tests to the nipple tests, level 1N and 1FR were comparable and levels 2N and 

2FR were comparable. For all levels above 2, the nipple tests were significantly (p<0.001) slower than the 

FR tests. For all levels above 1, there was overlap between levels. Levels 2N, 2FR, and 3N were all 

similar to one another. Level 3FR was comparable to Levels 4N and 5N. At each level, the CV was higher 

for the FR tests than the nipple tests. Bionix Levels 3N and 5N were the only levels with CV < 0.1.   

Dr. Brown’s. All levels of Dr. Brown’s nipples were found to be significantly different (p<0.005), 

with the exception of the Preemie and Level 1 Wide-Neck, which were found to be comparable. Dr. 

Brown’s Ultra-Preemie performed as intended with the lowest flow (3.39 mL/min) of all the nipples by this 

brand; this nipple was the second lowest flow of the 29 nipple types tested in this study. Dr. Brown’s Y-cut 

had the highest flow of all the nipples tested (85.34 mL/min) and was moderately variable with a CV of 

0.13. All of the other Dr. Brown’s nipples had a CV < 0.1.  

Enfamil. All levels of Enfamil nipples were found to be significantly different (p<0.05), with the 

Cross-Cut being the slowest and the Preemie nipple being the fastest. Enfamil Standard was the only 

nipple with a CV < 0.1.  

Similac. Slow and Standard nipples did not have significantly different flow rates. Similac Slow 

ranged from 6.16 to 9.38 mL/min (CV 0.1 – 0.2) while Similac Standard ranged from 3.8 to 12.0 mL/min 

(CV > 0.2). Similac Orthodontic was significantly faster (p<0.05) than Slow or Standard and was highly 

variable (CV > 0.2). Similac Premature was the fastest of all Similac products (p<0.05). 
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Pigeon. All levels of Pigeon nipples were significantly different (p<0.05). The No-Drip was the 

slowest, but also the most variable (CV > 0.2).  

Comparisons Within Category 

Slow Flow Nipples. Nine of the 29 nipples tested were categorized as “Slow” and flow ranged 

from 3.39 to 14.68 mL/min (Figure 2.6). Dr. Brown’s Ultra-Preemie, Bionix Level 1, and Medela 

SpecialNeeds Feeder were comparable to one another; these were all significantly slower (p<0.001) than 

the other “Slow” nipples. Bionix Level 2, Dr. Brown’s Preemie, NUK Slow, and Similac Slow all delivered 

comparable flow. Enfamil Slow was significantly faster (p<0.001) than all other “Slow” nipples. Pigeon 

Slow was significantly slower than Enfamil Slow (p<0.001) but significantly faster (p<0.05) than all other 

“Slow” nipples. 

Standard Flow Nipples. Seven nipples were categorized as “Standard” and flow ranged from 

6.61 to 25.07 mL/min (Figure 2.7). Similac Standard, Difrax, and Dr. Brown’s Level 1 Wide-Neck and 

Standard-Neck nipples were comparable to one another; these were all significantly slower than the other 

“Standard” nipples (p<0.05).  

Premature Nipples. Four nipples were categorized as “Premature” and flow rates ranged from 

3.39 to 22.68 mL/min (Figure 2.8). All four “Premature” nipples delivered significantly different flow rates 

(p<0.05).  

Discussion 

Choosing a nipple for feeding a medically fragile infant is an important decision given the wide 

range of flow rates found in this study. The name of a nipple (e.g., “Slow”) is not always an accurate 

indicator of the flow rate. Additionally, variability in flow rate between and within nipple types is an added 

challenge that may contribute to feeding difficulty. 

Within the Bionix brand, for all levels above Level 1, there was overlap in flow rates between 

levels, suggesting that the Bionix Controlled Flow Baby Feeder may not perform as expected when the 

user increases the flow adjuster from one level to the next. The FR systems were particularly variable, 

with 4 of the levels having CV > 0.2. Changing the nipple or the FR may inadvertently change the flow 

rate delivered, even if the user sets the flow adjuster to the same position.  
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Bionix does provide a Flow Rate Comparison chart on their website (Bionix Medical 

Technologies, 2014). According to Bionix, a similar, but not completely transparent, method was used to 

test flow rates for 50 seconds using a Medela Classic Breast Pump (S. Herzig, e-mail communication, 

March 2014). Our results were consistent with theirs for the increase in flow between levels 1 and 2; they 

found a 75% increase while we found 77%. Both our tests and theirs found the greatest increase in flow 

to be between levels 3 and 4. Bionix also tested nipples made by other companies, but it is difficult to 

make comparisons because the names of the nipples have changed and because the methods may have 

been different. In the current study, Bionix Level 1 was among the slowest of the nipples tested and may 

be useful for feeding infants who require a very slow flow.  

Dr. Brown’s markets the Ultra-Preemie nipple as being 35% slower than their Preemie nipple 

(Handi-Craft Company, 2014b). In our tests, the Ultra-Preemie was 54% slower than the Preemie nipple. 

Dr. Brown’s brand was the most consistent brand, with the lowest mean CV of all brands (Figure 2.5).  

The Enfamil Cross-cut was the slowest of all nipples tested. The cross-cut has two slits that form 

a cross at the tip of the nipple. Enfamil advertises this nipple as having a faster flow than their standard 

nipple (Amazon.com, 2014), which is not consistent with our findings. Cross-cut nipples are described as 

varying in flow, with increasingly faster flow as the infant applies suction and opens the cross wider (Start 

& St James-Roberts, 2000). Two clinical studies have evaluated the physiologic effects of feeding with 

either a cross-cut or a single-hole nipple and found that, at sucking pressures established by preterm 

infants, the cross-cut yielded slower flow than the single hole (Chang, Lin, Lin, & Lin, 2007; Kao, Lin, & 

Chang, 2010). These studies did not use Enfamil nipples, but may support further investigation of our 

findings and how the cross-cut performs in practice. 

For both the Enfamil and Similac brands, the Premature nipple was faster than the Slow or 

Standard flow nipples. This is important for clinical practice as many clinicians assume that a nipple 

labeled “Premature” indicates a slower flow rate. Premature infants typically generate lower sucking 

pressures than full-term infants (Medoff-Cooper, McGrath, & Shults, 2002) and may become fatigued 

early in the feeding before adequate volume is ingested. There was a previously held popular belief that 

increasing the flow rate for these infants would make it easier for them to transfer milk given low sucking 

pressures (Mathew, 1990) and that faster feedings would allow them to intake volume before becoming 
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fatigued. Certain premature nipples may have been designed based on these assumptions. More current 

evidence supports slower flow for maintaining physiologic stability during feeding for these infants, 

allowing them to breathe more (al-Sayed, et al., 1994; Mathew, 1991a; Park, Thoyre, Knafl, Hodges, & 

Nix, 2014), maintain better oxygenation, and endure oral feeding longer. 

Another clinically significant finding was that the Similac Slow and Standard nipples do not deliver 

significantly different flow rates. Compared to the Enfamil products, both the Similac Slow and Standard 

were slower than the Enfamil Slow. Anecdotally, we have heard from clinicians that the Enfamil Slow 

delivers a slower flow than the Similac Slow nipple. There may be other qualities of nipples, such as the 

mechanical stiffness of the nipple material, that affect flow from the nipple or the infant’s sucking during 

feeding that could not be detected using our methods (Barlow, 2009). Our findings, however, are 

consistent with Jackman’s (2013) findings for these nipples.    

This study had some limitations. The method used in this study applied only negative pressure to 

nipples. Nipples with a slit opening as opposed to a hole opening likely perform differently when positive 

pressure is applied during feeding, changing the shape of the opening. The two nipples in this study with 

slit openings were the Enfamil Cross-Cut and the Medela SpecialNeeds Feeder; caution should be used 

when interpreting these results as the flow rates may be different in practice. Additionally, it should be 

noted that the Dr. Brown’s Y-cut nipple was tested with standard thickness formula. In clinical practice, 

this nipple is typically used with thickened milk in medically fragile infants.  

Conclusions 

Milk flow is an important variable in the complex task of oral feeding for the medically fragile 

infant. This study confirmed results of previous studies (Jackman, 2013; Mathew, 1988), which found a 

wide range in milk flow rates from different nipple types. This study has built on previous work by testing 

additional nipples that are currently available for feeding hospitalized infants, further exploring variability 

within nipple types, and by improving upon the testing and analysis methods. 

Clinicians may use this data to guide nipple selection for medically fragile infants by comparing 

the flow rates and variability of the nipples that are available within their institution. Evidence-based 

decisions regarding nipple selection may support optimal oral feeding for these fragile infants and 

facilitate earlier discharge home. Given the importance of milk flow in fragile infants, manufacturers of 
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nipples should consider providing information on nipple packaging that reflects flow rate and variability of 

each nipple type; this would help to reduce any confusion related to the naming of nipples (i.e, premature, 

slow, standard), which may not accurately reflect flow rate. Manufacturers could also use the information 

from this study to improve upon nipple construction to reduce variability, particularly in nipples intended 

for fragile infants.  

Researchers should use this data to make decisions about nipples used in tests of feeding 

interventions and select nipples with low variability in order to ensure consistency of flow. The specific 

nipple(s) used, flow rate, and variability of nipples should be documented in reports of feeding 

intervention studies. 

Testing of flow rates of the nipples in this study will need to be repeated periodically to reflect 

currently available nipples. Additionally, testing of milk flow rates of nipples used for feeding infants after 

discharge is currently underway and will provide clinicians with information to guide parents in selecting 

nipples for use at home that are comparable in flow to that with which the infant has been successful in 

the hospital. Future research should consider testing the effect of flow rate and variability in bottle nipples 

on the sucking parameters (e.g., sucking pressure and rate) of fragile infants. Evaluation of the feeding 

patterns of fragile infants while being fed with various bottle nipples may provide information to tailor 

nipple selection to sucking pattern to further support these fragile infants as they learn to eat.   
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Table 2.1.  

Nipples Tested 

Brand Name Company & Location Nipples Tested 

Bionix  Bionix Medical Technologies 
Toledo, OH 

Controlled Flow Baby Feeder Levels 1-5; nipples and 
flow restrictor (FR) systems tested separately 

Difrax Difrax BV 
Bilthoven, Netherlands 

Teat Natural Standard-Neck Small (0+ months) 

Dr. Brown’s  Handi-Craft Co.  
St. Louis, MO 

Level 1 Standard-Neck 
Level 1 Wide-Neck 
Ultra Preemie 
Preemie 
Y-cut 

Enfamil  Mead Johnson & Co. Glenview, 
IL 

Standard-Flow (royal blue collar) 
Slow-Flow (turquoise collar) 
Preemie  (light blue collar) 
Cross-Cut (yellow collar) 

Medela Medela Inc.  
McHenry, IL 

SpecialNeeds Feeder (formerly Haberman Feeder) 

NUK NUK USA LLC  
Hackensack, NJ 

Orthodontic Silicone Slow-Flow Standard-Neck 

Pigeon Pigeon  
Tokyo, Japan 

Standard-Flow 
Slow-Flow 
No-Drip 

Similac Abbott Nutrition  
Lake Forest, IL 

Standard-Flow (yellow nipple, clear collar) 
Slow-Flow (yellow nipple, yellow collar) 
Orthodontic (yellow nipple, clear collar) 
Premature (red nipple, clear collar) 
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Figure 2.1. Hydrostatic pressure measured as the height from the level of the nipple opening to the height 
of the level of fluid. 
 
 

 
 
Figure 2.2. Nipple testing equipment.



 
 

 
 
Figure 2.3. Milk flow rates of all nipples tested (mL/min). FR ‒ flow restrictor. 

2
9

 



 
 

 
 
Figure 2.4. Coefficient of variation (CV) of milk flow of all nipples. Nipples are color coded by category of CV. Diagonal pattern indicates CV < 0.1, 
gray indicates CV 0. 1 – 0.2, and black indicates CV > 0.2. CV = mean/SD. FR ‒ flow restrictor. 
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Figure 2.5. Mean coefficient of variation (CV) of milk flow rates by nipple brand. Calculated as the mean of the CV of each nipple type by each 
brand. Brands are color coded by category of CV. Diagonal pattern indicates mean CV < 0.1, gray indicates CV 0.1 – 0.2, and black indicates CV 
> 0.2. 
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Figure 2.6. Milk flow rates of slow-flow nipples (mL/min). Nipples of the same color/pattern indicate that they are comparable in flow rate. 

3
2

 



 
 

 
 
Figure 2.7. Milk flow rates of standard-flow nipples (mL/min). Nipples of the same color/pattern indicate that they are comparable in flow rate. 
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Figure 2.8. Milk flow rates of premature nipples (mL/min). Nipples of the same color/pattern indicate that they are comparable in flow rate.
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CHAPTER 3: EFFECTS OF MILK FLOW ON THE PHYSIOLOGIC AND BEHAVIORAL RESPONSES 
TO FEEDING IN AN INFANT WITH HYPOPLASTIC LEFT HEART SYNDROME 

 
Overview 

Infants with hypoplastic left heart syndrome often experience difficulty with oral feeding, which 

contributes to growth failure, morbidity, and mortality. In response to feeding difficulty, clinicians often 

change the bottle nipple (i.e., milk flow rate). Slow-flow nipples have been found to reduce the stress of 

feeding in other fragile infants, but no research has evaluated the responses of infants with hypoplastic 

left heart syndrome to alterations in milk flow. The purpose of this study was to evaluate the physiologic 

and behavioral responses of an infant with hypoplastic left heart syndrome to bottle-feeding with either a 

slow-flow (Dr. Brown’s Preemie) or standard-flow (Dr. Brown’s Level 2) nipple. A single infant was studied 

for three feedings: two slow-flow and one standard-flow. Oral feeding, whether with a slow-flow or 

standard-flow nipple, was distressing for this infant. During slow-flow feeding, she experienced more 

coughing events while during standard-flow, she experienced more gagging. Disengagement and 

compelling disorganization was most common during feeding 3 (Slow-flow), which occurred two days 

after surgical placement of a gastrostomy tube. Clinically significant changes in heart rate, oxygen 

saturation, and respiratory rate were seen in all feedings. Heart rate was higher during standard-flow and 

respiratory rate was higher during slow-flow. Further research is needed to examine the responses of 

infants with hypoplastic left heart syndrome to oral feeding and to identify strategies that will support 

these fragile infants as they learn to feed. Future research should evaluate an even slower flow nipple 

along with additional supportive feeding strategies.  

Keywords: hypoplastic left heart syndrome, bottle feeding, feeding methods 

 

 

 

 

 



36 
 

Introduction 

Each year, approximately 1,000 infants in the United States are born with hypoplastic left heart 

syndrome (HLHS) (Hoffman & Kaplan, 2002; Reller, Strickland, Riehle-Colarusso, Mahle, & Correa, 

2008). HLHS is one of the most severe cardiac defects amenable to surgical palliation, and accounts for 

up to 25% of neonatal deaths associated with cardiac disease (Grossfeld, 2007). Infants with HLHS often 

experience profound feeding difficulties, which contribute significantly to growth failure, morbidity, and 

mortality (Davis, et al., 2008; Einarson & Arthur, 2003; Jadcherla, Vijayapal, & Leuthner, 2009; Skinner, et 

al., 2005). The phenomenon of feeding difficulties in this population is not well understood, however, and 

no research has examined the physiologic and behavioral responses of these infants to different feeding 

methods.  

Feeding is a physiologically expensive event requiring coordination of sucking and swallowing 

with respiration to achieve nutritional intake while maintaining adequate oxygenation. When infants 

experience difficulty with bottle-feeding, one of the most commonly used strategies involves changing the 

type of bottle nipple (i.e., rate of milk flow). Altering the rate of milk flow has been shown to affect 

physiologic state during feeding in healthy, term infants (al-Sayed, Schrank, & Thach, 1994) and infants 

born prematurely (Kao, Lin, & Chang, 2010; Mathew, 1991a), but it remains unknown how infants with 

HLHS respond to different flow rates.   

In healthy infants, increased milk flow results in increased rate of consumption at the expense of 

decreasing ventilation (al-Sayed, et al., 1994). During swallowing, the airway must close to prevent 

aspiration of fluid into the lungs. As flow rate increases and swallowing necessarily increases, the 

duration of airway closure also increases (al-Sayed, et al., 1994). The healthy infant with normal 

cardiorespiratory functioning is able to quickly recover from this decrease in ventilation during swallowing 

by increasing respiratory rate and tidal volume to maintain adequate oxygenation (Mathew, 1991b). The 

healthy, full-term infant is also capable of self-regulating the rate of milk flow during bottle-feeding by 

altering sucking rate (Schrank, Al-Sayed, Beahm, & Thach, 1998) and pressure (Colley & Creamer, 1958; 

Mathew, Belan, & Thoppil, 1992), allowing them to regulate the effect of milk flow on ventilation.  

Premature infants, who have compromised respiratory function and immature neurologic and 

respiratory systems, have been found to have limited ability to self-regulate milk flow during bottle-feeding 
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and limited capacity to recover from the reduction in ventilation (Mathew, 1991a). Slowing the rate of milk 

flow during bottle-feeding has been found to reduce ventilatory compromise in preterm infants (Kao, et al., 

2010; Mathew, 1991a). It is theorized that reducing the rate of milk flow delays swallowing until a critical 

volume of milk accumulates, therefore reducing the number of swallows and the time the airway is closed 

to ventilation (al-Sayed, et al., 1994; Lau & Schanler, 2000). 

Infants with HLHS after stage 1 palliation are extremely fragile. They have decreased 

oxygenation at rest as a result of mixing of oxygenated and deoxygenated blood in a common atrium. 

They also frequently experience decreased cardiac output due to a single functioning ventricle and 

tachypnea as a result of increased pulmonary blood flow through the artificial systemic-pulmonary artery 

shunt (Pearl, Nelson, Schwartz, & Manning, 2002; Tweddell, et al., 2000). A further decline in 

oxygenation as a result of disruption of ventilation during swallowing, however minor, may cause 

considerable physiologic distress and given their poor cardiac output and tachypnea, their ability to 

recover is likely limited.  

Slowing the rate of milk flow may enable the infant with HLHS to better maintain baseline 

ventilation requirements. Additionally, infants with HLHS are at risk for aspiration as a result of vocal cord 

injury (Sachdeva, et al., 2007) and swallowing dysfunction (Skinner, et al., 2005). Slowing the transit time 

of the bolus to the pharynx may allow the infant more time to coordinate a safe swallow and better protect 

the airway (Goldfield, Smith, Buonomo, Perez, & Larson, 2013). The effects of variations in milk flow on 

infants with HLHS remain unknown, and because their cardiac physiology is unique, these effects cannot 

be assumed based on other medically compromised infants. The purpose of this study was to examine 

the physiologic state changes (HR, oxygen saturation (Sp02), and respiratory rate (RR)) and behavioral 

indicators of distress (coughing, gagging, behavioral disorganization and disengagement) that occur 

during feeding and in the recovery period after feeding when an infant with HLHS is fed with either a slow-

flow or standard-flow nipple.  

Theoretical Framework 

Polyvagal Theory (Porges, 1995) was used to conceptualize the physiologic and behavioral 

responses of an infant to stress during feeding. Polyvagal Theory explains that during times of low stress, 

the nucleus ambiguous (NA) pathway of the vagus predominates and allows for social communication by 
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providing tone to the muscles of the face, head, and ears (Porges, 1995). Input from the NA also supports 

feeding  by coordinating sucking, swallowing, and breathing and preserves metabolic resources for 

growth by maintaining a low heart rate (HR) (Porges, 2007). Simultaneously, at times of low stress,  

limited input from the dorsal motor nucleus (DMNX) pathway of the vagus aids in digestion and 

absorption of nutrients from the gastrointestinal (GI) tract (Porges, 2001). 

Conversely, in response to stressful situations, there is a hierarchical activation of the two stress 

response systems. Initially, the sympathetic nervous system (SNS) mobilizes resources to meet 

physiologic demands, resulting in increased HR, decreased heart rate variability (HRV), release of stress 

hormones, release of cytokines, and diversion of blood away from the GI tract to the more vital organs 

such as the heart, brain, and lungs. If the SNS response is not able to meet the demands of the situation, 

the DMNX is activated to conserve resources, resulting in disengagement, behavioral distress, hypotonia, 

apnea, and bradycardia (Porges, 2003). This theoretical framework was used to identify outcome 

variables as behavioral and physiologic indicators of stress related to feeding. 

Methods 

This was a single-case experimental design study where a single infant with HLHS was studied 

under two flow conditions: slow-flow and standard-flow. The infant was studied for three feedings, which 

allowed for replication of one of the conditions. Replication reduces threats to internal validity of study 

findings due to maturation and history (Tervo, Estrem, Bryson-Brockmann, & Symons, 2003). There were 

six permutations of the order in which the two conditions could occur over three feedings, with at least 

one of each flow condition (Barlow & Hayes, 1979; Lander, 1998). The order in which feedings occurred 

was randomized, which also aimed to support internal validity (Kratochwill & Levin, 2010). Institutional 

Review Board approval was obtained prior to the study.  

Sample and Setting  

This study was conducted at a pediatric tertiary care center in the Northeastern United States. 

The first available infant to meet inclusion criteria and whose parents consented to participation was 

included in the study. To be included in the study, the infant had to have been born full-term (≥ 37 weeks 

post-menstrual age (PMA)) with HLHS and to have survived stage 1 palliation. Infants were excluded if 

they were not orally feeding or if they had another major congenital anomaly that interfered with their 
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ability to feed orally (e.g., cleft palate). Additionally, infants were excluded from the study if there was not 

a parent able to consent who was over 18 years of age, because of concerns about their capacity for 

understanding the informed consent process.  

Flow Conditions  

Variability in milk flow within and among bottle nipples has been documented (Mathew, 1988; 

Pados, 2014). In order to maintain consistency between bottle-feedings of the same flow condition, Dr. 

Brown’s (Handi-Craft Co., St. Louis, MO) nipples were used because they were found to have the most 

consistency in flow rates between nipples of the same type (Pados, 2014). The Dr. Brown’s Preemie 

nipple was used for the slow-flow condition because this was the slowest Dr. Brown’s nipple available at 

the time. Dr. Brown’s Level 2 was chosen for the standard-flow condition because it was comparable in 

flow rate to the Enfamil Slow-Flow (Pados, 2014), which was typically used for feeding infants with HLHS 

in the unit where the study was conducted. It should be noted that the flow rate of the “standard-flow” 

nipple used in this study was slower than many standard-flow nipples used for feeding infants in the 

hospital (Pados, 2014). The infant’s nurse was responsible for preparing the milk for each of the study 

feedings according to clinical orders and unit standards. The investigator chose the appropriate nipple 

according to the randomized flow assignment, assembled the bottle, and handed it to the feeder, who 

was blinded to the flow condition of the feeding. 

Study Feeding Protocol 

 Feeders for the study feedings were informed of the Study Feeding Protocol (Appendix 3.1), 

which guided them to swaddle the infant and hold in a supported, flexed position, facing the feeder, and 

at a 45 degree angle. Feeders were asked to speak softly, minimize movement of the infant’s body during 

feeding, and avoid manipulation of the nipple to encourage sucking. The infant was to be given a break if 

he or she displayed signs of physiologic distress, including tachycardia (HR > 200 bpm), bradycardia (HR 

< 80 bpm), a decrease in Sp02 more than 10% below baseline and to reinitiate only when the infant was 

physiologically stable and displayed readiness cues. A maximum time limit for study feedings was set at 

30 minutes. 
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Variables & Measures 

Four types of variables were collected: 1) infant characteristics, 2) feeding description, 3) 

behavioral outcomes, including feeder actions and infant behaviors, and 4) physiologic outcomes. 

Specific variables within each category are described in Table 3.1. The protocol for data collection is in 

Appendix 3.2. 

Infant Characteristics. Descriptive data was collected on the infant to describe the pregnancy, 

birth history, and medical course, including primary and secondary diagnoses, surgical history, respiratory 

support requirements, echocardiogram results, lab work, and medications received. Data on the infant’s 

feeding experience since birth was also collected, including type of feeding (bottle or breast), type and 

caloric density of milk, amount consumed orally, amount of milk administered via feeding tube, type of 

feeding tube, prescribed type and amount of milk, and any feeding complications.  

Feeding Description. Data was collected during feeding to describe the three study feedings. 

The total feeding duration was defined as the duration of time from the first time the nipple was placed in 

the mouth until the last time the nipple was removed. Nipple-in duration was defined as the duration of 

time during the feeding period that the nipple was in the infant’s mouth. Milk consumed (in milliliters (mL)) 

was defined as the amount of milk removed from the bottle by the infant as measured by the change in 

mL using a graduated bottle. Milk flow (mL/minute(min)) was defined as the amount of milk the infant 

consumed per minute of nipple-in (milk flow=milk consumed (mL)/nipple-in duration (mins)). In order for a 

study feeding to be included in the analysis, the milk flow had to exceed 0.3 mL/min. The presence of a 

nasogastric tube and the type of milk offered to the infant was recorded. 

Behavioral Outcomes. A Panasonic Digital Video Camera HDC-TM700 was used for video 

recording. Starting approximately 30 minutes prior to the study feeding and continuing throughout the 

feeding period, a single camera was used to capture a close-up angle of the infant’s face and upper trunk. 

An observational coding scheme (Appendix 3.3) was used to code the videos using the observational 

coding program, The Observer XT 11 (Noldus Information Technology Inc., Asheville, NC). Coders were 

trained in the observational coding scheme until they achieved ≥ 80% reliability using the kappa statistic.   

Feeder Actions. Actions of the feeder were evaluated during feeding to confirm that the feedings 

were performed in a similar way. Study feedings were video-taped and coded continuously for the 
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frequency (number of events) of stimulating the infant to suck, decreasing milk flow, and repositioning 

during the nipple-in period. The duration (in seconds (secs)) of burping and pacifier use was coded for the 

entire feeding period. At the end of the observation, the predominant positioning of the infants arms and 

shoulders, containment of the limbs in the swaddle, trunk positioning, angle of trunk, alignment of head, 

and anterior/posterior neck alignment was noted. 

Infant Behavior. Of the 30 minute observation period prior to feeding, 6 minutes was selected to 

represent baseline where the infant was quietly resting with minimal movement. The observational coding 

scheme was used to code for activity level (continuous coding; no movement or movement) and 

behavioral state (interval coding every 10 secs; categories defined in Table 3.2). The baseline period was 

described in terms of percent of time with no movement and percent of time in each behavioral state.  

Videos during feeding were coded continuously for infant distress behaviors, including coughing 

(number of events and duration in secs) and gagging (number of events and duration in secs); infant 

engagement (proportion of the feeding in each level of engagement); and behavioral organization 

(proportion of the feeding in each level of organization). Definitions of the levels of engagement and 

organization are provided in Table 3.2.  

Physiologic Outcomes. Physiologic variables included HR, Sp02, and RR. Physiologic data was 

analyzed during the 6 minute baseline period, throughout the feeding period, and for 30 minutes after 

feeding. The recovery period was defined as starting at the time the infant was settled into her bed after 

feeding and caregiving activities were completed and continuing for 30 minutes.    

HR data were collected by a three lead electrocardiogram (ECG) using the BioNex Bio-Potential 

Amplifier (MindWare Technology, Gahanna, OH) and sampled at 1,000 samples per second. The data 

were digitized by an amplifier, converted to an analog waveform, and stored using BioLab Data 

Acquisition Software (MindWare Technology, Gahanna, OH). ECG wave complexes were imported into 

MindWare HRV 3.0.20 (MindWare Technology, Gahanna, OH) and R peaks were marked by the 

program. The investigator confirmed each R peak of the QRS complex and cleaned the data of artifact. 

The cleaned data were used to calculate indices of HR, including HR mean, minimum, maximum, and 

coefficient of variation (CV; calculated as SD divided by the mean), for every 1 minute during the baseline 

and feeding periods and every 2 minutes during recovery. A change from baseline score was calculated 
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for feeding as the mean HR during the entire feeding period minus the mean HR during the baseline 

period. A change from baseline score was also calculated for the recovery period. Additionally, number of 

bradycardic events, defined as a heart rate < 100 bpm (Dawson, et al., 2013) were calculated. 

Bradycardic events had to be separated by at least 5 seconds of HR data above 100 bpm to be 

considered two events. 

Sp02 was collected using the Radical-7 Pulse Co-Oximeter (Masimo Corporation, Irvine, CA) at a 

sampling rate of 1,000 samples per second and an averaging window set at two samples per second. 

This co-oximeter is reported by the manufacturer to provide Sp02 data with an accuracy of ± 2% in the 

event of low perfusion, which is critical for the population of infants with HLHS who frequently experience 

poor perfusion (Masimo, 2012). As with the HR data, Sp02 data was digitized by the amplifier, converted 

to analog waveform, and stored using BioLab Data Acquisition Software (MindWare Technology, 

Gahanna, OH). The data was cleaned of artifact by the investigator and the mean, minimum, maximum, 

SD, and CV of Sp02 were calculated for every 1 minute during baseline and feeding and every 2 minutes 

during recovery. A change from baseline score was calculated for feeding as the mean Sp02 for the 

entire feeding period minus the mean Sp02 during baseline. Change from baseline Sp02 was calculated 

for the recovery period as well. 

Mean Sp02 during all three baselines was calculated to create categories of fluctuations in Sp02 

data that represent an increase in Sp02 5-10% above baseline, increase in Sp02 > 10% above baseline, 

a decrease in Sp02 5-10% below baseline, and a decrease in Sp02 > 10% below baseline. The Sp02 

data was imported to The Observer XT 11 observational coding program and coded using the categories 

described. The frequency of events of Sp02 within each of these categories was calculated as well as the 

percentage of the feeding that the infant’s Sp02 was in each category.  

RR was collected using the Ambu® Sleepmate RIPmate™ Inductance Belts system (Ambu Inc., 

Glen Burnie, MD) sampled at 1,000 samples per second. This monitoring system uses respiratory 

inductance plethysmography (RIP) to measure movement of the thoracic cavity related to respiratory 

effort via an elastic band placed around the chest. Respiratory data was digitized by the amplifier and 

stored as an analog waveform using BioLab Data Acquisition Software (MindWare Technology, Gahanna, 

OH). AcqKnowledge software (BIOPAC Systems, Inc., Goleta, CA) was used to mark the peak, or point of 
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maximal chest circumference, during each breath. In order to consistently apply a rule to the waveform 

data regarding whether a chest movement qualified as an adequate respiratory cycle, a period of stable, 

regular breathing was identified during each baseline period. The mean voltage change for a breath 

during this regular breathing period was calculated and a chest movement had to be associated with a 

voltage change of at least 20% of this mean in order to be marked as a peak (Bamford, Taciak, & 

Gewolb, 1992) (Appendix 3.4). The waveform data was used to calculate RR in breaths per minute. The 

mean, minimum, and maximum RR were calculated for every 1 minute during the baseline period, during 

each nipple-in period of the feeding, and every 2 minutes during recovery. Nipple-out periods during 

feeding are typically when burping and other movement of the infant occurs and therefore, more artifact; 

his data was not included in the analysis. Change from baseline RR was calculated during feeding as well 

as during recovery. Additionally, frequency of apneic events, defined as greater than three seconds 

between consecutive respiratory waveform peaks (Nixon, Charbonneau, Kermack, Brouillette, & 

McFarland, 2008), was calculated.  

Statistical Analysis 

 The analysis of this single-case experimental study occurred in two phases. In Phase 1, the 

outcome variables were described per feeding using descriptive analyses with the goal of elucidating the 

ways in which physiology and behavior changed in relation to flow condition. Graphic analysis of data is 

an accepted method of descriptive analysis of single-subject experimental data (Kratochwill, Hitchcock, 

Horner, Levin, Odom, Rindskopf, & Shadish, 2010; Tervo, et al., 2003). Meaned values for measures 

during the baseline, feeding, and recovery periods were tabled. Repeated measures physiologic data 

were graphed to illustrate change over time. A quadratic regression line was fit for each set of physiologic 

data to evaluate the direction of change and steepness (i.e., slope) of change over time.  

 In Phase 2, the repeated measures physiologic data were analyzed using linear mixed modeling 

(LMM) to evaluate the effect of flow condition on each physiologic outcome. For this analysis, data were 

grouped by flow condition. Correlation between measurements within the same feeding, and within the 

same flow condition were taken into account. Additionally, baseline values of the outcome variable being 

tested were included as covariates in the model. The procedures for the LMM analyses are available in 

Appendix 3.5.  
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Results 

Infant Characteristics 

 Baby G was a full-term (39 3/7 weeks PMA) female born via vaginal delivery following labor 

induction to a 30 year-old Caucasian primagravida. The pregnancy was complicated by a prenatal 

diagnosis of HLHS found during the anatomical ultrasound between 18-19 weeks PMA. At 21 weeks, a 

fetal surgical intervention was performed with balloon dilation of the aortic valve. The post-surgical course 

was uncomplicated. At birth, Baby G was appropriately grown with a birth weight of 3240 grams (50th 

percentile), head circumference of 36 cm (96th percentile), and length of 48.5 cm (36th percentile). She did 

not require resuscitation at birth. Apgar scores were 8 at 1 min and 9 at 5 mins.      

 An echocardiogram after delivery confirmed HLHS with aortic stenosis. The infant was intubated 

and taken to the catheterization laboratory where balloon dilation of the aortic valve was repeated and a 

stent was placed across the atrial septum under fluoroscopy. Following the catheterization, the 

echocardiogram reported a small left ventricle (LV) with endocardial fibroelastosis, aortic stenosis with a 

gradient of 70 mm Hg, and no aortic insufficiency.  

Despite the efforts to dilate the aortic valve and support growth of the LV, her cardiac function 

remained poor and on day of life (DOL) 10, the infant underwent a stage 1 Sano Damus-Kaye-Stansel 

procedure. Her procedure was altered from the typical Norwood procedure for HLHS in the hope to 

continue to grow the LV for an eventual two ventricle heart. The procedure involved: 1) transection of the 

main pulmonary artery (MPA), patch closure of the distal MPA, and placement of a right ventricle to 

pulmonary artery (RV-PA) conduit for pulmonary circulation 2) division of the proximal MPA and 

anastomosis to the ascending aorta (both the MPA and aortic arch were patch augmented), 3) aortic 

valvulotomy and commiseration of aortic valve fusion, 4) patent ductus arteriosis ligation, and 5) removal 

of atrial stent and resection of the atrial septum. An illustration of her post-surgical cardiac anatomy is 

provided in Figure 3.1. Total cardiopulmonary bypass time was 3 hours and 11 mins. She did not 

experience any major complications during the procedure. Sternal closure was delayed per standard care 

at this institution due to typical swelling of the intrathoracic structures. She was extubated on DOL 24 to 

continuous positive airway pressure. On DOL 25 she was transitioned to nasal cannula and then 

transitioned to room air on DOL 27. Her most recent echocardiogram at the time of the study revealed a 
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mild to moderate hypoplastic LV with endocardial fibroelastosis, hypoplastic aortic valve annulus, mild 

aortic regurgitation, patent aortic arch, mild tricuspid valve regurgitation, right ventricular dilation and 

hypertrophy with good RV function, and mild to moderate LV dysfunction. Her course was also 

complicated by postoperative chylothorax, hypothyroid, gastroesophageal reflux, and neonatal abstinence 

syndrome following prolonged perioperative narcotic exposure. 

Oral feeding was initiated on DOL 26 while on nasal cannula and for the first 10 days of oral 

feeding, she took 0-15 mL by mouth per feeding. On DOL 38, the infant was evaluated by the feeding 

team; they noted that the infant did not readily open her mouth for the feeding, showed no rooting 

response, used a munching motion when the nipple was placed on the hard palate, had pooling in the 

oral cavity, and gagged three times, but did not show overt signs or symptoms of aspiration. She 

continued to be offered oral feedings. Study feeding 1 occurred on DOL 41 after the infant was 

consistently taking ≥ 20 mL per feeding for two days. Feeding 2 occurred on DOL 42, and Feeding 3 

occurred on DOL 46. Feeding experience data at the time of each study feeding is presented in table 3.3. 

All of her oral feeding experience was with bottle-feeding and a variety of bottle nipples had been used. 

The lapse of time between study feeding 2 and study feeding 3 was a result of the infant having a 

gastrostomy tube surgically placed. During this time, the infant was reintubated for the procedure and was 

not given any fluids enterally for 24 hours.  

At the time of the study feedings, the infant was regularly receiving the following medications: 

Captopril for afterload reduction, Lasix for diuresis, Levothyroxine for treatment of hypothyroid, 

Omeprazole for treatment of gastroesophageal reflux, Aspirin for anticoagulation given the artificial RV-

PA conduit, Simethicone for treatment of gastrointestinal discomfort, and Acetaminophen as needed for 

pain management. She had received her last dose of a methadone taper for treatment of neonatal 

abstinence syndrome on DOL 39. In the evening of DOL 41, approximately 12 hours after study feeding 1 

and 12 hours prior to study feeding 2, her Cardiac Children’s Hospital Early Warning Score (C-CHEWS)  

(McLellan & Connor, 2013) was rated a 3 and she was given a rescue dose of methadone. Otherwise, in 

the 24 hours prior to and following each study feeding, her C-CHEWS score was rated 0-1 by the infant’s 

nurse.  

Laboratory values for electrolytes, hematology, and thyroid function were within normal limits at 
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the time of the study, with the exception of elevated bicarbonate and decreased chloride levels. This mild 

electrolyte imbalance is a physiologic response to normalize pH in the presence of abnormal 

oxygen/carbon dioxide balance as a result of her cardiac anatomy (Adams, Swan, & Hall, 1970). Her 

most recent venous blood gas was acceptable given her cardiac disease. 

Feeding Description 

  The infant was randomized to the following order of flow conditions- Feeding 1: Slow-flow; 

Feeding 2: Standard-flow; and Feeding 3: Slow-flow. The flow conditions are referred to as Slow and 

Standard. Feeding description data is available in Table 3.4. The nipple-in duration of feeding 1 (Slow) 

was nearly twice as long as feedings 2 (Standard) or 3 (Slow), however the infant consumed 

approximately the same amount of milk for all three of the feedings. As a result, the milk flow rate for 

feeding 1 (Slow) was slower than for feedings 2 (Standard) or 3 (Slow).  A nasogastric (NG) tube was 

present in her left nare for feeding 1(Slow), but during feeding 2 (Standard) it had been removed to trial 

her ability to meet nutritional requirements by oral intake. At the time of feeding 3 (Slow), she had a 

gastrostomy tube in place and therefore no longer required a NG tube. Skimmed breastmilk 30 

calories/ounce was offered for all three study feedings. Breast milk was skimmed of long-chain fatty acids, 

which can reaccumulate as chyle in the pleural space in the presence of chylothorax, and replaced with 

medium-chain triglycerides (Chan & Lechtenberg, 2007). 

Behavioral Outcomes 

Feeder Actions. Feedings 1 (Slow) and 2 (Standard) were performed by the same speech-

language pathologist and member of the feeding team. Feeding 3 (Slow) was performed by the infant’s 

mother, who had been present at the infant’s bedside throughout her hospitalization and had fed her 

more often than anyone else. All three feedings were performed with the infant in a supine position at 

approximately a 45 degree angle. The infant was swaddled with the shoulders and arms supported 

throughout feedings 1 (Slow) and 2 (Standard). During feeding 3 (Slow), the infant was more loosely 

swaddled and over the course of the feeding, the swaddle became less supportive. Throughout all three 

feedings, her head was in a midline, neutral position appropriate for feeding. During feeding 3 (Slow), the 

feeder spent more time burping the infant than during either feeding 1 (Slow) or 2 (Standard) and the 

infant was given a pacifier for a longer period of time during feeding 3 (Slow) (Table 3.5). Otherwise, the 
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number of events of stimulating the infant to suck, decreasing milk flow, and repositioning were not 

considerably different between the feedings.  

Infant Behavior. During the 6 minute baseline period prior to feeding 1 (Slow), the infant was in 

active sleep 100% of the time and had no movement 97.3% of the time. During the baseline period prior 

to feeding 2 (Standard), the infant was in active sleep 100% of the time and had no movement 75.9% of 

the time. In the baseline period prior to feeding 3 (Slow), the infant was in active sleep 50% of the time, 

was alert 3%, and in a drowsy daze 47% of the time; she had no movement 71.5% of the time.  

Baby G had seven coughing events during feeding 1 (Slow), with a total duration of coughing of 

50.5 secs, compared to two coughing events during feeding 2 (Standard; duration 15.2 secs), and one 

very brief event (1.13 secs) during feeding 3 (Slow) (Table 3.6). She gagged more during feeding 2 

(Standard; four events; duration 12.7 secs) compared to one event of gagging (2.2 secs) during feeding 1 

(Slow) and none during feeding 3.  

In terms of her engagement in the feeding, she was most fully engaged during feeding 2 

(Standard) (96%) (Table 3.6). During feeding 1 (Slow), she was fully engaged for 91.6% of the nipple-in 

time. She was least fully engaged during feeding 3 (Slow; 44.8%). In all three feedings, she was either 

fully engaged or disengaged; there was no low engagement in any of the feedings. During feeding 3 

(Slow), she was disengaged and avoiding the feeding during 55.2% of the nipple-in time.  

Behavioral organization during nipple-in periods followed a similar pattern as engagement. During 

feeding 2 (Standard), she was fully organized for 29.3% of the feeding, while she was only fully organized 

for 4.8% of feeding 1 (Slow). She was never fully organized during feeding 3 (Slow). She showed signs of 

compelling disorganization during nearly half (47.9%) of feeding 3 (Slow), while only 5.5% of feeding 1 

(Slow) and 1.9% of feeding 2 (Standard).   

Physiologic Outcomes  

HR. Mean HR increased from baseline to feeding during all three feedings and then decreased to 

below baseline values during all recovery periods (Table 3.7). During feedings 2 (Standard) and 3 (Slow), 

mean HR increased similarly from baseline to feeding (10.2 vs. 9.8 bpm, respectively). Mean HR 

increased the least during feeding 1 (Slow; 4.9 bpm). In Figure 3.2, mean HR was plotted over time and a 

quadratic regression line was fit to the data, which revealed a concave curve for all three feedings (i.e., 
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mean HR increased from baseline to feeding and decreased during recovery). Consistent with the mean 

HR values, Feeding 3 (Slow) had the steepest curve, indicating the greatest change from baseline to 

feeding, and feeding 1 (Slow) had the flattest curve, indicating the least change per unit of time (Figure 

3.2). The infant did not experience bradycardia during any of the analyzed periods, but did have transient 

elevations in HR above 190 bpm during both feedings 1 (Slow; maximum HR 194.2 bpm) and 2 

(Standard; maximum HR 191.1 bpm).The CV increased from baseline to feeding during all feedings as 

well, indicating greater variation in HR during feeding. The CV of HR remained elevated above baseline 

during the recovery periods of all three feedings and were similar in value (Table 3.7). In the Phase 2 

analysis, LMM was used to evaluate the effect of flow condition on HR during feeding, covaried on 

baseline HR. The mean HR during feeding was significantly higher during standard-flow feeding than 

during slow-flow feeding (p=0.01) (Table 3.8).  

Sp02. Mean Sp02 during feeding was highest during feeding 1 (Slow; 87.7%) compared to 

feeding 2 (Standard; 83.5%) and feeding 3 (Slow; 84.4%) (Table 3.9). During feeding 1 (Slow), the Sp02 

increased from baseline by 3.76%, while during feeding 2 (Standard), Sp02 decreased by 3.28%, and it 

remained essentially unchanged during feeding 3 (Slow; 0.03%). Minimum Sp02 was the same (70.7%) 

for both feedings 1 (Slow) and 2 (Standard), while Sp02 dropped to a minimum of 62.8% during feeding 3 

(Slow). Maximum Sp02 was higher during feeding 1 (Slow; 98.6%) compared to feedings 2 (Standard) 

and 3 (Slow) (91.6% for both). The CV of Sp02 was similar across all feedings, but in all cases, increased 

from baseline to feeding and decreased during recovery. Mean Sp02 was plotted over time in Figure 3.3 

and a quadratic regression line fit to the data revealed a concave curve for feeding 1 (Slow) (i.e., Sp02 

increased from baseline to feeding and decreased during recovery) and a convex curve for feeding 2 

(Standard) (i.e., Sp02 decreased from baseline to feeding and increased during recovery). The regression 

line for feeding 3 (Slow) was also convex, but was nearly flat as it decreased from baseline to feeding and 

then continued to decrease during recovery.  

The grand mean for baseline Sp02 for all feedings was calculated to be 84.7% (range 83.8 – 

86%) with 81 ‒ 88.9% being equivalent to +/- 5% of baseline. During feeding 1 (Slow), the infant had 3 

events with the Sp02 rising greater than 10% above baseline (i.e., >93%), which accounted for 8% of the 

feeding period (Table 3.9). There were desaturation events greater than 10% below baseline (<76%) in all 
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feedings, accounting for 2.3% of each feeding 1 (Slow) and 2 (Standard) and 4.7% of feeding 3 (Slow). In 

Phase 2, the LMM analysis revealed a trend toward a significant effect of flow on Sp02 (p=0.1), with the 

Sp02 being higher during slow-flow feedings (Table 3.8).  

 RR. Mean RR was high during all three feedings, ranging from 68.4 breaths/min during feeding 1 

(Slow) to 75.8 breaths/min during feeding 3 (Slow) (Table 3.9). The infant increased her RR during 

feeding compared to baseline for all three feedings. The change from baseline to feeding was greatest for 

feeding 2 (Standard; 18.5 breaths/min) and similar for feedings 1 (Slow; 4.4 breaths/min) and 3 (Slow; 3.6 

breaths/min). Mean RR returned to near or below baseline during the recovery periods of feedings 2 

(Standard) and 3 (Slow), but remained elevated above baseline during the recovery period after feeding 1 

(Slow). In Figure 3.4, mean RR was plotted over time and revealed a nearly flat regression line for 

feeding 1 (Slow) with a slightly positive slope, although a closer look at the repeated measures reveals 

considerable variation in the mean RR values at each time point. The infant had one apnea during the 

first nipple-in episode of feeding 1 (Slow), where mean RR for this episode was 31 breaths/min. 

Otherwise, she did not have any apneic episodes during feeding. Consistent with the greatest changes in 

mean RR during feeding 2 (Standard), the regression line for feeding 2 had the steepest curve and was 

concave (i.e., increased from baseline to feeding, then decreased during recovery) (Figure 3.4). Feeding 

3 (Slow) also had a concave curve, but was less steep (Figure 3.4).  

Although apneic episodes were rare during feeding, this infant did have 2 apneic episodes during 

the baseline period prior to feeding 1 (Slow) and three episodes during the baseline period prior to 

feeding 2 (Standard). She had no apneic episodes prior to feeding 3 (Slow). The frequency of apneic 

episodes during the baseline period of feeding 2 (Standard) may explain the relatively low mean RR of 53 

breaths/min, and resultant large increase from baseline to feeding. During the 30 minute recovery period, 

she had five apneic episodes after feeding 1 (Slow), eight after feeding 2 (Standard), and only one after 

feeding 3 (Slow). In the Phase 2 analysis, LMM revealed that there was a statistically significant effect of 

flow condition on RR during feeding (p=0.09); she had a higher RR during slow-flow feeding than during 

standard-flow, when covaried on baseline RR.   

Discussion 

Feeding was a challenging event for this infant and was associated with adverse events, such as 
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coughing and gagging, and evidence of physiologic expense and behavioral disorganization regardless of 

whether she was fed with a slow-flow or standard-flow nipple. There is evidence throughout the literature 

that infants with HLHS have difficulty feeding (Davis, et al., 2008; Jadcherla, et al., 2009), but this is the 

first study that we know of that has looked closely at the physiologic and behavioral effects that occur as 

an infant with HLHS faces the challenge of oral feeding.  

The medical course of this infant with HLHS was not atypical for infants with similar cardiac 

disease. Her intubation time was somewhat lengthy as a result of her slightly delayed stage 1 procedure 

and the presence of chylothorax postoperatively, but she did not experience any life-threatening 

complications and had the benefit of some left ventricular function.  

In comparing the feedings to one another, the feeders’ actions were not considerably different. 

During feeding 3 (Slow), the infant’s mother offered her a pacifier and burped her more often than during 

feedings 1 (Slow) and 2 (Standard). It is speculated that this was done in an attempt to help the infant to 

organize her behavior for the feeding. The behavioral outcomes of feeding 3 (Slow) show that the infant 

was never fully organized. Between feedings 2 (Standard) and 3 (Slow), the infant was reintubated for 

placement of a gastrostomy tube and feeding 3 was particularly difficult for her. Her behavioral state prior 

to feeding 3 (Slow) was also different with her being in active sleep only 50% of the time, compared to 

100% of both baseline periods prior to feedings 1 (Slow) and 2 (Standard). This change in behavioral 

state during rest may be indicative of pain related to her abdominal incision, since she was given 

acetaminophen immediately prior to the feeding and it may not have had the time to take effect. When a 

pacifier was offered, she was able to calm down and appeared ready for feeding, but as soon as flow 

started when the bottle nipple was placed in her mouth, she would become disorganized again.  

The behavioral outcomes provided important information about this infant’s response to feeding. 

Feeding was behaviorally distressing for Baby G. She coughed with concerning frequency during feeding 

1 (7 events accounting for 50.5 seconds), despite the use of a slow-flow nipple. Given her surgical 

history, she is at high risk for aspiration due to vocal cord and/or swallowing dysfunction (Carpes, et al., 

2011; Sachdeva, et al., 2007; Skinner, et al., 2005). Although the feeding team evaluation prior to the 

study did not find evidence of aspiration, at the time of the study, she had not had an evaluation of her 

vocal cord movement or a swallow study to evaluate the safety of her swallow during feeding. One 
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difference between feeding 1 (Slow) and the other two study feedings was the presence of a nasogastric 

tube during feeding. Theoretically, the presence of a nasogastric tube in the posterior oropharynx may 

alter the anatomy during swallowing and increase the risk of aspiration, which may have contributed to 

the increased coughing seen in feeding 1 (Slow).  

Clinicians need to be vigilant in assessing for evidence of aspiration events, which have the 

potential to not only be life-threatening in these very high-risk infants, but also be experienced negatively 

by the infant, which has ramifications for future engagement in oral feeding. Some institutions have 

moved away from the use of videofluroscopic swallow studies because of radiation exposure. If 

fluoroscopy is to be avoided, new techniques for evaluating the safety of swallowing during feeding in 

infants need to be developed. For example, pharyngo-esophageal micromanometry may be a useful 

method for evaluating swallowing and peristalsis (Barlow, 2009).  

Baby G had 4 gagging episodes during feeding 2 (Standard), which was also concerning. The 

gag reflex is a protective mechanism to prevent aspiration and choking and occurs when food or fluid 

remains in the posterior oropharynx after swallowing (Morris & Klein, 2000). The higher flow rate of the 

standard-flow condition may have resulted in pooling of milk in the posterior oropharynx, especially if she 

was having difficulty swallowing completely, which initiated the gag reflex. Aside from being an indication 

that this infant was at high risk for aspiration, gagging is a negative experience during feeding (Byars, et 

al., 2003). This infant had multiple factors that put her at risk for aversion to oral feeding, including 

prolonged intubation, multiple intubations, gastroesophageal reflux, prolonged nasogastric tube use, and 

prolonged period without oral feeding (Dodrill, et al., 2004; Einarson & Arthur, 2003; Hyman, 1994; 

Jadcherla, Wang, Vijayapal, & Leuthner, 2010). Infants with HLHS are frequently found to experience 

long-term feeding difficulty (Hill, et al., 2014; Maurer, et al., 2011), and negative experiences like gagging 

during feeding should be actively avoided to prevent the development of long-term feeding disorders.  

As discussed previously, feeding 3 (Slow) was particularly difficult for this infant and she 

displayed indicators of disengagement, avoiding feeding and compelling disorganization during a 

significant proportion of this feeding, despite being slow-flow. This study feeding occurred about 48 hours 

after placement of the gastrostomy tube, which required a reintubation. A number of factors associated 

with the procedure, including an additional negative oral experience, pain at the incision site, and swelling 
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of the pharyngeal structures, may have contributed to the difficulty that she experienced during feeding 3. 

Feedings 1 (Slow) and 2 (Standard) were relatively similar with regards to her level of engagement in the 

feeding and, although she was organized for more of feeding 2 than feeding 1 (29.3% vs. 4.8%), she was 

compellingly disorganized during very little of either of those two feedings.  

 Physiologically, feeding was a challenge for this infant and, consistent with Polyvagal Theory 

(Porges, 1995), her SNS response to this challenge was to increase HR in order to meet physiologic 

demands. Normal HR range for young infants is considered 110-150 bpm (Park, 2010) and her HR at 

baseline was at the high end to above normal (range 137.3 – 172.9 bpm). Her HR increased during 

feeding to 141.8 – 194.2 bpm. In this case, an increase in HR much above baseline was potentially 

problematic because when the HR rises above approximately 180 bpm, ventricular filling time and end-

diastolic volume are diminished and myocardial oxygen consumption increases (Gupta, 2014). Since 

myocardial perfusion occurs during the diastolic phase, increases in HR above 180 bpm have the 

potential to cause cardiac ischemia and ventricular dysfunction (Gupta, 2014). In an infant recovering 

from open heart surgery and with pre-existing diminished ventricular function, cardiac protection is critical. 

The results of the HR data suggest that feeding 1 (Slow) allowed this infant to maintain her HR closest to 

baseline and the LMM analysis also revealed that slow-flow bottle-feeding allowed this infant to maintain 

a lower HR during feeding than standard-flow feeding (p=0.01), indicating that slow-flow feeding may 

have been less physiologically taxing.  

 The results of the respiratory indices were less clearly supportive of either flow condition. The 

unique cardiac physiology of infants after stage 1 palliation for HLHS requires a careful balance of 

pulmonary to systemic blood flow ratio (Qp:Qs). In this infant, since the RV was essentially providing blood 

flow to both the pulmonary and systemic circulations, the vascular resistance in each of these systems 

helped to determine the ratio of blood that flowed in either direction. Management of infants after stage 1 

palliation aims to maintain Qp:Qs = 1, which is generally achieved with a systemic arterial oxygen 

saturation of approximately 75-80% (Photiadis, et al., 2006).  

Sp02 as measured in this study is a measure of arterial oxygen saturation. During baseline, this 

infant’s mean Sp02 was 83.8 – 86%, which was already higher than the target range (Photiadis, et al., 

2006). Given the fragile balance of Qp:Qs, the goal for Sp02 during feeding should be to remain as close 
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to baseline as possible. Sp02 outside of the range of 75-90% is considered concerning in this population 

(Feinstein, et al., 2012). These infants are already hypoxic and further significant decreases in 

oxygenation are potentially detrimental to oxygen delivery to the systemic and coronary perfusion. 

Similarly, increases in Sp02 above 90% are also problematic, as they suggest preferential shunting of 

blood to the pulmonary circulation, which may result in excessive pulmonary blood flow and reduced 

systemic perfusion. In addition to the obvious issues with reduced systemic perfusion and/or oxygen 

delivery, such as perfusion of the brain and heart, adequate perfusion and oxygen delivery to the 

gastrointestinal tract is critical for the infant to utilize the nutrients that are ingested during feeding.   

Given the constraints of the physiology in this patient, the LMM results of the analysis of Sp02 

indicating a trend toward higher Sp02 during slow-flow feedings (p=0.1) was not necessarily better. 

During feeding 1 (Slow), the infant had frequent increases in Sp02 greater than 5% above baseline 

(>89%). This was surprising given the number and duration of coughing events. Coughing can be a sign 

of aspiration, which is typically associated with decreases in Sp02. In this infant, coughing events resulted 

in a rise in Sp02. The mechanism behind this is unclear. It may be that the infant had small residual 

pleural effusions and coughing resulted in increased lung volume and therefore a temporary fall in 

pulmonary vascular resistance, resulting in increased Sp02 (Gabrielli, et al., 2009). During feeding 3 

(Slow), the infant only had 1 brief coughing event, but still had several increases in Sp02 greater than 5% 

above baseline. The maximum Sp02 during feeding 3 (Slow), however, was 91.6% compared to 98.6% in 

feeding 1 (Slow). During feeding 2 (Standard), the infant had rare events above 89% or below 76%.   

 The results of RR during feeding also suggested that both feeding conditions caused significant 

physiologic distress. The LMM analysis revealed that RR was higher during slow-flow feedings (72.1 vs. 

71.5 breaths/min; p=0.09), however the change from baseline to feeding was greatest for feeding 2 

(Standard) (18.5 breaths/min). Normal RR for infants is considered to be approximately 24-50 breaths/min 

(Bardella, 1999). On one hand, since Baby G’s RR was above normal, the higher RR during slow-flow 

feeding could be interpreted as being an indicator of this feeding condition being more physiologically-

demanding and requiring the infant to therefore increase RR accordingly. On the other hand, this could be 

interpreted as being supportive of physiologic stability because the infant is able to breathe during 

feeding. Some medically fragile infants are unable to coordinate breathing with sucking and swallowing 
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during feeding and experience a decrease in RR (Mathew, 1991a).  

This infant’s mean RR across all three feedings was approximately 72 breaths/min, which is 

equivalent to one breath every 0.83 seconds. In normal infants, swallowing behavior is dominant to 

respiration in order to protect the airway from aspiration, and respiration is paused for about 0.5-1.5 

seconds during swallowing (Barlow, 2009). At this rate of respiration, it would have been very difficult, if 

not impossible, for her to fit a safe swallow in between breaths. Since she was hypoxic at rest, she may 

have been less able to tolerate a decrease in respiration during feeding than infants who are normally 

oxygenated at the start of feeding. RR does not give any indication of how safely the infant is breathing 

during feeding and it may have been that her need to breathe was so great that she did so during feeding 

despite the risk for aspiration. The coordination of sucking, swallowing, and breathing is controlled by a 

complex system of interacting nervous system networks that are dependent on sensory experiences to 

facilitate pattern development (Barlow, 2009). Given that this infant was intubated for the first 24 days of 

life, she had been deprived of early oral sensory input that would have supported the development of 

these patterns for safe swallowing and breathing.  

There were limitations to the respiration data, however, and these results should be interpreted 

with caution. Respiratory rate was evaluated by chest movement using respiratory inductance 

plethysmography. Although a minimum change in chest movement was used to identify a respiratory 

cycle, this method did not identify a change in tidal volume. There may have been considerable 

alterations in minute ventilation due to interrupted or shallow breaths during feeding that were not 

identified. The reliability of RIP for measuring chest wall movements in infants who have undergone a 

median sternotomy and have the potential for increased pliability of the chest wall may warrant further 

investigation. 

Another limitation of the study was the time between study feedings, particularly between 

feedings 2 and 3. The effect of maturation and history could have been limited by performing all three 

study feedings in one day, but the research team and clinical staff were concerned that this would 

unnecessarily stress an already vulnerable baby. As a single case experiment, there are natural 

limitations to the study data, but this design allowed for close evaluation of this infant’s response to the 

different feeding conditions while considering the variable context of each feeding. 
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Conclusion 

 Although this was a single-subject experiment and the results cannot be assumed to reflect the 

feeding responses of all infants with HLHS, this study provides data that reflects what many clinicians 

have long observed- infants with HLHS can experience significant distress during feeding. This is the first 

extensive examination of the physiologic and behavioral responses of an infant with HLHS to the 

challenge of oral feeding. Despite the use of a very slow-flow nipple (Dr. Brown’s Preemie) for the slow-

flow feeding condition, this infant experienced significant distress during feeding. Feeding typically occurs 

every three hours in young infants and this degree of distress eight times a day is highly problematic for 

this fragile infant. Feeding interventions aimed at reducing physiologic and behavioral stress, preserving 

metabolic resources, and encouraging positive oral experiences are needed to support infants with 

HLHS, especially during the tumultuous time between stage 1 and stage 2 palliative procedures. 

 The results of this study suggest that future studies should consider testing an even slower flow 

nipple combined with additional supportive feeding interventions. A semi-elevated side-lying position has 

been found to support physiologic stability in infants born premature by slowing the movement of the 

bolus to the back of the oral cavity and reducing the work of breathing (Park, Thoyre, Knafl, Hodges, & 

Nix, 2014). In the population of infants with HLHS, a right side-lying position with the left vocal cord 

positioned up may be supportive for these same reasons as well as minimizing the risk of aspiration 

resulting from any malfunction of the left vocal cord; positioning the functioning right vocal cord down 

utilizes it for primary protection of the airway.  

A right side-lying position is easily attained during breastfeeding with the infant positioned in a 

cross-body/cradle hold while feeding from the left breast or a football hold when feeding from the right 

breast. Although there is evidence that breastfeeding may reduce the stress of feeding in preterm infants 

(Chen, Wang, Chang, & Chi, 2000; Meier, 1988) and infants with other types of congenital heart disease 

(Marino, O'Brien, & LoRe, 1995), clinicians continue to express concern about allowing infants with HLHS 

to feed at breast. Research needs to be done to evaluate whether these concerns are valid for this 

population. With the use of test weighing (Meier, Lysakowski, Engstrom, Kavanaugh, & Mangurten, 

1990), there should be no concern about ability to assess intake and there is the potential for highly 

significant benefits to both mother and baby with breastfeeding (Ip, et al., 2007). 
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Future studies also need to evaluate the coordination of sucking, swallowing, and breathing in 

this population of infants that have been deprived of early oral feeding experience. These infants may 

benefit from a co-regulatory approach to feeding with close evaluation by the feeder of sucking, 

swallowing, and breathing behavior (Thoyre, Holditch-Davis, Schwartz, Melendez Roman, & Nix, 2012). 

Using this approach, the feeder could cue the infant to rest (i.e., pacing) and recover before he or she 

becomes overtly distressed.  

The results of this study support the need for further investigation of the responses of infants with 

HLHS to oral feeding and the development of feeding methods to support these extremely fragile infants 

as they learn to feed orally and await further surgical intervention. Identifying methods to reduce 

physiologic and behavioral distress during feeding in these babies has the potential to facilitate recovery 

and growth, as well as prevent long-term neurodevelopmental and feeding difficulties. Feeding has been 

identified by parents of infants with CHD to be a source of stress (Medoff-Cooper, Naim, Torowicz, & 

Mott, 2010; Svavarsdottir & McCubbin, 1996). Emphasis should be placed on identifying feeding 

strategies that are simple, easily implemented by parents, and will reduce, not increase, parenting stress. 
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Table 3.1.  

Specific Measures 

Variable Measure 

Infant 
Characteristics 

Pregnancy and Birth History, Medical Course, Feeding Experience  

Feeding 
Description 

Feeding Duration, Nipple-In Duration, Milk Consumed, Milk Flow,  

Nasogastric Tube Presence, and Milk Type 

Behavioral 

Feeder Actions: Stimulating Sucking, Decreasing Milk Flow, Repositioning, Burping, 
and Pacifier 

Infant Behavior: Baseline: Movement and Behavioral State; Feeding: Coughing, 
Gagging, Engagement, and Behavioral Organization 

Physiologic HR, Sp02, and RR 

 
Note. HR = heart rate; Sp02 = oxygen saturation; RR = respiratory rate. 
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Table 3.2. 
 
Coding Scheme Descriptions of Behavioral State, Engagement, and Organization 
 

Category Description 

Behavioral State  

Cry/Fuss Infant is crying wholeheartedly or fussing (emits at least three brief fuss 
sounds during epoch). Infant is usually active. Eyes are usually closed. 

Alert Eyes are open and bright, and may be scanning. Motor activity is typically 
low, but the infant may be active. 

Drowse/Daze Eyes are “heavy-lidded” or “slit-like”, and occasionally opening and closing 
slowly or open but dazed. Motor activity is typically low, respiration is even. 

Sleep Eyes closed. Sporadic motor movements, but tone low between movements. 

Engagement  

Fully engaged Ready, participating in feeding; directing energy toward feeding; flexed 
arms/hands with observable tone; cues of readiness to continue feeding. 

Low engagement Low or no energy, as evidenced by loss of energy or low muscle tone; may 
still be sucking but passively/reflexively. 

Disengaged, avoiding Infant is directing energy away from feeding, using energy to move away from 
the nipple, pushing away, pulling away, turning away, extending arms 

Organization  

Organized behaviorally No indicators of disorganized behavior. 

Mild disorganization Mild indicators of disorganized behavior (e.g., slight eyebrow raise or eyelid 
flutter, splayed fingers or furrowed brow).  

Compelling 
disorganization 

Compelling indicators that the infant is actively trying to pull away from nipple, 
or extending fingers or arms, pushing nipple away, or flaccid. Behaviors may 
be isolated or occur along with eyebrow raise or eyelid flutter, furrowed brow. 

 
 
 

Table 3.3.  

Feeding Experience 

 Feeding 1 (Slow) Feeding 2 (Standard) Feeding 3 (Slow) 

Number of Oral Feeding 
Experiences 

117 124 149 

Oral Intake in Previous 
24 hours 

63% 61% 91% 

 
Note. Oral intake in previous 24 hours = percent of prescribed nutrition consumed orally in prior 24 hours. 
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Table 3.4. 

Feeding Description 

 Feeding 1 (Slow) Feeding 2 (Standard) Feeding 3 (Slow) 

Feeding Duration (mins) 21.2 13.7 15.5 

Nipple-In Duration (mins) 14.3 6.6 7.1 

Milk Consumed (mL) 40 40 35 

Milk Flow (mL/min) 2.8 6.1 4.9 

Nasogastric Tube Present Yes No No 

 
Note. Feeding duration = time from first nipple-in to last nipple-out. Nipple-in duration = time the nipple 
was in the infant’s mouth. Milk Flow = Milk Consumed/Nipple-In duration. Mins = minutes. mL = milliliters.  
 
 
Table 3.5. 

Feeder Actions 

 Feeding 1 (Slow) Feeding 2 (Standard) Feeding 3 (Slow) 

Stimulating Sucking (No.) 4 3 2 

Decreasing Milk Flow (No.) 1 0 3 

Repositioning (No.) 4 6 1 

Burping (secs) 118.2 104.5 241.3 

Pacifier (secs) 25.8 50.9 144.5 

 
Note. The variables stimulating sucking, decreasing milk flow, and repositioning were calculated during 
the nipple-in period and are given in number of events. Burping and pacifier durations were calculated 
during the entire feeding period and are given in seconds. No. = Number. Secs = seconds. 
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Table 3.6. 

Behavioral Outcomes During Feeding 

 Feeding 1 (Slow) Feeding 2 (Standard) Feeding 3 (Slow) 

Distress Behaviors    

Coughing    

Number of Events 7 2 1 

Duration (secs) 50.5 15.2 1.13 

Gagging    

Number of Events 1 4 0 

Duration (secs) 2.2 12.7 0 

Engagement    

Full Engagement 91.6 % 96.0% 44.8% 

Low Engagement 0% 0% 0% 

Disengaged, Avoiding 8.4% 4% 55.2% 

Organization    

Organized 4.8% 29.3% 0% 

Mild Disorganization 89.7% 68.8% 52.1% 

Compelling Disorganization 5.5% 1.9% 47.9% 

 
Note. Distress behaviors were evaluated during the entire feeding period, including time when the nipple 
was not in the infant’s mouth. Engagement and organization was evaluated only during nipple-in periods. 
Secs = seconds. 
 
 
Table 3.7. 

Heart Rate Indices 

 Feeding 1 (Slow) Feeding 2 (Standard) Feeding 3 (Slow) 

 Base Feed Recover Base Feed Recover Base Feed Recover 

HR (bpm)   
 

  
 

   

Mean  167.9 172.9 162.6 156.6 166.6 152.8 146.6 156.8 142.8 

Minimum 161.3 149.6 127.7 150.8 152.3 127.1 137.3 141.8 127.9 

Maximum 172.9 194.2 176.5 162.6 191.1 170.5 152.7 172.9 156.3 

Change from Baseline  4.9 -5.3  9.8 -3.9  10.2 -3.8 

CV 0.010 0.023 0.026 0.013 0.018 0.025 0.019 0.027 0.024 

 
Note. Mean values for HR were calculated as a true mean of the entire baseline, feeding, and recovery 
periods. HR = heart rate. Bpm = beats per minute. Base = baseline. Feed = feeding. Recover = recovery. 
CV = coefficient of variation (standard deviation/mean).  
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Table 3.8.  

Physiologic Changes During Feeding by Flow Condition 

 
Slow Standard p 

HR (bpm) 166.2 166.6 0.01* 

Sp02 (%) 86.3 83.5 0.1** 

RR (breaths/min) 72.1 71.5 0.09* 

 
Note. Linear Mixed Modeling was used to analyze the physiologic variables during feeding, covaried on 
baseline values. Results were grouped by flow condition (slow vs. standard). HR = heart rate; bpm = 
beats per minute. Sp02 = oxygen saturation; RR = respiratory rate; Min = minute. 
* p < 0.1. ** p < 0.2.  
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Table 3.9. 

Respiratory Indices 

 Feeding 1 (Slow) Feeding 2 (Standard) Feeding 3 (Slow) 

 Base Feed Recover Base Feed Recover Base Feed Recover 

Sp02 (%)          

Mean 83.8 87.7 84.8 86.0 83.5 82.8 84.4 84.4 79.9 

Minimum 81.8 70.7 71.0  77.8 70.7  70.9  79 62.8  71.8  

Maximum 87.7 98.6 92.7 94.6 91.6 89.8 88.5 91.6 87.2 

Change from Baseline  3.76 0.96  -3.28 -3.18  0.03 -4.53 

CV 0.014 0.057 0.041 0.030 0.058 0.028 0.018 0.059 0.030 

Sp02 Events  

(No.( % of feeding)) 
   

Sp02 > 93%  3 (8.0%) 0 (0%) 0 (0%) 

Sp02 89-92.9%  11 (28.7%) 2 (3.6%) 11 (11.2%) 

Sp02 76-80.9% 7 (5.8%) 7 (7.1%) 8 (10.8%) 

Sp02 <76% 3 (2.3%) 1 (2.3%) 3 (4.7%) 

RR (breaths/min)          

Mean  64.0 68.4 69.1 53.0 71.5 53.7 72.2 75.8 71.9 

Minimum  54 31 56 47 62 47 68 66 65.5 

Maximum 74 82 76 64 83 67 76 76 82 

Change from Baseline   4.4 5.1  18.5 0.7  3.6 -0.2 

Apnea (Frequency) 2 1 5 3 0 8 0 0 1 

 
Note. Sp02 events are given in number of events and percent of the feeding. Two events had to be 
separated by at least 5 seconds of data within the range of +/- 5% (81-88.9%) to be considered separate. 
The most extreme value for Sp02 during the event was used for calculating the number of events. Apnea 
was defined as ≥ 3 seconds between breaths. Sp02 = oxygen saturation given in percent. No. = number. 
Base = baseline. Feed = feeding. Recover = recovery. Min = minute. CV = coefficient of variation 
(standard deviation/mean).  
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Figure 3.1. Illustration of post-surgical cardiac anatomy of Baby G. Deoxygenated blood returning from 
the body to the right atrium (RA) is indicated in blue. Oxygenated blood returning from the lungs to the left 
atrium (LA) is indicated in red and moves in two directions: 1) across the atrial septum and 2) to the 
hypoplastic left ventricle (LV) where it exits the aortic valve. There is mixing of blood in the RA. Mixed 
blood is indicated in purple and can be seen exiting the right ventricle (RV) in two directions: 1) via the 
RV-pulmonary artery (RV-PA) conduit to the lungs and 2) via the proximal pulmonary artery, which has 
been surgically connected to the aorta (Ao), to the body. Drawing courtesy of Britt Pados. 
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Figure 3.2. Heart Rate (bpm) plotted every 1 minute during baseline (6 minutes) and feeding (indicated in 
grey), and every 2 minutes during recovery (30 minutes). Quadratic regression equations- Feeding 1 
(Slow): y= -0.02x2 + 0.70x + 167.01 (R2=0.60); Feeding 2 (Standard): y= -0.03x2 + 0.92x +157.07 
(R2=0.71); Feeding 3 (Slow): y= -0.04x2 + 1.41x + 143.67 (R2=0.75). bpm = beats per minute. 
 
 

 
 
Figure 3.3. Sp02 plotted every 1 minute during baseline (6 minutes) and feeding (in grey), and every 2 
minutes during recovery (30 minutes). Quadratic regression equations: Feeding 1 (Slow): y= -0.01x2 + 
0.38x + 83.61 (R2=0.11); Feeding 2 (Standard): y= 0.004x2 + 0.30x + 86.94 (R2=0.28); Feeding 3 (Slow): 
y=0.0003x2 – 0.18x +86.38 (R2=0.40). Sp02 = oxygen saturation. 
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Figure 3.4. RR (breaths/min) plotted every 1 minute during baseline (6 minutes) and nipple-in periods of 
feeding (in grey), and every 2 minutes during recovery (30 minutes). Quadratic regression equations- 
Feeding 1 (Slow): y= 0.004x2 + 0.03x + 65.89 (R2= 0.03); Feeding 2 (Standard): y= -0.08x2 + 2.55x + 
48.61 (R2=0.57); Feeding 3 (Slow): y= -0.02x2 + 0.63x + 71.08 (R2=0.19). RR = respiratory rate. 
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APPENDIX 3.1: STUDY FEEDING PROTOCOL 

Pre-Feeding Preparation: 

1. Swaddle infant with hips and shoulder girdles supported in flexed position and lower arms free to 

move. 

2. Hold infant en face supported at shoulders with blanket and feeders’ hands. 

3. Hold infant in a flexed body position (shoulders adducted, hips and knees flexed). 

4. Provide minimal movement of the infant’s body. 

5. Speak softly to the infant to bring infant to an alert state.  

Feeding Strategies: 

1. Hold infant in left arm supported at the shoulders. 

2. Hold infant in a flexed body position. 

3. Hold infant in a head elevated position at 45 degrees. 

4. Provide minimal movement of the infant’s body. 

5. Avoid prodding of the nipple to encourage sucking. 

6. Avoid increasing milk flow from the nipple by manipulating the nipple in any way. 

7. Place nipple in infant’s mouth when he/she displays cues of readiness to feed, including opening 

mouth and lowering tongue on presentation of nipple. 

8. If infant displays signs of physiologic distress, defined as tachycardia (HR>200 beats/min), 

bradycardia (HR < 80 beats/min) or a decrease in Sa02 by more than 10% from baseline, remove 

the bottle and allow recovery period. Reinitiate feeding when the infant is physiologically stable 

and displays cues of readiness to feed. 

9. If infant is no longer engaged in the feeding, remove the bottle and burp if needed. Reinitiate 

feeding when the infant displays cues of readiness to feed. 

10. Discontinue feeding if the infant has taken the prescribed amount or if 30 minutes have elapsed 

from the first time the bottle was placed in the infant’s mouth. 
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APPENDIX 3.2: PROTOCOL FOR DATA COLLECTION  

This protocol was created by Jinhee Park on 6/27/2011 and modified for the purposes of this study by 
Britt Pados on 10/10/2012. 
 
Prior to Arriving at Infant’s Bedside: 

• Check everything that belongs on the feeding cart (use the checklist). 

• Turn on the Lenovo computer and select ‘computer only log on’ (enter ID and password). 

• Turn on the BioNex Chassis and all the equipment and open the BioLab 3.0.10 icon.  

• Open the BioLab 3.0.10. 

• Open the configuration file (Diss_config_file.mwcfg) that was previously set up and saved in the D
issertation folder on the desktop. 

• Check the settings of the equipment according to the Protocol for Preparation of the Data Collecti
on Cart. 

• Check the settings of the configuration window: 
  

General settings  
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Channel setting 

 

 

Scale setting for Sp02 channel 
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Audio/Video Setting 

 

Trending setting 

 

• Exit the BioLab program. 

• Shut down the all equipment and computer. 

• Disconnect the pulse oximeter sensor, transducer, respiration band, ECG leads, and microphone 
from the equipment and put them back into the first drawer. 

• Fold the camera up inside the room under the top of the cart. 
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At the Infant’s Bedside: 

• Make environment is as quiet as possible (Pull the curtain down, Dim the lights, etc.) 

• Connect the cables to the BioNex Chassis and to the equipment  

• Turn the computer on (The receiver of wireless mouse must be unplugged from the USB port bef
ore you turn on the computer). 

• Turn on the power of the BioNex Chassis and all equipment (Pulse oximeter, Microphone, ECG, 
Ambu Sleepmate, and camera) 

• Open BioLab 3.0.6. 

• Open the configuration file (Diss_config_file.mwcfg) that previously set up and saved in the Disse
rtation folder on the desktop. 

• Put sensors on the baby  
� Pulse oximeter: Place pulse oximeter sensor on the infant’s left foot and secure with              

additional placement wrap. 
� ECG: place electrodes on the infant’s chest as below. Note. Do not remove the infant’s own  

electrodes if he/she has them, but you can move them if needed. 
� Skin conductance ECG: Place electrodes on the infant’s foot and ankle as shown below. 
  

 

 

� Respiration: Place respiratory band around the infant’s chest at nipple level on the top of  the 
infant’s clothes.  

� Microphone: Place the mic on the infant’s mid neck at the suprasternal notch with double-side
d tape and secure with a hydrogel tape.  

• Make sure the signals are all good before the infant is settled. 

• Let all instruments warm up 30 min 
 

Baseline data collection: 

• Begin to record after completion of the feeding prior to the first study feeding (When recording,    
you can see green light on the right bottom) 
� Click AQUIRE on the bottom of the configuration window 

• Enter the random, 5-digit subject ID in Britt’s dissertation folder  

• Hit START/STOP button on the upper left of the BioLab acquisition screen to start recording. 

• Video camera should be collecting a picture of the infant’s entire body. Hit record button on the    
video camera. 
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• Send the analog out calibration signals from the Masimo to the BioNex Chassis.  

� Pulse wave: Hit menu , select ‘output’, and set ‘Analog 1’ to ‘0V Signal’. Verify that the Bio
Lab shows a voltage of approximately 0V on pulse wave channel. Set ‘Analog 1’ to ‘1V Signal
’ and then verify that the BioLab shows a voltage of approximately 1V on pulse wave channel. 

� Hit menu , select ‘output’, and set ‘Analog 2’ to ‘0V Signal’. Verify that that the BioLab sho
ws an approximately 0% of Sp02 on the second channel. Set ‘Analog 2’ to ‘1V       Signal’ and
 then verify that the BioLab shows approximately 100% of Sp02 on the second channel. 
 

• Continue to record until the infant wakes for the feeding after data collection is complete. 

• Monitor the quality of data signals in each channel. If the signal is lost or has too much noise, PI  
should be informed. 
 
� Pulse wave & EKG 

Normal EKG signal: regular R-R interval 

 

It usually comes with regular pulse wave form. 

 

 

When the baby is moving, EKG can be disturbed a bit. 
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If the signal goes flat or has irregular waveform for few seconds, report this to PI. 

 

 

 

� SaO2: The signals on the Masimo and the BioLab need to be corresponding to each       othe
r. Note: The alarm of the Masimo will be indicated only by the symbol of alarm           flashing.
 Please let PI know if alarm is flashing. 

 

 

� Swallowing 

 

 

� Respiration 

 

 

Data collection during feeding: 

• When the infant wakes up for feeding, routine nursery care will be provided by his/her    assigned 
nurse or parent. 

• Weigh infant in clothing and diaper in which he/she will be fed. 

• Swaddle the infant. 

• Proceed with feeding according to predetermined feeding order. Video camera angle will need to 
be adjusted for feeding position to capture the infant from the waist up. 

• Write a memo when significant events occur using Journal (F12) of the BioLab program. 
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• When feeding is determined to be finished, record the length of feeding time. 

• Weigh infant in same clothing and diaper as prior to feeding. 

• Post feeding nursery care will be provided by nurse and/or parent and infant will be placed supine
 in crib or held by family member. Pacifier may be offered as necessary. 

 

Data collection after feeding 

• All equipment is to remain on the infant and the physiologic data collection continues. 

• The video camera should be repositioned to capture the infant’s entire body in the crib and video 
recording begun. 

 

After Data collection 

• Shut down all equipment, computer, and BioNex Chassis. 

• Gently remove all monitoring equipment. 

• Wipe down all cables and monitoring equipment as it is put away from the baby and put it back int
o the drawer in the physiologic cart. Note: Put the equipment that requires cleaning into the zip ba
g (e.g., microphone, resp. band). 

• Wash bottle and nipple used for study according to unit standard of practice. 

• Clean up all the equipment or throw away if it is disposable. 
 
<Pulse oximeter sensor and cable> 

� Wash the light blue band. 
� Wipe down the black band and the crystal sensor with alcohol swab or disinfectant wipes. 
 
<Respiration band> 

� Wash the light blue band. 
� Wipe down the black band and the crystal sensor with alcohol swab or disinfectant wipes. 
 
<Others> 

� Wipe down other equipment with alcohol swab or disinfectant wipes. 
 

• Back up the data on an encrypted, password-protected external hard drive and lock in filing   cabi
net. 
 

• Download the trend data from the Masimo Radical-7 pulse co-oximeter. 

� Assure that the Radical-7 serial output mode is set to “ASCII2” (MENU <OUPUT) 
� Open Trendcom software on the computer. 
� Under the ‘instrument’ menu in Trendcom, select ‘Radical-7 (V7619 or greater)’. 
� Under the ‘COM Port’ menu, select ‘COM5’. 
� Click on ‘Retrieve Trend’. The following message may appear: “please make sure the Radical

 is set to ASCII2 output mode” and click OK. 
� Name the file. 
� Save the file to the appropriate folder. 
� You will have date, time, Sp02, pulse rate and perfusion index (PI) every 2 seconds that  is s

ame as averaging rate you set. 
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• Download the video files from the Panasonic HDC-TM700 if you need a high resolution AVCHD vi
deo file. 
� Assure that HD Writer AE 2.1 is installed in the computer. 
� Connect the video camera to the computer with the USB cable. 
� Turn the video camera on. 
� Open HD Writer AE 2.1. 
� Click ‘Copy to PC’< ‘Video Camera (E)’< ‘Next’. 
� Select the video file what you want to download. 
� Assign the folder and name the file. 
� Click ‘Execute’. 

 

• After downloading the video files, format built-in memory on the Panasonic camera 
� MENU<SETUP<FORMAT MEDIA<BUILT-IN MEMORY. 
� When formatting is complete, touch ‘EXIT’ to exit the message screen. 

 

 

 

  



 
 

APPENDIX 3.3: OBSERVATIONAL CODING SCHEME 

Code Class and Codes Description 

1.0 Structure of the Feeding  
Mutually exclusive/continuous 
codes: 
1.1 Nipple in  

 
1.2 Nipple out   
 
 
1.3 Non-feeding   

 
 
 
Fully seated nipple 

 
Code when entire nipple is visible as outside the infant’s lips/outside the mouth (visualize nipple tip); can 
be resting on outside of lips. 
 
Default code at start of coding session.  Nipple is not in, no feeding.  

2.0 Caregiver Feeding Actions  
Mutually exclusive/continuous 
codes: 
2.1 No nipple in    
 
2.2 Nipple held still 
 
 
 
 
2.3 Increase intraoral stimulus 
to suck 
 
 
 
 
 
 
 
 
 
 
2.4 Decrease milk flow by 

moving nipple  
 
 

2.5 Unsure/unable to determine 

 
 
 
Default code at start of coding session.  
 
Nipple in neutral position; no or minimal or brief movement of the nipple in the infant’s mouth; other than 
the very first code when nipple in, if nipple held still is 1 second or less it is considered increase intraoral 
stimulus to suck (e.g., decrease milk flow – up for less than one second and then decrease again, the up 
is considered stim) 
 
Movement of the nipple that may stimulate a suck; intention is not assumed; the feeder may be adjusting 
the nipple to hold the bottle better or to seat the nipple on the tongue better, may occur in the process of 
checking to see if the infant is drooling, or trying to arouse the infant or to stimulate the infant to engage in 
sucking by moving the nipple; from the infant’s perspective, the nipple has moved in the mouth and this 
reflexively may stimulate sucking; it may also cause fluid to drip into the mouth placing a demand on the 
infant to manage the fluid; has the effect of increasing the stimulus of the nipple; if less than 5 seconds 
between increase oral stimulus events in the absence of  decrease milk flow, increase intraoral stimulus 
stays on.  For breast feeding, this could include mom moving her breast tissue sufficient to have the 
potential of stimulating the suck, making an airspace for the infant’s nose may or may not be sufficient to 
stimulate the suck – i.e., it can be done without stimulating the suck (e.g., moving the nipple shield away 
from the infant’s nose); mom positioning infant for the latch is not stimulating suck 
 
Moving nipple down, back, or to the side – has the effect of decreasing the milk flow or of milk in the 
nipple; code nipple still when nipple is moved back to the neutral position; may include stimulation but flow 
is not available so decrease milk flow is the correct code 
 
 

7
8

 



 
 

3.0 Vestibular Stimulation 
Mutually exclusive/continuous 
codes: 
3.1 Non-feeding vestibular 
 
3.2 No vestibular stimulation 
 
3.3 Infant moved in space, 

rhythmically 
 
3.4 Repositioned 
 
 
 
3.5 Unsure/unable to determine 

vestibular 

* The video was focused on the infant; this may be difficult to code. 
 
 
Default code at start of coding session.  
 
 
 
Infant rocked or bounced; moved in space; has more than an event quality; has some repetitive, 
rhythmical quality; turned off if stimulus from reposition occurs. 
 
Pillow placed under baby; position adjusted; maternal or infant movement that is time limited and brings 
infant essentially back to same position (not more upright, not more flat/back). Goes back to no vestibular 
right away after adjustment. 

 
 
 

4.0 Infant Engagement: 
Mutually exclusive/continuous 
codes: 
4.1 Non-feeding engagement 
 
4.2 Fully engaged 
 
 
 
4.3 Low engagement 

 
 

4.4 Disengaged, avoiding 
 
 
4.5 Unsure/unable to determine  

 
 
 
Default code at start of coding session.  
 
Ready, participating in the feeding; engaged, directing energy toward feeding, bringing energy to the 
feeding; flexed arms/hands with observable motor tone; observable cues of readiness to continue feeding; 
may bring body toward feeding position – midline, flexed 

 
Low or no energy, as evidenced by loss of energy or low muscle tone; may still be sucking but 
passively/reflexively 

 
Observable indicators that the infant is directing energy away from feeding, using energy to move away 
from the nipple, pushing away, pulling away, turning away, extending arms 
 
 
 
 
As all categories, more than 5 seconds apart from each other to count as a new state. 
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5.0 Infant Behavioral Organization 
Mutually exclusive/continuous 
codes*: 
5.1 Non-feeding organization 
 
5.2 Organized behaviorally 
 
5.3 Mild cues of 
disorganization 
 
5.4 Compelling cues of 
disorganization 

 
 
 

5.5 Unsure/unable to determine 

 
 
 
Default code at start of coding session.  
 
No indicators of disorganized behavior 
 
Mild indicators of disorganized behavior, e.g., slight eyebrow raise or eyelid flutter (not due to social 
initiative), splayed fingers or furrowed brow.  
 
Compelling Indicators that the infant is actively trying to pull away from nipple, or extending fingers or 
arms, pushing nipple away. These behaviors may be isolated or may occur along with eyebrow raise or 
eyelid flutter, furrowed brow. May be flaccid. 
More than 5 seconds apart from each other to count as a new state. 
 
 

6.0 Activity Level 
Mutually exclusive/continuous 
codes*: 
6.1 No movement 

 
6.2 Movement  

 
6.3 Unsure 

 
 
 
No movement of any part of infant except for eyes and small, slow movements of face. 
 
Movement of any part of body except eyes and face. 
 
Unable to determine activity level. 

7.0 Behavioral state 
Interval codes every 10 seconds 

 

7.1 Cry/Fuss The infant is crying wholeheartedly or fussing (emits at least three brief fuss sounds during epoch). The 
infant is usually active. The eyes are usually closed during crying. 
 

7.2 Active Waking The infant’s eyes are usually open, dull and unfocused. Motor activity varies but is typically high. During 
periods of high-level activity the eyes may close. 
 

7.3 Alert The infant’s eyes are open and bright, and may be scanning. Motor activity is typically low, but the infant 
may be active. 
 

7.4 Drowse/Daze The infant’s eyes are “heavy-lidded” or “slit-like”, and occasionally opening and closing slowly OR open 
but dazed in appearance. The level of motor activity is typically low and respiration is fairly even. 
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7.5 Sleep-Wake Transition The infant shows behaviors of both wakefulness and sleep. There is generalized motor activity (usually 
this movement involves trunk), and although the eyes are typically closed, there may be rapid opening and 
closing of the eyes. Brief fussy vocalizations may occur.  

Note. Generally 4 epochs (40 seconds) of continuous activity without REMs in the middle of sleep are 
scored sleep-wake transition.  

Exception of 40 seconds rule.  

• If the infant is disturbed by the caregiver while the camera angle is blocked and the infant was 
moving after the camera was back on, then S-W transition could be coded for less than 40 
seconds by counting the period when the camera angle was blocked (we assume during that 
period, the infant was in movement). 

• In the middle of waking, S-W transition could occur for less than 40 seconds. 
 

7.6 Active Sleep The infant’s eyes are closed (may not be fully closed with REM observed). Respiration is uneven and 
primarily costal in nature. Sporadic motor movements occur, but muscle tone is low between these 
movements. REMs occur intermittently in this state. 
 

7.7 Quiet Sleep The infant’s eyes are closed. Respiration is relatively slow and is abdominal in nature. A tonic level of 
motor tone (i.e., has some tone, not lethargic) is maintained, and motor activity is limited to occasional 
startles, sigh sobs, or other brief discharges. 

*To code as Quiet sleep, this state should stay at least for 1 minute (60 seconds) 

Note. Generally 2 epochs (20 seconds) of continuous movement when transitioning from quiet sleep are 
scored active sleep. 

 
7.8 Unclassified Sleep 

 
The infant is asleep but the video is not clear enough to distinguish specific sleep states (active vs. quite 
sleep). 
 

7.9 Unscorable States  Scored whenever the video is not clear enough to score states, e.g., the caregiver is blocking the camera 
angle. 
 

8.0 Caregiver Activity 
Mutually exclusive/continuous 
codes* 

 

8.1 No burping Default code at start of coding session. Caregiver is not burping infant. 
 

8.2 Burping Caregiver is burping infant. Code from beginning of patting to end of patting. 
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9.0 Infant Behavior 
Mutually exclusive/continuous 
codes* 

 

9.1 None 
 

Default code at start of coding session. Infant is not coughing, gagging, or stooling. 

9.2 Coughing 
 

The infant is coughing. Code from first sound of cough to last sound of cough. 

9.3 Gagging The infant is gagging, retching, or heaving. There may or may not be sound associated with the gag. 
Infant may thrust tongue, move the body or head as if to vomit, but without obvious expulsion of fluid. 
 

9.4 Stooling The infant shows behaviors related to stooling, including bearing down.  

10.0  Pacifier Use 
Mutually exclusive/continuous 
codes* 

 

10.1  No pacifier 
 

No pacifier is in the infant’s mouth. When pacifier is removed, code “no pacifier” when the entire nipple of 
the pacifier can be seen. 
 

10.2 Pacifier A pacifier is in the infant’s mouth. Code from when the pacifier is fully seated in the infant’s mouth. 

11.0  Sa02  
Mutually exclusive/continuous 
codes* 

 

11.1    >93% Oxygen saturation greater than 93% (>10 increase above baseline). 
 

11.2    89-93% Oxygen saturation 89-93% (5-10% increase above baseline). 
 

11.3    81-88.9% Oxygen saturation 81-88.9% (within +/- 5% of baseline). 
 

11.4    76-80.9% Oxygen saturation 76-80.9% (5-10% decrease below baseline). 
 

11.5    <76% Oxygen saturation < 76% (> 10% decrease below baseline). 
 

11.6    Artifact Oxygen saturation reading is not reliable. 
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Independent variables selected at the end of the observation: 

Shoulder Position 1) Most of the time  
2) Some of the time  
3) Rare or none of the time 
4) Unable to determine 

Shoulders flexed toward midline (either due to how the infant is able to position self, 
how infant is being held, or by a blanket swaddle) 

Arm Position 1) Most of the time  
2) Some of the time  
3) Rare or none of the time 
4) Unable to determine 

Arms flexed toward midline (either due to how the infant is able to position self, how 
infant is being held, or by a blanket swaddle) 

Containment 
(predominantly) 

1) No blanket 
2) Blanket supporting lower body 
3) Blanket supporting arms in midline flexed position but shoulders extended 
4) Blanket supporting arms and shoulders in midline flexed position 

Trunk Position 
(predominantly) 

1) Supine  
2) Side-lying - full side-lying has ear, shoulder and hip toward ceiling 
3) In-between supine and side-lying 
4) Cradled – infant is held in the crook/elbow area of the mom’s arm 
5) Unable to determine 

Upright Versus Flat 
Trunk Position 
(predominantly) 

1) Upright/inclined (approximately 90 degrees) 
2) Semi-upright/inclined (approximately 45 degrees) 
3) Completely or nearly flat 
4) Unable to determine   

Midline Alignment of 
Head and Neck 
(predominantly) 

1) Most of the time  

2) Some of the time  

3) Rare or none of the time  

4) Unable to determine 

Chin and sternum in straight line/aligned; head and neck in midline alignment; head 
not tilted or rotated toward one of the shoulders 

Anterior/Posterior Neck 
Alignment 
(predominantly) 

1) Neutral neck - slight chin tuck; neck flexion, so that the chin is directed slightly downward and inward 
2) Extension backward (sniffing position) 
3) Flexion – moderate to excessive chin tuck 
4) Unable to determine 

8
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APPENDIX 3.4: RESPIRATORY DATA MANAGEMENT PROTOCOL 

This protocol was created by Dr. Jinhee Park and modified for the purposes of this study by Britt Pados.  
 
Definitions of Respiratory Variables 
 

• Respiratory rate: Number of peaks per minute. 

• Apnea: Pause in respiration lasting ≥ 3 seconds. 
 

 

A. Converting Biolab file (.mw) to an AcqKnowledge file (.acq)  
 

1. Open the file collected with the BioLab 3.1.0K.  
2. In the configuration window, cancel the channels except for respiration by clicking ON/OFF button 

on the left side of each channel. 
3. Click VIEW and you can see the respiration channel only. 
4. Click SAVE ALL TEXT to save the respiration channel as a text file. Save this with the same 

name plus _resp (i.e., xxxxx_resp.txt). 
5. Open the AcqKnowledge 4.2.  
6. Click FILE > OPEN and select the text file you saved from the BioLab program 
7. Put wave data start on the line (3), sample rate interval (1 millisecs), column delimiter (tab) when 

the window pops up to ask these. *Make sure the line data start by opening the text file with word 
pad 

8. Two channels will be opened: Channel 0 (Time) and Channel 1 (Respiration) 
9. Save this waveform file as xxxxx_resp.acq  

 
B.  Mark the peaks on the respiratory waveform 
 

1. File preparation 
a) Open the acqknowledge file (xxxxx_resp.acq) that converted from the BioLab. 
b) Take off the visibility of channel 0 on the screen by clicking channel icon with holding down 

ALT key in the upper part of graph display. 
c) When you see only channel 1(Respiration), duplicate the respiration channel on channel 2 to 

work on (EDIT<DUPLICATE WAVEFORM) 
d) Take off the visibility of original waveform and then you can only see the duplicated 

respiration channel on the channel 2. 
e) Filter the waveform to adjust the file adequately to mark peaks and troughs 

(TRANSFORM<DIGITAL FILTER<FIR<HIGH PASS) and fix the frequency cutoff at “0.5” Hz 
then click OK. Make sure if the frequency cutoff is too high, the peak will be flattened.  

f) Smooth the waveform to remove noisy points on the waveform 
(TRANSFORM<SMOOTHING) 
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g) In the field for smoothing factor, put the number that multiply 0.1 by the sample rate of the 
waveform (i.e., sampling rate * 0.1=1000*0.1=100) and choose mean value and transform 
entire waveform. 

h) Resample the waveform to appropriate rate for respiration. It would be recommended to use 
the number that multiply maximum signal of respiration of infant with CHD by 4 (i.e., 80 per 
minute * 4 = 320). So, resample to 500. (TRANSFORM<RESAMPLE WAVEFORM) 

i) Duplicate channel 2 to now mark peaks in channel 3. Take off visibility of channel 2. 
 

2. Mark the peaks  

a. Run cycle detector (ANALYSIS<FIND CYCLE or Click  on the toolbar). Set up the dialog 
box as the below. Make sure the cursor need to be at the beginning of the waveform before 
running cycle detector. Do not hit OK or Enter. Proceed to the Selection Tab. 

 

 
Note.  

You can move cursor or make selection on the waveform using I-beam tool  on the toolbar. 

You can autoscale the waveform vertically using  on the toolbar. 

You can autoscale the waveform vertically using  on the toolbar. 
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b. Next, choose the selection tab and set it up as below. 
 

 
 

c. Then, click “PREVIEW” to see if the peaks are captured adequately. Play with the data until a 
majority of peaks are captured by adjusting threshold. 
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d. When you are satisfied with the peaks captured, select the output tab and set it up as below. 
 

 
 

e. Select “Find All Cycles.” Then, you can see the arrow marked on the waveform.  
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3. Clean Artifact: Clean artifacts by removing and adding marks manually.  

a) To remove a mark, click event zap tool and put the cursor on the mark you want to 
remove and click. To add a mark, the first time you insert a mark, you need to move the 
cursor onto the waveform and right click. Go to Assign Current Event Type � Notes � 

Medium Arrow. To insert a mark click   
 

b) Rules for Marking Peaks on Respiratory Waveforms: 

Definition of Peak = The point of maximum chest circumference, between inspiration and 
expiration. 

 
i. Determine minimum voltage change of an adequate breath: Identify period of stable, 

regular breathing within the baseline period prior to the feeding.  The waveform should look 
similar to this: 

 
 

ii. Calculate the mean voltage change associated with each breath. To calculate voltage 

change, use the I-beam tool  and select the area from the trough to the peak. Use 
the calculate features at the top to select channel 3, P-P (peak to peak) and the voltage 
change will appear in the box. 

 

 
 

iii. Calculate the mean voltage from 5 regular breaths. Calculate 20% of this mean and 
this will be the minimum voltage change necessary for a peak to be considered an 
adequate breath. The breath must meet this minimum voltage change prior to and 
after the peak in order to be considered as having met an adequate respiratory cycle 
of inhalation and exhalation. 
 

iv. Note these common variations in the respiratory waveform: 
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Gasp or big breaths: mark as a valid breath because it is also a respiratory effort to achieve oxygen. 

 
 
Breaths with double peaks  

If both peaks meet the minimum required voltage change prior to and after the peak, then mark both 
breaths. If not, mark only the highest peak. Below, the is an example on the left of a breath where 
there is not a complete exhale before the next inhale (the trough does not return all the way down to 
where the prior inhale started), but there was adequate voltage change before and after the peak to 
be considered a breath. On the right, this would be considered an interrupted exhale; there is not a 
significant voltage change associated with an inhale to be considered a breath. 

 
 

 
Respiratory Pause 
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C. Create Excel File: 

1. Next, click the event palette tool  in the top right corner or go DISPLAY<SHOW<EVENT 
PALETTE. Set up the event palette as below. Next, select “Summarize in Journal…” and 
select “yes” when the program asks if you want to create a journal. 

 

 
 
 

2. An Event Journal Summary box will pop up. Set it up as below and choose OK. 
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3. The Event Summary Journal will appear under the waveform. Click on the “Save” Icon. 
 

 
 

4. Select the location you want to save the file to. Name the file (e.g., 
F1_B_resp_eventsummary) and save as type “Excel Spreadsheet.” 

 
5. Copy all data from sheet 1 into sheet 2. Name sheet 2 “MW Time.” 

 
6. In sheet 2, delete the first row that contains “Event Summary” and delete columns A (Index), 

C (Type), D (Channel), and E (Label). 
 

7. Rename what is now column A “Time” to “ACQ Time”. Name column B “ACQ Time Number 
Only” and “column C “MW Time.” 

 
8. Copy the data from column A into column B. 

 
9. Select the data in column B and click “Find & Select” � Replace � Find what: sec / Replace 

with: (leave blank). Select “Replace All.” 
 

10. Repeat this last step, but now Replace � Find what: min / Replace with: (leave blank). Select 
“Replace All.” Close this box. 

 
11. In Column C (MW Time) create a formula so that the data in column C is equal to the data 

from column B if the data was in seconds (refer to column A). Starting with the row of data 
that is in mins in column A, create a formula in column C = column B * 60. This will convert 
the minute data into seconds.  

 
12. The database should now look like this in sheet 2: 

 

 
 

13. Now, select the data segment(s) that you are interested in and copy to a new sheet. The 
analysis for baseline and recovery periods is slightly different than the feeding periods. 
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For feeding periods: 
 

Name sheet 3 “Nipple Ins Cleaned.” In sheet 3, name column A “MW Time”, name column B 
“Peak Times” and name column C “Interval.” Copy the data from column A into column B so that 
column B “Count” contains each event’s MW Time. The data in column B will be used to calculate 
RR as the number of events per minute.  

 
After the event times are copied to column B, then add to column A:  
1) the MW time that corresponds to the either the start of baseline/recovery or the nipple-in time.  
2) the MW time that corresponds to the end of the baseline/recovery period or the nipple-out time.  

 
Create a formula in column C to calculate the interval between peaks. The interval data is not 
specific enough to report interval data, but will be used to identify pauses > 3 seconds. 

 
For baseline & recovery periods: 

  
Name sheet 3 to describe the data segment that is contained in the sheet (e.g., 510-870 
Cleaned).  

 
 
D. CLEAN DATA & CALCULATE RR & APNEAS 
 

1. In sheet 3, select data in column C (Interval) � Conditional Formatting � Highlight Cells � 
Equal to � enter “0” 

 
2. Delete the rows of data that accompany an interval of “0.” Your data is now clean.  

 
a. For baseline and recovery periods, create columns for Epoch, MW Start Time, count, 

MeanRR, MinRR, MaxRR, and apnea. The database should look like this: 
 

 
 
 

b. For feeding periods, create columns for epoch, MW Time, duration, behavior, count, 
MeanRR, MinRR, MaxRR, and apnea. The database should look like this: 
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c. Set up formulas to calculate the variables:  
Count – use the “count” function and select an epoch of data (1 min for baseline, nipple-

in epoch for feeding, or 2 min for baseline) 

MeanRR – divide the Count column by the Duration of the epoch (use the duration 

column for feeding periods) 

MinRR- calculate min value for the RR value of all feeding epochs. 

MaxRR-calculate the max value for RR for all feeding epochs. 

Apnea – identify the number of pauses > 3 seconds. For any apnea identified, review the 

acq file to confirm. 

 
 



 
 

 
 

APPENDIX 3.5: LINEAR MIXED MODELING ANALYSIS OF CHAPTER 3 DATA 

Linear mixed modeling (LMM) was used to analyze these repeated-measures physiologic data. The variable name is denoted in square 

brackets. The effects of flow (slow-flow vs. standard-flow) [FLOW] on the outcome measures described below were evaluated using appropriate 

covariance structures to account for correlation within the same feeding [FDG] and within the same flow category [FLOW]. When appropriate, 

baseline values were used as a covariate in the model.  

For each dependent variable, a step-wise LMM analysis was done. The model tested, model problems, results, and AIC/BIC scores are 

tabled below. Decisions about variables included in the random effects models and fixed effects models are also described within each table. The 

results of the final model selected are presented and interpreted at the end of each table.  

A. Mean Heart Rate During Feeding [MeanFHR]: 

Model Model Problems Results 
AIC 
BIC 

The purpose of this analysis was to evaluate whether there was a difference between slow-flow and standard-flow feedings for the outcome 
variable mean heart rate during feeding [MeanFHR], taking into account correlation within the same feeding [FDG] and within flow category 
[FLOW], as well as covarying on baseline heart rate [MeanBHR]. MeanFHR was calculated every 1 minute during feeding. MeanBHR was 
calculated as a single measure for the entire 6 minute baseline period.  

The fixed effects model was determined first, starting with a full factorial model and then reducing in a step-wise fashion. 

*Model A1; 

proc mixed data=sv covtest method=ML; 

class id flow fdg; 

model meanFHR=flow|fdg/ solution; 

random intercept fdg meanBHR / subject=id v=1 vcorr=1; 

run; 

Overparameterized   

*Model A2; 

proc mixed data=sv covtest method=ML; 

class id flow fdg; 

model meanFHR=flow fdg/ solution; 

random intercept fdg meanBHR / subject=id v=1 vcorr=1; 

Overparameterized   
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run; 

*Model A3; 

proc mixed data=sv covtest method=ML; 

class id flow fdg; 

model meanFHR=flow/ solution; 

random intercept fdg meanBHR / subject=id v=1 vcorr=1; 

run; 

The model was able 
to estimate the fixed 
effect of flow, but was 
still 
overparameterized 
and not able to 
estimate covariance 
parameters. 

  

The simple fixed effects model with flow is most appropriate. Next, the random effects model was simplified. 

*Model A4; 
proc mixed data=sv covtest method=ML; 
class id flow fdg; 
model meanFHR=flow/ solution; 
random intercept fdg / subject=id v=1 vcorr=1; 

run; 

G matrix not positive 
definite. 

FLOW p=0.8294 257.9 
249.9 

*Model A5; 
proc mixed data=sv covtest method=ML; 
class id flow fdg; 
model meanFHR=flow/ solution; 
random intercept meanBHR / subject=id v=1 vcorr=1; 

run; 

G matrix not positive 
definite. 

FLOW p=0.0139 253.6 
245.6 

Model A5 with meanBHR as a covariate improved the AIC/BIC scores. Next, the random effects model with just intercept tested. 

*Model A6; 
proc mixed data=sv covtest method=ML; 
class id flow fdg; 
model meanFHR=flow/ solution; 
random intercept / subject=id v=1 vcorr=1; 
run; 

G matrix not positive 
definite. 

FLOW p=0.8599 339.8 
333.8 

Model A5 continues to have better AIC/BIC scores. MeanBHR contributes significantly to the model. Next, the model was tested without the 
random intercept. 

*Model A7; 
proc mixed data=sv covtest method=ML; 
class id flow fdg; 
model meanFHR=flow/ solution; 
random meanBHR / subject=id v=1 vcorr=1; 
run; 

G matrix not positive 
definite. 

FLOW p=0.8599 339.8 
333.8 

The most appropriate random effects model was with random intercept and meanBHR. Finally, the fixed effects model was retested with this 
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random effects model. 

*Model A8; 
proc mixed data=sv covtest method=ML; 
class id flow fdg; 
model meanFHR=flow|fdg/ solution; 
random intercept meanBHR / subject=id v=1 vcorr=1; 
run; 

Overparameterized   

*Model A9; 
proc mixed data=sv covtest method=ML; 
class id flow fdg; 
model meanFHR=flow fdg/ solution; 
random intercept meanBHR / subject=id v=1 vcorr=1; 
run; 

Overparameterized   

Model A9 was overparameterized. The model was then tested with fdg in the fixed effects model with a random intercept only. 

*Model A10; 
proc mixed data=sv covtest method=ML; 
class id flow fdg; 
model meanFHR=flow fdg/ solution; 
random intercept/ subject=id v=1 vcorr=1; 
run; 

Overparameterized   

*Model A11; 
proc mixed data=sv covtest method=ML; 
class id flow fdg; 
model meanFHR=flow meanBHR/ solution; 
random intercept meanBHR / subject=id v=1 vcorr=1; 
run; 

Overparameterized   

Model A11 was overparameterized. The model was then tested with only a random intercept. 

*Model A12; 
proc mixed data=sv covtest method=ML; 
class id flow fdg; 
model meanFHR=flow meanBHR/ solution; 
random intercept / subject=id v=1 vcorr=1; 
run; 

G matrix not positive 
definite. 

FLOW p=0.0128 
MeanBHR p<0.0001 

241.1 
233.1 

Model A12 had the best AIC/BIC scores. Next, a residual analysis was run to test for outliers. 

*A residual analysis was then run with Model A12;  
proc mixed data=sv covtest method=ML; 
class id flow fdg; 
model meanFHR=flow meanBHR/ solution outpm=residls vciry;; 
random intercept / subject=id v=1 vcorr=1; 
run; 

 No outliers outside of 
+/- 3. 
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data residls; 
set residls; 
label pred="Predicted Value" 
scaledresid="Scaled Residual"; 
format pred scaledresid 7.2; 
run; 

 
The mean procedure was run to get group estimates for MeanFHR for the two flow groups. 

 
FLOW=0 

Analysis Variable : MeanFHR  

N Mean Std Dev Minimum Maximum 

36 166.1846942 8.5589935 151.6216490 178.4073630 

 
FLOW=1 

Analysis Variable : MeanFHR  

N Mean Std Dev Minimum Maximum 

13 166.6037602 1.9479823 164.1655760 169.6276220 
 

Proc means was also used to estimate values per feeding. 

FDG=1 

Variable N Mean Std Dev Minimum Maximum 

MeanFHR 21 172.9042224 2.7391000 168.9036340 178.4073630 
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MeanBHR 
 

21 
 

167.9021414 
 

0 
 

167.9021414 
 

167.9021414 
 

 
FDG=2 

Variable N Mean Std Dev Minimum Maximum 

MeanFHR 

MeanBHR 
 

13 

13 
 

166.6037602 

156.6497913 
 

1.9479823 

0 
 

164.1655760 

156.6497913 
 

169.6276220 

156.6497913 
 

 
FDG=4 

Variable N Mean Std Dev Minimum Maximum 

MeanFHR 

MeanBHR 
 

15 

15 
 

156.7773549 

146.5621806 
 

3.1425173 

0 
 

151.6216490 

146.5621806 
 

162.3923536 

146.5621806 
 

 

Interpretation of results: Taking into account correlation between measurements within the same feeding and within the same flow group 

(slow or standard) and covarying on baseline heart rate, mean heart rate was significantly lower when the infant was fed with slow-flow than with 

standard flow (p=0.01; 166.2 vs. 166.6).  

B. Mean Oxygen Saturation During Feeding (MeanFSat): 

Model Model Problems Results 
AIC 
BIC 

The purpose of this analysis was to evaluate whether there was a difference between slow-flow and standard-flow feedings for the outcome 
variable mean oxygen saturation during feeding, taking into account correlation within the same feeding [FDG] and within flow category [FLOW], 
as well as covarying on baseline oxygen saturation [MeanBSat]. MeanFSat was calculated every 1 minute during feeding. MeanBSat was 
calculated as a single measure for the entire 6 minute baseline period. 

Starting with a maximal fixed effects model, the random effects model was determined. First, a maximal random effects model was tested and 
then one variable was removed at a time. 

*Model B1; 
proc mixed data=sv covtest method=ML; 
class id flow fdg; 
model meanFSat=flow fdg meanBSat / solution; 
random intercept flow fdg meanBSat / subject=id v=1 vcorr=1; 
run;  

Overparameterized   
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*Model B2; 
proc mixed data=sv covtest method=ML; 
class id flow fdg; 
model meanFSat=flow fdg meanBSat / solution; 
random intercept flow fdg / subject=id v=1 vcorr=1; 
run; 

Overparameterized   

*Model B3; 
proc mixed data=sv covtest method=ML; 
class id flow fdg; 
model meanFSat=flow fdg meanBSat / solution; 
random intercept flow meanBSat / subject=id v=1 vcorr=1; 
run; 

Overparameterized   

*Model B4; 
proc mixed data=sv covtest method=ML; 
class id flow fdg; 
model meanFSat=flow fdg meanBSat / solution; 
random intercept fdg meanBSat / subject=id v=1 vcorr=1; 
run; 

Overparameterized   

*Model B5; 
proc mixed data=sv covtest method=ML; 
class id flow fdg; 
model meanFSat=flow fdg meanBSat / solution; 
random intercept flow/ subject=id v=1 vcorr=1; 
run; 

Overparameterized   

*Model B6; 
proc mixed data=sv covtest method=ML; 
class id flow fdg; 
model meanFSat=flow fdg meanBSat / solution; 
random intercept fdg / subject=id v=1 vcorr=1; 
run; 

Overparameterized   

*Model B7; 
proc mixed data=sv covtest method=ML; 
class id flow fdg; 
model meanFSat=flow fdg meanBSat / solution; 
random intercept meanBSat / subject=id v=1 vcorr=1; 
run; 

Overparameterized   

*Model B8; 
proc mixed data=sv covtest method=ML; 
class id flow fdg; 
model meanFSat=flow fdg meanBSat / solution; 

Overparameterized   
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random intercept / subject=id v=1 vcorr=1; 
run; 
 

All of the models tested thus far were overparameterized. Next, the fixed effects model was determined with only a random intercept. 

*Model B9; 
proc mixed data=sv covtest method=ML; 
class id flow fdg; 
model meanFSat=flow fdg / solution; 
random intercept / subject=id v=1 vcorr=1; 
run; 

Overparameterized   

*Model B10; 
proc mixed data=sv covtest method=ML; 
class id flow fdg; 
model meanFSat=flow meanBSat / solution; 
random intercept / subject=id v=1 vcorr=1; 
run; 
 

Estimated G matrix not 
positive definite. 

FLOW p=0.0935 
MeanBSat=0.0194 

265.4 
257.4 

Model B10 is the only model thus far that has not been overparametized. Using this fixed effects model, variables were then added back into the 
random effects model. 

*Model B11; 
proc mixed data=sv covtest method=ML; 
class id flow fdg; 
model meanFSat=flow meanBSat / solution; 
random intercept fdg / subject=id v=1 vcorr=1; 
run; 

Estimated G matrix not 
positive definite. 

FLOW p=0.0935 
MeanBSat=0.0194 

265.4 
257.4 

*Model B12; 
proc mixed data=sv covtest method=ML; 
class id flow fdg; 
model meanFSat=flow meanBSat / solution; 
random intercept meanBSat / subject=id v=1 vcorr=1; 
run; 

Overparameterized   

Model B10 and B11 had the same results and AIC/BIC scores, but B10 is more parsimonious, so this is the better model. B12 was 
overparameterized. A residual analysis was then run using model B10. 

proc mixed data=sv covtest method=ML; 
class id flow fdg; 
model meanFSat=flow meanBSat / solution outpm=residls vciry; 
random intercept / subject=id v=1 vcorr=1; 
run; 
 
data residls; 

 Outliers outside of -3.  
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set residls; 
label pred="Predicted Value" 
scaledresid="Scaled Residual"; 
format pred scaledresid 7.2; 
run; 

Since there were outliers outside of -3, a square root transformation was applied. 

%let ypower=0.5; 
data adjusted; 
set sv; 
ytrans=meanFSat**&ypower; 
label ytrans="meanFSat to Power &ypower"; 
run; 
 
proc mixed data=adjusted covtest method=ML; 
class id flow fdg; 
model ytrans=flow meanBSat / solution outpm=residls vciry; 
random intercept / subject=id v=1 vcorr=1; 
run; 

 No longer ouliers. 
FLOW p=0.0976 
MeanBSat p=0.0207 

 

 
Proc means was used to estimate group values for meanFSat. 

proc sort data=sv; 
by flow; 
 
Proc means data=sv; 
by flow; 
var meanFSat; 
run; 
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FLOW=0 

Analysis Variable : MeanFSat  

N Mean Std Dev Minimum Maximum 

36 86.3247774 4.3283691 71.3568713 95.5532011 

 
FLOW=1 

Analysis Variable : MeanFSat  

N Mean Std Dev Minimum Maximum 

10 83.5143588 4.2417796 77.2311341 90.3147783 
 

Proc means was also used to estimate values per feeding. 

FDG=1 

Variable N Mean Std Dev Minimum Maximum 

MeanFSat 

MeanBSat 
 

21 

21 
 

87.6830048 

83.8056300 
 

3.9699620 

0 
 

77.4790997 

83.8056300 
 

95.5532011 

83.8056300 
 

 
FDG=2 

Variable N Mean Std Dev Minimum Maximum 

MeanFSat 

MeanBSat 
 

10 

10 
 

83.5143588 

85.9930982 
 

4.2417796 

0 
 

77.2311341 

85.9930982 
 

90.3147783 

85.9930982 
 

 
FDG=4 

Variable N Mean Std Dev Minimum Maximum 

MeanFSat 

MeanBSat 
 

15 

15 
 

84.4232591 

84.3901546 
 

4.2048298 

0 
 

71.3568713 

84.3901546 
 

88.8088242 

84.3901546 
 

Note. Do not use the min and max values from these results. Actual min and max values were calculated from the data that was analyzed at 1 
sample/sec. 

1
0
2

 



 
 

Interpretation of results: Taking into account correlation between measurements within the same feeding and within the same flow group 

(slow or standard) and covarying on baseline oxygen saturation, there was a trend toward a difference in mean oxygen saturation between the 

flow groups (p=0.0976; 86.3 vs. 83.5%).    

C. Respiratory Rate (RR) 

Model Model Problems Results 
AIC 
BIC 

The purpose of this analysis was to evaluate whether there was a difference between slow-flow and standard-flow feedings for the outcome 
variable RR during feeding [MeanFRR], taking into account correlation within the same feeding [FDG] and within flow category [FLOW], as well as 
covarying on baseline RR [MeanBRR]. MeanFRR was calculated every 1 minute during feeding. MeanBRR was calculated as a single measure 
for the entire 6 minute baseline period. 

Starting with a maximal fixed effects model, the random effects model was determined. First, a maximal random effects model was tested and 
then one variable was removed at a time. 

*Model C1; 
proc mixed data=rr covtest method=ML; 
class id flow fdg; 
model meanFRR=flow fdg meanBRR/ solution; 
random intercept fdg meanBRR / subject=id v=1 vcorr=1; 
run; 

Overparameterized   

*Model C2; 
proc mixed data=rr covtest method=ML; 
class id flow fdg; 
model meanFRR=flow fdg meanBRR/ solution; 
random intercept fdg / subject=id v=1 vcorr=1; 
run; 

Overparameterized   

*Model C3; 
proc mixed data=rr covtest method=ML; 
class id flow fdg; 
model meanFRR=flow fdg meanBRR/ solution; 
random intercept meanBRR / subject=id v=1 vcorr=1; 
run; 

Overparameterized   

*Model C4; 
proc mixed data=rr covtest method=ML; 
class id flow fdg; 
model meanFRR=flow fdg meanBRR/ solution; 
random intercept / subject=id v=1 vcorr=1; 
run; 

Overparameterized   
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All of the above models were overparameterized. Next, the fixed effects model was reduced one variable at a time. 

*Model C5; 
proc mixed data=rr covtest method=ML; 
class id flow fdg; 
model meanFRR=flow fdg/ solution; 
random intercept / subject=id v=1 vcorr=1; 
run; 

Overparameterized   

*Model C6; 
proc mixed data=rr covtest method=ML; 
class id flow fdg; 
model meanFRR=flow meanBRR/ solution; 
random intercept / subject=id v=1 vcorr=1; 
run; 

Estimated G matrix 
not positive definite. 

Type 3 Tests of Fixed Effects 

Effect Num 
DF 

Den 
DF 

F 
Value 

Pr > F 

FLOW 1 37 2.88 0.0979 

MeanBRR 1 37 3.88 0.0565 
 

305.5 
297.6 

Model C6 was the first model that was not overparameterized. Next, the model was tested without meanBRR in the fixed effects. 

*Model C7; 
proc mixed data=rr covtest method=ML; 
class id flow fdg; 
model meanFRR=flow/ solution; 
random intercept / subject=id v=1 vcorr=1; 
run; 

Estimated G matrix 
not positive definite. 

Flow p=0.875 307.3 
301.3 

MeanBRR contributes significantly to the fixed effects model. Using the fixed effects model in model C6, the random effects model was then 
confirmed by adding the variables back in, one at a time. 

*Model C8; 
proc mixed data=rr covtest method=ML; 
class id flow fdg; 
model meanFRR=flow meanBRR/ solution; 
random intercept fdg / subject=id v=1 vcorr=1; 
run; 

Not able to estimate 
covariance 
parameters. 

  

*Model C9; 
proc mixed data=rr covtest method=ML; 
class id flow fdg; 
model meanFRR=flow meanBRR/ solution; 
random intercept meanBRR / subject=id v=1 vcorr=1; 
run; 

Overparameterized   

The above models were not improved by adding variables back to the random effects model. Next, the random effects model was tested without 
intercept in the model. 

*Model C10; 
proc mixed data=rr covtest method=ML; 

Overparameterized   
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class id flow fdg; 
model meanFRR=flow meanBRR/ solution; 
random meanBRR / subject=id v=1 vcorr=1; 
run; 
 

*Model C11; 
proc mixed data=rr covtest method=ML; 
class id flow fdg; 
model meanFRR=flow meanBRR/ solution; 
random fdg / subject=id v=1 vcorr=1; 
run; 

Estimated G matrix 
not positive definite. 

Type 3 Tests of Fixed Effects 

Effect Num 
DF 

Den 
DF 

F 
Value 

Pr > F 

FLOW 1 37 2.88 0.0979 

MeanBRR 1 37 3.88 0.0565 
 

305.6 
302.0 

Model C11 had a better AIC score than model C6, but model C6 had a better BIC score.  

*Model C11 with residual analysis; 
proc mixed data=rr covtest method=ML; 
class id flow fdg; 
model meanFRR=flow meanBRR/ solution outpm=residls vciry; 
random fdg / subject=id v=1 vcorr=1; 
run; 
 
data residls; 
set residls; 
label pred="Predicted Value" 
scaledresid="Scaled Residual"; 
format pred scaledresid 7.2; 
run; 

Estimated G matrix 
not positive definite. 

Type 3 Tests of Fixed Effects 

Effect Num 
DF 

Den 
DF 

F 
Value 

Pr > F 

FLOW 1 37 2.88 0.0979 

MeanBRR 1 37 3.88 0.0565 

 
There are outliers outside of -3. 

305.6 
302.0 
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Since there were outliers, the data was transformed. First, a square root transformation was applied. 

%let ypower=0.5; 
data adjusted; 
set rr; 
ytrans=meanFRR**&ypower; 
label ytrans="meanFRR to Power &ypower"; 
run; 
 
*Model C11 with square root transformation; 
proc mixed data=adjusted covtest method=ML; 
class id flow fdg; 
model ytrans=flow meanBRR/ solution outpm=residls vciry; 
random fdg / subject=id v=1 vcorr=1; 
run; 
 

Estimated G matrix 
not positive definite. 

Type 3 Tests of Fixed Effects 

Effect Num 
DF 

Den 
DF 

F 
Value 

Pr > F 

FLOW 1 37 3.11 0.0861 

MeanBRR 1 37 3.92 0.0551 
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This square root transformation improved the data, but there was still an outlier outside of -3. Next, a log transformation was applied. 

*Log transformation; 
data adjusted; 
set rr; 
ytrans=log(meanFRR); 
label ytrans="MeanFRR to Log"; 
run; 
 
proc mixed data=adjusted covtest method=ML; 
class id flow fdg; 
model ytrans=flow meanBRR/ solution outpm=residls vciry; 
random fdg / subject=id v=1 vcorr=1; 
run; 
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Log transformation did not improve the data. Model D11 with square root transformation was used for the analysis. In this case, it does not make 
sense to remove outliers because the outliers are true data points and important for the analysis of these results. Proc means was used to 
estimate group values. 

The MEANS Procedure 
FLOW=0 

Analysis Variable : MeanFRR  

N Mean Std Dev Minimum Maximum 

28 72.0714286 11.8037300 31.0000000 87.0000000 

 
FLOW=1 

Analysis Variable : MeanFRR  

N Mean Std Dev Minimum Maximum 

12 71.5000000 7.4406745 62.0000000 83.0000000 
 

Proc means was used to estimate values per feeding. 

The MEANS Procedure 
FDG=1 

Variable N Mean Std Dev Minimum Maximum 

MeanFRR 14 68.3571429 14.8044024 31.0000000 82.0000000 
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MeanBRR 
 

14 
 

64.0000000 
 

0 
 

64.0000000 
 

64.0000000 
 

 
FDG=2 

Variable N Mean Std Dev Minimum Maximum 

MeanFRR 

MeanBRR 
 

12 

12 
 

71.5000000 

53.0000000 
 

7.4406745 

0 
 

62.0000000 

53.0000000 
 

83.0000000 

53.0000000 
 

 
FDG=4 

Variable N Mean Std Dev Minimum Maximum 

MeanFRR 

MeanBRR 
 

14 

14 
 

75.7857143 

72.0000000 
 

6.3630976 

0 
 

66.0000000 

72.0000000 
 

87.0000000 

72.0000000 
 

 

Interpretation: When the infant was fed with slow-flow, RR was significantly higher than when fed with standard-flow (p=0.09; 72.1 vs. 

71.5).  
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CHAPTER 4: HEART RATE VARIABILITY AS A FEEDING INTERVENTION OUTCOME MEASURE IN 
THE PRETERM INFANT  

 
Overview 

Feeding interventions for preterm infants aim to reduce the stress of feeding to promote growth. 

One challenge to evaluating efficacy of feeding interventions is identifying non-invasive, sensitive 

outcome measures. Heart rate variability (HRV) is a potential measure of stress that may be useful. This 

study tested whether HRV was a sensitive measure of stress when usual care was compared to a gentle, 

co-regulated approach (CoReg) to feeding preterm infants (n=14) born < 35 weeks post-menstrual age 

using a secondary analysis of data from a within-subjects cross-over design study. HRV indices were 

calculated from electrocardiogram data and compared to standard physiologic outcomes, including 

oxygen saturation (Sp02), respiratory rate (RR), apneic events, heart rate (HR), and seconds of 

bradycardia. Data were analyzed using linear mixed modeling. Infants were positioned side-lying more 

(p<0.01) and stimulated to suck less (p=0.03) during CoReg feedings. Infants fed using the CoReg 

approach had fewer apneic events (p=0.04) and higher RR (p=0.03), suggesting they were able to 

breathe more during feeding. No statistically significant differences were found in Sp02, HR, bradycardia, 

LF Power, HF Power, or LF/HF ratio, but infants fed using the usual care approach had significantly 

higher SD12 (p=0.04), a non-linear measure of HRV based on the Poincaré plot. Higher SD12 in infants 

fed with usual care suggests increased randomness in HR of non-respiratory origin. Further exploration of 

HRV as an intervention outcome measure is needed, particularly evaluating non-linear indices such as 

SD12.  

Keywords: feeding, preterm infant, heart rate variability, stress 
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Introduction 

Feeding is a physiologically challenging event for the preterm infant. Much research is being done 

to evaluate interventions aimed at reducing the work of feeding for these fragile infants in order to 

conserve energy for growth and prevent the development of long-term feeding problems. The typical 

physiologic measures used to study the effect of interventions in this population are heart rate (HR), 

respiratory rate (RR), and oxygen saturation (Sp02). These measures are non-invasive and provide 

important information about the infant’s physiologic response to the work of feeding. While these 

measures are generally accepted, they may not be the most sensitive measures, or alterations in their 

values may be late indicators of distress. Heart rate variability (HRV) is an additional non-invasive 

measure that can be used to evaluate the adaptability of the autonomic nervous system (ANS) to respond 

to the physiologic stress of feeding. Feeding has been shown to produce changes in HRV (Brown, 2007; 

McCain, Fuller, & Gartside, 2005; McCain, Knupp, Fontaine, Pino, & Vasquez, 2010). It is theorized that 

HRV may be a more sensitive measure of physiologic stress or provide important information about infant 

response to feeding in addition to these traditional measures. It remains unknown whether HRV is a 

useful outcome measure of physiologic stress in intervention studies where the intervention aims to 

change the level of stress experienced by the infant. 

Heart Rate Variability 

HRV is the rhythmic variation in HR that results from the dynamic influences of the ANS (Kleiger, 

Stein, & Bigger, 2005). Contraction of the heart is initiated by an electrical impulse in the sinoatrial (SA) 

node located in the right atrium (Powers & Howley, 2009). The SA node is innervated by both the 

sympathetic and parasympathetic divisions of the ANS via the vagus nerve (Pumprla, Howorka, Groves, 

Chester, & Nolan, 2002). The sympathetic and parasympathetic divisions have opposing effects on the 

HR. Sympathetic input results in release of noradrenaline, which increases HR, while parasympathetic 

input results in release of acetylcholine, which slows HR (Pumprla, et al., 2002). The balance of 

sympathetic and parasympathetic input is determined by the ANS to maintain physiologic homeostasis in 

response to internal and external demands (Pumprla, et al., 2002).  

The variation that occurs in HR to produce HRV results from the balance of sympathetic and 

parasympathetic input and is measured by variations in the time period between normal heartbeat 
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complexes, specifically R waves (Kleiger, et al., 2005). The variation in intervals between R waves (R to 

R interval (rri)) has a cyclical pattern with some cyclical changes occurring infrequently or at low 

frequencies (LF) and some occurring frequently or at high frequencies (HF).  

Since there are connections within the vagus nerve between the heart and other physiologic 

systems, input from the sympathetic nervous system (SNS) and parasympathetic nervous system (PNS) 

is mediated by other cyclical rhythms in the body. Fluctuations in blood pressure and thermoregulation 

contribute to LF rhythms in HRV (Pumprla, et al., 2002). Rhythmic alterations in HR that coincide with 

respiration contribute to HF rhythms in HRV (Pumprla, et al., 2002). It is generally accepted that HF 

components of HRV may be interpreted as a measure of PNS influences, but the interpretation of the LF 

component remains controversial (Malik, et al., 1996). While some interpret the LF component as 

reflecting SNS input, others believe that it reflects some combination of SNS and PNS input (Malik, et al., 

1996).  

 The HF rhythm associated with respiration, whereby the HR accelerates during inspiration and 

decelerates during expiration, is often referred to as respiratory sinus arrhythmia (RSA) (Grossman & 

Taylor, 2007). The frequency range of HRV that RSA occupies is dependent on the RR of the individual. 

In human neonates, the RR ranges generally from 20 to 80 breaths per minute. Frequency is measured in 

Hertz (Hz). One Hz is equal to 60 cycles per second. Therefore, a RR of 20 to 80 breaths per minute is 

equal to a frequency range of 0.3-1.33 Hz (DiPietro & Porges, 1991).  

There are three methods of HRV analysis: time domain, frequency domain, and non-linear 

analyses. Time domain methods are preferred for long-term studies of HRV (e.g., 24 hours) while 

frequency domain methods are preferred for short-term evaluation of HRV (e.g., less than 5 minutes) 

(Malik, et al., 1996). The frequency domain measures of HRV include LF Power (milliseconds squared 

(ms2)), HF Power (ms2), and LF/HF ratio. While the interpretation of the LF component remains under 

debate, a consensus statement suggests it is worth measuring, but must be done in accordance with 

standards that limit the lowest frequency measured by the length of the recording (Malik, et al., 1996). For 

recordings of two minutes, the lowest appropriate LF band is 0.04 Hz and the upper bound is the lower 

bound of the HF band or 0.3 Hz (Malik, et al., 1996). The LF/HF ratio is a measure of the balance of SNS 

to PNS (or some combination of SNS and PNS) activity and the ability of the infant to maintain 



118 
 

physiologic stability (McCain, et al., 2010). When evaluating HRV indices, it is necessary to compare 

epochs of the same length because epoch length affects the accuracy with which the frequency 

components are estimated (Malik, et al., 1996). 

Non-linear analysis of HRV is a relatively new technique, which is in the early stages of 

development, but may contribute to the interpretation of frequency and time domain analysis by 

distinguishing between sinus arrhythmia of respiratory and non-respiratory origin (Stein, Domitrovich, Hui, 

Rautaharju, & Gottdiener, 2005). One method of non-linear analysis is the creation of a Poincaré plot 

(Figure 4.1), where the interval between a pair of heart beats (e.g., R wave 1 and R wave 2) is plotted 

against the interval between the next two heart beats (e.g., R wave 2 and R wave 3), such that the x,y 

coordinates are rri, rri+1 (Stein & Reddy, 2005). Poincaré plots may be qualitatively analyzed for the shape 

and dispersion of the intervals or quantitatively analyzed for the degree of randomness in the heart rate 

pattern (Stein & Reddy, 2005). Quantitatively, the index SD12 provides information about the shape of the 

Poincaré plot by giving the ratio of the length of the transverse axis (SD1) and longitudinal axis (SD2) of 

the ellipse (Stein & Reddy, 2005). SD1 is an indicator of short-term variability of the HR and SD2 is an 

indicator of intermediate-term variability of the HR (Stein & Reddy, 2005). Low SD12 indicates high 

correlation between interbeat intervals while high SD12 indicates low correlation or increased 

randomness in interbeat intervals (Figure 4.2). SD12 has been found to be the strongest non-linear 

predictor of mortality in patients with cardiovascular disease by identifying patients with increased 

randomness in the heart rate from non-respiratory sinus arrhythmia (high SD12) (Stein & Reddy, 2005).  

Theoretical Framework 

 Polyvagal Theory (Porges, 1995) was used in this study to conceptualize the infant response to 

the challenge of feeding and aid in the selection of outcome measures. Polyvagal Theory (Porges, 1995) 

describes the mammalian physiologic response to varying levels of stress as a function of the two 

pathways of the vagus nerve: the myelinated nucleus ambiguous (NA) and the unmyelinated dorsal motor 

nucleus (DMNX). Polyvagal Theory suggests that during times of low stress, there is primarily input from 

the highly-evolved NA, which results in conservation of metabolic resources for growth and restoration, as 

evidenced by low HR and high HF HRV. Additionally, increased vagal tone via the NA results in increased 

tone of the muscles of the head and face for social interaction and for coordination of sucking, 
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swallowing, and breathing during feeding (Porges, 2007). At the same time, minimal input from the DMNX 

during times of low stress encourages digestion and absorption of nutrients from the gastrointestinal (GI) 

tract (Porges, 2001).  

    During times of increased stress, there is upregulation first of the SNS, which responds by 

increasing HR, decreasing HF HRV, activating the stress response system of the hypothalamic pituitary 

axis (e.g., release of cortisol), stimulating the immune system (e.g., release of cytokines), and diverting 

blood away from the GI tract to the more vital organs such as the heart, brain, and lungs (Porges, 1992, 

2009). If these responses still do not meet the demands of the situation, the secondary response system 

controlled by the DMNX is activated to conserve resources resulting in disengagement, hypotonia, apnea, 

and bradycardia (Porges, 2003). Given the high oxygen needs of humans, the apnea and bradycardia 

associated with activation of the DMNX response can lead to detrimental oxygen deprivation (Porges, 

2007).  

 Although feeding is inherently a physiologically challenging event, the feeding encounter may be 

altered to either increase or decrease the degree of stress the infant experiences. A feeding with lower 

stress would theoretically support input from the NA and result in lower HR, higher HF HRV, and 

improved coordination of sucking, swallowing, and breathing. Improved coordination of sucking, 

swallowing, and breathing may allow the infant to maintain Sp02 and RR closer to that during non-feeding 

times. Alternately, a feeding with a higher degree of stress would require activation of the stress response 

systems and result in higher HR, lower HF HRV, release of cortisol and cytokines, disengagement, 

hypotonia, apnea, and bradycardia. 

State of the Literature 

Nine published studies have measured HRV during active oral feeding of infants (Brown, 2007; 

Cohen, Brown, & Myers, 2009; Harrison, 2011; Harrison & Brown, 2012; Lappi, et al., 2007; McCain, et 

al., 2005; McCain, et al., 2010; Portales, et al., 1997; Suess, et al., 2000). The majority of these have 

been descriptive studies of the changes that occur in HRV measures as infants develop over time 

(Brown, 2007; Harrison, 2011; Harrison & Brown, 2012; Lappi, et al., 2007) or how birth characteristics, 

such as birth weight, gestational age, or congenital heart disease, affect HRV responses to feeding 

(Cohen, et al., 2009; Harrison, 2011; Harrison & Brown, 2012; Suess, et al., 2000). Consistent with 
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Polyvagal Theory, Portales and colleagues (1997) found that vagal tone decreased from baseline to 

feeding and returned towards baseline during the post-feeding period in very low birth weight infants. 

McCain (2010) described the HRV responses of three preterm infants with bronchopulmonary dysplasia 

to oral feeding and also found that HF HRV decreased during feeding, but in this sample, HF HRV did not 

recover to pre-feeding levels by 10 minutes post-feeding. Suess and colleagues (2000) also found that 

HF HRV decreased during feeding for both a group of earlier-born (≤ 30 weeks gestational age) and a 

group of later-born (≥31 weeks gestational age) preterm infants, but that in the 10 minutes after feeding, 

only the later-born preterm infants began to return to pre-feeding levels. Lappi (2007) examined the 

effects of nutritive versus non-nutritive sucking on HRV measures and found that nutritive sucking 

resulted in a decrease in HRV at all ages studied (newborn, 6, 12, and 24 weeks of age) while non-

nutritive sucking did not have any effect on HRV at any age. 

The only feeding intervention study that measured HRV as an outcome was McCain’s study 

(2005) of a semi-demand protocol for healthy preterm infants, which included a protocol that used infant 

cues to discontinue feeding and did not “encourage” the infant to consume the prescribed volume of 

feeing. Theoretically, this protocol could decrease the amount of physiologic stress experienced by the 

infant by not pushing the infant to continue feeding beyond the point they become fatigued or stressed. 

This study found that during feeding, the experimental group had higher HF power and lower LF/HF ratio, 

suggesting greater PNS input and lower physiologic stress (McCain, et al., 2005). The two groups were 

similar in terms of mean HR and feeding bradycardia episodes, suggesting that these outcome measures 

may be less sensitive than HRV (McCain, et al., 2005). McCain (2002) previously presented behavioral 

state outcomes of this same data set and found that infants fed with the semi-demand approach did not 

exhibit significantly different behavioral states during feeding than control infants. No other measures of 

physiologic stress have been published from this study to determine whether the experimental protocol 

should be considered as having decreased physiologic stress with regards to the interpretation of HRV 

findings, but the findings are supportive of further exploration of the use of HRV in this way. 

Different methods of feeding (breast vs. bottle) or other differences in feeding (e.g., milk flow, 

position, etc.) may affect the physiologic stress of feeding (Chen, Wang, Chang, & Chi, 2000; Clark, 2007; 

DiPietro, Larson, & Porges, 1987; Mathew, 1991; Park, Thoyre, Knafl, Hodges, & Nix, 2014) and 
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therefore HRV measures. Additionally, Harrison (2011) found that in a group of infants with transposition 

of the great arteries, factors such as feeding skill and maternal sensitivity may affect the degree of 

autonomic responsiveness to feeding. Infants with low feeding skill, but high maternal sensitivity 

demonstrated increases in HF HRV over the course of feeding, suggesting that maternal sensitivity may 

aid in the infant maintaining homeostasis despite their low skill level (Harrison, 2011). In all studies except 

those by McCain and colleagues (2005; 2010), feeding was studied as a naturally occurring phenomenon 

and the feeding experience was not controlled. Although Harrison (2012) did not control the feeding 

experience, she did monitor it and reported that variations in position and sleep states were similar 

between groups. McCain and colleagues (2005; 2010) did standardize the study feedings with regards to 

bottles used, milk flow, and body positioning. 

The research done to date utilizing HRV during feeding has been supportive of the theoretical 

changes that occur within the ANS during a physiologically-stressful challenge such as oral feeding and 

supports the use of this measure during feeding. Only McCain’s (2005) study has used HRV as a 

measure to evaluate differences between feedings where an intervention was used to decrease the 

degree of stress encountered by the infant. The purpose of this study was to test whether HRV is a 

sensitive measure of physiologic stress when standard care feeding is compared to a gentle, co-regulated 

approach to feeding preterm infants. 

Methods 

Setting and Sample 

This secondary analysis of de-identified data was deemed exempt by the Institutional Review 

Board. The setting of the original data collection was a Level III Neonatal Intensive Care Unit in North 

Carolina.  

The original sample was 20 preterm infants who were born at less than 35 weeks gestation 

weighing less than 1500 grams and were less than or equal to 37 weeks post-menstrual age (PMA) at the 

time of the study, remained hospitalized, and had been orally feeding at least once per day for 3 

consecutive days (Thoyre, Holditch-Davis, Schwartz, Melendez Roman, & Nix, 2012). Infants may have 

been receiving supplemental oxygen. Infants were excluded from the study if they had a history of Grade 

IV intraventricular hemorrhage (IVH), congenital disorders that may have interfered with sucking (e.g., 
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cleft palate, Down Syndrome, congenital hydrocephalus, or microcephaly), symptoms from substance 

exposure, or a mother less than 15 years of age. Infant feeding data were excluded from this secondary 

analysis if active feeding episodes with the bottle in the infant’s mouth were ≤ 2 minutes or if the HR data 

were of poor quality and not analyzable for HRV.  

Procedure 

The data collection procedures that are described refer to the procedures carried out in the 

original study (Thoyre, et al., 2012). The methods of HRV analysis described refer to the procedures 

carried out in this secondary analysis. The original study was a within-subjects, cross-over design study of 

a gentle, co-regulated approach to feeding preterm infants. The intervention (CoReg) included a head 

elevated, side-lying position; minimal oral and tactile stimulation; and enhanced auditory assessment of 

sucking, swallowing, and breathing with the use of a microphone placed on the infant’s neck to allow for 

feeder co-regulation of swallowing and breathing. The CoReg approach was compared to usual care 

feeding by a bedside nurse who was unaware of the intervention protocol. Infants were studied during two 

feedings per day for two days (one CoReg and one usual care feeding each day) and the order of the 

conditions was randomized without replacement.  

Feedings were video recorded and The Observer XT (Noldus Information Technology, Asheville, 

NC) was used to code the videos for the following feeder actions: positioning of the infant (side-lying or 

other), number of times the feeder stimulated the infant to suck, number of times the feeder gave the 

infant a pause by tipping the bottle back or stopping milk flow, and number of times the feeder gave the 

infant a rest period by removing the nipple. Positioning of the infant was calculated as the percent of the 

feeding the infant was in side-lying. A co-regulation score was created and defined as the number of 

times the feeder provided a rest period for the infant plus the number of times the feeder cued the infant 

to pause feeding by tipping the bottle back or stopping milk flow. To account for differences in the length 

of feedings, frequency of feeder action events were divided by the number of minutes the bottle was in 

the infant’s mouth. The observational data was used to evaluate fidelity to the CoReg protocol and to 

describe the feeding method used during usual care.  

In order to compare HRV outcomes to traditional physiologic outcomes used in evaluating feeding 

interventions, the following measures were assessed during feeding: mean Sp02, mean RR, number of 
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apneic events, HR, and number of seconds of bradycardia. These measures were chosen based on the 

expected infant responses to the challenge of feeding as described by Polyvagal Theory (Porges, 1995).  

Two methods were used to assess respiratory function during feeding. Sp02 was collected using 

a pulse oximeter (Ohmeda, Boulder, CO) placed on the infant’s foot. Sp02 data was sampled using a 2 

second averaging window and cleaned of artifact. Mean Sp02 during feeding was calculated. Respiration 

data was collected using respiratory inductance plethysmography bands placed around the infant’s chest 

and abdomen (Respitrace, Ambulatory Monitoring Ind., Ardsley, NY). Electrocardiogram (ECG) data was 

collected from a three-lead ECG monitor (Gould Electronics, Valley View, Ohio). Physiologic data (Sp02, 

RR, and HR) was collected at a sampling rate of 1,000 samples per second, digitized by an A-D 

converter, and stored on a computer using Windaq Data Acquisition software (Dataq Instruments Inc., 

Akron, OH).  

Respiratory waveform data was imported into Windaq Waveform Browser (Dataq Instruments 

Inc., Akron, OH), marked using an algorithm within the program, and confirmed for accuracy by the 

investigators. Respiratory waveform data was used (to calculate mean RR and number of episodes of 

apnea (defined as absence of breath for more than 4 seconds (sec)) (Hanlon, et al., 1997). Number of 

episodes of apnea were divided by the total length of feeding to account for variation in length of 

feedings. 

Digitized ECG data was imported into MindWare HRV (MindWare Technologies LTD, Gahanna, 

OH) for review and analysis. MindWare HRV uses an algorithm to mark each R wave peak of the QRS 

heartbeat complex and to calculate the interbeat interval (IBI). Artifact is identified by IBI that is 

inconsistent with those intervals before and after. The investigator manually reviewed the data to confirm 

accuracy of the R wave peak detection. ECG data were used to calculate HR (in beats per minute (bpm)) 

and number of seconds of bradycardia (defined as HR < 100 bpm) (Dawson, et al., 2013). Mean HR was 

calculated for each two-minute bottle-in period. ECG data were also used for HRV analyses.  

Frequency domain analysis of HRV was performed using two-minute epochs of artifact-free data. 

Power spectral analysis with Hamming windowing function was executed with the frequency bandwidths 

set for LF: 0.04-0.3 Hz and HF: 0.3-1.33 Hz. The outcome measures were: LF Power (ms2), HF (ms2), 

and LF/HF ratio. Two minutes was chosen as the epoch for comparison because this is the shortest 
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period that allows for the measurement of both LF and HF components of HRV (Malik, et al., 1996) and 

because this is a reasonable amount of time to expect vulnerable preterm infants to be able to feed 

without having the bottle removed from the mouth. Only data collected when the bottle was in the infant’s 

mouth was analyzed. In some cases, the infant required prolonged breaks with the bottle out of the 

mouth. Since this study aimed to evaluate HRV during feeding, only data during active feeding was 

analyzed. Data for active feeding periods that were not two minutes in length were excluded.  

Non-linear analysis of HRV was completed by combining all two-minute epochs of artifact-free 

data during each feeding. Kubios HRV version 2.0 (Kuopio, Finland) was used to create a single Poincaré 

plot for each feeding and to calculate SD12.   

Statistical Analysis 

Linear mixed modeling was used to analyze these repeated-measures data for effects of feeding 

method (Usual care vs. CoReg) using appropriate covariance structures to account for correlation 

between feedings within the same infant and within the same feeding over time, as well as variances 

possibly changing over time. The order effect of feeding method was tested and included in the model, 

when appropriate. Frequency domain measures of HRV have been found to have skewed distributions 

(Kleiger, et al., 2005). These data were assessed for skewness and transformed, if needed. An alpha of 

0.05 was used for all tests of statistical significance. A trend towards statistical significance was defined 

as an alpha of 0.1. Appendix 4.1 provides details of the linear mixed modeling analyses.    

Results 

Sample 

The sample included fourteen infants and 34 feedings. Of the 75 original feedings, 22 were 

excluded because the data were collected at a sampling rate of only 50 samples per second, which is not 

sufficient for HRV analysis; 14 were excluded because there were no active feeding periods of at least 2 

minutes; 21 were excluded because of poor ECG data or no artifact-free segments of active oral feeding; 

and 4 (all from the same infant) were excluded because of abnormal cardiac rhythm, specifically frequent 

premature ventricular contractions.  

All 14 infants included in the study had a usual care feeding that was included in the analysis. 

Ten of the infants had at least one of each feeding type that was analyzed. There were 22 usual care 
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feedings and 12 CoReg feedings analyzed. Table 4.1 provides information about the demographic and 

clinical data of the infants and feedings included in the study. The sample of infants that had a usual care 

feeding analyzed (n=14) was similar to the sample of infants that had an intervention feeding analyzed 

(n=10) in terms of birth weight (996 vs. 992 grams), PMA (28.6 vs. 28.8 weeks), and chronic lung disease 

(79% vs. 80%). The sample of feedings that were included for usual care (n=22) and CoReg (n=12) were 

also similar in terms of the age of the infant at the time of the feeding (36.4 vs. 36.9 weeks), oxygen use 

on the day of the study (64% vs. 67%), and number of days of feeding experience the infant had at the 

time of the study feeding (13 vs. 13). 

Results 

Feeder Actions. The CoReg and usual care feedings were significantly different from one 

another in terms of feeder actions (Table 4.2). Taking into account correlation between feedings of the 

same infant, CoReg feedings were performed with the infant in a side-lying position significantly more 

than usual care feedings (p<0.01) and the feeder stimulated the infant to suck significantly less during 

CoReg feedings (p=0.03). The CoReg and usual care feedings were not significantly different in terms of 

the co-regulation score (p=0.80). Given the differences in feeder actions between the two feeding 

methods, there was reason to believe that the physiologic stress experienced by the infant during the two 

methods may be different. 

 Standard physiologic measures (Table 4.3). Accounting for order of study feedings and 

correlation within feedings of the same infant, there were no significant differences between the two 

feeding methods for mean Sp02 (p=0.26) or number of seconds of bradycardia during feeding (p=0.11). 

Baseline Sp02 was used as a covariate in the analysis to evaluate mean Sp02 during feeding. There was 

also no difference between the groups for HR (p=0.38), accounting for order of feedings and correlation 

between feedings of the same infant and between measurements within the same feeding. 

Infants fed using the CoReg method had significantly fewer feeding-related apneas (p=0.04). This 

analysis also took into account order of study feedings and correlation within feedings of the same infant. 

Infants fed using the CoReg method also had significantly higher RR than infants fed using usual care 

(p=0.03), accounting for baseline RR, correlation within feedings of the same infant, and order of study 

feedings.  
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Heart rate variability measures (Table 4.4). Taking into account correlations between feedings 

of the same infant and between measurements within the same feeding, as well as taking into account 

the order of study feedings, there was no statistically significant difference in LF Power (p=0.06) or HF 

Power (p=0.26) between feeding methods, although there was a trend towards significance with regards 

to LF Power. There were no significant differences between feeding methods for LF/HF ratio (p=0.86). 

However, infants fed with the usual care technique had a significantly higher SD12 than infants fed with 

the CoReg approach (p=0.04). 

Discussion 

 A gentle, co-regulated approach to feeding involving side-lying positioning, decreased stimulation, 

and enhancement of auditory assessment of sucking, swallowing, and breathing was found to 

significantly reduce the number of apneic events during feeding and to allow the infants to breathe more 

during feeding, as evidenced by higher RR. Side-lying positioning as a means of reducing physiologic 

stress during feeding in preterm infants has been supported by another study by Park and colleagues 

(2014), who also found that side-lying allowed infants to maintain respiratory rate closer to the pre-feeding 

state, have briefer feeding-related apneic events, and less severe and fewer decreases in heart rate. The 

results of the standard physiologic measures suggested that the intervention feeding technique reduced 

the physiologic stress of feeding for this group of preterm infants, however none of the frequency domain 

measures of HRV revealed a significant difference between the feeding methods. There was a trend 

toward significance for the outcome LF Power (p=0.06), with infants fed with the usual care technique 

having LF Power of 366 ms2 compared to 75 ms2 for infants fed with the CoReg technique. These results 

suggest that infants fed with the CoReg technique may have had a trend toward lower SNS input, and 

therefore less stress, during feeding. As mentioned previously, however, the interpretation of LF HRV 

remains controversial.  

The non-linear HRV index of SD12 revealed a significant difference between the feeding 

methods. Infants fed with the usual care technique were found to have significantly higher SD12 than 

infants fed with the usual care technique (p=0.04). Increased SD12 indicates increased randomness of 

the heart rate, or sinus arrhythmia of non-respiratory origin as opposed to respiratory sinus arrhythmia 

(RSA) (Stein, et al., 2005; Stein & Reddy, 2005). Frequency domain analyses are unable to differentiate 
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variability in the heart rate from these two sources, which is important because increased variability from 

respiratory origin is considered an indicator of lower risk, while increased variability from non-respiratory 

origin is an indicator of higher risk (Stein, et al., 2005). Lower SD12 in the infants fed with the CoReg 

technique suggests that the intervention may have been protective in some way, although it is not clear 

whether this should be interpreted as decreased stress.  

Conclusion 

The results of this study support further exploration of HRV as a feeding intervention outcome 

and highlight the need for consideration of both linear and non-linear HRV measures during this 

exploration. The significance of nonlinear HRV measures is yet to be fully defined, especially in infants, 

although it was the only HRV index in this study to find a statistically significant difference between 

feeding methods. Infants, particularly preterm infants, are more likely to experience bradycardia, or 

transient decreases in HR, as a result of stress compared to adults. The impact of this physiologic 

difference between infants and adults on HRV outcomes needs further clarification. Nonlinear HRV may 

be particularly useful for evaluation of HRV in this population.  

Future research may consider exploring the use of HRV for identification of readiness for oral 

feeding in preterm infants and the usefulness of real-time HRV during feeding for evaluation of stress 

during feeding. The combination of HRV with other measures, such as cortisol, cytokines, galvanic skin 

response, and/or near infrared spectroscopy of abdominal tissue oxygenation may provide a more 

comprehensive evaluation of stress during feeding. This body of literature is in the early stages of 

development and would benefit from consistency in future studies with regards to the HRV parameters 

measured and units reported, epoch lengths studied, and definitions of HRV frequency bandwidths so 

that comparisons can be made between study findings. 
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Table 4.1. 

Demographic and Clinical Data 
  

Parameter 
Usual Care 

(n=14a) 

CoReg 

(n=10a) 

Birth weight (grams) 996 (713 - 1390) 992 (713 - 1390) 

Birth PMA (weeks) 28.6 (24.6 - 32.3) 28.8 (24.6 - 32.3) 

Gender (n, %) 

Female 

Male 

 

11 (79%) 

3 (21%) 

 

8 (80%) 

2 (20%) 

Race (n, %) 

African-American 

Euro-American 

Other 

 

4 (29%) 

8 (57%) 

2 (14%) 

 

2 (20%) 

6 (60%) 

2 (20%) 

NBRS 3 (0 - 10) 3 (0 - 10) 

Lung Disease (n, %) 

None 

RDS 

CLD 

 

0  

3 (21%) 

11 (79%) 

 

0 

2 (20%) 

8 (80%) 

IVH (n, %) 

None 

Grade 1 

Grade 2 

Grade 3 

 

9 (64%) 

4 (29%) 

0 

1 (7%) 

 

7 (70%) 

2 (20%) 

0 

1 (10%) 

 Usual Care 

(n=22b) 

CoReg 

(n=12b) 

Study PMA (weeks) 36.4 (33.9 - 40.3) 36.9 (34 – 40.3) 

02 Day of Study (n, %) 

Yes 

No 

 

14 (64%) 

8 (36%) 

 

8 (67%) 

4 (33%) 

02 During Feeding 

Yes 

No 

 

15 (68%) 

7 (32%) 

 

10 (83%) 

2 (17%) 

Feeding Experience (days) 13 (2 – 39) 13 (2 – 39) 

 
Note. Parameters are presented as mean (minimum - maximum) unless otherwise noted. NBRS = 
Neurobiologic Risk Score (Brazy, Goldstein, Oehler, Gustafson, & Thompson, 1993); RDS = Respiratory 
Distress Syndrome; CLD = Chronic Lung Disease; IVH = Intraventricular Hemorrhage; PMA = Post-
menstrual age; Birth PMA = PMA at birth; Study PMA = PMA on day of study; 02 = Oxygen;  
a =Sample size of infants; b = Sample size of feedings. 
 
 
 
 
 
 
 
 
 
 



129 
 

Table 4.2. 

Feeder Actions 
 

 Usual Care CoReg p 

Side-lying 10.14% 100% <0.01* 
Stimulation to Suck  1.71 0.15 0.03* 
Co-regulation score 1.88 2.09 0.80 

 
Note. Side-lying = Percent of time during feeding the infant was held in a side-lying position. Stimulation 
to suck = number of events per minute where feeder stimulated the infant to suck. Co-regulation score = 
number of events per minute where feeder gave a rest period or cued the infant to pause feeding. 
* p < 0.05.  
 
Table 4.3. 

Standard Physiologic Measures   
 

 Usual Care CoReg p 

Sp02 91.8% 92.4% 0.26  
RR 62 70 0.03* 
Apnea 0.68 0.17 0.04* 
HR 159.4 157.1 0.38 
Bradycardia  0.59 0.43 0.11 

 
Note. * Indicates p<0.05. Sp02 = mean oxygen saturation during feeding. RR = respiratory rate 
(breaths/min) during feeding. Apnea = number of apneic events per minute during feeding. HR = mean 
heart rate during feeding. Bradycardia = number of seconds of bradycardia per minute of feeding.  
 
 
Table 4.4. 

Heart Rate Variability Measures  
 

 Usual Care CoReg p 

LF Power (ms2) 366.06 75.16 0.06 
HF Power (ms2) 22.92 6.80 0.26 
LF/HF Ratio 12.40 12.34 0.86 
SD12 0.26 0.19 0.04* 

 
Note. LF = low frequency. HF = high frequency. SD12 = ratio of the length of the transverse axis (SD1) 
and longitudinal axis (SD2) of the ellipse (Figure 4.1). 
* p < 0.05.  
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Figure 4.1. Poincaré plot with SD1 (red) and SD2 (green).  
 
 
 

 
 
Figure 4.2. Poincaré plot examples of low SD12 (left) and high SD12 (right). Low SD12 indicates high 
correlation between interbeat intervals. High SD12 indicates low correlation, or increased randomness, in 
interbeat intervals. 



 
 

APPENDIX 4.1: LINEAR MIXED MODELING ANALYSIS OF CHAPTER 4 DATA 

Linear mixed modeling (LMM) was used to analyze these repeated-measures data. The variable name is denoted in square brackets. The 

effects of feeding method (intervention vs. standard-care) [GROUP] on the outcome measures described below were evaluated using appropriate 

covariance structures to account for correlation between feedings of the same infant [ID] and within the same feeding over time [FDGEVENT], as 

well as variances possibly changing over time [FTIMEINDEX or FHRVINDEX]. The order effect of feeding method was tested and included in the 

model, if appropriate [STUDYDAY & DAYFDGORDER].  

For each dependent variable, a step-wise LMM analysis was done. The model tested, model problems, results, and AIC/BIC scores are 

tabled below. Decisions about variables included in the random effects models and fixed effects models are also described within each table. The 

results of the final model selected are presented and interpreted at the end of each table.  

Question 1: Is there a difference between the feeding methods used in the intervention and that of standard care? 

The intervention included a head elevated, side-lying position; minimal oral and tactile stimulation; and enhanced auditory assessment of 

sucking, swallowing, and breathing to allow for feeder co-regulation of swallowing and breathing. The intervention (CoReg) was compared to usual 

care feeding by a bedside nurse who was unaware of the intervention protocol. To evaluate whether the feeding methods used in the CoReg 

intervention were different from the usual care, feedings were analyzed for differences in the following variables: percent of feeding the infant was 

in a side-lying position [SIDELYING], the number of events where the feeder stimulated the infant to suck [STIMSUCK], and the co-regulation 

score (defined as the number of times the feeder provided a rest period for the infant plus number of times the feeder cued the infant to pause 

feeding by tipping the bottle back or stopping milk flow) [COREG]. These variables had only one measurement per feeding so there was no need 

to account for correlation within the same feeding event, but a given infant may have had more than one feeding, so correlation within infant [ID] 

was considered. 

 

1
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A. Side-lying: Percent of feeding the infant was in a side-lying position [SIDELYING]. 

Model Model Problems Results 
AIC 
BIC 

The purpose of this analysis was to evaluate whether there was a difference between groups for the outcome variable SIDELYING, taking into 
account correlation within infant (ID was included in the class statement as well as group). Since there was only 1 measurement per feeding, there 
was no need to account for correlation within feeding. Feeder actions do not have a carry-over effect, so there was no need to account for order 
effect variables. The fixed effects model only has group as a variable, so the random effects model was determined. 

*Model A1; 
proc mixed data=hrv covtest method=ML; 
class id group; 
model sidelying=group / solution; 
random intercept group / subject=id type=cs v=4 vcorr=4; 
run; 

None Group <0.0001 311.4 
314.6 

*Model A2; 
proc mixed data=hrv covtest method=ML; 
class id group; 
model sidelying=group / solution; 
random intercept / subject=id type=cs v=4 vcorr=4; 
run; 
 

Convergence criteria 
met but final hessian 
not positive definite. 

Group <0.0001 313.4 
316.6 

Solution for Fixed Effects 

Effect GROUP Estimate Standard Error DF t Value Pr > |t| 

Intercept   100.00 6.4808 9 15.43 <.0001 

GROUP 0 -89.8615 8.3077 9 -10.82 <.0001 

GROUP 1 0 . . . . 
 

 
Interpretation of results: Taking into account correlation between feedings of the same infant, infants fed with the intervention method were 

fed in a side-lying position significantly more than infants fed with standard care (p<0.0001). Estimates for percent of the feeding in a side-lying 

position were for Group 0 (Usual care) 100 + -89.86 = 10.14% and for Group 1 (CoReg) = 100%. 
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B. Stimulation to Suck: STIMSUCK was the number of events where the feeder stimulated the infant to suck. A variable was created called 

STIMSUCKRATE, which was calculated as the number of STIMSUCK events divided by the length of time the bottle was in the mouth. The 

result is the number of events per second. 

Model Model Problems Results 
AIC 
BIC 

The purpose of this analysis was to evaluate whether there was a difference between groups for the outcome variable STIMSUCKRATE, taking 
into account correlation within infant (ID was included in the class statement as well as group). Since there was only 1 measurement per feeding, 
there was no need to account for correlation within feeding. Feeder actions do not have a carry-over effect, so there was no need to account for 
order effect variables. The fixed effects model only has group as a variable, so the random effects model was determined. 

*Model B1; 
proc mixed data=hrv covtest method=ML; 
class id group; 
model stimsuckrate=group / solution; 
random intercept group / subject=id type=cs v=4 vcorr=4; 
run; 

None Group=0.0284 -145.5 
-142.3 

*Model B2; 
proc mixed data=hrv covtest method=ML; 
class id group; 
model stimsuckrate=group / solution; 
random intercept / subject=id type=cs v=4 vcorr=4; 
run; 
 

None Group=0.0044 -143.0 
-139.8 

Model B1 had the lower AIC/BIC scores, so this model was chosen. 

Solution for Fixed Effects 

Effect GROUP Estimate Standard Error DF t Value Pr > |t| 

Intercept   0.002525 0.007868 9 0.32 0.7556 

GROUP 0 0.02605 0.009990 9 2.61 0.0284 

GROUP 1 0 . . . . 
 

 
Interpretation of results: Taking into account correlation between feedings of the same infant, infants fed with usual care were stimulated 

to suck significantly more than infants fed with the CoReg method (p=0.03). Estimates for the stimulation to suck events per second were for Usual 
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care = 0.02605 + 0.002525 = 0.028575 and for CoReg = 0.002525. Converted to minutes, infants fed with the usual care method were stimulated 

to suck, on average, 1.71 times per minute. Infants fed with the CoReg method were stimulated to suck 0.15 times per minute.  

C. Co-regulation score [COREG]: Co-regulation score was defined as the number of times the feeder provided a rest period for the infant plus 

number of times the feeder cued the infant to pause feeding by tipping the bottle back or stopping milk flow. A variable was created called 

COREGRATE, which was calculated as the co-regulation score divided by the length of time the bottle was in the mouth. The results for this 

outcome are in number of co-regulation events per second.  

Model Model Problems Results 
AIC 
BIC 

The purpose of this analysis was to evaluate whether there was a difference between groups for the outcome variable COREGRATE, taking into 
account correlation within infant (ID was included in the class statement as well as group). Since there was only 1 measurement per feeding, there 
was no need to account for correlation within feeding. Feeder actions do not have a carry-over effect, so there was no need to account for order 
effect variables. The fixed effects model only has group as a variable, so the random effects model was determined. 

*Model C1; 
proc mixed data=hrv covtest method=ML; 
class id group; 
model coregrate=group / solution; 
random intercept group / subject=id type=cs v=4 vcorr=4; 
run; 

None Group = 0.7996 -120.8 
-118.2 

*Model C2; 
proc mixed data=hrv covtest method=ML; 
class id group; 
model coregrate=group / solution; 
random intercept / subject=id type=cs v=4 vcorr=4; 
run; 

Stopped because of 
too many likelihood 
evaluations. 

  

Model C1 was the better model since C2 was stopped because of too many likelihood evaluations. 

Solution for Fixed Effects 

Effect GROUP Estimate Standard Error DF t Value Pr > |t| 

Intercept   0.03483 0.01038 9 3.35 0.0085 

GROUP 0 -0.00347 0.01328 9 -0.26 0.7996 

GROUP 1 0 . . . . 
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Interpretation of Results: The intervention and usual care feeding methods were not significantly different in the amount of co-regulation 

provided (p=0.7996). Estimated coregrate (#/sec) for group 0 (usual care) was 0.03483 – 0.00347 = 0.03136 and Group 1 (CoReg) = 0.03483. 

Converted to number of events per minute, infants fed with the usual care method were co-regulated 1.88 times per minute while infants fed with 

the CoReg method were co-regulated 2.09 times per minute.  

Question 2: Is there a difference between the feeding methods for standard physiologic outcome measures? 

An analysis was run to determine if there was a difference in standard physiologic variables between the intervention and usual-care 

feeding methods [GROUP] in terms of: mean oxygen saturation (Sa02) during feeding, feeding-related apneic and bradycardic events, mean heart 

rate (HR), and mean respiratory rate (RR). These variables had only one measurement per feeding, so there was no need to account for 

correlation within feedings, but correlation between feedings of the same infant was evaluated. Order of study feedings was also considered. 

When baseline values for a variable were available and appropriate, these were considered in the covariance structure. 

D. Mean Sa02 during feeding [MEANFDGSAO2] covarying on BASEO2: 

Model Model Problems Results AIC 
BIC 

The purpose of this analysis was to evaluate whether there was a difference between groups for the outcome variable MEANFDGSa02, taking into 
account correlation within infant (ID was included in the class statement as well as group). Since there was only 1 measurement per feeding, there 
was no need to account for correlation within feeding. If the prior feeding was particularly stressful, there is the possibility for a carry-over effect on 
Sa02, so order effect variables were included (studyday and dayfdgorder). Mean baseline Sa02 (BASE02) was also included in the analysis as a 
covariate. First, the fixed effects model was determined, with all variables in the random effects model. 

*Model D1; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model MEANFDGSaO2=group studyday dayfdgorder 
BASEO2 / solution; 
Random intercept group studyday dayfdgorder BASEO2  / 
subject=id v=4 vcorr=4; 
Run; 

None GROUP 0.4343 

STUDYDAY 0.6350 

DAYFDGORDER 0.4351 

BASEO2 0.1116 
 

180 
185.8 

*Model D2; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 

None GROUP 0.4414 

STUDYDAY 0.6655 

193.3 
197.7 
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Model MEANFDGSaO2=group studyday dayfdgorder / 
solution; 
Random intercept group studyday dayfdgorder BASEO2  / 
subject=id v=4 vcorr=4; 
Run; 

DAYFDGORDER 0.3215 
 

*Model D3; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model MEANFDGSaO2=group studyday BASEO2 / 
solution; 
Random intercept group studyday dayfdgorder BASEO2  / 
subject=id v=4 vcorr=4; 
Run; 

None GROUP 0.4939 

STUDYDAY 0.5884 

BASEO2 0.1081 
 

180.7 
186.5 

*Model D4; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model MEANFDGSaO2=group dayfdgorder BASEO2 / 
solution; 
Random intercept group studyday dayfdgorder BASEO2  / 
subject=id v=4 vcorr=4; 
Run; 

None 
 
 

 

GROUP 0.4043 

DAYFDGORDER 0.4326 

BASEO2 0.1137 
 

178.3 
183.4 

*Model D5; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model MEANFDGSaO2=group studyday / solution; 
Random intercept group studyday dayfdgorder BASEO2  / 
subject=id v=4 vcorr=4; 
Run; 

None GROUP 0.5181 

STUDYDAY 0.6825 
 

192.6 
196.4 
 
 

*Model D6; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model MEANFDGSaO2=group dayfdgorder / solution; 
Random intercept group studyday dayfdgorder BASEO2  / 
subject=id v=4 vcorr=4; 
Run; 

None 
 

GROUP 0.4641 

DAYFDGORDER 0.3221 
 

191.5 
195.3 

*Model D7; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model MEANFDGSaO2=group BASEO2 / solution; 
Random intercept group studyday dayfdgorder BASEO2  / 

None GROUP 0.4697 

BASE02 0.1099 
 

179.0 
184.1 

1
3
7

 



 
 

subject=id v=4 vcorr=4; 
Run; 

*Model D8; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model MEANFDGSaO2=group / solution; 
Random intercept group studyday dayfdgorder BASEO2  / 
subject=id v=4 vcorr=4; 
Run; 

None GROUP 0.5462 

 
 

190.7 
193.9 

Model D4 had the best AIC/BIC scores for the fixed effects model. Using this fixed effects model, now start to remove one random effects variable 
at a time. 

*Model D9; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model MEANFDGSaO2=group dayfdgorder / solution; 
Random intercept group studyday dayfdgorder BASEO2  / 
subject=id v=4 vcorr=4; 
Run; 

None GROUP 0.4044 

DAYFDGORDER 0.4326 

BASE02 . 
 

178.3 
183.4 

*Model D10; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model MEANFDGSaO2=group dayfdgorder BASEO2 / 
solution; 
Random intercept group studyday BASEO2 / subject=id v=4 
vcorr=4; 
Run; 

None 
 
 

 

GROUP 0.4044 

DAYFDGORDER  

BASE02 0.0116 

  
 

178.3 
183.4 

*Model D11; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model MEANFDGSaO2=group dayfdgorder BASEO2 / 
solution; 
Random intercept group dayfdgorder BASEO2 / subject=id 
v=4 vcorr=4; 
Run; 

None GROUP 0.3958 

DAYFDGORDER 0.4037 

BASE02 0.0317 

  
 

176.3 
180.8 

*Model D12; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model MEANFDGSaO2=group dayfdgorder BASEO2 / 
solution; 
Random intercept studyday dayfdgorder BASEO2 / 

None GROUP . 

DAYFDGORDER 0.2434 

BASE02 0.0464 

175.9 
179.7 

1
3
8

 



 
 

subject=id v=4 vcorr=4; 
Run; 

  
 

*Model D13; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model MEANFDGSaO2=group dayfdgorder BASEO2 / 
solution; 
Random intercept group studyday / subject=id v=4 vcorr=4; 
Run; 

None GROUP 0.4044 

DAYFDGORDER 0.4614 

BASE02 0.0311 

  
 

178.3 
183.4 

*Model D14; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model MEANFDGSaO2=group dayfdgorder BASEO2 / 
solution; 
Random intercept group dayfdgorder / subject=id v=4 
vcorr=4; 
Run; 

None GROUP 0.3958 

DAYFDGORDER 0.4038 

BASE02 0.1149 

  
 

176.3 
180.8 

*Model D15; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model MEANFDGSaO2=group dayfdgorder BASEO2 / 
solution; 
Random intercept group BASEO2 / subject=id v=4 vcorr=4; 
Run; 

None GROUP 0.3957 

DAYFDGORDER 0.5375 

BASE02 0.0009 

  
 

176.3 
180.8 

*Model D16; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model MEANFDGSaO2=group dayfdgorder BASEO2 / 
solution; 
Random intercept studyday dayfdgorder / subject=id v=4 
vcorr=4; 
Run; 

None GROUP . 

DAYFDGORDER 0.2434 

BASE02 . 

  
 

175.9 
179.7 

*Model D17; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model MEANFDGSaO2=group dayfdgorder BASEO2 / 
solution; 
Random intercept studyday BASEO2 / subject=id v=4 
vcorr=4; 
Run; 

None GROUP . 

DAYFDGORDER . 

BASE02 0.0021 

  
 

175.9 
179.7 

1
3
9

 



 
 

*Model D18; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model MEANFDGSaO2=group dayfdgorder BASEO2 / 
solution; 
Random intercept dayfdgorder BASEO2 / subject=id v=4 
vcorr=4; 
Run; 

None GROUP . 

DAYFDGORDER 0.2365 

BASE02 0.0029 
 

175.9 
179.7 

*Model D19; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model MEANFDGSaO2=group dayfdgorder BASEO2 / 
solution; 
Random intercept group/ subject=id v=4 vcorr=4; 
Run;  

None GROUP 0.3958 

DAYFDGORDER 0.4002 

BASE02 0.0006 
 

176.3 
180.8 

*Model D20; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model MEANFDGSaO2=group dayfdgorder BASEO2 / 
solution; 
Random intercept studyday/ subject=id v=4 vcorr=4; 
Run; 

None GROUP 0.2781 

DAYFDGORDER 0.2434 

BASE02 0.0021 
 

175.9 
179.7 

*Model D21; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model MEANFDGSaO2=group dayfdgorder BASEO2 / 
solution; 
Random intercept dayfdgorder / subject=id v=4 vcorr=4; 
Run; 

None GROUP 0.2826 

DAYFDGORDER 0.2365 

BASE02 0.0029 
 

175.9 
179.7 

*Model D22; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model MEANFDGSaO2=group dayfdgorder BASEO2 / 
solution; 
Random intercept BASEO2 / subject=id v=4 vcorr=4; 
Run; 

None GROUP 0.2970 

DAYFDGORDER 0.2635 

BASE02 0.0008 
 

175.9 
179.7 

*Model D23; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model MEANFDGSaO2=group dayfdgorder BASEO2 / 

None GROUP 0.2606 

DAYFDGORDER 0.2250 

175.9 
179.7 

1
4
0

 



 
 

solution; 
Random intercept / subject=id v=4 vcorr=4; 
Run; 

BASE02 0.0003 
 

Model D23 was the most parsimonious random effects model of the models that all had an AIC/BIC score of 175.9/179.9. Next, a residual analysis 
was run to evaluate the data for outliers. 

*Model D23 with residual analysis; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model MEANFDGSaO2=group dayfdgorder BASEO2 / 
solution outpm=residls vciry; 
Random intercept / subject=id v=4 vcorr=4; 
Run; 
 
data residls; 
set residls; 
label pred="Predicted Value" 
scaledresid="Scaled Residual"; 
format pred scaledresid 7.2; 
run; 

None No outliers outside of +/- 3. 
 
 

175.9 
179.7 

 
To estimate the values for MeanFdgSa02 between groups, DAYFDGORDER and BASE02 were removed from the model 

*Model D24 for estimating MeanFdgSa02 between groups; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model MEANFDGSaO2=group / solution; 

None   

1
4
1

 



 
 

 

Interpretation: There was not a significant difference in mean Sa02 during feeding between the two feeding methods (p=0.26). The mean 

Sa02 during feeding of infants fed with the usual care method (group 0) was 92.4371 – 0.6393 = 91.8% and for the CoReg method was 92.4%. 

 

E. Apneic Episodes: The number of feeding-related episodes of apnea (defined as absence of breath for more than 4 seconds (sec)) (Hanlon et 

al., 1997) [PAUSEMORE4]. A new variable was created called FDGAPNEA, which was calculated as PAUSEMORE4 divided by the total 

length of feeding (FDGTOT) in secs. The results for FDGAPNEA are in number of events per second. 

SAS Code Model Problems Results AIC 
BIC 

The purpose of this analysis was to evaluate whether there was a difference between groups for the outcome variable FDGAPNEA, taking into 
account correlation within infant (ID was included in the class statement as well as group). Since there was only 1 measurement per feeding, there 
was no need to account for correlation within feeding. If the prior feeding was particularly stressful, there is the possibility for a carry-over effect on 
apnea, so order effect variables were included (studyday and dayfdgorder). First, the fixed effects model was determined, with all variables in the 
random effects model. 

*Model E1; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FDGAPNEA =group studyday dayfdgorder / solution; 
Random intercept group studyday dayfdgorder / subject=id v=4 vcorr=4; 
Run; 

None GROUP 0.0464 

STUDYDAY 0.1566 

DAYFDGORDER 0.0473 
 

-223.4 
-219.6 

*Model E2; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FDGAPNEA =group studyday / solution; 
Random intercept group studyday dayfdgorder / subject=id v=4 vcorr=4; 
Run; 

None GROUP 0.0243 

STUDYDAY 0.3339 
 

-218.3 
-214.4 

Random intercept / subject=id v=4 vcorr=4; 
Run; 

Solution for Fixed Effects 

Effect GROUP Estimate Standard Error DF t Value Pr > |t| 

Intercept   92.4371 1.1026 13 83.84 <.0001 

GROUP 0 -0.6393 1.0475 19 -0.61 0.5489 

GROUP 1 0 . . . . 
 

1
4
2

 



 
 

SAS Code Model Problems Results AIC 
BIC 

 

*Model E3; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FDGAPNEA =group dayfdgorder / solution; 
Random intercept group studyday dayfdgorder / subject=id v=4 vcorr=4; 
Run; 

None GROUP 0.0363 

DAYFDGORDER 0.0684 
 

-222.9 
-219.8 

*Model E4; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FDGAPNEA =group / solution; 
Random intercept group studyday dayfdgorder / subject=id v=4 vcorr=4; 
Run;  

None GROUP 0.0184 
 

-219.2 
-216.0 

Model E1 had the best AIC/BIC scores. Starting with model E1, add the interaction terms between group and the other variables, one at a time. 

*Model E5; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FDGAPNEA =group studyday dayfdgorder group*studyday / 
solution; 
Random intercept group studyday dayfdgorder / subject=id v=4 vcorr=4; 
Run; 

None 
 

GROUP 0.1683 

STUDYDAY 0.2085 

DAYFDGORDER 0.0570 

STUDYDAY*GROUP 0.8845 
 

-221.5 
-217.0 

*Model E6; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FDGAPNEA =group studyday dayfdgorder group*dayfdgorder / 
solution; 
Random intercept group studyday dayfdgorder / subject=id v=4 vcorr=4; 
Run; 

None GROUP 0.0952 

STUDYDAY 0.2699 

DAYFDGORDER 0.1780 

DAYFDGORDER*GROUP 0.6466 
 

-221.8 
-217.3 

Adding the interaction terms did not improve the model. Using the fixed effects model in E1, now determine the random effects model. 

*Model E7; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FDGAPNEA =group studyday dayfdgorder / solution; 
Random intercept group studyday / subject=id v=4 vcorr=4; 
Run; 

None GROUP 0.0430 

STUDYDAY 0.1566 

DAYFDGORDER 0.0473 
 

-223.4 
-219.6 

*Model E8; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 

None GROUP 0.0430 -223.4 
-219.6 

1
4
3

 



 
 

SAS Code Model Problems Results AIC 
BIC 

Model FDGAPNEA =group studyday dayfdgorder / solution; 
Random intercept group dayfdgorder / subject=id v=4 vcorr=4; 
Run; 

STUDYDAY 0.3442 

DAYFDGORDER 0.0140 
 

*Model E9; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FDGAPNEA =group studyday dayfdgorder / solution; 
Random intercept studyday dayfdgorder / subject=id v=4 vcorr=4; 
Run; 

None GROUP 0.2676 

STUDYDAY 0.4018 

DAYFDGORDER 0.2861 
 

-215.1 
-211.2 

*Model E10; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FDGAPNEA =group studyday dayfdgorder / solution; 
Random intercept group / subject=id v=4 vcorr=4; 
Run; 

None GROUP 0.0430 

STUDYDAY 0.1343 

DAYFDGORDER 0.0116 
 

-223.4 
-219.6 

*Model E11; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FDGAPNEA =group studyday dayfdgorder / solution; 
Random intercept studyday / subject=id v=4 vcorr=4; 
Run; 

None GROUP 0.0521 

STUDYDAY 0.4018 

DAYFDGORDER 0.2826 
 

-215.1 
-211.1 

*Model E12; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FDGAPNEA =group studyday dayfdgorder / solution; 
Random intercept dayfdgorder / subject=id v=4 vcorr=4; 
Run; 

None GROUP 0.0604 

STUDYDAY 0.4054 

DAYFDGORDER 0.2797 
 

-215.1 
-211.2 

*Model E13; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FDGAPNEA =group studyday dayfdgorder / solution; 
Random intercept / subject=id v=4 vcorr=4; 
Run; 

None GROUP 0.0390 

STUDYDAY 0.3883 

DAYFDGORDER 0.2689 
 

-215.1 
-211.2 

Model E10 was the most parsimonious random effects model with the best AIC/BIC scores. This model was used to run a residual analysis to 
evaluate the data for outliers. 

*Model E10 with residual analysis; 
Proc mixed data=hrv covtest method=ML; 

None No outliers outside of +/- 3.  

1
4
4

 



 
 

SAS Code Model Problems Results AIC 
BIC 

Class id group; 
Model FDGAPNEA =group studyday dayfdgorder / solution outpm=residls 
vciry; 
Random intercept group / subject=id v=4 vcorr=4; 
Run; 
 
data residls; 
set residls; 
label pred="Predicted Value" 
scaledresid="Scaled Residual"; 
format pred scaledresid 7.2; 
run; 

 
To estimate the values for FDGAPNEA, the variables other than group were removed from the fixed effects model. 

*Model E11; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FDGAPNEA =group / solution; 
Random intercept group / subject=id v=4 vcorr=4; 
Run; 

None GROUP 0.0446 
 

-217.5 
-214.3 

Solution for Fixed Effects 

1
4
5

 



 
 

SAS Code Model Problems Results AIC 
BIC 

Effect GROUP Estimate Standard Error DF t Value Pr > |t| 

Intercept   0.002806 0.002925 9 0.96 0.3624 

GROUP 0 0.008569 0.003674 9 2.33 0.0446 

GROUP 1 0 . . . . 
 

 
Interpretation: Infants fed with the CoReg method had fewer feeding-related apneic events than infants fed with the usual care method 

(p=0.043). Infants fed with usual care had 0.002806+0.008569 = 0.011375 apneas/second and infants fed with CoReg had 0.002806 apneas/sec. 

Converted to minutes, infants fed with usual care had 0.68 apneas/minute and infants fed with CoReg had 0.17 apneas/minute. 

F. Bradycardia: Number of seconds of bradycardia (defined as heart rate less than 100 bpm) during feeding [SECBRADY]. A new variable was 

created called FDGBRADY, which was calculated as the SECBRADY divided by the total length of feeding (FDGTOT). The results of 

FDGBRADY are in number of seconds of bradycardia per second of feeding.  

Model Model Problems Results AIC 
BIC 

The purpose of this analysis was to evaluate whether there was a difference between groups for the outcome variable FDGBRADY, taking into 
account correlation within infant (ID was included in the class statement as well as group). Since there was only 1 measurement per feeding, there 
was no need to account for correlation within feeding. If the prior feeding was particularly stressful, there is the possibility for a carry-over effect on 
bradycardia, so order effect variables were included (studyday and dayfdgorder). First, the fixed effects model was determined, with all variables in 
the random effects model. 

*Model F1; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FDGBRADY =group studyday dayfdgorder / solution; 
Random intercept group studyday dayfdgorder / subject=id v=4 vcorr=4; 
Run; 

None GROUP 0.1241 

STUDYDAY 0.8800 

DAYFDGORDER 0.6156 

 
 

-168.9 
-164.4 

*Model F2; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FDGBRADY =group studyday / solution; 
Random intercept group studyday dayfdgorder / subject=id v=4 vcorr=4; 
Run; 

None GROUP 0.1248 

STUDYDAY 0.9162 
 

-170.6 
-166.7 

1
4
6

 



 
 

Model Model Problems Results AIC 
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*Model F3; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FDGBRADY =group dayfdgorder / solution; 
Random intercept group studyday dayfdgorder / subject=id v=4 vcorr=4; 
Run;  

None GROUP 0.1189 

DAYFDGORDER 0.6238 
 

-170.8 
-167.0 

*Model F4; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FDGBRADY =group / solution; 
Random intercept group studyday dayfdgorder / subject=id v=4 vcorr=4; 
Run; 

None GROUP 0.1238 
 

-172.6 
-169.4 

Model F4 had the best AIC/BIC scores. Now add the interaction terms between group and the other variables. 

*Model F5; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FDGBRADY =group studyday dayfdgorder group*studyday / 
solution; 
Random intercept group studyday dayfdgorder / subject=id v=4 vcorr=4; 
Run; 

None  0.3322 

STUDYDAY 0.8206 

DAYFDGORDER 0.7640 

STUDYDAY*GROUP . 
 

-167.0 
-161.9 

*Model F6; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FDGBRADY =group studyday dayfdgorder group*dayfdgorder / 
solution; 
Random intercept group studyday dayfdgorder / subject=id v=4 vcorr=4; 
Run; 

None GROUP 0.2818 

STUDYDAY 0.7497 

DAYFDGORDER 0.7858 

DAYFDGORDER*GROUP . 
 

-165.1 
-159.3 

The interaction terms did not improve the model. Using the fixed effects model in F4, determine the random effects model. 

*Model F7; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FDGBRADY =group / solution; 
Random intercept group studyday / subject=id v=4 vcorr=4; 
Run; 

None GROUP 0.1282 
 

-172.5 
-169.3 

*Model F8; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FDGBRADY =group / solution; 

None GROUP 0.1238 
 

-172.6 
-169.4 

1
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BIC 

Random intercept group dayfdgorder / subject=id v=4 vcorr=4; 
Run; 

*Model F9; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FDGBRADY =group / solution; 
Random intercept studyday dayfdgorder / subject=id v=4 vcorr=4; 
Run; 

None GROUP . 
 

-174.4 
-171.9 

*Model F10; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FDGBRADY =group / solution; 
Random intercept group / subject=id v=4 vcorr=4; 
Run; 

None GROUP 0.1282 
 

-172.5 
-169.3 

*Model F11; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FDGBRADY =group / solution; 
Random intercept studyday / subject=id v=4 vcorr=4; 
Run; 

None GROUP 0.1316 
 

-174.4 
-171.9 

*Model F12; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FDGBRADY =group / solution; 
Random intercept dayfdgorder / subject=id v=4 vcorr=4; 
Run; 

None GROUP 0.1316 
 

-174.4 
-171.9 

*Model F13; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FDGBRADY =group / solution; 
Random intercept / subject=id v=4 vcorr=4; 
Run; 

None GROUP 0.1071 
 

-174.4 
-171.9 

Model F13 was the random effects model that was the most parsimonious and had the lowest AIC/BIC scores. Next, a residual analysis was run to 
evaluate the data for outliers. 

*Model F13 with residual analysis; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FDGBRADY =group / solution outpm=residls vciry; 

 There were no outliers outside of +/- 
3. 

 

1
4
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Random intercept / subject=id v=4 vcorr=4; 
Run; 
 
data residls; 
set residls; 
label pred="Predicted Value" 
scaledresid="Scaled Residual"; 
format pred scaledresid 7.2; 
run; 

 
Since no other variables were included in the fixed effects model, model F13 can be used for the estimates of the variable FDGBRADY. 

Solution for Fixed Effects 

Effect GROUP Estimate Standard Error DF t Value Pr > |t| 

Intercept   0.002717 0.003582 12 0.76 0.4628 

GROUP 0 0.007120 0.004171 16 1.71 0.1071 

GROUP 1 0 . . . . 
 

 

1
4
9

 



 
 

Interpretation: There was not a significant difference in the number of seconds of bradycardia between the two feeding methods (p=0.11). 

Infants fed with usual care had 0.002717+0.007120 = 0.009837 seconds of bradycardia per second of feeding time. Infants fed with the CoReg 

method had 0.007120 seconds of bradycardia per second of feeding time. Converted to seconds of bradycardia per minute of feeding time, infants 

fed with usual care had 0.59 seconds of bradycardia per minute of feeding and infants fed with CoReg had 0.43 seconds of bradycardia per 

minute of feeding. 

G. Mean Heart Rate During Feeding (FMeanHR): 

 

SAS Code Model Problems Results AIC 
BIC 

The purpose of this analysis was to evaluate whether there was a difference between groups for the outcome variable FMeanHR, taking into 
account correlation within infant (ID was included in the class statement as well as group). This measure was calculated for every 120-second 
bottle-in period that qualified for analysis of HRV. Some infants had multiple measurements within a feeding. To account for correlation within 
feeding, the variable FDGEVENT was added to the model. If the prior feeding was particularly stressful, there is the possibility for a carry-over 
effect on HR, so order effect variables were included (studyday and dayfdgorder). First, the fixed effects model was determined, with all variables 
in the random effects model. 

*Model G1; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FMeanHR=group studyday dayfdgorder FDGEVENT / solution; 
Random intercept group studyday dayfdgorder FDGEVENT / subject=id v=4 
vcorr=4; 
Run; 

None GROUP 0.3606 

STUDYDAY . 

DAYFDGORDER . 

FDGEVENT . 
 

455.2 
459.7 

*Model G2; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FMeanHR=group studyday dayfdgorder / solution; 
Random intercept group studyday dayfdgorder FDGEVENT / subject=id v=4 
vcorr=4; 
Run; 

None GROUP 0.3606 

STUDYDAY 0.2752 

DAYFDGORDER 0.2550 
 

461.2 
467.6 

*Model G3; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FMeanHR=group studyday FDGEVENT / solution; 
Random intercept group studyday dayfdgorder FDGEVENT / subject=id v=4 

None GROUP 0.3606 

STUDYDAY 0.5368 

FDGEVENT . 
 

461.2 
467.6 

1
5
0
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vcorr=4; 
Run; 

*Model G4; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FMeanHR=group dayfdgorder FDGEVENT / solution; 
Random intercept group studyday dayfdgorder FDGEVENT / subject=id v=4 
vcorr=4; 
Run; 

None GROUP 0.3606 

DAYFDGORDER 0.5549 

FDGEVENT . 
 

461.2 
467.6 

*Model G5; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FMeanHR=group FDGEVENT / solution; 
Random intercept group studyday dayfdgorder FDGEVENT / subject=id v=4 
vcorr=4; 
Run; 

None GROUP 0.3147 

FDGEVENT . 
 

459.5 
465.3 

*Model G6; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FMeanHR=group studyday / solution; 
Random intercept group studyday dayfdgorder FDGEVENT / subject=id v=4 
vcorr=4; 
Run; 

None GROUP 0.2842 

STUDYDAY 0.2023 
 

460.4 
466.2 

*Model G7; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FMeanHR=group dayfdgorder / solution; 
Random intercept group studyday dayfdgorder FDGEVENT / subject=id v=4 
vcorr=4; 
Run; 

None GROUP 0.3949 

DAYFDGORDER 0.2218 
 

458.3 
463.4 
 
 

*Model G8; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FMeanHR=group / solution; 
Random intercept group studyday dayfdgorder FDGEVENT / subject=id v=4 
vcorr=4; 
Run; 

None GROUP 0.3531 
 

459.7 
464.8 

Model G1 had the lowest AIC/BIC scores. Using this fixed effects model, the random effects model was then determined.  
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*Model G9; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FMeanHR=group studyday dayfdgorder FDGEVENT / solution; 
Random intercept group studyday dayfdgorder / subject=id v=4 vcorr=4; 
Run; 

None GROUP 0.3783 

STUDYDAY . 

DAYFDGORDER . 

FDGEVENT . 
 

453.5 
457.3 

*Model G10; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FMeanHR=group studyday dayfdgorder FDGEVENT / solution; 
Random intercept group studyday FDGEVENT / subject=id v=4 vcorr=4; 
Run; 

None GROUP 0.3861 

STUDYDAY . 

DAYFDGORDER . 

FDGEVENT . 
 

451.5 
454.7 

*Model G11; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FMeanHR=group studyday dayfdgorder FDGEVENT / solution; 
Random intercept group dayfdgorder FDGEVENT / subject=id v=4 vcorr=4; 
Run; 

None  

GROUP 0.3510 

STUDYDAY . 

DAYFDGORDER . 

FDGEVENT . 
 

453.3 
457.1 
 
 

*Model G12; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FMeanHR=group studyday dayfdgorder FDGEVENT / solution; 
Random intercept studyday dayfdgorder FDGEVENT / subject=id v=4 vcorr=4; 
Run; 

None GROUP 0.0760 

STUDYDAY . 

DAYFDGORDER . 

FDGEVENT . 
 

454.5 
457.7 

*Model G13; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FMeanHR=group studyday dayfdgorder FDGEVENT / solution; 
Random intercept group studyday / subject=id v=4 vcorr=4; 
Run; 

None GROUP 0.4778 

STUDYDAY . 

DAYFDGORDER . 

FDGEVENT . 
 

454.3 
457.5 

*Model G14; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 

None GROUP 0.1884 

STUDYDAY . 

456.0 
459.2 
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Model FMeanHR=group studyday dayfdgorder FDGEVENT / solution; 
Random intercept group dayfdgorder / subject=id v=4 vcorr=4; 
Run; 

DAYFDGORDER . 

FDGEVENT . 
 

*Model G15; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FMeanHR=group studyday dayfdgorder FDGEVENT / solution; 
Random intercept group FDGEVENT / subject=id v=4 vcorr=4; 
Run; 

None GROUP 0.3833 

STUDYDAY . 

DAYFDGORDER . 

FDGEVENT . 
 

451.5 
454.7 

*Model G16; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FMeanHR=group studyday dayfdgorder FDGEVENT / solution; 
Random intercept studyday dayfdgorder / subject=id v=4 vcorr=4; 
Run; 

None GROUP 0.1200 

STUDYDAY . 

DAYFDGORDER . 

FDGEVENT . 
 

455.9 
459.1 

*Model G17; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FMeanHR=group studyday dayfdgorder FDGEVENT / solution; 
Random intercept studyday FDGEVENT / subject=id v=4 vcorr=4; 
Run; 

None GROUP 0.0819 

STUDYDAY . 

DAYFDGORDER . 

FDGEVENT . 
 

455.8 
458.3 

*Model G18; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FMeanHR=group studyday dayfdgorder FDGEVENT / solution; 
Random intercept dayfdgorder FDGEVENT / subject=id v=4 vcorr=4; 
Run; 

None GROUP 0.0759 

STUDYDAY . 

DAYFDGORDER . 

FDGEVENT . 
 

454.5 
457.7 

*Model G19; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FMeanHR=group studyday dayfdgorder FDGEVENT / solution; 
Random intercept group / subject=id v=4 vcorr=4; 
Run; 

None GROUP 0.3693 

STUDYDAY . 

DAYFDGORDER . 

FDGEVENT . 
 

457.3 
459.9 
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*Model G20; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FMeanHR=group studyday dayfdgorder FDGEVENT / solution; 
Random intercept studyday / subject=id v=4 vcorr=4; 
Run; 

None GROUP 0.1727 

STUDYDAY . 

DAYFDGORDER . 

FDGEVENT . 
 

460.0 
462.5 

*Model G21; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FMeanHR=group studyday dayfdgorder FDGEVENT / solution; 
Random intercept dayfdgorder / subject=id v=4 vcorr=4; 
Run; 

None GROUP 0.0469 

STUDYDAY . 

DAYFDGORDER . 

FDGEVENT . 
 

457.8 
460.3 

*Model G22; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FMeanHR=group studyday dayfdgorder FDGEVENT / solution; 
Random intercept FDGEVENT / subject=id v=4 vcorr=4; 
Run; 

None GROUP 0.0811 

STUDYDAY . 

DAYFDGORDER . 

FDGEVENT . 
 

455.8 
458.3 

*Model G23; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FMeanHR=group studyday dayfdgorder FDGEVENT / solution; 
Random intercept / subject=id v=4 vcorr=4; 
Run; 

None GROUP 0.1524 

STUDYDAY . 

DAYFDGORDER . 

FDGEVENT . 
 

461.5 
463.4 

Model G15 was the most parsimonious model with the best AIC/BIC scores. This model was used to run a residual analysis to evaluate the data 
for outliers. 

*Model G15 with Residual analysis; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FMeanHR=group studyday dayfdgorder FDGEVENT / solution 
outpm=residls vciry; 
Random intercept group FDGEVENT / subject=id v=4 vcorr=4; 
Run; 
 
data residls; 

 No outliers outside of +/- 3.  
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set residls; 
label pred="Predicted Value" 
scaledresid="Scaled Residual"; 
format pred scaledresid 7.2; 
run; 

 
To estimate the values for Mean HR during feeding for the two groups, the model was run without the other variables in the fixed effects model. 

*Model G16; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FMeanHR=group / solution; 
Random intercept group FDGEVENT / subject=id v=4 vcorr=4; 
Run; 

   

Solution for Fixed Effects 

Effect GROUP Estimate Standard Error DF t Value Pr > |t| 

Intercept   157.12 3.0890 9 50.86 <.0001 

GROUP 0 2.2790 2.5863 9 0.88 0.4011 

GROUP 1 0 . . . . 
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Interpretation: There was no significant difference in HR during feeding between the two groups (p=0.38). Heart rate during feeding was 

for infants fed with usual care = 2.279 + 157.12 = 159.4 beats per minute and for infants fed with CoReg 157.12 beats per minute. 

H. Respiratory Rate During Feeding (FDGRR): This variable measured the mean respiratory rate during feeding in breaths per minute. 

SAS Code Model Problems Results AIC 
BIC 

The purpose of this analysis was to evaluate whether there was a difference between groups for the outcome variable FDGRR, taking into account 
correlation within infant (ID was included in the class statement as well as group). There was only one measurement per feeding, so there was no 
need to account for correlation within feeding. If the prior feeding was particularly stressful, there is the possibility for a carry-over effect on RR, so 
order effect variables were included (studyday and dayfdgorder). Baseline RR was used as a covariate in the analysis. First, the fixed effects 
model was determined, with all variables in the random effects model. 

*Model H1; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FDGRR = group studyday dayfdgorder BASERR / solution; 
Random intercept group studyday dayfdgorder BASERR / subject=id v=4 
vcorr=4; 
Run;  

None GROUP 0.0656 

STUDYDAY 0.8565 

DAYFDGORDER 0.1990 

BASERR 0.1536 
 

261.0 
266.1 

*Model H2; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FDGRR = group studyday dayfdgorder / solution; 
Random intercept group studyday dayfdgorder BASERR / subject=id v=4 
vcorr=4; 
Run;  

None GROUP 0.0860 

STUDYDAY 0.8609 

DAYFDGORDER 0.7872 
 

271.0 
275.5 

*Model H3; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FDGRR = group studyday BASERR / solution; 
Random intercept group studyday dayfdgorder BASERR / subject=id v=4 
vcorr=4; 
Run;  

None GROUP 0.0571 

STUDYDAY 0.9180 

BASERR 0.1702 
 

261.3 
265.8 

*Model H4; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FDGRR = group dayfdgorder BASERR / solution; 
Random intercept group studyday dayfdgorder BASERR / subject=id v=4 
vcorr=4; 

None GROUP 0.0631 

DAYFDGORDER 0.2005 

BASERR 0.1529 
 

259.0 
263.5 
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Run;  

*Model H5; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FDGRR = group studyday / solution; 
Random intercept group studyday dayfdgorder BASERR / subject=id v=4 
vcorr=4; 
Run; 

None GROUP 0.0792 

STUDYDAY 0.8727 
 

269.1 
273 

*Model H6; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FDGRR = group dayfdgorder / solution; 
Random intercept group studyday dayfdgorder BASERR / subject=id v=4 
vcorr=4; 
Run; 

None GROUP 0.0841 

DAYFDGORDER 0.7943 
 

269.1 
272.9 

*Model H7; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FDGRR = group BASERR / solution; 
Random intercept group studyday dayfdgorder BASERR / subject=id v=4 
vcorr=4; 
Run; 

None GROUP 0.0569 

BASERR 0.1698 
 

259.3 
263.1 

*Model H8; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FDGRR = group / solution; 
Random intercept group studyday dayfdgorder BASERR / subject=id v=4 
vcorr=4; 
Run; 

None GROUP 0.0809 
 

267.1 
270.3 

Model H7 was the most parsimonious model with the best AIC/BIC scores. Use this model and determine the random effects model. 

*Model H9; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FDGRR = group BASERR / solution; 
Random intercept group studyday dayfdgorder / subject=id v=4 vcorr=4; 
Run; 

None GROUP 0.0569 

BASERR . 
 

259.3 
263.1 

*Model H10; 
Proc mixed data=hrv covtest method=ML; 

None GROUP 0.0569 259.3 
263.1 
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Class id group; 
Model FDGRR = group BASERR / solution; 
Random intercept group studyday BASERR / subject=id v=4 vcorr=4; 
Run; 

BASERR 0.0353 
 

*Model H11; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FDGRR = group BASERR / solution; 
Random intercept studyday dayfdgorder BASERR / subject=id v=4 vcorr=4; 
Run; 

None GROUP . 

BASERR 0.0644 
 

260.4 
264.2 

*Model H12; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FDGRR = group BASERR / solution; 
Random intercept group studyday / subject=id v=4 vcorr=4; 
Run; 

None GROUP 0.0569 

BASERR 0.0353 
 

259.3 
263.1 

*Model H13; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FDGRR = group BASERR / solution; 
Random intercept group dayfdgorder / subject=id v=4 vcorr=4; 
Run; 

None GROUP 0.0595 

BASERR 0.1712 
 

259.4 
263.2 

*Model H14; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FDGRR = group BASERR / solution; 
Random intercept group BASERR / subject=id v=4 vcorr=4; 
Run; 

None GROUP 0.0595 

BASERR 0.0084 
 

259.4 
263.2 

*Model H15; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FDGRR = group BASERR / solution; 
Random intercept studyday dayfdgorder / subject=id v=4 vcorr=4; 
Run; 

None GROUP . 

BASERR . 
 

260.4 
264.2 

*Model H16; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FDGRR = group BASERR / solution; 

None GROUP 0.2596 

BASERR 0.0056 
 

260.4 
264.2 
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Random intercept studyday BASERR / subject=id v=4 vcorr=4; 
Run; 

*Model H17; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FDGRR = group BASERR / solution; 
Random intercept dayfdgorder BASERR / subject=id v=4 vcorr=4; 
Run; 

None GROUP 0.2603 

BASERR 0.0099 
 

258.4 
261.6 

*Model H18; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FDGRR = group BASERR / solution; 
Random intercept group / subject=id v=4 vcorr=4; 
Run; 

None GROUP 0.0594 

BASERR 0.0055 
 

259.4 
263.2 

*Model H19; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FDGRR = group BASERR / solution; 
Random intercept studyday / subject=id v=4 vcorr=4; 
Run; 

None GROUP 0.0459 

BASERR 0.0046 
 

260.4 
264.2 

*Model H20; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FDGRR = group BASERR / solution; 
Random intercept dayfdgorder / subject=id v=4 vcorr=4; 
Run; 

None GROUP 0.0543 

BASERR 0.0075 
 

258.4 
261.6 

*Model H21; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FDGRR = group BASERR / solution; 
Random intercept BASERR / subject=id v=4 vcorr=4; 
Run; 

None GROUP 0.0543 

BASERR 0.0034 
 

258.4 
261.6 

*Model H22; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FDGRR = group BASERR / solution; 
Random intercept / subject=id v=4 vcorr=4; 
Run; 

None GROUP 0.0331 

BASERR 0.0016 
 

258.4 
261.6 
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Model H22 is the most parsimonious model with the best AIC/BIC scores. Next, a residual analysis was run to evaluate the data for outliers. 

*Model H22 with residual analysis; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FDGRR = group BASERR / solution outpm=residls vciry; 
Random intercept / subject=id v=4 vcorr=4; 
Run; 
 
data residls; 
set residls; 
label pred="Predicted Value" 
scaledresid="Scaled Residual"; 
format pred scaledresid 7.2; 
run; 

 No outliers outside of +/- 3.  

 
To estimate the values for RR during feeding for each group, the model was run without the other variables in the fixed effects model. 

*Model H23; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FDGRR = group / solution; 
Random intercept / subject=id v=4 vcorr=4; 
Run; 
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Solution for Fixed Effects 

Effect GROUP Estimate Standard Error DF t Value Pr > |t| 

Intercept   70.0025 3.3462 13 20.92 <.0001 

GROUP 0 -7.9722 3.5400 19 -2.25 0.0363 

GROUP 1 0 . . . . 
 

 
Interpretation: Infants fed with the CoReg method had a significantly higher mean RR than infants fed with the usual care method 

(p=0.03). Mean RR for infants fed with the usual care method was 70.0025 – 7.9722 = 62 breaths per minute. Infants fed with the CoReg method 

had a mean RR of 70 breaths per minute.   

Question 3: Is there a difference between the feeding methods for heart rate variability outcome measures? 

An analysis was run to determine if there was a difference in heart rate variability outcomes between the intervention and usual-care 

feeding methods [GROUP]. The specific measures evaluated included: HF (high frequency) Power, LF (low frequency) Power, LF/HF Ratio, and 

SD12. These variables had only one measurement per feeding, so there was no need to account for correlation within feedings, but correlation 

between feedings of the same infant was evaluated. Order of study feedings was also considered. When baseline values for a variable were 

available and appropriate, these were considered in the covariance structure. 

I. High Frequency Power in milliseconds squared (FHFms): 

Model Model Problems Results AIC 
BIC 

The purpose of this analysis was to evaluate whether there was a difference between groups for the outcome variable FHFms, taking into account 
correlation within infant (ID was included in the class statement as well as group). This outcome variable had multiple measurements per feeding. 
Correlation between measures within the same feeding were accounted for using the term FDGEVENT. If the prior feeding was particularly 
stressful, there is the possibility for a carry-over effect on HF, so order effect variables were included (studyday and dayfdgorder). First, the fixed 
effects model was determined, with all variables in the random effects model. 
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*Model I1; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FHFms=group studyday dayfdgorder fdgevent / solution; 
Random intercept group studyday dayfdgorder fdgevent / subject=id v=8 
vcorr=8; 
Run;  

Estimated G matrix 
is not positive 
definite. 
Model 
overparametized; 
not able to estimate. 

GROUP 0.2368 

STUDYDAY . 

DAYFDGORDER . 

FDGEVENT . 
 

641.2 
643.7 

*Model I2; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FHFms=group studyday dayfdgorder / solution; 
Random intercept group studyday dayfdgorder fdgevent / subject=id  v=8 
vcorr=8; 
Run; 

Estimated G matrix 
is not positive 
definite. 

GROUP 0.2368 

STUDYDAY 0.8380 

DAYFDGORDER 0.8393 
 

647.2 
651.7 

*Model I3; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FHFms=group studyday fdgevent / solution; 
Random intercept group studyday dayfdgorder fdgevent / subject=id  v=8 
vcorr=8; 
Run; 

Estimated G matrix 
is not positive 
definite. 

GROUP 0.2368 

STUDYDAY 0.7739 

FDGEVENT . 
 

647.2 
651.7 

*Model I4; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FHFms=group dayfdgorder fdgevent / solution; 
Random intercept group studyday dayfdgorder fdgevent / subject=id  v=8 
vcorr=8; 
Run; 

Estimated G matrix 
is not positive 
definite. 

GROUP 0.2368 

DAYFDGORDER 0.7815 

FDGEVENT . 
 

647.2 
651.7 

*Model I5; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FHFms=group studyday / solution; 
Random intercept group studyday dayfdgorder fdgevent / subject=id  v=8 
vcorr=8; 
Run; 

Estimated G matrix 
is not positive 
definite. 

GROUP 0.2384 

STUDYDAY 0.8266 
 

645.2 
649.1 
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*Model I6; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FHFms=group dayfdgorder / solution; 
Random intercept group studyday dayfdgorder fdgevent / subject=id  v=8 
vcorr=8; 
Run; 

Estimated G matrix 
is not positive 
definite. 

GROUP 0.2385 

DAYFDGORDER 0.8286 
 

645.2 
649.1 

*Model I7; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FHFms=group fdgevent / solution; 
Random intercept group studyday dayfdgorder fdgevent / subject=id  v=8 
vcorr=8; 
Run; 

Estimated G matrix 
is not positive 
definite. 

GROUP 0.2438 

FDGEVENT . 
 

645.3 
649.1 

*Model I8; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FHFms=group / solution; 
Random intercept group studyday dayfdgorder fdgevent / subject=id  v=8 
vcorr=8; 
Run; 

Estimated G matrix 
is not positive 
definite. 

GROUP 0.2450 
 

643.3 
646.5 

Model I1 had the best AIC/BIC scores, but was overparametized. All of the models had an “estimated G matrix not positive definite.” Of the models 
that were not overparametized, model I8 had the best AIC/BIC scores. Use this fixed effects model and determine the random effects model. 

*Model I9; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FHFms=group / solution; 
Random intercept group studyday dayfdgorder / subject=id  v=8 vcorr=8; 
Run; 

Estimated G matrix 
is not positive 
definite. 

GROUP 0.2450 
 

643.3 
646.5 

*Model I10; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FHFms=group / solution; 
Random intercept group studyday fdgevent / subject=id  v=8 vcorr=8; 
Run; 

Estimated G matrix 
is not positive 
definite. 

GROUP 0.2448 
 

643.3 
646.5 
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*Model I11; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FHFms=group / solution; 
Random intercept group dayfdgorder fdgevent / subject=id  v=8 vcorr=8; 
Run; 

Estimated G matrix 
is not positive 
definite. 

GROUP 0.2450 
 

643.3 
646.5 

*Model I12; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FHFms=group / solution; 
Random intercept studyday dayfdgorder fdgevent / subject=id  v=8 vcorr=8; 
Run; 

Estimated G matrix 
is not positive 
definite. 

GROUP 0.0397 
 

666.0 
668.6 

*Model I13; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FHFms=group / solution; 
Random intercept group studyday / subject=id  v=8 vcorr=8; 
Run; 

Estimated G matrix 
is not positive 
definite. 

GROUP 0.2450 
 

643.3 
646.5 

*Model I14; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FHFms=group / solution; 
Random intercept group dayfdgorder / subject=id  v=8 vcorr=8; 
Run; 

Estimated G matrix 
is not positive 
definite. 

GROUP 0.2450 
 

643.3 
646.5 

*Model I15; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FHFms=group / solution; 
Random intercept group fdgevent / subject=id  v=8 vcorr=8; 
Run; 

Estimated G matrix 
is not positive 
definite. 

GROUP 0.2450 
 

643.3 
646.5 

*Model I16; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FHFms=group / solution; 
Random intercept studyday dayfdgorder / subject=id  v=8 vcorr=8; 
Run; 

Estimated G matrix 
is not positive 
definite. 

GROUP 0.0397 
 

666.0 
668.6 
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*Model I17; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FHFms=group / solution; 
Random intercept studyday fdgevent / subject=id  v=8 vcorr=8; 
Run; 

Estimated G matrix 
is not positive 
definite. 

GROUP 0.0397 
 

666.0 
668.6 

*Model I18; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FHFms=group / solution; 
Random intercept dayfdgorder fdgevent / subject=id  v=8 vcorr=8; 
Run; 

Estimated G matrix 
is not positive 
definite. 

GROUP 0.0397 
 

666.0 
668.6 

*Model I19; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FHFms=group / solution; 
Random intercept group / subject=id  v=8 vcorr=8; 
Run; 

None GROUP 0.2449 
 

643.3 
646.5 

*Model I20; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FHFms=group / solution; 
Random intercept studyday / subject=id  v=8 vcorr=8; 
Run; 

Estimated G matrix 
is not positive 
definite. 

GROUP 0.0383 
 

666.0 
668.6 

*Model I21; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FHFms=group / solution; 
Random intercept dayfdgorder / subject=id  v=8 vcorr=8; 
Run; 

Estimated G matrix 
is not positive 
definite. 

GROUP 0.0386 
 

666.0 
668.6 

*Model I22; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FHFms=group / solution; 
Random intercept fdgevent / subject=id  v=8 vcorr=8; 
Run; 

Estimated G matrix 
is not positive 
definite. 

GROUP 0.0388 
 

666.0 
668.6 
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*Model I23; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FHFms=group / solution; 
Random intercept / subject=id  v=8 vcorr=8; 
Run; 

None. GROUP 0.0374 
 

666.0 
668.6 

*Model I24; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FHFms=group / solution; 
Random group / subject=id v=8 vcorr=8; 
Run; 

None. GROUP 0.2337 
 

641.3 
643.9 

Model I24 had the best AIC/BIC scores. This model was used to run a residual analysis to evaluate the data for outliers. 

*Model I24 with residual analysis; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FHFms=group / solution outpm=residls vciry; 
Random group / subject=id v=8 vcorr=8; 
Run; 
 
data residls; 
set residls; 
label pred="Predicted Value" 
scaledresid="Scaled Residual"; 
format pred scaledresid 7.2; 
run; 

 Outliers present outside of +/- 3.  
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Since there were outliers outside of +/- 3, the data was transformed, first using the square root. 

*Square Root Transformation; 
%let ypower=0.5; 
data adjusted; 
set hrv; 
ytrans=fhfms**&ypower; 
label ytrans="FHFms to Power &ypower"; 
run; 
 
*Model I24 Square Root Transformed;  
Proc mixed data=adjusted covtest method=ML; 
Class id group; 
Model ytrans=group / solution outpm=residls vciry; 
Random group / subject=id v=8 vcorr=8; 
Run; 

None GROUP 0.1864 

 
There were still outliers outside 
of +/- 3. 
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Since there were still outliers, a log transformation was used. 

*Model I24 with Log transformation; 
data adjusted; 
set hrv; 
ytrans=log(fhfms); 
label ytrans="FHFms to Log"; 
run; 
 
Proc mixed data=adjusted covtest method=ML; 
Class id group; 
Model ytrans=group / solution outpm=residls vciry; 
Random group / subject=id v=8 vcorr=8; 
Run; 
 

None GROUP 0.2662 

 
No outliers outside of +/- 3. 
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Interpretation: There was not a significant difference between the two feeding methods for HF Power (p=0.26). The estimates for HF Power (ms2) 

were for the usual care group 16.1180+6.8023=22.92 and for infants fed with the CoReg method 6.80.  

J. Low Frequency Power in milliseconds squared [FLFms]: 

 
Model I24 was used to estimate group values for HF Power. 

Solution for Fixed Effects 

Effect GROUP Estimate Standard Error DF t Value Pr > |t| 

Intercept   6.8023 10.0136 22 0.68 0.5040 

GROUP 0 16.1180 13.1613 22 1.22 0.2337 

GROUP 1 0 . . . . 
 

Model Model Problems Results AIC 
BIC 

The purpose of this analysis was to evaluate whether there was a difference between groups for the outcome variable FLFms, taking into account 
correlation within infant (ID was included in the class statement as well as group). This outcome variable had multiple measurements per feeding. 
Correlation between measures within the same feeding were accounted for using the term FDGEVENT. If the prior feeding was particularly 
stressful, there is the possibility for a carry-over effect on HF, so order effect variables were included (studyday and dayfdgorder). The random 
effects model identified from the analysis of FHFms was used. The fixed effects model was determined. 
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*Model J1; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FLFms=group studyday dayfdgorder fdgevent / solution; 
Random intercept group / subject=id v=4 vcorr=4; 
Run;   

Estimated G matrix 
not positive definite. 
 
Model 
overparameterized. 

GROUP 0.3192 

STUDYDAY . 

DAYFDGORDER . 

FDGEVENT . 
 

1079.8 
1081.7 

*Model J2; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FLFms=group studyday dayfdgorder / solution; 
Random intercept group / subject=id v=4 vcorr=4; 
Run;  

Estimated G matrix 
not positive definite. 

GROUP 0.3192 

STUDYDAY 0.3606 

DAYFDGORDER 0.7012 
 

1085.8 
1089.6 

*Model J3; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FLFms=group studyday fdgevent / solution; 
Random intercept group / subject=id v=4 vcorr=4; 
Run; 

Estimated G matrix 
not positive definite. 

GROUP 0.3192 

STUDYDAY 0.9303 

FDGEVENT 0.7012 
 

1085.8 
1089.6 

*Model J4; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FLFms=group dayfdgorder fdgevent / solution; 
Random intercept group / subject=id v=4 vcorr=4; 
Run; 

Estimated G matrix 
not positive definite. 

GROUP 0.3192 

DAYFDGORDER 0.9303 

FDGEVENT 0.3606 
 

1085.8 
1089.6 

*Model J5; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FLFms=group studyday / solution; 
Random intercept group / subject=id v=4 vcorr=4; 
Run; 

Estimated G matrix 
not positive definite. 

GROUP 0.3045 

STUDYDAY 0.3797 
 

1083.9 
1087.1 

*Model J6; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FLFms=group dayfdgorder / solution; 
Random intercept group / subject=id v=4 vcorr=4; 
Run; 

Estimated G matrix 
not positive definite. 

GROUP 0.3510 

DAYFDGORDER 0.7673 
 

1084.6 
1087.8 

*Model J7; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 

Estimated G matrix 
not positive definite. 

GROUP 0.3211 

FDGEVENT 0.3308 
 

1083.8 
1087 
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Model FLFms=group fdgevent / solution; 
Random intercept group / subject=id v=4 vcorr=4; 
Run; 

*Model J8; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FLFms=group / solution; 
Random intercept group / subject=id v=4 vcorr=4; 
Run; 

Estimated G matrix 
not positive definite. 

GROUP 0.3373 
 

1082.6 
1085.2 

Model J8 had the best AIC/BIC scores of the models above, with the except of model J1, which was overparameterized. Since model J8 still got 
an error message stating the estimated G matrix was not positive definite, the random effects model was simplified. 

*Model J9; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FLFms=group / solution; 
Random intercept / subject=id v=4 vcorr=4; 
Run; 

None GROUP 0.0792 
 

1099.8 
1102.3 

Next, the data were evaluated for outliers using a residual analysis. 

*Model J9 with residual analysis; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FLFms=group / solution outpm=residls vciry; 
Random intercept / subject=id v=4 vcorr=4; 
Run; 
 
data residls; 
set residls; 
label pred="Predicted Value" 
scaledresid="Scaled Residual"; 
format pred scaledresid 7.2; 
run; 

 There are outliers outside of +/- 
3. 
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Since there were outliers outside of +/- 3, the data were transformed. A log transformation was used since this was what worked best for FHFms. 

*Log transformation; 
data adjusted; 
set hrv; 
ytrans=log(flfms); 
label ytrans="FLFms to Log"; 
run; 
 
*Once log transformed, run procmixed modeling ytrans; 
 
Proc mixed data=adjusted covtest method=ML; 
Class id group; 
Model ytrans=group / solution outpm=residls vciry; 
Random intercept / subject=id v=4 vcorr=4; 
Run; 

 No outliers outside of +/- 3. 
 

GROUP 0.0608 
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Interpretation: There was no significant difference between the two feeding methods for LF Power, although there was a trend toward significance 

(p=0.06). Infants fed with the usual care group had LF Power 75.1561 + 290.90 = 366.06 ms2 and infants fed with the CoReg method had LF 

Power of 75.16 ms2. If LF Power is an indicator of increased sympathetic input (i.e., more stress), then these results suggest that infants fed with 

the CoReg method had less sympathetic input (i.e., less stress). 

 

 

 

 

 

 
Model J9 was used to estimate values for FLFms for the two groups. 

Solution for Fixed Effects 

Effect GROUP Estimate Standard Error DF t Value Pr > |t| 

Intercept   75.1561 157.14 13 0.48 0.6404 

GROUP 0 290.90 162.60 54 1.79 0.0792 

GROUP 1 0 . . . . 
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K. Low Frequency to High Frequency Ratio [FLFtoHFRatioms]: 

Model Model Problems Results AIC 
BIC 

The purpose of this analysis was to evaluate whether there was a difference between groups for the outcome variable  FLFtoHFRatioms, taking 
into account correlation within infant (ID was included in the class statement as well as group). This outcome variable had multiple measurements 
per feeding. Correlation between measures within the same feeding were accounted for using the term FDGEVENT. If the prior feeding was 
particularly stressful, there is the possibility for a carry-over effect on LF/HF ratio, so order effect variables were included (studyday and 
dayfdgorder). The random effects model identified from the analysis of FHFms was used. The fixed effects model was determined. 

*Model K1; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FLFtoHFRatioms=group studyday dayfdgorder fdgevent / solution; 
Random intercept group / subject=id v=4 vcorr=4; 
Run;  

Estimated G matrix 
not positive definite.  
Model 
overparameterized. 
 

 

GROUP 0.9425 

STUDYDAY . 

DAYFDGORDER . 

FDGEVENT . 
 

515.7 
517.6 

*Model K2; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FLFtoHFRatioms=group studyday dayfdgorder / solution; 
Random intercept group / subject=id v=4 vcorr=4; 
Run;  

Estimated G matrix 
not positive definite.  
 

GROUP 0.9425 

STUDYDAY 0.8683 

DAYFDGORDER 0.3873 
 

521.7 
525.5 

*Model K3; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FLFtoHFRatioms=group studyday fdgevent / solution; 
Random intercept group / subject=id v=4 vcorr=4; 
Run; 

Estimated G matrix 
not positive definite.  
 

GROUP 0.9425 

STUDYDAY 0.4089 

FDGEVENT 0.3873 
 

521.7 
525.5 

*Model K4; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FLFtoHFRatioms=group dayfdgorder fdgevent / solution; 
Random intercept group / subject=id v=4 vcorr=4; 
Run; 

Estimated G matrix 
not positive definite.  
 

GROUP 0.9425 

DAYFDGORDER 0.4089 

FDGEVENT 0.8683 
 

521.7 
525.5 

*Model K5; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FLFtoHFRatioms=group studyday / solution; 
Random intercept group / subject=id v=4 vcorr=4; 
Run; 

Estimated G matrix 
not positive definite. 

GROUP 0.9949 

STUDYDAY 0.9267 
 

520.4 
523.6 
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*Model K6; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FLFtoHFRatioms=group dayfdgorder / solution; 
Random intercept group / subject=id v=4 vcorr=4; 
Run; 

Estimated G matrix 
not positive definite. 

GROUP 0.9695 

DAYFDGORDER 0.3940 
 

519.7 
522.9 

*Model K7; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FLFtoHFRatioms=group fdgevent / solution; 
Random intercept group / subject=id v=4 vcorr=4; 
Run; 

Estimated G matrix 
not positive definite. 

GROUP 0.9483 

FDGEVENT 0.7938 
 

520.3 
523.5 

*Model K8; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FLFtoHFRatioms=group / solution; 
Random intercept group / subject=id v=4 vcorr=4; 
Run; 

Estimated G matrix 
not positive definite. 

GROUP 0.9793 
 

518.4 
520.9 

Model K8 had the best AIC/BIC scores of the above models that were not overparameterized. Since the G matrix was not positive definite, the 
random effects model was simplified. 

*Model K9; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FLFtoHFRatioms=group / solution; 
Random intercept / subject=id v=4 vcorr=4; 
Run; 

None 
 

 GROUP 0.9788 
 

518.4 
520.9 

Model K9 did not have any model problems and had the same AIC/BIC as model K8. This model was used to run a residual analysis. 

*Model K9 with residual analysis; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model FLFtoHFRatioms=group / solution outpm=residls vciry; 
Random intercept / subject=id v=4 vcorr=4; 
Run; 
 
data residls; 
set residls; 
label pred="Predicted Value" 
scaledresid="Scaled Residual"; 
format pred scaledresid 7.2; 
run; 

None There are outliers outside of 
+/- 3. 
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Since there were outliers, the data were log transformed, as was done with LF and HF Power. 

*Log transformation; 
data adjusted; 
set hrv; 
ytrans=log(FLFtoHFRatioms); 
label ytrans="FLFtoHFRatioms to Log"; 
run; 
 
Proc mixed data=adjusted covtest method=ML; 
Class id group; 
Model ytrans=group / solution outpm=residls vciry; 
Random intercept / subject=id v=4 vcorr=4; 
Run; 

None No outliers outside of +/- 3. 
 

GROUP 0.8620 
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Interpretation: There was no significant difference in LF to HF Ratio between the two feeding methods (p=0.86). The LF to HF Ratio for infants fed 

with the usual care method was 12.3387 + 0.06399 = 12.4 and for the CoReg method was 12.34.  

 

 

 

 

 

 

 
Model K9 was used to estimate values for LF/HF Ratio for the groups. 

  

Solution for Fixed Effects 

Effect GROUP Estimate Standard Error DF t Value Pr > |t| 

Intercept   12.3387 2.4233 13 5.09 0.0002 

GROUP 0 0.06399 2.3936 54 0.03 0.9788 

GROUP 1 0 . . . . 
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L. SD12: 

 

SAS Code Model Problems Results AIC 
BIC 

The purpose of this analysis was to evaluate whether there was a difference between groups for the outcome variable SD12, taking into account 
correlation within infant (ID was included in the class statement as well as group). This outcome variable had only one measurement per feeding. 
If the prior feeding was particularly stressful, there is the possibility for a carry-over effect on SD12, so order effect variables were included 
(studyday and dayfdgorder). First, the fixed effects model was determined, with all variables in the random effects model. 

*Model L1; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model SD12=group studyday dayfdgorder / solution; 
Random intercept group studyday dayfdgorder / subject=id v=4 vcorr=4; 
Run; 

None GROUP 0.0417 

STUDYDAY 0.9026 

DAYFDGORDER 0.4528 

 
 

-48.7 
-43.6 

*Model L2; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model SD12=group studyday / solution; 
Random intercept group studyday dayfdgorder / subject=id v=4 vcorr=4; 
Run; 

None GROUP 0.0496 

STUDYDAY 0.9079 
 

-50.2 
-45.7 

*Model L3; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model SD12=group dayfdgorder / solution; 
Random intercept group studyday dayfdgorder / subject=id v=4 vcorr=4; 
Run; 

None GROUP 0.0384 

DAYFDGORDER 0.4536 
 

-50.7 
-46.2 

*Model L4; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model SD12=group / solution; 
Random intercept group studyday dayfdgorder / subject=id v=4 vcorr=4; 
Run; 

None GROUP 0.0495 
 

-52.2 
-48.3 

Model L4 had the best AIC/BIC scores. Use this fixed effects model and now determine the random effects model. 

*Model L5; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model SD12=group / solution; 
Random intercept group studyday / subject=id v=4 vcorr=4; 

None GROUP 0.0510 
 

-54 
-50.8 
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SAS Code Model Problems Results AIC 
BIC 

Run; 

*Model L6; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model SD12=group / solution; 
Random intercept group dayfdgorder / subject=id v=4 vcorr=4; 
Run; 

None 
 
  

GROUP 0.0495 
 

-52.2 
-48.3 

*Model L7; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model SD12=group / solution; 
Random intercept studyday dayfdgorder / subject=id v=4 vcorr=4; 
Run; 

None GROUP 0.2418 
 

-53.8 
-50.6 

*Model L8; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model SD12=group / solution; 
Random intercept group / subject=id v=4 vcorr=4; 
Run; 

None GROUP 0.0510 
 

-54 
-50.8 

*Model L9; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model SD12=group / solution; 
Random intercept studyday / subject=id v=4 vcorr=4; 
Run; 

None GROUP 0.0332 
 

-55.8 
-53.2 

*Model L10; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model SD12=group / solution; 
Random intercept dayfdgorder / subject=id v=4 vcorr=4; 
Run; 

None GROUP 0.0367 
 

-53.8 
-50.6 

*Model L11; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model SD12=group / solution; 
Random intercept / subject=id v=4 vcorr=4; 
Run; 

None GROUP 0.0233 
 

-55.8 
-53.2 

Model L11 is the most parsimonious model with the best AIC/BIC scores. A residual analysis was run to evaluate the data for outliers. 
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SAS Code Model Problems Results AIC 
BIC 

*Model L11 with residual analysis; 
Proc mixed data=hrv covtest method=ML; 
Class id group; 
Model SD12=group / solution outpm=residls vciry; 
Random intercept / subject=id v=4 vcorr=4; 
 
data residls; 
set residls; 
label pred="Predicted Value" 
scaledresid="Scaled Residual"; 
format pred scaledresid 7.2; 
run; 

None There were outliers outside 
of +/- 3. 

 

 
The data were log transformed. 

*Log transformation; 
data adjusted; 
set hrv; 
ytrans=log(sd12); 
label ytrans="SD12 to Log"; 
run; 
 
Proc mixed data=adjusted covtest method=ML; 

None No outliers outside of +/- 3. 

GROUP 0.0407 
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SAS Code Model Problems Results AIC 
BIC 

Class id group; 
Model ytrans=group / solution outpm=residls vciry; 
Random intercept group / subject=id v=4 vcorr=4; 
Run; 

The results of model L11 were used to estimate group values.  

Solution for Fixed Effects 

Effect GROUP Estimate Standard Error DF t Value Pr > |t| 

Intercept   0.1878 0.03053 13 6.15 <.0001 

GROUP 0 0.06988 0.02832 19 2.47 0.0233 

GROUP 1 0 . . . . 
 

 

Interpretation: Infants fed with the usual care method had a significantly higher SD12 than infants fed with the CoReg method (p=0.04). Infants fed 

with the usual care method had an SD12 of 0.06988 + 0.1878 = 0.25768 and infants fed with CoReg had an SD12 of 0.1878. 
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CHAPTER 5: DISCUSSION 

 The research presented in the three studies that compose this dissertation add significantly to the 

literature on feeding medically fragile infants. In chapter two, the milk flow rates and variability in milk flow 

from 29 types of bottle nipples used in hospitals for feeding medically fragile infants was presented. This 

data is highly relevant to clinical practice as it may help guide clinicians in choosing appropriate nipples 

for supporting safe oral feeding in medically fragile infants. The information gained in this study also 

guided the selection of the bottle nipples for the study of feeding an infant with hypoplastic left heart 

syndrome (HLHS), which was presented in chapter three.  

Chapter three presented the first of its kind study of the physiologic and behavioral responses of 

an infant with HLHS to the challenge of oral feeding with either a standard-flow or slow-flow nipple. The 

results of this study suggest that despite a slow-flow nipple, this infant experienced significant distress 

during oral feeding. This data confirms anecdotal evidence from clinicians that infants with HLHS 

experience significant distress during feeding. This study supports the need for further investigation into 

the responses of infants with HLHS to oral feeding and the identification of oral feeding interventions for 

this extremely fragile population.  

Finally, chapter four presented a study evaluating heart rate variability (HRV) as a new outcome 

measure for assessing feeding-related stress. The findings of this study were not conclusive regarding 

the usefulness of HRV for this purpose, but support further evaluation of this measure, particularly non-

linear methods of HRV analysis. The findings were also supportive of a gentle, co-regulated approach to 

feeding, which involved a side-lying position, minimal stimulation, and enhanced auditory assessment by 

the feeder of the infant’s swallowing and breathing. This feeding technique may prove useful for other 

populations of medically fragile infants, like infants with HLHS. 

Future Directions For Research 

 Mastering oral feeding is usually a criteria for discharge from the hospital for medically fragile 

infants. The study presented in chapter two will help to guide clinicians in choosing bottle nipples that will 
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be supportive of these fragile infants while in the hospital, but the transition to home is often a difficult 

one. The nipples that are available in the hospital are typically single-use nipples that are supplied to the 

hospital by formula companies (e.g., Enfamil and Similac). These nipples are not readily available for 

purchase outside of the hospital, so parents must make decisions about which nipples to purchase for 

use at home. While there are abundant options, there is currently no data available on the milk flow rates 

of bottle nipples used for feeding infants after discharge. To build upon the data presented in chapter two, 

a study will be conducted to test milk flow rates of bottle nipples available in the community setting. This 

data will help clinicians to guide parents in selecting a bottle nipple that will be of similar flow to that with 

which the infant has been successful in the hospital. 

 Further study of the responses of infants with HLHS to oral feeding is critically needed. The 

results of the study presented in chapter three suggest that an even slower-flow nipple than was used in 

the study may be more appropriate for these fragile infants. Given their fragile physiologic state and 

multiple risk factors for feeding difficulty, it is likely that a combination of interventions will be most 

successful in supporting oral feeding. A study of a larger sample of infants with HLHS using a 

combination of a slower-flow nipple (e.g., Dr. Brown’s Ultra-Preemie) and a gentle, co-regulated approach 

to feeding, such as that used in the study presented in chapter four, would be a valuable future study in 

this population. Additionally, a study evaluating the physiologic and behavioral responses to breast-

feeding in infants with HLHS is needed. Using HRV as an outcome measure in these studies may provide 

additional information about the stress responses of these infants to different feeding methods. 

 Further evaluation of the use of HRV as an outcome measure is also needed. An analysis of the 

HRV outcomes of the data presented in chapter three will be conducted to contribute to the development 

of this potential outcome measure and to assess the nervous system response to the different flow 

conditions. Secondary analyses of HRV outcomes are also planned for data from a study that evaluated 

the effect of side-lying positioning in preterm infants (Park, Thoyre, Knafl, Hodges, & Nix, 2014) and a 

larger study of the co-regulated approach to feeding preterm infants (Thoyre, NIH, Grant Number R21 

NR012507). 

 Both populations of medically fragile infants that were included in this dissertation are at risk for 

long-term feeding difficulty. The Feeding Flock Feeding Interest Group at the University of North Carolina 
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at Chapel Hill, including Suzanne Thoyre, Jinhee Park, Hayley Estrem, Eric Hodges, Cara McComish, 

and myself are in the process of developing a set of parent-report instruments that may aid in the early 

identification of children with feeding problems and the assessment of the efficacy of treatment 

interventions. The Pediatric Eating Assessment Tool (Pedi-EAT) is a measure of problematic feeding 

behaviors for children ages 6 months to 7 years (Thoyre, et al., 2014). The Pedi-EAT has been validated 

and the Feeding Flock has plans to test this with a large sample of children with feeding problems as well 

as those who are typically developing. The Pedi-EAT will be a valuable tool for the long-term follow-up of 

children with HLHS and those born preterm as they transition from a liquid diet to solid foods.  

 Additional measures that are in development include the Child Oral and Motor Proficiency Scale 

(ChOMPS), which is a parent-report measure of a child’s skills related to eating and the Family 

Management Measure: Feeding (FaMM Feed), which is an adaptation of Knafl and colleagues (2011) 

Family Management Measure. The purpose of the FaMM Feed is to assess the family’s approach to 

managing their child’s eating problem. The ChOMPS and FaMM Feed have undergone content validity 

testing by clinical and research experts in the field of pediatric feeding and plans are underway to further 

evaluate the content validity of these measures through cognitive interviewing of experiential experts (i.e., 

parents). These instruments will be useful for the long-term evaluation of the skill acquisition of preterm 

infants and those with HLHS as they enter childhood and the ways in which families manage the 

challenges of feeding difficulty.  
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