Appendix A: The Estimation of Cumulative Incidence Function

Let us consider a competing risk time-to-event study with *N* independent observations concerning the situation where multiple causes of failure (*K*) are possible. Let w_i be the inverse probability (IP) weight for the *i*th subject (*i* = 1, 2, ..., *N*). Let $0 < t_1 < t_2 < ... < t_j$ denote the ordered distinct event time points at which failures of any cause occur. Let d_{kj} denote the number of patients failing from cause k (k = 1, 2, ..., K) at t_j and R_{kj} be the corresponding set of individuals. Let $d_j =$ $\sum_{k=1}^{K} d_{kj}$ denote the total number of failures from any cause. Let n_j be the number of individuals at risk at time t_j and R_j be the corresponding set of individuals. Thus, the weighted number of events failing from cause k is $d_{kj}^W = \sum_{i \in R_{kj}} w_i$, the weighted total number of failures from any cause is $d_j^W = \sum_{k=1}^{K} d_{kj}^W$, and the weighted number of individuals at risk is $n_j^W = \sum_{i \in R_j} w_i$ at time t_j .

The overall unweighted survival probability S(x), can be estimated by the Kaplan-Meier estimator as $\hat{S}(x) = \prod_{j:t_j \leq x} \left(1 - \frac{d_j}{n_j}\right) = \prod_{j:t_j \leq x} \left(1 - \sum_{k=1}^K \widehat{\lambda_k}(t_j)\right)$, where the unweighted cause specific hazard function $\widehat{\lambda_k}(t_j) = \frac{d_{kj}}{n_j}$. The unweighted cumulative incidence $I_k(x)$ of cause k at time x is estimated $\widehat{I_k}(x) = \sum_{j:t_j \leq x} \widehat{\lambda_k}(t_j) \hat{S}(t_{j-1})$.

The overall inverse probability of treatment (IPT)-weighted survival probability $S^{W}(x)$, can be estimated by the weighted Kaplan-Meier estimator as $\widehat{S^{W}}(x) = \prod_{j:t_{j} \leq x} \left(1 - \frac{d_{j}^{W}}{n_{j}^{W}}\right) =$ $\prod_{j:t_{j} \leq x} \left(1 - \sum_{k=1}^{K} \widehat{\lambda_{j}^{W}}(t_{j})\right)$, where the IPT-weighted cause specific hazard function $\widehat{\lambda_{k}^{W}}(t_{j}) =$ $\frac{d_{kj}^{W}}{n_{j}^{W}}$. The weighted cumulative incidence $I_{k}^{W}(x)$ of cause k at time x is estimated $\widehat{I_{k}^{W}}(x) =$ $\sum_{j:t_{j} \leq x} \widehat{\lambda_{k}^{W}}(t_{j}) \widehat{S^{W}}(t_{j-1})$.