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ABSTRACT 
 

Melinda Dale Willard 
Multiple Domain ‘Nexus’ Proteins in Receptor-Mediated Cell Signaling 

(Under the direction of Dr. David P. Siderovski) 

 Signal transduction is the fundamental biological process of converting 

changes in extracellular information into changes in intracellular functions. It controls 

a wide range of cellular activities, from the release of neurotransmitters and 

hormones, to integrated cellular decisions of proliferation, differentiation, survival, or 

death. The vast majority of extracellular signaling molecules exert their cellular 

effects through activation of G protein-coupled receptors (GPCRs); however, the G-

protein coupled paradigm is by no means the exclusive mechanism of membrane 

receptor signal transduction. Polypeptide ligands such as nerve growth factor act 

exclusively on receptor tyrosine kinase receptors (RTKs) to promote signaling. 

GPCRs and RTKs both form an interface between extracellular and intracellular 

physiology by converting hormonal signals into changes in intracellular metabolism 

and ultimately cell phenotype. Initially, it was thought that GPCRs and RTKs 

represented linear and distinct signaling pathways that converge on downstream 

targets to regulate cell division and gene transcription. However, activation of 

second messenger generating systems do not fully explain the range of effects of 

GPCR or RTK activation on biological processes such as differentiation and cell 

growth. Recent work has revealed that GPCR and RTK signaling pathways are not 
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mutually exclusive of one another; in fact, they often function as partners, forming 

complex signaling networks through scaffold/nexus proteins.  

 The work described herein examines the complexity of signal regulation by 

multifunctional nexus proteins. I showed that the activation of phospholipase C-ε by 

Gα12/13-coupled receptors occurs through a mechanism involving the small GTPase 

Rho. I demonstrated the usefulness and complexities of ‘regulators of G-protein 

signaling’ (RGS proteins) for discerning the Gα selectivity of GPCR signaling. 

Finally, I found that RGS12, in addition to regulating Gα signaling, acts as a 

Ras/Raf/MEK scaffold in nerve growth factor-mediated differentiation. The work 

presented here expands our understanding of how multiple domain proteins facilitate 

convergence and cross-regulation of RTK, heterotrimeric G-protein, and Ras-

superfamily signaling. 
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CHAPTER 1 
 

INTRODUCTION 

1.1  The Importance of Cellular Signaling 

The ability of organisms to sense and react to their environment is critical to 

their survival. Individual cells within an organism must be able to detect the presence 

of extracellular molecules and to initiate a variety of intracellular responses. To 

enable organisms to do this, a complex range of signaling pathways have evolved 

that are carefully orchestrated and controlled, the primary components and 

principles of which are similar across a diverse range of organisms. 

One mechanism of cell communication is via the release and detection of 

signaling molecules such as cytokines, growth factors, neurotransmitters, and 

hormones. These extracellular signals are responsible for a variety of cellular 

responses including migration, secretion, apoptosis, proliferation, and differentiation. 

To respond to such a signal in the extracellular environment, the cell must have the 

capacity to bind to a signaling molecule. In the majority of cases, hormones bind to 

receptors on the cell surface to stimulate specific signal transduction pathways in the 

cell.     

1.2  Signal Transduction at the Receptor 

Signal transduction is the fundamental biological process of converting 

changes in extracellular information into changes in intracellular functions. It controls 

a wide range of cellular activities, from the release of neurotransmitters and 

hormone                                             
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hormones, modulation of transmembrane ion flux and activation or repression of 

gene expression, to integrated cellular decisions of proliferation, differentiation, 

survival or death. The vast majority of extracellular signaling molecules exert their 

cellular effects through activation of G protein-coupled receptors (GPCRs). GPCRs 

form an interface between extracellular and intracellular physiology by converting 

hormonal signals into changes in intracellular metabolism and ultimately cell 

phenotype [1, 2]. 

1.2.1  Heterotrimeric G-protein signal transduction  

The standard model of GPCR signal transduction has long been restricted to 

a three-component system: receptor, heterotrimeric G-protein, and effector [3] 

(Figure 1.1). The receptor, a cell-surface protein that spans the membrane seven 

times, is coupled to a membrane-associated heterotrimeric complex that comprises 

a GTP-hydrolyzing Gα subunit and a Gβγ dimeric partner. Agonist-induced 

conformational changes enhance the guanine nucleotide-exchange factor (GEF) 

activity of the receptor, leading to the release of GDP (and subsequent binding of 

GTP) by the Gα subunit. On binding GTP, conformational changes within the three 

‘switch’ regions of Gα allow the release of the Gβγ dimer. Gα⋅GTP and Gβγ subunits 

regulate the activity of target effector proteins such as adenylyl cyclases, 

phospholipase C (PLC) isoforms, ion channels, and cyclic nucleotide 

phosphodiesterases, which regulate multiple downstream signaling cascades that 

integrate key biological processes such as development, visual excitation, cardiac 

contractility, and glucose metabolism [4]. The intrinsic GTP hydrolysis (GTPase) 

activity of Gα resets the cycle by forming Gα·GDP which has low affinity for effectors 
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but high affinity for Gβγ. Reassociation of Gα·GDP with Gβγ reforms the inactive, 

GDP-bound heterotrimer (Gαβγ) which completes the cycle. Perturbations in G-

protein signaling characterize many human ailments [4]. Accordingly, the therapeutic 

effects of many current drugs are due to their capacity to bind target receptors and 

regulate G-protein signaling.  

1.2.2  Receptor Tyrosine Kinase Signal Transduction 

Many extracellular signals act through GPCRs to activate second messenger 

pathways; however, the G-protein coupled paradigm is by no means the exclusive 

mechanism of membrane receptor signal transduction. Polypeptide ligands such as 

nerve growth factor (NGF), epidermal growth factor (EGF), fibroblast growth factor 

(FGF), and insulin act exclusively on receptor tyrosine kinase receptors (RTKs) [5-8].  

All RTKs, with the exception of the insulin receptor family, are monomeric in 

the absence of ligand (Figure 1.2). They possess an extracellular ligand binding 

domain that is connected to a cytoplasmic region by a single transmembrane helix. 

The cytoplasmic region contains a tyrosine kinase domain which possesses catalytic 

activity and regulatory sequences. Ligand binding to the extracellular region of RTKs 

leads to dimerization of monomeric receptors, resulting in autophosphorylation of 

specific tyrosine residues in the intracellular portion [9]. Generally, tyrosine 

autophosphorylation either stimulates the intrinsic kinase activity of the receptor, or 

generates recruitment sites for downstream signaling adaptors or enzymes 

containing phosphotyrosine-recognition domains, such as the phosphotyrosine 

binding (PTB) domain or the Src homology 2 (SH2) domain [10].  
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Activation of signaling molecules by RTKs generally requires not only 

stimulation of receptor catalytic activity but also localization of these molecules to the 

activated receptor. For instance, autophosphorylation of Tyr766 in FGF receptor-

1 (FGFR-1) provides a high affinity binding site for the SH2 domain of PLC-γ [11]. 

The association of the SH2 domain with phosphorylated Tyr766 is critical for the 

activation of PLC-γ by FGFR-1, as a point mutant in Tyr766 prevents binding, 

phosphorylation, and stimulation of the PLC [11]. 

1.2.3  Integration of GPCR and RTK Signal Transduction Pathways 

Initially, it was thought that GPCRs and RTKs represented linear and distinct 

signaling pathways that converge on downstream targets such as MAPKs to 

regulate cell division and gene transcription (Figures 1.1 and 1.2). However, 

activation of second messenger generating systems do not fully explain the full 

range of effects of GPCR or RTK activation on biological processes such as 

differentiation and cell growth. Recent work has revealed that these two signaling 

pathways are not mutually exclusive of one another; in fact, they often function as 

partners, forming complex signaling networks. The process by which GPCRs and 

RTKs share information and modulate each other is termed “cross-talk”, and can 

occur between GPCRs and RTKs at several levels. 

GPCRs initiate cross-talk in many ways, one of which is a phenomenon 

termed “transactivation”. Transactivation occurs when activation of GPCRs results in 

tyrosine phosphorylation and subsequent activation of RTKs [12, 13]. Activation of 

RTKs leads to the recruitment of scaffold proteins such as Shc, Grb2, and Crk, via 

their SH2 domains. In turn, these proteins, via SH2 or SH3 domains, bind to 
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additional adaptor proteins and signaling molecules. Several GPCR agonists, 

including angiotensin II, lysophosphatidic acid, bradykinin, and endothelin, 

transactivate RTKs such as the platelet-derived growth factor receptor (PDGFR) and 

the epidermal growth factor receptor (EGFR) (reviewed in [14]).  

Different concepts have emerged to explain mechanisms of transactivation. 

Molecules such as PKC, Src, and reactive oxygen species mediate RTK 

transactivation (reviewed in [14]). Activation of GPCRs stimulates extracellular 

proteases to cleave a RTK ligand molecule to its active, RTK-binding form, which in 

turn activates the RTK [15]. Adaptor proteins such as Gab1 and IRS-1, which serve 

as docking sites for multiprotein complexes at the RTK, also are implicated as 

mediators of GPCR-induced RTK transactivation. Additionally, GPCR activation 

stimulates the activity of protein tyrosine phosphatases that inactivate RTKs. 

In some cases, the G-protein involvement of RTK activation is proximal to, 

and downstream of, the RTK. For instance, it has been reported that activated RTKs 

can induce the activation of G-proteins by promoting the dissociation of the Gα 

subunit from the Gβγ dimer leading to downstream signaling [16]. Alternatively, 

stimulation of a RTK can lead to a direct association between GPCRs and RTKs 

through scaffold proteins, such as β-arrestins, regulator of G protein signaling (RGS) 

proteins, and G-protein receptor kinases (GRKs) to activate downstream effectors 

[17-21]. Recently, phosphorylation of GPCRs by RTKs was identified as an 

additional mode of cross-talk. For example, insulin-mediated phosphorylation of the 

β2-adrenergic receptor creates a platform that binds SH2- and SH3-domain-
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containing proteins such as Grb2 [22]. These data indicate the involvement of 

GPCRs both upstream and downstream of RTK signal transduction. 

As mentioned above, one level of cross-talk between GPCRs and RTKs is 

through RGS proteins. RGS proteins normally function as GTPase-accelerating 

proteins (GAPs) for Gα subunits thereby terminating GPCR-mediated signaling [23]. 

However, there are a few examples where RGS proteins appear to be involved in 

regulating signal transmission from RTKs and small GTPases. For instance, GIPC 

(“GAIP-interacting protein, C terminus”) specifically binds to a C-terminal PDZ-

binding sequence that is unique to RGS19 (GAIP), and both proteins associate at 

distinct sites on the high-affinity neurotrophin receptor, TrkA. TrkA and GIPC 

colocalize on putative retrograde transporter vesicles in neuronal cell bodies, while 

RGS19 is found on clathrin-coated vesicles near the plasma membrane [17]. Druey 

proposed that GIPC might function to physically join the TrkA receptor on one type 

of transport carrier to a GPCR regulated by RGS19 located on a distinct intracellular 

vesicle [24].  

Cho et al. provided evidence suggesting that G-proteins are involved in 

PDGFR signal transmission [25]; specifically, they demonstrated that overexpression 

of recombinant RGS5 reduces PDGF-stimulated MAPK activation in human aortic 

smooth muscle cells. Regulation of the RGS protein itself by RTKs may also play a 

role in cross-talk. EGF promotes phosphorylation of RGS16 on conserved tyrosine 

residues (Y168 and Y177) in the RGS-box [26], and it has been suggested that this 

phosphorylation increases the stability and GAP activity of RGS16. It is possible that 

the EGFR inhibits Gαi-dependent Ras-MAPK activation in a feedback loop by 
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enhancing RGS16 activity through tyrosine phosphorylation. RGS12, a multidomain-

containing RGS protein, also regulates RTK signaling. Specifically, we have shown 

that RGS12 inhibits signal transmission from the PDGFβR in guinea-pig airway 

smooth muscle (ASM) cells [18]. RGS12 appears to reduce PDGF-dependent 

activation of MAPK in ASM cells not by its GAP activity, but by removing the 

PDGFβR from the cell surface. Interestingly, the PDZ and PTB domains in the N-

terminus of RGS12 appear to be functionally important for this regulation; the N-

terminus in isolation is sufficient for inhibiting receptor activity and localizing the 

receptor to cytoplasmic vesicles, and RGS14, which has a similar architecture as 

RGS12, but lacks the PDZ and PTB domains, exhibits a different subcellular 

localization compared with RGS12 [18]. 

Scaffolds for the MAPK pathway also facilitate signal integration between 

RTK and GPCR signaling. For example, MEK partner 1 (MP1) serves to integrate 

Rho GTPase activation and MAPK signaling [27]. β-arrestins couple GPCR signaling 

with the MAPK cascade [28]. As will be described below, and in Chapters 2-4, 

RGS12 and PLC-ε are both multidomain containing proteins that function as 

scaffolds/nexus proteins that facilitate signal integration of small and large GTPases. 

1.3  Phospholipase C and Signal Transduction 

Stimulation of phosphoinositide-hydrolyzing PLC isozymes by extracellular 

stimuli such as neurotransmitters, hormones, chemokines, inflammatory mediators, 

and odorants is one of the major signal transduction pathways used by cell surface 

receptors to mediate downstream signaling events [29]. At least six classes of PLC 

isozymes underlie these signals: PLC-β, PLC-γ, PLC-δ, PLC-ε, PLC-ζ, and PLC-η 
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(Figure 1.3) [30-32]. Until recently, PLC-β was the isozyme most commonly found to 

be activated by GPCRs and heterotrimeric G-proteins. GPCRs activate PLC-β 

enzymes either via release of α-subunits of the Gq family of G-proteins [33-36] or by 

Gβγ dimers from activated Gi family members [37-39]. In contrast, PLC-γ, PLC-δ, 

and PLC-ζ isoforms differ largely in their regulatory mechanisms. PLC-γ enzymes 

are regulated by receptor and non-receptor tyrosine kinases [40-42]. PLC-δ isoforms 

may be regulated by Ca2+ [43] and/or the high-molecular-weight G-protein (Gh) [31, 

44]; however, the mechanisms by which PLC-δ enzymes couple to and are 

regulated by membrane receptors is less clear [31]. PLC-ζ is reportedly responsible 

for sperm-mediated Ca2+ oscillations that occur during fertilization [32]. PLC-η, the 

most recently identified PLC, appears to be regulated by Gβγ dimers [45-47]. 

1.3.1  Phospholipase C-ε 

A novel class of PLC was first revealed with the identification of the protein 

PLC210 in a screen for C. elegans Ras (LET-60) effectors [48]. Cloning of the full 

coding sequence of PLC210, the prototypical member of the PLC-ε family, identified 

functional domains not previously described in other PLCs. PLCs generally contain a 

PH domain, an EF-hand domain, X and Y catalytic domains, and a C2 domain 

(notably PLC-ζ lacks a PH domain) (Figure 1.3). However, PLC210 and mammalian 

PLC-ε uniquely possess an N-terminal CDC25-homology domain and two C-terminal 

Ras-association (RA) domains [48-51]. It is now known that upstream regulators of 

PLC-ε include Ras subfamily [49, 51] and Rho subfamily [52] GTPases, as well as 

subunits of the heterotrimeric G-protein family [50, 53]. Activation of PLC-ε by 
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GPCRs coupled to Gα subunits of the Gi/o, G12/13, and Gs families has also been 

demonstrated, revealing that PLC-ε is yet another PLC isozyme regulated by 

GPCRs [54-56]. In addition to generating the second messengers Ins(1,4,5)P3 and 

diacylglycerol, PLC-ε has also been shown to trigger other downstream signals 

independent of its phosphoinositide-hydrolyzing activity. PLC-ε, via the CDC25-

homology domain at its amino terminus, functions as a GEF for Ras-family GTPases 

[50, 51, 57, 58]. In light of these findings, PLC-ε appears to be a candidate scaffold 

protein to integrate and mediate crosstalk between monomeric and heterotrimeric G-

proteins [59].   

PLC-ε contains tandem Ras-association domains (RA1 and RA2) (Figure 

1.3); thus, the observation that various monomeric G-proteins activate PLC-ε was 

not surprising. However, further examination of small GTPase activation of PLC-ε 

has revealed that both RA-dependent as well as RA-independent interactions can 

occur. Specifically, the Ras family G-proteins H-Ras, R-Ras, TC21, Rap1A, Rap2A, 

and Rap2B stimulate PLC-ε in a RA2-dependent manner, whereas Ral, Rho, and 

Rac activation of PLC-ε appears to be primarily RA-independent [49, 52, 55, 60].  

The mechanism by which Ral and Rac activate PLC-ε is unknown; however, the 

interaction and mode of activation of PLC-ε by Rho has been elucidated [49, 52, 55, 

61]. Wing and colleagues [52] identified a unique 65 amino-acid insert within the 

catalytic core of PLC-ε, not present in other PLC isozymes, as the region within 

PLC-ε that imparts responsiveness to Rho. Interestingly, this region also appears to 

be essential for Gα12/13 activation of PLC-ε. Thus, it is possible that Gα12/13 activation 
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of a Rho-GEF such as p115RhoGEF or LARG leads to activation of Rho and 

subsequently of PLC-ε. Heterotrimeric G-protein activation of PLC-ε by Gα12, Gα13, 

Gαs, and Gβγ has been demonstrated upon cellular co-transfection [53]; however, 

whether heterotrimeric G protein-mediated activation requires direct interaction of 

these subunits with PLC-ε is unclear. Demonstration that PLC-ε activation occurs via 

monomeric GTPases known to be downstream of heterotrimeric G-proteins 

suggests that heterotrimeric G protein-promoted PLC-ε stimulation is more likely 

indirect, and more closely resembles that of the novel PLC-β interactions described 

below.  

1.3.2  Novel Phospholipase C Interactions  

Until recently, regulation of PLC-β isozymes by GPCRs was thought to 

primarily occur via direct interactions with either Gα subunits of the Gq family or Gβγ 

subunits [31]. However, the assumption that PLC-β signaling is solely regulated by 

heterotrimeric G-proteins was dramatically altered with the observation by 

Illenberger and colleagues that members of the Rho subfamily of small GTPases, 

specifically Rac1 and Rac2, activate PLC-β isozymes [62, 63]. This finding raises the 

question of how integrated regulation of these isozymes by small GTPases and 

heterotrimeric G-proteins occurs, and within what signaling cascades does this 

phenomenon elicit specific cellular responses.  In addition, these findings highlight 

the possibility that heterotrimeric G-protein activation of PLC-β isozymes might be 

synergistic via direct and indirect mechanisms involving Gβγ. For instance, Gβγ 

subunits activate Rac directly via the Rac-GEF P-Rex1 [64]. Thus, it may be that in 

certain signaling cascades, Gβγ subunits from heterotrimeric G-proteins might 
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stimulate PLC-β directly and activate a Rac-GEF such as P-Rex1 to increase Rac-

GTP levels, thus activating PLC-β indirectly. Although PLC-β activation via this type 

of mechanism has not been demonstrated, activation of PLC-ε by Gαs-coupled 

receptors via an analogous pathway has been described, as detailed below.  

Schmidt and colleagues [56, 65, 66] made the observation that Gαs-coupled 

receptors are capable of activating PLC-ε, and that this activation is dependent upon 

both heterotrimeric and monomeric G-proteins. Specifically, β2-adrenergic-, M3-

muscarinic-, and prostaglandin E1 receptor-mediated activation of PLC-ε was 

reported [56, 65], with the mechanism of activation hypothesized as follows. Gαs-

coupled receptors stimulate adenylyl cyclase, which results in increased cyclic AMP 

levels and thus activation of the Rap-GEF EPAC (exchange protein activated by 

cAMP) [67, 68]. Once activated, EPAC is thought to catalyze GTP-loading on 

Rap2B, leading to activation of PLC-ε. In addition to providing a potential mechanism 

by which GPCRs activate a PLC isozyme via integration of heterotrimeric and 

monomeric G-protein signaling, the findings of Schmidt and colleagues also provide 

evidence for a positive interaction between cAMP-promoted and PLC signaling 

pathways. 

In addition to GPCR-mediated stimulation of PLC-ε, RTK-mediated regulation 

has been observed. RTKs such as those for EGF and PDGF have been shown to 

activate PLC-γ enzymes by recruitment of the enzyme to the autophosphorylated 

receptor and subsequent tyrosine phosphorylation [31]. In contrast, the mechanism 

of PLC-ε activation by RTKs appears to involve small GTPases. Specifically, Ras 

and Rap GTPases have been reported to participate in the activation of PLC-ε in a 
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number of cell types [51, 55, 57, 58]. The mechanism of activation of PLC-ε by these 

GTPases appears to involve the RA2 domain, as mutations in RA2 either reduce or 

completely inhibit activation of the enzyme by the EGF receptor [55].   

The direct contribution of PLC-γ to the activation of PLC-ε has also been 

examined. Song et al. found that a PDGF receptor mutant, deficient with respect to 

PLC-γ activation, still activates PLC-ε, via H-Ras and Rap1A as intermediaries [58]. 

Recently, however, Stope et al. reported that the mechanism of PLC-ε stimulation by 

the EGF receptor in HEK-293 cells involves not only small GTPase activation, but 

also PLC-γ mediated activation [69]. Specifically, the EGF receptor was identified as 

a “platform” that assembles and activates two direct effectors, PLC-γ1 and the 

nonreceptor tyrosine kinase c-Src. Upon activation, PLC-γ1 and c-Src recruit and 

activates the Ca2+/diacylglycerol-regulated guanine nucleotide exchange factor for 

Ras-like GTPases, RasGRP3, via second messenger formation and tyrosine 

phosphorylation, respectively. Once active, RasGRP3 catalyzes nucleotide 

exchange on Rap2B, inducing activation of this small GTPase. Active Rap2B then 

binds to PLC-ε and translocates the lipase to the plasma membrane where it can 

efficiently propagate signaling. 

1.3.3  Physiological Function of PLC-ε 

The molecular mechanisms of PLC-ε regulation have been intensively 

studied; however, little is known about the function of PLC-ε in physiological 

processes. Studies indicate that the regional and temporal expression profile of each 

PLC isoform may account for its physiological function [31]. For example, PLC-β1 is 

highly expressed in the hippocampus and cerebral cortex [70], and PLC-β1 knockout 
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mice exhibit minor developmental abnormalities in the hippocampus and develop 

epilepsy [71]. To begin to understand the physiological function of PLC-ε, Kataoka 

and colleagues examined the spatial and temporal expression patterns of PLC-ε in 

the central nervous system of mouse embryos and adults [72]. The induction of 

PLC-ε expression appears to be associated specifically with the commitment of 

neuronal precursor cells to the neuronal lineage, and seems to persist after terminal 

differentiation into neurons [72]. In contrast to PLC-β1 which exhibits region-specific 

expression [70], PLC-ε expression is observed in almost all regions containing 

mature neurons [72]. These results suggest that PLC-ε may be involved in a more 

general aspect of neuronal differentiation and neuronal function than a region-

specific isoform such as PLC-β1, which is critical for very selective neuronal 

functions such as those associated with the hippocampus. It is possible that PLC-ε, 

via Ras and/or Rap regulation, may have a general role in fibroblast growth factor 

and neurotrophic factor signaling, both of which have been implicated in neuronal 

development. 

Recently, the physiological function of PLC-ε in the nematode C. elegans was 

addressed. C. elegans ovulation and fertility are regulated by an Ins(1,4,5)P3 

signaling pathway activated by the receptor tyrosine kinase LET-23 [73, 74]. PI-

PLCs generate Ins(1,4,5)P3 by catalyzing the hydrolysis of PtdIns(4,5)P2 into 

Ins(1,4,5)P3; thus, it is possible that an enzyme involved in generation of Ins(1,4,5)P3 

would also play an important regulatory role in fertility and ovulation. Kataoka and 

colleagues used deletion mutants of the PLC-ε gene in C. elegans, plc-l, to 

investigate the role of the gene in ovulation. Two deletion alleles were generated 
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that removed regions important for the catalytic activity of PLC-ε, and both exhibited 

reduced fertility as a result of ovulation defects [75]. These results provide the first 

genetic analysis of the physiological function of PLC-ε in an intact organism, and 

suggest that PLC-ε is required for proper ovulation in C. elegans, consistent with 

previous studies that show the requirement of precise control of Ins(1,4,5)P3 

signaling levels for normal ovulation [73]. 

Studies with PLC-ε(-/-) mice have added further complexity to our 

understanding of the potential role(s) PLC-ε plays in physiological processes. The 

role of PLC-ε in de novo skin chemical carcinogenesis was recently examined in 

mice containing genetically inactivated PLC-ε. PLC-ε(-/-) mice exhibited delayed 

onset and markedly reduced incidence of skin squamous tumors in response to 

chemical carcinogens [76]. Additionally, the papillomas formed in PLC-ε(-/-) mice 

failed to undergo malignant progression, and the skin failed to exhibit basal layer cell 

proliferation and epidermal hyperplasia. Interestingly, activated H-Ras, which itself 

activates PLC-ε, was detected in all tumors irrespective of the PLC-ε background. 

These results suggest that PLC-ε plays a critical role in tumor development 

downstream of Ras signaling, and may be a molecular target for the development of 

anticancer drugs. 

A second study in mice examined the role of PLC-ε in cardiac function and 

disease after upregulated PLC-ε protein and RNA expression were detected in 

human hearts during heart failure and in mice models of cardiac hypertrophy [77]. 

PLC-ε(-/-) mice had decreased cardiac function, decreased contractile response to 

acute isoproterenol administration, and were more susceptible to development of 
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hypertrophy under chronic stress. Additionally, cardiac myocytes isolated from PLC-

ε(-/-) mice showed decreased responsiveness to β-adrenergic receptor stimulation. 

These data suggest that PLC-ε is required for maximum efficacy of the β-adrenergic 

receptor system in cardiac myocytes, and that loss of PLC-ε signaling appears to 

sensitize the heart to development of hypertrophy in response to chronic cardiac 

stress [77]. As previously mentioned, a signaling pathway from the β2-adrenergic 

receptor, through Gαs, cAMP, EPAC, and Rap2B to PLC-ε has been proposed based 

on studies in cells transfected with PLC-ε. Thus, it remains to be determined whether 

the in vivo PLC-ε regulatory signaling network in the heart intersects with β-

adrenergic receptor signaling pathways and/or other pathways. The studies 

performed in C. elegans and in mice highlight the complexity of the role PLC-ε  plays 

in physiological processes. Future studies examining the cellular function and 

regulation of PLC-ε both in vitro and in vivo will help to merge the gap between 

molecular and functional analyses of PLC-ε regulation, and thus provide evidence in 

support of PLC-ε as a critical player in mammalian physiology. In Chapter 2, I 

describe examination of GPCR-mediated regulation of inositol lipid signaling through 

a mechanism involving Gα12/13, Rho, and PLC-ε. The results of these studies are 

consistent with the idea that Gα12/13- and Rho-dependent activation of PLC-ε occurs 

downstream of both LPA- and thrombin-activated receptors, and that the regulation 

of PLC-ε by Gα12/13 occurs at least in part through activation of Rho.  

1.4  RGS Proteins as Negative Regulators of GPCR Signaling 

In the aforementioned standard model of GPCR signaling, the duration of G-

protein signaling through effectors is thought to be controlled by the lifetime of the 
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Gα subunit in its GTP-bound form. It was originally thought that the duration of 

signaling could be modulated by only two factors: the intrinsic GTP hydrolysis rate of 

Gα and acceleration of that rate by some Gα effectors that exhibit “GTPase-

accelerating” or “GAP” activity (e.g., phospholipase C-β), [78]. In 1996, a new 

superfamily of Gα GAPs was discovered: the RGS (“regulator of G-protein 

signaling”) proteins [79-83]. Each RGS protein contains a hallmark ~120 amino-acid 

RGS domain (or “RGS-box”) which contacts Gα subunits, and dramatically 

accelerates GTPase activity [84-86]. Crystal structures of RGS4 bound to 

Gαi1·GDP·AlF4
- [87] and RGS9 bound to Gα-transducin·GDP·AlF4

- [88] revealed the 

precise molecular mechanism of GTPase acceleration:  the RGS domain contacts 

Gα at its conformationally-flexible switch regions to stabilize the transition state of 

GTP hydrolysis (as mimicked by the planar ion aluminium tetrafluoride [AlF4
-]). The 

discovery of RGS proteins and their GAP activity towards Gα subunits resolved 

apparent timing paradoxes between observed rapid physiological responses 

mediated in vivo by GPCRs and the slow hydrolysis activity of the cognate G-

proteins seen in vitro (e.g., retinal photoreception; ref. [89]). Many RGS proteins are 

now known to catalyze rapid GTP hydrolysis by isolated Gα subunits in vitro and to 

attenuate and/or modulate GPCR-initiated signaling in vivo (reviewed in [90-92]); 

accordingly, RGS proteins are considered key desensitizers of heterotrimeric G-

protein signaling pathways and excellent drug discovery targets [23].  

1.4.1  RGS Protein Selectivity/Determinants 

RGS proteins specific for Gi/o, Gq, G12/13, and Gs Gα subunits have been 

described [23]. The RGS domain is critical for the GAP activity of each RGS protein 
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on the Gα subunit; however, the mechanism by which each protein inhibits signaling 

differs, and can depend on sequence beyond the RGS-box. In fact, regions outside 

of the RGS domain can also provide selectivity at the level of the receptor itself.  

The GPCR signaling regulator, G-protein receptor kinase 2 (GRK2), contains 

a conserved N-terminal RGS-box that does not stimulate GTPase activity, but rather 

sequesters Gα subunits of the Gq family [93-95]. In contrast to RGS proteins that act 

on both Gαq and Gαi subunits (e.g., RGS2 and RGS4), the RGS-box of GRK2 is 

selective for Gα subunits of the Gq family, and thus, is a potent effector antagonist 

for Gq-coupled GPCRs. However, GRK2 has a multidomain architecture (Figure 1.4), 

and therefore regulates more than GPCR signaling through Gαq. The C-terminal 

fragment of GRK2 competitively binds Gβγ via its pleckstrin-homology (PH) domain 

[96], and the kinase domain phosphorylates and desensitizes GPCRs [97].  

RGS2, a founding member of the RGS protein family, accelerates the 

GTPase activity of Gα subunits of the Gq family in vitro [98, 99]. However, in 

receptor reconstitution and cellular assays, RGS2 acts as a negative regulator of 

both Gi/o- and Gq-coupled receptor signaling [99]. These findings suggest that assay 

conditions alter the G protein specificity of RGS2 from Gαq to both Gαq and Gαi/o.    

RGS4 stimulates the GTPase activity of Gα subunits of the Gi/o [84, 100] and 

Gq family [99, 101] via its RGS-box.  Similar to RGS2, RGS4 contains little sequence 

beyond the RGS-box. However, RGS4 has been demonstrated to exert receptor-

selective inhibitory activity via its amphipathic alpha-helical N-terminus [102]. In 

addition, the N-terminus also has been shown to confer high potency inhibition of 

Gq-mediated receptor signaling in vivo [102]. 
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The guanine nucleotide exchange factor (GEF) for Rho, p115 RhoGEF, 

contains an N-terminal RGS-box and acts as a GAP for Gα12 and Gα13 [103]. The 

GAP activity of p115 RhoGEF requires sequences flanking the RGS-box [104]. 

Specifically, without the N-terminus of the protein, the RGS-box is nonfunctional. 

Similar to GRK2, p115 RhoGEF also contains domains beyond the RGS-box. p115 

RhoGEF contains a tandem Dbl-homology domain (DH/RhoGEF) and PH domain C-

terminal cassette (Figure 1.4) that exhibits RhoA-specific GEF activity [105]. Thus, 

p115 RhoGEF, similar to GRK2 and other multidomain RGS proteins, regulates 

more than just the termination of Gα signaling. In Chapter 3, I describe the utilization 

of RGS-box proteins to evaluate G-protein selectivity in receptor-promoted signaling. 

My results suggest that RGS proteins can be used to delineate Gα selectivity of 

GPCRs. However, the findings also highlight the importance of using additional RGS 

proteins or other inhibitors of Gα signaling when employing RGS-box constructs to 

delineate signaling pathways. 

RGS-box-independent regulation of GPCR signaling has also been 

demonstrated. The N-terminus of RGS2 inhibits both GTPase-deficient, 

constitutively active mutant of Gαs(Q227L)- and β2-adrenergic receptor-stimulated 

cAMP accumulation in HEK 293 cells expressing type V adenylyl cyclase [106, 107]. 

Similarly, RGS16, a GAP for Gαi/o and Gαq, binds to Gα13 and inhibits Gα13-

mediated signal transduction via its amino terminus [108]. RGS3 employs a 

mechanism independent of its Gα GAP activity to impair Gβγ signaling. Specifically, 

RGS3 lacking a functional RGS-box potently inhibits Gβγ-mediated inositol 

phosphate production and activation of Akt and MAPK by binding Gβγ subunits, 
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effectively interfering with their availability for effector activation [109]. RGS12, a 

multidomain RGS protein, inhibits both G12/13- and Gq/11-coupled receptor signaling 

when overexpressed in cells [110]. In vitro, the RGS-box of RGS12 acts as a GAP 

for Gαi/o subunits, but not Gαq nor Gαs [111]; thus, the mechanism of this inhibition 

remains to be determined, but most likely does not occur via the RGS-box.  

1.5  Multiple Domain-Containing RGS Proteins 

Since the discovery of the first RGS proteins in 1996, it has become apparent 

that the signature RGS-box is a modular protein domain that is found in many 

contexts (Figure 1.4). Nine subfamilies of RGS proteins have been characterized to 

date which differ considerably in their overall size, amino-acid identities, and tissue 

distribution [23]. The identification of multidomain RGS proteins has led to a new 

appreciation of these molecules as being more than just GAPs for Gα subunits [90, 

92]. 

1.5.1  The D- or R12-Subfamily of RGS Proteins 

The D- or R12-subfamily of RGS proteins contains only three members, 

namely RGS10, RGS12, and RGS14 [112], and all three proteins act as GAPs for 

Gαi-family Gα subunits in vitro [85, 111, 113, 114]. RGS10 belongs to the R12-

subfamily given its RGS-box sequence similarity; however, at 173 amino-acids, it is 

the smallest member and contains only a very short N-terminal tail and an RGS-box. 

In fact, RGS10 is more structurally similar to members of the R4-subfamily of RGS 

proteins, such as RGS2, that lack additional regulatory domains. In contrast, RGS12 

and RGS14 are much larger proteins [115], and contain numerous functional 

domains beyond the hallmark RGS-box, as described below.  
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1.5.2  RGS12 

RGS12 is an example of an RGS protein with numerous signaling regulatory 

elements. RGS12 and a mammalian paralogue of RGS12, RGS14, were originally 

cloned from the rat C6 glioblastoma cell line using degenerate PCR primers directed 

to sequences conserved within all RGS domains [115, 116]. RGS12 and RGS14 

both contain an RGS-box, tandem RBDs (Ras-binding domains), and a GoLoco 

(Gαi/o-Loco interaction) motif (Figure 1.4). However, RGS12 also has an N-terminal 

extension containing two additional protein-protein interaction domains:  a PDZ 

(Postsynaptic density-95 / Discs-large / Zona occludens 1 protein homology) domain 

and a phosphotyrosine-binding (PTB) domain. This N-terminal extension is highly 

evolutionarily conserved among mammalian, avian, and model organism genomes. 

For example, the longest isoform of the Drosophila protein Loco (“isoform D”) shares 

the complete PDZ/PTB/RGS/RBDs/GoLoco architecture with human, rodent, and 

chicken RGS12 [117]. The domain architecture of RGS12 suggests multiple 

functions (see below) and work done in our lab and others supports this hypothesis 

(Figure 1.5) [23].  

1.5.3  PDZ Domain 

PDZ domains are ~90 amino-acid modular protein interaction domains that 

mediate specific protein-protein interactions that underlie the assembly of large 

protein complexes involved in signaling or subcellular transport. These domains 

were originally termed DHR (for Discs-large homology repeat) [118] or GLGF 

repeats (after a signature Gly-Leu-Gly-Phe sequence found in the domain) [119]. 

PDZ domains are now primarily known by an acronym of the first three PDZ-
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containing proteins identified: the postsynaptic protein PSD-95/SAP90, the 

Drosophila septate junction protein Discs-large, and the tight junction protein zonula 

occludens 1 (ZO-1) [120]. Since their initial discovery, PDZ and PDZ-like domains 

have been recognized in numerous proteins from organisms as diverse as 

mammals, bacteria, yeast, plants, Caenorhabditis elegans, and Drosophila [121]. In 

fact, they are among the most abundant protein domains represented in multicellular 

eukaryotic genomes. 

A canonical PDZ domain comprises six β-strands (A to F) and two α-helices 

(A and B), and carboxyl peptide ligands bind to an extended groove formed by the 

βB strand and the αB helix of the domains by augmenting the βB strand in an 

antiparallel fashion [122]. The binding specificity of each PDZ domain is ultimately 

determined by the interaction of the first residue of helix αB (αB1) and the side chain 

of the -2 residue of the C-terminal ligand [123]. In class I PDZ interactions, such as 

those of PSD-95 and NHERF, a serine or threonine residue occupies the -2 position 

(-X-S/T-X-Φ; where Φ is a hydrophobic amino-acid) [124, 125]. The hydroxyl group 

of serine or threonine forms a strong hydrogen bond with the N-3 nitrogen of a highly 

conserved histidine residue at position αB1 in class I PDZ domains [122]. In 

comparison, class II PDZ interactions, such as those of PICK1 and CASK, are 

characterized by hydrophobic residues at both the -2 position of the peptide ligand (-

X-Φ-X-Φ) and the αB1 position of the PDZ domain [123]. A third class of PDZ 

domains, such as nNos and Mint1/X11, prefers negatively charged amino-acids at 

the -2 position   (-X-D/E-X-Φ) [126, 127]. Class III specificity is determined by the 
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coordination of the hydroxyl group of a tyrosine residue at position αB1 in the PDZ 

domain with the side chain carboxylate of the -2 residue [126, 128].  

The RGS12 PDZ domain has a class I binding specificity (i.e., C-terminal S/T-

X-L/V motifs) and interacts with the C-terminus of the interleukin-8 receptor CXCR2 

in vitro [111], and in vivo (unpublished results). RGS12 prefers the motif T-X-L 

versus S-X-L. In addition to CXCR2, RGS12 can bind to the C-termini of MEK2 

(RTAV), p90RSK1 (STTL), and PDGFRβ (DSFL) (Chapter 4, unpublished results, 

and [18], respectively). However, RGS12 does not bind indiscriminantly to C-

terminal S/T-x-L/V sequences. For example, the PDZ domain of RGS12 does not 

bind to the β2-adrenergic receptor (DSPL), the metabotropic glutamate 1α receptor 

(SSTL), nor the neuropeptide Y receptor 2 (ATNV) in vitro [111]. Additionally, 

RGS12 does not bind corticotrophin releasing hormone receptors 1 and 2 (STAV 

and TTAV, respectively) in vivo (unpublished results), suggesting that other factors 

play a role in RGS12 PDZ selectivity beyond the conserved S/T-x-L/V motif.    

In collaboration with the laboratory of Dr. Nigel Pyne (Strathclyde Institute, 

Glasgow), we recently observed that RGS12 forms a complex with the sphingosine 

1-phosphate (S1P1) receptor and the platelet-derived growth factor-β (PDGFβ) 

receptor in guinea-pig airway smooth muscle cells, and thereby reduces the ability of 

these receptors to activate MAPK [18]. Specifically, we found that overexpression 

and subsequent association of RGS12 with the complex induces agonist-

independent internalization of the PDGFβ and S1P1 receptors into endocytic 

vesicles. Significantly, RGS12-directed internalization of the receptor complex 

demonstrates a potential novel role for RGS12 in promoting down-regulation or 
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internalization of receptor complexes from the cell surface. Although the mechanism 

by which RGS12 mediates PDGFβ receptor-S1P1 
receptor complex internalization is 

unknown, the N-terminal PDZ and PTB domains of RGS12 are responsible for the 

binding, and it is likely that this region is also responsible for the highly specific 

localization of the complex to endosomes. Similar to full-length RGS12, expression 

of the N-terminal PDZ-PTB domain tandem in isolation induced the internalization of 

the complex into endocytic vesicles [18] suggesting that this N-terminal domain 

cassette of RGS12 is responsible for the localization of the complex.  

1.5.4  PTB Domain 

PTB domains are modular 100-170 amino-acid domains that participate in 

protein-protein interactions [129, 130]. PTB domains are present in a number of 

signaling scaffold proteins, including Shc [131], Dab-1 [132], X11 [133], JIP-1 [134], 

and Numb [135]. Originally characterized as binding to the consensus amino-acid 

sequence Asn-Pro-X-pTyr (NPXpY), PTB domains are now known to have diverse 

binding capabilities. Some PTB domains bind peptides without the consensus motif 

or even independently of tyrosine phosphorylation [135]. Typical substrates for PTB 

domain-containing proteins include growth factor receptors, integrin cytoplasmic 

tails, GTPase regulatory enzymes, and components of endocytosis machinery; thus, 

PTB domains are often localized either to membranes or to juxtamembrane regions.  

An additional feature of many PTB domains is their ability to bind directly to 

liposome-associated or free phospholipid head groups [131, 132, 136]. 

Phosphoinositide binding by Dab-1 and Shc PTB domains has been proposed to 

mediate membrane localization of these proteins. The site for phospholipid binding 
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in these proteins exists in a pocket distinct from that of the peptide binding pocket 

and involves interactions with basic residues. The Numb PTB also binds various 

phospholipids, including phosphatidylinositol (4,5)bisphosphate [PtdIns(4,5)P2], a 

phospholipid involved in actin remodeling [136]. Although the residues in Numb 

involved in phospholipid binding have not been determined, three-dimensional (3D) 

modeling of the PTB domain reveals that the protein possesses highly favorable 

basic regions to accommodate acidic phospholipid head groups [129]. Similar to the 

Numb PTB domain, 3D electrostatic contouring of a model of the RGS12 PTB 

domain reveals a conserved pocket that is likely to bind phospholipids [129]. 

Mapping of the RGS12 PTB model for surface electrostatic potential indicates that 

this conserved pocket contains a number of positively-charged residues (i.e, R255, 

R260, R262, and R308) and appears to form a “crown” for coordination of acidic 

phospholipids. Preliminary data suggest that RGS12 preferentially binds to 

PtdIns(3)P and PtdIns(5)P (unpublished results); however, the structural 

determinants of this interaction remain to be determined. 

Schiff and colleagues found that RGS12 is specifically involved in establishing 

the rate of desensitization of GABAB receptor-mediated, voltage-independent 

inhibition of presynaptic Cav2.2 (N-type) calcium channels in embryonic chick dorsal 

root ganglion (DRG) neurons [137]. For example, microinjection of DRG neuron cell 

bodies with recombinant full-length RGS12, but not other RGS proteins such as 

GAIP or RGS14, dramatically accelerates the time to termination of GABA-mediated 

Cav2.2 channel inhibition. Conversely, microinjection of antibodies against RGS12, 
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but not other RGS proteins, dramatically prolongs the effect of calcium channel 

modulation by this major inhibitory neurotransmitter, γ-aminobutyric acid (GABA).  

The PTB domain facilitates the recruitment of RGS12, in a transient, 

phosphotyrosine-dependent manner, to the SNARE-binding or “synprint” region in 

loop II-III of the Cav2.2 channel [137, 138], and thereby determines the 

desensitization rate of GABAB-receptor mediated inhibition of calcium current in 

DRG neurons [137]. Studies examining the interaction of RGS12 with the synprint 

region of the Cav2.2 channel also revealed that the binding motif in the channel is 

not a canonical PTB binding motif [138]. As described above, most PTB domains 

recognize the consensus NPXY motif, either in a phosphotyrosine-dependent or 

independent manner [139]. However, variations of this motif have been identified, 

suggesting a wider binding specificity for PTB domains than once thought. RGS12 

binds to the channel in a phosphotyrosine-dependent manner and to a region that 

contains the residues EALY [138]. In addition to these residues, high affinity binding 

to the channel is also dependent upon residues C-terminal to the phosphotyrosine, 

suggesting that this interaction may be a new mode of peptide recognition for PTB 

domains. 

1.5.5  RGS Domain 

The majority of RGS-box-containing proteins negatively regulate GPCR 

signaling by stimulating the intrinsic GTPase activity of Gi/o, Gq, G12/13, and Gs Gα 

subunits [23]. The RGS domain of RGS12 is no exception. RGS12 is capable of 

stimulating the intrinsic GTP hydrolysis rate of both Gαi and Gαo subunits in vitro, 

but not of Gαq nor Gαs [111]. RGS12 does not appear to require regions beyond the 
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RGS domain for this activity, as the isolated RGS-box is capable of increasing the 

GTPase activities of Gαi/o subunits [111]. 

GABAB receptors couple to Gαo to inhibit Cav2.2 channels in embryonic chick 

DRG neurons [140]. As described above, RGS12 is involved in establishing the rate 

of desensitization of GABAB receptor-mediated inhibition of Cav2.2 calcium channels 

[137]. RGS12 may act to terminate the signal by two mechanisms: RGS12 may 

directly modulate channel activity; alternatively, the channel may be used as a 

‘scaffold’ to recruit RGS12 to the vicinity of Gαo and functional effects may arise from 

RGS12 enhancing the GTPase activity of Gα. Whether either or both of these 

mechanisms are in operation remains to be determined.  

1.5.6  Tandem Ras-Binding Domains 

GTPases are proteins that bind and hydrolyze GTP. Ras is a GTPase that is 

involved in many signal transduction processes such as control of growth, apoptosis, 

and differentiation [141, 142]. Ras, and other GTPases, act as molecular switches 

by cycling between an ‘on’ and ‘off’ state [143]. In the ‘off’ state, the GTPase is 

tightly bound to GDP, until GEFs promote GDP-dissociation, and subsequent 

loading of GTP. Once bound to GTP, Ras interacts with Ras effectors, proteins that 

preferentially bind to the activated GTP-bound form of Ras. 

The first bona fide effector of Ras to be identified was c-Raf-1 [144, 145]. c-

Raf-1 contains a 81 amino-acid Ras binding domain (RBD) that is sufficient to bind 

to Ras and Rap isoforms in a GTP-dependent manner. Structural studies revealed 

that the RBD of c-Raf-1 has an ubiquitin fold that interacts with Ras and Rap by 

forming an inter-protein β-sheet, which involves the outer strands of both proteins 
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[146-148].  Intriguingly, the interface of the complex is determined to a large extent 

by complementary charge interactions, i.e. the surfaces of Ras and c-Raf-1 RBD are 

negatively and positively charged, respectively [147]. Approximately 20 RBDs have 

been identified in human proteins [149, 150]; however, whether all of them are true 

Ras effectors remains to be determined [141]. Isolated RBDs have been described 

in several proteins including Tiam-1 and c-Raf-1; in comparison, a tandem repeat of 

two RBDs has only been described in RGS12 and RGS14 [149, 150].  

Domains homologous to the RBD in c-Raf-1 were identified in tandem in both 

RGS12 and RGS14 [151]. A multiple sequence alignment of the RBDs revealed that 

RBD1 of both RGS12 and RGS14 contains many residues that are conserved in 

human c-Raf-1. For example, the critical arginine (R89) that lies at the center of the 

Rap1A/c-Raf-1 binding interface is conserved in RGS14 [148]. Interestingly, this 

arginine residue is substituted with a positively charged histidine residue in RGS12. 

These results suggest that the RBDs identified in RGS14 and RGS12 likely bind 

Ras-like GTPases. The RBDs of RGS14 interact with both Rap and Ras GTPases in 

vitro [152-154], and the RBDs of RGS12 interact with activated H-Ras in vivo 

(Chapter 4). Moreover, it has been suggested that RBD1 of RGS14 mediates the 

binding to Ras and Rap, while RBD2 does not appear to interact with GTPases [152-

154]. In the case of the cell junction and Ras-interacting protein AF6, which contains 

tandem Ras-association domains, the first domain binds Ras with high affinity 

whereas the second domain binds with low affinity [141]. Thus, it is possible that the 

first RBD of RGS12 and RGS14 is a high-affinity binding domain, whereas the 

second is low-affinity, although this hypothesis remains to be tested. 
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1.5.7  GoLoco Motif 

Following the cloning of RGS12 and RGS14, a novel 19 amino-acid region 

within both proteins was identified that is also present in other Gα-interacting 

proteins [151, 155]. As the existence of the GoLoco motif was initially inferred from 

the detection of a second Gαi-binding site within Loco, the Drosophila RGS12 

homologue [117], it was termed Gαi/o-Loco, or GoLoco motif [155]. GoLoco motifs 

have since been identified in several distinct classes of proteins encoded in 

metazoan genomes, including the Drosophila proteins Loco and Pins, the 

mammalian proteins RGS12, RGS14, Pcp-2, Rap1GAP, G18, LGN, and AGS3, and 

the Caenorhabditis elegans proteins GPR-1 and GPR-2 [156]. To date, all 

characterized GoLoco motifs have been found to interact with Gαi/o subunits and 

thereby prevent their spontaneous release of GDP: an activity referred to as guanine 

nucleotide dissociation inhibitor (GDI) activity [156]. 

Functional characterization of the GoLoco motif regions of RGS12 and 

RGS14 revealed that both proteins interact exclusively with Gαi subunits (bar Gαi2 

[157, 158]) in their GDP-bound forms [159]. Both regions exhibited GDI activity in 

GTPγS binding assays, inhibiting the rate of exchange of GDP for GTP by Gαi1, and 

stabilized Gαi1 in its GDP-bound form, inhibiting the increase in intrinsic tryptophan 

fluorescence stimulated by AlF4
- [159]. These results indicate that both RGS12 and 

RGS14 harbor two distinctly different Gα interaction sites, suggesting that both 

proteins participate in a complex coordination of G-protein signaling beyond simple 

Gα GAP activity. 
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The GoLoco motif binds to Gαi⋅GDP subunits and prevents concomitant Gβγ 

association [157, 160]; thus, it is possible that the GoLoco motif plays a role in 

modulating GPCR signaling pathways. To address this possibility, Oxford and 

colleagues examined whether a peptide comprising the GoLoco motif of RGS12 

could selectively uncouple Gαi-coupled GPCR signaling by the Gαi-coupled D2-

dopamine receptor. Intracellular microinjection of the RGS12 GoLoco peptide into 

mouse pituitary gland-derived AtT-20 cells antagonized D2-dopamine receptor 

coupling to the activation of Kir3.1/3.2 potassium current, but did not affect Gαo-

coupled somatostatin-induced current [157]. These results support the possibility 

that Gαi-coupled GPCR signaling pathways may be the direct targets of GoLoco 

protein modulation.  

In addition to regulating Gα signaling, the GoLoco motif may play a role in the 

localization of RGS12 in cells. RGS12 appears to be subcellularly localized in a 

punctate pattern when overexpressed in primary airway smooth muscle cells, as well 

as in PC12 cells, HEK 293T cells, and primary DRG neurons (Chapter 4, [18], and 

unpublished results). Although the exact mechanism by which RGS12 localizes to 

endosomes is unknown, it is possible that the Gαi-binding activity of the C-terminal 

GoLoco motif plays a role; we have previously reported a loss-of-function mutation in 

the GoLoco motif that mislocalizes RGS12 to the nucleus [18]. These findings, as 

well as those described herein, suggest that the multiple functional domains found 

within RGS12 may cooperate to define the spatial and temporal nature of a RGS12-

coordinated signaling output initiated from RTKs and both monomeric and 

heterotrimeric G-protein subunits. 
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1.5.8  Drosophila loco 

The Drosophila gene loco was originally identified in a screen for glial cell-

specific genes, and encodes an RGS domain-containing protein with the same 

multiple domain architecture as RGS12 and RGS14 [117]. It is now known that 

mammalian RGS12 and RGS14 are the orthologues of Drosophila Loco [156]. Loco 

is essential for multiple processes in Drosophila development including 

dorsal/ventral axis formation, neuroblast asymmetric cell division, and nurse cell 

dumping [161, 162]. The loco gene is expressed in lateral glial cells in the 

developing embryonic central nervous system and is required for correct glial cell 

differentiation [117]. Normal glial-glial cell contacts are absent in loco-deficient flies, 

which results in a loss of the blood-brain barrier, and subsequent gross locomotor 

defects in surviving mutants, hence the moniker “locomotion defects”. Relatively little 

is known about the specific molecular mechanisms underlying glial cell development, 

although the specific interaction between Loco and Gαi suggests a function of G-

protein signaling in this process [117]. Recently, Loco, the GPCR Moody, and the 

Gα subunits Gαi and Gαo have been found expressed in surface glia, and genetic 

studies suggest that these four proteins act as part of a common signaling pathway 

critical for blood-brain barrier formation [163, 164]. 

As will be described in Chapter 4, our data on RGS12 as a MAPK scaffold is 

consistent with Drosophila studies. For example, we found that RGS12 preferentially 

binds to activated H-Ras, and this is consistent with yeast two-hybrid data 

demonstrating that Loco interacts with activated Drosophila Ras1 [165]. Additionally, 

the localization of Loco in surface glia is punctate throughout the cytoplasm [164], 
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paralleling our own observations in primary airway smooth muscle cells, PC12 cells, 

HEK 293T cells, and primary DRG neurons ([18], Chapter 4, and unpublished 

results). These results, and findings described in Chapter 4, suggest that RGS12 

might constitute an evolutionarily-conserved molecular link that integrates RTK 

signaling with GPCR signaling in both vertebrates and non-vertebrates. 

1.6  Mitogen-Activated Protein Kinases  

Mitogen-activated protein kinase (MAPK) cascades are evolutionarily 

conserved in a variety of signaling pathways that regulate various cellular processes, 

including apoptosis, gene transcription, differentiation, and growth [166-169] (Figure 

1.6). These cascades culminate in activation of a member of one of three major 

kinase classes:  the extracellular signal-regulated kinases (ERKs), the c-Jun N-

terminal kinases (JNKs), or the p38 kinases. All MAPK cascades display a three-tier 

architecture in which the last member of the cascade, “MAPK” (an ERK, JNK, or p38 

kinase), is activated by phosphorylation at tyrosine and threonine residues by the 

second member of the cascade: “MAP2K”. MAP2K is activated by threonine and 

serine phosphorylation by the first member of the cascade: “MAP3K”. MAP3K is 

activated by a variety of mechanisms depending on the system; with the Raf family 

of MAP3Ks, this activation is primarily via Ras-family GTPases [170]. Thus, the ERK 

version of the MAPK signaling cascade proceeds via Ras·GTP-mediated activation 

of a member of the Raf family (MAP3K-tier), which in turn activates MEK1/2 

(MAP2K-tier), and leads to ERK1/2 activation (MAPK-tier) [166, 171].  
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1.6.1  MAPK Cascades and the Importance of Scaffold Proteins  

The activation of a MAPK signaling cascade is highly ordered and involves 

tight regulation of all modular components of the cascade. As the ERK MAPK 

cascade is activated in a seemingly ubiquitous fashion in response to a wide variety 

of extracellular stimuli, mechanisms must exist to link specific inputs with appropriate 

biological outcomes [172-174]. Scaffold proteins bind numerous members of a 

particular signaling cascade to form a multimolecular complex and, as such, serve 

as organizing centers to enhance functional interactions between components of 

MAPK pathways. Several MAPK scaffold proteins have been identified in both yeast 

and mammals, with the S. cerevisiae scaffold protein Ste5 serving as the archetype 

[167, 175]. Ste5 is the product of a “sterile” gene, so-named given that loss-of-

function ste5 mutants fail to progress through pheromone-induced mating [176, 177]. 

Ste2 and Ste3 are pheromone-responsive GPCRs that activate the Gα subunit Gpa1 

and the Gβγ subunit Ste4/Ste18. The Ste5 scaffold protein tethers the protein 

kinases Ste11 (MAP3K), Ste7 (MAP2K), and Fus3 (MAPK) simultaneously through 

separable binding sites [178], and recruits these kinases to the plasma membrane—

the site at which other proteins (i.e., Ste4/Ste11 and the PAK-like kinase Ste20) 

participate in pheromone-dependent activation of the MAPK cascade [179]. Ste5-

mediated compartmentalization of enzymatic components of the mating pathway not 

only increases signaling efficiency, but also generates specificity by insulating the 

pheromone pathway from parallel pathways that also use these universal signaling 

components [175]. For example, both Ste11 and Ste7 also participate in nitrogen 

sensing and pseudohyphal growth initiation; however, formation of a pre-existing 
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complex by Ste5 specifically connects Ste11 and Ste7 to Fus3, thereby facilitating 

activation of this but not other MAPK-tier kinases [175] (cf. [180]). 

1.6.2  Mammalian MAPK Cascade Scaffolds 

Proteins with scaffolding functions have now been identified in mammalian 

MAPK cascades (Table 1.1) [181]. For example, MEK partner 1 (MP1) specifically 

binds MEK1 and ERK1 and facilitates ERK1 activation [182], whereas JNK-

interacting protein (JIP)-1 binds MLK3 and DLK (MAP3Ks), MKK7 (MAP2K), and c-

Jun kinase (JNK, a MAPK) to regulate the specific biological activities of the JNK 

pathway [183]. Osmosensing scaffold for MEKK3 (OSM) binds Rac, MEKK3, and 

MKK3 to coordinate p38 MAPK activation in the cellular response to hyperosmotic 

shock [139]. These scaffold proteins can bind to MAPK components constitutively; 

however, there are examples of scaffold associations that are agonist-dependent 

[184]. For instance, the ERK MAPK scaffold “kinase suppressor of Ras” (KSR-1) 

associates constitutively with MEK, 14-3-3, Hsp90, and Cdc37 [185-190], but only 

binds MAPK and Raf kinases in a Ras-dependent manner [185, 187, 189, 191]. 

Scaffolds are also found in signaling pathways outside the MAPK cascade (e.g., 

GPCR signaling) [192-194], suggesting that their function and requirement are 

widespread. 

β-arrestins have a well-established role in the desensitization and termination 

of GPCR signaling; however, a growing body of evidence indicates that they also 

function as MAPK scaffolds. Traditionally, ligand binding and subsequent 

phosphorylation of GPCRs by GRKs promotes translocation of β-arrestins from the 

cytoplasm to the receptor, where they interact directly with the receptor. Upon 
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binding, β-arrestins uncouple the receptor from G-proteins and target it for 

endocytosis. Additionally, β-arrestins mediate interaction of the GPCR with a variety 

of signaling proteins, including components of the MAPK cascade [28, 195]. 

Complexes have been identified that contain a GPCR, β-arrestin, Raf, MEK, and 

ERK. For example, activation of the angiotensin type 1a receptor (AT1aR) leads to 

the assembly of a complex containing the receptor, β-arrestin-2, c-Raf-1, MEK1, and 

ERK2 in HEK 293 and COS-7 cells [28]. Significantly, assembly of this complex is 

promoted by binding of c-Raf-1 to β-arrestin, and contributes to AT1aR-mediated 

activation of ERK; e.g., overexpression of β-arrestin increases angiotensin-mediated 

ERK activation [196]. These results suggest that β-arrestin can function as a scaffold 

protein that promotes the stable association of MAPK signaling proteins with 

GPCRs, and this association appears to facilitate efficient and proper signaling to 

ERK.  

The stoichiometry of components participating in a scaffold complex is critical 

for optimal signal processing. Depending on the relative concentration of the 

scaffold, output from a MAPK signaling cascade can either be disrupted or favored. 

This phenomenon, the “pro-zone” effect [197] or “combinatorial inhibition” [198], 

arises because at low scaffold concentrations the kinases are in excess and 

formation of a functional complex containing each kinase is likely to occur; in 

contrast, when scaffold is in excess, non-functional complexes containing less than 

the full complement of components becomes more prevalent [198]. Inhibition or 

promotion of MAPK signaling has been observed with the scaffold proteins KSR-1 

and MP1. KSR-1 was found to enhance MAPK signaling at low levels by cooperating 
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with activated Ras, whereas, at high levels, KSR-1 antagonized MAPK activation 

[185]. Similarly, organization of a productive MP1/MEK1/ERK1 complex can be 

blocked or promoted depending on the concentration of the scaffold [182]. These 

findings emphasize that the relative stoichiometry of scaffold to MAPK cascade 

component is crucial for accurate and efficient signal transduction [198, 199], and 

highlight the caution that one needs to implement when executing and analyzing 

scaffold protein experiments, e.g., JIP-1 [183, 200].  

MAPK scaffolds not only create functional MAPK modules of unique 

composition and regulate their activation by specific upstream stimuli, they also 

provide both spatial and temporal control of MAPK signaling; thus, the localization of 

a scaffold complex is critical for appropriate and optimal signal processing. The 

MAPK scaffold KSR, for example, is inactive in the cytosol. However, in response to 

EGF stimulation of the EGFR, KSR translocates to the plasma membrane to 

facilitate Ras activation of the Raf/MEK/ERK cascade [201]. The scaffold function of 

MP1 is dependent upon binding to p14, an adaptor protein found on the cytoplasmic 

side of late endosomes [202]. Mislocalization of the MP1/p14 complex to the plasma 

membrane fails to promote Ras activation of ERK. Thus, MP1 is not required for 

EGFR activation of ERK at the plasma membrane, but for prolonged activation of 

ERK on late endosomes. 

β-arrestin, as described above, facilitates c-Raf-1 activation of MEK1 and 

ERK2 [28]. Interestingly, β-arrestin-associated ERK remains sequestered in the 

cytosol, and in this way, directs substrate selectivity [195, 196]. Sef (“similar 

expression to fgf genes”) is a Golgi-associated MEK/ERK scaffold that binds 
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activated MEK and promotes its phosphorylation of ERK [203]. Upon complex 

formation, Sef prevents activated ERK translocation to the nucleus, consequently 

precluding ERK phosphorylation of the nuclear transcription factor E-26-like protein 

1 (Elk-1). Instead, Sef-associated ERK promotes phosphorylation of the cytosolic 90 

kDa ribosomal protein S6 kinase 2 (p90RSK2). These results demonstrate that 

scaffold proteins can spatially regulate MAPK signaling by specifying substrate 

selection. 

1.6.3  Nerve Growth Factor and TrkA 

Nerve growth factor (NGF), the prototypical neurotrophin, was discovered 50 

years ago by Cohen, Levi-Montalcini, and Hamburger as a factor required for axonal 

growth from explants [204]. NGF can be isolated in two forms, 7S or 2.5S, with S 

designating the sedimentation coefficient. The 7S form of NGF is a high-molecular-

weight complex containing two copies of each of three types of polypeptide chains 

(α, β, γ). The 2.5S NGF, conversely, consists of the β-subunit only and is abundant 

in mouse submandibular glands [205]. NGF mediates its effects through binding to 

two different receptors—the tropomyosin-related kinase A (TrkA) receptor and the 

p75 neurotrophin receptor (p75NTR). The p75NTR belongs to the tumor necrosis factor 

receptor superfamily, and was the first identified receptor for NGF [206, 207]. TrkA 

was originally discovered as a rearrangement of non-muscle tropomyosin and a 

tyrosine kinase, and subsequently was identified as a receptor for NGF [208-211].  

TrkA is a prototypical RTK that contains an extracellular domain composed of 

two distinct subsets of cell adhesion-related motifs: at the amino-terminal end, arrays 

of three leucine-rich motifs flanked by two cysteine clusters. Next to the second 
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cysteine cluster, two immunoglobulin-like C2 type domains (Ig-C2) stretch down to a 

single transmembrane domain. Facing the inner side of the membrane, Trk 

receptors display a cytoplasmic region with an intracellular tyrosine kinase domain 

followed by a short carboxy-terminal extension [212, 213]. Binding of NGF to TrkA 

occurs mainly through the Ig-C2 domains, although the leucine-rich motifs and the 

cysteine clusters may be involved [213]. The affinity of NGF for TrkA is modulated by 

the presence of p75NTR, which enhances specificity for NGF versus neurotrophin-3 

[214]. In fact, formation of high-affinity binding sites for NGF requires the presence of 

an appropriate ratio of p75NTR and TrkA receptors [215]. 

The signaling pathways activated by NGF regulate many neuronal functions 

including differentiation, cell survival, dendritic arborization, axonal growth, plasticity, 

synapse formation, and axonal guidance [213]. Upon binding NGF, TrkA receptors 

dimerize and autophosphorylate on multiple tyrosine residues in trans, which leads 

to recruitment of different adaptors and enzymes, and activation of multiple 

coordinated signaling pathways. Two tyrosine residues on TrkA, Y490 and Y785, are 

phosphorylated in response to NGF and serve as major docking sites for binding of 

adaptor proteins and enzymes. Specifically, Y490 and Y785 primarily recruit Shc 

and PLC-γ, respectively [216]. Phosphorylated tyrosine residues located in the 

catalytic loop of the tyrosine kinase domain (Y679, Y683, Y684) or in the carboxyl-

terminal region (Y794), can also recruit signaling molecules such as SH2B, APS, 

and Grb2 [217, 218]. 
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1.6.4  PC12 Cells 

The adrenal glands are adjacent to the kidneys, and are composed of two 

distinct layers, the adrenal cortex and the adrenal medulla. The adrenal medulla, 

which comprises the central 10-20% of the adrenal gland, is derived from 

neuroectodermal cells of the sympathetic ganglia, and secretes the catecholamines 

epinephrine and norepinephrine in response to sympathetic neural stimulation to the 

medullae [219]. Cells of the adrenal medulla are known as pheochromocytes or 

chromaffin cells [220]. There have been a variety of continuous cell lines derived 

from the adrenal medulla, with the archetypal being the rat PC12 cell line, which was 

first established from a transplantable rat adrenal pheochromocytoma [221]. 

PC12 cells are a useful system for studying how hormones, growth factors, 

and neurotrophins initiate multiple signaling pathways that converge on specific 

cellular targets to execute complex processes, such as survival, proliferation, and 

differentiation. Specifically, PC12 cells provide an example of how one signaling 

cascade, namely the Raf/MEK/ERK pathway, can promote distinct biological 

outcomes (Figure 1.7). For example, EGF and NGF use the Raf/MEK/ERK pathway 

to elicit proliferation and differentiation of PC12 cells, respectively. Both acidic and 

basic FGF can reproduce the entire spectrum of PC12 cell responses previously 

shown to be elicited by NGF [222]. The duration of ERK signaling by EGF versus 

NGF may explain these very distinct responses. EGF, acting through the EGF 

receptor, induces a transient activation of ERK which results in proliferation [223, 

224]. In contrast, NGF acting through the TrkA receptor, induces both transient and 

prolonged phosphorylation of ERK, with prolonged activation required for 
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differentiation [225, 226]. It is possible that the distinct biological consequences of 

transient versus prolonged activation of ERK reflect temporal differences in nuclear 

accumulation of ERK, and subsequent activation of transcription factors and 

changes in gene expression [224]. Alternatively, scaffold or adaptor proteins within 

the cell may promote differential ERK substrate selection by localizing ERK to areas 

other than the nucleus, such as endosomes or the cytoplasm.  

Promotion of differentiation by NGF appears to progress through a cascade 

involving, but not limited to, the TrkA receptor, the small GTPases Ras⋅GTP and 

Rap1⋅GTP, c-Raf-1 and B-Raf, MEK1/2, and ERK1/2 [227]. Thus, in addition to the 

time course of ERK activation in PC12 cells, the combination of signaling 

components activated by NGF versus EGF may result in different outcomes. In fact, 

scaffold proteins exist that may promote formation of stable complexes that 

compartmentalize and regulate different responses. For example, both the scaffold 

proteins KSR and DYRK1A promote neurite outgrowth in PC12 cells by binding to 

and coordinating MEK/ERK and Ras/B-Raf/MEK1, respectively [187, 228]. In 

Chapter 4, I describe several lines of experimentation that support the hypothesis 

that RGS12 is a novel MAPK scaffold that facilitates the assembly and regulation of 

the Ras-Raf-MEK cascade in PC12 cells. RGS12 appears to selectively regulate 

NGF- but neither EGF- nor bFGF-mediated signaling in PC12 cells, and this may be 

due, at least in part, to a direct interaction with the TrkA receptor. 
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Figure 1.1. Standard model of the GDP/GTP cycle governing activation of 
heterotrimeric G protein-coupled receptor (GPCR) signaling pathways.  In the 
absence of ligand, the Gα subunit is GDP-bound and closely associated with the 
Gβγ heterodimer. This Gα·GDP/Gβγ heterotrimer interacts with the cytosolic loops of 
a seven-transmembrane-domain G protein-coupled receptor (GPCR).  Gβγ facilitates 
the coupling of Gα to receptor and also acts as a guanine nucleotide dissociation 
inhibitor for Gα·GDP, slowing the spontaneous exchange of GDP for GTP.  Agonist-
bound GPCRs act as guanine nucleotide exchange factors by inducing a 
conformational change in the Gα subunit, allowing it to exchange GTP for GDP.  Gβγ 
dissociates from Gα·GTP, and both Gα·GTP and Gβγ are competent to signal to 
their respective effectors.  The cycle returns to the basal state when Gα hydrolyzes 
the gamma-phosphate moiety of GTP. 
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Figure 1.2. Receptor tyrosine kinase activation (adapted from [213]). In the 
absence of ligand, all RTKs (except for the insulin receptor) are monomeric. Ligand 
binding to the extracellular region leads to dimerization of monomeric receptors, 
resulting in autophosphorylation of specific tyrosine residues in the intracellular 
portion. Generally, tyrosine autophosphorylation either stimulates the intrinsic kinase 
activity of the receptor, or generates recruitment sites for downstream signaling 
adaptors such as FRS2, Shc, PLC-γ, or CHK. These interactions trigger the 
activation of various signaling pathways, which result in cellular processes such as 
survival, cell proliferation, and differentiation. 
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Figure 1.3. Domain architecture of mammalian phospholipase C (PLC) family 
members. The six classes of PLC isoforms are distinguished by differing structural 
domains. The hallmarks of all PLC family members, except for PLC-ζ, are an N-
terminal PH domain, and EF, X, Y and C2 motifs forming the catalytic core for 
phosphoinositide hydrolysis. Domain identification: PH: pleckstrin homology domain; 
EF: EF-hand domain; X and Y: XY box/catalytic TIM barrel; C2: Ca2+/lipid-binding 
domain; CT: C-terminal domain; SH2: Src-homology-2 domain; SH3: Src-homology-
3 domain; CDC25: cell division cycle protein 25-like domain; RA: Ras-associating 
domain; shaded area in PLC-ε Y box: unique 60-70 amino acid insert in the Y 
domain required for Rho activation of PLC activity. 
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Figure 1.4. Schematic of the varied multidomain architectures of RGS family 
proteins. RGS subfamily nomenclature follows that first established by Wilkie and 
Ross [265]. Abbreviations used are: Cys: cysteine-rich region; RGS: regulator of G-
protein signaling domain; α: amphipathic helix; DEP: Dishevelled/EGL-10/Pleckstrin 
homology domain; GGL: Gγ-like domain; PDZ: PSD-95/Dlg/ZO-1 homology domain; 
PTB: phosphotyrosine-binding domain; RBD: Ras-binding domain; GoLoco: Gαi/o-
Loco interacting motif; βCat: β-catenin binding domain; GSK3β: glycogen synthase 
kinase-3β binding domain; PP2A: phosphatase PP2A binding domain; DIX: domain 
present in Dishevelled and Axin; DH: Dbl-homology domain; PH: Pleckstrin 
homology domain; Ser/Thr-kinase: serine-threonine kinase domain; TM: 
transmembrane domain; PXA: phosphatidylinositol-associated domain; PX: 
phosphatidylinositol-binding domain; Nexin-C: Sorting nexin C-terminal domain. 
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Figure 1.5. The multidomain RGS protein RGS12 and its known interactors. 
The PDZ domain binds the C-termini of GPCRs including that of the IL-8 receptor 
CXCR2. The PDZ domain of RGS12 has also been shown to interact with the 
PDGFβR, and the PDZ and PTB domain N-terminus regulates PDGFβR localization 
and signaling to ERK. The PTB domain binds to the synprint (“synaptic protein 
interaction”) region of the Cav2.2 channel; this interaction is dependent on 
neurotransmitter-mediated phosphorylation of the channel by Src tyrosine kinase. 
The PTB domain also preferentially binds to monophosphorylated 
phosphatidylinositides such as PI(3)P. The RGS-box acts as a GAP for Gαi-family 
Gα subunits. The GoLoco domain prevents guanine nucleotide exchange by binding 
GDP-bound Gαi. 
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Figure 1.6. Mammalian MAPK signaling pathways (adapted from [169]). The 
mammalian MAPK family consists of four major subgroups: ERK1/2, ERK5, JNK, 
and p38 MAPKs, which are activated by phosphorylation at tyrosine and threonine 
residues by their specific MAPKKs. MAPKKs are activated by phosphorylation at 
threonine and serine residues by their specific MAPKKKs. MAPKKKs are activated 
by a variety of mechanisms in response to stimulation by growth factors, cytokines 
and stresses. Activated MAPKs phosphorylate various protein substrates including 
transcription factors (e.g., Elk-1 and c-jun), kinases (e.g., p90RSK and SGK), and 
cytoskeletal proteins (e.g., Tau and Stathmin), which is critical for appropriate 
cellular responses to extracellular stimuli. 
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Figure 1.7. PC12 signaling pathways involving the MAPK cascade (adapted 
from [306]). Different outcomes are activated by EGF and NGF, but both growth 
factors employ similar signal transduction machinery. EGFR activation recruits Shc, 
which acts as a phophorylation-dependent scaffold for the adaptor Grb2 and its 
binding parner Sos. Sos, a Ras-GEF, activates Ras, which in turn activates c-Raf-1, 
MEK, and ERK transiently, resulting in cell proliferation. The NGF receptor TrkA also 
activates ERK transiently through a similar mechanism. In addition, sustained 
activation of ERK stemming from NGF treatment appears to involve activation of 
both Ras and Rap1, and B-Raf. The small GTPase Rap1 is recruited to the TrkA 
receptor by the phosphorylation-dependent scaffold FRS2, which subsequently 
recruites Crk/C3G. C3G, a Rap-GEF, activates Rap1, which activates B-Raf, MEK, 
and ERK. Prolonged ERK activation by Ras and Rap1 results in neuronal 
differentiation. 
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TABLE 1.1.  Selected mammalian scaffold proteins (adapted from [180]) 

 

Name Protein Interactions Scaffold Function 
MP1 MEK1, ERK1, p14 Activation of ERK at late endosomes 

JIP-1 Akt, ApoER2, APP, 
JNK, KLC, Megalin, 
MKK7, MLK, MPK7, 
p190RhoGEF, Ras-

GRF, Tiam1 

JNK activation  
Kinesin cargo 

OSM Actin, Rac, MEKK3, 
MKK3 

Activation of p38 

KSR Raf, MEK1/2, ERK1/2, 
14-3-3, C-TAK1, Gβγ 

Ras activation of ERK 

β-arrestin-1,2 
 

c-Raf-1, MEK1, ERK2 
 

GPCR activation of ERK 
 

β-arrestin-2 ASK1, MKK4, JNK3 GPCR activation of JNK3 

DYRK1A Ras, B-Raf, MEK1 Ras activation of ERK 



CHAPTER 2 
 

Gα12/13- AND RHO-DEPENDENT ACTIVATION OF PHOSPHOLIPASE C-ε BY 
LYSOPHOSPHATIDIC ACID AND THROMBIN RECEPTORS 

 
2.1  Abstract 

Since phospholipase C epsilon (PLC-ε) is activated by Gα12/13 and Rho family 

GTPases, we investigated whether these G-proteins contribute to the increased 

inositol lipid hydrolysis observed in COS-7 cells following activation of certain G 

protein-coupled receptors. Stimulation of inositol lipid hydrolysis by endogenous 

lysophosphatidic acid (LPA) or thrombin receptors was markedly enhanced by the 

expression of PLC-ε. Expression of the LPA1 or PAR1 receptor increased inositol 

phosphate production in response to LPA or SFLLRN, respectively, and these 

agonist-stimulated responses were markedly enhanced by co-expression of PLC-ε. 

Both LPA1 and PAR1 receptor-mediated activation of PLC-ε were inhibited by co-

expression of the RGS domain of p115RhoGEF, a GTPase-activating protein for 

Gα12/13, but not by expression of the RGS domain of GRK2, which inhibits Gαq 

signaling. In contrast, activation of the Gq-coupled M1 muscarinic or P2Y2 purinergic 

receptor was neither enhanced by co-expression with PLC-ε nor inhibited by the 

RGS domain of p115RhoGEF, but was blocked by expression of the RGS domain of 

GRK2. Expression of the Rho inhibitor C3 botulinum toxin did not affect LPA- or 

SFLLRN-stimulated inositol lipid hydrolysis in the absence of PLC-ε, but completely 

prevented the PLC-ε-dependent increase in inositol phosphate accumulation. 

Similarly 
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Similarly, C3 toxin blocked the PLC-ε-dependent stimulatory effects of the LPA1, 

LPA2, LPA3 or PAR1 receptor, but had no effect on the agonist-promoted inositol 

phosphate response of the M1 or P2Y2 receptor. Moreover, PLC-ε-dependent 

stimulation of inositol phosphate accumulation by activation of the EGF receptor, 

which involves Ras- but not Rho-mediated activation of the phospholipase was 

unaffected by C3 toxin. These studies illustrate that specific LPA and thrombin 

receptors promote inositol lipid signaling via activation of Gα12/13 and Rho. 

2.2  Introduction 

Many extracellular hormones, neurotransmitters, and growth factors exert 

their physiological effects by mechanisms that in part involve phospholipase C-

catalyzed breakdown of phosphatidylinositol (4,5)P2 into the Ca2+-mobilizing second 

messenger inositol (1,4,5)P3 and the protein kinase C-activating second messenger 

diacylglycerol [31, 229]. For example, extracellular stimuli that activate members of 

the large family of seven transmembrane-spanning heterotrimeric G protein-coupled 

receptors (GPCRs) activate PLC-β isozymes by release of α-subunits of the Gq 

family of G proteins [33-35] or by release of Gβγ dimers from activated Gi [37-39]. In 

contrast, PLC-γ enzymes are activated by tyrosine phosphorylation following 

activation of receptor and nonreceptor tyrosine kinases [40, 42]. 

PLC-ε, which possesses Ras-associating (RA) domains at its carboxy 

terminus, was initially identified in C. elegans as a Ras-binding protein [48]. 

Mammalian PLC-ε is activated by coexpression with Ras [49, 51] as well as by 

activators of GEFs that in turn promote formation of active Rap or Ras [56, 65, 230]. 

For example, Gs-coupled GPCRs promote PLC-ε-dependent inositol lipid signaling 
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through activation of the cyclic AMP-activated GEF, EPAC, which in turn activates 

Rap1A [56]. Initial studies of mammalian PLC-ε revealed activation by Gα12 and 

Gα13 but not by Gαq [50, 53], and Gβγ also has been shown to activate this PLC 

isozyme [53]. 

Coexpression of Rho family GTPases with PLC-ε results in marked 

stimulation of inositol lipid hydrolysis [52]. PLC-ε mutants that lack functional RA 

domains retain activation by Rho, indicating that Rho family GTPases regulate this 

PLC isozyme by a mechanism distinct from that utilized by Ras and Rap. 

Observation of GTP-dependent activation of purified PLC-ε by purified RhoA 

illustrates that the stimulatory action of Rho in inositol lipid signaling is direct [61]. 

GEFs for Rho are downstream effectors of Gα12/13 [231-235]. Thus, observation of 

Rho-dependent activation of PLC-ε suggests that GPCRs that activate Gα12/13 

promote inositol lipid signaling through activation of Rho. 

With the goal of establishing whether receptor-mediated regulation of inositol 

lipid signaling occurs through a mechanism involving Gα12/13, Rho, and PLC-ε, we 

have studied regulation of PLC-ε-promoted inositol lipid hydrolysis by endogenous 

and recombinant GPCRs expressed in COS-7 cells. The results of these studies are 

consistent with the idea that Gα12/13- and Rho-dependent activation of PLC-ε occurs 

downstream of both LPA- and thrombin-activated receptors, and that the regulation 

of PLC-ε by Gα12/13 occurs at least in part through activation of Rho. 

2.3  Materials and Methods 

Materials.  Expression vectors (in pcDNA3.1) for the human M1 muscarinic 

cholinergic, LPA1, LPA2, and LPA3 receptors were purchased from the UMR cDNA 
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Resource Center (Rolla, MO). An expression vector encoding the human P2Y2 

receptor was described previously [236]. The plasmid encoding wildtype EGF 

receptor is described in [237]. A pCMV-Script vector encoding FLAG-tagged rat 

PLC-ε was generously provided by Grant Kelley, SUNY Syracuse. An expression 

vector for C3 botulinum toxin was obtained from Channing Der, University of North 

Carolina. cDNA encoding the first 240 amino-acids of human p115RhoGEF was 

subcloned in-frame with an N-terminal tandem hemagglutinin (HA)-epitope tag into a 

modified pcDNA3.1 vector [238]. cDNA encoding amino-acids 45-178 of bovine 

GRK2 (designated GRK2-RGS) in frame with an N-terminal HA epitope tag in 

pcDNA3 was kindly provided by Dr. Jeffrey Benovic (Thomas Jefferson University, 

Philadelphia, PA). LPA (1-oleoyl-sn-glycerol 3-phosphate sodium salt) was 

purchased from Sigma-Aldrich (St. Louis, MO), and dissolved in water containing 

1.0% fatty acid-free BSA. The PAR1 receptor agonist peptide, SFLLRN, was 

synthesized as the carboxyl amide and purified by reverse phase high pressure 

liquid chromatography (UNC Peptide Facility, Chapel Hill, NC). UTP, carbachol, and 

epidermal growth factor (EGF) were purchased from Sigma-Aldrich (St. Louis, MO). 

All other reagents were from sources previously noted [52, 53, 61].   

Cell Culture and Transfection of COS-7 Cells.  COS-7 cells were plated in 12-well 

or 96-well culture dishes and maintained in DMEM supplemented with 10% fetal 

bovine serum, 4 mM L-glutamine, 100 U/mL penicillin, and 100 μg/mL streptomycin 

at 37 °C in a 10% CO2/90% air atmosphere. The indicated DNA expression vectors 

were transfected into COS-7 cells using Fugene 6 transfection reagent (Roche 

Applied Science, Indianapolis, IN) at a ratio of 3:1 (Fugene:DNA) following the 
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manufacturer’s protocol. Empty vector DNA was used as necessary to maintain a 

constant total amount of DNA per well.   

Measurement of [3H]Inositol Phosphates.  Approximately 24 h after transfection, 

the medium was replaced with inositol- and serum-free DMEM containing 1 μCi/well 

[myo-3H]inositol (American Radiolabeled Chemicals, St. Louis, MO). Phospholipase 

C activity was quantified twelve h after labeling by incubation in inositol-free DMEM 

containing 10 mM LiCl either in the absence of a receptor agonist or in the presence 

of 10 μM LPA, 50 μM SFFLRN, 100 μM carbachol, 100 μM UTP, or 100 ng/mL EGF. 

The reaction was stopped after 30-60 min by aspiration of the medium and addition 

of ice-cold 50 mM formic acid. Following neutralization with 150 mM ammonium 

hydroxide, the accumulation of [3H]inositol phosphates was quantified by Dowex 

chromatography as previously described [53]. 

Western Blotting.  COS-7 cells were seeded at 60,000 cells per well in a 12 well 

plate and transfected 24 hours later with pcDNA3, myc-PLC-ε, or myc-PLC-ε with 0.3 

ng, 3 ng, or 30 ng C3 toxin using FuGENE 6 transfection reagent as described 

previously. Forty-eight hours post-transfection the cells were lysed on ice in 200 μL 

lysis buffer (20 mM Tris pH 7.5, 100 mM NaCl, 5 mM MgCl2, 1 mM EDTA, and 1% 

Triton X-100, containing protease inhibitors). COS-7 cell lysates were sonicated in an 

ice water bath for 5 min and then centrifuged at 13,000 x g for 20 min at 4 °C. The 

supernatant was removed, mixed 1:1 with 5x Laemmli sample buffer, boiled for 5 

min, and subjected to SDS-PAGE and transfer to nitrocellulose. Western blotting 

was performed using anti-myc clone 9E10 (Roche Applied Science, Indianapolis, IN) 

and anti-α-tubulin clone B-5-1-2 (Sigma-Aldrich, St. Louis, MO) primary antibodies, a 
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secondary anti-mouse IgG antibody conjugated to horseradish peroxidase 

(Amersham Biosciences, Piscataway, NJ), and enhanced chemiluminescence 

(Denville Scientific Inc., Metuchen, NJ). 

2.4  Results 

PLC-ε-dependent promotion of inositol lipid signaling by endogenous LPA and 

thrombin receptors.  

 We recently reported that Rho GTPases directly activate PLC-ε [52, 61]. To 

begin to address potential GPCR-mediated regulation of this PLC isozyme through a 

Rho-dependent signaling pathway, we screened COS-7 cells for the functional 

presence of GPCRs that exhibit PLC-ε-dependent activation of inositol lipid 

signaling. Incubation of cells with histamine, prostaglandin E2, carbachol, adenosine, 

norepinephrine, somatostatin, or a combination of P2Y receptor agonists (UTP, 

2MeSADP, ATP, UDP, and UDP-glucose) all failed to elevate inositol phosphates in 

a PLC-ε-dependent manner (data not shown). In contrast, as was recently reported 

by Kelley et al. [55], incubation of PLC-ε-expressing cells with LPA (10 μM) or with 

the agonist peptide SFLLRN (50 μM) resulted in an increase in inositol phosphate 

levels compared to the very low responses observed to LPA or SFLLRN in control 

cells (Figure 2.1). 

PLC-ε-dependent stimulation of inositol phosphate accumulation by molecularly 

defined LPA and thrombin receptors.   

 Since LPA is the cognate agonist for at least three different GPCRs, we 

individually expressed the LPA1, LPA2, or LPA3 receptors in COS-7 cells with the 

goal of determining the extent to which these signaling proteins exhibit PLC-ε-
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dependence in their action. LPA-stimulated inositol phosphate accumulation was 

reproducibly increased in LPA1 receptor-expressing cells compared to empty vector-

transfected cells, and was enhanced by ~10 fold in LPA2 or LPA3 receptor-

expressing cells (Figure 2.2). Coexpression of the LPA1 receptor with PLC-ε 

markedly enhanced the inositol phosphate response to LPA. Coexpression with 

PLC-ε also increased the LPA-promoted inositol lipid signaling response in LPA2 or 

LPA3 receptor-expressing cells, although the enhancement observed with PLC-ε 

was both variable and of much smaller magnitude, i.e. from no effect to 

approximately 2-fold increases in response, than that observed with the LPA1 

receptor (Figure 2.2). To determine whether the lack of effect of the LPA2 and LPA3 

receptors on PLC-ε activation was due to a depletion of phosphatidylinositol (4,5)P2, 

we examined the ability of other Gαq-coupled receptors to promote inositol lipid 

signaling. Gαq-coupled receptors such as P2Y4 and P2Y11 produced much larger 

responses than the LPA2 and LPA3 receptors (data not shown), suggesting that the 

system is not saturated. Additionally, selective inhibition of the large Gαq-stimulated 

response of the LPA2 and LPA3 receptors by the RGS domain of GRK2 [93, 238] did 

not uncover a PLC-ε-dependent response by these receptors (data not shown). 

Therefore, the LPA1 receptor promotes signaling responses in COS-7 cells that are 

markedly dependent on the presence of PLC-ε, whereas the inositol lipid signaling 

response in LPA2 or LPA3 receptor-expressing cells is less affected by expression of 

PLC-ε. 

 Given the effects of PLC-ε on agonist-promoted responses of the molecularly 

defined LPA receptors, we also tested the activities of the PAR1 receptor, another 
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GPCR known to couple to Gα12/13- and Rho-regulated pathways, and two receptors, 

the M1 muscarinic cholinergic receptor and the nucleotide-activated P2Y2 receptor, 

known to primarily activate Gq-regulated signaling pathways. Expression of the 

PAR1 receptor in the presence of PLC-ε resulted in a marked increase in SFLLRN-

promoted inositol phosphate accumulation (Figure 2.3A). In contrast, expression of 

the M1 muscarinic receptor (Figure 2.3B) or P2Y2 receptor (Figure 2.3C) resulted in 

a marked increase in agonist-promoted inositol lipid response that was not further 

augmented by coexpression with PLC-ε. The large increase in basal [3H]inositol 

phosphate accumulation illustrated in Figure 2.3C is due to basal release of ATP 

and UTP from COS-7 cells, which in turn activates the expressed P2Y2 receptor 

[239-241]. 

RGS protein-selective inhibition of PLC-ε-dependent signaling by the LPA1 and 

PAR1 receptors.  

Activation of both LPA [242, 243] and thrombin [243, 244] receptors has been 

reported previously to result in activation of Gα12/13- and Rho-promoted signaling 

pathways. To address the potential roles of Gα12/13 as well as Gαq in the responses 

to these GPCRs, we applied the RGS domain of p115RhoGEF (p115-RGS), which 

acts as a GTPase activating protein for Gα12 and Gα13 [103, 238], and GRK2-RGS, 

which is known to bind selectively to Gαq and inhibit Gαq signaling [93, 238]. Co-

expression of p115-RGS with the LPA1 receptor or PAR1 receptor had no effect on 

agonist-stimulated inositol phosphate accumulation in the absence of PLC-ε (Figures 

2.4A and 2.4B). However, the elevated agonist-promoted inositol phosphate 

response observed in cells coexpressing these receptors with PLC-ε was essentially 
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completely inhibited by co-expression with p115-RGS. In contrast, p115-RGS had 

no effect on agonist-stimulated inositol phosphate responses promoted by the M1 

muscarinic receptor (Figure 2.4C) or P2Y2 receptor (data not shown) in the absence 

or presence of PLC-ε. Conversely, expression of Gαq-binding GRK2-RGS 

significantly inhibited M1 (Figure 2.4) and P2Y2 (data not shown) receptor-promoted 

signaling but had no effect on the inositol lipid signaling response to the LPA1 

(Figure 2.4A) or PAR1 (Figure 2.4B) receptor either in the absence or presence of 

expression of PLC-ε.   

C3 toxin inhibits Gα12/13-, LPA-, and thrombin-promoted activation of PLC-ε. 

The data presented thus far implicate Gα12/13 in the mechanism of activation 

of PLC-ε by LPA and thrombin receptors. In contrast, the M1 muscarinic and P2Y2 

receptors apparently regulate inositol lipid signaling by mechanisms that involve 

neither Gα12/13 nor PLC-ε. To address the potential role of Rho in GPCR-promoted 

activation of PLC-ε, we utilized C3 toxin to inactivate Rho. Expression of GTPase-

deficient mutants of Gα12 (Gα12Q229L) or Gα13 (Gα13Q226L) had no effect on 

accumulation of inositol phosphates in control COS-7 cells (Figure 2.5A). However, 

co-expression of these Gα12 or Gα13 mutants with PLC-ε resulted in a marked 

increase in [3H]inositol phosphate accumulation compared to [3H]inositol phosphate 

levels in cells transfected with PLC-ε alone. The capacity of Gα12 and Gα13 to 

activate PLC-ε was lost with transfection of increasing amounts of an expression 

vector for C3 botulinum toxin (Figure 2.5B). Loss of responsiveness was not due to a 

nonspecific effect on inositol lipid signaling since the capacity of GTPase-deficient 

Gαq (GαqQ209L) to promote phosphoinositide hydrolysis was largely retained. To 
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determine whether the reduction of PLC-ε activity was due to a decrease in the 

expression level of PLC-ε, we immunoblotted cell lysates expressing PLC-ε alone, or 

PLC-ε in the presence of increasing amounts of C3 toxin. The expression of PLC-ε 

in the presence of 0.3 ng, 3 ng, or 30 ng C3 toxin was not significantly altered 

(Figure 2.5C), suggesting that the lack of activity of PLC-ε in the presence of C3 

toxin is not due to the inhibition of PLC-ε expression. Thus, Rho is downstream of 

Gα12 and Gα13 in the PLC-ε-dependent signaling response measured under these 

conditions.   

 The potential contribution of Rho to the PLC-ε-dependent stimulation of 

inositol lipid signaling by the endogenous LPA and thrombin receptors of COS-7 

cells also was examined by measuring inositol phosphate accumulation following 

expression of C3 toxin. Whereas the capacity of LPA (Figure 2.6A) or SFLLRN 

(Figure 2.6B) to stimulate phosphoinositide hydrolysis in the absence of PLC-ε was 

not affected by transient expression of C3 toxin, PLC-ε-dependent elevation of 

inositol phosphates in response to both agonists was entirely lost in C3 toxin-

expressing cells in a concentration dependent manner (Figures 2.6A and 2.6B). 

These results suggest that endogenous LPA and thrombin receptors of COS-7 cells 

activate a Rho GTPase(s), which in turn activates PLC-ε.   

C3 toxin-mediated inhibition of PLC-ε-dependent inositol lipid signaling by 

molecularly defined LPA and thrombin receptors. 

To determine whether Rho also is involved in PLC-ε-dependent inositol lipid 

signaling by molecularly defined LPA receptors and the PAR1 receptor, C3 toxin 

was coexpressed with each of these receptors in the absence or presence of PLC-ε. 
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The increased response to LPA conferred by LPA1 receptor expression was not 

affected by C3 toxin (data not shown). In contrast, the large PLC-ε-dependent 

response to LPA observed in LPA1 receptor-expressing cells was completely 

inhibited in a concentration dependent manner by coexpression of C3 toxin (Figure 

2.7A). C3 toxin also had no effect on the LPA-promoted inositol phosphate response 

in COS-7 cells expressing either the LPA2 or LPA3 receptor alone (data not shown), 

but blocked completely and in a concentration dependent manner the PLC-ε-

dependent effects of LPA mediated through these two receptors (Figure 2.7B and 

2.7C). Expression of C3 toxin also resulted in loss of PLC-ε-dependent but not PLC-

ε-independent inositol lipid signaling of the PAR1 receptor (Figure 2.8A). In contrast, 

agonist-stimulated inositol phosphate accumulation promoted by the M1 muscarinic 

cholinergic receptor (Figure 2.8B) or the P2Y2 purinergic receptor (Figure 2.8C) was 

neither enhanced by expression of PLC-ε nor inhibited by coexpression of C3 toxin.  

Although expression of C3 toxin did not affect expression of PLC-ε (Figure 

2.5C and data not shown), the elevated levels of basal [3H]inositol phosphate 

accumulation after PLC-ε expression were suppressed by coexpression of C3 toxin, 

e.g. see Figures 2.7 and 2.8. PLC-ε-dependent elevation of [3H]inositol phosphate 

accumulation also was inhibited by p115-RGS (Figure 2.4A and data not shown), 

suggesting that a Gα12/13/Rho-dependent pathway activates expressed PLC-ε in the 

absence of added receptor agonists. An analogous effect is observed with 

overexpression of Gq-coupled P2Y receptors (Figure 2.8C) in the absence of 

application of exogenous agonist due to autocrine release of cognate adenine and 

uridine nucleotide agonists [239, 241, 245]. Nonetheless, these results do not rule 
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out the possibility that C3 toxin nonspecifically inhibits activation of PLC-ε by all 

activators. Thus, we also examined EGF receptor-mediated activation of PLC-ε, 

which occurs via a Gα12/13/Rho-independent mechanism involving binding of Ras 

subfamily GTPases to the carboxyl terminal RA domains of the enzyme [49, 51, 55, 

69]. As illustrated in Figure 2.9B, PLC-ε-dependent effects of EGF on [3H]inositol 

phosphate accumulation were observed in COS-7 cells coexpressing the EGF 

receptor. The effect of C3 toxin on EGF-promoted activation of PLC-ε was examined 

in a series of experiments in which PLC-ε-dependent accumulation of [3H]inositol 

phosphates was quantified in the presence of EGF versus LPA in EGF receptor-

expressing cells versus LPA1 receptor-expressing cells, respectively. Whereas 

expression of increasing amounts of C3 toxin inhibited LPA1 receptor-promoted 

[3H]inositol phosphate accumulation (Figures 2.7A and 2.9A), little if any effect of C3 

toxin on PLC-ε dependent stimulatory effects of the EGF receptor were observed 

(Figure 2.9B). 

2.5  Discussion 

PLC isozymes contain a highly conserved catalytic core, as well as additional 

domains that render these isozymes susceptible to different modes of regulation 

[31]. PLC-ε is activated by Ras and Rho GTPases as well as by subunits of 

heterotrimeric G proteins including Gα12, Gα13, Gαs, and Gβγ [49-53, 56]. Activation 

by Ras subfamily GTPases occurs as a consequence of direct interaction of these G 

proteins with RA domains in the carboxy terminus of PLC-ε [49, 51]. We illustrated 

recently that Rho binds to undefined sequence in the catalytic core of PLC-ε 

activating the isozyme through a mechanism that does not require the RA domains 
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[52, 61]. In contrast, the mechanism(s) whereby PLC-ε is activated by subunits of 

heterotrimeric G proteins remains largely unclear and may not be direct. Data 

reported in the current study indicate that activation of PLC-ε by Gα12 and Gα13 after 

expression in COS-7 cells is dependent on functional Rho. Moreover, these results 

are consistent with the conclusion that activation of PLC-ε by receptors for LPA and 

thrombin is dependent on activation of both Gα12/13 and Rho. 

The downstream signaling responses promoted by GPCRs through Gα12/13-

dependent mechanisms have been less clearly defined than those dependent on 

activation of Gα-subunits of the Gs, Gi, and Gq families. Nonetheless, marked 

morphological and cell proliferative changes are consistently observed with 

introduction of GTPase-deficient mutants of Gα12 or Gα13 in various cell types [246, 

247], and a variety of effectors are stimulated downstream of activation of Gα12/13 

[243, 246]. Some of the cellular responses promoted by Gα12/13 are mimicked by 

activated Rho, and activation of Rho occurs in many if not all cells in which Gα12 or 

Gα13 is activated [247]. A large family of RhoGEFs [231-235], e.g. p115RhoGEF, 

leukemia-associated RhoGEF (LARG), PDZ-RhoGEF, and Lbc-RhoGEF, are among 

the best studied of the effector proteins directly regulated by Gα12/13. Moreover, the 

observation that certain Gα12/13-coupled GPCRs produce cellular effects that involve 

Rho [247] or RhoGEFs [248] suggests that the putative Rho-activated PLC-ε 

signaling pathway implied from our previous studies is logically extended to GPCRs 

that activate Rho GTPases through activation of Gα12/13 [246, 247, 249, 250]. 
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The recent observation by Kelley and coworkers [55] of activation of PLC-ε by 

natively expressed LPA and PAR receptors of COS-7 cells was confirmed by the 

results reported here. Whereas the inositol lipid signaling response of these GPCRs 

was not affected by C3 toxin in the absence of PLC-ε expression, the complete 

inhibition of PLC-ε-dependent signaling from these receptors by C3 toxin is 

consistent with the conclusion that LPA and thrombin receptor-promoted activation 

of PLC-ε occurs through activation of Rho. Previous studies of the three subtypes of 

LPA receptors have suggested that these GPCRs couple to multiple G proteins [242, 

243]. Expression of the LPA1, LPA2, or LPA3 receptors all resulted in an enhanced 

inositol phosphate response to LPA in COS-7 cells. The large increase in LPA-

stimulated response observed when the LPA1 receptor was coexpressed with PLC-ε 

and the inhibition of this augmented response by p115-RGS or C3 toxin are 

consistent with the known coupling of this GPCR to Gα12/13 [242, 243]. Moreover, 

these results are consistent with the conclusion that the LPA1 receptor activates 

PLC-ε through Gα12/13-promoted activation of Rho. Observation of a large PLC-ε-

dependent signaling response with expression of the PAR1 receptor also was 

consistent with the known coupling of this receptor to Gα12/13 and Rho signaling 

pathways [243, 244].   

Over fifty RhoGEFs exist [251], and therefore, Rho is activated by many 

different signaling pathways in addition to those involving Gα12/13. Indeed, Gαq also 

promotes activation of Rho through mechanisms that apparently are independent of 

inositol lipid hydrolysis [247, 252], and Gαq-activated RhoGEFs have been proposed 

to exist [231, 252, 253]. Thus, GPCRs potentially regulate PLC-ε through Gαq-
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dependent signaling pathways although this apparently does not occur in COS-7 

cells with the M1 muscarinic or P2Y2 purinergic receptors. That is, whereas large 

increases in agonist-stimulated inositol lipid hydrolysis were observed after 

expression of the Gq-coupled M1 muscarinic or P2Y2 receptors, no activation of 

PLC-ε by these two receptors was observed. Perhaps Gq-regulated RhoGEFs are 

not expressed in COS-7 cells or lack cellular localization with the LPA and thrombin 

receptors and PLC-ε. 

The RhoGEF responsible for LPA and thrombin receptor-promoted activation 

of PLC-ε in COS-7 remains to be identified. Indeed the work of Wang et al. [248] in 

PC-3 prostate cancer cells indicates that the LPA and thrombin receptors may 

activate Rho through distinct RhoGEFs. Whereas the PAR1 receptor utilized the 

Gα12/13-activated RhoGEF LARG, LPA receptor-promoted signaling involved another 

Gα12/13-activated RhoGEF, PDZRhoGEF. Interestingly, Yamada et al. [254] recently 

reported that the carboxy termini of the LPA1 and LPA2 receptors, but not the LPA3 

receptor, interact with the PDZ domain of PDZ-RhoGEF, and that mutation of the 

carboxy terminus of the LPA1 and LPA2 receptors results in loss of capacity of LPA 

to promote activation of Rho. 

The most parsimonious interpretation of the current data is that LPA and 

thrombin receptors natively expressed in COS-7 cells as well as recombinant LPA1 

and PAR1 receptors overexpressed in these cells all potently activate PLC-ε as a 

downstream consequence of activation of Gα12/13 and Rho. LPA and thrombin 

receptors also are known to activate Gq and Gi, and therefore, also regulate inositol 

lipid signaling through activation of PLC-β isozymes. The relative contribution of 
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these different inositol lipid signaling pathways almost certainly will vary widely 

across cell types, and it will be important to establish the relative contribution of Rho-

dependent activation of PLC-ε in the physiological responses to LPA and thrombin. 

Independent binding of activated Rho and Ras subfamily GTPases to PLC-ε 

implies complex physiological regulation of this inositol lipid hydrolyzing isozyme 

from multiple cell surface receptors. Activation of PLC-ε  by EGF receptors was 

shown to be dependent on intact RA domains and apparently involves GEF-

promoted activation of Ras or Rap [55]. Activation of Rap1A and consequential 

binding of GTP-bound Rap1A to the carboxy-terminal RA domains also accounts for 

activation of PLC-ε by Gαs-coupled GPCRs, which activate adenylyl cyclase, elevate 

cyclic AMP levels, and therefore, activate a cyclic AMP-regulated GEF for Rap1A 

[56, 65, 230]. Gα12, Gα13, and/or other Gα subunits may yet prove to be direct 

activators of PLC-ε. However, the data presented here indicate that Rho accounts 

for much if not all of the activation of this isozyme by Gα12 and Gα13, and the direct 

regulation of PLC-ε illustrated to date involves binding of Rho family GTPases in the 

catalytic core of the isozyme and binding of Ras family GTPases in the RA domains 

of the carboxy terminus. 

The physiological roles played by PLC-ε have yet to be defined. However, 

mice lacking functional PLC-ε exhibit defects in heart semilunar valve development 

[255] and marked reduction of the incidence of skin tumors in a chemical 

carcinogen-induced model [76]. Furthermore, PLC-ε is specifically induced in the 

developing mouse brain [72], suggesting a role for this phospholipase in neuronal 

differentiation. Rho-mediated pathways downstream of receptors for LPA, thrombin, 
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and other extracellular signaling molecules subserve important roles in neuronal 

growth and differentiation [256]. The current work suggests that it will be important to 

establish the contribution of Rho-regulated PLC-ε in various aspects of neuronal 

development and function. 

In summary, the current work together with previous studies illustrating that 

Rho directly activates PLC-ε, are consistent with the idea that PLC-ε is a 

downstream effector of GPCRs that activate Gα12/13- and consequentially activate 

Rho. LPA, thrombin, and other receptors that activate Gα12/13 also predictably 

activate Gq. The relative contribution of PLC-ε versus PLC-β isozymes in the 

physiological action of these Gα12/13-activating GPCRs will be important to establish. 

Similarly, RhoA, RhoB, and RhoC robustly activate PLC-ε and it will be important to 

understand the extent this PLC isozyme is involved in the wide range of cellular 

processes known to be regulated by these GTPases.  
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Figure 2.1.  PLC-ε-dependent stimulation of inositol phosphate accumulation 
by endogenous LPA and thrombin receptors in COS-7 cells.  [3H]Inositol 
phosphate accumulation was measured as described in Methods in COS-7 cells 
transfected with empty vector or with an expression vector for PLC-ε. Incubations 
were in the presence of vehicle, 10 μM LPA, or 50 μM SFLLRN.   
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Figure 2.2.  PLC-ε-dependence of LPA-stimulated [3H]inositol phosphate 
accumulation in cells expressing empty vector, LPA1, LPA2, or LPA3 receptor.  
COS-7 cells were transfected with an expression vector for the LPA1, LPA2, or LPA3 
receptor in the absence or presence of an expression vector for PLC-ε. [3H]Inositol 
phosphate accumulation was quantified in the absence or presence of 10 μM LPA 
as described in Methods.   
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Figure 2.3.  Differential effects of PLC-ε on agonist-stimulated [3H]inositol 
phosphate accumulation in cells expressing the PAR1 receptor versus the M1 
muscarinic cholinergic or P2Y2 receptor.  COS-7 cells were transfected with an 
expression vector for the PAR1 (A), M1 muscarinic cholinergic (B), or P2Y2 (C) 
receptor in the absence or presence of an expression vector for PLC-ε. [3H]Inositol 
phosphate accumulation was quantified in the PAR1, M1, or P2Y2 receptor 
expressing cells in the absence or presence of 50 μM SFLLRN, 100 μM carbachol, 
or 100 μM UTP, respectively.   
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Figure 2.4.  Differential effects of RGS proteins on LPA1 receptor- and PAR1 
receptor- versus M1 muscarinic receptor-promoted [3H]inositol phosphate 
accumulation in PLC-ε-expressing cells.  COS-7 cells were transfected with the 
LPA1 receptor, the PAR1 receptor, or the M1 muscarinic cholinergic receptor in the 
absence or presence of PLC-ε and with either p115-RGS or GRK2-RGS. [3H]Inositol 
phosphate accumulation was quantified in the LPA1, PAR1, or M1 receptor-
expressing cells in the absence or presence of 10 μM LPA, 50 μM SFLLRN, or 100 
μM carbachol, respectively as described in Methods.   
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Figure 2.5.  C3 toxin-mediated inhibition of the activation of PLC-ε by Gα12 and 
Gα13.  A, COS-7 cells were transfected with empty vector, GTPase-deficient Gα12 
(Gα12 Q226L), or GTPase-deficient Gα13 (Gα13 Q229L), in the absence or presence 
of transfection of an expression vector for PLC-ε.  B, COS-7 cells were transfected 
with PLC-ε + Gα12, PLC-ε + Gα13, or Gαq(Q209L) and with the indicated amounts of 
an expression vector for C3 toxin. [3H]Inositol phosphate accumulation was 
measured as described in Methods. Data is expressed as percentage of maximum, 
with the average maximum for each as follows: PLC-ε + Gα12, 6693 cpm; PLC-ε + 
Gα13, 12,447 cpm; Gαq(Q209L), 7947 cpm.  C, COS-7 cells were transfected with 
empty vector, myc-PLC-ε, or myc-PLC-ε in the presence of 0.3 ng C3 toxin, 3 ng C3 
toxin, or 30 ng C3 toxin. Forty-eight hours post-transfection the cells were lysed and 
mixed 1:1 with 5x Laemmli sample buffer. The lysates were subjected to SDS-PAGE 
and immunoblotted for the presence of myc-PLC-ε and α-tubulin as indicated.   
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Figure 2.6.  Effect of C3 toxin on PLC-ε-dependent signaling of endogenous 
LPA and thrombin receptors.  COS-7 cells were cotransfected with the indicated 
amounts of an expression vector for C3 toxin and either empty vector or an 
expression vector for PLC-ε. [3H]Inositol phosphate accumulation was measured in 
the absence or presence of 10 μM LPA or 50 μM SFLLRN as described in Methods.   
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Figure 2.7.  C3 toxin-mediated inhibition of LPA-stimulated [3H]inositol 
phosphate accumulation in COS-7 cells expressing PLC-ε and the LPA1, LPA2, 
or LPA3 receptor.  COS-7 cells were transfected with the indicated amounts of C3 
toxin DNA and expression vectors for PLC-ε and the LPA1, LPA2, or LPA3 receptor. 
[3H]Inositol phosphate accumulation was quantified in the absence or presence of 10 
μM LPA as described in Methods.   
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Figure 2.8.  Differential effect of C3 toxin on PAR1 receptor- versus M1 
muscarinic cholinergic and P2Y2 receptor-promoted [3H]inositol phosphate 
accumulation in PLC-ε expressing cells.  COS-7 cells were transfected with the 
indicated amounts of C3 toxin DNA and expression vectors for PLC-ε and the (A) 
PAR1, (B) M1 muscarinic cholinergic, or (C) P2Y2 purinergic receptor. [3H]Inositol 
phosphate accumulation was quantified in the PAR1, M1, or P2Y2 receptor-
expressing cells in the absence or presence of 50 μM SFLLRN, 100 μM carbachol, 
or 100 μM UTP, respectively.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 73

 
 

 
 
 
 
Figure 2.9.  Lack of effect of C3 toxin on EGF receptor-promoted activation of 
PLC-ε.  COS-7 cells were transfected with the indicated amounts of C3 toxin DNA 
and expression vectors for PLC-ε and the (A) LPA1 or (B) EGF receptor. [3H]Inositol 
phosphate accumulation was quantified in the LPA1 or EGF receptor-expressing 
cells in the absence or presence of 10 μM LPA or 100 ng/mL EGF, respectively.   
 



CHAPTER 3 
 

APPLICATION OF RGS-BOX PROTEINS TO EVALUATE G PROTEIN 
SELECTIVITY IN RECEPTOR-PROMOTED SIGNALING 

 
3.1  Abstract 

Regulator of G protein signaling (RGS) domains bind directly to GTP-bound 

Gα subunits and accelerate their intrinsic GTPase activity by up to several thousand-

fold. Selectivity of RGS proteins for individual Gα subunits has been illustrated. 

Thus, expression of RGS proteins can be used to inhibit signaling pathways 

activated by specific G protein-coupled receptors (GPCRs). In this chapter, we 

describe the use of specific RGS domain constructs to discriminate between Gi/o, Gq, 

and G12/13-mediated activation of phospholipase C (PLC) isozymes in COS-7 cells. 

Overexpression of the N-terminus of GRK2 (amino-acids 45-178) or p115 RhoGEF 

(amino-acids 1-240) elicited selective inhibition of Gαq- or Gα12/13-mediated signaling 

to PLC activation, respectively. In contrast, RGS2 overexpression was found to 

inhibit PLC activation by both Gi/o- and Gq-coupled GPCRs. RGS4 exhibited 

dramatic receptor selectivity in its inhibitory actions; of the Gi/o- and Gq-coupled 

GPCRs tested (LPA1, LPA2, P2Y1, S1P3), only the Gq-coupled lysophosphatidic acid 

receptor LPA2 was found to be inhibited by RGS4 overexpression. 

3.2  Introduction 
 
 Many extracellular stimuli, such as neurotransmitters, hormones, chemokines, 

inflammatory mediators, and odorants exert their effects by activating 

phosphoinositid 
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phosphoinositide-hydrolyzing PLC isozymes [29]. Five classes of PLC isozymes 

underlie these signals: PLC-β, PLC-γ, PLC-δ, PLC-ε, and PLC-ς [31, 32]. The G 

protein-coupled receptor (GPCR) superfamily activates PLC-β enzymes through 

activation of α subunits of the Gq family of G protein heterotrimers or by Gβγ dimers 

released from activated Gi and potentially from other heterotrimeric G proteins [31]. 

PLC-ε is regulated by Ras and Rho GTPases, as well as by Gα12/13 and Gβγ 

subunits of heterotrimeric G proteins [59] and therefore also is activated by GPCRs 

[54, 55]. 

 Identification of the specific G proteins involved in GPCR-promoted signaling 

pathways is a critical step in understanding the mechanism by which receptors 

mediate particular downstream signaling events. Tools such as pertussis toxin, Gβγ 

“sinks” such as Gα-transducin or the C-terminal fragment of the G protein-coupled 

receptor kinase 2 (GRK2), antisense oligonucleotides, RNA interference, or GoLoco 

motif peptides can be applied as reagents to delineate the G protein subunits 

involved in GPCR-mediated activation of PLC. However, such reagents are limited 

to specific G proteins (e.g. pertussis toxin and GoLoco motif peptides only uncouple 

GPCRs from heterotrimers of the Gi/o family), may result in more widespread, non-

specific effects, or are expensive and time-consuming (e.g. antisense RNAi). 

 A potentially important new means for modification of GPCR signaling 

involves application of RGS proteins.  RGS proteins contain a conserved ~120 

amino-acid “RGS-box” that accelerates Gα-mediated GTP hydrolysis, and therefore, 

inhibits GPCR-promoted signaling [23]. Although several investigators have applied 

RGS proteins to inhibit G protein-dependent signaling, e.g. a decrease in D2 
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dopamine receptor stimulated signaling occurred in the striatum after ectopic 

expression of RGS9 [257], utilization of RGS proteins to control GPCR function has 

not been fully elucidated.  

 Greater than 30 RGS domain-containing proteins have been identified to 

date, and many of these are negative regulators of G protein signaling. Given that 

certain RGS proteins exhibit selectivity for specific Gi/o, Gq, G12/13, and Gs Gα 

subunits [23], these RGS proteins potentially can be utilized to delineate the G 

proteins involved in signaling pathways activated by GPCRs. In this chapter, we 

describe the use of RGS proteins as antagonists of GPCR signaling, and examine 

their effectiveness in delineating the G protein coupling profile of a number of 

GPCRs using the inositol lipid signaling pathway as an example of their application. 

3.3  Methodology 

  PLC isozymes catalyze the hydrolysis of phosphatidylinositol 4,5-

bisphosphate [PtdIns(4,5)P2] to 1,2-diacylglycerol and inositol (1,4,5)-trisphosphate 

[Ins(1,4,5)P3] in response to activation of cell surface receptors. The production of 

Ins(1,4,5)P3 is measured using a phosphoinositide hydrolysis assay that quantifies 

the amount of inositol phosphates produced as a result of PLC activation. Both PLC-

β and PLC-ε are stimulated by GPCRs through activation of Gq, Gi/o, and G12/13
 

heterotrimers. Conversely, the activity of RGS proteins as negative regulators of 

GPCR signaling can be evaluated using inositol phosphate accumulation as a 

biochemical assay of receptor activation. The methodology described in this chapter 

uses COS-7 cells co-transfected with GPCRs, RGS proteins, and in some cases 
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PLCs, and the phosphoinositide hydrolysis assay as a read-out, to examine the 

specificity and capacity of specific RGS proteins to inhibit GPCR activation of PLC. 

3.4  Materials and Methods 

 1.  RGS Constructs 

  A plethora of RGS proteins act on Gα subunits of the Gi/o, Gq, G12/13, and Gs 

families. We have used the following RGS proteins to discriminate between Gi/o, Gq, 

and G12/13-promoted signaling: the RGS-box of GRK2 (GRK2RGS), RGS2, RGS4, 

and the RGS-box of p115 RhoGEF (p115RGS). RGS2 and RGS4 are essentially 

limited to a core RGS domain structure with short N- and C-terminal polypeptide 

extensions, whereas GRK2 and p115 RhoGEF have an easily-delineated 

multidomain architecture (Figure 3.1). cDNA encoding full-length RGS4 with a triple 

hemagglutinin (3X HA)-epitope tag was obtained from the Guthrie Research Institute 

(Sayre, PA; www.cdna.org), cDNA encoding full-length RGS2 was subcloned in-

frame with an N-terminal histidine (His10)-epitope tag into pcDNA3.1(-) (Invitrogen 

Corp., Carlsbad, CA) [258], cDNA encoding amino-acids 45-178 of GRK2 in-frame 

with an N-terminal HA-epitope tag in pcDNA3 was kindly provided by Dr. Jeffrey 

Benovic (Thomas Jefferson University, Philadelphia, PA), and cDNA encoding the 

first 240 amino-acids of human p115 RhoGEF was subcloned in-frame with an N-

terminal tandem HA-epitope tag into a modified pcDNA3.1 vector [111]. 

 2.  Other Constructs 
  
 cDNAs comprising the coding sequence of the human LPA2 and S1P3 

receptor were inserted into the pCR3.1 vector. cDNA comprising the coding 

sequence of the mouse LPA1 receptor was inserted into the pcDNA3 vector. The 
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LPA1, LPA2, and S1P3 receptors were generously provided by Dr. Kevin R. Lynch 

(University of Virginia, Charlottesville, VA). The human purinergic P2Y1 receptor, 

bearing an N-terminal HA-epitope tag, was cloned as previously described [259]. Rat 

PLC-ε in pCMV-script [49] was a kind gift of Dr. Grant Kelley (SUNY Syracuse, NY). 

The cDNA of the constitutively active mutant of mouse Gα12 (Gα12 Q229L (Gα12QL)) 

was kindly provided by Dr. Channing Der (University of North Carolina, Chapel Hill, 

NC). The constitutively active mutants of human Gαq (Gαq Q209L (GαqQL)) and 

human RhoB (RhoB G14V (RhoBGV)) were obtained from Guthrie Research 

Institute (Sayre, PA; www.cdna.org). The carboxyl-terminal domain of GRK2 

(GRK2ct) was a kind gift of Dr. Robert J. Lefkowitz (Duke University, Durham, NC).    

 3.  Cell Culture and Transfection of COS-7 Cells 
 
 COS-7 cells are maintained in Dulbecco’s Modified Eagle’s Medium (DMEM) 

supplemented with 10% fetal bovine serum, 4 mM L-glutamine, 200 U penicillin, and 

0.2 mg/mL streptomycin (all obtained from Gibco, Invitrogen Corp, Carlsbad, CA) at 

37 °C in a 5% CO2/95% air humidified atmosphere. To plate COS-7 cells, remove 

medium from cells, wash cells once with 5 mL phosphate buffered saline (PBS), 

remove PBS, and add 4 mL 0.25% trypsin/EDTA (all obtained from Gibco, Invitrogen 

Corp, Carlsbad, CA). Following a 5 minute (min) incubation at 37 °C, suspend the 

cells in 10 mL of medium, remove 10 μL, and determine cell number with a 

hemocytometer. A confluent 162 cm2 flask of COS-7 cells will yield approximately 10 

mL of cells at a concentration of 1 x 106 cells/mL. Bring cells to a density of 60,000-

75,000 cells/mL with medium, plate 1 mL of cells/well in 12-well culture dishes 

(CoStar 3512), and incubate overnight (approximately 8 to 12 hours). Following 
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overnight incubation, prepare the transfection reagent in serum-free DMEM. 

Specifically, dilute 2 μL of FuGENE 6 transfection reagent (Roche Applied Science, 

Indianapolis, IN) directly into 41 μL serum-free DMEM. Make sure not to touch the 

side of the tube with the FuGENE 6 reagent, since this will significantly reduce 

transfection efficiency. Once diluted, flick the tube several times to mix (do not 

vortex), and incubate at room temperature (RT) for 5 min. While waiting, dilute all 

DNA plasmids to 100 ng/μL with sterile water. To each tube containing the 43 μL 

FuGENE 6/serum-free DMEM mix, add 700 ng total of the necessary DNA 

expression plasmids. For most experiments described in this chapter, 50 ng of 

GPCR, 100 ng of PLC-ε, and 550 ng of RGS protein DNA plasmids were added to 

the 43 μL mix (0.5 μL, 1 μL, and 5.5 μL of 100 ng/μL dilutions, respectively). When 

one of the above plasmids was not required, the total amount of DNA was brought 

up to 700 ng with empty pcDNA3 vector. Once the DNA is added to the FuGENE 

6/serum-free mix, flick the tube several times to mix (do not vortex), and incubate at 

RT for 15-45 min to allow the DNA to complex with the FuGENE 6 transfection 

reagent. Add 50 μL of complexes to each well and return the culture dishes to the 37 

°C, 5% CO2/95% air atmosphere. 

 4.  Phosphoinositide Hydrolysis Assay 
 
 Dilute 1 μCi (1 μL) of  [myo-3H]inositol (American Radiolabeled Chemicals, 

catalogue# ART 116A-myo-inositol, [2-3H(N)]) into 400 μL serum-free inositol-free 

DMEM (ICN Biomedicals, Inc., Aurora, Ohio, catalogue# 1642954), and mix by 

inverting the tube several times. Approximately 12-24 h after transfection, remove 

the medium from each well and replace with 400 μL of medium consisting of serum-
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free inositol-free DMEM containing [myo-3H]inositol (1 μCi/well). Return the dishes to 

the tissue culture incubator and incubate for 12-18 h at 37 °C. Phospholipase C 

activity is quantified 12-18 h after labeling by treating cells for 30-45 min in inositol-

free DMEM containing 10 mM LiCl (to inhibit inositol phosphatases). Hormone-

stimulated PLC activity was determined in the experiments illustrated below by 

incubating cells in the absence or presence of lysophosphatidic acid (LPA; 1-Oleoyl-

sn-glycerol 3-phosphate sodium salt dissolved in water containing 1.0% fatty acid-

free BSA), S1P (sphingosine-1-phosphate dissolved in water containing 1.0% fatty 

acid-free BSA), or the purinergic receptor agonist 2-MeSADP (2-

methylthioadenosine diphosphate) (LPA and S1P, Sigma, St. Louis, MO; 2-

MeSADP, Research Biochemicals Inc., Natick, MA). The reaction is terminated after 

30-45 min by aspirating the medium and adding 750 μL of ice-cold 50 mM formic 

acid (Fisher Scientific, formic acid 88%, catalogue# A118P) for a minimum of 15 min 

at 4 °C. Neutralize cell extracts with 250 μL of 150 mM NH4OH (Fisher Scientific, 

ammonium hydroxide, catalogue# A669), and add 1 mL neutralized sample to 1 mL 

packed volume columns of AG 1-X8 anion-exchange gel resin (Bio-Rad, catalogue# 

140-1454, formate form, 200-400 mesh size). Poly-Prep chromatography columns 

(Bio-Rad, catalogue# 731-1550) are utilized since they contain a filter for stacking 

the resin, and also have a large volume capacity to accommodate washes up to 10 

mL. Prior to addition of cell extracts, the columns should be prepared by washing 

with 5 mL of 2 M ammonium formate (Fisher Scientific, ammonium formate, 

catalogue# A666)/0.1M formic acid followed by two 10 mL washes of deionized 

water. After loading the cell extracts, wash the columns with 10 mL deionized water 
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followed by 10 mL of 50 mM ammonium formate, and elute the [3H]inositol 

phosphates into scintillation vials by adding 5 mL 1.2 M ammonium formate/0.1 M 

formic acid to the column. Add 10 mL scintillation fluid (Fisher Scientific, Scintisafe 

Gel Cocktail, catalogue# SX24-5) to each vial and shake vigorously until the mixture 

becomes clear. If the mixture remains a “milky” color, add more scintillation fluid and 

repeat the shaking step. Quantify radioactivity by scintillation counting [260]. 

Note:  A convenient indicator of proper neutralization of the cell extracts, and an 

easy way to keep track of which columns have already received sample, is as 

follows. Add 1-2 mL of inositol-free DMEM to the packed gel resin, which does not 

alter the binding capacity or specificity of the gel resin for the [3H]inositol 

phosphates. The gel resin will appear purple-pink in color, and a pale purple color 

should remain after washing the columns twice with deionized water. Addition of 5 

mL of 2 M ammonium formate/0.1M formic acid changes this color from purple to 

yellow (presumably due to phenol red in the medium, a pH indicator dye). However, 

following two to three washes with 10 mL of deionized water, the columns return to a 

pale purple color. Upon addition of neutralized sample, each column will turn yellow 

providing indication of proper neutralization of sample, and indication of the addition 

of the samples to each column.   

3.5  Background 
 
 In choosing an RGS protein to use in interrogating GPCR coupling specificity, 

a number of properties of these proteins should be considered including the 

specificity of the RGS-boxes for each activated Gα subunit, the mechanism by which 

each RGS-box inhibits signaling, and the multidomain structure of several of these 
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proteins. The GPCR signaling regulator, GRK2, contains a conserved N-terminal 

RGS-box that does not stimulate GTPase activity, but rather sequesters Gα subunits 

of the Gq family ([93]; see also in this series [94, 95]). The advantage of using the 

RGS-box of GRK2 is that it is selective for Gα subunits of the Gq family, and it is a 

potent effector antagonist for Gq-coupled GPCRs (as described below under 

Application). However, a caveat of GRK2 is its multidomain architecture (Figure 3.1). 

The C-terminal fragment of GRK2 competitively binds Gβγ via its pleckstrin-

homology (PH) domain [96], and the kinase domain phosphorylates and 

desensitizes GPCRs [97]; thus, it is important to employ a construct of GRK2 

restricted to its RGS-box for discrimination of GPCR signaling through Gαq.   

 RGS2, a founding member of the RGS protein family, stimulates the GTPase 

activity of Gα subunits of the Gq family in biochemical assays [98, 99]. However, in 

receptor reconstitution and cellular assays, RGS2 acts as a negative regulator of 

both Gi/o- and Gq-coupled receptor signaling [99]. These findings suggest that assay 

conditions alter the G protein specificity of RGS2 from Gαq to both Gαq and Gαi/o. 

Thus, when using RGS2 to discriminate GPCR signaling, pertussis toxin and/or 

expression of the Gαq-specific GRK2RGS construct should be tested in parallel to 

support the findings obtained.   

 RGS4 stimulates the GTPase activity of Gα subunits of the Gi/o [84, 100] and 

Gq family [99, 101] via its RGS-box. Similar to RGS2, RGS4 contains little sequence 

beyond the RGS-box. However, RGS4 has been demonstrated to exert receptor-

selective inhibitory activity via its amphipathic alpha-helical N-terminus [102]. In 

addition, the N-terminus also has been shown to confer high potency inhibition of 
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Gq-mediated receptor signaling in vivo [102]. Thus, RGS4 should be applied as a 

tool to discriminate Gα subunits in GPCR signaling with cognizance of the benefits 

and caveats associated with using either the full length or isolated RGS-box 

construct. As above, results should be supported by parallel experiments using 

pertussis toxin and expression of GRK2RGS.    

 The guanine nucleotide exchange factor (GEF) for Rho, p115 RhoGEF, 

contains an NH2-terminal RGS-box and acts as a GTPase-accelerating protein 

(GAP) for Gα12 and Gα13 [103]. This GAP activity requires sequences flanking the 

RGS-box [104] and, thus, it is important to use a construct of p115 RhoGEF that 

contains the N-terminus of the protein in addition to the RGS-box. p115 RhoGEF 

also contains a tandem Dbl-homology domain (DH/RhoGEF) and PH domain C-

terminal cassette (Figure 3.1) that exhibits RhoA-specific GEF activity [105] and 

could thus confound the use of p115 RhoGEF in discriminating G12/13-coupled 

receptor signaling. Thus, full length constructs containing the C-terminal DH and PH 

domains should be avoided in targeting Gα12/13-dependent signaling with p115 

RhoGEF overexpression. 

3.6  Application 
 

1. Specificity of RGS-box constructs for constitutively active mutants of Gαq 

and Gα12 in COS-7 Cells 

 To demonstrate the selectivity of RGS-box constructs as effector antagonists 

of specific Gα subunits in COS-7 cells, we utilized constitutively active (GTPase-

deficient) mutants of Gαq, Gα12, and RhoB. GαqQL was expressed in COS-7 cells in 

the absence or presence of GRK2RGS, RGS2, RGS4, and p115RGS; marked 
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activation of endogenous PLC-β was observed with expression of GαqQL alone 

(Figure 3.2). GRK2RGS and RGS2 potently inhibited the activation of PLC-β by 

GαqQL (Figure 3.2). In contrast, RGS4 only partially inhibited the activation of PLC-

β, and p115RGS did not alter GαqQL-stimulated PLC activity. These results suggest 

that GRK2RGS and RGS2 are effective inhibitors of GαqQL-mediated activation of 

PLC-β, and thus, are useful tools for discriminating Gq-coupled receptor signaling in 

COS-7 cells. Full-length RGS4 and the RGS-box of RGS4 have both been shown to 

inhibit Gαq-promoted Ca2+
 signaling in rat pancreatic acinar cells [102]; however, 

RGS4 does not appear to be as effective as GRK2RGS or RGS2 for discriminating 

Gαq signaling in COS-7 cells. 

 To examine the specificity of GRK2RGS, RGS2, RGS4, and p115RGS on 

Gα12QL-mediated activation of PLC-ε, we co-transfected Gα12QL and PLC-ε in the 

absence or presence of the RGS-box constructs, and examined the ability of each to 

attenuate inositol phosphate accumulation. Gα12QL activated PLC-ε when both were 

co-expressed in COS-7 cells (Figure 3.2). p115RGS, but not GRK2RGS, RGS2, and 

RGS4, antagonized the activation of PLC-ε by Gα12QL (Figure 3.2). These results 

suggest that p115RGS selectively inhibits Gα subunits of the Gα12/13 family, whereas 

GRK2RGS, RGS2, and RGS4 have no effect on this pathway. Thus, p115RGS is a 

useful tool for discriminating Gα12/13-dependent receptor signaling in COS-7 cells. 

 A control experiment was carried out to demonstrate that the RGS-box 

constructs do not indirectly affect the activation of PLC-ε by small GTPases of the 

Rho family. Wing and colleagues [52] have recently shown that the Rho subfamily 

GTPases, RhoA, RhoB, and RhoC, can each directly activate PLC-ε. Thus, 
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expression constructs for PLC-ε and constitutively active (GTPase-deficient) RhoB 

(RhoBGV) were co-tranfected in COS-7 cells in the absence and presence of 

GRK2RGS, RGS2, RGS4, and p115RGS. RhoBGV expression promoted PLC-ε-

dependent increases in inositol phosphate accumulation in both the absence and 

presence of the RGS-box constructs (Figure 3.2), suggesting that these RGS-box 

constructs selectively inhibit Gα-promoted stimulation of PLC without affecting 

regulation by other activators.  

2. RGS2 is a useful tool for discriminating Gi/o-mediated signaling by the 

LPA1 receptor in COS-7 cells 

 The LPA1 receptor couples to Gi/o heterotrimers in COS-7 cells to activate an 

endogenous PLC in response to LPA [54]. This LPA-promoted response is pertussis 

toxin sensitive and is inhibited by coexpression of the Gβγ-binding PH domain of 

GRK2 (GRKct) (Figure 3.3B). Thus, to demonstrate the capacity of RGS-box 

constructs to discriminate Gi/o-mediated signaling in COS-7 cells, we coexpressed 

the LPA1 receptor with and without GRK2RGS, RGS2, RGS4, and p115RGS, and 

quantified LPA-promoted inositol phosphate accumulation.  RGS2, but not 

GRK2RGS, RGS4, or p115RGS, blocked the effects of LPA (Figure 3.3A). RGS4 is 

a potent GAP for Gαi/o subunits in vitro [84, 100]; thus, the lack of effect of RGS4 on 

LPA1 receptor (Gi/o-coupled) signaling to PLC activation most likely reflects the 

receptor-selective nature of RGS4 activity (as observed and discussed below). 

These results with LPA1 receptor signaling demonstrate that RGS2 can inhibit 

Gi/o-mediated GPCR signaling in COS-7 cells, presumably by virtue of its GAP 

activity on Gαi/o subunits [99]. The ability of RGS2 to inhibit LPA1 receptor signaling 
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is consistent with previous reports of activity on Gi/o-coupled pathways; for example, 

RGS2 has been shown to inhibit M2 mAChR-mediated (Gi-coupled) MAP kinase 

activation in COS cells [99]. This ability of RGS2 to inhibit Gi/o-mediated signaling 

could be applied to other Gi/o-coupled receptors in COS-7 and other cells, and 

should be kept in mind in light of reports that consider RGS2 as solely a negative 

regulator of Gαq-mediated signaling (e.g., [261] in this series).  

3. RGS2 and GRK2RGS discriminate Gαq-mediated signaling by the P2Y1 

and S1P3 receptors in COS-7 cells 

 Both the purinergic receptor P2Y1 and the sphinogine-1-phosphate receptor 

S1P3 predominantly couple to Gα subunits of the Gq family in COS-7 cells to 

stimulate endogenous PLC [54, 245]. To examine the capacity of RGS-box 

constructs to inhibit signaling by the P2Y1 and S1P3 receptors, we coexpressed each 

receptor in the absence or presence of GRK2RGS, RGS2, RGS4, and p115RGS, 

and measured inositol phosphate accumulation. Both GRK2RGS and RGS2 

markedly inhibited agonist-promoted activation of PLC by the P2Y1 and S1P3 

receptors, respectively (Figure 3.4A and Figure 3.4B). Conversely, RGS4 and 

p115RGS exhibited relatively little effect on receptor-promoted activation of 

endogenous PLC. Thus, GRK2RGS and RGS2, but not RGS4 or p115RGS, are 

useful tools for discriminating Gαq signaling in COS-7 cells. RGS4 is a potent GAP 

for Gαq signaling in vivo; however, the N-terminus of the protein can impose 

receptor-selective effects [102] as described above. In the next section, we provide 

an example of a Gαq-coupled receptor that is inhibited by GRK2RGS, RGS2, and 

RGS4. 
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4. RGS2, GRK2RGS, and RGS4 inhibit Gαq-mediated signaling by the LPA2 

receptor 

 Thus far in this chapter, GRK2RGS and RGS2, but not RGS4, have been 

shown to be useful tools for inhibiting Gαq-mediated GPCR signaling in COS-7 cells. 

However, in the case of the lysophosphatidic acid receptor LPA2, RGS4 as well as 

GRK2RGS and RGS2 effectively inhibited LPA-promoted inositol phosphate 

accumulation (Figure 3.5A). Similar to the results observed with the P2Y1 and S1P3 

receptors, p115RGS did not inhibit PLC activation by the LPA2 receptor. The 

expression level of HA-tagged GRK2RGS and RGS4 in the absence and presence 

of the LPA2, S1P3, or P2Y1 receptor was examined by cell lysate immunoblotting 

using an anti-HA antibody. The expression level of GRK2RGS and RGS4 was not 

significantly altered in the presence of the receptors (Figure 3.5B), suggesting that 

the lack of action of RGS4 in inhibiting the S1P3 and P2Y1 receptors is not due to the 

inhibition of RGS4 expression. These results suggest that GRK2RGS, RGS2, and 

RGS4 discriminate Gαq-mediated signaling by the LPA2 receptor. These data also 

demonstrate the receptor-selective effects of full length RGS4 (i.e., inhibition of 

LPA2, but not S1P3 nor P2Y1, receptor signaling to PLC), and thus highlight the 

importance of using alternative reagents such as GRK2RGS or RGS2 to confirm 

observations of signaling inhibition (or lack thereof) using RGS4 in particular and 

Gαi/o/Gαq-specific RGS proteins in general. 
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5. p115RGS discriminates Gα12/13-mediated signaling by the LPA1 receptor 

in COS-7 cells 

The LPA1 receptor couples to Gα12/13 to activate PLC-ε in COS-7 cells [54]. 

To assess the action of RGS-box constructs in discriminating GPCR-promoted 

activation of Gα12/13, we coexpressed the LPA1 receptor and PLC-ε in the absence 

and presence of the RGS proteins, and examined the capacity of the constructs to 

inhibit PLC-ε activation by the LPA1 receptor. In the absence of the RGS-box 

constructs, the LPA1 receptor promoted inositol phosphate accumulation when 

coexpressed with PLC-ε (Figure 3.6). In contrast, in the presence of p115RGS, but 

not GRK2RGS, RGS2, or RGS4, LPA-mediated activation of PLC-ε by the LPA1 

receptor was markedly inhibited. These results suggest that p115RGS is a useful 

tool for discriminating Gα12/13 GPCR signaling in COS-7 cells.   

3.7  Concluding Remarks 

 RGS proteins specific for Gi/o, Gq, G12/13, and Gs Gα subunits have been 

described [23], and these RGS proteins can be utilized to delineate the G proteins 

involved in signaling pathways activated by GPCRs. In addition to Gα subunit 

selectivity, many RGS proteins also exhibit receptor selectivity, thus highlighting the 

importance of using additional RGS proteins or other inhibitors of Gα signaling (e.g., 

GoLoco motif peptides; see in this series: [262]) when employing RGS-box 

constructs to delineate signaling pathways. For example, we have found that RGS4 

demonstrates receptor selectivity in inhibiting Gαq signaling by the LPA2, but not the 

P2Y1 nor S1P3 receptors. Thus, the lack of an effect of RGS4 overexpression on a 
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particular GPCR signal transduction pathway should not be misconstrued as a lack 

of involvement of Gq-class Gα subunits in receptor/effector coupling.   

RGS-box-independent regulation of GPCR signaling has also been 

demonstrated and should be considered when choosing an RGS protein as a tool to 

probe GPCR/effector coupling. The N-terminus of RGS2 inhibits GαsQ227L and β2-

adrenergic receptor-stimulated cAMP accumulation in HEK293 cells expressing type 

V adenylyl cyclase [106]; see also in this series: [107]).  Similarly, RGS16, a GAP for 

Gαi/o and Gαq, binds to Gα13 and inhibits Gα13-mediated signal transduction via its 

amino terminus [108].   

In this chapter, we have demonstrated the application of full length RGS 

proteins (RGS2, RGS4) and isolated RGS-boxes (GRK2RGS, p115RGS) to 

discriminate Gαi/o, Gαq, and Gα12/13 GPCR signaling in COS-7 cells. These 

constructs should prove useful for discerning the contributions of these three families 

of Gα subunits to GPCR signaling in a variety of systems when applied with the 

appropriate controls. 
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Figure 3.1. Domain architecture of GRK2, RGS2, RGS4, and p115 RhoGEF.  
The portion of each RGS protein used in the analyses described in this chapter is 
described to the left of the structures.  Dashed lines around GRK2 and p115 
RhoGEF highlight the regions of these proteins subcloned into expression vectors 
for this study. 
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Figure 3.2. Effect of GRK2RGS, RGS2, RGS4, and p115RGS expression on 
activation of PLC isozymes by constitutively active, GTPase-deficient mutants 
of Gαq, Gα12, and RhoB.  COS-7 cells were transfected with the indicated DNA 
(supplemented to 700 ng total DNA with empty vector) and [3H]inositol phosphate 
accumulation was measured 36 h later as described in Materials and Methods.  
COS-7 cells were transfected with either 50 ng of empty pcDNA3 vector, GαqQL, 
Gα12QL, or RhoBGV with or without PLC-ε (100 ng), and with or without GRK2RGS, 
RGS2, RGS4, or p115RGS (550 ng).  [3H]Inositol phosphate accumulation was 
quantified by incubation for 45 min with 10 mM LiCl.  Data shown are mean ± S.D. 
for duplicate samples in one experiment.  Basal levels of [3H]inositol phosphate 
production in the presence of empty pcDNA3 vector alone (approximately 3000 cpm) 
were subtracted from the values presented.   
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Figure 3.3.  Gi/o-dependent stimulation of an endogenous PLC by the LPA1 
receptor is inhibited by RGS2.  A, COS-7 cells were transfected with the indicated 
DNA (supplemented to 600 ng total DNA with empty vector), and [3H]inositol 
phosphate accumulation was measured 36 h later as described in Materials and 
Methods.  COS-7 cells were transfected with either 50 ng of empty pcDNA3 vector 
or the LPA1 receptor (LPA1-R), and with or without GRK2RGS, RGS2, RGS4, and 
p115RGS (550 ng).  Cells were then incubated for 45 min with 10 mM LiCl in the 
absence of agonist (Control) or presence of 10 μM lysophosphatidic acid (LPA).  
Panel B shows a separate experiment (with the same y-axis scale) in which 50 ng of 
empty vector or the LPA1 receptor was co-transfected with or without 300 ng of 
GRKct in COS-7 cells.  Cells were labeled with [3H]inositol in the presence or 
absence of 100 ng/mL pertussis toxin (PTX; List Biochemicals, Campbell, CA) for 12 
h, followed by incubation for 30 min with 10 mM LiCl in the absence of agonist 
(Control) or presence of 10 μM LPA.  Data shown are mean ± S.D. for duplicate 
samples in one experiment.  Basal levels of [3H]inositol phosphate production in the 
presence of empty pcDNA3 vector alone (approximately 2500 cpm) were subtracted 
from the values presented. 
 
 
 
 
 



 93

 

 
 
 
 
 
Figure 3.4.  Gαq-dependent stimulation of an endogenous PLC by the P2Y1 and 
S1P3 receptors is inhibited by GRK2RGS and RGS2.  COS-7 cells were 
transfected with the indicated DNA [supplemented to 400 ng (A) or 600 ng (B)], and 
[3H]inositol phosphate accumulation was measured 36 h later as described in 
Materials and Methods.  A, COS-7 cells were transfected with either 50 ng of empty 
pcDNA3 vector or the P2Y1 receptor (P2Y1-R), and with or without GRK2RGS, 
RGS2, RGS4, and p115RGS (350 ng).  Cells were then incubated for 45 min with 10 
mM LiCl in the absence of agonist (Control) or presence of 10 μM 2MeSADP.  [Note 
that overexpression of the P2Y1 receptor results in increased [3H]inositol phosphate 
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production in the absence of exogenous agonist application because of autocrine 
release by cells of the cognate adenine nucleotide agonist [245]. B, COS-7 cells 
were transfected with either 50 ng of empty pcDNA3 vector or the S1P3 receptor 
(S1P3-R), and with or without GRK2RGS, RGS2, RGS4, and p115RGS (550 ng).  
Cells were then incubated for 45 min with 10 mM LiCl in the absence of agonist 
(Control) or presence of 10 μM sphingosine-1-phosphate (S1P).  Data shown are 
mean ± S.D. for duplicate samples in one experiment.  Basal levels of inositol 
phosphate production in the presence of empty pcDNA3 vector alone (approximately 
2500 cpm) were subtracted from the values presented. 
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Figure 3.5.  Gαq-dependent stimulation of an endogenous PLC by the LPA2 
receptor is inhibited by GRK2RGS, RGS2, and RGS4.  COS-7 cells were 
transfected with the indicated DNA (supplemented to 400 ng), and [3H]inositol 
phosphate accumulation was measured 36 h later as described in Materials and 
Methods.  A, COS-7 cells were transfected with either 50 ng of empty pcDNA3 
vector or the LPA2 receptor (LPA2-R), and with or without GRK2RGS, RGS2, RGS4, 
and p115RGS (350 ng).  Cells then were incubated for 45 min with 10 mM LiCl in 
the absence of agonist (Control) or presence of 10 μM LPA. Data shown are mean ± 
S.D. for duplicate samples in one experiment.  Basal levels of [3H]inositol phosphate 
production in the presence of empty pcDNA3 vector alone (approximately 2000 cpm) 
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were subtracted from the values presented.  B, COS-7 cells were transfected with 
either 100 ng of empty pcDNA3 vector, the LPA2 receptor, the S1P3 receptor, or the 
P2Y1 receptor with or without 550 ng of GRK2RGS or RGS4.  COS-7 cells were 
lysed in 500 μL of lysis buffer (150 mM NaCl, 20 mM Tris⋅HCl pH 7.5, 2 mM EDTA, 
1% Triton X-100, 0.1% protease inhibitors), sonicated for 5 min, diluted 1:1 in 2.5x 
Laemmli sample buffer, and boiled for 5 min.  Proteins were resolved by SDS-
polyacrylamide gel electrophoresis, transferred onto nitrocellulose, and detected by 
a rat monoclonal anti-HA-peroxidase high affinity antibody (clone 3F10; Roche 
Diagnostics Corporation, Indianapolis, IN) and enhanced chemiluminescence 
(Amersham Biosciences). Note that, of the three receptors co-transfected with HA-
tagged GRK2RGS or HA-tagged RGS4, the LPA2 and S1P3 receptors were not 
epitope-tagged; however, the purinergic P2Y1 receptor was N-terminally HA-tagged 
and thus appears in the anti-HA immunoblot as a broad band centered about 60 
kDa.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 97

 

 
 
 
  
 
Figure 3.6.  Inhibition of LPA1 receptor-mediated activation of PLC-ε by the 
RGS domain of p115 RhoGEF.  COS-7 cells were transfected with the indicated 
DNA (supplemented to 700 ng total DNA with empty vector), and [3H]inositol 
phosphate accumulation was measured 36 h later as described in Materials and 
Methods.  COS-7 cells were transfected with either 50 ng of empty pcDNA3 vector 
or the LPA1 receptor (LPA1-R), with or without PLC-ε (100 ng), and with or without 
individual RGS-box expression vectors (550 ng) as indicated.  Cells then were 
incubated for 45 min with 10 mM LiCl in the absence of agonist (control) or presence 
of 10 μM LPA.  Data shown are mean ± S.D. for duplicate samples in one 
experiment.  Basal levels of inositol phosphate production in the presence of empty 
pcDNA3 vector alone (approximately 3000 cpm) were subtracted from the values 
presented. 



CHAPTER 4 
 

SELECTIVE ROLE FOR RGS12 AS A RAS/RAF/MEK SCAFFOLD IN NERVE 
GROWTH FACTOR-MEDIATED DIFFERENTIATION 

 
4.1  Abstract 

 Regulator of G-protein signaling (RGS) proteins accelerate GTP hydrolysis by 

heterotrimeric G-protein alpha subunits and thus inhibit signaling by many G protein-

coupled receptors. Several RGS proteins have a multidomain architecture that adds 

further complexity to their roles in cell signaling in addition to their GTPase-

accelerating activity. RGS12 contains a tandem repeat of Ras-binding domains but, 

to date, the role of this protein in Ras-mediated signal transduction has not been 

reported. Here we show that RGS12 associates with the nerve growth factor (NGF) 

receptor tyrosine kinase TrkA, activated H-Ras, B-Raf, and MEK2 and facilitates 

their coordinated signaling to prolonged ERK activation. RGS12 is required for NGF-

mediated neurite outgrowth of PC12 cells, but not outgrowth stimulated by basic 

fibroblast growth factor. These data suggest that RGS12 may play a critical, and 

receptor-selective, role in coordinating Ras-dependent signals that are required for 

promoting and/or maintaining neuronal differentiation. 

4.2  Introduction 

Extracellular stimuli, such as neurotransmitters, hormones, chemokines, 

inflammatory mediators, odorants, and light, are recognized by G protein-coupled 

receptors (GPCRs), one of the most abundant and diverse protein families in the 

family  
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nervous system [263]. Intercellular communication via GPCRs and G-protein-

mediated signaling pathways in the nervous system is crucial for normal brain 

development and the regulation of adult neural processes [263]. Thus, defining the 

molecular determinants that control GPCR signaling is important to understanding 

the normal development and physiology of the nervous system and the 

pathophysiology of nervous system-related disorders.   

One level of regulation on GPCR signaling is mediated by the action of 

“regulators of G-protein signaling” (RGS) proteins. RGS proteins accelerate Gα-

mediated GTP hydrolysis and profoundly inhibit signaling by many GPCRs [23]. For 

example, mice lacking RGS9 show enhanced responses to both photonic stimulation 

and morphine administration, suggesting that RGS9 is a potent negative regulator of 

both rhodopsin and opioid receptor signal transduction in vivo [264, 265]. In general, 

however, contributions by RGS proteins to the physiological control of specific 

receptor-mediated signal transduction cascades are only now beginning to be 

elucidated. The identification of multidomain RGS proteins (reviewed in [112, 266]) 

has added further complexity to the potential cell signaling roles that RGS proteins 

play in addition to their inhibition of GPCR signaling via Gα-directed GTPase-

accelerating activity. 

RGS12, a member of the R12-subfamily of RGS proteins, is an example of a 

multidomain RGS protein with numerous signaling regulatory elements [115]. In 

addition to a central RGS domain, RGS12 contains a PDZ (PSD-95/Discs-large/ZO-

1) homology domain, a phosphotyrosine-binding (PTB) domain, tandem Ras-binding 

domains (RBDs), and a GoLoco (Gαi/o-Loco) interaction motif [111, 151, 155]. The 
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PTB domain recruits RGS12 in a phosphotyrosine-dependent manner to the 

SNARE-binding region of the Cav2.2 calcium channel [138], thereby determining the 

rate of desensitization of GABAB-receptor-mediated calcium current inhibition in 

dorsal root ganglia (DRG) neurons [137]. In contrast to the PTB domain, relatively 

little is known about the in vivo function of other domains within mammalian RGS12. 

Recently, we examined the spatio-temporal expression patterns of RGS12 during 

mouse development. The full-length form of RGS12 is expressed predominantly in 

trigeminal and DRG neurons and muscle in the E14.5 mouse [267], suggestive of a 

role for mammalian RGS12 in myo- and neurogenesis. 

Loco, the Drosophila ortholog of mammalian RGS12, is essential for multiple 

processes in fly development including dorsal/ventral axis formation, neuroblast 

asymmetric cell division, and nurse cell dumping [161, 162]. The loco gene is 

expressed in lateral glial cells in the developing embryonic central nervous system 

and is required for correct glial cell differentiation [117]. Normal glial-glial cell 

contacts are absent in loco-deficient flies, which results in a loss of the blood-brain 

barrier, and subsequent gross locomotor defects in surviving mutants. Relatively 

little is known about the specific molecular mechanisms underlying glial cell 

development. Recently, Loco, the GPCR Moody, and the Gα subunits Gαi and Gαo 

have been found expressed in surface glia; these four proteins are thought to act as 

part of a common signaling pathway critical for blood-brain barrier formation [163, 

164].  

 The requirement for Loco in glial cell development and for normal locomotor 

capabilities suggests that mammalian RGS12 may also play a critical role in glial cell 
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differentiation. Here we demonstrate that RGS12 acts as a scaffold for the ERK 

mitogen-activated protein kinase (MAPK) cascade in vivo, facilitating the formation 

of a Ras/Raf/MEK/ERK multiprotein complex. Furthermore, RGS12 interacts with the 

nerve growth factor (NGF)-receptor TrkA and siRNA-mediated downregulation of 

endogenous RGS12 selectively inhibits NGF-induced neuronal differentiation of 

PC12 cells. These results suggest that RGS12 may function in promoting a 

differentiated phenotype by organizing a TrkA, Ras, Raf, MEK, and ERK signal 

transduction complex. 

4.3  Results 

RGS12 Interacts with Components of the Mitogen-Activated Protein Kinase 

Cascade 

Beyond two, distinct Gαi-subunit interaction domains (a central RGS domain 

and a C-terminal GoLoco motif [111, 159]), RGS12 has a number of additional 

protein motifs reminiscent of signal transduction adaptors, scaffolds, and effectors 

(Figure 4.1A):  N-terminal PDZ and PTB domains and a tandem repeat of RBDs 

[111, 137, 151, 159]. To identify additional protein interactors of RGS12, we 

performed separate yeast two-hybrid screens of mouse embryo and mouse brain 

cDNA libraries using an N-terminal span encompassing the PDZ and PTB domains 

and an internal span encompassing the RGS domain and tandem RBDs (Figure 

4.1A). Two interactors from the mouse brain library were obtained with the PDZ/PTB 

domain bait and validated (Figure 4.1B) as bait-specific:  the C-terminal tail of mouse 

SAP90/PSD-95-associated protein-3 (SAPAP3/Dlgap3; [268]) and the C-terminal tail 
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of MEK2, a middle-tier protein kinase (“MAP2K”) within the extracellular signal-

regulated kinase (ERK) cascade [269].  

Both SAPAP3 and MEK2 end in canonical class I PDZ-binding targets 

(SAPAP3: –Q-T-R-L-COOH; MEK2: –R-T-A-V-COOH), suggesting that both 

interactors bind the RGS12 N-terminus via its PDZ domain. We previously 

established that the RGS12 PDZ domain recognizes class I PDZ-binding targets 

ending in the general consensus of Thr-x-[Leu/Val]-COOH [111]. Surface plasmon 

resonance biosensor studies indicated that the final 16 amino-acids of MEK2 were 

sufficient to bind directly to the RGS12 PDZ domain in vitro (Figure 4.2). The 

interaction with MEK2 was specific for the PDZ domain of RGS12, as cellular co-

immunoprecipitation was only seen between full-length MEK2 and protein fragments 

containing the RGS12 PDZ domain (Figure 4.1D); neither the first PDZ domain of 

the Drosophila phototransduction scaffold InaD nor the PTB domain of mouse Numb 

were capable of co-immunoprecipitating MEK2. We also assessed the specificity of 

RGS12 for MEK2 versus other MAP2K members, and found that RGS12 selectively 

interacts with MEK2 in cellular co-immunoprecipitation experiments (data not 

shown). 

In a separate yeast two-hybrid screen of a mouse embryo cDNA library using 

an RGS12 fragment from the RGS domain to the second RBD, we identified a 

fragment of A-Raf (aa 36-153) that spans the RBD and cysteine-rich C1 (or “CRD”) 

domains which reside N-terminal to the catalytic kinase domain [270] (Figure 4.1C). 

Subsequent cellular co-immunoprecipitation studies showed that full-length A-Raf 

and B-Raf (Figures 4.1E and 4.1F), but not c-Raf-1 (Figure 4.3), associate with full-
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length RGS12; indeed, the interaction with B-Raf is observed upon expressing a 

minimal fragment of RGS12 containing solely the tandem RBDs (Figure 4.1F). 

Similar to A-Raf, residues within the N-terminus of B-Raf appear to mediate binding 

to RGS12, as fragments of B-Raf spanning the first 374 amino-acids efficiently co-

immunoprecipitated with full-length RGS12 (Figure 4.4).  

RGS12 Preferentially Binds to Activated H-Ras in Mammalian Cells 

The association of RGS12 with Raf and MEK proteins (two tiers of the Ras-

regulated ERK signaling cascade), coupled with the presence of two Ras-binding 

domains (RBDs) within RGS12, led us to test whether RGS12 also interacts directly 

with Ras-family GTPases. RBDs are found in Ras effector proteins such as RalGDS, 

phosphoinositide-3’ kinase, and the Raf kinases that bind preferentially to activated 

Ras GTPases [141]. We therefore screened several wildtype and constitutively-

activated Ras family GTPases for RGS12 association. Full-length RGS12 

preferentially co-immunoprecipitated with H-Ras, and not K-, M-, or R-Ras isoforms.  

Furthermore, this interaction was specific to the activated form (Figure 4.5A and B). 

In some instances, we observed binding of RGS12 to activated N-Ras (Figure 4.5A); 

however, when detected, this interaction was substantially weaker than that 

observed with H-Ras. The association between RGS12 and active H-Ras appears to 

be mediated solely by the tandem RBD region of RGS12 (Figure 4.5C). The 

interaction between full-length RGS12 and activated H-Ras is diminished by point 

mutation of His-995, within the first RBD of RGS12, to Leu (H995L; Figure 4.5D), a 

position analogous to the loss-of-function R89L mutation that abrogates c-Raf-1 

binding to H-Ras [271] (Figure 4.6). However, the H995L mutation to RGS12 does 
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not interfere with its interaction with B-Raf (Figure 4.5E), indicating that the H995L 

variant of RGS12 is properly folded. The RGS12 paralog RGS14 is reported to 

interact with isoforms of Rap GTPase [152-154]; however, no interaction of RGS12 

with Rap1A, Rap1B, nor Rap2B was observed in co-immunoprecipitation 

experiments (Figure 4.7).  

RGS12 Coordinates and Enhances Signaling to ERK Activation 

The ability of RGS12 to interact with activated H-Ras and the first two tiers of 

the Ras-regulated ERK signaling cascade suggests a role for this protein as a MAPK 

scaffold facilitating receptor signaling to ERK activation. We previously 

demonstrated that RGS12 associates with the PDGFβ receptor in an agonist-

independent fashion [18]; therefore, we measured endogenous PDGFβR signaling in 

CHO-K1 cells [272] in the presence of increasing RGS12 expression levels. RGS12 

expression modulated PDGF-BB-stimulated activation of ERK2 phosphorylation in a 

concentration-dependent, biphasic manner (Figure 4.8A) – namely, an increase in 

phospho-ERK2 levels upon low RGS12 expression, transitioning to a decrease to 

basal phospho-ERK2 levels upon higher RGS12 expression. These results are 

reminiscent of “combinatorial inhibition”:  a hallmark of signaling scaffolds that arises 

because, at low scaffold concentrations, signaling components are in excess and 

formation of a functional complex is likely to occur, but when scaffold is in excess, 

non-functional complexes with less than the full complement of components become 

more prevalent [197, 198]. This biphasic effect of RGS12 expression was selective 

for PDGFβR signaling in the CHO-K1 cells tested, as no inhibition of EGF-mediated 
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ERK2 activation was seen even at the highest levels of ecotopic RGS12 expression 

(data not shown).   

To investigate the interaction of RGS12 with multiple components of the 

Ras/MAPK signaling pathway, we co-expressed RGS12 and activated Ras 

GTPases with Raf kinase isoforms A-Raf, B-Raf, or c-Raf-1, and examined the 

ability of RGS12 to bind to Ras. RGS12 does not interact with activated R-Ras 

(Figure 4.5A); however, activated H-Ras and R-Ras both interact with all three Raf 

isoforms (reviewed in [273] and our own unpublished observations). Activated R-Ras 

did not co-immunoprecipitate with RGS12 in the absence or presence of any of the 

three Raf kinases (Figure 4.8B). In contrast, the amount of H-Ras bound to RGS12 

increased upon concomitant expression of B-Raf, but not A-Raf nor c-Raf-1 (Figure 

4.8B), suggesting that these binary interactions (H-Ras/RGS12, RGS12/B-Raf, and 

H-Ras/B-Raf) might be mutually supportive and/or a trimeric complex of all three 

proteins exists. 

 In addition to H-Ras and B-Raf, RGS12 interacts with MEK2 (Figure 4.1B and 

D); thus, we examined whether a complex of all four proteins might assemble in 

cells. As shown in Figure 4.8C and D, activated H-Ras (G12V mutant), B-Raf, and 

MEK2 were each detected in RGS12 immunoprecipitates upon co-expression. 

Simultaneous expression of MEK2 with either activated H-Ras or B-Raf had no 

effect on the amount of H-Ras or B-Raf that co-immunoprecipitated with RGS12 

(Figure 4.8C). In contrast, co-expression of activated H-Ras enhanced the amount of 

both B-Raf and MEK2 associating with RGS12 (Figure 4.8C). Amounts of co-

immunoprecipitating H-Ras, B-Raf, and MEK2 were additionally enhanced when all 
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four proteins were simultaneously co-expressed in HEK 293T cells (Figure 4.8C & 

D). These results suggest that the binding of activated H-Ras to RGS12 facilitates 

assembly of a multiprotein complex on RGS12 that functionally links H-Ras with the 

first two-tiers of the MAPK cascade (B-Raf and MEK2). 

 Several MAPK scaffold proteins have been found to also form 

macromolecular complexes with the third-tier kinase ERK (e.g., KSR, MP1, and β-

arrestin-2; reviewed in [274]. As RGS12 interacts with H-Ras·GTP, B-Raf, and 

MEK2, we reasoned that RGS12 may also assemble a MAPK complex containing 

the third-tier kinase as well. We therefore ectopically expressed full-length RGS12 

and ERK1, and carried out additional co-immunoprecipitation studies in HEK 293T 

cells. An interaction between RGS12 and ERK1 was not observed when only those 

two proteins were co-expressed (Figure 4.8D); however, when co-expressed with 

activated H-Ras, B-Raf, and MEK2, ERK1 was seen to co-immunoprecipitate with 

RGS12 (Figure 4.8D). These findings further support the hypothesis that RGS12 

acts as a scaffold to assemble multiple components of the Ras-activated MAPK 

cascade. 

Loss of RGS12 Inhibits NGF-Mediated Neurite Outgrowth in PC12 Cells 

 To define the role of RGS12 as a MAPK scaffold, we generated antibodies to 

identify cell lines that express RGS12 endogenously. Rabbit antisera raised against 

both the N-terminus of RGS12 and RGS domain confirmed expression of full-length 

RGS12 in PC12 rat pheochromocytoma cells (Figure 4.9). RGS12 co-

immunoprecipitated with both endogenous H-Ras and B-Raf in PC12 cells (Figure 

4.10A), but not with Rap1. These results suggest that a multiprotein complex of 
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RGS12 with specific MAPK pathway members exists between endogenous 

components in PC12 cells. 

 Nerve growth factor (NGF) stimulation of the NGF receptor, TrkA, causes 

terminal differentiation, growth inhibition, and neurite formation in PC12 cells [275, 

276]. NGF induces rapid and sustained activation of both Ras and ERK, and 

inhibition of either Ras or ERK blocks neurite induction [277]. Thus, NGF-induced 

neurite formation is mediated by Ras activation of the ERK MAPK cascade. To 

address a possible role for RGS12 in NGF-induced neurite formation, we employed 

rat RGS12 directed-siRNA to suppress endogenous RGS12 expression. A pool of 

four individual duplexes efficiently reduced RGS12 expression (Figure 4.11), and 

upon separation, all four individual oligonucleotides were found to efficiently 

knockdown expression of RGS12 (Figure 4.11 and Figure 4.10D inset). RNAi 

suppression of RGS12 expression impaired NGF-mediated neurite formation when 

compared to cells treated with control siRNA (Figure 4.10B); this led to a significant 

reduction in the average length of NGF-promoted neurites over 48 hr compared to 

cells transfected with non-specific siRNA (p < 0.0001) (Figure 4.10D).   To highlight 

this inhibition, cells were also stained (Figure 4.10C) with a marker specific for 

neuronal differention, β-tubulin isoform III [221]. These results suggest that RGS12 

positively regulates NGF signaling during PC12 cell neuritogenesis. 

Prolonged ERK Activation by NGF is Reduced Upon RGS12 Depletion 

Prolonged ERK activation promotes PC12 cell differentiation, whereas 

transient ERK activation promotes PC12 growth [226, 278, 279]. We thus examined 

the effect of RGS12 knockdown on ERK activation kinetics in PC12 cells stimulated 
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with NGF. The duration of ERK activation was shortened by RGS12 knockdown 

(Figure 4.12A), suggesting a mechanistic explanation for the impairment in NGF-

mediated neurite formation seen upon RGS12 depletion (Figure 4.10).  

Subcellular localization of MAPK scaffolds, and the proteins that they 

coordinate, is critical for their function [202]. We previously established that epitope-

tagged RGS12 localizes to intracellular punta in primary guinea-pig airway smooth 

muscle cells and regulates PDGFβR trafficking and PDGF-mediated activation of the 

MAPK cascade [18]. Similarly, in PC12 cells, YFP-RGS12 and RGS12-YFP fusion 

proteins both localize to punctate structures, in comparison to YFP alone (Figure 

4.12B). To determine whether these punctate structures were endocytic vesicles, we 

stained the cells with the early endosomal and late endosomal markers, EEA1 and 

LAMP1, respectively [280, 281]. RGS12-YFP showed co-localization with EEA1 

(Figure 4.12C), as well as with LAMP1 (Figure 4.12D), suggesting that 

overexpressed RGS12 is endosomal. 

 To explore the expression pattern of endogenous RGS12 protein, we used 

subcellular fractionation following NGF stimulation of PC12 cells. Detection of 

RGS12 first occurs in the crude membrane fraction (see the 0 min timepoint in 

Figure 4.12E), but RGS12 subsequently becomes enriched in both the cytosolic and 

nuclear fractions after NGF stimulation, with a concomitant decrease in the 

membrane fraction (Figure 4.12E). In contrast, we observed little change in the 

localization or protein levels of nuclear and membrane markers (lamin A/C and pan-

cadherin, respectively; [282, 283]), suggesting that the movement of endogenous 

RGS12 from membrane to cytosolic and nuclear fractions is specific.  
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RGS12 Forms a Multiprotein Complex Containing TrkA, H-Ras, B-Raf, and 

MEK2 

 MAPK pathway scaffolds have been identified that promote formation of 

stable complexes containing receptors [181, 274]. For example, β-arrestin-2 forms a 

complex with the angiotensin II type 1a receptor and component kinases of the ERK 

MAPK cascade [28]. RGS12 interacts with activated H-Ras, B-Raf, and MEK2 

(Figures 4.1, 4.5, and 4.8), and appears to regulate, and redistribute upon, NGF 

signaling in PC12 cells (Figures 4.10 and 4.12). Given these findings, we 

hypothesized that RGS12 may also associate with the primary NGF receptor in 

PC12 cells, namely TrkA [284]. To test this hypothesis, we transiently expressed full-

length RGS12 and TrkA in HEK 293T cells and assayed for protein complex 

formation (Figure 4.13). RGS12 co-immunoprecipitated with the TrkA receptor, but 

not with the fibroblast growth factor receptor (FGFR) (Figure 4.13A). Additionally, co-

expression of TrkA, but not FGFR, redistributed YFP-RGS12 out of endosomes 

(Figure 4.13B,C), suggesting that RGS12 subcellular localization is regulated 

specifically by TrkA. A multiprotein complex containing RGS12, TrkA, activated H-

Ras, B-Raf, and MEK2 was detected by co-immunoprecipitation (Figure 4.13D). 

Taken together, these findings suggest that RGS12 associates with TrkA and 

potentially tethers the Ras-Raf-MEK signaling module to this receptor. 

 We did not detect an interaction between RGS12 and FGFR; thus, we 

investigated whether RGS12 might selectively regulate NGF-mediated but not basic 

fibroblast growth factor (bFGF)-mediated signaling in PC12 cells. Basic FGF can 

reproduce the entire spectrum of PC12 cell responses known to be elicited by NGF 
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including neurite outgrowth [222]. Whereas knockdown of RGS12 attenuated NGF-

promoted neurite outgrowth (Figure 4.10), we observed no significant change in 

neurite outgrowth mediated by bFGF (p > 0.05; Figure 4.13E). Consistent with this 

result, no change in RGS12 subcellular localization was observed upon stimulation 

of PC12 cells with bFGF for up to 120 min (Figure 4.13E), in contrast to the 

movement seen upon NGF stimulation (Figure 4.12E). These data strongly suggest 

that RGS12 is critical for NGF-mediated, but not bFGF-mediated, neurite outgrowth 

and this may be due, at least in part, to a specific interaction between RGS12 and 

the NGF receptor TrkA.   

4.4  Discussion 

 The Raf-MEK-ERK cascade is often depicted as a linear signaling pathway 

that traverses the cytoplasm to connect receptor activation at the plasma membrane 

with transcriptional effects in the nucleus. However, regulation of this pathway is 

complex – this kinase cascade lies downstream of a variety of receptors and is 

involved in many different biological processes [269]. Specificity in receptor-

promoted signaling to ERK activation and spatio-temporal regulation of these signals 

are both achieved by scaffolding proteins. Several MAPK scaffolds have now been 

identified, with the S. cerevisiae protein Ste5 serving as the archetype, coordinating 

the kinases Ste11 (MAP3K), Ste7 (MAP2K), and Fus3 (MAPK) for efficient, 

pheromone-dependent activation of the MAPK cascade in haploid yeast [167, 175]. 

Another well-characterized ERK scaffold, kinase suppressor of Ras (KSR), binds c-

Raf-1, MEK1/2, ERK1/2, and other proteins [274] and is thought critical to Ras 

function given that KSR1-deficient fibroblasts are impaired in both Ras-mediated 
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ERK activation and cell transformation [285]. Our data suggest that RGS12, 

analogous to these established functions of Ste5 and KSR, sustains NGF-mediated 

ERK activation in PC12 cells by forming a signaling complex containing TrkA, H-

Ras, B-Raf, MEK2, and ERK proteins.  

 MAPK scaffolds not only tether proteins together, but also specify their 

subcellular localization and guide their ultimate output. In tethering Ste11, Ste7, and 

Fus3 through independent binding sites [178], Ste5 recruits these kinases to the 

plasma membrane – the site at which upstream proteins participate in pheromone-

dependent activation of the MAPK cascade [179]. In this way, Ste5 not only 

increases signaling efficiency through the MAPK cascade, but also generates 

specificity by insulating the pheromone response pathway from other parallel 

pathways (nutritional cues, osmotic stress) that use some or all of these same 

signaling components [175]. The ubiquity of these signaling components is even 

more dramatic in mammalian cell signaling, as underscored by the fact that over 160 

substrates for the final-tier kinases ERK1/2 have now been described. The majority 

of these ERK substrates are found in the nucleus; however, numerous others exist 

in the cytosol and at other organelles, including endosomes [286, 287]. Scaffold-

mediated regulation of the utilization of particular MAPK substrates contributes to the 

distinct, and at times opposing, cellular events that are regulated by the ubiquitous 

MAPK cascade. In this context, our results provide several lines of evidence that 

suggest RGS12 is a selective scaffold within PC12 cells that regulates prolonged 

ERK activation downstream of particular inputs and components: e.g., NGF versus 

bFGF, activated H-Ras versus related GTPases, and B-Raf versus c-Raf-1. 



 112

 In contrast to its robust association with activated H-Ras, RGS12 was not 

found to bind significantly to other Ras isoforms.  As H-, N-, and K-Ras in particular 

are highly homologous, it is likely that their unique hypervariable linker domain 

sequences and differential post-translational modifications, known to sequester 

these Ras family members to distinct cellular locales [288], may dictate, in part, the 

functional differences seen among Ras isoforms for RGS12 association. Ras 

signaling from internal membrane compartments is well documented, with one well-

described mechanism involving endocytosis [289], whereby EGF promotes 

internalization of active H-Ras, EGFR, and Ras effectors into endosomes. Similarly, 

the scaffold protein MP1, which binds to MEK1 and enhances ERK1 activation, 

localizes EGF-promoted Ras/MAPK signaling to late endosomes [202]; MP1 is 

dispensable for transient EGFR activation of ERK at the plasma membrane, but 

essential for delayed activation of ERK on late endosomes. The enhancement of 

MAPK activation by MP1 is strictly dependent on the endosomal localization of the 

complex, as the artificial mislocalization of MP1 to the plasma membrane abolishes 

its positive effect. Thus, compartmentalizing Ras at endosomes appears to provide a 

means for trafficking and promoting MAPK signaling. These results, and our findings 

that RGS12 localizes to endocytic vesicles and binds multiple MAPK cascade 

components in addition to activated H-Ras, suggest that RGS12 may be a novel 

endosomal Ras effector scaffold.  

 In PC12 cells, transient ERK activation promotes cell proliferation, whereas 

prolonged ERK activation promotes neuronal differentiation [224, 226, 278, 279]. 

Furthermore, endosomal localization of MAPK signaling components appear to be 
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critical for these differences, suggesting that endosomes may serve as the sites that 

generate persistent, rather than transient, signaling through Ras. Our findings are 

that RGS12 localizes to endosomes and depletion of RGS12 attenuates prolonged 

activation of ERK and cellular differentiation of PC12 cells. It has previously been 

demonstrated that proteins involved in NGF-mediated neurite outgrowth localize to 

endosomes, and this localization is critical for their participation in neuronal 

differentiation of PC12 cells [290, 291]. Isolated clathrin-coated vesicles from NGF-

treated PC12 cells were found to contain NGF bound to TrkA together with activated 

signaling proteins of the Ras/MAPK pathway [290]. Additionally, neuronal 

differentiation is seen to be stimulated by catalytically-active Trk receptors 

specifically trafficked to endocytic vesicles; if NGF internalization in PC12 cells is 

inhibited by dominant negative dynamin, neurite outgrowth is blunted [291]. These 

results suggest that RGS12, by binding TrkA and components of the Ras/MAPK 

cascade, might serve to coordinate this endosomal MAPK signaling required for 

prolonged ERK activation and neuritogenesis. 

 The most compelling context for this new data regarding RGS12 as a putative 

endosomal scaffold for TrkA-activated MAPK signaling is in the known response of 

primary neurons to trophic factors. NGF signals through TrkA to promote the 

differentiation, survival, and maintenance of primary neurons [5, 292]. For 

neurotrophins to induce these pleiotropic effects, the signal must be communicated 

from axon terminals to cell bodies. One hypothesis suggests that “signaling 

endosomes” containing NGF-bound TrkA are formed at the axon terminal and traffic 

in a retrograde fashion to the cell body where they initiate local signal transduction 
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cascades [293]; such retrograde transport and signaling of neurotrophins like NGF is 

thought to be critical to the development and maintenance of the nervous system [5]. 

Retrograde-transported NGF-containing vesicles are found to contain active 

components of the ERK pathway in vivo [294]. Thus, it is possible that RGS12 

represents a key component of the NGF-derived signaling endosome.  

 In addition to their originally described roles as Gα GAPs and negative 

regulators of GPCR signaling [266], RGS proteins increasingly appear to serve as 

scaffolds that integrate signaling from diverse receptors and steer pathway output to 

divergent cytoplasmic signaling networks [112]. Our observation that RGS12 

preferentially binds to activated H-Ras is in line with yeast two-hybrid data that Loco 

(the fly ortholog of RGS12) interacts with Drosophila Ras1 [165], suggesting that 

RGS12 might constitute an evolutionarily-conserved molecular link that integrates 

receptor tyrosine kinase signaling with GPCR signaling in both vertebrates and non-

vertebrates. Interestingly, the localization of Loco in surface glia is punctate 

throughout the cytoplasm [164], similar to our own observations in PC12 cells, HEK 

293T cells, primary airway smooth muscle cells, and primary DRG neurons (this 

report, [18], and unpublished results [M.D.W., M. Diversé-Pierluissi, and D.P.S.]). 

Although the mechanism by which RGS12 localizes to endosomes is unknown, it is 

possible that the Gαi-binding activity of the C-terminal GoLoco motif plays a role; we 

have previously reported a loss-of-function mutation in the GoLoco motif that 

mislocalizes RGS12 to the nucleus [18]. These findings, as well as those described 

herein, suggest that the multiple functional domains found within RGS12 may 

cooperate to define the spatial and temporal nature of a RGS12-coordinated 
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signaling output initiated from receptor tyrosine kinases and both monomeric and 

heterotrimeric G-protein subunits.  

4.5  Materials and Methods 

Cell Culture and Transfection 

All cells were cultured at 37°C in 5% CO2 humidified air. HEK 293T and COS-7 cells 

were maintained in DMEM supplemented with 10% fetal bovine serum, 4 mM L-

glutamine, 100 U/ml penicillin, and 100 μg/ml streptomycin. HEK 293T and COS-7 

cell cultures, seeded the day before at 800,000 and 160,000 cells per well, 

respectively of a 6-well dish, were transfected with a total of 1.5 μg plasmid DNA 

using Fugene 6 (Roche) at a ratio of 3:1 (Fugene:DNA). Empty pcDNA3.1 vector 

DNA was used to maintain a constant total amount of DNA per well. PC12 cells were 

maintained in DMEM supplemented with 10% horse serum/5% fetal bovine serum, 4 

mM L-glutamine, 100 U/ml penicillin, and 100 μg/ml streptomycin. Depending on the 

length of the assay, PC12 cells were seeded at 260,000 or 130,000 cells per well in 

a 12-well culture dish, and grown for 24 hr. Cells were transfected with a total of 300 

ng plasmid DNA per well of a 12-well dish using LipofectAMINE 2000 (L2K) 

(Invitrogen) at a ratio of 7:1 (L2K:DNA). CHO-K1 cells were maintained in EMEM 

supplemented with non-essential amino-acids, 10% fetal bovine serum, 100 U/ml 

penicillin, and 100 μg/ml streptomycin. CHO-K1 cells were seeded at 1.6 x 106 cells 

per 100 mm dish, and grown for 24 hr prior to transfection with a total of 12 μg DNA 

using Fugene 6 at a ratio of 3:1 (Fugene:DNA). 
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Immunofluorescence Microscopy  

PC12 or HEK 293T cells were plated on PDL-coated chamber slides or coverslips 

(BD Biocoat) and then transfected the next day and treated as described in the 

figure legends. Cells were subsequently fixed with 4% (w/v) paraformaldehyde, 

permeabilized with 100% methanol (-20°C) for 30 s, washed three times with PBS 

containing 1% (w/v) nonfat dry milk, 150 mM sodium acetate, pH 7, and then blocked 

in 1% nonfat dry milk/PBS for 15 min. Cells were incubated with primary antibodies 

for 1 hr at room temperature, or overnight at 4°C, then incubated with either Alexa 

Fluor 488 or 594 (Invitrogen) secondary antibodies for 1 hr at room temperature in 

the dark. Cells were then stained with the nuclear stain 7-aminoactinomycin D (7-

AAD) [295] (Invitrogen) as per manufacturer’s specifications. Cells were then 

washed four times with PBS, and Fluorsave anti-fade reagent (Chemicon, Temecula, 

CA) was added to each coverslip before mounting. Confocal images were collected 

using a Fluoview 300 laser scanning confocal imager (Olympus, Tokyo, Japan) on 

an IX70 fluorescence microscope with a PlanApo 60x oil objective (Olympus). 

Fluorescent images, X-Y sections at 0.28 µm, were collected sequentially at 800 x 

600 resolution with 2x optical zoom. 

Subcellular Fractionation   

Subcellular fractionation was performed as described [296], with minor 

modifications. PC12 cells were grown to 90% confluence in a 100 mm dish, and 

rinsed two times with PBS. All subsequent fractionation steps were performed at 

4°C. Cells were lysed in 2 ml of lysis buffer: 10 mM Tris-HCl pH 8.0, 1.5 mM MgCl2, 

300 mM sucrose, 0.05% (v/v) Triton X-100, 17 μg/ml calpain inhibitor I, 7 μg/ml 
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calpain inhibitor II, 2 mM Na3VO4, and protease inhibitors (Roche). Cells were then 

homogenized by 28 strokes with a 1 ml Wheaton Tenbroeck Tissue Grinder (Fisher).  

Lysate was then fractionated into nuclear, crude cytoskeletal, cytosol, and 

membrane fractions. Cells were centrifuged at 800 x g for 6 min at 4°C. Supernatant 

was removed and set aside on ice.  Pellet was washed with 1 ml buffer and the 800 

x g spin repeated twice. Supernatant was discarded, and resultant nuclear fraction 

pellet was resuspended in 150 μl lysis buffer. The post-nuclear supernatant was 

centrifuged at 16,300 x g for 25 min at 4°C. Supernatant was removed and set aside 

on ice as membrane and cytosolic material. Pellet was resuspended in 1 ml buffer 

and re-centrifuged. Supernatant was discarded, and resultant crude cytoskeletal 

fraction pellet was resuspended in 150 μl lysis buffer. Membrane and cytosolic 

material was then centrifuged for 18 hr at 48,000 rpm (~100,000 x g) at 4°C in a 

TLA-55 rotor (Beckman Coulter, Inc., Fullerton, CA). Supernatant (cytosolic fraction) 

was removed and placed in a fresh tube. The membrane fraction pellet was 

resuspended in 150 μl lysis buffer. All fractions were sonicated in an ice water bath 

for 5 min, and equalized with a BCA Protein Assay (Pierce). 

Immunoprecipitation and Western Blotting 

If fractionation was not required, cells were simply lysed 48 hr post-transfection in 

cold lysis buffer (20 mM Tris pH 7.5, 100 mM NaCl, 5 mM MgCl2, 1 mM EGTA, 1% 

(v/v) Triton X-100, protease inhibitors; or for phospho-protein detection: 50 mM Tris-

HCl, pH 7.4, 100 mM NaCl, 5 mM EDTA, 50 mM NaF, 10 mM NaPPi, 200 μM 

Na3VO4, 1% (v/v) Triton-X-100, protease inhibitors). Cell lysates were sonicated in 

an ice water bath for 5 min and then centrifuged at 13,000 x g for 20 min at 4°C. A 
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portion of the supernatant was removed and mixed 1:1 with 5x Laemmli sample 

buffer (“lysate” samples). Remaining supernatant was combined with appropriate 

antibody and rotated overnight at 4°C. Protein A/G agarose (Santa Cruz) was added 

12 hr later. Each sample was then rotated at 4°C for 2 hr, washed four times with 1 

ml lysis buffer, eluted with 2.5x Laemmli sample buffer, boiled for 5 min, subjected to 

SDS-PAGE and transferred to nitrocellulose. Western blotting was performed using 

aforementioned primary antibodies, secondary anti-mouse or -rabbit IgG antibody-

HRP conjugates (GE Healthcare), and enhanced chemiluminescence (ECL™, ECL 

Plus™, or SuperSignal® West Femto from GE Healthcare and Pierce, respectively). 

Surface Plasmon Resonance (SPR) Biosensor Measurements 

SPR binding assays were performed at 25°C on a BIAcore 3000 (BIAcore Inc., 

Piscataway, NJ) at the UNC Department of Pharmacology Protein Core Facility.  

N-terminally biotinylated, synthetic peptides of the MEK2 C-terminus (wildtype: 

RTLRLKQPSTPTRTAV-COOH; “triple-alanine” tail mutant: RTLRLKQPSTPTRAAA-

COOH) were separately bound to streptavidin-coated sensor surfaces (Sensor Chip 

SA, BIAcore) as per manufacturer’s instructions to a density of 400 resonance units 

(RU). Binding analyses were performed using HBS-EP buffer (10 mM HEPES pH 

7.4, 150 mM NaCl, 3 mM EDTA, 0.005% (v/v) Surfactant P20) as the running buffer. 

Purified His6-RGS12-PDZ/PTB or GST-RGS12-PDZ fusion proteins [138] were 

diluted in HBS-EP buffer and injected at a 20 μl/min flow rate over all test flow-cell 

surfaces simultaneously using the KINJECT command. Surface regeneration was 

performed, when necessary, using 20 μl injections of 1 M NaCl/50 mM NaOH at a 

flow rate of 20 μl/min. Binding curves were generated using BIAevaluation software 
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version 3.0 (BIAcore Inc.) and plotted using GraphPad Prism version 4.0 (GraphPad 

Software Inc., San Diego, CA). 

Plasmids, Antibodies, Agonists, and other Materials 

cDNA encoding human MEK1 and MEK2 were subcloned in frame with an N-

terminal FLAG-tag into pCMV2 (Eastman Kodak). pcDNA3.1-based expression 

constructs encoding N-terminal myc-His6 tagged full-length RGS12 and tandem RBD 

domain region (aa 961-1105 of GenBank AAC53176) were generated by 

heterostagger PCR cloning [297]. Site-directed mutagenesis was performed using 

the QuikChange system (Stratagene, La Jolla, CA) to generate the histidine-995-to-

leucine mutant of RGS12 and the glycine-12-to-valine mutant of Rap2B.  Rat RGS12 

was subcloned in-frame with either an N-terminal or a C-terminal YFP-epitope tag 

into pEYFP-C1 or pEYFP-N1 (Clontech), respectively. 7-aminoactinomycin D (7-

AAD) and all Alexa Fluor conjugates were from Invitrogen (Carlsbad, CA). Receptor 

agonists were obtained as follows: Nerve Growth Factor 2.5S (mouse NGF) 

(Roche), human epidermal growth factor (Sigma), human basic fibroblast growth 

factor (Sigma), and human platelet derived growth factor BB homodimer (Upstate). 

Yeast Two-Hybrid Screens  

Yeast two-hybrid screening with rat RGS12 baits was performed at the Molecular 

Interaction Facility of the University of Wisconsin (Madison) Biotechnology Center. 

To confirm initial positives, pairwise mating of yeast expressing bait or prey plasmids 

was performed in interaction-selection medium (histidine/adenine dropout plus 1 mM 

3AT). Yeast were subsequently lysed and incubated for several hr at 37oC with 

chlorophenyl red-β-D-galactopyranoside as chromogenic substrate for the β-
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galactosidase reporter of bait/prey interaction. Test baits included empty vector 

(pBUTE) and the following proteins cloned in-frame with the GAL4 DNA-binding 

domain:  mouse RGS12 PDZ/PTB domain N-terminus (aa 1-369), rat RGS12 

spanning the RGS domain and both RBDs (aa 702-1115), the EF-hand or coiled-coil 

domains of intersectin, and the human SKP1 homolog p19. Test prey included 

empty GAL4 activation domain vector (pGADC1), MEK2 C-terminus (aa 324-401), 

SAPAP3/Dlgap3 C-terminus (aa 814-977), an N-terminal portion of the MAP3K 

kinase A-Raf (aa 36-153), mouse Epsin, and human F-box 5 protein. The latter two 

prey serve as positive controls for interaction with the ITSN EF-hand domain and 

p19 baits, respectively [298, 299]. 

Small Interfering RNA (siRNA) Transfection 

PC12 cells were plated the day before transfection at 130,000 or 260,000 per well in 

12-well culture dishes coated with poly-D-lysine (PDL; BD Biocoat, Franklin Lakes, 

NJ) and then transfected with 150 nM siRNA using L2K according to the 

manufacturer’s protocol. Rat RGS12 siRNAs (both SMARTpool and constituent 

individual duplexes) were from Dharmacon Research (Lafayette, CO). The non-

specific siRNA (5'-CUA CGU CCA GGA GCG CAC C -3') was used as a negative 

control [300]. 

PC12 Differentiation Assays 

PC12 cells were transiently transfected with non-specific siRNA or RGS12 siRNA for 

24 hr, and then treated with 100 ng/ml NGF or bFGF (in 1% serum-containing 

medium) for an additional 48 hr. Brightfield images were obtained using an Olympus 

IX70 with sideport Q-Fire CCD camera. To quantitate differences in neurite length, 
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more than 100 cells were counted per condition in three independent experiments 

using the ImageJ Measure feature (http://rsb.info.nih.gov/ij/). These measurements 

were imported into Prism 4.0 (GraphPad, San Diego, CA) and length was converted 

into μm. 
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Figure 4.1. MAP3K and MAP2K components of the mitogen-activated protein 
kinase (MAPK) cascade identified as RGS12 interactors. (A) Multidomain 
architecture of RGS12. Numbering denotes amino acid boundaries of protein 
domains within rat RGS12. Square brackets denote regions of RGS12 used as baits 
in separate yeast two-hybrid screens against a mouse embryo/brain cDNA library. 
(B, C) Pairwise mating of yeast, expressing indicated bait or prey plasmids, was 
performed as described in Materials and Methods to confirm initial positives from the 
yeast two-hybrid screen. Yeast were incubated for 7 hr (panel B) or 16 hr (panel C) 
at 37oC with chlorophenyl red-β-D-galactopyranoside to detect the β-galactosidase 
reporter of bait/prey interaction. (D) HEK 293T cells were transiently co-transfected 
with FLAG-MEK2 and empty vector (“mock”), or the indicated HA-tagged protein 
domain expression constructs. Anti-FLAG antibody was used to immunoprecipitate 
(“IP”) MEK2 from resultant cell lysates. Co-immunoprecipitating proteins and total 
cell lysates were separately resolved by SDS-PAGE and immunoblotted (“IB”) with 
anti-FLAG and anti-HA antibodies as indicated. (E) HA-A-Raf was co-transfected 
with empty vector or full-length, myc-RGS12 in COS-7 cells. (F) HA-B-Raf was co-
transfected with empty vector, full-length myc-RGS12, or the isolated tandem RBDs 
of RGS12 (“12_RBDs”) in COS-7 cells. In both panels E and F, anti-myc antibody 
was used to immunoprecipitate RGS12. Co-immunoprecipitating proteins and total 
cell lysates were then immunoblotted for expression with anti-myc and anti-HA 
antibodies. 
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Figure 4.2. RGS12-derived PDZ/PTB tandem and PDZ domain fusion proteins 
specifically interact with the wildtype MEK2 C-terminal tail in vitro. 
Simultaneous SPR measurements of binding to a biotinylated peptide comprising 
the last 16 amino acids of MEK2 (wt), to the same peptide but ending with triple-
alanine (AAA), and to a blank flow cell after injection (time 0 s, flow rate 20 μl/min) of 
50 μl of 5 μM His6-RGS12-PDZ/PTB fusion protein (panel A) or 50 μl of 5 μM GST-
RGS12-PDZ fusion protein (panel B) at 25°C. 
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Figure 4.3. c-Raf-1 does not co-immunoprecipitate with RGS12. FLAG-epitope 
tagged c-Raf-1 and myc-epitope tagged, full-length RGS12 were transiently co-
expressed in HEK 293T cells. Cell lysates obtained 48 hr after transfection were 
immunoprecipitated (IP) with anti-myc antibody; IP samples and cell lysates were 
subsequently immunoblotted (IB) as indicated above. 
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Figure 4.4. The N-terminal 374 amino-acids of B-Raf co-immunoprecipitate 
with RGS12. FLAG-epitope tagged B-Raf truncation mutants and myc-epitope 
tagged, full-length RGS12 were transiently co-expressed in HEK 293T cells. Cell 
lysates obtained 48 hr after transfection were immunoprecipitated (IP) with anti-myc 
antibody; IP samples and cell lysates were subsequently immunoblotted (IB) as 
indicated above. 
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Figure 4.5. Full-length RGS12 and its isolated tandem RBDs preferentially 
interact with activated H-Ras. (A, B) HEK 293T cells were transiently co-
transfected with full-length, myc-RGS12 and the indicated HA-Ras plasmids. Anti-
myc antibody was used to immunoprecipitate RGS12 and anti-HA antibody was 
used to detect associated HA-Ras proteins via immunoblotting. (C) Wildtype or 
activated (G12V) HA-H-Ras was co-expressed with empty vector or myc-tagged, 
isolated tandem RBD region of RGS12 in HEK 293T cells. Lysates were 
immunoprecipitated and immunoblotted as described in panels A and B. (D, E) 
Activated (G12V) HA-H-Ras (D) or HA-B-Raf (E) was co-expressed with empty 
vector, full-length wildtype myc-RGS12 (wt), or histidine-995-to-leucine mutant myc-
RGS12 (H995L) in HEK 293T cells. Lysates were immunoprecipitated and 
immunoblotted as described in panels A and B. 
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Figure 4.6. Predicted structural similarity between the Ras-binding domain 
(RBD) of human c-Raf-1 with the first, N-terminal RBD of rat RGS12. 
Comparison of known secondary structure of human c-Raf-1 (Protein Data Bank id 
1GUA) with the predicted secondary structure of the first RBD within rat RGS12, the 
latter as derived from the 3D-PSSM protein fold recognition server 
(http://www.sbg.bio.ic.ac.uk/3dpssm/). Asterisks (*) and carats (^) denote c-Raf-1 
residues involved in polar or hydrophobic interactions, respectively, with the effector-
binding domain of bound Ras-family GTPase (PDB 1GUA).  β, beta-strand 
secondary structure; h, alpha- or 310-helical structure. Open arrowhead denotes 
position of histidine-995 residue mutated to leucine within rat RGS12 to create a 
loss-of-function for Ras GTPase binding. 
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Figure 4.7. Rap-family GTPases do not co-immunoprecipitate with RGS12. 
Wildtype (wt) and constitutively-activated (GV), HA-epitope tagged Rap1A and 
Rap1B (panel A) or FLAG-epitope tagged Rap2B (panel B) were transiently co-
expressed in HEK 293T cells along with myc-epitope tagged, full-length RGS12. Cell 
lysates obtained 48 hr after transfection were immunoprecipitated (IP) with anti-myc 
antibody; IP samples and cell lysates were subsequently immunoblotted (IB) as 
indicated above. 
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Figure 4.8. RGS12 expression coordinates a Ras/Raf/MEK/ERK complex and 
enhances signaling to ERK. (A) CHO-K1 cells expressing endogenous PDGFβR 
were transiently transfected with the reporter construct ERK2-GFP and either empty 
vector or increasing amounts of full-length, HA-RGS12 expression vector. Cells were 
serum starved overnight, treated with PDGF-BB (10 ng/ml) for 5 min, and resultant 
ERK2 activation determined by immunoblotting cell lysates with an anti-phospho-
ERK1/2 antibody. Scion Image was used for densitometric quantitation of pERK2 
and total ERK2-GFP levels to generate the bar graph of normalized pERK2 signal 
(i.e., fold activation above basal signal in the absence of PDGF-BB). Bottom panel: 
Total ERK2-GFP levels were immunoblotted with anti-ERK1/2 antibody. (B) HA-
tagged, activated H-Ras (G12V) (left) or R-Ras (G38V) (right) was co-transfected 
with empty vector, with full-length myc-RGS12, or with full-length myc-RGS12 and 
FLAG-A-Raf, B-Raf-FLAG, or c-Raf-1-FLAG expression vectors in HEK 293T cells. 
Anti-myc immunoprecipitates were immunoblotted for co-precipitated HA-Ras 
proteins with an anti-HA antibody. Total lysates were immunoblotted  with anti-myc, 
anti-FLAG, and anti-HA antibodies to confirm expression. Image shown is 
representative of three experiments; R-Ras interaction with RGS12 upon B-Raf or c-
Raf-1 co-expression was weak and variable between the three experiments. (C) 
HEK 293T cells were transiently transfected with plasmids encoding full-length myc-
RGS12, HA-B-Raf, HA-MEK2, and HA-H-Ras G12V in various combinations as 
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indicated. Anti-myc immunoprecipitates were immunoblotted for co-precipitated HA-
B-Raf, HA-MEK2, and HA-H-Ras GV using an anti-HA antibody. Expression of each 
construct was confirmed by immunoblotting immunoprecipitated proteins with anti-
myc antibody, and total lysates with anti-HA antibody. (D) HEK 293T cells were 
transiently transfected as in panel C but with the addition of HA-ERK1 expression 
vector where indicated. Detection of expression and co-immunoprecipitation was as 
described for panel C. Note: To highlight the increase in complex formation 
observed when multiple Ras/MAPK components are co-transfected in panel C, we 
present a lighter exposure that reveals only a faint band representing HA-MEK2 co-
immunoprecipitation with myc-RGS12. In contrast, panel D presents a darker 
exposure to highlight the co-immunoprecipitation of HA-ERK1, which in turn displays 
the RGS12-MEK2 interaction better than panel C.   
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Figure 4.9. Validation of anti-RGS12 rabbit antisera and demonstration of 
endogenous RGS12 expression in PC12 rat pheochromocytoma cells. Rabbits 
were immunized with recombinant protein spanning the first 440 amino-acids of rat 
RGS12 (encompassing the N-terminal PDZ and PTB domains: “PDZ/PTB”) or 
spanning residues 664-885 (encompassing the central RGS-box). Resultant antisera 
(or serum from pre-immunized rabbits [“pre-bleed”]) were used to immunoprecipitate 
(IP) proteins from PC12 cell lysate as indicated; immunoprecipitating proteins were 
resolved by SDS-PAGE, electroblotted onto nitrocellulose, and subsequently 
immunoblotted with indicated antisera, as per methods described in Materials and 
Methods. Note that “RGS-box old” describes rabbit antiserum previously described 
[137], but subsequently exhausted and hence replaced via a new round of rabbit 
immunization using the same immunogen. 
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Figure 4.10. RGS12 is critical for NGF-mediated neurite outgrowth in PC12 
cells. (A) PC12 cell lysates were immunoprecipitated with beads alone (No Ab), or 
anti-H-Ras, anti-Rap-1, anti-B-Raf, or anti-RGS12 antibodies. After SDS-PAGE, anti-
RGS12 antibody was used to detect associated endogenous RGS12. (B) PC12 cells 
were transfected with non-specific siRNA or RGS12 siRNA for 24 h, and then 
treated with 100 ng/ml NGF for an additional 48 hr. Brightfield images were obtained 
as described in Materials and Methods. (C) PC12 cells were transfected and treated 
with NGF as described in panel B. Cells were fixed, permeabilized, and stained as 
described in Materials and Methods with the differentiation marker anti-tubulin-βIII 
(green) and the nuclear stain 7-aminoactinomycin D (7-AAD; red) prior to analysis by 
confocal microscopy. (D) PC12 cells were transfected, treated with NGF, and 
imaged as described in panel B. Neurite lengths were measured for more than 100 
cells per condition in three independent experiments as described in Materials and 
Methods. The average of each condition is represented by a black line in the dot 
plots. Neurite length in non-specific siRNA- versus RGS12 siRNA-transfected cell 
cultures were significantly different (p < 0.0001; Student’s t test). Inset: PC12 cells 
were transfected with non-specific siRNA or RGS12 siRNA, and lysed 24, 48, and 
96 hr post-transfection. Cell lysates were then immunoblotted for expression of both 
RGS12 and actin.  
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Figure 4.11. Four distinct siRNA oligonucleotide duplexes each result in 
knockdown of endogenous RGS12 expression. PC12 cells were transiently 
transfected with siRNAs as described in Materials and Methods and resultant cell 
lysates (obtained 24 or 48 hr later) were immunoblotted for RGS12 and actin as 
indicated. “RGS12 pool” refers to Dharmacon Research’s SMARTpool designed 
against the rat Rgs12 mRNA, comprised of four siRNA oligonucleotide duplexes 
targetting the following specific mRNA sequences: duplex 1 (5’-GGC CGA AAC 
UUG ACU CUA A-3’); duplex 2 (5’-GAA CAC UAG GCA AGU CUA A-3’); duplex 3 
(5’- GCA ACA GGG UGC UUG UAG U-3’); duplex 4 (5’- CAU GAC AGU UUA CAG 
GCU A-3’). 
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Figure 4.12. Prolonged ERK activation by NGF is reduced upon RGS12 
depletion, expressed RGS12 is punctate and co-incident with endosomal 
markers, and translocation of endogenous RGS12 from membranes is 
regulated by NGF. (A) PC12 cells were transfected with non-specific or RGS12 
siRNA oligonucleotides, and stimulated with NGF. ERK activation (pERK) and total 
ERK expression was determined by immunoblot analyses (inset) with either anti-
phospho-ERK1/2 or anti-ERK1/2 antibodies at the indicated times after NGF 
treatment. Scion Image was used for densitometric quantitation of pERK1/2 and total 
ERK1/2 levels.  (B) PC12 cells were transfected with pEYFP-N1 empty vector, YFP-
RGS12, or RGS12-YFP expression vectors for 24 hr, and then treated with 100 
ng/ml NGF for an additional 48 hr prior to epifluorescence imaging. (C, D) PC12 
cells were transfected with RGS12-YFP (green) for 24 hr, and then treated with 100 
ng/ml NGF for an additional 48 hr. Cells were fixed, permeabilized, and stained with 
the early endosomal marker EEA1 (panel C; red) or the late endosomal marker 
LAMP1 (panel D; red) prior to imaging by confocal microscopy. Colocalization of 
RGS12-YFP and the endosomal markers is shown in yellow. White arrows indicate 
colocalization of RGS12-YFP with EEA1 or LAMP1 on individual puncta. (E) PC12 
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cells were stimulated with NGF at the indicated timepoints. Cells were then 
fractionated into membrane, cytosolic, nuclear, and cytoskeletal fractions as 
described in Materials and Methods. Proteins were resolved by SDS-PAGE and 
immunoblotted with anti-RGS12 antibody, or antibodies against the nuclear 
envelope marker Lamin A/C or the plasma membrane marker anti-pan-cadherin. 
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Figure 4.13. RGS12 forms a multiprotein complex containing TrkA and shows 
selectivity for TrkA signaling versus FGFR signaling. (A) HEK 293T cells were 
transiently co-transfected with full-length myc-RGS12, and either empty vector, 
FLAG-TrkA, or FGFR2 IIIc expression plasmids. Anti-FLAG or anti-FGFR antibody 
was used to immunoprecipitate FLAG-TrkA or FGFR2 IIIc, respectively. After SDS-
PAGE, anti-myc antibody was used to detect associated myc-RGS12 protein. Total 
cell lysates were also immunoblotted to verify expression. (B) HEK 293T cells were 
co-transfected with YFP-RGS12 and either (i) pcDNA3.1 empty vector, (ii) FLAG-
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TrkA, or (iii) FGFR2 expression vectors and imaged by confocal microscopy; scale 
bar represents 20 μm. (C) HEK 293T cells were transfected as described in panel B. 
72 hr post-transfection, cells were lysed and immunoblotted to verify expression of 
YFP-RGS12, FLAG-TrkA, and FGFR2. (D) HEK 293T cells were transiently 
transfected with plasmids encoding full-length myc-RGS12, FLAG-TrkA, HA-B-Raf, 
HA-MEK2, and HA-H-Ras G12V. Cell lysates were immunoprecipitated with beads 
alone or with anti-FLAG antibody. After SDS-PAGE, anti-HA and anti-myc antibodies 
were used to detect associated myc-RGS12, HA-B-Raf, HA-MEK2, and HA-H-Ras 
G12V. Expression of each construct was confirmed by immunoblotting total lysates 
with anti-HA, anti-myc, and anti-FLAG antibodies. (E) PC12 cells were transfected 
with non-specific siRNA or RGS12 siRNA for 24 h, and then treated with 100 ng/ml 
basic fibroblastic growth factor (bFGF) for an additional 48 hr. Differences in neurite 
length were quantitated as described in Fig. 4D. Neurite lengths in non-specific 
siRNA-transfected cells were not significantly different from those of RGS12 siRNA-
transfected cells (p > 0.05; Student’s t test). (F) PC12 cells were stimulated with 
bFGF at the indicated timepoints. Cells were then fractionated into membrane, 
cytosolic, nuclear, and cytoskeletal fractions as in Fig. 5E. Proteins were resolved by 
SDS-PAGE and immunoblotted with anti-RGS12 antibody, or antibodies against the 
nuclear envelope marker Lamin A/C or the plasma membrane marker anti-pan-
cadherin. 
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Table 4.1: Plasmid Sources 
 

 

Plasmid(s) Source 
Wildtype and constitutively-activated 
(GV) mutants of triple hemagglutinin (3x 
HA) tagged human H-Ras, M-Ras, R-
Ras, Rap1A, and Rap1B in pcDNA3.1 

UMR cDNA Resource Center 
(www.cdna.org) 

Human MEK1 and MEK2 in pUSEamp Upstate Cell Signaling Solutions 
(Charlottesville, VA) 

Wildtype and activated mutants of HA-
tagged H-Ras, K-Ras, and N-Ras in 
pCGN 

Dr. Channing Der (UNC-Chapel Hill) 

FGFR2 isoform IIIc in pBABE Dr. Channing Der (UNC-Chapel Hill) 
3xHA-human A-Raf in modified 
pACTAG2 

Dr. D. Anderson (Univ. of Saskatchewan)

HA-tagged human B-Raf and human c-
Raf-1-FLAG in pcDNA3 

Dr. K.-L. Guan (Univ. of Michigan, Ann 
Arbor) 

Human A-Raf with an N-terminal FLAG-
epitope tag in pCMV-FLAG-6b 

Dr. Jeffrey Frost (Univ. of Texas Health 
Science Center, Houston) 

N-terminal FLAG constructs of B-Raf 
deletion mutants in pCMV-FLAG-6b  

Dr. Jeffrey Frost (Univ. of Texas Health 
Science Center, Houston) 

Human B-Raf with a C-terminal FLAG-
epitope tag in pLNCX 

Dr. Deborah Morrison (NCI, Frederick, 
MD) 

Rat TrkA with an N-terminal FLAG 
epitope tag in pcDNA3 

Dr. Francis Lee (Weill Medical College of 
Cornell University) 

Wildtype FLAG-tagged Rap2B in pCMV2 Dr. Lawrence Quilliam (IUPUI) 
N-terminally HA-tagged InaD-PDZ1, 
Numb PTBo, full-length RGS12, RGS12-
PDZ/PTB, and RGS12-PDZ expression 
vectors 

[18] 

Rat ERK2 in the GFP fusion vector 
pEGFP-N1 

[194] 
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Table 4.2: Antibody Sources 
 

 

Antibody (antibodies) Source 
Anti-HA-horseradish peroxidase (HRP) 
3F10, anti-HA 12CA5, and anti-myc 
9E10 

Roche 

Anti-myc-HRP 4A6 and anti-Rap-1 Upstate 
Anti-RGS12 (A-14), -B-Raf (C-19), -
EGFR (1005), -FGFR (C-17), -A-Raf (C-
20), -MEK2 (A-1), -Lamin A/C (346), and 
-goat IgG HRP 

Santa Cruz Biotechnology 

Anti-tubulin-βIII, -β-actin, -pan-cadherin, -
M2 FLAG HRP, and -M2 FLAG 

Sigma (St. Louis, MO) 

Anti-p44/42 ERK MAP kinase and -
phospho-p44/42 (Thr202/Tyr204) ERK 
MAP kinase 

Cell Signaling Technology (Danvers, 
MA) 

Anti-rabbit IgG HRP and anti-mouse IgG 
HRP 

GE Healthcare (Piscataway, NJ) 

Anti-Ras OP-40 Calbiochem (San Diego, CA) 
Anti-H-Ras 146 Dr. Adrienne Cox (UNC-Chapel Hill) 
Anti-EEA1 BD Biosciences (San Jose, CA) 
Anti-lysosomal-associated membrane 

protein-1 (LAMP1) H4A3 mouse antibody
Developmental Studies Hybridoma Bank 
(Univ. of Iowa, Iowa City, IA) 

Anti-RGS12-PDZ/PTB and anti-RGS12-
RGS-box 

[266] 



CHAPTER 5 
 

FUTURE DIRECTIONS 

Signal transduction pathways emanating from both GPCRs and RTKs 

regulate many fundamental cellular processes, including cell proliferation, survival, 

differentiation, apoptosis, motility, and metabolism. The basic mechanisms of these 

pathways are well established; however, how each pathway processes a myriad of 

specific inputs into diverse biological outputs remains an enigma. Recently, a 

number of scaffold/nexus proteins have been identified, and their roles in regulating 

GCPR and RTK signaling are now emerging. What is becoming apparent is that 

scaffolds coordinate signal transduction using different mechanisms. For example, 

some scaffolds provide a simple platform for the construction of signaling networks 

by separating individual components into discrete units; whereas others augment the 

kinetics and amplitude of the signal, mediate cross-talk with other pathways, target 

signaling complexes to specific subcellular localizations, and provide regulated 

inhibition. Versatility is further increased by the dynamic regulatory processes placed 

on nexus proteins that affect their assembly and turnover, as well as the influence of 

‘meta-scaffolds’, such as MORG1, that connect different scaffolding complexes to 

regulate signaling [274]. 

The future aims of this research are to continue to identify and characterize 

interactions of RGS12, and to build upon the foundation established by this work to 

dissect the individual contributions of such interactions to complex physiological 

processes. The first step in this process is to make use of the insights gained 

unbelievable family 
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through determining the various binding partners and regulators of RGS12 to 

ascertain the physiological roles of RGS12’s MAPK scaffold activity. My work in 

PC12 cells provides biological evidence for RGS12 as a MAPK scaffold, and it is 

likely that RGS12 acts as a scaffold in primary DRG neurons to regulate NGF and/or 

GABAB receptor signaling. 

RGS12 is required for NGF-mediated neurite outgrowth and prolonged ERK 

activation in PC12 cells, but it is not clear whether this directly relates to its proposed 

scaffold role. My hypothesis is that the scaffold function of RGS12 plays a critical 

role in these processes, and numerous experiments can be performed to test this 

hypothesis. As RGS12 binds to MEK2 and A-Raf/B-Raf, it will be interesting to 

examine whether knockdown of either of these gives a similar phenotype (i.e., 

reduced duration of ERK activation and reduced neurite length) to knockdown of 

RGS12. Overexpression of RGS12 biphasically regulates PDGFβR-induced ERK 

activity in CHO-K1 cells, consistent with the “combinatorial inhibition” paradigm: at 

low scaffold concentrations, signaling components are in excess and formation of a 

functional complex is less likely to occur, but when scaffold is in excess, 

nonfunctional complexes with less than the full complement of components becomes 

more prevalent [197, 198]. Does RGS12 overexpression biphasically regulate TrkA-

induced ERK activation and neurite outgrowth in PC12 cells? Additionally, to provide 

a clear link between the role of RGS12 as a scaffold protein and its function in 

neurite outgrowth and the regulation of ERK activation kinetics, it will be important to 

demonstrate that RGS12 mutants, crippled in their binding to particular MAPK 

pathway components, do not enhance ERK activity when moderately 
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overexpressed, and to test such RGS12 mutants in complementation experiments in 

conjunction with siRNA-mediated knockdown of endogenous RGS12 (i.e., compare 

the effects of the mutants to those of wildtype RGS12). 

RGS12 contains two regions that regulate Gα signaling (i.e., the RGS domain 

and the GoLoco motif); however, my findings in PC12 cells, and the conclusions that 

I draw from these results, do not yet provide an explanation of how Gα signaling 

integrates into this signaling network. Do the two Gα binding regions play a role in 

RGS12’s scaffold function, and if so, what role? Is it possible, albeit unlikely, that 

both regions are nonfunctional in the context of NGF-mediated neurite outgrowth in 

PC12 cells? One possibility is that the Gαi-binding activity of the C-terminal GoLoco 

motif plays a role in localizing RGS12 to specific membrane compartments, as we 

have shown in airway smooth muscle cells that a loss-of-function mutation in the 

GoLoco motif mislocalizes RGS12 to the nucleus [18]. An intriguing possibility is that 

RGS12 facilitates signal integration between RTK and GPCR signaling pathways in 

PC12 cells; in particular, the RGS domain of RGS12 might negatively regulate those 

Gi/o-coupled GPCRs that promote PC12 cell proliferation, thus enabling NGF to 

promote differentiation more efficiently. In this regard, one well-described 

endogenous receptor that promotes MAPK activation in PC12 cells by coupling to 

Gαi/o subunits is the α2A-adrenergic receptor [301]. Specifically, activation of the α2A-

adrenergic receptor by UK14304 (a subtype selective full-agonist [302]) leads to 

Gβγ-mediated activation of the Ras-ERK pathway [303, 304]. As described above, 

one mechanism of cross-talk may be that RGS12 simultaneously inhibits signaling 

by the α2A-adrenergic receptor while promoting NGF signaling, with the net result 
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being enhanced neuronal differentiation. In line with this, knockdown of RGS12 

would effectively remove negative regulation of the α2A-adrenergic receptor and 

positive regulation of the TrkA receptor, with the net result being enhanced 

proliferation. Therefore, one would predict that α2A-adrenergic receptor-promoted 

ERK activation would be enhanced in the absence of RGS12 in PC12 cells.   

Loss of RGS12 expression inhibits neuritogenesis in PC12 cells; thus, RGS12 

appears to be critical for this process. It is possible that RGS12 is the primary 

scaffold in PC12 cells for enhancing NGF-promoted MAPK signaling; however, it 

may also work in concert with other scaffolds involved in MAPK coordination to 

promote neurite outgrowth. The scaffold proteins B-KSR1 and DYRK1A both 

regulate neuronal differentiation of PC12 cells [187, 228], and scaffold-scaffold 

interactions have been identified: e.g., MP1 binds to the MAPK scaffold MORG1 

[305]. These results suggest that distinct scaffolds regulate similar processes, and 

that MAPK scaffolds may orchestrate the formation of complete modules to enhance 

signaling efficiency. Orchestration of large ‘meta-scaffold’ complexes may also be a 

way in which scaffolds are able to regulate proteins that they do not directly bind. For 

example, a number of studies in PC12 cells describe the small GTPase Rap1 as the 

critical GTPase responsible for NGF-mediated prolonged ERK activation and neurite 

outgrowth in PC12 cells (reviewed in [306]); however, it is clear that Ras function is 

also important, as microinjection of a Ras-neutralizing antibody blocks differentiation 

of PC12 cells [307]. RGS12 binds to H-Ras, and not to Rap isoforms (as described 

in Chapter 4); thus, one might question how inhibition of RGS12 reduces NGF-

mediated neuronal differentiation if it does not bind to a critical protein involved in 



 144

neurite outgrowth. One possibility is that RGS12 forms a ‘meta-scaffold’ with an as-

yet unidentified scaffold protein that binds to Rap1, and in the larger complex, 

regulates Rap1 signaling.  Another possibility is that too much emphasis has been 

placed on the role of Rap in neurite outgrowth and, in reality, the biological outcome 

results from both Ras and Rap signaling in PC12 cells [227]. Since critical findings 

have emerged from the use of controversial reagents such as “dominant-negative” 

Rap1 (S17N), which is actually incapable of inhibiting Rap1 activation by the Rap-

specific GEF C3G in vitro and in vivo [308, 309], the biological role of Rap1 in PC12 

differentiation requires careful consideration.   

We identified B-Raf as a binding partner for RGS12 (Chapter 4); however, it is 

not clear whether B-Raf directly associates with RGS12. The interaction does not 

appear to be indirect through H-Ras, as the H995L mutation in RBD1 of RGS12 that 

disrupts binding to H-Ras does not inhibit binding to B-Raf (Chapter 4). Interestingly, 

RGS12 has been found in a protein complex with 14-3-3 [310], an adaptor protein 

that is essential for Raf activation [311], and 14-3-3 interacts with B-Raf [312]; thus, 

14-3-3 may serve as a bridge between RGS12 and B-Raf. Further studies examining 

the structural determinants of the RGS12/B-Raf interaction, as well as whether 

RGS12 directly interacts with 14-3-3, will be required to address this issue. 

The function of many MAPK scaffolds is regulated by protein modifications 

such as phosphorylation, e.g., JIP-1 and KSR [200, 201]. For instance, KSR is 

phosphorylated by C-TAK1 (Cdc25C-associated kinase 1) which creates a 14-3-3 

binding site on serine-392 [201]. Interestingly, the phosphorylation of KSR, and 

subsequent binding to 14-3-3, regulates not only the localization of KSR, but also its 
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function as a MAPK scaffold. In quiescent cells, KSR is bound to 14-3-3 which 

localizes the protein predominantly in the cytosol. However, upon activation by a 

mitogen such as EGF, phosphoserine-392 on KSR is dephosphorylated, releasing 

14-3-3, and allowing KSR to translocate to the membrane where it coordinates Raf-

MEK-ERK signaling. It is possible that the function and/or localization of RGS12 is 

regulated by phosphorylation; however, this remains to be determined.  

It is hypothesized that the release of 14-3-3 by KSR exposes the cysteine-rich 

C1 domain of KSR, which is critical for membrane localization. Additionally, 

exposure of this region may reveal an ERK docking site (i.e., the polypeptide 

sequence FxF; [313]), thus providing one explanation for activation-promoted 

interaction between KSR and ERK. I did not observe a constitutive interaction 

between RGS12 and ERK (Chapter 4); however, ERK was observed in RGS12 

immunoprecipitates upon coexpression of H-Ras (G12V), B-Raf, and MEK2. One 

possibility is that an activation event is required to reveal an ERK binding site on 

RGS12. Analogous to KSR, RGS12 may constitutively bind 14-3-3 in a manner that 

prevents ERK binding, and upon activation, 14-3-3 may be released to expose an 

ERK binding region. 

The mechanism(s) by which RGS12 localization is regulated are unknown. 

RGS12 localizes to endocytic vesicles when overexpressed in multiple cell types, 

including DRG neurons, airway smooth muscle cells, COS-7 cells, HEK 293T cells, 

and PC12 cells (Chapter 4, [18], and unpublished results). Coexpression of a subset 

of interacting proteins promotes translocation of RGS12 to the plasma membrane, 

namely TrkA (Chapter 4) and Gαi1 (data not shown). In contrast, some protein 
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partners such as H-Ras (G12V) and Gαo (data not shown) do not promote 

translocation. However, H-Ras does appear to alter the expression levels of RGS12. 

In both HEK 293T and PC12 cells, the expression of YFP-RGS12 is dramatically 

increased, as assessed by fluorescence microscopy and western blotting. Full-

length RGS12 is susceptible to calpain-mediated proteolysis, and may be subject to 

ubiquitinylation (unpublished data); thus, it is possible that activated H-Ras, for 

example, stabilizes the normally labile RGS12 preventing degradation. Strikingly, in 

PC12 cells, NGF promotes translocation of endogenous RGS12 out of the 

membrane fraction, and into the cytosolic and nuclear fractions. The significance of 

this shuttling is unknown, as proteins involved in NGF-mediated neurite outgrowth 

localize to endosomes, and this localization is critical for their participation in 

neuronal differentiation [290, 291]. It is possible that the translocation of RGS12 into 

the cytosol or nucleus is important for its scaffold function. KSR has been found to 

cycle through the nucleus in a manner that is dependent on its interaction with MEK 

[314]. Intriguingly, the yeast scaffold protein Ste5 must cycle through the nucleus to 

be a functional MAPK scaffold, although the exact mechanism by which Ste5 is 

affected by nuclear shuttling is unknown [175]. 

The movement of RGS12 between the plasma membrane, the cytosol, and 

the nucleus may play a role in spatial and temporal regulation of ERK activation. For 

instance, it is plausible that the localization of RGS12 promotes differential ERK 

substrate selection, and in this way, determines whether the activation of ERK is 

transient or prolonged. Numerous MAPK scaffolds have been identified that spatially 

and temporally regulate ERK activation, and it is possible that RGS12 regulates ERK 



 147

activation in a similar manner. MP1, a MAPK scaffold for MEK1 and ERK1, 

facilitates MEK1 activation of ERK1 [182], and its function is dependent on binding 

p14, a protein found on the cytoplasmic side of late endosomes [202]. MP1 is 

required not for transient EGFR activation of ERK at the plasma membrane but for 

delayed activation of ERK on late endosomes. β-arrestin, as described previously, is 

a MAPK scaffold that facilitates c-Raf-1 activation of MEK1 and ERK2 [28], and can 

spatially regulate MAPK signaling by specifying substrate selection. Specifically, β-

arrestin-associated ERK is sequestered in the cytosol, such that ERK regulates 

cytosolic and not nuclear substrates [195, 196]. Sef is a Golgi-associated MEK/ERK 

scaffold that binds activated MEK and promotes its phosphorylation of ERK [203]. 

Similar to β-arrestin, Sef forms a complex with activated MEK and ERK and prevents 

activated ERK translocation to the nucleus, thus preventing ERK phosphorylation of 

the Elk-1 transcription factor. Instead, Sef-associated ERK promotes 

phosphorylation of cytosolic p90RSK2. These and other MAPK scaffolds influence 

the spatio-temporal activation of ERK, and thereby regulate ERK activation of 

distinct substrates. The importance of temporal differences in ERK activation is 

supported by observations that prolonged ERK activation promotes PC12 cell 

differentiation, whereas transient ERK activation promotes PC12 cell proliferation 

[226, 278, 279]. As described in Chapter 4, we hypothesize that RGS12 functions as 

a MAPK scaffold that regulates ERK function in endosomes and that may promote 

differential ERK substrate selection due to its endosomal location. In this scenario, 

RGS12 may function to restrict ERK activation to the cytoplasm and alter ERK 

substrate utilization. 
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Recently, we identified p90RSK1 as a binding partner for RGS12 via transient 

co-transfection and co-immunoprecipitation experiments (data not shown), and the 

interaction appears to be mediated by the PDZ domain of RGS12, as predicted by 

Snow et al. [111]. p90RSK1, as well as p90RSK2, p90RSK3, and p90RSK4, contain 

C-terminal motifs that are Class I PDZ docking sites, i.e., STTL, STAL, STRL, and 

STGL, respectively; thus, it is likely that the PDZ domain of RGS12 binds to 

additional p90RSK isoforms. Although endogenous RGS12 localizes to both the 

cytoplasm and nucleus following NGF treatment of PC12 cells, it is possible that 

RGS12 selectively restricts ERK activation to the cytoplasm by binding to, and 

promoting phosphorylation of, cytosolic p90RSK. In line with this, knockdown of 

RGS12 expression would reduce cytoplasmic p90RSK phosphorylation, and 

enhance nuclear Elk-1 phosphorylation. In preliminary experiments, I have observed 

a reduction in NGF-promoted p90RSK1 phosphorylation in RGS12-depleted PC12 

cells (data not shown), suggesting that RGS12 may normally restrict ERK activation 

to the cytoplasm. Intriguingly, p90RSK1, -2, and -3 kinases are activated by NGF 

treatment of PC12 cells [315], and constitutively active p90RSK1 promotes 

differentiation of PC12 cells [316]. These findings suggest that p90RSK1 plays a key 

role in the differentiation process in PC12 cells. Whether RGS12 binds to p90RSK1 

in PC12 cells and regulates its activation, requires further clarification. 

With the findings that RGS12 is present in a complex with numerous proteins 

involved in MAPK signaling (i.e., TrkA, Ras, Raf, MEK, ERK, p90RSK, and 14-3-3); 

is critical for a MAPK cascade-promoted biological process in PC12 cells (i.e., 

neuronal differentiation); and is expressed in trigeminal and DRG neurons in the 
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E14.5 mouse [267]; it is possible that RGS12 regulates a MAPK-mediated process 

in primary neurons. Snider and colleagues have demonstrated that the Ras-Raf-

ERK cascade is crucial for axon elongation in embryonic Bax-/- DRG cultures [317]. 

Specifically, they found that overexpression of activated H-Ras, Raf-1, or ERK led to 

axon growth that was comparable to NGF-treated cells. It will be interesting to 

examine whether knockdown of RGS12 in these primary DRG cultures inhibits NGF-

promoted axon growth, analogous to the inhibition of neurite outgrowth observed in 

PC12 cells. 

In addition to its potential role in axonal growth, RGS12 may act as a scaffold 

to organize MAPK cascade members involved in GABAB receptor-mediated 

activation of the MAPK pathway. It has previously been established that RGS12 is 

specifically involved in establishing the rate of desensitization of GABAB receptor-

mediated, voltage-independent inhibition of presynaptic Cav2.2 channels in 

embryonic chick DRG neurons [137]. Recently, Diversé-Pierluissi and colleagues 

characterized several aspects of the signaling pathway that underlie GABAB 

receptor-mediated Cav2.2 channel inhibition and ERK2 activation in chick DRG and 

rat hippocampal neurons. The tyrosine kinase c-Src, pre-associated with the Cav2.2 

channel [138, 318], is activated within 20 seconds of GABAB receptor activation. 

Ca2+-dependent activation and recruitment of other signaling components to the 

Cav2.2 channel quickly follow, including the Ca2+-dependent tyrosine kinase PYK-2, 

the adaptor protein ShcC, the Ras exchange factor Sos (son-of-sevenless), and Ras 

GTPase(s) [318]. Interestingly, RGS12 is also recruited to the Cav2.2 channel in a 

similar time-frame (20 - 60 seconds) following GABAB receptor activation [137]. 
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Originally, it was hypothesized that RGS12 desensitizes GABAB receptor signaling 

by virtue of its Gαi/o-directed GAP activity [137]. However, as detailed in Chapter 4, 

we have now identified several novel binding partners for RGS12 including H-Ras, 

A-/B-Raf, and MEK2. Thus, it is possible that RGS12, beyond accelerating Gα⋅GTP 

hydrolysis, may also act as a scaffold protein to facilitate the assembly and 

regulation of the Ras/Raf/MAPK cascade at the Cav2.2 channel. Future experiments 

are required to further our understanding of the specific involvement of RGS12 and 

its binding partners in controlling neuronal responses to GABAB receptor activation. 

For instance, microinjection of recombinant full-length RGS12, but not other RGS 

proteins such as RGS14, into DRG neuron cell bodies dramatically accelerates the 

time to termination of GABA-mediated Cav2.2 channel inhibition [137]. If RGS12 

regulates MAPK cascade signaling at the channel by promoting formation of a 

multiprotein complex, then one would expect that microinjection of loss-of-function 

mutants of RGS12 that are incapable of binding MAPK members may differentially 

modulate the rate of desensitization of GABAB receptor-mediated inhibition of the 

Cav2.2 channel.  

GABA is the main inhibitory neurotransmitter in the central nervous system 

(CNS), and this inhibitory action arises via activation of GABAA and GABAB 

receptors [319-322]. GABA plays an important role in controlling the level of sensory 

information by modifying primary-afferent mediated transmission to the dorsal horn 

[322], and dysfunction of the GABAergic system leads to a clinical expression of 

central pain. Fortunately, the selective GABAB receptor agonist, baclofen (β-p-

chlorophenyl-GABA), has been shown to suppress neuropathic pain [323] and this 
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effect, at least in part, occurs via inhibition of the Cav2.2 calcium channel [324]. 

Hence, the design of novel therapeutic strategies that activate GABAB receptors, 

inhibit Cav2.2 channels, or inhibit proteins like RGS12 that desensitize Cav2.2 

channel inhibition by the GABAB receptor could have a high likelihood of success for 

future pain pharmacotherapy. The interactions described in Chapter 4 have 

furthered our understanding of the molecular determinants of RGS12 function and 

thus, will provide valuable insight necessary for rational drug design or high-

throughput molecular screening for RGS12 inhibitors. 

My findings in Chapter 4 also suggest that RGS12 may play a role in NGF-

promoted pain. Although NGF was originally identified as a survival factor for 

neurons in the developing nervous system [325], it is now well-established that NGF 

has a crucial role in the generation of pain in adults (reviewed in [326]). NGF 

expression is elevated in inflammed and injured tissues, and stimulation of TrkA on 

nociceptors activates and potentiates pain signaling [326]. Moreover, inhibition of 

NGF function and signaling reduces pain and hyperalgesia in murine models of pain 

[327-330], including models of neuropathic pain [331-336]. Intriguingly, agents that 

inhibit NGF are proving to be effective in murine models of pain in which traditional 

analgesic drugs either produce severe side effects or have poor efficacy. For 

instance, although non-steroidal anti-inflammatory drugs (NSAIDs) and opiates are 

generally effective analgesics for many pain conditions, their use is limited by their 

efficacy and tolerability [337]. As such, several pharmaceutical companies are 

developing drugs to antagonize NGF [326]. 
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NGF activates MAPK signaling in sensory neurons, and this activation has 

been implicated in NGF-promoted hyperalgesia [338-340]. Activated MAPKs such as 

ERK are present in NGF-TrkA signaling endosomes that are transported in a 

retrograde fashion to the cell bodies of sensory neurons [341]; thus, it is possible 

that activation of downstream transcription factors by these MAPKs contributes to 

the transcriptional changes in nociceptors that are associated with peripheral and 

central sensitization, such as rapid post-translational changes in the transient 

receptor potential vanilloid receptor 1 cation channel [342]. RGS12 localizes to 

endosomes, and positively regulates NGF-TrkA neuronal differentiation in PC12 

cells. Therefore, RGS12 may be a component of signaling endosomes, and enhance 

NGF signaling in sensory neurons. If this is the case, inhibition of RGS12 may prove 

to be an effective pain therapeutic, similar to agents that antagonize NGF.     

 In addition to pain modulation, RGS12 may play a role in Ras- and B-Raf 

transformation and oncogenesis. We identified B-Raf as an RGS12-interacting 

protein suggesting that RGS12 may be an important regulator of B-Raf function 

(Chapter 4). B-Raf is the main kinase that is responsible for coupling Ras to MEK in 

cells (reviewed in [343]), and this isoform is mutationally activated in 66% of 

malignant melanomas and in 7% of human cancers [344]. Over 80% of B-Raf 

missense mutations correspond to a V600E amino-acid substitution in the B-Raf 

kinase domain. Interestingly, we have established that RGS12 binds to this 

frequently occurring activated mutant of B-Raf (data not shown). Similarly, RGS12 

binds to activated H-Ras. Ras is the most frequently mutated oncogene in human 

cancers, and is suggested to be involved in oncogenesis. Thus, there is 
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considerable interest and effort in targeting Ras signaling for the development of 

novel approaches for cancer treatment [345, 346]. RGS12 appears to regulate both 

Ras and B-Raf signaling; however, defining the role of RGS12 in normal and 

neoplastic cells will greatly facilitate future strategies targeting Ras and mutant B-Raf 

signaling pathways.  

 RGS12 is endogenously expressed in Rat-1 rat fibroblast, RIE-1 rat intestinal 

and ROSE rat ovarian epithelial cells (data not shown), which are three well-

established cell lines for the study of Ras signaling and transformation [347-351]. 

Thus, it will be interesting to examine whether suppression of RGS12 expression in 

these cells impairs H-Ras-mediated growth transformation. Additionally, we found 

expression of RGS12 in B-Raf mutation (V600E)-positive colorectal carcinoma 

human tumor lines (i.e., COLO 205 and Caco-2; data not shown). The transformed 

growth of these cell lines is dependent upon the continued expression of mutant B-

Raf [352-354], and as such, inhibition of the Raf-MEK-ERK pathway impairs the 

growth of these lines [355]. Since RGS12 interacts with activated B-Raf (data not 

shown) and regulates MAPK signaling (Chapter 4), it is possible that RGS12 may 

associate with mutant B-Raf in these cells, and influence the ability of B-Raf (V600E) 

to promote growth of colorectal carcinomas. If this is the case, depletion of RGS12 

expression would likely result in impaired growth in vitro (i.e., soft agar colony 

formation) and in vivo (i.e., tumor formation or regression in nude mice), as well as 

reduced ERK activity. Intriguingly, it was recently shown that the RGS12 gene has 

high coding micronucleotide repeat instability, and frameshift mutations in RGS12 
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were identified in 29% of colorectal tumors with high levels of microsatellite instability 

[356].  

As described in Chapter 1, Loco, the Drosophila melanogaster orthologue of 

mammalian RGS12, is essential for glial cell development and subsequent blood-

brain barrier formation [117]. Although relatively little is known about the specific 

molecular mechanisms underlying glial cell development, Loco, the GPCR Moody, 

and the Gα subunits Gαi and Gαo have been found expressed in surface glia, and 

these four proteins are thought to act as part of a common signaling pathway critical 

for blood-brain barrier formation [163, 164]. These findings suggest that the 

regulation of Gα signaling by Loco may be important for glial cell development. 

However, it is highly likely that the MAPK scaffold function of RGS12 also plays a 

role in glial cell development. For instance, Loco interacts with Drosophila Ras1 

[165]; thus, it would be intriguing to examine whether Loco containing a point 

mutation in the first RBD (a mutation analogous to the loss-of-function H995L 

mutation that abrogates RGS12 binding to H-Ras; Chapter 4) alters glial cell 

differentiation. 

 The requirement for Loco in glial cell development and for normal locomotor 

capabilities suggests that mammalian RGS12 may also play a critical role in glial cell 

differentiation.  Recently, the spatio-temporal expression patterns of RGS12 during 

mouse development were examined, and it was demonstrated that RGS12 is 

expressed predominantly in trigeminal and DRG neurons and muscle in the E14.5 

mouse [267], suggestive of a role for mammalian Rgs12 in neuro- and myogenesis. 

Rgs12-deficient mice have not been described to date, but elucidating the signaling 
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pathway(s) that RGS12 regulates will help to determine and define the role of the 

protein in the developing nervous system. Identification and characterization of 

additional players that modulate glial cell differentiation in the developing brain will 

provide new functional insights into the molecular basis of glial cell development, 

and will contribute in significant ways to understanding their potential function in 

CNS-related developmental disabilities such as cerebral palsy [357] and infantile 

spasms (“West syndrome”; [358, 359]). 

RGS12 appears to represent a signaling nexus that facilitates convergence 

and cross-regulation of RTK, heterotrimeric G-protein, and Ras signaling (Figure 

5.1). Investigations of the capacity of RGS12 to assemble novel signaling scaffolds 

will further our understanding of how highly-specific biological outcomes derive from 

seemingly-universal intracellular signaling components; in the particular case of 

RGS12, such knowledge will potentially lead to novel drug discovery targets for 

cancer treatment and modulation of nociception.  
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Figure 5.1. RGS12 and its interactions with components of RTK, GPCR, ion 
channel, and GTPase signal transduction pathways. In addition to the 
interactions described in Figure 1.5, RGS12 interacts with the NGF receptor TrkA, 
and regulates NGF-mediated neurite outgrowth. MEK2 associates with the N-
terminal PDZ domain. B-Raf and activated H-Ras associate with the isolated tandem 
RBDs. ERK does not directly associate with RGS12, but has been found in a RGS12 
protein complex.  
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