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ABSTRACT 
HILDA RAZZAGHI: Breast density, race, and Intrinsic Subtypes of Breast Cancer 

(Under the direction of Melissa A. Troester, PhD) 
 

Mammographic breast density, a measure of fibroglandular tissue in the breast, 

refers to radiographically dense areas on a mammogram, and is among the strongest 

risk factors for breast cancer. Women with the highest mammographic density may be 

at a four- to six-fold increased risk of developing breast cancer compared with women 

with less dense tissue. Although the strongest risk factor, breast density is poorly 

understood. Whether breast density and breast cancer risk differ by race or depending 

upon molecular characteristics of the cancers is unknown.  

Cases and controls were participants in the Carolina Breast Cancer Study 

(CBCS) Phase I or Phase II (1993 – 2001) who also had mammograms recorded in 

the Carolina Mammography Registry (CMR). After combining the two datasets, 491 

cases with mammograms and 528 controls with mammograms met selection criteria. 

Mammographic density was reported to CMR using Breast Imaging Reporting and 

Data System (BI-RADS) categories. In Aim 1, mammographic density was evaluated in 

association with breast cancer risk among all women and by race. After adjusting for 

confounders, a monotonically increasing risk of breast cancer was observed  with 

increasing BI-RADS density [OR = 2.45, highest vs. lowest, (95% confidence interval: 

0.99, 6.09)]. When stratifying on race, the association appeared stronger in whites. 

Race- and breast density-associated covariates, such as body mass index (BMI) and 

hormone therapy were also weak modifiers of the breast density-breast cancer 

association. 
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In Aim 2, mammographic breast density was evaluated in association with breast 

cancer subtypes.  The expression of ER, PR, HER2, HER1, and CK5/6 was assessed by 

immunohistochemistry, with ER+ and/or PR+, and HER2- tumors defined as Luminal A and 

ER-, PR-, HER2-, HER1+ and/or CK5/6+ tumors defined as Basal-like breast cancers. The 

case-control odds ratio estimates were not substantially different between Basal-like and 

Luminal A cancers and case-only odds ratios confirmed no significant difference in risk by 

subtype.  

In conclusion, mammographic density is associated with increased breast 

cancer risk, with some suggestion of effect measure modification by race and no 

strong evidence of etiologic heterogeneity by subtype. These data help to elucidate 

poorly understood patterns and may inform breast cancer prevention strategies. 
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CHAPTER 1: BACKGROUND 

1.1 Overview 

According to the American Cancer Society, breast cancer is the most common 

cancer among women in the United States; it is also the second leading cause of 

cancer death (Cancer Fact and Figures, 2012) [1]. Breast cancer consists of a diverse 

group of diseases in terms of morphology, presentation, response to therapy, and 

molecular profile. Recent clinical studies on the molecular profiles of breast cancers 

have indicated that breast tumors can be classified into five prognostically relevant 

subtypes on the basis of gene expression patterns: Luminal A, Luminal B, HER2 over-

expressing, Basal-like, and unclassified. These subtypes also show unique etiology [2]. 

These refinements to classification of breast cancer heterogeneity follow on long-

established differences in incidence and mortality rates according to tumor estrogen 

(ER), progesterone (PR) receptor status, and human epidermal growth factor receptor-

2 (HER2) expression [3-11]. While classification of breast cancers has been refined, 

uncertainty remains in the etiology of these subtypes. 

One of the strongest and most consistent independent risk factors for sporadic 

breast cancer is breast density [12-17]. However, the association between breast 

density and breast cancer risk among African Americans is not well studied. There 

have been two studies that have evaluated mammographic density as a risk factor 

within racial groups [18, 19], with one concluding that race did not significantly modify 

the association between breast density and breast cancer risk [19] and the other 

suggesting that the risk of breast cancer associated with radiographic densities is 

higher among African American women [18]. Given that breast density-breast cancer 
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associations are poorly understood in African Americans and given that aggressive 

breast cancer subtypes are more common in this group of women, evaluating 

mammographic density in association with breast cancer subtype and by race would 

be an important contribution toward understanding and modeling the breast cancer 

risk. 

 

1.2: Epidemiology of breast density 

Mammographic breast density refers to the radiologic appearance of dense 

areas on a mammogram, which can influence the sensitivity of mammographic 

screening. Mammographic breast density is a measure of fibroglandular tissue in the 

breast and describes the appearance of radiologically dense breast tissue. On a 

mammogram, fat tissue appears dark, and stroma and epithelium appear light. 

Breast density is one of the strongest and most consistent risk factors for 

breast cancer [12-17]. The concept of mammographic density as a risk factor for 

breast cancer evolved from the “parenchymal patterns” described by Wolfe, who 

associated the presence of different patterns of breast density with an increased risk of 

breast cancer [20, 21]. Researchers have estimated that women with the highest 

mammographic density may be at a four- to six-fold increased risk of developing breast 

cancer compared with women with less dense tissue [12, 15, 22].  

 

1.2.1: Mechanisms 

Breast density may be the least understood risk factor for breast cancer, 

despite the fact that increased breast density, measured from a mammogram, is one of 

the strongest risk factors for breast cancer [12, 15, 18, 22-32]. Even though studies 

have tried to define mechanisms to explain this strong association, there is not a single 

mechanism or explanation that is responsible for this association [33-43]. There are a 
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few biological hypotheses for this strong association between breast density and 

breast cancer risk. One of the existing hypotheses is that mammographic density is 

strongly associated with the amount of collagen or breast stroma [44] and another is 

that  breast density may be a measure of the number of epithelial cells at risk, or 

fibroglandular growth factors [23, 45, 46]. It is also clear that genetic and 

environmental factors may alter breast density. Environmental factors, such as 

reproductive and anthropometric factors, account for only 20-30% of the variance in 

the proportion of breast density suggesting that there is a heritable component to 

breast density [43]. These effects may be through exposure to hormones and growth 

factors that increase proliferative activity and quantities of stromal and epithelial tissue, 

thereby increasing susceptibility to carcinogens and risk of breast cancer [43, 47].  

In opposition to theories that support a causal role in etiology, other theories 

suggest that the association is through “masking bias,” wherein high density may 

reduce the ability to detect cancers by mammographic screening. If this concept held, 

then the association between breast density and breast cancer risk would be expected 

to disappear with longer follow-up and repeated screening, given that breast density 

decreases with increasing age [48]; however, studies examining this phenomenon 

have found increased risk of breast cancer 7-10 years after a screening exam [20, 49, 

50]. Thus “masking bias" is not entirely responsible and does not fully explain the 

strong association between breast density and breast cancer risk. 

 

1.2.2: Breast density measurement methods 

Mammographic density can be measured quantitatively as well as qualitatively. 

A quantitative measure of breast density, percent mammographic density, is achieved 

through computer assisted methods and is the ratio of the dense area to the total area 

of the breast as seen on a mammogram. Percent breast density is one of the most 
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common ways used to measure mammographic density and is known to be a strong 

predictor of breast cancer risk [12, 15, 31, 51-57]. Qualitative measures used to date 

include the Wolfe’s parenchymal pattern (includes four categories of breast patterns: 

the N1 breast is considered the “normal” and is composed primarily of fat, the P1 

breast is composed mainly of fat with prominent ducts that appear as linear or nodular 

densities occupying up to 25% of the breast, the P2 breast which has prominent ducts 

occupying more than 25% of the breast, and the DY breast which is poorly defined as 

regions of densities mixed with areas of fat [18]), Tabar classification [58], and Breast 

Imaging Reporting and Data System (BI-RADS) [59]. In 1992 the American College of 

Radiology developed the BI-RADS, which is commonly used in the United States to 

categorize breast density [60]. BI-RADS density assessment defines four categories of 

breast composition including: 1) almost entirely fat 2) scattered fibroglandular densities 

3) heterogeneously dense and 4) extremely dense [61].  

In a meta-analysis, comparing quantitative and qualitative measurements of 

breast density and their association with breast cancer risk, the combined relative risk 

(95% CI) for the association between breast density and breast cancer risk in 

incidence studies was 4.08 (2.96, 5.63) for BI-RADS categories 4 vs. 1 (Extremely 

dense vs. almost entirely fat) and 4.64 (3.64, 5.91) for percent density of 75% vs. <5%. 

Although the magnitude for BI-RADS measured breast density is slightly lower than 

that for percent density, this qualitative measure is a strong predictor of breast cancer 

risk [59]. Furthermore, the reliability of BI-RADS density measurements has been 

studied and BI-RADS density has proven to be useful in assessing breast cancer risk 

[62, 63]. Ciatto et al. examined the intra- and interobserver reproducibility of BI-RADS 

density categories and concluded that average intera-observer agreement was 

substantial and the average interobserver agreement was moderate. Thus, 

categorization of breast density using BI-RADS is consistent within readers, 
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reasonable between readers [64], and is a valid and reliable manner in which to 

measure density for use in epidemiologic studies. 

 

1.2.3: Breast density risk factors 

As mentioned above, environmental factors as well as genetic factors play a 

role in composition of the breast tissue, and therefore, breast density. Some of the 

factors that are associated with breast density include age, Body Mass Index (BMI), 

menopausal status, and exogenous hormone use [16, 18, 19, 41, 65-73]. Age and BMI 

are two of the most important predictors of breast density. Breast density is known to 

decrease with increasing age, as explained by the Pike model of breast tissue aging 

[72], and the greatest declines are associated with the menopausal transition (i.e., 45-

60 years) [72, 74]. According to the Pike model, breast density is highest at the time of 

menarche, decreases with first full-term pregnancy and is the lowest at the time of 

menopause [75]. Studies have shown that differences in age significantly impact the 

efficacy of screening mammograms due to breast density [50]. There is an inverse 

association between breast density and BMI; decreasing BMI is associated with 

increasing breast density [41, 76]. El-Bastawissi et al. examined the association 

between breast density and BMI comparing BI-RADS categories 3,4 to categories 1,2 

and estimated an odds ratio of 7.1 (6.6, 7.6) for the lowest category of BMI (≤22.3) 

compared to highest category of BMI (≥29.8), which was the highest estimate 

compared with other categories of BMI (25.4-29.7 and 22.5-25.3) [41].   

Family history of breast cancer also plays a role in breast density. Women with 

the highest breast density tend to be premenopausal, and are also more likely to have 

a first-degree relative with breast cancer [13]. There are also hypotheses that suggest 

a mechanism for parity and breast cancer involving mammographic density among 

premenopausal women that may be modified by body size [77]. Studies have 
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concluded that exogenous hormones, including Tamoxifen, are associated with 

reducing breast density, and the greatest reduction occurs during the first 18 months of 

treatment [16]. On the other hand, menopausal hormone therapy increases 

mammographic breast density, therefore, potentially increasing risk of breast cancer 

(these data have not yet been published but were presented by C. Byrne at AACR in 

2010). The incidence of increased density with hormone replacement therapy is more 

frequent with combined estrogen/progestin hormone replacement therapy than with 

estrogen alone [78-86].  

Diets including protein, carbohydrates, soy, and meat intake may influence the 

risk of breast cancer though their effect on breast tissue morphology; specifically 

among postmenopausal women, studies have shown a strong positive relationship 

between dietary intake of total meat and high-risk parenchymal patterns [70, 87]. 

Studies have also shown no excess risk for fat intake as well as no association 

between intake of vitamins and mammographic parenchymal patterns [70]. Studies of 

soy intake and its association with breast density have produced contradictory results 

with some studies suggesting a positive trend of percent densities by quartiles of soy 

intake [88], some suggesting an inverse relationship [89], and some suggesting no 

association [90-92]. Thus, there is no conclusive evidence for a relationship between 

diet and breast density. Given these strong correlations with many breast cancer risk 

factors, breast density can be thought of as a strong biomarker of risk.  Given these 

strong correlations with many breast cancer risk factors, breast density can be thought 

of as a strong biomarker of risk.  

The proposed study will use breast density measured within five years prior to 

breast cancer diagnosis as well as breast density measured within a year post 

diagnosis. A few studies have examined the changes that occur in breasts and 

mammographic findings as a result of breast cancer treatment with exogenous 
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hormones such as Tamoxifen and have concluded that Tamoxifen, in particular,  

decreases breast density. Thus, whether other breast cancer treatments affect breast 

density is unclear, and studies of the association between breast density and breast 

cancer risk have used breast density estimates obtained from mammograms many 

years prior to as well as after breast cancer diagnosis [93]. Furthermore, the 

associations between breast density, race, breast cancer risk as well as breast cancer 

subtypes are poorly understood. 

 

1.3: Breast density and race 

Race may be another important factor in terms of breast density but few studies 

have examined whether density varies by race/ethnicity and findings are inconsistent 

[34, 42, 94-96]. In studies of breast density comparing African American women to 

white women, 3 studies concluded that mammographic density is higher in African 

American women compared to Caucasian women [42, 95, 96]. One study concluded 

that African American women have lower mean density than white women [34] and 

one study showed no difference in density between African American and white 

women [94]. Table 1.3.1 presents all 5 studies that compared breast density in African 

American versus white women. The BI-RADS was the method of measurement for 

breast density in two of the studies and percent density was the measurement used for 

the other three studies. Results presented in the table below are adjusted for both age 

and BMI, which are the two most important predictors of breast density.   

The association between breast density and breast cancer risk according to 

different racial groups, specifically African American women, is also unclear and to 

date only two studies have examined this association with conflicting results [18, 19]. 

Table 1.3.2 presents the two studies that have examined this association among 

African American versus white women. Wolfe et al. examined this association among 



 8 

85 African American cases, 75 White cases, and an equal number of race-matched 

controls. Increased risk of breast cancer was more strongly associated with extent of 

densities in African American women compared to white women, although the 

confidence intervals were largely overlapping. Estimated odds ratio (95% CI) for the 

association between breast density and breast cancer risk for highest breast density 

(70-100% dense) was 4.8 (95% CI: 1.3, 17.7) for African American women compared 

to 4.2 (1.2, 14.4) for white women. For 50-69.99% breast density the estimates were 

6.9 (2.0, 24.1) and 4.2 (1.4, 12.8) for African American and white women, respectively. 

The log-likelihood ratio test for the interaction of race and mammographic density was 

not statistically significant (0.1>p>0.05), but tended in the direction of suggesting that 

the risk of breast cancer associated with radiographic densities is higher among 

African American women [18]. However, the sample size was relatively small as 

evidenced by the wide confidence intervals. Furthermore, adjustments for many risk 

factors/confounders including BMI and parity were not accounted for in this study [18].  

Ursin et al. conducted a case-control study with 199 African American and 280 

white cases and used a quantitative measure for breast density. Although not 

statistically significant, this study suggesting that breast density is as strong a predictor 

of breast cancer risk among African American [OR: 1.66 (0.64, 4.32)] women and for 

white [OR: 2.56 (1.23, 5.31)] women. Furthermore, estimates per decile increase in 

absolute density were 1.09 (0.96, 1.25) for African Americans and 1.18 (1.02, 1.36) for 

white women. Thus, the results of this study were not statistically significant for African 

American women [19]. As mentioned and shown in tables 1.3.1 and 1.3.2, there is 

sparse data on the association between breast density and breast cancer risk among 

African American and white women and studies examining this association accounting 

for race are needed. Understanding whether there are differences in associations 

between breast density and breast cancer risk by breast cancer subtypes is necessary. 
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1.4: Epidemiology of Basal-like breast cancer 

Triple-negative (ER-, PR-, and HER2-) breast cancer accounts for 10-17% of 

breast cancers and between 50-80% of these tumors express Basal markers [8-10, 97-

100]; thus Basal-like breast cancers account for 8-37% of all breast cancer cases 

depending on the criteria used to subtype these tumors [2, 3, 5, 101-110]. To date, 

there is no internationally accepted definition for Basal-like cancers, given that these 

tumors lack ER, PR, and HER-2 expression, many studies have adopted a triple-

negative definition for Basal-like cancers. Thus many studies have used the terms 

triple-negative and Basal-like interchangeably [111, 112] and the characteristics and 

risk factors identified and mentioned below may not be specific to the Basal-like 

subtype but more broadly associated with the triple-negative definition.  

Basal-like tumors are associated with larger size, a pushing  non-infiltrative 

border of invasion, large zones of geographic necrosis, stromal lymphocytic infiltrate, 

scant stromal content, lack of tubule formation, high nuclear-cytoplasmic ratio, 

vesicular chromatin, prominent nucleoli, high mitotic index and frequent apoptotic cells, 

advanced stage at diagnosis, high histologic and nuclear grade (75-100% are grade 

3), poorer prognostic index, greater incidence of recurrence, distant metastasis, and 

poor survival. Studies have also suggested that Basal-like tumors have a tendency 

towards visceral metastasis, especially in the brain and lung, and are less likely to 

metastasize to liver, bone, and lymph nodes [104, 113-118].   

Basal-like tumors have also been associated with BRCA1 mutations and are 

more frequent in hereditary BRCA1 breast tumors [4, 118-122]. These tumors are 

more prevalent in younger women; the average age of women with Basal-like breast 

cancers range from 47 to 55 [2, 100, 103, 106, 123-125]. Women with these tumors 

have poorer survival regardless of stage (in a study of non-Hispanic black women, 

those diagnosed with late-stage triple-negative breast cancer had the poorest survival 
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of any comparable group) [126, 127]. Mammographic features of Basal-like tumors 

suggest more rapid tumor progression leading directly to invasive cancer that may 

require adjunct imaging tools for early diagnosis [128]. Basal-like tumors present 

themselves as masses, display architectural distortion, and are found in association 

with calcifications [129, 130].   

The main characteristics of Basal-like tumors include onset at a young age 

(<50 years) and higher prevalence among young African American women; 

additionally this subtype often presents as an interval cancer rather than screen-

detected breast cancer, and is significantly more aggressive than tumors from other 

molecular subgroups. These tumors are invasive, peak risk of recurrence is between 

the first and third year and the majority of deaths occur in the first 5 years, following 

therapy. Patients with this subtype have a significantly shorter survival following the 

first metastatic event when compared with those with non-Basal-like subtype. A few 

studies have concluded that the prevalence of these tumors is higher in younger 

women, among African American women followed by Hispanic women with low 

socioeconomic status. Millikan et al. [11] identified some additional risk factors for the 

Basal-like subtype including parity, younger age at first full-term pregnancy, shorter 

duration of breastfeeding, lower number of children breastfed, lower number of months 

breastfeeding per child, and increased waist-to-hip ratio. Table 1.4.1 below presents 

some of these findings [6, 11, 97, 112, 131, 132].  

As mentioned above, although many studies have used the terms triple-

negative and Basal-like interchangeably, Basal-like tumors have distinct characteristics 

and to be distinguished they should be classified using five molecular markers (ER, 

PR, HER-2, HER-1, and CK5/6) rather than ER, PR, and HER-2 expression only [111, 

112]. Given the limited knowledge and literature on Basal-like tumors, studies 

examining these tumors using five-marker panels are needed.  
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1.5: Epidemiology of Luminal A breast cancer 

The Luminal A subtype of breast cancer is the most common breast cancer 

subtype accounting for about 45% of all breast cancers; dominating analyses 

considering breast cancer [133]. Luminal A subtype of breast cancer is a hormone 

receptor expressing breast cancer and is expressed in the more differentiated 

epithelial cells of the breast [5, 11, 134]. This subtype of breast cancer is often of lower 

grade and responds well to therapy as these tumors show the most favorable clinical 

features among the five subtypes [2]. They can be treated by hormone therapy since 

they are hormonally driven and generally have good prognosis, display favorable 

survival, and respond well to hormone therapy rather than chemotherapy [133, 135] . 

Luminal A subtype mostly affects postmenopausal Caucasian women [12, 133]. Until 

recently most breast cancer studies have not differentiated subtypes of breast cancer; 

therefore, all of the risk factors identified thus far are assumed to affect all subtypes of 

breast cancer. Recently, it has become clear that there is substantial etiologic 

heterogeneity, but most established breast cancer risk factors are also risk factors for 

Luminal A breast cancer. 

The main risk factors for Luminal A breast cancer are concordant with the 

established risk factors because they represent the largest group of breast cancer 

tumors and have dominated most of the analysis that consider breast cancer overall. 

These risk factors include including increasing age, early age at menarche, late age at 

menopause, family history of breast cancer, and exogenous hormone use, which are 

associated with increased risk of Luminal A breast cancer; whereas parity and younger 

age at first full term pregnancy are associated with decreased risk of breast cancer. 

Luminal A breast cancer usually affects women at later ages (postmenopausal) [15, 

136-143].  
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Some of these risk factors have opposite effects on Basal-like breast cancers; 

for example, parity and younger age at first full-term pregnancy are positively 

associated with Basal-like tumors, yet they are inversely associated with Luminal A 

cancers. Table 1.4.1 points out some of the differences in associations as mentioned 

[11]. The strongest differences among these subtypes are age and race related; each 

subtype is more prevalent in certain age and race groups.  

 

1.6: Breast density and molecular tumor markers 

Although breast density has been determined to be one of the most significant 

independent risk factors for breast cancer, its association with intrinsic molecular 

subtypes of breast cancer is unclear. To date, there has been only one study 

examining the association between breast density and risk of specific subtypes of 

breast cancer. This study has compared the association for Luminal A and triple-

negative breast cancers, which is not specific to the Basal-like subtype of breast 

cancer [93]. Ma et al. conducted a case-control as well as a case-case analysis to 

compare Luminal A and triple-negative breast cancers and concluded that percent 

mammographic density was positively associated with both Luminal A and triple-

negative breast cancers with no significant differences between the two tumor types 

[Luminal A: 2.22 (1.04-4.78), Ptrend=0.02; triple-negative: 2.96 (1.21-7.23), Ptrend=0.007] 

when comparing women with breasts with ≥60 percent density to those with <10 

percent density [93]. However, given that triple negative cases include breast cancers 

of subtypes other than Basal-like but where IHC assays were false negatives, these 

results warrant evaluation in a study that uses positive staining to identify Basal-like 

breast cancers. The work in Aim 2 is among the first studies to examine this 

association using a full marker panel to identify intrinsic subtypes. 
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There is also limited and conflicting literature on the association between breast 

density and hormone receptor status of breast cancer, including estrogen and 

progesterone status and whether this association varies by race. Table 1.6.2 presents 

the studies that have examined the association between breast density and breast 

cancer risk by hormone receptor status and whether the studies were of case-control, 

case-only, or cohort design as recently reviewed in Boyd et. al. [144]. In addition to this 

recent and comprehensive review article, our review of the literature resulted in an 

additional publication that was not included in the recent review article [145]. Of the six 

case-control and cohort studies examining the association between breast density and 

breast cancer risk by breast cancer hormonal status and/or subtypes to date reviewed 

in Boyd et. al. [144], four observed increased risk of both ER+ and ER- tumors [93, 

146-148], two observed increased risks for ER+ tumors only, and some showed 

stronger associations for either ER+ or ER- tumors [149, 150].  Three of the four case-

control studies, also conducted case-only analysis comparing ER+/PR+ to ER-/PR- 

tumors, two of these studies concluded no significant difference between ER+ and ER- 

tumors [93, 151] and one concluded an increased risk for ER+ tumors [149]. Of the ten 

studies with cases only that examined whether breast density was different based on 

hormone receptor status all, but one [152] concluded that there were no significant 

differences in breast density by hormone receptor status [128, 145, 153-159]. Two of 

the ten case-only studies examined the association between breast density and breast 

cancer subtypes including the Luminal A, Luminal B, HER2, and Basal-like subtypes 

and concluded no significant difference in the association between breast density and 

breast cancer subtypes [154, 155]. Both quantitative and qualitative measures of 

breast density were used in these studies and majority of these studies only included 

estrogen receptor status with the exception of Conroy et al. [151], Yaghjyan et al. 
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[148], and Ma et al. [93] which included both estrogen and progesterone receptor 

status.  

The contradictory findings of the studies on hormone receptor status and 

molecular subtypes could be due to many different factors including differences in 

study populations. For example, some of the studies included postmenopausal women 

only whereas others included both pre- and postmenopausal women. Some of the 

studies included white women only [151] and others included different ethnicities 

including African American and Asian women [93, 151]. Another contributing factor to 

the differences observed may be adjustment for confounders; for example, some of the 

studies adjusted for BMI and age [93, 146, 148, 151, 153] which are highly associated 

with breast density and some did not [128, 145, 147, 149]. Many of the studies 

adjusted for different sets of confounders which can contribute to the findings observed 

[93, 128, 145-149, 151, 153]. Furthermore, different measurements of breast density 

as well as referent category were used in these studies. Some of the studies that used 

percent mammographic density considered density of 60% or higher as "dense" 

breasts [93, 145, 147-149, 151, 153], whereas when qualitative measure of breast 

density was used the "dense" category could refer to a higher density than 60% 

(75%+) [128, 146]. These are some of the factors that could contribute to the 

differences observed in these studies.  

 

1.7: Significance 

Breast density is likely the least understood yet one of the strongest risk factors 

for breast cancer. Associations between breast density and breast cancer risk by race 

as well as breast cancer subtypes are not well studied and the few studies that exist 

appear to conflict. Some of the well known risk factors for breast cancer have opposite 

effects on intrinsic subtypes of breast cancer; therefore, understanding whether the 
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association between breast density and breast cancer risk varies by breast cancer 

subtypes and/or race is crucial to closing the gaps that exist in the literature and our 

knowledge. It is also important to understand racial disparities in breast cancer 

incidence and the role of breast density in these disparities. 



  

1.8 Tables 
 
Table 1.3.1: Breast Density and Race 

Author 
(year) 

Race (N)* BD Metric 
(Method) 

Age 
range 

Results** Comments 

 
Habel (2007) 
[95]  

 
AA (60) 
White (391) 

 

 
Percent density 
(planimetry) 

 
40-55 

 
Mean (95% CI) Percent Density: 
AA: 49.0 (44.6, 53.4) 
White: 44.1 (42.4, 45.7) 
 

 
AA women had higher mean 
percent density than white 
women  

Del Carmen 
(2007) [94] 

AA (561) 
White (12704) 

BI-RADS - BI-RADS 1:  
AA: 8.4% ; White: 6.5% 
 
BI-RADS 4:  
AA: 8.9%; White: 12.5% 
 

There was no difference 
between races (p=<0.0001) 

Chen (2004)  
[42] 

 

AA (149) 
White (226) 

 

Absolute and 
percent density 
(computer-
assisted)  

35-64 Mean (95% CI) Percent Density: 
AA: 31.2 (28.1, 34.3) 
White: 30.0 (27.6, 32.4) 

 
Absolute Density (95% CI): 
AA: 163.1 (143.1, 183.1) 
White: 132.7 (116.8, 148.6) 
 

AA had both higher mean 
percent and absolute density 
than whites for both age 
groups (≤50 vs. >50) but both 
mean percent and absolute 
density difference was 
stronger in women ≤50. 

Del Carmen 
(2003) [34] 
 

AA (207) 
White (463) 
 

BI-RADS - Mean density: 
AA: 2.54 
White: 2.66 
 

AA had lower mean density 
than whites (p=0.0006) 

El-Bastawissi 
(2001) [96] 

AA (883) 
White (25339) 

BI-RADS 20-79 OR (95% CI): 
1.3 (1.1, 1.5) for BI-RADS (3,4) vs. 
(1,2) 

AA had greater breast 
density than white women 
(referent)  

*Only African American (AA) and white women are reported in this table  
**Only p-values for with adjustments for age and BMI are reported BD, breast density; BI-RADS, Breast Imaging Reporting and Data System 
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Table 1.3.2: The association between breast density and breast cancer risk by race 
Author 
(year) 

BC Metric 
(Method) 

Population Race 
Case/Control 

Results Comments 

 
Ursin 
(2003) 
[19] 

 
Percent Density 

 
Women 35-64 in the 
CARE study   
 
 

 
White 
280/227 
 
AA 
199/149 

 
Overall:* 
5.23 (1.70, 16.13) 
 
White:** 
2.56 (1.23, 5.31) 
 
AA: 
1.66 (0.64, 4.32) 
 

 
Association with risk was 
stronger for older than younger 
women (≥50 vs. <50) (p=0.05) 

Wolfe 
(1987) 
[18] 

Wolfe 
Parenchymal 
Pattern 

160 women  age 30-85  White 
75/75 
 
AA 
85/85 

Overall:$ 
4.3 (1.8, 10.4) 
 
White: 
4.2 (1.2, 14.4) 
 
AA:  
4.8 (1.3, 17.7) 

Prevalent (77%) cases: those 
with a mammogram within 6 
months before diagnosis 

 
Incident cases (23%): 
women with normal 
mammograms >6 months 
before diagnosis 

*Overall OR is for ≥75% vs. <1% density. Adjusted for age, BMI, age at menarche, breast cancer family history, number of full-term pregnancies, menopausal  
status and HRT use, and at age first full-term pregnancy   
** Overall OR is for ≥60% vs. <10% density. Adjusted for age, BMI, age at menarche, breast cancer family history, number of full-term pregnancies, menopausal  
status and HRT use, and at age first full-term pregnancy  
$Results are present for 70-100% vs. <25% breast density, more predictive of risk in AA.  AA, African American 
 
 
 
 
 
 

 
 
 

 

 

17 



18 
 

Table 1.5.1: Differences in associations between breast cancer risk factors and Luminal A and 
Basal-like breast cancers in the CBCS [11]  
Risk Factors Luminal A tumors Basal-like tumors 
Parity   
    Nulliparous Referent Referent 
    1 0.7 (0.5, 1.0) 1.7 (0.9-3.0) 
    2 0.7 (0.6, 1.0) 1.8 (1.1, 2.1) 
    ≥3 0.7 (0.5, 0.9) 1.9 (1.1, 3.3) 
Age at first full-term pregnancy   
    Nulliparous Referent Referent 
    <26 0.7 (0.5, 0.9) 1.9 (1.2, 3.2) 
    ≥26 0.9 (0.6, 1.2) 1.5 (0.8, 2.8) 
Lactation suppressant use   
    Never Referent Referent 
    Ever 0.9 (0.8, 1.1) 1.5 (1.1, 2.0) 
Lifetime duration of lactation   
    Never Referent Referent 
    >0-3 months 0.7 (0.6, 0.9) 0.9 (0.6, 1.4) 
    ≥4 months 0.9 (0.7-1.1) 0.7 (0.4-0.9) 
Number of children breastfed   
    Never  Referent Referent 
    1 0.7 (0.6-0.9) 0.8 (0.6-1.2) 
    ≥2 1.0 (0.8-1.2) 0.6 (0.4-0.9) 
Average # months breastfeeding per child   
    Never Referent Referent 
    0-3.9 months 0.8 (0.7-1.0) 0.8 (0.6-1.2) 
    ≥4 months 0.9 (0.7-1.2) 0.6 (0.4-0.9) 
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Table 1.6.1: Existing literature on the association between breast density and breast cancer risk by breast cancer  
subtypes 
Author (year) BD Metric (Methods) Population Results Comments 
 
Ma (2008) [93] 

 
Percent density 

 
African American and white 
women, 35-64, who participated in 
the Los Angeles County 
component of the Women’s 
Contraceptive and Reproductive 
Experiences Study (352 cases, 
376 controls)  

 
OR (95% CI): Ω  
 
Luminal A (N=184) 
2.22 (1.04, 4.78) 

 

TN (N=106): 
2.96 (1.21, 7.23) 
 
Luminal A vs. TN: 
1.38 (0.47, 4.01) 

 
Odds ratios are based 
comparing ≥60% density to 
<10% density. Cases with 
diagnostic or pre-diagnostic 
mammograms within 5 years 
before and controls with 
screening mammograms 
within 5 years before or 1 
year after their first date of 
contact 

Ω Adjusted for age at mammography, first-degree family history of breast cancer, body mass index, age at menarche, number of full-term  
pregnancies, age at first full-term pregnancy, a variable combining menopausal status and hormone therapy use, race, and laterality of mammogram 
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Table 1.6.2: Existing literature on the association between breast density and breast cancer risk by hormone receptor status  
and study design 
Author (year) BD Metric 

(Methods) 
Population Case/Control Results Comments 

Case-Control Studies  
 
Yaghjyan 
(2011) [148] 

 
Percent 
density 

 
Postmenopausal women 
diagnosed with breast cancer 
between June 1, 1989, and 
June 30, 2004 from the 
Nurses’ Health Study 
 
 

 
1042/1794 

 
OR (95% CI): я 
 
ER+ (N=634):  
2.94 (2.02, 4.27) 
ER- (N=157): 
4.78 (2.42, 9.42) 
 
PR+ (N=551): 
3.21 (2.17, 4.77) 
PR- (N=249): 
3.68 (2.12-6.37) 
 
HER2+ (N=140): 
2.32 (1.03, 5.22) 
HER2- (N=423): 
2.84 (1.83, 4.4) 
 

 
Results are for ≥50% vs 
<10% density; stronger 
statistically significant 
association between breast 
density and breast cancer 
risk observed for ER- tumors 
(P=0.04) 

Conroy (2010) 
[151] 

Mean 
Percent 
Density 

Caucasian, Japanese, and 
women of Native Hawaiian 
ancestry  

607/667 OR (95% CI): * 
 
ER+PR+ (N=341): 
4.12 (2.46, 6.89) 
 
ER-PR- (N=50): 
1.39 (0.41, 4.73) 
 
ER+PR+ vs. ER-PR-: 
2.97 (0.84, 10.53) 
 

Women with higher breast 
density have an increased 
risk for ER+PR+ but not ER-
PR- tumors 

 
 

Ding (2010) 
[149] 

Percent 
Density 
(Cumulus) 

Women 50-75 with invasive 
breast cancer who attended 
screening at the National 
Health Service Breast Cancer 

370/1904 OR (95% CI): ᴪ 
 

ER+ (N=303): 
2.94 (1.94, 4.43) 

Stronger association for ER+ 
comparing breast with greater 
than 50% dense region to 
those with <10% density; 
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Screening Program in Norwich 
and Norfolk, UK  

 
ER- (N=36): 
1.06 (0.47, 2.38) 
 
ER+ vs. ER-: 
1.45 (1.00-2.08) 

increased association with 
ER+ 

Ma (2009) [93] Percent 
density 

African American and white 
women, 35-64, who 
participated in the Los Angeles 
County component of the 
Women’s Contraceptive and 
Reproductive Experiences 
Study   

352/376 OR (95% CI): Ω 
 

ER+ or PR+ (N=225): 
2.05 (1.02, 4.10) 
 
ER-PR- (N=127): 
3.01 (1.29, 7.02) 
 
ER-PR- vs. ER+PR+: 
1.52 (0.59-3.91) 

No significant difference 
(P=0.30);  cases with 
diagnostic or pre-diagnostic 
mammograms within 5 years 
before and controls with 
screening mammograms 
within 5 years before or 1 
year after their first date of 
contact 

Case Only Studies 
 
Arora (2010) 
[154] 

 
BI-RADS 

 
Patients with stage 1-3 
invasive breast cancer who 
had a mammogram at the time 
of diagnosis 

 
1323  

 
Luminal A: 
BI-RADS 1: 69%, 2:76%, 
3: 72%, 4: 78% 
 
Luminal B: 
BI-RADS 1: 13%, 2: 6%, 
3: 7%, 4: 10% 
 
HER2: 
BI-RADS 1: 4%, 2: 4%, 
3: 6%, 4: 5% 
 
Basal-like: 
BI-RADS 1: 14%, 2: 
14%, 3: 15%, 4: 8% 
 

 
No difference by subtype 
(P=0.26) 

 
Gierach 
(2010) [155] 

 
Percent 
Density 

 
Women with invasive breast 
cancer who had a pre-
treatment mammogram of the 
unaffected breast 

 
227  

 
Mean Percent Density: 
 
Luminal A: 27.5%  
Luminal B: 27.0% 

 
No significant difference in 
mean percent density 
between Luminal A, Luminal 
B, HER2+, Basal-like, or 
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HER2: 27.2% 
Basal-like: 24.6% 
Unclassified: 15.7% 

unclassified tumors 

 
Cil (2009) 
[156] 

 
Wolfe Score 

 
Women who underwent breast 
conserving surgery for 
invasive breast cancer for 
whom a pretreatment 
mammogram was available  

 
335  

 
Low Density (N=99): 
ER-: 10 (13.3%) 
ER+: 65 (86.7%) 
 
Intermediate Density 
(N=107): 
ER+: 13 (16.1%) 
ER-: 68 (83.9%) 
 
High Density (N=129): 
ER-: 13 (16.5%) 
ER+: 66 (83.5%) 

 
No significant difference 
(P=0.84) 

 
Chen (2009) 
[145] 

 
MRI 
(percent 
density) 

 
80 women with unilateral 
invasive ductal carcinoma with 
complete information of 
ER/PR status 

 
80 

 
Measured breast 
density:£ 

 
ER+ (N=45): 
9.9%±7.2% 
 
ER- (N=35): 
12.6%±8.9% 
 

 
No significant difference 
between the ER+ and ER- 
patient groups in measured 
breast density 

Ghosh (2008) 
[153] 

Percent 
Density 
(Cumulus) 

Postmenopausal women 
with invasive breast 
cancer who had a 
screening mammogram 
available 4 or more 
years before diagnosis 

286 Mean % density:¥ 

 
ER+ (N=225): 
31.32 (28.50, 34.14) 
 
PR+ (N=220): 
31.36 (28.28, 34.45) 
 

Density was not significantly 
associated with estrogen 
(P=0.11) or progesterone 
(P=0.37) receptor 

Yang (2008) 
[128] 

BI-RADS Premenopausal women 45 or 
younger who had been 
diagnosed with BC from Jan 
1999 to Nov 2005 and had 
undergone mammography at 

198 BI-RADS 3+4: 
 

ER+ (N=93): 
83% of patients 
 

Breast density of more than 
50% was observed in triple 
negative, HER2+, and ER- 
tumors and there were no 
significant differences in 
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initial diagnosis. HER2+ (N=67): 
90% of patients 
 
Triple negative (N=38): 
84% of patients 
 

breast density among the 
three groups (P=0.52) 

 
Fasching 
(2006) [159] 

 
BI-RADS 

 
Women with diagnosis of 
invasive breast cancer who 
had the initial mammography 
conducted within the same 
facility 

 
434 

 
OR (95% CI) for ER+ vs. 
ER- (referent) tumors 
for BI-RADS 3+4: 
 
1.20 (0.61-2.34) 
 

 
No significant association 

 
Aiello (2005) 
[158] 

 
BI-RADS 

 
Women with at least one 
mammogram prior to their first 
primary invasive breast cancer 
within 24 months after their 
index mammogram 

 
546 

 
OR (95% CI) for ER+ 
(reference) vs. ER-:® 
 
1.1 (0.6-2.0) 

 
No significant association  

 
Roubidoux 
(2004) [157] 

 
BI-RADS 

 
Women with negative results 
at screening mammography 
and clinical breast examination 
performed within 17 months 
before they were diagnosed 
with breast cancer 

 
121 

 
OR for the association 
of breast density and 
estrogen receptor 
negativity: 
 
1.004ф 

 
No association  

 
Hinton (1985) 
[152] 

 
Wolfe Score 

 
Patients with primary, 
operable, invasive breast 
cancer who had both 
preoperative mammography 
and samples of the primary 
tumor 

 
337 

 
Mammographic 
Pattern: 
 
DY: 
ER+: 129 patients 
ER-: 69 patients 
 
P or N: 
ER+: 69 patients 
ER-: 70 patients 
 
 

 
DY pattern associated with 
greater frequency of ER+ 
tumors 
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Cohort Studies 
 
Ziv (2004) 
[146] 

 
BI-RADS 

 
Women with invasive breast 
cancers diagnosed between 
January 1, 1995 and July 1, 
2002 who had mammograms 
in one of the San Francisco 
Mammography Registry 
facilities 

 
44,811  

 
OR (95% CI): € 

 
ER+ (N=504):  
2.11 (1.52, 2.92) 
 
ER- (N=118): 
2.25 (1.18, 4.26) 
 

 
Results are for BI-RADS 
category 4 vs. 2; No 
significant association 
between ER+ and ER- 
cancers and breast density 
by Wald test (P=0.73) 

Olsen (2009) 
[147] 

Similar to BI-
RADS, F 
breasts (BI-
RADS 1 and 
2) and M/D 
breasts (BI-
RADS 3 and 
4) 

1009 women who participated 
in mammography screening in 
Copenhagen, Denmark from 
1991-2001 and were 
diagnosed with invasive 
(N=930) or DCIS (N=79) 
breast cancers 

48,052 RR (95% CI):ф 
 

ER+(N=609):  
2.53 (2.13, 3.02) 
 
ER- (N=158): 
2.25 (1.18, 4.26) 

Increased risk for ER+ in 
women with M/D breasts 
compared to F breasts 

* Overall ORs are for ≥50% density vs. <10% density and are adjusted for mean age at the time mammogram, ethnicity, BMI, parity, age at first live birth, 
age at menarche, menopausal status, hormone replacement therapy, and family history of breast cancer   
ᴪ ORs are adjusted for age through unconditional logistic regression £Results are adjusted for age   
Ω Adjusted for age at mammography, first-degree family history of breast cancer, body mass index, age at menarche, number of full-term pregnancies, 
age at first full-term pregnancy, a variable combining menopausal status and hormone therapy use, race, and laterality of mammogram  
яAdjusted for age, BMI, age at menarche, parity and age at first birth, age at menopause, alcohol consumption, and smoking status   
¥ Results are adjusted for age, BMI, hormone replacement therapy, family history, combined age at first birth and number of births   
€ ORs are adjusted for age, BMI, postmenopausal hormone use, family history of breast cancer, menopausal status, parity, and race/ethnicity 
фAdjusted for age 
®Adjusted for BMI, age at diagnosis, menopausal statu/age at menopause, age at first birth, and AJCC stage 
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CHAPTER 2: SPECIFIC RESEARCH AIMS 

Mammographic density is a strong, independent risk factor for breast cancer and 

women with higher breast density on mammography are at increased risk of developing 

breast cancer [1-13]. Breast density is affected by many factors including age, body 

mass index, race, reproductive history, exogenous estrogens, and possibly dietary 

factors [14-30]. Even though it is a strong risk factor for breast cancer, uncertainty 

remains in the epidemiology of mammographic density. Specifically, a small number of 

previous studies have suggested that the association between breast density and 

breast cancer risk may be modified by race or other race-associated variables. Whether 

breast density alters risk of specific breast cancer subtypes is also unknown. It is 

important to understand the link between breast density and breast cancer risk, within 

African American and white women, separately.  

According to the American Cancer Society, breast cancer is the most common 

cancer and the second leading cause of cancer death among women in the United 

States (Cancer Fact and Figures, 2011) [31]. Recently, breast cancer has begun to be 

considered as a group of distinct diseases, rather than as a single disease. Recently 

identified intrinsic subtypes of breast cancer include: Luminal A [estrogen receptor (ER) 

positive, progesterone receptor (PR) positive, and Human Epidermal Growth Factor 

Receptor 2 (HER2) negative], Luminal B (ER+, PR+, HER2+), HER2-enriched (ER-, 

PR-, and HER2+), and Basal-like (ER-, PR-, HER2-, CK5/6+, and/or HER1+) breast 

cancers. Ongoing research is further stratifying breast cancer given that each breast 

cancer subtype has distinct natural history.
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Basal-like breast cancer subtype is fast growing, shows particularly poor overall 

survival [32, 33], and is more prevalent among African American breast cancer cases. 

Basal-like breast cancers also show unique risk factor patterns, often having 

associations with breast cancer risk factors in the opposite direction of what is observed 

for breast cancer overall. On the other hand, the Luminal A subtype is the most 

common subtype of breast cancer with favorable prognosis and survival [34] and with 

risk factor profiles previously observed for breast cancers overall. Emphasizing these 

two breast cancer subtypes (given their disparate behavior and etiology), and with a 

focus on better understanding the role of race in the breast density-breast cancer 

association, the proposed study aims are as follows:  

 

AIM 1.  

Evaluate the association between breast density and breast cancer risk among 

African American and Caucasian women in the Carolina Breast Cancer Study. 

Cases and controls from the Carolina Breast Cancer Study (CBCS) were linked to data 

from the Carolina Mammography Registry (CMR). Since 1994 CMR has been collecting 

prospective information on all patients’ visits for breast imaging in 65 Mammography 

facilities in North Carolina. CBCS is a population-based, case-control study conducted 

in 24 counties of North Carolina. Cases from CBCS were identified from the North 

Carolina Central Cancer Registry, and controls were identified through Drivers’ License 

and Medicare beneficiary lists. We used the phase I (1993-1996) and phase II (1996-

2001) of the CBCS.  

 To address Aim 1, a case-control analysis was conducted to examine the 

association between breast density and breast cancer risk among African American and 

Caucasian women. Race, age, hormone therapy, and body mass index (BMI) were 
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examined as modifiers of the odds ratio for breast density in association with breast 

cancer. These covariates are each associated with breast density. Other established 

breast cancer risk factors including as covariates were parity and age at first full-term 

pregnancy (FFTP), menopausal status, and first degree family history of breast cancer.  

 

AIM 2. Evaluate the association between breast density and risk of breast cancer 

subtypes, specifically Basal-like and Luminal A tumors. To address Aim 2, case-

control analyses for Basal-like and Luminal A breast cancers vs. all controls were 

conducted to estimate the association between breast density and breast cancer risk for 

each breast cancer subtype. We also examined risk of triple-negative breast tumors 

[estrogen (ER), progesterone (PR), and human epidermal growth factor receptor-2 

(HER-2) negative tumors] according to breast cancer subtype to facilitate direct 

comparisons with the only other study on the association between breast density and 

risk of breast cancer subtypes. Case-case analyses were used to compare odds of 

breast density across subtypes, comparing Basal-like to Luminal A and triple-negative 

to Luminal A breast cancers.  
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CHAPTER 3: RESEARCH METHODS 

This study examined the association between breast density and breast cancer 

risk among African American and white women (specific Aim 1), and estimated the 

association between breast density and intrinsic subtypes of breast cancer, specifically 

Basal-like and Luminal A subtypes (specific Aim 2). This was accomplished by linking 

and analyzing existing data from a population-based mammography registry and a 

population-based breast cancer study. Women eligible for the proposed study were 

North Carolina residents who were registered in the Carolina Mammography Registry 

(CMR) and who also participated in the Carolina Breast Cancer Study (CBCS). To 

identify these women, the two data sets were merged using the last four digits of social 

security number, first and last name, and date of birth.  

 

3.1 Population and Participants 

 3.1.1 Carolina Mammography Registry 

CMR is a population-based mammography registry that was originally funded by 

the Department of Defense in 1994 and has been supported by the National Cancer 

institute since 1995 as part of Breast Cancer Surveillance Consortium. Since 1994 CMR 

has studied performance and outcome of screening and diagnostic mammography in 

communities/practices in North Carolina. As of January 2010, there are data from 39 

practices and 65 participating facilities in the CMR, geographically located in eastern, 

western and central North Carolina. CMR collects data prospectively from both women 

and radiologists/technologists. Data collected from the patients and used for this study 

included age at the time of the mammogram and current hormone therapy use which
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are taken at each time of visit. The radiologist and technologist record breast imaging 

data including breast density which is used in this study. CMR is also linked annually to 

the North Carolina Central Cancer Registry as well as breast pathology data. 

 Data collected for CMR is entered into data systems at the practice site (either 

using the Carolina Mammography Data System (CMDS), a system created and 

supported by CMR staff, or a commercial system). CMDS includes quality control 

features such as double-entry of some of the patient’s information and required entry of 

key variables such as date of birth. After data are downloaded to CMR, missing data 

(such as date of birth, social security number, last name, and others) and incongruous 

data are flagged and a report is sent to the practices for verification. Another quality-

control check includes asking the facilities to double check the records where there are 

inconsistencies such as the assessment shows an abnormality but no further follow up 

is recommended. Once quality-control and data cleaning processes are complete, the 

records are assigned unique identifiers, and name, address, and SSN (CMR only 

collects the last 4 digits) are removed. The analytic data set contains only the unique ID.  

Once the analytic dataset is created, another level of quality control is performed on the 

final data including running frequencies, cross tabs to check on missing values, and 

identifying outliers.   

All data are handled in an encrypted format at all times, using PDP encryption 

software. Data are stored on a secure server away from the CMR offices behind a 

firewall. Passwords are required to access any of the CMR files, and these are 

restricted to those needing to have access only. CMR is reviewed annually by the 

School of Medicine IRB, and holds a Public Health Service Certificate of Confidentiality. 

3.1.2 Carolina Breast Cancer Study 

CBCS is a population-based, case-control study that is designed to identify 

genetic and environmental factors for breast cancer among African American and 
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Caucasian residents of North Carolina. The current study draws upon CBCS cases with 

invasive breast cancer and controls  who were recruited in the first two phases, Phase I 

(1993-1996) and Phase II (1996-2001), and women with carcinoma in situ (CIS) and 

population controls who were enrolled only during the later time period (1996-2001). 

Randomized recruitment was used to over-sample younger (<50 years of age) and 

African American women [1]. The CBCS recruitment study area included 24 counties in 

eastern and central parts of the state [2, 3]. The study areas included suburban, small 

town, and rural area; county selections were based on five criteria: 1) appropriate 

numbers of breast cancer cases; 2) no patient referral patterns to hospitals outside of 

the study area; 3) population of low mobility; 4) good representation of rural residents 

and African American; and 5) compliance of hospitals with submission of cancer 

incidence data. Cases were identified from the North Carolina Central Cancer Registry 

using rapid case ascertainment and included women between the ages 20 and 74 

residing in the 24 counties who were diagnosed with invasive breast cancer for the first 

time during May 1, 1993 and December 31, 2000; CBCS includes women who were 

between 20-74 of age at the time of their first diagnosis of a first primary breast cancer. 

Controls were identified using a list from the Division of Motor Vehicles (DMV) for those 

younger than 65, and a list from the Health Care Financing Administration (HCFA) for 

those 65-74. Controls were from the same 24-county geographic area as the cases and 

matched to the expected age distribution of the case women. Furthermore, a priori 

sampling fractions based on 5-year age group and race, were used to make sure that 

controls were frequency matched to the cases on race and age. The sampling fractions 

included: 100% of younger Black women, 75% of older Black women, 67% of younger 

White women, and 20% of older White women with younger being defined as 20-49 

years of age and older defined as 50 to 74 years of age [2-5].   
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Prior to patient contact, a letter was sent to the physician providing cancer care 

requesting permission to invite the woman to participate in the study. Potential 

participants with physician permission were contacted first by letter and then by a 

telephone call. If a woman agreed to participate, an appointment was scheduled for in-

person interview at the woman’s home or other, agreed-upon location. Home visits and 

interviews for cases and controls were conducted by registered nurses and the 

interviews lasted about 1-1.5 hours. The trained female nurse-interviewers were 

matched with subjects on race for those aged 50 years or older. Interviewers 

administered a structured questionnaire that included detailed information about family 

history of cancer and reproductive history including age at menarche, age at first full-

term pregnancy, number of children, breastfeeding, age at menopause, oral 

contraceptive use, and hormone replacement therapy. Additionally, body 

measurements including waist and hip circumference and weight were obtained at the 

time of the interview, and 30 cc blood samples were collected at the time of the 

interview. For cases, consent for retrieving tumor tissue, pathology reports, and medical 

documentation was obtained at the time of the interview. For interviewed cases, 

pathology reports and paraffin-embedded tissue bocks were retrieved and were 

reviewed by the study pathologist in a standardized way to confirm diagnosis and to 

describe histologic characteristics of the breast cancer [2-5].  

Phases I and II of CBCS for the study of invasive breast cancer included 1,803 

cases (787 African American and 1,016 white women) and 1,564 controls (718 African 

American and 846 white women). Furthermore, the carcinoma in-situ study section of 

the CBCS (all women with microinvasion to a depth of 2 mm, and lobular carcinoma in 

situ were eligible) included 508 cases (107 African American and 401 white women) 

and 458 controls (70 African American and 388 white women). The overall contact rate 

(contacted/eligible) was 97.6% among cases and 80.9% among controls. The 
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cooperation rates (enrolled/contacted) were 78.0% for cases and 70.3% for controls. 

The overall response rates (product of contact and cooperation rates) were 76.0% for 

cases and 55.0% for controls. Overall response rates for cases were lowest for African 

Americans age 50 and over (69.9%) and highest for whites less than age 50 (81.2%). 

Overall response rates for controls were lowest for African Americans less than age 50 

(47.1%) and highest for whites age 50 or older (64.9%) [3, 6].  

The contact rates for in-situ cancers were 99.3% for cases and 90.6% for 

controls. The cooperation rates were 83.4% for cases and 73.0% for controls. The 

overall response rates were 82.7% for cases and 65.2% for controls. Overall response 

rates among cases ranged from 76.5% in African Americans under age 50 to 86.2% in 

whites under age 50. Overall response rates among controls ranged from 51.0% in 

African Americans over age 50 to 68.9% in whites over age 50 [6].  

Approval for release of formalin-fixed, paraffin-embedded tumor tissue blocks 

was obtained for 94% of the cases. Patients with smaller tumors/early stage were less 

likely to provide blocks because they were either unavailable or had insufficient tissue 

for subtype analysis. Included cases were less likely to be stage I (39% vs. 48%) and 

more likely to be stage II (51% vs. 39%), with little differences observed in stage III (8% 

vs. 10%) or stage IV (3% vs. 4%). There were no differences between the included and 

excluded cases in age, race, menopausal status, lymph node status, nuclear grade, 

histologic grade, or survival [2, 4, 6].    

 

3.1.3 Data Acquisition 

Permission to use the data was obtained from Dr. Robert Millikan (CBCS) and 

Dr. Bonnie Yankaskas (CMR). Additionally, IRB approval was obtained for merging and 

analyzing the data. 
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3.2 Merged data for the proposed study  

Both invasive and CIS cases and controls from phase I, phase II, and women in 

carcinoma in situ part of the CBCS were  linked with the entire CMR using probabilistic 

linkage [7-9] and using 4 variables/fields (last four digits of social security numbers, first 

and last name, and date of birth). The merge was done by the CMR programmer who 

has experience in merging the CMR data with other sources of data (i.e. ovarian cancer 

data or the National Death Index). The software used to conduct the probabilistic 

linkage was AUTOMATCH version 3.0 (Matchware Technologies Incorporated), and 

four passes were conducted to ensure validity of the match. The threshold values were 

calculated and set at 10 and 20, where any matches with a score of 20 or higher were 

considered perfect and those with a score less than 10 were considered non-matches. 

The links that had a score between 10 and 20 were reviewed for determining whether 

they were matches or not and whether there was a clerical error in entering the data. 

The first pass used the last four digits of social security number to link the two data sets. 

The second pass used last name, first name, and the last four digits of the social 

security number. The third pass linked the two files using last name, month and year of 

birth date, and the last four digits of the social security number. The last pass used first 

name, month and day of birth date, and the last four digits of the social security number. 

Two reviewers (the programmer and the author) independently examined all discordant 

records to determine true matches. 

Figure 3.2.1 shows the areas where both Carolina Breast Cancer Study and 

Carolina Mammography Registry covered; the areas with pink dots are those in 

common to the two studies. The following counties from the CBCS were not 

represented in our study due to no matching cases and controls in the CMR: Alamance, 

Orange, Wake, Johnston, Lee, Harnett, Bertie, Wilson, Edgecombe, Pitt, Pamlico, 
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Beaufort, and Tyrell. Cases from the University of North Carolina Hospitals were 

excluded since this hospital system is not one of the CMR facilities. 

Once the merge was completed, a dataset stripped of personal identifying 

information was created. Using the unique identification numbers from CMR and CBCS 

the data set was compiled and each of the patients was given a new unique 

identification number for the purpose of this study. The unique identification numbers for 

CMR and CBCS were deleted upon assigning the new identification numbers particular 

to this study so that the patients could not be traced back in either one of the data 

sources.  

Table 3.2.1 presents the variables, how they were measured, and their values 

for this study. The quality of the data was checked by examining distributions, ranges, 

outliers, and missing or out of range values. If there were such values, these data were 

cross-checked with the original data and observations with conflicting data were 

deleted. We also deleted 4 (0.4%) observations with missing values for the exposure of 

interest, breast density. Below are the variables, their definitions, and how they were 

collected/measured for this study. 

 

3.2.1 Breast density 

Breast density was the main exposure and was categorized as a qualitative 

measure (BI-RADS density), based on analysis of film mammograms. Studies have 

concluded that BI-RADS breast density is as predictive of breast cancer risk as 

quantitative measure, percent breast density. As mentioned previously, in a meta-

analysis, McCormack et al. estimated a combined relative risk of 4.64 (3.64, 5.91) for 

percent density of ≥75% vs. <5% and a combined relative risk of 4.08 (2.96, 5.63) for 

BI-RADS categorized breast density of category 4 vs. 1 [10]. Additionally, as explained 

in detail in the background section, fat tissue appears dark on a mammogram, and the 
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dense stroma and epithelium appear light. Breast density is measured as the ratio of 

the dense area to the total areas of the breast as seen on a mammogram. A radiologist 

visually assesses the mammograms, using BI-RADS criteria to categorize breast 

density into four categories: 1) almost entirely fat, 2) scattered fibroglandular densities, 

3) heterogeneously dense, and 4) extremely dense. Breast density is measured by 

radiologists in each of the facilities that are a part of the CMR. As mentioned earlier, 

although a subjective measure, the reliability, as well as intra- and interobserver 

reproducibility, of this measure has been studied and categorization of breast density 

using BI-RADS has been feasible and predictive of breast cancer risk [11-13]. There is 

potential for exposure non-differential exposure misclassification due to subjectivity of 

the measurement tool, but the misclassification is most relevant for the two intermediate 

categories. The best reliability estimates have been observed for the extremes of BI-

RADS (i.e., categories 1 and 4) [10].  

 

3.2.2 Breast cancer subtypes 

For Aim 1, breast cancer was the outcome of interest and for Aim 2 specific 

breast cancer subtypes, Basal-like and Luminal A, were outcomes. Breast cancer cases 

for the CBCS were originally obtained from the North Carolina Central Cancer registry. 

Tumor blocks and pathology reports were obtained from eligible cases and examined in 

order to determine breast cancer subtype. There were several different assays 

conducted for CBCS; the following explain how the 5 subtypes were determined.  

All breast cancers underwent pathology review. Descriptive data, including type 

of biopsy, tumor size, laterality, number of foci, and involvement of adjacent or distant 

tissues, were abstracted from pathology reports. Three H&E-stained slides were 

produced from each of the paraffin blocks when slices were made for molecular and 

immunohistochemical analyses. These slides were reviewed in a standardized fashion 
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by the study pathologist to confirm the diagnosis of breast cancer, to assign histologic 

classification, and to describe features in more detail, including those characteristics 

recognized as prognostically significant [5]. The details are as follows.  

The following markers were used to determine breast cancer subtypes: Luminal 

A (ER+ and/or PR+, HER2-), Luminal B (ER+ and /or PR+, HER2+), Basal-like (ER-, 

PR-, HER2-, HER1+ and/or cytokeratin (CK) 5/6+), HER2+/ER- (ER-, PR-, HER2+), 

and unclassified (negative for all five markers) [2, 4].  IHC profiles were developed by 

performing both tissue microarray analysis and IHC for ER, HER2, HER1, and 

Cytokeratin 5/6 on a single series of breast cancers [4, 14, 15]. Commercially available 

antibodies were used and Table 3.2.2 presents the panel of antibodies used for the 

Carolina Breast Cancer Study. To determine estrogen/progesterone (ER/PR) status, 

tumor blocks were sectioned and stained for a panel of IHC markers at the 

Immunohistochemistry Core Laboratory, University of North Carolina (UNC). For 

invasive cases, estrogen and progesterone receptor status were obtained from medical 

records for 80% of cases and determined using IHC assays performed at UNC for the 

remaining cases. For the 80% of cases with ER/PR status in the medical record, the 

status was determined in various clinical laboratories, in the vast majority of cases using 

an immunohistochemical method with cutoffs for receptor positivity. These cutoffs 

ranged from more than 0 to more than 20 percent for assays performed on paraffin-

embedded tissues (about half) and from 10 to 15 fmol/mg for assays performed on 

frozen tissues (about half). For 11% of the cases with missing status for ER/PR on 

medical records, paraffin-embedded tissues were used and ER/PR status was 

determined at the UNC laboratory by using the same immunohistochemical method 

used by our institution for clinical purposes and a cutoff for positive assay at 5 percent. 

For the remaining 9 percent of the cases, ER and PR status were missing [4, 5, 16]. 

HER1 and Cytokeratin 5/6 were determined as follows: staining for HER1 was 
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categorized using a 0 to 3 scoring system, and assignment of HER1 positivity was 

defined as any HER1 staining, (score of at least 1) [4, 17]. Cytokeratin 5/6 was scored 

positive if any cytoplasmic and/or membranous staining was seen [4, 18]. HER2 

membranous staining equivalent to 3+ intensity with 3,3'-diaminobenzidine 

tetrahydrochloride (DAB) chromogen and 2+ or 3+ intensity with the SG chromogen in 

more than 10% of cells was scored as overexpression [15].  

A few procedures were done to assure reliability of subtyping. Review of 

histology for all tumors was conducted by a single pathologist, Chad Livasy, for ER and 

PR, HER2, HER1, and CK5/6 status. The pathologist was blinded to patient 

demographics and all other study variables [19]. Estrogen receptor and progesterone 

receptor status were determined from medical records for 80% of samples and IHC was 

done for the remaining at the University of North Carolina-Lineberger Comprehensive 

Cancer Center Immunohistochemistry Core Facility in Chapel Hill [4, 16]. A comparison 

of a 10% random sample of 23 cases that were ER+ and 24 cases that were ER- based 

on medical records to those obtained through IHC done by the Core Laboratory at the 

University of North Carolina, resulted in a kappa statistic of 0.62, indicating agreement 

beyond chance [4, 20]. Even though many efforts have been made to minimize 

outcome misclassification, there may be misclassification introduced in determining 

ER/PR status since the agreement coefficient was 0.62. However, if there is outcome 

misclassification, we do not suspect differential misclassification. 

Age at the time of selection into the CBCS 

Age was collected in the CBCS at the time of interview and women age 20-74 

were included in this analysis. For the purpose of this study we will use age as a 

continuous as well as categorizing it into 4 categories: <40, 40-49, 50-59, and ≥60. 

These categories are chosen based on previous studies [2].  
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Age at the time of the mammogram 

Age was collected in the CMR at the time of the mammograms. Age at the time 

of the mammogram was not used in the analysis but was used to study whether there 

were significant differences between age at the time of selection into the CBCS and age 

at the time of the mammogram.  

Race 

Race was collected at the time of the in-person interviews for CBCS and was 

based on self-report. There are only two races in this study: White and African 

American. 1-2% of women who had reported "other" for race were excluded. 

Family history of breast cancer 

Family history of breast cancer was also collected at the time of the in-person 

interviews for CBCS. Family history is only based on whether the cases’ or controls’ 

mother or sister had been diagnosed with breast cancer and if so at what age where 

they diagnosed. Family history was dichotomized into yes or no. 

Age at menarche 

Age at menarche was determined through the interview. For the analysis for this 

study, age at menarche was dichotomized into two categories: <13 and ≥13 because 

this was the median age reported for age at menarche. 

Oral contraceptive use 

Oral contraceptive use was collected at the time of interview and is dichotomized 

into ever or never. 

Age at first full-term pregnancy 

Age at first full-term pregnancy was also collected through the CBCS interview 

and was categorized into three categories: nulliparous, <26, and ≥26 because this was 

the median age reported for first full-term pregnancy.  
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Number of live births/parity 

Parity was also determined using information from the interview. We categorized 

parity into four categories: nulliparous, 1 child, 2 children, and ≥3 children. 

Breastfeeding 

This information was also determined using the CBCS interview and was based 

on the total lifetime number of months of breastfeeding, number of children and months 

each child was breastfed, and use of medication to suppress lactation. This information 

was used to calculate the average number of months each woman breastfed. For the 

purpose of this proposal breastfeeding is dichotomized into ever or never categories.  

Number of children breastfed 

Total number of children breastfed was determined using the interview and was 

categorized into 3 categories: never, 1, ≥2. 

Lifetime duration of lactation 

Lactation duration was collected using the interview and was categorized as: 

never, >0-3 months, and ≥4 months.  

Menopause status 

Menopausal status was determined using information from the interview. 

Women younger than 50 years who had undergone natural menopause, bilateral 

oophorectomy, or irradiation to the ovaries were classified as postmenopausal, 

otherwise they were classified as premenopausal. For women aged 50 or older, 

menopausal status was assigned based upon cessation of menstruation. 

Hormone therapy (CBCS) 

Hormone therapy use was only determined among postmenopausal women 

through the interview and is dichotomized into former, never, and current users.  
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Hormone therapy (CMR) 

 Current use of hormone therapy at the time of the mammogram was reported in 

the CMR. This variable was selected for the analysis because hormone therapy is 

highly associated with breast density and since hormone therapy was reported at the 

time of the mammogram where breast density was measured in the CMR, we used this 

variable in our analysis. Since current HT was not restricted to postmenopausal women, 

we conducted a sensitivity analysis using current HT in postmenopausal women. We 

used current HT as it was recorded in the CMR, yes or no, since the results were not 

substantially different between all women and post-menopausal women only.  

Body Mass Index (BMI) 

Body mass index was calculated based on measurements taken at the time of 

interview and will be calculated as weight (kg)/height (m2) and categories of BMI are 

based upon National Heart, Lung, and Blood Institute cutpoints which were <25, 25-29, 

30+ [21].  

 

3.3 Data analysis 

3.3.1 Addressing specific Aim 1 

The main outcome variable was breast cancer for Aim 1. Univariate analysis 

was used to describe outcome and exposure variable distributions as well as identifying 

missing values and possible outliers.  

To examine the association between breast density and breast cancer risk 

among African American and Caucasian women we conducted a case-control analysis. 

Odds ratios (ORs) and their 95% confidence intervals (95% CI) were calculated using 

unconditional logistic regression [22] as a measure of association using SAS version 

9.3 (SAS Institute, Cary NC). We calculated ORs among cases and controls to examine 

the overall association between breast density and breast cancer risk. To account for 
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the sampling probabilities that were used in CBCS to oversample African American 

women and younger women, an offset term was included in the model. 

To assess comparability of the matched dataset to the CBCS population as a 

whole, we conducted an analysis comparing characteristics of the matched and 

unmatched subject for both cases and controls in the CBCS. To evaluate whether 

associations were more or less similar in the subset and the CBCS as a whole, we 

examined whether the odds ratios obtained for each of the established risk factors for 

breast cancer in this study were similar to the odds ratios obtained in the whole CBCS. 

Results were similar, as presented in Tables 3.2.3 through 3.2.5, indicating that this 

subset of patients is a representative sample of the CBCS.  

 

3.3.2 Exposure assessment 

Mammograms within five years prior to and one year post breast cancer diagnosis 

for cases, and within five years prior and three year post to selection date for controls were 

used to measure breast density. Studies have shown that elevated risk of breast cancer 

associated with breast density persists for at least 5 years after a mammogram is taken, 

with studies showing persistent effects for 10 years or more for both pre- and 

postmenopausal women [23-28]. Since the proposed study is using a qualitative measure 

of breast density (BI-RADS), it is unlikely that breast density in women changes from one 

category to another over a short period of time. The Pike model on aging of breast tissue 

describes the process of aging breast tissue and changes in breast density, with greatest 

changes occurring with first full-term pregnancy and at the time of menopause [29]. If 

women had multiple mammograms prior to breast cancer diagnosis or selection date into 

CBCS, the mammogram closest in time to the diagnosis or selection date was chosen. 

Furthermore, mammograms prior to diagnosis or selection took priority, and when women 

did not have a mammogram prior to the diagnosis or selection date, then the mammogram 
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after and closest to the diagnosis or selection date was used. Studies have shown that 

elevated risks of breast cancer associated with breast density persist for at least 5 years 

after a mammogram [23-26, 28]. Breast density measured in the CMR is per woman and 

not per breast. Vachon et al. concluded that density is a general marker of breast cancer 

risk and is not specific to breast side or location of the eventual cancer [30]; density has 

also been shown to be highly correlated between breasts within a woman [31].  

 Many variables were available in both CMR and CBCS. We selected all 

variables from the CBCS to maintain consistency with previous case-control analyses 

using this dataset; however, for some variables highly associated with breast density, 

careful consideration was given as to which data source to use. In the case of age and 

age-related breast density changes, we compared age at the time of the mammogram 

(from the CMR) to age at the time of diagnosis or selection into the CBCS. The mean 

age was not substantially different in the CBCS and the CMR as presented in the 

results, therefore, we used age from the CBCS for consistency with other CBCS 

studies. We also examined current hormone therapy at the time of the mammogram 

from the CMR since current use of HT is highly associated with breast density. As 

mentioned earlier the sensitivity analysis using current HT in postmenopausal women 

only did not result in substantially different estimates, leading to using current HT as it 

was recorded in the CMR rather than HT from CBCS.  Breast density was analyzed as 

a categorical variable based on the four BI-RADS categories as explained in section 

3.2.5. The analyses were conducted using both BI-RADS 1 and 2 as the referent 

groups given the small sample size and small number of women (sometimes as low as 

1) in the BI-RADS 1 group.  

3.3.3 Effect measure modification 

Potential effect measure modifiers were identified a priori and were evaluated for 

Aim 1 by comparing models with an interaction term and the main exposure and 
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outcome effects with models containing the main effects only. These variables include 

BMI, age, race, and hormone therapy. We examined effect measure modifiers using 

likelihood ratio tests [32] and a cut point of 0.05. For Aim 2 we had a smaller sample 

size, especially for the Basal-like subtype (N=48); therefore, we did not examine effect 

measure modification in the analysis for Aim 2. 

 

3.3.4 Confounding 

To determine the estimates for the outcome-exposure relationship, a single 

logistic regression model using backward elimination was derived to address the 

association of interest. 

 In addition to effect measure modifiers, potential confounders were selected 

based on the available literature and conceptual diagram/directed acyclic graph (DAG) 

as shown in figure 3.3.4.1 [33]. Based on the literature and our DAG, we examined age, 

age at menarche, age at first live birth, age at menopause/menopausal status, BMI, 

family history of breast cancer, parity, use of hormone therapy, and breastfeeding as 

potential confounders (if any of the variables examined for effect measure modifier were 

indeed effect measure modifiers, we did not examine them as potential confounders). 

Selected variables were examined using likelihood ratio tests [32, 34]. Additionally we 

conducted tests for trend for ordinal variables by calculating P-values for the beta 

coefficient in logistic regression models [32]. 

 

3.3.5 Addressing specific Aim 2 

 To evaluate whether mammographic density was associated with risk of specific 

subtypes of breast cancer (Luminal A and Basal-like breast cancers), we conducted two 

sets of analyses; case-control analysis and case-case analysis. The same steps as 

used for Aim 1 were used for case-control analysis. Odds ratios among cases and 
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controls were estimated to examine the overall association between breast density and 

breast cancer with respect to other risk factors for breast cancer, as well as 

investigating the etiology of Basal-like and Luminal A breast cancers. As an added 

analysis for comparison purposes, we examined the association between breast density 

and the risk of triple-negative breast cancers which we defined as those tumors that are 

ER-, PR-, and HER2-. Additionally, ORs and their 95% CIs among cases only were 

estimated to further compare the Basal-like and triple-negative breast cancers to the 

Luminal A breast cancers and uncover etiologic heterogeneity of the disease using 

Luminal A breast cancers as the comparison group [35]. The ORs from case-case 

analysis, which can be interpreted as ratios of ORs between the two subtypes of breast 

cancer (Luminal A and Basal-like subtypes), estimated the relative strength of 

association between the two breast cancer subtypes. Thus, these ORs, estimated the 

association between breast cancer risk factors and Basal-like subtype versus the same 

risk factor and Luminal A subtypes. Case-case analyses were associated with the 

following assumptions; 1) there is no confounding or selection bias by stage at 

diagnosis, which will be accounted for by adjusting case-only odds ratios for stage at 

diagnosis 2) the study is a population-based series of incident cases 3) marker is 

conditional on disease status (having a tumor) 4) exposure is related to marker status in 

some causal way 5) the analysis is exploratory only (the case only odds ratios measure 

a ratio of odds ratios and does not estimate a risk ratio) [35].  

Through use of the variables and methods described here, the merged data 

from CBCS and CMR were used to evaluate the association between breast density 

and breast cancer risk in white and African American women as well as evaluating the 

association between breast density and Basal-like and Luminal A breast cancers. 
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3.4 Tables and Figures 

Table 3.2.1: Variables and their description for the proposed study 

Variable Definition Data 
Source 

BI-RADS Breast Density 
(main exposure) 

Categorized as Almost entirely fat, 
Scattered fibroglandular densities,  
Heterogeneously dense, and Extremely 
dense 

 

CMR 

Breast Cancer Subtype 
(main outcome) 

Categorized as Luminal A, Luminal B, 
Basal-like, HER2+/ER-, and unclassified 

 

CBCS 

Age at diagnosis  Continuous 
 

CBCS 

Age at mammogram 
 

Continuous CMR 

Race Categorized as African American or White 
 

CBCS 

Family History of Breast 
Cancer 

Categorized as Yes or No (1 or more first 
degree relatives with breast cancer) 
 

CBCS 

Age at first birth Continuous  
 

CBCS 

Age at menarche  Continuous 
 

CBCS 

Age at first full-term 
pregnancy 
 

Continuous 
 

CBCS 

Number of live births Total number of live births 
 

CBCS 

Breastfeeding Categorized as Ever or Never 
 

CBCS 

Lifetime duration of 
lactation 
 

Continuous 
 

CBCS 

Age at menopause Continuous 
 

CBCS 

Oral contraceptive use Categorized as Ever or Never 
 

CBCS 

Hormone therapy use  Categorized as Current, Former, and 
Never 
 

CBCS 

Hormone therapy use at 
the time  of the 
mammogram 
 

Categorized as Yes or No CMR 

Body Mass Index (BMI) Categorized as <25 normal or underweight, 
25-29 overweight, ≥30 obese 

CBCS 

ER status 
 

Categorized as positive or negative CBCS 

PR status 
 

Categorized as positive or negative CBCS 

HER2 status Categorized as positive or negative CBCS 
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Table 3.2.2: Panel of antibodies used in CBCS for determining breast cancer subtypes 
Antibody Clone Dilution Company Chromophore 
ER SP1 1:100 Dako DAB 
PR 1E2 1:100 Dako DAB 
HER2/neu CB11 1:100 BioGenex, San Ramon, CA DAB 
Cytokeratin 5/6 D5/16B4 1:50 Zymed SG 
HER1 (EGFR) 31G7 1:7 Zymed DAB 
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Table 3.2.3: Comparing Odds ratios (OR) and 95% confidence intervals (CI) for some of 
the established breast cancer risk factor between women in this study and the entire 
CBCS 
Variable  CBCS 

OR (95% CI) 
This study 

OR (95% CI) 
Age 1.05 (1.04-1.07) 1.02 (1.00-1.04) 
BMI 0.98 (0.96-0.99) 0.99 (0.97-1.01) 
Race    
     White 1.00 1.00 
     Non-white 1.76 (1.44-2.14) 1.44 (1.06-1.94) 
Menopausal Status   
     Premenopausal 1.00 1.00 
     Postmenopausal 0.77 (0.58-1.03) 1.36 (0.88-2.11) 
Family history of breast cancer 1.78 (1.39-2.28) 1.32 (0.92-1.90) 
Age at menarche   
     <13 1.00 1.00 
     ≥13 0.87 (0.73-1.03) 0.68 (0.52-0.90) 
Parity (vs. nulliparous)   
     Nulliparous 1.00 1.00 
     Parous, <26  0.84 (0.65-1.10) 0.94 (0.63-1.39) 
     Parous, 26+ 0.97 (0.72-1.30) 0.86 (0.55-1.37) 
Hormone therapy   
     Never 1.00 1.00 
     Current 0.97 (0.76-1.24) 0.73 (0.51-1.05) 
     Former 0.95 (0.71-1.28) 0.60 (0.37-0.95) 



 
 

Table 3.2.4: Odds ratios (OR) and 95% confidence intervals (CI) for breast cancer risk associated with BI-RADS measured mammographic 
density by race: comparison of controls groups with mammograms within 5 years prior and 1-3 years post to selection date into the CBCS  

BI-RADS Categorized Density Cases Controls Controls (-5, +1)a 
 

Cases 
 

Controls 
 

Controls (-5, +2) a 
 

Cases 
 

Controls 
 

Controls (-5, +3) a 

All women          

     Entirely Fat 13 16 0.46 (0.20-1.10)  13 23 0.45 (0.20-1.03)  13 25 0.48 (0.22-1.08) 
     Scattered Fibroglandular  
     Densities 183 138 1.00 (Referent) 183 175 1.00 (Referent) 183 197 1.00 (Referent) 

     Heterogeneously Dense 232 154 1.10 (0.78-1.56) 232 197 1.11 (0.80-1.52) 232 253 1.00 (0.73-1.35) 

     Extremely Dense 63 32 1.25 (0.71-2.20) 63 47 1.20 (0.72-2.00) 63 53 1.19 (0.72-1.95) 

   Ptrend = 0.13b   Ptrend = 0.13   Ptrend = 0.24 
White Women          
     Entirely Fat 5 7 0.34 (0.09-1.29)  5 9 0.35 (0.10-1.31)  5 10 0.37 (0.10-1.35) 
     Scattered Fibroglandular  
     Densities 98 80 1.00 (Referent) 98 97 1.00 (Referent) 98 108 1.00 (Referent) 

     Heterogeneously Dense 144 111 1.03 (0.66-1.60) 144 135 1.01 (0.67-1.54) 144 171 0.93 (0.63-1.39) 

     Extremely Dense 50 23 1.53 (0.78-3.00) 50 31 1.39 (0.74-2.61) 50 35 1.39 (0.75-2.55) 

   Ptrend = 0.12   Ptrend = 0.18   Ptrend = 0.23 
African American Women          
     Entirely Fat 8 9 0.55 (0.17-1.75)  8 14 0.45 (0.16-1.32)  8 15 0.49 (0.17-1.40) 
     Scattered Fibroglandular  
     Densities 85 58 1.00 (Referent) 85 78 1.00 (Referent) 85 89 1.00 (Referent) 

     Heterogeneously Dense 88 43 1.25 (0.70-2.21) 88 62 1.20 (0.72-2.00) 88 82 1.02 (0.63-1.66) 

     Extremely Dense 13 9 0.66 (0.23-1.92) 13 16 0.72 (0.28-1.87) 13 18 0.75 (0.30-1.91) 

   Ptrend = 0.60   Ptrend = 0.47   Ptrend = 0.73 
aModels are adjusted for age, race, BMI, menopausal status, family history of breast cancer, age at menarche, HT, and parity and age at first full term pregnancy 
combined, where BI-RADS category 2 (scattered fibroglandular densities) is the referent group.  

       bP for trend test is based on likelihood ratio test statistic and is two-sided. 
     BI-RADS, Breast Imaging Reporting and Data System 
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Table 3.2.5: Odds ratios (OR) and 95% confidence intervals (CI) for breast cancer risk associated with BI-RADS measured mammographic 
density by age, BMI, and HT: comparison of controls groups with mammograms within 5 years prior and 1-3 years post to selection date into 
the CBCS  

BI-RADS Categorized Density Cases Controls Controls (-5, +1)a Cases Controls Controls (-5, +2)a Cases Controls Controls (-5, +3)a 

All women          

     Entirely Fat 13 16 0.46 (0.20-1.10)  13 23 0.45 (0.20-1.03)  13 25 0.48 (0.22-1.08) 
     Scattered Fibroglandular   
     Densities 183 138 1.00 (Referent) 183 175 1.00 (Referent) 183 197 1.00 (Referent) 

     Heterogeneously Dense 232 154 1.10 (0.78-1.56) 232 197 1.11 (0.80-1.52) 232 253 1.00 (0.73-1.35) 

     Extremely Dense 63 32 1.25 (0.71-2.20) 63 47 1.20 (0.72-2.00) 63 53 1.19 (0.72-1.95) 

   Ptrend = 0.13b   Ptrend = 0.13   Ptrend = 0.24 
Current Hormone Therapy          
Yes          
     Entirely Fat 3 5 0.52 (0.09-3.08) 3 6 0.53 (0.09-3.07) 3 8 0.46 (0.08-2.53) 

     Scattered Fibroglandular  
     Densities 39 53 1.00 (Referent) 39 64 1.00 (Referent) 39 69 1.00 (Referent) 
     Heterogeneously Dense 70 64 1.46 (0.78-2.72) 70 76 1.37 (0.76-2.48) 70 97 1.13 (0.64-2.00) 
     Extremely Dense 17 5 5.54 (1.67-18.39) 17 7 5.37 (1.76-16.38) 17 7 5.61 (1.86-16.96) 
   Ptrend =0.005   Ptrend =0.005   Ptrend =0.01 
No          
     Entirely Fat 10 11 0.41 (0.15-1.13) 10 17 0.41 (0.16-1.05) 10 17 0.49 (0.19-1.26) 
     Scattered Fibroglandular  
     Densities 142 82 1.00 (Referent) 142 107 1.00 (Referent) 142 124 1.00 (Referent) 
     Heterogeneously Dense 161 86 0.97 (0.63-1.49) 161 117 1.01 (0.68-1.49) 161 151 0.93 (0.64-1.34) 
     Extremely Dense 46 27 0.79 (0.41-1.53) 46 39 0.82 (0.45-1.49) 46 44 0.80 (0.45-1.43) 

   Ptrend =0.93   Ptrend =0.79   Ptrend =0.88 
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Table 3.2.5 (continued): Odds ratios (OR) and 95% confidence intervals (CI) for breast cancer risk associated with BI-RADS measured 
mammographic density by age, BMI, and HT: comparison of controls groups with mammograms within 5 years prior and 1-3 years post to 
selection date into the CBCS  

BI-RADS Categorized Density Cases Controls Controls (-5, +1)a Cases Controls Controls (-5, +2)a Cases Controls Controls (-5, +3)a 
 
Age 
<50          
     Entirely Fat 4 2 0.83 (0.12-5.80) 4 3 0.91 (0.17-5.00) 4 4 0.78 (0.16-3.77) 
     Scattered Fibroglandular   
     Densities 56 36 1.00 (Referent) 56 56 1.00 (Referent) 56 66 1.00 (Referent) 

     Heterogeneously Dense 110 60 1.09 (0.61-1.95) 110 86 1.25 (0.74-2.08) 110 114 1.10 (0.68-1.79) 
     Extremely Dense 46 22 1.25 (0.59-2.67) 46 31 1.48 (0.75-2.94) 46 35 1.45 (0.75-2.79) 
   Ptrend =0.54   Ptrend =0.24   Ptrend =0.27 
50+          
     Entirely Fat 9 14 0.40 (0.15-1.08) 9 20 0.36 (0.14-0.96) 9 21 0.40 (0.15-1.04) 
     Scattered Fibroglandular  
     Densities 127 102 1.00 (Referent) 127 119 1.00 (Referent) 127 131 1.00 (Referent) 

     Heterogeneously Dense 122 94 1.11 (0.71-1.72) 122 111 1.04 (0.69-1.58) 122 139 0.92 (0.62-1.38) 
     Extremely Dense 17 10 1.52 (0.60-3.89) 17 16 1.09 (0.47-2.54) 17 18 1.06 (0.46-2.40) 
   Ptrend =0.10   Ptrend =0.21   Ptrend =0.46 
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Table 3.2.5 (continued): Odds ratios (OR) and 95% confidence intervals (CI) for breast cancer risk associated with BI-RADS measured 
mammographic density by age, BMI, and HT: comparison of controls groups with mammograms within 5 years prior and 1-3 years post to 
selection date into the CBCS  

 

BI-RADS Categorized Density Cases Controls Controls (-5, +1)a Cases Controls Controls (-5, +2)a Cases Controls Controls (-5, +3)a 
 

Body Mass Index          
Women with BMI<25          
     Entirely Fat 1 3 0.26 (0.02-3.11) 1 5 0.11 (0.01-1.18) 1 5 0.12 (0.01-1.36) 
     Scattered Fibroglandular  
     Densities 55 30 1.00 (Referent) 55 33 1.00 (Referent) 55 37 1.00 (Referent) 

     Heterogeneously Dense 91 61 0.82 (0.44-1.54) 91 77 0.69 (0.38-1.42) 91 97 0.67 (0.38-1.19) 
     Extremely Dense 36 21 0.82 (0.36-1.86) 36 28 0.66 (0.30-1.42) 36 30 0.75 (0.36-1.57) 

   Ptrend =0.84   Ptrend =0.61   Ptrend =0.74 
Women with BMI 25-29          
     Entirely Fat 5 5 0.66 (0.14-3.16) 5 4 1.38 (0.27-7.10) 5 5 1.36 (0.28-6.55) 
     Scattered Fibroglandular  
     Densities 49 42 1.00 (Referent) 49 59 1.00 (Referent) 49 64 1.00 (Referent) 

     Heterogeneously Dense 71 51 1.37 (0.71-2.64) 71 67 1.50 (0.82-2.72) 71 87 1.24 (0.70-2.20) 
     Extremely Dense 16 7 1.82 (0.58-5.72) 16 13 1.77 (0.66-4.80) 16 17 1.35 (0.52-3.49) 

   Ptrend =0.16   Ptrend =0.20   Ptrend =0.52 
Women with BMI 30+          
     Entirely Fat 7 8 0.39 (0.12-1.31) 7 14 0.39 (0.13-1.18) 7 15 0.43 (0.15-1.28) 
     Scattered Fibroglandular  
     Densities 79 66 1.00 (Referent) 79 83 1.00 (Referent) 79 96 1.00 (Referent) 

     Heterogeneously Dense 70 42 1.30 (0.74-2.29) 70 53 1.39 (0.83-2.35) 70 69 1.24 (0.76-2.04) 
     Extremely Dense 11 4 2.21 (0.59-8.25) 11 6 2.76 (0.83-9.18) 11 6 3.29 (1.00-10.83) 

   Ptrend =0.04   Ptrend =0.01   Ptrend =0.01 
aModels are adjusted for age, race, BMI, menopausal status, family history of breast cancer, age at menarche, HT, and parity and age at first full term pregnancy 
combined, where BI-RADS category 2 (scattered fibroglandular densities) is the referent group.  

       bP for trend test is based on likelihood ratio test statistic and is two-sided.      
BI-RADS, Breast Imaging Reporting and Data System 
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Figure 3.2.1: Carolina Breast Cancer Study and Carolina Mammography Registry areas 
merged 
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Figure 3.3.4.1: Directed Acyclic Graph for the association between breast density and breast cancer risk 
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CHAPTER 4: RESULTS 
 
4.1 Introduction 

 
Mammographic breast density describes the radiological appearance of dense 

breast tissue and is a measure of the fibroglandular tissue composition in the breast. 

Different classification schemes have been used to visually characterize breast density, 

including Wolfe’s parenchymal patterns [1, 2], Tabar’s classification scheme [3], the 

American College of Radiology’s Breast Imaging Reporting and Data System (BI-RADS) [4], 

as well as more quantitative methods that estimate the percentage of the breast that is 

dense. Reviews have concluded that mammographic density is associated with breast 

cancer risk regardless of the method used to measure breast density [5, 6]. In fact, breast 

density is one of the strongest and most consistent risk factors for breast cancer, and 

studies have estimated that women with the highest mammographic density may be at a 4-6 

fold increased risk of developing breast cancer compared with women with the least dense 

tissue [5, 7-13]. 

The majority of studies examining the association between breast density and breast 

cancer risk have been among white women, but breast density may vary by race. Data 

examining the association in different racial groups, including African American (AA) women, 

are limited and have reported conflicting results: three studies concluded that AA women 

have higher mammographic density [14-16], two found no difference [17, 18], and one found 

lower mammographic density in AA compared with white women [19]. Only two studies have 

examined the association between breast density and breast cancer risk in AA women. 

Wolfe et al. reported stronger effects of breast density on risk among AA women [20], while 
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Ursin et al. suggested that effects were stronger among white women [11]. Variation in 

exposures that predict breast density and breast cancer risk may differ in prevalence by 

race, such as BMI and hormone use, and these factors may also play a role in the 

associations between race, breast density, and breast cancer risk. Ursin et al. did not 

examine hormone therapy (HT) as an effect measure modifier, but suggested potential 

modification of the breast density-breast cancer risk association by BMI [11]. Given strong 

secular trends in associations between race, BMI, and HT and because of the role of each 

of these factors in predicting both breast density and breast cancer risk, evaluation of these 

factors within a single study could help explain how these factors interact to affect breast 

cancer risk. Substantial disparities in breast cancer mortality exist between AA and 

Caucasians [21] and it is important to understand the factors that contribute to breast cancer 

risk in each group. 

We examined the association between breast density and breast cancer by race, 

BMI, and HT use in the Carolina Breast Cancer Study (CBCS). The CBCS is a large, 

population-based study that oversampled young, AA women. By linking the CBCS with the 

Carolina Mammography Registry (CMR), we were able to obtain the BI-RADS density 

classification for a large number of women in the CBCS.  

 

4.2 Methods 
 

4.2.1 Study setting and population 

Subjects included in this study were participants in the CBCS who also had 

mammograms recorded in the CMR. CBCS is a population-based, case-control study 

designed to identify genetic and environmental factors for breast cancer risk in AA and 

Caucasians. CBCS participants are residents of 24 counties in North Carolina and were 

recruited in two phases, Phase I (1993-1996) and Phase II (1996-2001). Cases were 

women with invasive breast cancer (Phase I & II) or carcinoma in situ (CIS, Phase II). 
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Controls were age and race frequency-matched to cases. Cases were identified from the 

North Carolina Central Cancer Registry, and controls were identified using drivers’ license 

and Medicare beneficiary lists [22-24]. Randomized recruitment was used to over-sample 

younger and AA women [25]. Participants ranged in age from 20 to 74 years and provided 

informed consent via a protocol approved by the Institutional Review Board of the University 

of North Carolina School of Medicine. Response, contact, and cooperation rates for all the 

phases of CBCS have been published previously [26]. In person interviews were conducted 

for cases and controls and body size measurements including waist circumference, hip 

circumference, and body weight were measured by a nurse at the time of the interview [27].  

The Carolina Mammography Registry (CMR) is a community-based mammography 

registry funded by the Department of Defense in 1994 and supported as part of Breast 

Cancer Surveillance Consortium by the National Cancer Institute since 1995. Since 1994, 

CMR has prospectively collected data in mammography practices, studying performance 

and outcomes of community-based screening and diagnostic breast imaging in 

communities and practices in North Carolina. As of January 2010, there were data from 65 

participating facilities located in 39 counties, representing locations in eastern, western 

and central North Carolina. Data collected at the time of each imaging study include: self-

reported date of birth, race/ethnicity, family history of breast cancer, menopausal status, 

and current HT use and imaging data recorded by the radiologists and the technologists 

including breast density and imaging methods. CMR is approved and reviewed annually 

by the Institutional Review Board of the University of North Carolina School of Medicine 

[28]. CMR adheres to strict confidentiality and security procedures; complies with the 

Health Insurance Portability and Accountability Act; and has a Federal Certificate of 

Confidentiality and other protections of research subjects, radiologists, and mammography 

facilities. The following counties included in the CBCS were not represented in our study 

due to no matching cases and controls in the CMR: Alamance, Orange, Wake, Johnston, 
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Lee, Harnett, Bertie, Wilson, Edge-Combee, Pitt, Pamlico, Beaufort, and Tyrell. CMR and 

CBCS were linked using probabilistic linkage with four variables; first and last name, date 

of birth, and last four digits of the social security number [29-31]. BI-RADS breast density, 

HT, and age were collected from the CMR and all other participant data were taken from 

the CBCS.   

4.2.2 Mammographic density assessment 

Mammographic breast density is recorded qualitatively in the CMR using the 

American College of Radiology's BI-RADS classification. BI-RADS density assessment 

defines four categories of breast composition including: 1) almost entirely fat, 2) scattered 

fibroglandular densities, 3) heterogeneously dense, and 4) extremely dense [4]. Breast 

density measured in the CMR is per woman and not per breast. Vachon et al. concluded 

that density is a general marker of breast cancer risk and is not specific to breast side or 

location of the eventual cancer [32]; density has also been shown to be highly correlated 

between breasts within a woman [33].  

For our analysis we defined density based on the reported BI-RADS density from 

the screening or diagnostic mammogram that was performed within five years prior to 

diagnosis and up to one year after breast cancer diagnosis for cases; for controls, we 

selected BI-RADS density from the screening or diagnostic mammogram showing no 

cancer within five years prior to and up to three years after the selection date. If women 

had multiple mammograms prior to breast cancer diagnosis or selection date into CBCS, 

the mammogram closest in time to the diagnosis or selection date was chosen. 

Furthermore, mammograms prior to diagnosis or selection took priority when women did 

not have a mammogram prior to the diagnosis or selection date, then the mammogram 

after and closest to the diagnosis or selection date was used. Studies have shown that 

elevated risks of breast cancer associated with breast density persist for at least 5 years 

after a mammogram [8, 12, 34-36]. There are some suggestions in the literature that 
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agents used to treat breast cancer may alter breast density as early as 18 months after 

initiating therapy [37], and thus for cases, we excluded mammography exams that 

occurred more than one year after diagnosis.  

To assess whether broader inclusion dates among controls affected comparability 

to cases, we conducted a sensitivity analysis with controls (n=340) restricting 

mammograms to five years prior to and <1 year after the control selection date. Effect 

estimates for the association between breast density and breast cancer risk did not differ 

substantially using either control group. Thus, the larger control group was used to 

increase precision. A total of 1,019 subjects met our inclusion criteria, representing, 491 

cases and 528 controls.  

4.2.3 Statistical Analysis 

The variable coding schemes for covariates were chosen for consistency with 

previous CBCS publications [22].  Briefly, race was categorized as AA or white based on 

self-report. Age was age at diagnosis for cases and age at selection into the CBCS for 

controls and was used as a continuous variable in analyses and as a categorical variable 

(<50 vs. 50+) for assessment of effect measure modification by age, which is similar to the 

cutpoints used in previous studies of breast density and breast cancer risk. Body mass 

index (BMI) was calculated as body weight (kg)/height (m)2 and was used as a continuous 

variable. To assess whether BMI was an effect measure modifier, BMI was categorized 

based upon National Heart, Lung, and Blood Institute (NHLBI) cutpoints (<25 normal or 

underweight, 25-29 overweight, and ≥30 obese) [38]. Age at first full-term pregnancy and 

parity/nulliparity were combined to create a categorical variable that encapsulated both 

parity status and age at first birth. Given the associations between age, HT use, and breast 

density, we also examined age and current HT use at the time of the mammogram as 

recorded in the CMR. There was not a significant difference between age at 

diagnosis/selection into the CBCS and age at the time of the mammogram as noted in Table 
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1; hence, age at diagnosis/selection into the CBCS was used in subsequent analyses. HT 

use was categorized as current vs. not current as collected by the CMR at the time of the 

mammogram. Since HT use was not restricted to postmenopausal women, a sensitivity 

analysis restricting HT users (as reported in CMR) to postmenopausal women (as reported 

in CBCS) was conducted.  The results for HT use were not substantially different among all 

women vs. after restriction to only postmenopausal women, therefore, HT use was used 

without restrictions for menopausal status. All categorical variables were coded using 

indicator variables rather than ordinal variables. 

We used unconditional logistic regression with breast cancer as the outcome 

variable to estimate odds ratios (ORs) and 95% confidence intervals (CIs) for the 

association between breast density and breast cancer risk (SAS version 9.3, SAS Institute, 

Cary NC). To assess the comparability of the CMR-CBCS merged data and the full CBCS 

dataset, we compared the characteristics of participants who matched to the CMR (the 

current dataset) to those in the entire CBCS by estimating ORs for established breast 

cancer risk factors. The ORs were similar in the CMR-CBCS merged dataset and the CBCS 

as a whole for all variables assessed, including first degree family history of breast cancer, 

current HT use, and menopausal status (data not shown).  

Likelihood ratio tests were used to examine effect measure modification of the breast 

density-breast cancer risk association by race, BMI, HT use, and age; p-values of <0.05 

were considered significant. Menopausal status was not examined as an effect measure 

modifier due to the high correlations between categories of age (<50 vs 50+). Potential 

confounders were selected based on prior knowledge, using directed acyclic graphs (DAGs) 

[39]. We adjusted for age, race, BMI, current HT, menopausal status, first degree family 

history of breast cancer, age at menarche, and parity and age at first full-term pregnancy 

combined. We also adjusted for the offset term used in the CBCS to account for the 
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sampling scheme used in the CBCS to oversample young AA women. The same variables 

were retained in models that included interaction terms for BMI, HT use and race. 

 
 
 
4.3 Results 
 

Characteristics of breast cancer cases and controls are presented in Table 1. The 

time between CBCS selection date and the date of the selected mammogram in the CMR 

ranged from -3.8 to 1 year with average of one month prior to diagnosis for cases and -4.4 

to 3 years with an average value of 6 months post selection for the controls (Table 1). 

Overall and within each racial group, cases were slightly younger than controls, were more 

likely to have first degree family history of breast cancer, were younger at menarche, and 

were more likely to be never users of HT. White cases were more likely to be 

premenopausal, while AA cases were more likely to be postmenopausal compared to race-

matched controls. White cases were more likely to be never users of oral contraceptives and 

AA women were more likely to be ever users of oral contraceptives (compared to their race-

matched control groups). Case-control differences in age at menarche were observed in all 

women. Case-control differences were observed for first degree family history of breast 

cancer, breastfeeding and HT use in AA women.  

Statistically significant differences were observed in breast density comparing AA 

and white women. White cases and controls had a greater percentage of “extremely dense” 

and “heterogeneously dense” breasts compared with AA cases and controls. The BI-RADS 

density category with greatest prevalence among AA was “scattered fibroglandular 

densities” (BI-RADS 2), while among whites “heterogeneously dense (BI-RADS 3)” was the 

most prevalent. In the dataset as a whole, “heterogeneously dense” was the most prevalent 

category; thus, when modeling the OR associated with breast cancer risk, BI-RADS density 

category 2 was set as the referent.  
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Table 2 presents the ORs and 95% CIs for unadjusted and adjusted models with 

both BI-RADS 1 (Model 1) and 2 (Model 2) as the reference groups. Model 1 is included to 

facilitate comparison with previous studies that have reported risk associations for the 

“extremely dense”, BI-RADS 4 group, relative to the “almost entirely fatty”, BI-RADS 1 

group. Among all women, those with BI-RADS 4 density had an increased risk of breast 

cancer compared to women with BI-RADS 2 and BI-RADS 1 densities [1.19 (0.72, 1.95), 

and 2.45 (0.99, 6.09), respectively].  As mentioned, we conducted sensitivity analyses 

restricting the exposure window for mammograms with BI-RADS density results among 

controls, and results did not differ among the three potential groups; for example, the 

estimates for the association between breast density and breast cancer risk comparing BI-

RADS category 4 to BI-RADS category 2 among all women was [1.25 (0.71-2.20)] for 

controls with the same selection criterion as cases, [1.20 (0.72-2.00)] and [1.19 (0.72-1.95)]  

for controls with mammograms within five years prior to and two years and three years post 

selection date into the CBCS, respectively. We therefore used the larger control group (with 

mammograms selected within 5 years prior to and 3 years post CBCS selection date) for all 

subsequent analyses. 

Race was examined as an effect measure modifier of the breast density-breast 

breast cancer association using likelihood ratio tests, (p-value = 0.76). While the distribution 

of breast density differed by race, the effects of breast density on breast cancer risk did not 

differ significantly by race. However, several of the confidence intervals were wide, 

especially when BI-RADS density category 1 was used as the reference group. Some 

variation by race was evident when comparing the most dense category to the referent 

category of BI-RADS 2 (Model 2, Table 2). A positive association between breast density 

and breast cancer risk was observed among white women [OR for BI-RADS 4 vs. 2=1.39, 

(0.75, 2.55)], while an opposite and inverse association was observed in AA women [OR for 

BI-RADS 4 vs. 2=0.75, (0.30, 1.91)].  
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Recent literature has suggested that two important variables that differ in prevalence 

by race -- BMI and HT use -- may modify the association between breast density and breast 

cancer risk [40, 41]. Thus effect measure modification by BMI, age and HT use were 

considered. Menopausal status was not examined as an effect measure modifier due to high 

correlation with categories of age (<50 vs 50+). For example, mean BMI was 28.5 (95% CI: 

15.1-60.6) among premenopausal and 28.9 (14.6-60.9) among postmenopausal women. 

Similar values were observed for women younger than 50 [28.7 (95% CI: 15.1-60.9)] and 50 

and older [28.8 (95% CI: 14.6-57.9)]. The LRT p-values for interaction indicated no 

significant effect modification by age (0.67), or BMI (0.09), but HT use was a significant 

effect measure modifier (0.0002).  

Table 3 shows that the associations with density were strongest among current HT 

users, with an almost 6-fold increase comparing current users with extremely dense breasts 

to current users with scattered fibroglandular densities ([OR=5.61 (1.86, 16.96)], Model 2, 

Table 3). Among current users of HT, there was also a significant trend (p-value=0.01). In 

contrast, among never users of HT the estimates for the association between breast density 

and breast cancer risk were close to null, and among former users odds ratios <1 were 

observed. Furthermore, there was no modification of the OR by age. Among obese women, 

those with extremely dense breasts had a 3-fold increased risk of breast cancer relative to 

those with heterogeneously dense breasts [3.29 (1.00, 10.83)], and there was a significant 

trend in obese women (p-value=0.01) (Table 3). For women with BMI less than 25, ORs for 

breast density-breast cancer associations were below the null, suggesting an inverse 

association, and for women with BMI 25-29 a very modest increased risk was observed with 

increasing breast density (Table 3). 

4.4 Discussion 

This study combined two rich data sets -- the CBCS, where young AA women were 

oversampled, and the CMR -- to examine modification of the breast density-breast cancer 
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risk relationship by age, race, BMI, and current HT use. Effect modification has not been 

thoroughly examined in the two previous published studies of breast density and breast 

cancer risk in AA and white women [11, 20]. Although the estimates were imprecise in AA 

women, our study found differences in the distributions of breast density between white and 

AA women consistent with studies conducted by Chen et al., Del Carmen et al., Habel et al., 

and El-Bastawissi et al. [14-16, 19]. Our findings agree with Del Carmen et al. and Chen et 

al. [14, 19], with breast density being lower in AA women. Furthermore, increasing 

mammographic breast density was associated with increased breast cancer risk in CBCS, 

with effect estimates similar to those previously reported using BI-RADS measurements of 

breast density [5]. Women in the CBCS with extremely dense breasts had a nearly 3-fold 

increased risk of breast cancer compared to women with breasts composed of almost 

entirely fatty tissue. Due to the small sample size of BI-RADS density category 1, we also 

assessed risk using BI-RADS density category 2 as the referent group which resulted in 

more precise effect estimates, but with lower magnitude than reported previously by Ziv et al 

[42]. Ziv et al. was a very large study including more than 44,000 women, and estimated an 

OR of 2.09 (1.59, 2.75) comparing BI-RADS 4 to BI-RADS 2, which is larger than our overall 

OR. However, the CBCS included a large percentage of AA women (~40% of participants 

were AA in the present analysis), which may have attenuated the effect estimate given that 

the distribution of breast density varied by race.  

Examining race as an effect measure modifier, our results agreed with Ursin et al. in 

that race did not significantly modify the association between breast density and breast 

cancer risk. However, both studies found effect estimates that were substantially weaker for 

AA women compared with white women. Specifically, Ursin et al. found a stronger 

association for white women compared with AA women [2.56 (1.23-5.31), and 1.66 (0.64-

4.32), respectively], when comparing those with quantitative density of >60% to the lowest 

density (<10%) group [11]. The agreement between these two studies suggests that there 
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may be some weak effect modification by race, but the ability to precisely quantify this has 

been limited by sample size. Larger studies and meta-analyses will be needed to definitively 

answer this question, especially in light of conflicting reports from the only other study to 

date to examine the association: Wolfe et al. [20] reported that AA had slightly higher risk 

than white women in association with breast density in a study including 160 cases and 160 

controls (among whom 85 cases and 85 controls were AA) and using Wolfe’s parenchymal 

patterns as the breast density measurement tool.  

Effect attenuation in AA women may be due to modification by BMI [11].  Previous 

studies have concluded that BMI is an important predictor of breast density and have 

suggested an inverse association between BMI and breast density [43, 44]. Ursin et al. 

reported that the association between breast density and breast cancer risk appeared to be 

modified by BMI, with a U shaped curve: the associations were highest among very thin and 

very obese women. The effect estimates were not presented in that paper, preventing direct 

comparison with our results. But more recently, Conroy et al. reported stronger effects of 

breast density on breast cancer risk in overweight and obese women compared to women 

with normal BMI [40]. Our findings are similar to those of Conroy et al. [40]. Taken together, 

these studies suggest that evaluation of the role of BMI in modifying risk associated with 

breast density merits further investigation in larger studies, and is an important consideration 

in studies of breast density by racial/ethnic group. However, we were unable to further 

stratify our race-specific models by BMI due to small sample size. While the precise 

mechanism underlying these associations remains to be determined, the statistical 

interaction between BMI and breast density with respect to risk may reflect the underlying 

breast tissue biology. Elevated BMI has been associated with increased inflammatory cells 

in breast tissue [45], and it is possible that the changing cytokine and inflammatory milieu 

present in obesity interacts with the fibroglandular tissue to modify the breast 

microenvironment and increase breast cancer risk. 
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We also examined HT use as a possible effect measure modifier due to its 

association with race, breast density, and breast cancer risk. Previous studies have 

concluded that HT increases mammographic breast density, therefore may increase risk of 

breast cancer [46-50]. This association may contribute to our race-specific effects, given that 

35% of white women in our study were current HT users compared to 14% of AA women. 

Our findings were similar to those of Aiello et al. and Kerlikowske et al., suggesting greater 

risk of breast cancer associated with elevated breast density among current users of HT [51, 

52]. In examining age as an effect measure modifier, we found a slight, but not statistically 

significant, increased risk between BI-RADS density and breast cancer risk among younger 

women, where as Ursin et al. observed stronger risk associations among older women [11]. 

Differences between studies could relate to different exposure assessment methods. A 

limitation of our study is that we used a qualitative measure of mammographic density, and 

while BI-RADS density measures have been shown to predict breast cancer risk [5], results 

from studies using qualitative vs. quantitative density assessment methods may not be 

directly comparable. It is also challenging to merge two datasets (i.e., the CBCS and CMR) 

with different dates of collection. While we were unable to use BMI from the CMR, we 

carefully evaluated age differences between datasets and selected HT use at the time of the 

mammogram (choosing CMR data over CBCS data), thereby reducing exposure 

misclassification in studying effect modification by HT.   

Given the stronger associations observed among current HT users and obese 

women, fewer AA women in our study may be susceptible to the strongest effects of breast 

density. That is, few AA women were both obese and had extremely dense breasts, and 

likewise, current HT use was much more common in white women (22% vs. 6% in AA 

women). The relatively lower number of women in the categories with strongest effects (e.g. 

extremely dense breasts) resulted in reduced precision for the breast density effect 
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estimates for AA women. Given the small sample size, we were unable to examine effect 

measure modification by age, BMI, and HT use within the strata of race.  

However, by simultaneously considering effect modification by both race and race-

associated variables, our study suggests important relationships between breast cancer risk 

factors and breast density. Future studies with larger numbers of AA women should fully 

examine the association between breast density and breast cancer risk, considering race, 

BMI, and HT to disentangle these factors.   
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    4.5 Tables 
 

    Table 4.1: Descriptive characteristics of breast cancer cases and controls by race 
Variable All women  Whites African Americans 

 Cases Controls Cases Controls Cases Controls 
No of subjects 491 528 297 324 194 204 
Mean age (CBCS), ya 53.2 (28-74) 54.0 (31-74) 53.9 (28-74) 54.5 (35-74) 52.0 (30-74) 53.3 (31-74) 
Mean age (CMR), yb 53.2 (28-77) 54.5 (34-76) 53.9 (28-77) 54.8 (35-76) 52.0 (30-74) 53.9 (34-76) 
Mean BMIb 28.6 (15.1, 60.6) 28.8 (14.6, 60.9) 26.5 (17.2, 49.5) 26.8 (16.2, 52.9) 32.0 (15.1, 60.6) 32.1 (14.6, 60.9) 
Mean number of daysc -21 (-1401, 365) 149 (-1617, 1095) -29 (-1401, 365) 133 (-1526, 1095) -9 (-1210, 365) 175 (-1617, 1078) 
Breast density       
    Almost entirely fat 13 (2.7%) 25 (4.7%) 5 (1.7%) 10 (3.1%) 8 (4.1%) 15 (7.4%) 
    Scattered  fibroglandular  
    Densities 183 (37.3%) 197 (37.3%) 98 (33.0%) 108 (33.3%) 85 (43.8%) 89 (43.6%) 

    Heterogeneously dense 232 (47.3%) 253 (47.9%) 144 (48.5%) 171 (52.8%) 88 (45.4%) 82 (40.2%) 
    Extremely dense 63 (12.8%) 53 (10.0%) 50 (16.8%) 35 (10.8%) 13 (6.7%) 18 (8.8%) 
Menopausal status       
    Premenopausal 200 (40.7%) 213 (40.3%) 120 (40.4%) 127 (39.2%) 80 (41.2%) 86 (42.2%) 
    Postmenopausal 291 (59.3%) 315 (59.7%) 177 (59.6%) 197 (60.8%) 114 (58.8%) 118 (57.8%) 
Family historyd       
    No 386 (81.1%) 440 (85.6%) 232 (80.1%) 263 (83.0%) 154 (82.4%) 177 (89.9%) 
    Yes 90 (18.9%) 74 (14.4%) 57 (19.7%) 54 (17.0%) 33 (17.6%) 20 (10.2%) 
    Missingf 15 14 8 7 7 7 
Age at menarche       
    <13 257 (52.3%) 230 (43.6%) 148 (49.8%) 135 (41.7%) 109 (56.2%) 95 (46.6%) 
    ≥13 234 (47.7%) 298 (56.4%) 149 (50.2%) 189 (58.3%) 85 (43.8%) 109 (53.4%) 
Parity & age at FFTPe       
    Nulliparous 74 (15.1%) 67 (12.7%) 39 (13.1%) 45 (13.9%) 35 (18.0%) 22 (10.8%) 
    Parous, <26 312 (63.5%) 347 (65.7%) 178 (59.9%) 200 (61.7%) 134 (69.1%) 147 (72.1%) 
    Parous 26+ 105 (21.4%) 114 (21.6%) 80 (26.9%) 79 (24.4%) 25 (12.9%) 35 (17.2%) 
Breastfeeding       
    Never 299 (60.9%) 324 (61.4%) 163 (54.9%) 201 (62.0%) 136 (70.1%) 123 (60.3%) 
    Ever 192 (39.1%) 204 (38.6%) 134 (45.1%) 123 (38.0%) 58 (29.9%) 81 (39.7%) 
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Lifetime duration lactation       
    Never 299 (60.9%) 324 (61.4%) 163 (54.9%) 201 (62.0%) 136 (70.1%) 123 (60.2%) 
    >0-3 months 72 (14.7%) 69 (13.1%) 58 (19.5%) 45 (13.9%) 14 (7.2%) 24 (11.8%) 
    4+ months 120 (24.4%) 135 (25.6%) 76 (25.6%) 78 (24.1%) 44 (22.7%) 57 (27.9%) 
Current HT use at the time 
of the mammogram       

    No 359 (73.6%) 336 (65.0%) 193 (65.4%) 182 (57.2%) 166 (86.1%) 154 (77.4%) 
    Yes 129 (26.4%) 181 (35.1%) 102 (34.6%) 136 (42.8%) 27 (14.0%) 45 (22.6%) 
    Missingf 3 11 2 6 1 5 
Oral contraceptive use       
    Never 170 (34.6%) 170 (32.4%) 95 (32.0%) 89 (27.6%) 75 (38.7%) 81 (39.9%) 
    Ever 321 (65.4%) 355 (67.6%) 202 (68.0%) 233 (72.4%) 119 (61.3%) 122 (60.1%) 
    Missingf 0 3 0 2 0 1 
WHR       
    <0.77 132 (27.3%) 169 (32.3%) 110 (37.2%) 133 (41.3%) 22 (11.7%) 36 (17.8%) 
    0.77-0.83 171 (35.3%) 173 (33.0%) 110 (37.2%) 105 (32.6%) 61 (32.5%) 68 (33.7%) 
    ≥0.84 181 (37.4%) 182 (34.7%) 76 (25.7%) 84 (26.1%) 105 (55.9%) 98 (48.5%) 
    Missingf 7 4 1 2 6 2 

aMean (range) age at diagnosis for cases and selection for controls in the CBCS 

bMean (range) age at the time of the mammogram in the CMR 

cMean (range) number of days between diagnosis date for cases and selection date for controls in the CBCS and the date of the mammogram chosen to  
assess breast density  
dFirst-degree family history of breast cancer 
eFFTP; full-term pregnancy 
fMissing values were excluded from percentage calculations. 
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Table 4.2: Odds ratios (OR) and 95% confidence intervals (CI) for breast cancer risk associated with BI-RADS measured  
mammographic density by race 

BI-RADS Categorized Density Cases Controls 
Age and Race Adjusted  

OR (95% CI)a 
Model 1 

OR(95% CI)b 
Model 2 

OR(95% CI)c 

All women      
     Entirely fat 13 25 0.46 (0.22-0.96) 1.00 (Referent) 0.48 (0.22-1.08) 

     Scattered fibroglandular densities 183 197 1.00 (Referent) 2.07 (0.93-4.59) 1.00 (Referent) 

     Heterogeneously dense 232 253 0.97 (0.72-1.29) 2.06 (0.92-4.60) 1.00 (0.73-1.35) 

     Extremely dense 63 53 1.13 (0.71-1.78) 2.45 (0.99-6.09) 1.19 (0.72-1.95) 

   Ptrend = 0.24d Ptrend =0.24e 

White women      

     Entirely fat 5 10 0.39 (0.12-1.26) 1.00 (Referent) 0.37 (0.10-1.35) 
     Scattered fibroglandular densities 98 108 1.00 (Referent) 2.68 (0.74-9.74) 1.00 (Referent) 

     Heterogeneously dense 144 171 0.90 (0.62-1.31) 2.50 (0.69-9.07) 0.93 (0.63-1.39) 

     Extremely dense 50 35 1.34 (0.77-2.36) 3.72 (0.94-14.81) 1.39 (0.75-2.55) 

   Ptrend = 0.24 Ptrend =0.23 

African American women      

     Entirely fat 8 15 0.49 (0.19-1.29) 1.00 (Referent) 0.49 (0.17-1.40) 

     Scattered fibroglandular densities 85 89 1.00 (Referent) 2.03 (0.71-5.77) 1.00 (Referent) 

     Heterogeneously dense 88 82 1.07 (0.68-1.67) 2.07 (0.71-6.03) 1.02 (0.63-1.66) 

     Extremely dense 13 18 0.76 (0.33-1.72) 1.53 (0.40-5.92) 0.75 (0.30-1.91) 

   Ptrend = 0.59 Ptrend = 0.73 

Test of effect modification by race P=0.76 
aAdjusted for matching factors age and race. Models for all, African American, and white women were adjusted for age, and the model for all  
women was also adjusted for  race. 
bModel 1 for African American and white women is adjusted for age, BMI, menopausal status, family history of breast cancer, age at menarche,  
HT use, and parity and age at first full term pregnancy combined, where BI-RADS category 1 (almost entirely fat) is the referent group. Model 1 
is additionally adjusted for race in all women. 
cModel 2 is adjusted for the same variables as Model 1 but BI-RADS category 2 (scattered fibroglandular densities) is the referent group. 
dP for trend test is based on likelihood ratio test statistic and is two-sided. 
eP the same ordinal model was fit to assess the p-value of trend for Model 1 and Model 2. 
BI-RADS, Breast Imaging Reporting and Data System 
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     Table 4.3: Odds ratios (OR) and 95% confidence intervals (CI) for breast cancer risk associated with BI-RADS 
      measured mammographic density by age, body mass index (BMI), and hormone therapy (HT) use 

BI-RADS Categorized Density Cases Controls 
Age and Race Adjusted OR 

(95% CI)a 
Model 2 

OR (95% CI)b 

All women     
     Entirely fat 13 25 0.46 (0.22-0.96) 0.48 (0.22-1.08) 

     Scattered fibroglandular densities 183 197 1.00 (Referent) 1.00 (Referent) 

     Heterogeneously dense 232 253 0.97 (0.72-1.29) 1.00 (0.73-1.35) 

     Extremely dense 63 53 1.13 (0.71-1.78) 1.19 (0.72-1.95) 

   Ptrend = 0.24c Ptrend = 0.24c 

Current Hormone Therapy     

Yes     
     Entirely fat 3 8 0.58 (0.14-2.46) 0.46 (0.08-2.53) 

     Scattered fibroglandular densities 39 69 1.00 (Referent) 1.00 (Referent) 

     Heterogeneously dense 70 97 1.25 (0.73-2.14) 1.13 (0.64-2.00) 

     Extremely dense 17 7 5.09 (1.83-14.16) 5.61 (1.86-16.96) 

   Ptrend =0.005 Ptrend =0.01 

No     

     Entirely fat 10 17 0.41 (0.17-0.97) 0.49 (0.19-1.26) 

     Scattered fibroglandular densities 142 124 1.00 (Referent) 1.00 (Referent) 

     Heterogeneously dense 161 151 0.91 (0.64-1.30) 0.93 (0.64-1.34) 

     Extremely dense 46 44 0.72 (0.42-1.22) 0.80 (0.45-1.43) 

   Ptrend =0.82 Ptrend =0.88 
Test of effect modification by HT P=0.0002   
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Table 4.3 (continued): Odds ratios (OR) and 95% confidence intervals (CI) for breast cancer risk associated with BI-
RADS measured mammographic density by age, body mass index (BMI), and hormone therapy (HT) use  

BI-RADS Categorized Density Cases Controls 
Age and Race Adjusted OR 

(95% CI)a 
Model 2 

OR (95% CI)b 

Age     

<50     

     Entirely fat 4 4 0.93 (0.20-4.20) 0.78 (0.16-3.77) 

     Scattered fibroglandular densities 56 66 1.00 (Referent) 1.00 (Referent) 

     Heterogeneously dense 110 114 1.14 (0.71-1.81) 1.10 (0.68-1.79) 

     Extremely dense 46 35 1.30 (0.71-2.39) 1.45 (0.75-2.79) 

   Ptrend =0.38 Ptrend =0.27 

50+     

     Entirely fat 9 21 0.36 (0.15-0.87) 0.40 (0.15-1.04) 

     Scattered fibroglandular densities 127 131 1.00 (Referent) 1.00 (Referent) 

     Heterogeneously dense 122 139 0.84 (0.58-1.22) 0.92 (0.62-1.38) 

     Extremely dense 17 18 0.88 (0.41-1.89) 1.06 (0.46-2.40) 

   Ptrend =0.67 Ptrend =0.46 
Test of effect modification by age P=0.67    
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Table 4.3 (continued): Odds ratios (OR) and 95% confidence intervals (CI) for breast cancer risk associated with BI-
RADS measured mammographic density by age, body mass index (BMI), and hormone therapy (HT) use  

BI-RADS Categorized Density Cases Controls 
Age and Race Adjusted OR 

(95% CI)a 
Model 2 

OR (95% CI)b 

Body Mass Index     

Women with BMI<25     

     Entirely fat 1 5 0.11 (0.01-1.16) 0.12 (0.01-1.36) 

     Scattered fibroglandular densities 55 37 1.00 (Referent) 1.00 (Referent) 

     Heterogeneously dense 91 97 0.66 (0.38-1.14) 0.67 (0.38-1.19) 

     Extremely dense 36 30 0.70 (0.34-1.42) 0.75 (0.36-1.57) 

   Ptrend =0.64 Ptrend =0.74 
Women with BMI 25-29     

     Entirely fat 5 5 0.99 (0.25-3.95) 1.36 (0.28-6.55) 

     Scattered fibroglandular densities 49 64 1.00 (Referent) 1.00 (Referent) 

     Heterogeneously dense 71 87 1.01 (0.60-1.70) 1.24 (0.70-2.20) 

     Extremely dense 16 17 1.14 (0.49-2.66) 1.35 (0.52-3.49) 

   Ptrend =0.82 Ptrend =0.52 
 
Women with BMI 30+     

     Entirely fat 7 15 0.45 (0.15-1.36) 0.43 (0.15-1.28) 

     Scattered fibroglandular densities 79 96 1.00 (Referent) 1.00 (Referent) 

     Heterogeneously dense 70 69 1.16 (0.72-1.87) 1.24 (0.76-2.04) 

     Extremely dense 11 6 2.52 (0.86-7.38) 3.29 (1.00-10.83) 

   Ptrend =0.03 Ptrend =0.01 

Test of effect modification by BMI P=0.09    
       aAdjusted for matching factors, age and race. 
       bModel 2 is adjusted for age, race, BMI, menopausal status, family history of breast cancer, age at menarche, HT,  and parity and age  

at first full term pregnancy combined, where BI-RADS category 2 (scattered fibroglandular densities) is the referent group.  
       cP for trend test is based on likelihood ratio test statistic and is two-sided. 
     BI-RADS, Breast Imaging Reporting and Data System
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CHAPTER 5: RESULTS 

5.1 Introduction 

Recent clinical studies on the molecular profiles of breast cancers have indicated 

that breast tumors can be classified into five etiologically and prognostically-relevant 

subtypes on the basis of gene expression patterns. Luminal A and Basal-like breast cancers 

have been emphasized in clinical and epidemiologic studies [1-5], with the former 

representing the largest percentage (45%) of cancers and having best prognosis, and the 

latter being rarer (5-15% of cases) with poorer survival outcomes [3, 6, 7]. Basal-like breast 

cancers are more prevalent among younger African American breast cancer cases and 

show unique risk factor patterns, often having risk factor specific associations that are in the 

opposite direction of what has been observed for breast cancer overall and Luminal A 

tumors [3]. For example, the protective effects of parity are observed with breast cancers 

overall and with luminal breast cancers, but appear to be reversed with Basal-like breast 

cancer; Basal-like breast cancer risk is higher among parous and multiparous women 

compared to nulliparous women [3]. Thus, stratification of risk factor analyses by subtype 

can identify etiologic heterogeneity of breast cancer. 

Tumors of Basal-like and Luminal A subtypes have different immunohistochemical 

profiles and can be identified using paraffin embedded tissues in epidemiologic studies. 

Basal-like tumors are estrogen receptor (ER) negative, progesterone receptor (PR) 

negative, human epidermal growth factor receptor-2 (HER-2/neu) negative, and cytokeratin 

5/6 and/or HER-1 positive; whereas Luminal A tumors are ER+, PR+, and HER-2/neu- [4].  

In the Carolina Breast Cancer Study, breast cancer subtypes have been evaluated to 
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characterize the epidemiology of Basal-like breast cancer, but data on breast density were 

unavailable until recently. For the current investigation, participants in the Carolina Breast 

Cancer Study were matched to the Carolina Mammography Registry to allow estimation of 

the association between mammographic density and risk of specific breast cancer subtypes. 

Mammographic breast density is a measure of the fibroglandular tissue composition 

in the breast and describes the radiological appearance of dense breast tissue. Different 

classification schemes have been used to visually characterize breast density, including 

Wolfe’s parenchymal patterns [8, 9], Tabar’s classification scheme [10], the American 

College of Radiology’s Breast Imaging Reporting and Data System (BI-RADS) [11], as well 

as more quantitative methods that estimate the percentage of the breast that is dense. 

Reviews have concluded that mammographic density is associated with breast cancer risk 

regardless of the method used to measure breast density [12, 13]. In fact, breast density is 

one of the strongest and most consistent risk factors for breast cancer, and studies have 

estimated that women with the highest mammographic density may be at a 4-6 fold 

increased risk of developing breast cancer compared with women with the least dense 

tissue [12, 14-20]. However, there are conflicting results on the association between breast 

density and risk of breast cancer subtypes defined by hormone receptor status [21]. Of the 

six case-control and cohort studies examining the association between breast density and 

breast cancer risk by breast cancer hormonal status and/or subtypes to date as recently 

reviewed in Boyd et. al. [21], four observed increased risk of both ER+ and ER- tumors [22-

25], and two observed increased risks for ER+ tumors only. Of the ten studies with cases 

only that examined whether breast density was different based on hormone receptor status, 

all but one [26] concluded that there were no significant differences in breast density by 

hormone receptor status [27-35].Although studies have examined the association between 

breast density and breast cancer risk by hormonal status, studies examining the association 
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between breast density and risk of specific intrinsic subtypes of breast cancer, particularly 

luminal and Basal-like subtypes, have been lacking [21].  

We therefore examined the association between mammographic breast density and 

Basal-like and Luminal A subtypes of breast cancer. 

5.2 Methods 

5.2.1 Study setting and population 

Subjects included in this study were participants in the CBCS who also had 

mammograms recorded in the CMR. CBCS is a population-based, case-control study 

designed to identify genetic and environmental factors for breast cancer risk in African 

American and Caucasian residents of 24 counties in North Carolina. The Carolina 

Mammography Registry (CMR) is a mammography registry that prospectively collects data 

from women and radiologists in mammography facilities in community practice, funded by 

the Department of Defense in 1994 and supported as part of Breast Cancer Surveillance 

Consortium by the National Cancer institute since 1995.  Both CBCS and CMR are 

described in detail in Razzaghi et al. (Chapter 4).  

  Data from CBCS and CMR were combined to allow case-control and case-only 

analyses of breast density in association with breast cancer subtype. Briefly, CMR and 

CBCS were linked using probabilistic linkage with four variables; first and last name, date 

of birth, and last four digits of the social security number [36-38]. BI-RADS breast density, 

age and current use of hormone therapy at the time of the mammogram were collected 

from the CMR and all other participant data were taken from the CBCS. The following 

counties from the CBCS were not represented in our study because there were no 

matching cases and controls in the CMR: Alamance, Orange, Wake, Johnston, Lee, 

Harnett, Bertie, Wilson, Edgecombe, Pitt, Pamlico, Beaufort, and Tyrell. 
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5.2.2 Tumor blocks and immunohistochemistry assays 

The details of breast cancer subtyping in CBCS have been published previously [3]. 

Briefly, all breast cancers underwent pathology review and descriptive data including type of 

biopsy, tumor size, laterality, and other characteristics were abstracted from pathology 

reports. Three H&E-stained slides were produced from each of the paraffin blocks when 

slices were made for molecular and immunohistochemical analyses (IHC). These slides 

were reviewed in a standardized fashion by the study pathologist to confirm the diagnosis of 

breast cancer and to assign histologic classification [39]. The following markers were used 

to determine breast cancer subtypes: Luminal A (ER+ and/or PR+, HER2-), Luminal B (ER+ 

and /or PR+, HER2+), Basal-like (ER-, PR-, HER2-, HER1+ and/or CK5/6+), HER2+/ER- 

(ER-, PR-, HER2+), and unclassified (negative for all five markers) [3, 4].  Only Luminal A 

and Basal-like are examined in detail in the current analysis due to the small number of 

HER2+ and Luminal B cases. 

To determine ER/PR status, tumor blocks were sectioned and stained for a panel 

of IHC markers at the IHC Core Laboratory, University of North Carolina (UNC). 

Commercially available antibodies to ER, HER2, HER1, and Cytokeratin 5/6 were used in 

this study [4, 40, 41]. For invasive cases, ER/PR status was obtained from medical 

records for 80% of cases and determined using IHC assays performed at UNC for the 

remaining cases. For 11% of the cases with missing status for ER/PR on medical records, 

paraffin-embedded tissues were used and ER/PR status was determined at the UNC 

laboratory using IHC. For the remaining 9 percent of the cases, ER/PR status was missing 

[4, 39, 42].  
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5.2.3 Mammographic density assessment 

Mammographic breast density is recorded qualitatively in the CMR using BI-RADS. 

BI-RADS density assessment defines four categories of breast composition including: 1) 

almost entirely fat, 2) scattered fibroglandular densities, 3) heterogeneously dense, and 4) 

extremely dense [43].  As discussed previously in Razzaghi et al., density was the 

reported density from the screening or diagnostic mammogram performed within five years 

prior to or one year after breast cancer diagnosis for cases. Mammograms for controls 

were screening or diagnostic mammograms showing no cancer within five years prior to 

and three years after the selection date. The rationale for choosing a control group with a 

broader exposure window has been discussed previously (Chapter 4). For women with 

multiple mammograms, order of preference was (1) mammogram prior to breast cancer 

diagnosis or selection date into CBCS with date closest to diagnosis or selection date, (2) 

nearest mammogram after diagnosis/selection. Studies have shown that elevated risks of 

breast cancer associated with breast density persist for at least 5 years, with studies 

showing lasting effects for 10 years or more for both pre- and postmenopausal women [15, 

19, 44-46]. Mammograms more than one year following treatment were excluded based 

on suggestions in the literature that agents used to treat breast cancer may alter breast 

density as early as 18 months after initiating therapy [47]. Breast density measured in the 

CMR is per woman and not per breast. Vachon et al. concluded that density is a general 

marker of breast cancer risk and is not specific to breast side or location of the eventual 

cancer [48]; density has also been shown to be highly correlated between breasts within a 

woman [49].  

 

 

 



 101 

5.2.4 Statistical Analysis 

The variable coding schemes were chosen for consistency with previous CBCS 

publications [3].  Briefly, race was categorized as African American or white based on self-

report. Mammographic breast density was based on the four BI-RADS density categories. 

Age at diagnosis was used for cases and age at selection into the CBCS for controls and 

was analyzed as a continuous variable. Body mass index (BMI) was calculated as body 

weight (kg)/height (m)2 and was treated as a continuous variable in the analysis. Age at first 

full-term pregnancy and parity/nulliparity were combined to create a categorical variable that 

encapsulated both parity status and age at first birth. Because of the association between 

age, hormone therapy use, and breast density, we also examined age and current hormone 

therapy at the time of the mammogram recorded in the CMR as explained in detail in our 

previous study (Chapter 4). Hormone therapy (HT) was categorized as current or not-current 

as collected by the CMR at the time of the mammogram. All categorical variables were 

coded using indicator variables. 

 We used unconditional logistic regression with breast cancer as the outcome 

variable to estimate odds ratios (ORs) and 95% confidence intervals (CIs) for the 

association between breast density and breast cancer risk (SAS version 9.3, SAS 

Institute, Cary NC). We also examined risk of triple-negative breast tumors [estrogen 

(ER), progesterone (PR), and human epidermal growth factor receptor-2 (HER-2) 

negative tumors] according to breast cancer subtype to facilitate direct comparisons 

with the only other study on the association between breast density and risk of breast 

cancer subtypes. Case-case analyses were used to compare odds of breast density 

across subtypes, comparing Basal-like to Luminal A and triple-negative to Luminal A 

breast cancers.  
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 Effect measure modification was not assessed in this study given the small 

sample size. Potential confounders were selected based on prior knowledge and using 

directed acyclic graphs (DAGs) [50]. We adjusted for age, race, BMI, HT, menopausal 

status, first degree family history of breast cancer, age at menarche, and parity and age 

at first full-term pregnancy (with the latter two combined into a single variable). We also 

adjusted for the offset term used in the CBCS to account for oversampling of young 

African American women [51].  

 

5.3 Results 

Characteristics of all cases (491 breast cancer cases) and women with Basal-like 

and Luminal A tumors as well as 528 controls are presented in Table 1. Women with 

Basal-like subtype were younger, had higher BMI and WHR, were more likely to be 

African American, premenopausal, younger than 13 at menarche, parous with first full 

term pregnancy at younger than 26,  not current HT users, users of oral contraceptives, 

and never breastfeeders compared to women with Luminal A breast cancer (Table 1). 

Thus, associations with standard risk factors showed similar patterns by subtype as 

reported for the CBCS overall [3]. 

Table 2 presents the ORs and 95% CIs for adjusted models with both BI-RADS 1 

(Model 1) and 2 (Model 2) as the reference groups. Model 1 is included to facilitate 

comparison with previous studies that have reported risk for the ‘extremely dense’, BI-

RADS 4 group relative to ‘entirely fatty’, BI-RADS 1 group, but Model 2 allows for more 

precise estimates due to a larger referent group. Among all women, those with extremely 

dense breasts had an increased risk of breast cancer compared to women with scattered 

fibroglandular densities and those with entirely fatty breasts [1.19 (0.72, 1.95), and 2.45 

(0.99, 6.09), respectively] (Table 2). Both estimates are imprecise. Model 1 resulted in a 



 103 

stronger positive association between breast density and breast cancer risk for the Basal-

like subtype compared to the Luminal A subtype [3.58 (0.34-37.97), and 1.98 (0.54-7.34), 

respectively]. These associations were of weaker magnitude when using Model 2, and 

importantly, associations were of similar magnitude for the Basal-like and Luminal A 

subtypes [1.04 (0.34-3.17), and 0.98 (0.50-1.92), respectively] (Table 2).  

To facilitate comparisons with the only other study of breast density by breast 

cancer subtype [22], we also examined the association between breast density and breast 

cancer risk in case-control analyses using the “triple-negative” definition of breast cancer  

Model 1 resulted in a large, imprecise estimate for risk of triple negative breast cancer, 

and Model 2 resulted in a higher odds ratio than previously observed for either Basal-like 

or Luminal A breast cancers [1.20 (0.49-2.90)] (Table 2). We further compared the 

strength of associations between Basal-like and Luminal A breast cancers as well as the 

triple-negative and Luminal A breast cancers, using case-only analyses for model 2 (Table 

3). In relation to breast density, there was no statistically significant difference between 

Basal-like and Luminal A or between triple-negative and Luminal A breast cancers [1.08 

(0.30-3.84), and 1.17 (0.41-3.35), respectively], although the estimates are imprecise. 

Thus, based on our findings, there was no suggestion of etiologic heterogeneity with 

respect to breast density and subtype. 

 

5.4 Discussion 

Of the six case-control and cohort studies examining the association between 

breast density and breast cancer risk as reviewed in Boyd et. al. [21], four of six observed 

increased risk for both ER+ and ER- tumors [22-25, 52, 53], with only two showing that 

ER- tumors were less commonly associated with breast density [52, 53]. Both quantitative 

and qualitative measures of breast density were used in these studies, but these studies 
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evaluated only hormone receptor status (primarily ER only, with only Conroy et al. [53], 

Yaghjyan et al. [25], and Ma et al. [22] including both estrogen and progesterone receptor 

status).  A plausible explanation for the conflicting results regarding ER negative tumors is 

that ER negative tumors are heterogeneous, including HER2 positive, basal-like, and 

unclassified tumors.  Therefore, we evaluated the breast density-breast cancer association 

using more definitive subtype markers.  Using these five markers, we observed no 

difference in the breast density-breast cancer association for Luminal A, Basal-like, or 

triple-negative breast cancers based on case-control analyses. Furthermore, our 

estimates from case-only analysis, which can be interpreted as ratios of ORs between the 

two subtypes of breast cancer (Luminal A and Basal-like subtypes), directly estimated the 

relative strength of association between the two breast cancer subtypes and findings were 

not statistically different from the null, concluding no significant difference between Basal-

like and Luminal A or triple-negative and Luminal A breast cancers.  

To our knowledge, no previous study has examined the association between 

breast density and risk of breast cancer subtypes using five markers to classify breast 

cancer subtypes (ER, PR, HER2, EGFR, and ck5/6). Use of five IHC markers reduces 

concerns about heterogeneity among triple negative breast cancers; the class of triple-

negative breast cancers includes some tumors where all assays failed and therefore has 

higher levels of outcome misclassification (with some tumors of other subtypes 

inappropriately grouped with  Basal-like subtype) [54]. Our results from the case-only 

analysis were similar to the other case-only studies of this association. Nine of the ten 

case-only studies that examined whether breast density was different based on hormone 

receptor status concluded that there were no significant differences in breast density by 

hormone receptor status [27-35]; only two of these studies (both null)  examined the 

association using breast cancer subtypes [30, 31]. Outcome misclassification of this sort 
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would lead to bias toward the null and could explain previous as well as our findings of no 

case-only odds ratio modification by subtype. Our findings can be interpreted, together 

with our case control analyses showing that breast density is weakly positively associated 

with both Luminal A and Basal-like breast cancers, as evidence that breast density is a 

risk factor for both subtypes with no evidence of heterogeneity by tumor subtype. Thus, 

outcome misclassification and resulting bias toward the null (and type two error) seems to 

be an unlikely explanation for the previous findings of no effect modification by ER or 

triple-negative subtype.  

In addition to our study, one previous study has included use of HER2 status in 

classifying tumors, comparing ER+ to triple-negative breast cancers [22]. This study 

included 184 cases of Luminal A (defined ER+, PR-, and HER2-) and 106 cases of 

triple-negative breast cancers and found, in concordance with our results, that percent 

mammographic density was positively associated with both Luminal A [2.22 (1.04-

4.78)] and triple-negative [2.96 (1.21-7.23)] breast cancer [22]. Given the concordance 

of our findings with those of Ma et al. it is possible that there are genetic and heritable 

factors that alter breast density and breast cancer risk, and are therefore responsible 

for the association of breast density and breast cancer regardless of breast cancer 

subtypes [55]. For example, heritable differences in exposure or response to hormones 

and growth factors may increase proliferative activity and quantities of stromal and 

epithelial tissue, with effects on both breast density and breast cancer risk [55, 56]. 

Consistent with this, a recent study has demonstrated that two of 14 established breast 

cancer loci simultaneously contribute to large between-woman differences in 

mammographic density [57]. This model, wherein breast density serves as a marker of 

hormonal and other influences on breast tissue composition, is also supported by work 

examining breast density and non-genetic breast cancer risk factors. Hormonal 
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exposures, such as parity and HT, for example, have strong associations with breast 

density and are similarly associated with breast cancer risk [58].  Additionally, we, 

along with others, have concluded that the association between breast density and 

breast cancer risk is stronger among overweight and obese women as well as women 

with current use of HT (Chapter 4); given the strong correlations between these two 

risk factors and breast density, BMI and HT could be responsible for this strong 

association through their effects on breast density.  

 Some of these well known breast cancer risk factors have opposite effects on 

Basal-like and Luminal A subtypes of breast cancer [3]. For example, Millikan et al. 

identified risk factors for the Basal-like subtype including younger age at diagnosis, higher 

parity, younger age at first full-term pregnancy, shorter duration of breastfeeding, fewer 

number of children breastfed, fewer number of months breastfeeding per child, and 

increased waist-to-hip ratio [3]. Because many of these variables that have distinct 

associations with breast cancer subtypes also impact breast density, we might have 

expected to see differences in the breast density-breast cancer subtype association. For 

example, young age at first full-term pregnancy is associated with lower breast density 

[59] and a reduction in risk for Luminal A breast cancers [44]. However, it appears that 

breast density does not have an association with subtypes that is independent of these 

factors.  In our models that controlled for these as covariates or confounders, there was no 

evidence of heterogeneity of the breast density-breast cancer association by subtype. 

In summary, major strengths of our study were inclusion of the five markers to 

identify breast cancer subtypes (ER, PR, HER2, HER1 and CK5/6).  However, as with 

other studies of breast density by molecular subtype, the main limitation of our study was 

small sample size leading to wider confidence intervals.  As a result of smaller sample 

size, we were underpowered to study effect measure modification by race and hormone 
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therapy. Future studies with breast cancer subtypes and breast density by race are 

desirable, particularly given that Basal-like breast cancers are more prevalent in African 

American women and appear to have distinct etiology. However, based on current data, 

there is little evidence to support differences in the effect of breast density by breast 

cancer subtype. 
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5.5 Tables 
 
Table 5.1: Population characteristics by tumor subtype, Basal-like and Luminal A breast cancers 

Variable Overall cases vs. controls Basal-like Luminal A 
Cases Controls N OR (95% CI) N OR (95% CI) 

No of subjects 491 528 48  181  
Mean age (CBCS), ya 53.2 (28-74) 54.0 (31-74) 50.2 (33-73) 0.99 (0.96-1.02) 54.5 (31-74) 1.04 (1.02-1.06) 
Mean BMI 28.6 (15.1, 60.6) 28.8 (14.6, 60.9) 30.9 (19.1-44.2) 1.06 (1.02-1.10) 28.5 (15.0-52.6) 1.00 (0.98-1.03) 
Mean number of daysb -21 (-1401, 365) 149 (-1617, 1095) -27 (-938, 365) -10 (-1050, 365) 
Race       
White 297 (60.5%) 324 (61.4%) 21 (43.8%) 1.00 116 (64.1%) 1.00 
African American 194 (39.5%) 204 (38.6%) 27 (56.3%) 3.32 (1.80-6.12) 65 (35.9%) 1.31 (0.90-1.89) 
Menopausal status       
Premenopausal 200 (40.7%) 213 (40.3%) 25 (52.1%) 1.00 67 (37.0%) 1.00 
Postmenopausal 291 (59.3%) 315 (59.7%) 23 (47.9%) 0.90 (0.49-1.65) 114 (63.0%) 1.83 (1.27-2.65) 
Family historyc       
No 386 (81.1%) 440 (85.6%) 39 (83.0%) 1.00 149 (84.2%) 1.00 
Yes 90 (18.9%) 74 (14.4%) 8 (17.0%) 1.24 (0.55-2.82) 28 (15.8%) 1.11 (0.67-1.84) 
Missing 15 14 1  4  
Age at menarche       
<13 257 (52.3%) 230 (43.6%) 32 (66.7%) 1.00 92 (50.8%) 1.00 
≥13 234 (47.7%) 298 (56.4%) 16 (33.3%) 0.37 (0.19-0.70) 89 (49.2%) 0.76 (0.53-1.09) 
Parity & Age at FFTP       
Nulliparous 74 (15.1%) 67 (12.7%) 6 (12.5%) 1.00 31 (17.1%) 1.00 
Parous, <26 312 (63.5%) 347 (65.7%) 36 (75.0%) 2.07 (1.04-4.15) 107 (59.1%) 0.93 (0.64-1.34) 
Parous, 26+ 105 (21.4%) 114 (21.6%) 6 (12.5%) 0.43 (0.18-1.06) 43 (23.8%) 0.96 (0.63-1.47) 
Breastfeeding       
Never 299 (60.9%) 324 (61.4%) 32 (66.7%) 1.00 110 (60.8%) 1.00 
Ever 192 (39.1%) 204 (38.6%) 16 (33.3%) 0.84 (0.44-1.60) 71 (39.2%) 1.09 (0.75-1.57) 
Lifetime duration lactation       
Never 299 (60.9%) 324 (61.4%) 32 (66.7%) 1.00 110 (60.8%) 1.00 
>0-3 months 72 (14.7%) 69 (13.1%) 9 (18.8%) 1.71 (0.77-3.79) 26 (14.4%) 1.14 (0.68-1.92) 
4+ months 120 (24.4%) 135 (25.6%) 7 (14.6%) 0.50 (0.22-1.16) 45 (24.9%) 1.02 (0.67-1.55) 
Current HT used       
Yes 129 (26.4%) 181 (35.0%) 9 (18.8%) 1.00 43 (23.9%) 1.00 
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No 359 (73.6%) 336 (65.0%) 39 (81.2%) 2.36 (1.11-5.05) 137 (76.1%) 1.84 (1.23-2.77) 
Missing 3 11 0  1  
Oral contraceptive use       
Never 170 (34.6%) 170 (32.4%) 11 (22.9%) 1.00 72 (39.8%) 1.00 
Ever 321 (65.4%) 355 (67.6%) 37 (77.1%) 1.21 (0.59-2.46) 109 (60.2%) 0.49 (0.34-0.71) 
Missing 0 3 0  0  
WHR       
<0.77 132 (27.3%) 169 (32.3%) 4 (8.7%) 1.00 45 (25.4%) 1.00 
0.77-0.83 171 (35.3%) 173 (33.0%) 17 (37.0%) 1.19 (0.63-2.24) 69 (39.0%) 1.41 (0.97-2.05) 
≥0.84 181 (37.4%) 182 (34.7%) 25 (54.3%) 2.40 (1.30-4.42) 63 (35.6%) 1.17 (0.80-1.71) 
Missing 7 4 2  4  

aMean age at diagnosis for cases and selection for controls in the CBCS 

bMean number of days between diagnosis date for cases and selection date for controls in the CBCS and the date of the mammogram chosen to assess breast 
density 
cFirst-degree family history of breast cancer 
dCurrent hormone therapy (HT) use at the time of the mammogram 
 OR, odds ratio. CI, confidence interval. CBCS, Carolina Breast Cancer Study. BMI, body mass index. FFTP, first full-term pregnancy. HT, hormone therapy. WHR, 
waist-to-hip ratio.  109 
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Table 5.2: Odds Ratios (ORs) and 95% Confidence Intervals (CIs) for breast cancer risk by tumor subtype associated with BI-RADS measured 
mammographic density 

 

 

 

   Cases vs. Controls  Triple Negatives vs. Controls 

 

 
Controls 

 
Cases 

 
Model 1a 
OR (95% CI) 

 
Model 2b 
OR (95% CI) 

TN cases Model 1 
OR (95% CI) 

Model 2 
OR (95% CI) 

Almost Entirely Fat  25 13 1.00 (Referent) 0.48 (0.22-1.08) 1 1.00 (Referent) 0.17 (0.02-1.43) 
Scattered Fibroglandular Densities 197 183 2.07 (0.93-4.59) 1.00 (Referent) 31 5.96 (0.70-50.64) 1.00 (Referent) 
Heterogeneously Dense 253 232 2.06 (0.92-4.60) 1.00 (0.73-1.35) 40 5.83 (0.68-50.04) 0.98 (0.55-1.75) 
Extremely Dense 53 63 2.45 (0.99-6.09) 1.19 (0.72-1.95) 12 7.13 (0.74-68.90) 1.20 (0.49-2.90) 
   Ptrend =0.24c  Ptrend =0.31 
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Table 5.2: Continued: Odds Ratios (ORs) and 95% Confidence Intervals (CIs) for breast cancer risk by tumor subtype associated with BI-RADS 
measured mammographic density 

  Basal-likes vs. Controls  Luminal As vs. Controls 

 
BL 
cases 

Model 1 
OR (95% CI) 

Model 2 
OR (95% CI) 

LA 
cases 

Model 1 
OR (95% CI) 

Model 2 
OR (95% CI) 

Almost Entirely Fat  1 1.00 (Referent) 0.29 (0.03-2.51) 4 1.00 (Referent) 0.49 (0.15-1.59) 
Scattered Fibroglandular Densities 19 3.45 (0.40-29.90) 1.00 (Referent) 69 2.03 (0.63-6.59) 1.00 (Referent) 
Heterogeneously Dense 22 3.03 (0.34-26.67) 0.88 (0.43-1.80) 86 2.09 (0.64-6.79) 1.03 (0.68-1.56) 
Extremely Dense 6 3.58 (0.34-37.97) 1.04 (0.34-3.17) 22 1.98 (0.54-7.34) 0.98 (0.50-1.92) 

  Ptrend =0.67  Ptrend =0.60 
aModel 1 is adjusted for age, race, BMI, menopausal status, family history of breast cancer, age at menarche, HT, and parity  
and age at first full term pregnancy combined, where BI-RADS category 1 (almost entirely fat) is the referent group.  
bModel 2 is adjusted for the same variables as Model 1 but BI-RADS category 2 (scattered fibroglandular densities) is the  
referent group. 
cP for trend test is based on likelihood ratio test statistic and is two-sided. The same ordinal model was fit to assess the 
 p-value of trend for Model 1 and Model 2. 
Bi-RADS, Breast Imaging Reporting and Data System. TN, triple negative. BL, Basal-like. LA, Luminal-A.  
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Table 5.3: Odds Ratios (ORs) and 95% Confidence Intervals (CIs) for case-case analyses comparing the association with  
BI-RADS measured mammographic density by breast cancer risk subtypes  

 Basal-likes vs. Luminal As Triple-negatives vs. Luminal As 

 
Model 1a 
OR (95% CI) 

Model 2b 
OR (95% CI) 

Model 1 
OR (95% CI) 

Model 2 
OR (95% CI) 

Almost Entirely Fat  1.00 (Referent) 1.05 (0.10-10.97) 1.00 (Referent) 0.33 (0.03-3.95) 
Scattered Fibroglandular Densities 0.95 (0.09-9.90) 1.00 (Referent) 3.05 (0.25-36.68) 1.00 (Referent) 
Heterogeneously Dense 0.63 (0.06-6.65) 0.67 (0.30-1.49) 2.62 (0.22-31.62) 0.86 (0.44-1.67) 
Extremely Dense 1.02 (0.08-13.50) 1.08 (0.30-3.84) 3.57 (0.26-49.11) 1.17 (0.41-3.35) 
 Ptrend =0.66c Ptrend =0.74 

aModel 1 is adjusted for age, race, BMI, menopausal status, family history of breast cancer, age at menarche, HT, and parity  
and age at first full term pregnancy combined, where BI-RADS category 1 (almost entirely fat) is the referent group.  
bModel 2 is adjusted for the same variables as Model 1 but BI-RADS category 2 (scattered fibroglandular densities) is the  
referent group. 
cP for trend test is based on likelihood ratio test statistic and is two-sided. The same ordinal model was fit to assess the 
 p-value of trend for Model 1 and Model 2. 
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CHAPTER 6: SUMMARY AND CONCLUSIONS 

6.1 Main findings 

The purpose of this dissertation was to examine the associations between breast 

density, race, and risk of intrinsic subtypes of breast cancer risk. Modification of the odds 

ratio for the breast density-breast cancer was evaluated by age, race, BMI, and current 

hormone therapy use in breast cancers overall, and odds ratios for the breast density-breast 

cancer association were estimated among Basal-like and Luminal A breast cancers (defined 

as ER-, PR-, HER2-, HER1-, and/or CK 5/6+ for Basal-like and ER+, PR+, and HER2- for 

Luminal A breast cancers).  

Increasing mammographic breast density was associated with increased breast 

cancer risk in CBCS, where women with extremely dense breasts had a nearly 3-fold 

increased risk of breast cancer compared with women with breasts composed of almost 

entirely fat tissue. The odds ratio estimates were similar to those previously reported using 

BI-RADS measurement of mammographic breast density [1]. Due to small sample size of 

BI-RADS density category 1, BI-RADS density category 2 was also used as the reference 

group to estimate risk which resulted in more precise effect estimates, but with lower 

magnitude than reported previously [2]. Although race did not significantly modify the 

association between breast density and breast cancer risk, we found effect estimates that 

were substantially weaker for African American women compared with white women; 

additionally we observed differences in the distributions of breast density between white and 

African American women with breast density being lower in African American women which
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was consistent with two other studies [3, 4]. We further examined BMI and HT as effect 

measure modifiers and found that odds ratios were greater for obese women compared 

with non-obese women and among current HT users compared with non-current HT 

users.  

To assess the potential for etiologic heterogeneity among breast cancer 

subtypes, the associations between breast density and Basal-like and Luminal A 

breast cancers were estimated.  Basal-like subtype was defined using five markers, 

based on concerns that triple-negative breast cancers may not specifically capture 

Basal-like subtype [5]. We found that breast density was weakly positively associated 

with both Luminal A and Basal-like breast cancers, with no evidence of heterogeneity 

of the breast density-breast cancer association by tumor subtype. When using BI-

RADS category 1, stronger associations were observed for Basal-like tumors; 

however, these estimates were imprecise given the small sample size. These results 

were consistent with the only previous study to have evaluated the association to date, 

which showed little or no evidence of etiologic heterogeneity across subgroups of 

breast cancers [6]. Together these results demonstrate a positive association between 

breast density and breast cancer risk regardless of breast cancer subtype.  

 

6.2 Strengths and limitations 

6.2.1 Strengths 

This study combined two rich data sets -- the CBCS, where young African 

American women were oversampled, and the CMR -- to examine the associations 

between breast density, race, and breast cancer risk with respect to modification of the 

breast density-breast cancer risk relationship by age, race, BMI, and current hormone 

therapy as well as the association between breast density and Basal-like and Luminal A 

breast cancers. A major strength of our study is that we used 5 markers to identify breast 
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cancer subtypes (ER, PR, HER2, HER1 and CK5/6); using these 5 markers we were 

able to identify Basal-like breast cancers rather than grouping these cancers into a 

broader definition of triple-negative breast cancers (ER, PR, and HER2 negative). 

Oversampling of young African American women, who also have the highest prevalence 

of Basal-like breast cancers, also increased our power to evaluate the effects of breast 

density on risk of specific subtypes.  The results of these analyses have provided new 

data to elucidate the role of breast density in breast cancer disparities.  

 

6.2.2 Limitations 

While the use of data from the CMR linked BI-RADS breast density data with 

breast cancer and other demographic factors, some limitations resulted due to collection 

of data at different time points. For some women mammograms were not available 

within one year prior to their diagnosis or selection date into the CBCS. To maximize our 

sample size, we used mammograms within five years prior to and one to three years 

post-diagnosis and selection dates, with support from studies showing that this wider 

window is as predictive of breast cancer risk as using mammograms one year prior to 

breast cancer diagnosis. By also using some of the variables such as hormone therapy 

from the CMR, we were able synchronize important covariates with the main exposure. 

Additionally, our study used a qualitative measure of breast density rather than a 

quantitative measure (percent mammographic density), which could have attenuated our 

results. However, this measurement method should not have had substantial influence 

on the results observed since previous studies have shown that BI-RADS breast density 

is predictive of breast cancer risk but not as strong predictor as the quantitative 

measures [7] and since our findings were similar to the only other study on the 

association of interest [6]. 
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Few studies are adequately powered to evaluate mammographic density in 

African Americans, and while ours was a large study, some of our estimates were 

imprecise due to small numbers of women in the categories with strongest effects (e.g. 

extremely dense breasts). This was further compounded when stratifying on breast 

cancer subtype. As with many other studies of risk factor associations by molecular 

subtype, the main limitation of our study was small sample size leading to wider 

confidence intervals and inability to study effect measure modification by race and 

hormone therapy. Future studies with larger numbers of women as well as a full marker 

panel including the specific markers for Basal-like breast cancer should be conducted. 

Given the small sample size, we were unable to examine effect measure modification by 

age, BMI, and hormone use within the strata of race, nor could we assess the 

association between breast density and Basal-like and Luminal A breast cancers within 

the strata of race.  

 

6.3 Public health impact 

 There are well-established racial differences in breast cancer incidence and 

survival [8]. Basal-like tumors are more prevalent among premenopausal African 

American women, and are associated with poorer survival compared to hormone 

receptor positive subtypes [9, 10]. Breast density is a strong risk factor for breast cancer, 

but the mechanism of its association with breast cancer as well as with breast cancer 

subtypes risk is poorly understood. While there is not a single mechanism or explanation 

that is implicated in the association between breast density and breast cancer risk [3, 4, 

11-18], a stronger association between breast density and Basal-like breast cancers 

may be expected because many of the environmental and genetic factors that affect the 

risk of Basal-like breast cancer (young age, race, breastfeeding, parity) also affect breast 

density.  Any genetic or environmental exposure that alters the proliferative activity and 



122 
 

quantity of epithelial and stromal tissue of the breast may influence density and/or breast 

cancer risk [19, 20]. The identification of risk factors for Basal-like breast cancer will help 

in identifying prevention strategies for this aggressive disease.  

 

6.4 Future directions 

This study suggests that the association between breast density and breast 

cancer risk may be modified by race, but the ability to precisely quantify this has been 

limited by sample size. Larger studies and meta-analyses will be needed to definitively 

answer this question. Additionally, by simultaneously considering effect modification by 

both race and race-associated variables, our study suggested important relationships 

between breast cancer risk factors and breast density. The role of BMI in modifying risk 

associated with breast density merits further investigation and is an important 

consideration in studies of breast density by racial/ethnic group. While the precise 

mechanism underlying these associations remains to be determined, the interaction 

between BMI and breast density may reflect underlying changes in breast tissue 

composition. Additionally, larger studies should examine the association of interest 

within racial groups or groups defined by hormone therapy use.  

This study was also one of two case-control studies to have examined the 

association between breast density and risk of breast cancer subtypes and the only one 

that used 5 molecular markers to identify Basal-like breast cancers. Although we did not 

find substantial differences in the association between breast density and Basal-like and 

Luminal A breast cancers, future studies with larger numbers of Basal-like breast 

cancers are needed to further examine this association using the lowest breast density 

categories as the referent group as well as assessing effect measure modification by 

race, hormone therapy, and other important breast cancer risk factors.   
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This work focused on race and breast cancer subtypes, with the goal of 

identifying whether breast density contributes to disparities in breast cancer incidence.  

Lower breast density in African Americans, together with little evidence for modification 

by race in our study population, suggests that breast density does not lead to greater 

risk of breast cancer among African Americans. Furthermore, results from the second 

aim, estimating the effect of density in risk of Basal-like and Luminal A breast cancers, 

was also informative in that there was little evidence to support differences in the effect 

of breast density by breast cancer subtype. Together these results suggest that while 

breast density is an important risk factor for breast cancer overall, it may not play a 

major role in public health strategies focused on reducing breast cancer disparities. 

However, our work emphasizes that breast density is a strong risk factor for breast 

cancer and it is crucial to understand the mechanism of how breast density affects 

breast cancer risk.   
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