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ABSTRACT

XING SUN: Significance and Recovery of Blocks Structures in Binary and Real-Valued

Matrices with Noise

(Under the direction of Professor Andrew Nobel)

Biclustering algorithms have been of recent interest in the field of Data Mining, particularly

in the analysis of high dimensional data. Most biclustering problems can be stated in

the following form: given a rectangular data matrix with real or categorical entries, find

every submatrix satisfying a given criterion. In this dissertation, we study the statistical

properties of several commonly used biclustering algorithms under appropriate random

matrix models. For binary data, we establish a three-point concentration result, and several

related probability bounds, for the size of the largest square submatrix of 1s in a square

Bernoulli matrix, and extend these results to non-square matrices and submatrices with

fixed aspect ratios. We then consider the noise sensitivity of frequent itemset mining under

a simple binary additive noise model, and show that, even at small noise levels, large blocks

of 1s leave behind fragments of only logarithmic size. As a result, standard FIM algorithms

that search only for submatrices of 1s cannot directly recover such blocks when noise is

present. On the positive side, we show that an error-tolerant frequent itemset criterion can

recover a submatrix of 1s against a background of 0s plus noise, even when the size of the

submatrix of 1s is very small.

For data matrices with real-valued entries, we establish a concentration result for the size

of the largest square submatrix with high average in a square Gaussian matrix. Probability

upper bounds on the size of the largest non-square high average submatrix with a fixed

row/column aspect ratio in a non-square real-valued matrix with fixed row/column aspect
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ratio are also established when the entries of the matrix follow appropriate distributions.

For biclustering algorithms targeting submatrices with low ANOVA residuals, we show how

to assess the significance of the resulting submatrices. Lastly, we study the recoverability

of submatrices with high average under an additive Gaussian noise model.
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CHAPTER 1

Introduction

High-throughput technologies are widely used in scientific research, where large data sets

are collected automatically with relatively low costs. These large data sets often contain a

large number of variables and samples. Common examples of these large data sets can be

transaction data which contains tens of thousands of different items and tens of thousands

of transaction records (c.f. (12)), or drug activity data which contains hundreds of different

compounds and less than a hundred atom types (c.f. (38)), or DNA Microarray data which

contains from a thousand to twenty thousand human genes and less than a hundred samples

(c.f. (28)).

Exploratory data analysis is often used when studying these large data sets. Exploratory

data analysis employs techniques to better understand the data, specifically, to unveil the

data structure, to build models, to identify important variables, and to test underlying

assumptions. Data mining is often the first step in this exploratory analysis. It includes

techniques such as supervised learning (classification, regression), unsupervised learning

(clustering, biclustering, principle component analysis, singular value decomposition), and

graphical visualization. Given response information, supervised learning tries to build mod-

els to connect the values of variables with the values of the responses, and further to predict

the values of the responses based on the values of the variables. Unsupervised learning tries

to explore the structure of data and build models by searching for consistent patterns and

relationships between variables and samples, and this is done in the absence of a response.

In general, there are many different ways to define consistent patterns or relationships.

In this dissertaion, a consistent pattern or relationship can be several variables taking a

same value across different samples in binary or categorical data such as frequent itemsets



in the frequent itemset mining problem; it can also be strong correlations between variables

across different samples, such as order preserving clusters; or it can be a partition of samples

found by some clustering techniques such as hierarchical clustering, k-mean clustering etc.

By arranging the data into a matrix with rows representing variables and columns repre-

senting samples, these consistent patterns or relationships usually correspond to submatrices

such as biclusters, or partitions of columns of the data matrix such as cluster structures. A

real world example of these consistent patterns can be found in the gene expression analy-

sis (54), where biologists apply clustering techniques to explore the DNA Microarray data

from cancer patients. The resulting clustering structure suggests the biologists to further

classify the patients into subgroups according to their different gene expression levels. An

example of another type of consistent patterns can be found in drug activity analysis (38).

Each chemical compound there is represented by a connection table and then coded to a

canonical string with some characters representing atoms and some characters representing

bonds. The patterns which are of interest to chemists are those substructures (substrings)

frequently appearing across different compounds. If each compound is regarded as a sample,

and each character in the canonical representation string as a variable, then a substructure

corresponds to a subset of characters. A substructure is considered frequent if it appears

in more than k compounds (samples), where the threshold k is predetermined by users.

1.1 Co-clustering

In the previous section, we briefly introduced an example of clustering analysis, which

try to assign samples into groups such that within group distances are smaller than between

group distances. However, a problem with this standard clustering technique is that the

results do not directly reflect the variable structures, which are also of interest in research.

To overcome this drawback, independent row and column clustering is proposed by Eisen

et al. in (21), where they simply cluster columns and rows independently. Another concern

on standard clustering algorithms and even the independent row and column clustering

algorithm is that the distance they used has equal weights on all dimensions of variables.

This may cause potential problems when the dimension is very high, where many variables

are actually irrelevant noises. Some refined clustering techniques are proposed to deal with
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this high dimensional problem such as Coupled Two Way Clustering (26), Iterative Two-

way Clustering (64) and COSA (23). They are more flexible than the standard clustering

methods, and they can reveal the associations between samples and variables. However,

they are still based on iterative or weighted standard clustering. Thus, the association

discovering is not done directly. They will not be studied in this dissertation.

1.2 Frequent Itemset Mining

Instead of discovering associations between samples and variables by indirect methods

such as co-clustering, we are considering the problem in a more direct way. One of the

simplest associations or patterns when the data only contain binary or categorical values

is that a subset of variables take a same value across a subset of samples. This subset

of variables are called frequent itemset in the data mining literature. For example, items

which were purchased together in different transactions are called frequent items in market

basket analysis. The technique to find these sets of items is called frequent itemset mining.

The computational aspect of frequent itemset mining has been widely studied in (3; 2;

1) and the resulting methods have been applied in many different research areas. One

example of the application of frequent itemset mining in drug discovery can be found in

(38), where a modified frequent itemset mining algorithm is used to search for frequent

substructures of chemical compounds. These frequent substructures can then be used as

input variables in the drug activity classification model. It is shown that using frequent

substructures can improve the accuracy of the prediction. Another example of applying

frequent itemset mining to explore transaction data can be found in (12), where the real

data from a Belgian retail store is analyzed by a frequent itemset mining technique. More

examples of applications of frequent itemset mining can be found in data mining literature

such as (3; 2; 1; 61; 27).

In general, the frequent itemset mining problem can be described as follows. The avail-

able data consists of n different items S = {s1, ..., sn} and m transactions T = {t1, . . . , tm}.

Each transaction tj is an index set. If item j appears in transaction i then the index tij = 1

otherwise tij = 0. Given such a binary data set, the objective of frequent itemset mining

is to find all sets of items that appear in more than k transactions, where k > 1 is a user
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determined parameter.

1.3 Biclustering

A number of common data mining techniques are similar to frequent itemset mining.

They also try to identify distinguished associations between subsets of variables and subsets

of samples. Again, if we represent each variable by a row in the data matrix and each sample

by a column, these techniques are equivalent to identifying distinguished submatrices in the

data matrix meeting different criteria. Techniques for doing this are called biclustering or

biclustering techniques in the data mining literature. According to the type of data under

study, biclustering techniques can be further classified into two types. In the first type, the

data matrix consists of discrete entries; in the second type, the data matrix consists of con-

tinuous entries. Many different distinguishing criteria have been proposed to accommodate

different types of data. Madeira and Oliveira in (44) summarize the biclustering criteria

commonly used in gene expression data analysis into four types: biclusters with constant

entries such as methods in (30; 13) , biclusters with constant rows/columns such as methods

in (26; 14; 56; 57; 59), biclusters with coherent values such as methods in (15; 68; 69; 64; 40),

and biclusters with coherent evolutions such as methods in (8; 43; 62). In this dissertation,

distinguishing criteria studied for binary data include frequent itemset criterion described

above, and error-tolerant frequent itemset criterion. When dealing with real-valued matri-

ces, we study the high average criterion and ANOVA criterion (52; 67; 42; 41; 15; 40). For

a general survey of biclustering algorithms, please refer to (63) and (44).

1.4 Statistical Significance Analysis

Numerous biclustering algorithms have been proposed and their implementations have

been studied in the literature. However, little guidance can be found on how to evaluate the

statistical significance of patterns identified by these algorithms. In this dissertation, we

will address this problem. We will provide rigorous analysis on the statistical significance

of output patterns by some commonly used biclustering algorithms. Some of our results are

motivated by the existing works on clique numbers in graphic theory. Some of the results

are new. They have never been studied before.
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There are two primary reasons to consider the statistical significance of biclusters. The

first reason is that biclustering algorithms usually produce a large number of output pat-

terns. Among them, we want to know which are likely to be the results of noise and which are

potentially interesting. By evaluating the statistical significance of patterns, we can iden-

tify out those potentially interesting ones. The second reason is from the computational

consideration. Many biclustering methods are computationally intensive. A possible im-

provement can rely on only searching for those significant patterns rather than all patterns.

For example, Koyutürk et al. in (37) propose a relatively efficient biclustering algorithm by

only searching for those potentially significant patterns.

Before actually giving our analysis, we first briefly review the statistical significance

analysis on standard clustering methods. Standard clustering refers to techniques which

try to assign samples into subgroups such that the (average of) pairwise distance (based

on all variables) between two samples within a same group is smaller than the distance

between two samples from different groups. Validating and interpreting the clusters identi-

fied by standard clustering methods is not a thoroughly treated problem in statistics. One

may ask whether the clusters have arisen by chance. Are there p-values associated with

particular clusters? How many clusters should be there? Answers to these questions involve

the multiple comparison problems. In general, multiple comparison problems are difficult.

Some works on multiple testing can be found in studies of gene expression data, such as

permutation based correction and false discovery rate (FDR) studied in (20). However, no

existing work can successfully solve the multiple comparison problems in clustering.

The general validating methods for standard clustering can be divided into two main

categories: external criterion methods and internal criterion methods. External criterion

methods compare the clusters with prior information such as the method in (46). However,

in most cases, prior information is not available. The internal criterion methods use infor-

mation within the given data set and evaluate the goodness of fit. For example, Kaufman

and Rousseeuw in (34) introduce the Silhouette statistic to assess clusters and estimate

the optimal number of clusters. The gap statistic by Tibshirani et al. in (65) attempts

to estimate the number of clusters by comparing within cluster dispersion to that of the

reference null distribution. Simulation and resampling methods studied in (19; 39; 70) are

5



another two popular and widespread ways to assess the statistical significance or to validate

the clustering result. However, they are computationally intensive. In standard clustering

applications, such as spatial data analysis and epidemiology data analysis, probabilistic

analyses on clustering results are available (c.f. (25)). Some of these probabilistic analyses

(c.f. (31)) assume a spatial uniform distribution and the p-values are assigned based on

the probability of finding a large number of observations in a small (usually spherical) area

under Poisson or some other spatial distribution assumptions.

In conclusion, all the analyses mentioned above either can only play the role of validating

clustering results rather than giving a rigorous statistical significant analysis such as a p-

value; or by resampling method, they can give an estimated p-value but have the problem of

being computationally intensive; or they only work for some particular clustering problems.

In contrast to the significance analysis of clusters, the analysis on biclusters is much

easier. The reason is that when studying the significance of biclusters, one can directly

treat the submatrices as a set of individual random variables, while in standard clustering,

one needs to consider all the columns as a whole, which is more difficult to study. To analyze

the significance of biclusters, Koyutürk et al. in (37) assume that the entries of data matrix

follow a uniform memoryless distribution and by large deviation principle, they give p-values

to submatrices. Note that the p-value given there is only the p-value for significance of an

individual submatrix. If the null hypothesis is about significance among all submatrices,

multiple test procedure is needed. Tanay et al. in (62) propose a p-value to evaluate the

significance of a single bicluster by Central Limit Theorem. They also apply Bonferroni

correction to achieve the overall p-value. However, this p-value is suboptimal due to the

normal approximation when the data are actually non-Gaussian. In this dissertation, for a

number of commonly used biclustering method, we will give the analyses directly.

1.5 Overview

This dissertation is organized as follows. We focus on binary-valued data in the first

part and real-valued data in the second part. The last part discusses some future works. In

Chapter 2, we give results on the statistical significance of frequent itemsets identified by

standard frequent itemset mining. In Chapter 3, we propose a binary additive noise model

6



and then study the noise sensitivity of standard frequent itemset mining under this model.

Due to the poor performance of standard frequent itemset mining in noisy environments,

we begin to consider the error-tolerant frequent itemset mining methods which are natural

relaxations of standard frequent itemset mining. We study the statistical significance of

the patterns identified by some popular error-tolerant frequent itemset mining techniques.

We then study the recoverability of the approximate frequent itemset proposed and studied

in (42; 41) in a simple recovery problem. In Chapter 4, we switch our attentions to real-

valued data. Under the assumption of i.i.d. Gaussian entries/i.i.d bounded entries, we

study the statistical significance of submatrices identified by biclustering techniques based

on high average criterion and ANOVA criterion. In Chapter 5, we study the consistency of

submatrices with high average in a block recovery problem with Gaussian noise.

7



CHAPTER 2

Significance Analysis of Frequent Itemsets in
Binary Matrix

2.1 Matrix Expression of Frequent Itemset Mining

Recall that by definition, frequent itemset mining tries to find all sets of items that

appear frequently in a given binary data set. It is easy to see that the frequent itemset

mining problem can be expressed equivalently in a matrix form. In particular, one can

express the data from a frequent itemset mining problem with m transactions and n items

as an m × n binary matrix X, where each row of X represents a transaction, and each

column of X represents an item available to purchase. The entry xij = 1 if the j’th item is

purchased in the i’th transaction, otherwise xij = 0.

Let A be a subset of rows and let B be a subset of columns. The index set C = A×B

is called a submatrix of X. Clearly, in the frequent itemset mining problem, a submatrix C

contains information about whether items in A are purchased in those transactions in B.

Given X, the objective of frequent itemset mining can then be translated to discovering

all maximal submatrices of 1’s with the number of rows greater than k. Here, a submatrix

C is called a maximal submatrix of 1’s if there does not exist another submatrix C ′ of 1’s

such that C ⊂ C ′.

Figure 2.1 below is an example which illustrates the matrix form of the frequent itemset

mining problem. Clearly, when k ≤ 4, all three submatrices are considered frequent, and

when k = 5, only the submatrix in red satisfies the requirement of being frequent. Note

that the rows and the columns in the submatrices are not necessarily to be contiguous in

the frequent itemset mining problem. In fact, this matrix form of the frequent itemset



Figure 2.1: Matrix Form Expression of Frequent Itemset Mining
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mining problem also reveals an one to one correspondence with bipartite graphs. This

correspondence has been used as the basis for biclustering algorithms such as (47; 62). To

be specific, an m × n binary data matrix X can be represented as a graph G = (V,E),

whose vertex set V can be expressed as the union of two disjoint sets V1 and V2. The first

set V1 represents the set of transactions (rows), and the second set V2 represents the set of

items (columns). There is an edge (v1, v2) ∈ E between vertices v1 ∈ V1 and v2 ∈ V2 iff

xv1,v2 = 1. There are no edges connecting vertices within V1 or vertices within V2. Given

any subset V ′
1 ⊂ V1 and subset V ′

2 ⊂ V2, the associated subgraph is defined as H = (V ′, E′)

of G where V ′ = V ′
1 ∪ V ′

2 and E′ is the induced set of edges. H is called a complete

bipartite graph of G if there exists an edge between any pair of vertices in V ′
1 and V ′

2 .

Moreover, if this bipartite graph is maximal, which means there does not exist another

complete bipartite graph containing it, it is called a biclique of G. Clearly, a frequent

itemset corresponds to a biclique with at least k vertices in V ′
1 . Figure 2.2 is an example

demonstrating the connection between frequent itemsets and bicliques. It is known from

(c.f. (24; 32; 51)) that the problem of finding the largest biclique in a given bipartite graph

9



Figure 2.2: Example of Biclique

G is NP-complete, and also the problem of finding the largest biclique with roughly equal

vertex set sizes (c.f. (35; 22)). Some heuristic methods, such as those in (35; 22), and

several approximate methods (c.f. (32; 47)) have been proposed to find the largest biclique,

or the largest frequent itemset in polynomial time. Mirisha et al. also show in (47) that

the results provided by their randomized algorithm can overlap a large proportion of the

largest bicliques with high probability.

2.2 Significance Analysis of frequent itemset mining

In this dissertaion, we will not study how to search for frequent itemsets. Instead, we will

focus on how to assess the statistical significance of frequent itemsets identified in frequent

itemset mining problems. For this purpose, we consider the sizes of maximal submatrices

of 1’s in a binary random matrix. For simplicity, we will start by restricting ourselves

to the case of square target submatrices in a square data matrix in this section. We will

extend the results here to non-square target submatrices and matrices in later sections. In

this section, we will also only focus on binary matrices. Most of our results obtained in

10



the binary case can be extended with little difficulty to the case of categorical data. This

extension is trivial. Therefore it is omitted. Extensions to the case of real-valued matrices

will be discussed in Chapter 4.

To begin, we first define a random matrix model and a random variable that will be

studied throughout this chapter.

Definition: Let Z = {zi,j : i, j ≥ 1} be an infinite array of independent binary random

variables with P (zi,j = 1) = p = 1 − P (zi,j = 0), where the probability p ∈ (0, 1) is fixed.

For n ≥ 1, let Zn = {zi,j : 1 ≤ i, j ≤ n}.

Thus Zn is an n × n binary random matrix comprising the “upper left corner” of the

collection {zi,j}. This definition allows us to make almost-sure type statements concerning

the asymptotic behavior of functions of Zn.

Note that since entries in the submatrices we studied are all 1, and that the submatrix

structures are invariant to row and column permutations, one of the only few quantities we

can use to study the statistical significance of the submatrices of 1’s is their size.

Definition: Given a binary matrix X, let M(X) be the largest integer k such that there

exists a k × k submatrix of 1’s in X.

When assessing the statistical significance of the identified submatrices of 1’s, the above

binary random matrix model can be viewed as a null model and M(·) can be viewed as a

natural test statistic . To be more specific, a k×k submatrix of 1’s in Zn has an associated

significance value equal to P (M(Zn) ≥ k). To obtain this probability, one can follow the

standard first moment method. Let Uk(n) be the number of k × k submatrices of ones in

Zn. It is easy to see that

P (M(Zn) ≥ k) = P (Uk ≥ 1) ≤ EUk =
(
n

k

)2

pk2
.

Clearly, we need a bound on EUk. Note that EU1 = n2p > 1, EUn = pn2
< 1 and that

EUk is decreasing in k when k > log 1
p
n. Therefore, we wish to identify an integer k(n) such

that EUk(n) ≈ 1. The simple idea behind k(n) is that when a submatrix of 1’s with size

k > k(n) is observed, EUk < 1, which suggests this submatrix might be significant; when a

11



submatrix of 1’s with size k < k(n) is observed, EUk > 1, which suggests that it might be

common. In order to obtain k(n), we first consider the Stirling approximation of EUk. Let

φ(n, k) = (2π)−
1
2 nn+ 1

2 k−k− 1
2 (n− k)−(n−k)− 1

2 p
k2

2 ≈ (EUk)1/2. (2.1)

Let s(n) be any real-valued root of equation

1 = φ(n, s). (2.2)

The following lemma asserts that s(n) uniquely exists and so does k(n).

Lemma 2.2.1. When n is sufficiently large, the s(n) in (2.2) is unique, and satisfies

logb n < s(n) < 2 logb n, where b = p−1.

Let k(n) = ds(n)e be the least integer larger than s(n). Based on Lemma 2.2.1 and

some technical but straightforward calculations, one can obtain the asymptotic expression

of s(n) as a deterministic function of n and p.

Lemma 2.2.2.

s(n) = 2 logb n − 2 logb logb n+ C + o(1), (2.3)

where b = p−1 and C = 2 logb e− 2 logb 2.

The proofs of Lemma 2.2.1 and Lemma 2.8.1 can be found in Section 2.6.

Given the fact that k(n) exists and is unique, one can establish the following proposition

which provides an upper bound on P (M(Zn) ≥ k) for k > k(n).

Proposition 2.2.3. Fix 0 < γ < 1. When n is sufficiently large, P (M(Zn) ≥ k(n) + r) ≤

2n−2 r (logb n)3r for each 1 ≤ r ≤ γ n.

Remark: (i) Note that a crude upper bound on M(Zn) may be obtained easily by verifying

the following simple algebra. Indeed,

EUk =
(
n

k

)2

pk2 ≤ n2k

k!2
e−k2 ln b ≤ e2k ln n−k2 ln b

k2
≤ n−2, (2.4)
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when k ≥ 2 logb n+ 1. More generally, if p is replaced by p(k, n), the above inequality still

holds for any k ≥ −2 lnn/ ln p(k, n) + 1. This trivial extension will be used in the later

chapters. However, the proof of Proposition 2.2.3 in Section 2.7 can provide a more precise

upper bound as shown in the next theorem.

(ii)This explicit bound on M(Zn) can also be viewed as an extension of the result on

clique numbers in Bollobás and Erdős (11) to the case of bicliques.

(iii) Note that the probability bound in Proposition 2.2.3 can be considered as a Bon-

ferroni correction over all k × k submatrices in Zn. Usually the Bonferroni correction is

conservative, but the next theorem shows that, in term of the critical threshold k(n), it is

tight.

Proposition 2.2.3 gives an upper bound on P (M(Zn) > k(n)). One may also ask the

question of how likely the size of the identified submatrix will be less than k(n). This

question corrsponds to the probability bound on {M(Zn) < k(n)}. The following theorem

gives an answer to this question. It eventually implies that if the largest size of the observed

square submatrix of 1’s is much smaller than k(n), then either this submatrix is still not

the largest square submatrix of 1’s in the whole matrix or one should suspect the i.i.d.

Bernoulli random matrix model assumption. Note that as we have mentioned before, the

concept of eventually almost sure convergency in the next theorem follows the convention

in Bollobás and Erdős (11). The proof of the next theorem follows the general outlines by

Bollobás and Erdős (11). The detailed proof can be found in Section 2.8.

Theorem 2.2.4. When n is sufficiently large, |M(Zn)−s(n)| < 3
2 eventually almost surely.

It follows from Theorem 2.2.4 that M(Zn) can take one of at most three (integer) values.

This is similar to the result of clique numbers obtained by Bollobás and Erdős (11) and

Matula (45), where they study the size of the largest clique, cl(Gn), in a random graph

Gn with n vertices and each edge being included independently with probability p. They

show that when the size of graph n is sufficiently large, there exists a deterministic function

c(n), same as s(n) up to a constant, such that |cl(Gn) − c(n)| < 3/2 eventually almost

surely. Bollobás and Erdős in (10) give a good account of these results. In fact, the proof

of Theorem 2.2.4 follows the basic outlines by Bollobás and Erdős in (11). However, due

13



to the difference between these two problems, we still need to handle some technical details

carefully in the proof.

Dawande et al. in (16) use first and second moment arguments to show (in our terminol-

ogy) that P (logb n ≤M(Zn) ≤ 2 logb n) → 1 as n tends to infinity. Park and Szpankowshi

in (50) improve the result of Dawande et al.. They show that

P ((1 + ε) logb n ≤M(Zn) ≤ (2− ε) logb n) → 1

as n tends to infinity for any fixed 0 < ε < 1. These are weaker versions of Theorem 2.2.4.

Koyutürk et al. study the problem of finding dense patterns in binary data matrices in (37).

They use a Chernoff type bound for the binomial distribution to assess whether an individual

submatrix has an enriched fraction of ones, and employ the resulting test as the basis for a

heuristic search for significant bi-clusters. However, the effects of multiple testing are not

considered in their assessments of significance. Tanay et al. (62) assess the significance of

bi-clusters in a real-valued matrix using likelihood-based weights, a normal approximation

and a standard Bonferroni correction to account for the multiplicity of submatrices. Use

of the normal approximation for individual submatrices leads to subtoptimal bounds in

non-Gaussian setting.

Theorem 2.2.4 bounds M(Zn), the size of the largest maximal square submatrices of 1’s,

from both above and below almost surely. It gives the range of values in which we expect

to find the size of the largest square submatrices of 1’s in an i.i.d. Bernoulli random matrix.

However, in practice, one may not be able to find the largest square submatrix of 1’s in

a data matrix due to its computational complexity. Thus, it is also useful to ask what is

the size of the smallest maximal square submatrices of 1’s in Zn. When a maximal square

submatrix of 1’s is observed and its size is much smaller than what we expected, we should

suspect the i.i.d. Bern(p) random matrix model assumption.

Definition: Let L(Zn) be the smallest k such that there exists at least one k× k maximal

submatrix of 1’s in Zn and this submatrix is not contained by any other square submatrix

of 1’s.
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An analysis by adopting similar second moment arguments as those in the proof of

Theorem 2.2.4 yields the following result for L(Zn). The detailed proof can be found in

Section 2.9.

Theorem 2.2.5. With probability one,

lim
n→∞

L(Zn)
logb n

= 1.

Remark: Bollobás and Erdős (11) establish a related result on the size of the smallest

cliques in a random graph. However, their proof can not be directly extended here to

obtain the theorem above. What they actually consider, in our terminology, corresponds

to the lower bound on the size of the smallest square submatrices of 1’s, which is not

contained by any rectangular submatrix of 1’s. Obviously, this lower bound is always larger

than L(Zn), since the event that a square submatrix of 1’s is not contained by a larger

rectangular submatrix of 1’s in Zn implies it is also not contained by any larger square

submatrix of 1’s in Zn.

2.3 Non-Square Matrices

The results in the previous section apply to the special case of square matrices Zn and

square submatrices. This restriction can be readily relaxed, yielding bounds that are better

suited to the data sets in recent scientific research with large numbers of variables and

relatively few samples. In this section, we consider the case that Zm,n ∼ Bern(p) is an

m× n random matrix with a fixed row/column aspect ratio α = m
n for some α > 0 as n or

m growing. We also allow the target submatrices to be rectangular with a fixed row/column

aspect ratio β. Analogous to that of Proposition 2.2.3 and Theorem 2.2.4, we defined M(·)

as follows.

Definition: Fix β ≥ 1. Given anm×n i.i.d. random Bern(p) matrix Zm,n with m
n = α > 0,

let M(Z,m, n, β) be the largest k such that Zmn contains a dβke × k submatrix of 1’s.

The asymptotic behavior of M(Z,m, n, β) is the same as M(Z, n,m, β−1), so we only

consider β ≥ 1 here. Following similar steps as those in analyzingM(Zn), we first investigate
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the value of k for which the expected number of dβke × k submatrices of 1’s in Z(dαne, n)

approximately equal to one. Formally, for each k, let Uk(m,n, β) be the number of dβke×k

submatrices of 1’s in Zmn. Then

EUk(m,n, β) =
(

m

dβke

)(
n

k

)
pdβkek.

Define s(m,n, β) to be the root of the equation

1 = φ(s,m, n, β)

= (2π)−1 nn+ 1
2 mm+ 1

2 s−s− 1
2 (βs)−βs− 1

2 (n− s)−(n−s)− 1
2 (m− βs)−(m−βs)− 1

2 pβs2

(2.5)

over s ∈ R+. The uniqueness and existence of s(m,n, ρ) is guaranteed by Lemma 2.11.1 in

Section 2.11, and an asymptotic expression of s(m,n, β) for large n and m = dαne is given

by Lemma 2.11.2 in Section 2.11.

s(m,n, β) =
1 + β

β
logb n−

1 + β

β
logb

(
1 + β

β
logb n

)
+logb α+C(β)+o(1), b = p−1 (2.6)

for some constant C(β) ≥ 0 depending only on β. Note that the aspect ratio α of the

primary matrix appears only in the constant term, and therefore plays an insignificant role

in the threshold value for k. The proofs of the following result are similar to that in the

square case with some additional notation and work to handle the two aspect ratio. They

can be found in Section 2.10 and Section 2.11 respectively.

Proposition 2.3.1. Fix 0 < γ < 1 and α > 0. When n is sufficiently large, for each

1 ≤ r ≤ γ n,

P{M(Z, dαne, n, β) ≥ k(dαne, n, β) + r} ≤ n−(β+1) r 2(logb n)(β+2)r, (2.7)

where k(dαne, n, β) = β+1
β logb n+ logb

α
β .

Since a fixed aspect ratio α of the primary matrix does not play an essential role in the
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asymptotic behavior of M(Z, dαne, n, β), it is natural to consider a situation in which α can

increase with n. This might model, for example, the scaling and cost structure of a given

high-throughput technology. In the case where α(n) = dnγe for some γ > 0 the proof of

Proposition 2.3.1 can be modified to show that

P

(
M(Z, dα(n)e, n, β) ≥

(
γ +

β + 1
β

)
logb n

)
≤ 2n−(β+1) r (logb n)(β+2)r.

This implies that large submatrices of 1’s with aspect ratio β might still be significant.

On the other hand, one can easily show that when β ≥ 1 is fixed and m grows expo-

nentially in n, Zmn can contain a dβne × n submatrix of 1’s with a positive probability.

For example, suppose m = dene. Let k = min{n, n
2 ln b}. We can show below that with

high probability there exists a dβke×k submatrix of 1’s in the binary random matrix Zmn,

given zij follows i.i.d. Bern(p). Indeed, let Z∗
mk be the binary matrix formed by the first

k columns of Zmn. Clearly, for any 1 ≤ i ≤ m, P (z∗i,1 = ... = z∗ik = 1) = pk, and the

number of rows with all one entries in Z∗
mk follows a Binomial(dene, pk) distribution. By

the assumption that k = min{n, n
2 ln b}, the mean of this binomial distribution equals to

dene × pk ≥ dene × e−
n
2 > βk for any constant β. Thus, with high probability, there exists

a dβke × k submatrix of 1’s in Zmn.

Theorem 2.3.2. Fix any α > 0 and β > 1. Eventually almost surely, |M(Z, dαne, n, β)−

s(dαne, n, β)| ≤ 5
2 .

Remark: (i) When α and β are fixed, s(dαne, n, β) is a deterministic function depending

only on n.

(ii) Theorem 2.3.2 implies thatM(Z, dαne, n, β) contains a submatrix of 1s having aspect

ratio β and area (β + 1) log2
b n, the latter increasing with β. Park and Szpankowski (50)

establish a related result, showing that if we do not restrict β, the aspect ratio of the

submatrices, then with high probability the submatrix of 1s in Z(m,n) with the largest

area is of size O(αn)× ln b or ln b×O(n).

For any discovered submatrix of 1’s, we can use Propositions 2.3.1 to evaluate its sta-

tistical significance. We show a sample calculation explicitly in the following example.
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Table 2.1: Simulation Results on M̂(Zn) Based on 400 Replications for Each n.

n s(n) k Proportion of M̂ = k

40 3.553
3 85.75%
4 14.25%

80 4.582
4 97%
5 3%

Example. A frequent itemset mining algorithm is applied to a 4, 000× 100 binary matrix

Y, 65% of whose entries are equal to 1. Suppose that the algorithm finds a 44×25 submatrix

U of ones in Y. Applying Proposition 2.3.1 with p = 0.65, α = 40 and β = 1.76 we find

that k(eαne, n, β) = 24 and that the probability of finding such a matrix U in a purely

random matrix is at most

2n−(1.76+1)×(25−24) (logb n)(1.76+2)×(25−24) ≈ 0.04467.

Thus, a significant value p(U) ≤ 0.04467 may be assigned to U.

2.4 Simulation

The results in the previous sections hold when n is sufficiently large. To check their

validity for moderate values of n, we carried out a simple simulation study on Zn with

n = 40 and 80, and p = .2. In each case we generated 400 random matrices and applied the

FP-growth algorithm (29) to identify all maximal submatrices of ones. For each maximal

submatrix of ones we recorded the length of its shorter side, and let M̂ be the maximum

among these lengths. Thus M̂ is equivalent to the side length of the largest square submatrix

of 1’s in the generated random matrix. We recorded the values of M̂ over all 400 simulations

and compared these values to the corresponding bounds s(40) ≈ 3.553 and s(80) ≈ 4.582

with respect to p = 0.2. Table 2.1 summarizes the results. Note that no value M̂ ≥ s(n)+1

and no value M̂ ≤ s(n)− 1.

In order to check our theoretical results on M(Z, n, n, β) with β > 1, we ran 100 simu-

lations of 80×80 matrix with Bernoulli entries (p=0.1). By applying FP-growth algorithm,
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we found all rectangular maximal submatrices of 1’s, and recorded the length of both their

longer and shorter sides. For each appropriate aspect ratio β ≥ 1, let M̂(Z, n, n, β) be the

largest k such that at least one βk×k or k×βk submatrix of 1’s is observed. Note that since

the length of the longer side and the length of the shorter side of the submatrices in Z80,80

take values among finite integers, β can only take a finite number of values. The difference

between M̂(Z, n, n, β) and k(n, n, β) is calculated and displayed in Figure 2.3 and Figure

2.4. The value of X-axis in both of the following plots are 1/β. The Y-axis in Figure 2.3

is the difference between M̂(Z, n, n, β) and k(n, n, β), and the Y-axis in Figure 2.4 is the

proportion of simulations which are inconsistent with the theoretical predictions summa-

rized by bins of β−1 with length 0.1. Note that even for moderate matrix size n = 80, the

theoretical prediction is very accurate when the aspect ratio β is less than 2. In these cases,

all observed size lengths are within the predicted value ranges. When the aspect ratio is

large, corresponding to β > 2.5, the deviations from the predicted value are obvious. This

reflects the fact that in Proposition 2.3.1, n needs to be sufficiently large for any fixed β,

but this threshold of n depends on β. In current simulation setting, 80 is obviously not

large enough for the larger aspect ratios.

2.5 Significance Analysis of Frequent Itemsets When Items

are Dependent

In previous sections, we studied the statistical significance of frequent itemsets under

the i.i.d. Bern(p) random matrix model. However, in some applications, the entries of the

data matrix are known to be dependent. For example, in gene expression data, correlations

exist between the expression levels of genes. In this scenario, to evaluate the statistical

significance, we need incorporate dependence structure into the previous model. For binary

matrix, a natural extension of the previous i.i.d binary random matrix model is to assume

a Markov chain type dependence structure. In fact, one may assume the following model.

Alternative binary random matrix model: Let c1, ..., cn be the columns of Zn, where

Zn is an n×n binary random matrix after suitable row-wise permutations. c1, ..., cn are i.i.d.

following a two state Markov chain with transition probability P (zi+1,j = 1|zi,j = 0) = p0
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Figure 2.3: Difference between Prediction and Observed M̂(·)

and P (zi+1,j = 1|zi,j = 1) = p1.

Recall that by definition, M(Zn) is the size of the largest square submatrix of 1’s in Zn.

By some simple arguments, one can still establish the following probability upper bound on

M(Zn).

Proposition 2.5.1. Fix any 0 < ε < 1, when n is sufficiently large,

P (M(Z) ≥ 2 logb n+ r) ≤ n(2−ε)r, (2.8)

where b = min{p−1
0 , p−1

1 }.

Proof: Fix any column cj . By the assumption, cj is a Markov chain. Therefore, for any
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Figure 2.4: Fraction of Observed M̂(·) out of Predicted Range
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row index i1 < ... < ik, it follows that

P (zi1,j = 1, ..., zik,j = 1) = Πk
r=1P (zir,j = 1|zir−1,j = 1).

When ir > ir−1 + 1, one can verify that

P (zir,j = 1|zir−1,j = 1) =
P (zir,j = 1, zir−1,j = 1)

P (zir−1,j = 1)

=
∑

u=0,1

P (zir,j = 1, zir−1,j = u, zir−1,j = 1)
P (zir−1,j = 1, zir−1,j = 1)

·
P (zir−1,j = u, zir−1,j = 1)

P (zir−1,j = 1)

=
∑

u=0,1

P (zir,j = 1|zir−1,j = u)P (zir−1,j = u|zir−1,j = 1)

≤ max{p0, p1}
∑

u=0,1

P (zir−1,j = u|zir−1,j = 1) = max{p0, p1}.

When ir = ir−1 + 1, from the condition that P (zir,j = 1|zir−1,j = 1) = p1, inequality
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P (zir,j = 1|zir−1,j = 1) ≤ max{p0, p1} holds immediately. By putting the above two cases

together, one can conclude that P (zi1,j = 1, ..., zik,j = 1) ≤ max{p0, p1}k. Thus for any

k× k submatrix V , it follows that P (F (V ) = 1) ≤ (max{p0, p1})k2
. Moreover, by following

steps similar to those in the proof of Proposition 2.2.3, one can get inequality (2.8).

2.6 Proof of Lemma 2.2.1 and Lemma 2.2.2

Proof of Lemma 2.2.1: Differentiating logb(φ(n, s)) yields

∂ log(φ(n, s))
∂s

=
1

2(n− s)
+ logb(n− s)− s− logb s−

1
2s
,

which is negative when logb n < s < 2 logb n. A routine calculation shows that for 0 < s ≤

logb n,

logb φ(n, s) = (n+
1
2
) logb n− (s+

1
2
) logb s− (n− s+

1
2
) logb(n− s)− s2

2
− 1

2
logb 2π

≥ s
(
logb(n− logb n)− s

2
− logb logb n

)
− 1

2
logb s−

1
2

logb 2π > 0

when n is sufficiently large. Similarly, for 2 logb n ≤ s < n,

logb φ(n, s) ≤ s
(
logb(n− s)− s

2
− logb s

)
− 1

2
logb s−

1
2

logb 2π + 2s+
s logb s

2

≤ s

(
2− logb s

2

)
− 1

2
logb s−

1
2

logb 2π < 0

when n is sufficiently large. Thus, when n is sufficiently large, there exists a unique solution

s(n) of the equation φ(n, s) = 1 and s(n) ∈ (logb n, 2 logb n).

Proof of Lemma 2.2.2: Lemma 2.2.2 is a special case of Lemma 2.11.2 of Section 2.11.

It is omitted here.

2.7 Proof of Proposition 2.2.3

To establish the bound with n independent of r, it suffices to consider a sequence r = rn

that changes with n in such a way that 1 ≤ rn ≤ γ n. Fix n for the moment, let l = k(n)+rn,
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and let Ul(n) be the number of l× l submatrices of 1’s in Zn. Then by Markov’s inequality

and Stirling’s approximation,

P (M(Zn) ≥ r) = P (Ul ≥ 1) ≤ E(Ul) =
(
n

l

)2

pl2 ≤ 2φ(n, l)2. (2.9)

A straightforward calculation using the definition of φ(n, ·) shows that

2φ(n, l)2 = 2φ2(n, k(n)) pr·k(n) [An(r)Bn(r)Cn(r)Dn(r) ]2,

where

An(r) =
(
n− r − k(n)
n− k(n)

)−n+r+k(n)+ 1
2

Bn(r) =
(
r + k(n)
k(n)

)−k(n)− 1
2

Cn(r) =
(
n− k(n)
r + k(n)

p
k(n)

2

)r

Dn(r) = p
r2

2

Note that pr·k(n) = o(n−2r(logb n)3r), and that φ2(n, k(n)) ≤ 1 by the monotonicity of

φ(n, ·) and the definition of k(n). Thus it suffices to show that An(r)·Bn(r)·Cn(r)·Dn(r) ≤ 1

when n is sufficiently large. To begin, note that for any fixed δ ∈ (0, 1/2), when n is

sufficiently large,

Cn(r)
1
r =

n− k(n)
r + k(n)

p
k(n)

2 ≤ n

k(n)
p

k(n)
2 ≤ n

(2− δ) logb n

2+δ
2 logb n

n

which is less than one. In order to show An(r)·Bn(r)·Dn(r) ≤ 1, we consider two possibilities

for the asymptotic behavior of r = rn.

Case 1: Suppose r/k(n) → 0 as n→∞. In this case, Bn(r)
1
r = (1 + o(1)) e−1. Moreover,

r/n→ 0, which implies that An(r)
1
r = (1 + o(1)) e. Thus

An(r) ·Bn(r) ·Dn(r) = ((1 + o(1))2 p
r
2 )r ≤ 1

when n is sufficiently large.

Case 2: Suppose lim infn r/k(n) > 0. In this case a routine calculation shows that
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Bn(r) ≤ 1 for any r ≥ 1, so it suffices to show that

An(r) ·Dn(r) ≤ 1. (2.10)

Note that Dn(r) = (p
r
2 )r and An(r)

1
r = (1 + o(1)) e when r = o(n − k(n)). Thus (2.10)

holds when r = o(n− k(n)).

It remains to consider the case o(n − k(n)) < r < γ n. As
√

(2 + 2
1−γ )n/ log b =

o(n− k(n)), it suffices to assume that
√

(2 + 2
1−γ )n/ log b < r < γ n. In this case,

logbAn(r) ·Dn(r) = logb

[(
1 +

r

n− k(n)− r

)n−r−k(n)− 1
2

p
r2

2

]

≤ n logb

(
1 +

r

n− r − k(n)

)
−

(2 + 2
1−γ )n

2 log b
≤ 0,

where the last inequality comes from the fact that logb(1 + x) ≤ x/ log b for x ≥ 0.

2.8 Proof of Theorem 2.2.4

The proof of Theorem 2.2.4 shares ideas similar to those in the proof of Theorem 2.3.2

in the later section. However, since in Theorem 2.2.4, the range in which M(Zn) possibly

takes value can be further improved from s(n) ± 5
2 to s(n) ± 3

2 , we list both proofs in this

dissertation.

To show Theorem 2.2.4, we need the following definitions.

Definition: Fix an 0 < ε < 1
2 . For any k ≥ 1, let n′k be the least integer n satisfying

EUk(n) ≥ k3+ε, (2.11)

and let nk be the largest integer n satisfying

EUk(n) ≤ k−3−ε. (2.12)

Note that nk and n′k always exist since for any fixed k, EUk(n) is monotone increasing with

n, EUk(k) = pk2 ≤ k−3−ε, and EUk(n) → k3+ε as n→∞.
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Lemma 2.8.1. When k is sufficiently large,

1. n′k < nk+1.

2. n′k − nk <
C1 ln k

k nk for some constant C1 > 0.

3. limk→∞
nk+2−nk+1

nk+1−nk
= b

1
2 .

Proof of 1 : By the definition of nk, it follows that

(
nk

k

)
p

k2

2 ≤ k−
(3+ε)

2 ,

which yields
k

(3+ε)
2

k! b
k2

2

≤ 1
(nk − k)k

,

since (nk−k)!
nk! ≤ 1

(nk−k)k . Thus,

nk ≤ b
k
2

(
k!

k
(3+ε)

2

) 1
k

+ k.

On the other hand, by the definition of nk, it also follows that

(
nk + 1
k

)
p

k2

2 ≥ k−
(3+ε)

2 .

Thus,

k
(3+ε)

2 ≥ b
k2

2
k!

(nk + 1)k
,

which leads to

nk ≥ b
k
2

(
k!

k
3+ε
2

) 1
k

− 1.

Putting the above two bounds on nk together, we have

b
k
2

(
k!

k
3+ε
2

) 1
k

− 1 ≤ nk ≤ b
k
2

(
k!

k
(3+ε)

2

) 1
k

+ k. (2.13)

Consequently, we have

nk = b
k
2 (k!)

1
k + o(k b

k
2 ) (2.14)
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since ln(k−
3+ε
2 )

k → 0 as k →∞.

Similarly, one can verify that

b
k
2

(
k! k

3+ε
2

) 1
k − 1 ≤ n′k ≤ b

k
2

(
k! k

(3+ε)
2

) 1
k

+ k. (2.15)

and therefore

n′k = b
k
2 (k!)

1
k + o(k b

k
2 ). (2.16)

The fact that when k is sufficiently large, n′k < nk+1 is apparent from the above approx-

imations on nk and n′k.

Proof of 2 : From inequalities (2.13) and (2.15), it follows that

n′k − nk ≤ b
k
2

(
k! k

(3+ε)
2

) 1
k

+ k − [b
k
2

(
k!

k
3+ε
2

) 1
k

− 1]

≤ b
k
2

(
k!

k
3+ε
2

) 1
k

(k
3+ε

k − 1) + k + 1

< (nk + 1)(k
3+ε

k − 1) + k + 1

< nk C1
ln k
k
, (2.17)

where the third inequality comes from (2.13) and the last inequality comes by the fact that

when x→ 1, there exists a constant C1 such that C1 lnx > x− 1 and by letting x = k
3+ε

k .

Proof of 3 : From equations (2.14) and (2.16), one can verify that

nk+1

nk
= b

1
2 + o(1),

and
nk+2

nk+1
= b

1
2 + o(1).

Therefore,
nk+2 − nk+1

nk+1 − nk
=

nk+2

nk+1
− 1

1− nk
nk+1

→ b
1
2 . (2.18)
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We will use Uk instead of Uk(n) in the context below for simplicity when it does not

cause confusion.

Lemma 2.8.2. Following the definition of Uk(n), we immediately have

EUk(n) =
(
n

k

)2

pk2

and

EUk(n)2 =
k∑

l=1

(
n

k

)(
k

l

)(
n− k

k − l

) k∑
r=1

(
n

k

)(
k

r

)(
n− k

k − r

)
· p2 k2−lr.

By Lemma 2.8.2, one has

g(Uk(n)) :=
V ar Uk(n)
(EUk(n))2

=
k∑

l=0

k∑
r=0

(
k
l

)(
n−k
k−l

)(
n
k

) (
k
r

)(
n−k
k−r

)(
n
k

) blr − 1,

where b = p−1. Now, we want to bound g(Uk(n)) from above by the following lemma. First,

fix any 0 < ε < 1
2 .

Lemma 2.8.3. When k is sufficiently large, for every n′k < n < nk+1,

g(Uk(n)) ≤ C0k
−1−ε. (2.19)

Proof of Lemma 2.8.3: Note that (k
l)(

n−k
k−l)

(n
k)

is the probability mass function of a hyper-

geometric distribution. Thus,

g(Uk) =
k∑

l=0

k∑
r=0

(
k
l

)(
n−k
k−l

)(
n
k

) (
k
r

)(
n−k
k−r

)(
n
k

) (blr − 1)

=
k∑

l=1

k∑
r=1

(
k
l

)(
n−k
k−l

)(
n
k

) (
k
r

)(
n−k
k−r

)(
n
k

) (blr − 1)

<

k∑
l=1

k∑
r=1

(
k
l

)(
n−k
k−l

)(
n
k

) (
k
r

)(
n−k
k−r

)(
n
k

) blr ≤

(
k∑

r=1

(
k
r

)(
n−k
k−r

)(
n
k

) (br
2/2)

)2

,

where the last inequality is obtained by blr ≤ b
l2+r2

2 . Thus, in order to show Lemma 2.8.3,
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it suffices to show

k∑
r=1

h(r) = O(k−1/2−ε/2) where h(r) :=

(
k
r

)(
n−k
k−r

)(
n
k

) br
2/2. (2.20)

When n ≥ n′k, by inequality (2.15), it follows that k ≤ 2 logb n. Similarly, inequality (2.13)

implies that if n ≤ nk+1 then k ≥ (2 − η) logb n for some fixed 0 < η < 1/2. Moreover,

by the definition of n′k, n > n′k implies that
(
n
k

)
p

k2

2 =
√
EUk(n) ≥

√
EUk(n′k) ≥ k3/2+ε/2.

Using these inequalities, one can bound h(1), h(k − 1) and h(k) from above as follows.

Note that when n > n′k, we have shown that k ≤ 2 logb n. Thus, a routine calculation

shows that

h(1) =

(
k
1

)(
n−k
k−1

)(
n
k

) b1/2 =
b1/2k2(n− k)!(n− k)!

(n− 2k + 1)!n!
<
b1/2k2

n− k
= O(k2b−k/2),

h(k − 1) =
k(n− k)(

n
k

) b
k2

2
−k+ 1

2 ≤ knb
1
2
−k√

EUk(n)
= O(k−1/2−ε/2 b−k(1−η)/(2−η))

h(k) =
b

k2

2(
n
k

) =
1√

EUk(n)
≤ k−3/2−ε/2.

In order to show inequality (2.20), it now suffices to verify that

h(r) ≤ h(1) + h(k − 1)

when n is sufficiently large and k > r and (2− η) logb n < k < 2 logb n.

By the definition of h(·), one has

h(r + 1)
h(r)

=
(k − r)2br+

1
2

(r + 1) (n− 2k + r + 1)
.

When r ≤ 1
3k, the inequality k ≤ 2 logb n implies that

h(r + 1)
h(r)

≤ bk2b
k
3

n− 2k + r + 1
≤ bk2n

2
3

n− 2k + r + 1
< 1.
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When 2
3k ≤ r < k − 1 the inequality k ≥ (2− η) logb n with 0 < η < 1/2 implies that

h(r + 1)
h(r)

≥ 3b
2k
3

2k(n+ r + 1)
≥ 3n

2(2−η)
3

2k(n+ r + 1)
> 1.

Now, we have shown that when r ≤ 1
3k

h(r + 1)
h(r)

≤ 1,

and when r ≥ 2
3k,

h(r + 1)
h(r)

> 1.

Note that for r ∈ [dk
3e − 1, d2k

3 e], it follows that

h(r) = h(d2k
3
e)×

h(d2k
3 e − 1)

h(d2k
3 e)

× ...× h(r)
h(r + 1)

and

h(r) = h(dk
3
e − 1)×

h(dk
3e)

h(dk
3e)

× ...× h(r)
h(r − 1)

.

Thus, if h(r+1)
h(r) is monotone increasing on [dk

3e − 1, d2k
3 e], then

h(r) ≤ max{h(dk
3
e − 1), h(d2k

3
e)} ≤ h(1) + h(k − 1).

To verify the monotonicity, note that the derivative of h(r+1)
h(r) is given by

b
2r+1

2 [
−2(k − r) (r + 1) (n− 2k + r + 1)− (k − r)2 (2r + n− 2k + 2)

(r + 1)2 (n− 2k + r + 1)2
+

(k − r)2 ln b
(r + 1) (n− 2k + r + 1)

]

=
b

2r+1
2 (k − r)

(r + 1) (n− 2k + r + 1)
[
−2 (r + 1) (n− 2k + r + 1)− (k − r) (2r + n− 2k + 2)

(r + 1) (n− 2k + 1)
+ (k − r) ln b].

(2.21)

When k is sufficiently large and n � k > r, the sum of those leading terms in the right

hand side of (2.21) is

−2n (r+1)− (k− r)n+(k− r) (r+1)n ln b = n(−r2 ln b+ kr ln b− k− r+(k− r) ln b− 2).
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By plugging r = k
3 and r = 2k

3 in, it is not hard to check that when k is sufficiently large,

the above quadratic form is nonnegative for any r ∈ [dk
3e − 1, d2k

3 e]. Thus, one can further

conclude that the ratio h(r+1)
h(r) is monotone increasing on [dk

3e − 1, d2k
3 e].

Lemma 2.8.4. Fix any sufficiently large k. M(Zn) = k with probability one if n′k ≤ n ≤

nk+1.

Proof of Lemma 2.8.4: By Lemma 2.8.2 and Markov’s inequality , we have

P (M(Zn) > k) = P (Uk+1(n) > 0) ≤ E(Uk+1(n)) ≤ 1
k3+ε

, (2.22)

when n ≤ nk+1.

By Lemma 2.8.2 and Chebyshev inequality, we have

P (M(Zn) < k) = P (Uk(n) = 0) ≤ V ar(Uk(n))
E2(Uk(n))

=
r∑

l=0

r∑
k=0

(
r
l

)(
n−r
r−l

)(
n
r

) (
r
k

)(
n−r
r−k

)(
n
r

) b−lk − 1

(2.23)

When n′k ≤ n ≤ nk+1, it immediately follows from Lemma 2.8.3 that

P (M(Zn) < k) ≤ O(k−1−ε). (2.24)

Note that M(Zn) is monotone increasing with n. Therefore,

∑
k

P (∃n s.t. n′k ≤ n ≤ nk+1 and M(Zn) 6= k)

≤
∑

k

P (M(Zn′k
) < k) +

∑
k

P (M(Znk+1
) > k)

≤
∑

k

O(k−1−ε) <∞.

By Borel-Cantelli lemma, one can conclude that when k is sufficiently large, M(Zn) = k

with probability 1 if n′k ≤ n ≤ nk+1.

Proof of Theorem 2.2.4: For each m ≥ 1, let Am = ∪n≥mBn with Bn = {|M(Zn) −

30



s(n)| ≥ 3
2}, and define index sets

I1
m = {n ≥ m such that n′k ≤ n ≤ nk+1 for some k 6∈ (s(n)− 3/2, s(n) + 3/2)},

I2
m = {n ≥ m such that n′k ≤ n ≤ nk+1 for some k ∈ (s(n)− 3/2, s(n) + 3/2)},

I3
m = {n ≥ m such that n belongs to no interval [n′k, nk+1] for k ≥ 1}.

Then Am = A1
m ∪A2

m ∪A3
m, where Aj

m = ∪
n∈Ij

m
Bn. It suffices to show that P (Aj

m) → 0 as

m tends to infinity for j = 1, 2, 3.

First, we want to show that when m is sufficiently large A1
m is an empty set. It is easy

to verify from the proof of Lemma 2.2.1 that k ∈ (logb n, 2 logb n). Suppose that there exists

a k̃ such that n′
k̃
≤ n ≤ nk̃+1. Then, one can verify the following inequalities,

(1 + o(1))φ2(n, k̃ + 1) = EUk̃+1(n) ≤ EUk̃+1(nk̃+1) ≤ k̃−3−ε

<< 1 = φ2(n, s(n)),

where the first inequality follows from the monotonicity of EUk̃(·), the second inequality

follows from the definition of nk̃ and the last equality follows from definition of s(n). Note

that φ(n, s) is monotone decreasing when s ∈ (logb n, 2 logb n). Thus, it yields that s(n) ≤

k̃ + 1. Similarly,

(1 + o(1))φ2(n, k̃) = EUk̃(n) ≥ EUk̃(n
′
k̃
) ≥ k̃3+ε

> (1 + o(1)) = (1 + o(1))φ2(n, s(n)),

which implies s(n) ≥ k̃. Putting two bounds on k̃ together, one has that under the condition

of index I1
m, |k̃ − s(n)| < 3

2 , which implies A1
m is empty.

Consider the index set I2
m. When |k−s(n)| < 3/2 the event Bn implies that M(Zn) 6= k.

Since nk, n
′
k →∞ as k →∞, it follows from Lemma 2.14 that

A2
m ⊆

⋃
k≥κ(m)

⋃
n′k≤n≤nk+1

{M(Zn) 6= k}
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for some function κ(·) such that κ(m) → ∞ as m → ∞. Lemma 2.8.4 implies that the

probability of the latter set tends to zero as κ(m) →∞.

It remains to show that limm P (A3
m) = 0. By the definition of nl, n′l and the mono-

tonicity of
(
n
l

)
, one can verify that nl < n′l. Moreover, by Lemma 2.8.1, one can conclude

that

nl →∞ and n′l →∞ as l→∞ ,

and

... < nl < n′l < nl+1 < n′l+1 < ...

Thus, for any sufficiently large n, if there does not exist any l s.t. n′l ≤ n ≤ nl+1, then

there must exist a l such that nl < n < n′l. Note that M(Zn) is monotone increasing when

n is increasing. Therefore, if nl < n < n′l holds for any certain l, then M(Znl
) ≤M(Zn) ≤

M(Zn′l
). Moreover, from Lemma 2.8.4, we have with probability one,

l − 1 = M(Znl
) ≤M(Zn) ≤M(Zn′l

) = l.

In order to show limm P (A3
m) = 0, it now suffices to show that |l − s(n)| < 3

2 and |l − 1 −

s(n)| < 3
2 . Note that the argument above for A2

m implies |l − s(n′l)| <
3
2 . Thus, it suffices

to show |s(n′l)− s(n)| ≤ |s(n′l)− s(nl)| = o(1). Note that

s(n′l)− s(nl) = 2 logb

n′l
nl
− 2 logb

logb n
′
l

logb nl
> 0.

When n′l and nl are sufficiently large, it is easy to check that n′l
nl
≥ logb n′l

logb nl
> 1 using the fact

that function f(x) = x
logb x is increasing for all sufficiently large x. Thus, it suffices to show

that logb
n′l
nl

= o(1). By 2 of Lemma 2.8.1, n′l = nl(1 + C1
log l

l ), it follows immediately that

|s(n′l)− s(nl)| = o(1). Thus |l− s(n)| < 3
2 holds. Similarly, one can show |l− 1− s(n)| < 3

2 .

2.9 Proof of Theorem 2.2.5

In order to establish Theorem 2.2.5, we begin with a definition and a lemma below.

Definition: Fix 0 < ε < 1
2 . For any k, define n∗k = db

k
1+ε e.
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Lemma 2.9.1. Fix any 0 < ε < 1
2 . Eventually almost surely, 1−ε

1+εk < L(Zn∗k
) ≤ k.

Proof of Lemma 2.9.1: To establish the result in the above lemma, we will first show

that eventually almost surely, L(Zn∗k
) ≤ k, which is equivalent to

lim
K
P

 ⋃
k≥K

L(Zn∗k
) > k

 = 0. (2.25)

Let Ũl(n∗k) be the number of l× l maximal submatrices of 1’s in Zn∗k
and not contained

by any other square submatrices of 1’s. It is clear that {L(Zn∗k
) > k} ⊂ {Ũk(n∗k) = 0}.

Thus, to show (2.25), it suffices to show that

lim
K
P

 ⋃
k≥K

{Ũk(n∗k) = 0}

 = 0. (2.26)

Note that it can be verified that for any 0 ≤ l ≤ n,

E(Ũl(n)) =
(
n

l

)2

[2(1− pl)(n−l) − (1− pl)2 (n−l)] pl2 . (2.27)

Moreover, by definition, it follows that Ũl(n) ≤ Ul(n), where Ul(n) is the number of l × l

submatrices of 1’s in Zn with no other restriction. Thus,

E(Ũ2
l ) ≤ E(U2

l ) =
l∑

s=1

(
n

l

)(
l

s

)(
n− l

l − s

) l∑
r=1

(
n

l

)(
l

r

)(
n− l

l − r

)
pl2−sr. (2.28)

Consequently,

E(Ũ2
l )

E(Ũl)2
≤ [2(1− pl)(n−l) − (1− pl)2 (n−l)]−2

l∑
s=0

l∑
r=0

(
l
s

)(
n−l
l−s

)(
n
l

) (
l
r

)(
n−l
l−r

)(
n
l

) bsr. (2.29)

Now, by a standard second moment argument and Borel-Cantelli lemma, in order to estab-

lish (2.26), it suffices to show that

∑
k

P
(
Ũk(n∗k) = 0

)
≤
∑

k

V ar(Ũk(n∗k)
2
)

E(Ũk(n∗k))
2

<∞. (2.30)
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Note that it is not hard to show that when k is sufficiently large,

(n∗k − k) ln(1− pk) = (n∗k − k) ln(1− n∗k
−1−ε) = −C2n

∗
k
−ε,

where C2 > 0 is a constant. When l = k and n = n∗k, since (1 − pk)(n
∗
k−k) → 1 as

n∗k >> k →∞,

(2(1− pl)(n−l) − (1− pl)2 (n−l))−2 − 1 ≤ 4[2(1− pl)(n−l) − (1− pl)2 (n−l) − 1] = O(n∗k
−ε)

for sufficiently large k. Consequently, the right hand side of inequality (2.29) is equal to

k∑
s=1

k∑
r=1

(
k
s

)(n∗k−k
k−s

)(n∗k
k

) (
k
r

)(n∗k−k
k−r

)(n∗k
k

) bsr · C0,

for some constant C0 > 0. Note that for any fixed 0 < ε < 1
2 , if k = (1 + ε) logb n

∗
k then

n′k ≤ n∗k ≤ nk+1, where nk and n′k follow the same definitions as those in Lemma 2.8.3.

Therefore, it is clear from the proof of Lemma 2.8.3 and the definition of n∗k that when k is

sufficiently large,

∞∑
k=1

(
k∑

s=1

k∑
r=1

(
k
s

)(n∗k−k
k−s

)(n∗k
k

) (
k
r

)(n∗k−k
k−r

)(n∗k
k

) bsr · C0

)
<∞,

which implies inequality (2.30).

Now, we wish to show L(Zn∗k
) > (1− ε) logb n

∗
k eventually almost surely. This is equiv-

alent to

P

 ∞⋃
k=1

⋃
l≤(1−ε) logb n∗k

{Ũl(n∗k) > 0}

 ≤
∞∑

k=1

(1−ε) logb n∗k∑
l=1

E(Ũl(n∗k)) <∞, (2.31)

where the first inequality follows from a standard first moment argument. It is easy to

check that

E(Ũl(n∗k)) ≤
(
n∗k
l

)2

(1− pl)(n
∗
k−l)pl2 =: E∗(l).

By Stirling approximation, one can verify the inequality below for any sufficiently large
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k and l = (1− ε) logb n
∗
k.

logbE
∗(l)

1
2

l
= (

n∗k
l

+
1
2l

) logb

n∗k
n∗k − l

+ logb

n∗k − l

l
− l

2
−
n∗k − l

2l
logb(1− pl) +O(1)

≤ 2 logb n
∗
k −O(n∗k

ε) +O(1) ≤ −γ, where γ > 2. (2.32)

It can also be shown that when n∗k is sufficiently large and l ≤ (1− ε) logb n
∗
k,√

E∗(l)
E∗(l + 1)

= (
l + 1
n∗k − l

)(
(1− pl+1)

1
2

pl+ 1
2

)(
1− pl

1− pl+1
)

n−l
2

< (
l + 1
n∗k − l

)(
(1− pl+1)

1
2

pl+ 1
2

)

< 1 (2.33)

Therefore,by putting (2.32) and (2.33) together, one can obtain inequality (2.31).

Proof of Theorem 2.2.5: For any fixed 0 < ε < 1
2 . Let 0 < ε′ < ε < 1

2 . In this proof, n∗k

will be defined based on constant ε′. Note that by the definition of n∗k, it is clear that as

k →∞, n∗k →∞, and that n∗k ≤ n∗k+1 for any k ≥ 1. Moreover, by the definition of L(Zn),

eventually almost surely, L(Zn) ≥ L(Zn′) for any sufficiently large pair n > n′. Therefore,

lim
m
P

 ⋃
n≥m

{L(Zn) > (1 + ε) logb n}

+ lim
m
P

 ⋃
n≥m

{L(Zn) ≤ (1− ε) logb n}


≤ lim

K
P

 ⋃
k≥K

{(1 + ε) logb n < L(Zn) ≤ L(Zn∗k+1
) when n∗k ≤ n < n∗k+1}

+

lim
K
P

 ⋃
k≥K

{L(Zn) ≤ L(Zn∗k
) ≤ (1− ε) logb n when n∗k ≤ n < n∗k+1}

 . (2.34)

Note that logb n − logb n
∗
k ≤ logb n

∗
k+1 − logb n

∗
k = 1 and logb n

∗
k+1 − logb n ≤ logb n

∗
k+1 −

logb n
∗
k = 1. Moreover, by definition, ε′ < ε, it is then easy to check that when k is sufficiently

large,

(1 + ε) logb n ≥ (1 + ε) logb n
∗
k > (1 + ε′) logb n

∗
k+1

and

(1− ε) logb n ≤ (1− ε) logb n
∗
k+1 < (1− ε′) logb n

∗
k,
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when n is sufficiently large. Note that Lemma 2.9.1 implies

lim
K
P

 ⋃
k≥K

{(1 + ε′) logb n
∗
k+1 < L(Zn) ≤ L(Zn∗k+1

) when n∗k ≤ n < n∗k+1}


= lim

K
P

 ⋃
k≥K

{L(Zn) ≤ L(Zn∗k
) ≤ (1− ε′) logb n

∗
k when n∗k ≤ n < n∗k+1}

 = 0.

Therefore, (1− ε) logb n < L(Zn) ≤ (1 + ε) logb n eventually almost surely.

2.10 Proof of Proposition 2.3.1

Fix n, let r = k1(n) + k and Ur(ρ) be the number of r ρ× r submatrices of 1’s in Ymn.

Note that Ur(ρ) is an integer, so E(Ur(ρ)) ≥ 1 ·
∑

i≥1 P (Ur = i). Then it follows that

P (Mρ(Zmn) ≥ r) = P (Ur > 0) ≤ E (Ur(ρ)) =
(
n

r

)
·
(
αn

ρr

)
· pρ r2

. (2.35)

When n is sufficiently large, 1 ≤ k ≤ γ n, and logp−1 n < k1(n) < ρ+1
ρ logp−1 n, one can

apply Stirling approximation to show that

E(Ur) ≤ 2 [(2π)−
1
2 nn+ 1

2 (n− r)−n+r+ 1
2 (r)−r− 1

2 p
ρ (r)2

2 ] ·

[(2π)−
1
2 αnαn+ 1

2 (αn− ρr)−αn+ρr+ 1
2 (ρr)−ρr− 1

2 p
ρ (r)2

2 ]

= 2E(Uk1(n)) p
ρ k k1(n) [A(k)B(k)C(k)D(ρ k)]

×[Aαn(ρ k)Bαn(ρ k)Cαn(ρ k)Dαn(ρ k)],

where A(k) = ( n−r
n−k1(n))

−n+r− 1
2 , B(k) = ( r

k1(n))
−k1(n)− 1

2 ,

C ′(k) = (n−k1(n)
r p

ρ k1(n)
2 )k and D(ρ k) = p

ρ k2

2 ;

Aαn(ρ k) = ( αn−ρr
αn−ρk1(n))

−αn+ρr− 1
2 , Bαn(ρ k) = ( r

k1(n))
−ρk1(n)− 1

2 ,

Cαn(ρ k) = (αn−ρk1(n)
ρr p

k1(n)
2 )ρk and Dαn(ρ k) = p

ρ k2

2 .

Since by definition, k1(n) is the solution to E(Uk1(n)(ρ)) = 1, and when n is sufficiently

large, p
ρ kk1

2 ≤ (ρ+2)k logp−1 n

n2ρ k , we only need to show that

A(k) ·B(k) · C(k) ·D(ρ k) ≤ 1
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and

Aαn(ρk) ·Bαn(ρk) · Cαn(ρk) ·Dαn(ρk) ≤ 1,

when n is large.

Recall C(k) and D(k). Since ρ ≥ 1, it follows that

D(ρ k) ≤ D(k) and C ′(k) ≤ C(k).

Then from the argument in the proof of Proposition 2.2.3, it concludes that when n is

sufficiently large and 1 ≤ k ≤ γ n,

A(k) ·B(k) · C ′(k) ·D(ρ k) ≤ 1.

To show Aαn(ρk) ·Bαn(ρk) · Cαn(ρk) ·Dαn(ρk) ≤ 1, we have the following arguments.

First, fix any 0 < δ < 1 and for any sufficiently large n, we have the following inequalities,

Cαn(ρk)
1

ρk =
αn− ρk1(n)
ρk + ρk1(n)

p
k1(n)

2 ≤ αn

ρk1(n)
p

k1(n)
2

≤ αn

(ρ+ 1) logp−1 n− (ρ+ 1 + δ) logp−1 logb n

(ρ+1+δ)
2ρ logp−1 n

ρ+1
2ρ n

≤ (1 + o(1))
α

1 + ρ
,

where the second inequality holds by the fact that

k1(n) ≥ ρ+ 1
ρ

logp−1 n− (
ρ+ 1
ρ

+ δ) logp−1 logp−1 n.

In order to show

Aαn(ρk) ·Bαn(ρk) ·Dαn(ρk) ≤ (
2α

1 + ρ
)−ρk
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when ρ < 2α− 1, and

Aαn(ρk) ·Bαn(ρk) · Cαn(ρk) ·Dαn(ρk) ≤ 1

when ρ ≥ 2α− 1, we consider the following three cases.

Case 1: When k
k1(n) → 0 as n→∞, it follows that when n is sufficiently large

Aαn(ρk)
1

ρk = (1 + o(1)) e and Bαn(ρk)
1

ρk = [(1 + o(1)) e]−1 .

Therefore

Aαn(ρk) ·Bαn(ρk) ·Dαn(ρk) ≤ ((1 + o(1)) p
k
2 )ρk ≤ min

{
(

2α
1 + ρ

)−ρk, 1
}
,

when n is sufficiently large.

Case 2: When
√

(2α+ δ)n ≤ k ≤ γ n and n is sufficiently large, it follows

logp−1 Aαn(ρk) ·Dαn(ρk) = logp−1

(
(1 +

ρk

αn− ρk1(n)− ρk
)αn−ρk1−ρk+ 1

2 · p
ρk2

2

)
≤ αn logp−1

(
1 +

ρk

αn− ρk − ρk1(n)

)
− (2α+ δ)n

2

≤ 0.

When
√

(2α+ δ)n ≤ k ≤ γ n and n is sufficiently large, we have

Bαn(ρk) ≤

[√
(2α+ δ)n

ρ+2
ρ logp−1 n

]−ρk

≤ min
{

(
2α

1 + ρ
)−ρk, 1

}
.

Therefore, it follows that Aα(ρk) ·Bα(ρk) ·Dα(ρk) ≤ min
{

( 2 α
1+ρ)−ρk, 1

}
.

Case 3: When lim inf k
k1(n) > 0 as n→∞ and k <

√
(2α+ δ)n, it follows that Aαn(ρk)

1
ρk =

(1 + o(1)) e when n is sufficiently large. Therefore

Aαn(ρk) ·Dαn(ρk) ≤ ((1 + o(1))e · p
k
2 )ρk ≤ (

2α
1 + ρ

)−ρk, (2.36)
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when n is sufficiently large.

Note that when k > 2 logp−1
2 α
1+ρ , (2.36) implies ((1+o(1))e·p

k
2 )ρk ≤ min

{
( 2 α
1+ρ)−ρk, 1

}
.

When k ≤ 2 logp−1
2 α
1+ρ , (2.36) implies Aαn(ρk) · Bαn(ρk) · Dαn(ρk) ≤ 1 and Cαn(ρk) ≤

( 2 α
1+ρ)2 logp−1

2 α
1+ρ = ∆(α, ρ, p). Therefore, the probability bound holds.

2.11 Proof of Theorem 2.3.2

Lemma 2.11.1. When both n and m are sufficiently large, equation (2.5) has a unique

root s(m,n, β). Moreover, s(m,n, β) ∈ (logb n+ β
β+1 logb

m
n ,

β+1
β logb n+ logb

m
n ).

Proof of Lemma 2.11.1: It is trivial to verify that

∂ logb(φ(s,m, n, β))
∂s

= logb(n− s) + logb(m− βs)− 2βs− logb s− logb βs+O(1),

which is negative and bounded away from zero when logb mn
2β < s(m,n, β) < β+1

β logb n +

logb
m
n and m, n are sufficiently large. Moreover, it is clear from the definition of φ(·) that

logb φ(s,m, n, β) = (n+
1
2
) logb n+ (m+

1
2
) logbm− (s+

1
2
) logb s− (βs+

1
2
) logb βs

−(n− s+
1
2
) logb(n− s)− (m− βs+

1
2
) logb(m− βs)− βs2 − 1

2
logb 2π

= s logb(n− s) + βs logb(m− βs)− βs2 − (β + 1)s logb s+O(s).

It is easy to check that

s logb(n− s) + βs logb(m− βs)− βs2 < s((β + 1) logb n+ β logb

m

n
− βs), (2.37)

which is negative when s ≥ β+1
β logb n+ logb

m
n , and that

s logb(n− s) + βs logb(m− βs)− βs2 = s((β + 1) logb n+ β logb

m

n
− βs) + o(1), (2.38)

which is positive when s ≤ logb n+ β
β+1 logb

m
n . Now, to show the uniqueness and existence

of the root, it suffices to check whether the lower bound in monotone interval of φ(·) , logb mn
2β ,

is less than logb n+ β
β+1 logb

m
n in above, which is obvious.
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Lemma 2.11.2. When n is sufficiently large, a routine analysis shows that

s(m,n, β) =
β + 1
β

logb n−
β + 1
β

logb logb n+ logb

m

n
+ C(β) + o(1), (2.39)

where C(β) is some constant depending only on β and b = p−1.

Proof: Recall that by definition,

φ(s,m, n, β) = 2πnn+ 1
2mm+ 1

2 s−s− 1
2 (βs)−βs− 1

2 (n− s)−(n−s)− 1
2 (m− βs)−(m−βs)− 1

2 pβs2
.

Taking logarithm on both sides and after simple algebra, one can obtain that

1
2

logb

n

n− s
+

1
2

logb

m

m− βs
+ n logb

n

n− s
+m logb

m

m− βs

−(s+
1
2
) logb s− (βs+

1
2
) logb βs+ s logb(n− s) + βs logb(m− βs)− βs2

= − logb 2π.

Note that Lemma 1 implies that s(m,n, β) belongs to interval

(logb n+
β

β + 1
logb α,

β + 1
β

logb n+ logb α),

where α = m
n . Thus, we will only consider the above equation for those s << n. Divide

both sides of the above equation by s. It follows that

β logb(m− βs) + logb(n− s)− βs− (1 + β) logb s = −(1 + β) logb e+ β logb β +O(
logb s

s
),

which can be rewritten as

β logbm+ logb n− βs− (1 + β) logb

1 + β

β
logb n

= (1 + β) logb

s
1+β

β logb n
− β logb

m− βs

m
− logb

n− s

n

−(1 + β) logb e+ β logb β +O(
logb s

s
). (2.40)
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For any m, n and β, define R(m,n, β) as the function of (m,n, β) satisfying

s(m,n, β) =
β + 1
β

logb n−
β + 1
β

logb

(
β + 1
β

logb n

)
+ logb α+R(m,n, β).

Since we have shown in Lemma 1 that s(m,n, β) uniquely exists, to obtain the correct value

of R(m,n, β), one can directly plug the expression of s(m,n, β) into (2.40). It is clear that

R(m,n, β) must be independent of m and n, and R(m,n, β) = (1+β) logb e−β logb β
β + o(1).

Therefore, we have shown that

s(m,n, β) =
β + 1
β

logb n−
β + 1
β

logb

(
β + 1
β

logb n

)
+ logb α+R(β) + o(1).

To study M(Z, β), we define nk(α, β) and n′k(α, β) in a fashion analogous to nk and n′k

in Section 2.8 respectively. In the rest of this section, we will use EUk(n) or EUk instead

of EUk(m,n, β) when they do not cause confusion.

Definition: Fix α > 0 and β > 1. For any k ≥ 1, let n′k(α, β) be the least integer n s.t.

EUk(dαne, n, β) ≥ k4. (2.41)

Let nk(α, β) be the largest integer n s.t.

EUk(dαne, n, β) ≤ k−4. (2.42)

The existence of nk(α, β) and n′k(α, β) is easy to check for any fixed α, β and k > 0 by

arguments similar to those in Section 2.8. In fact, when α(n) is a function of n, as long as

m = dαne is non-decreasing in n, nk and n′k remain well defined.

Lemma 2.11.3. Let b = p−1. When k is sufficiently large,

1. n′k(α, β) < nk+1(α, β).

2. limk→∞
nk+2(α,β)−nk+1(α,β)
nk+1(α,β)−nk(α,β) = b

β
β+1 .
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Proof of 1: To begin, we find upper bounds on nk. By definition of nk, it follows that

EUk(dαnke, n, β) =
(
dαnke
dβke

)(
nk

k

)
pdβkek ≤ k−4.

Simply using (nk−k)!
nk! ≤ 1

(nk−k)k and (dαnke−dβke)!
dαnke! ≤ 1

(dαnke−dβke)dβke , the above inequality

yields

k4

dβke!k! bdβkek ≤
1

(nk − k)k(dαnke − dβke)dβke ≤
1

(nk − k)k(αnk − βk − 1)dβke .

Rearranging the above inequality, one has βk + 1 ≤ αk,

nk ≤ α
− β

β+1 b
βk+1
β+1

(
k!dβke!
k4

) 1
(β+1)k

+ k, (2.43)

and when βk + 1 > αk,

nk ≤ α
− β

β+1 b
βk+1
β+1

(
k!dβke!
k4

) 1
(β+1)k

+
β

α
k − α−1. (2.44)

Now, we look for the lower bounds on nk. By the definition of nk,

EUk(dα(nk + 1)e, nk+1, β) =
(
dα(nk + 1)e

dβke

)(
nk + 1
k

)
pdβkek ≥ k−4,

which implies

k4 ≥ bβk2 k!dβke!
(nk + 1)k(α(nk + 1) + 1)βk+1

≥ bβk2 k!dβke!
(nk + 1 + α−1)k(α(nk + 1) + 1)βk+1

.

The above inequality leads to

(nk + 1 + α−1)(α(nk + 1) + 1)β+ 1
k ≥ bβk

(
k!dβke!
k4

) 1
k

.

Thus,

nk ≥ α
− β+k−1

β+1+k−1 b
βk

β+1+k−1

(
k!dβke!
k4

) 1
k(β+1+k−1)

− 1− 1
α
. (2.45)
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Next, we turn our attention to n′k. Similarly, one can verify that

n′k ≥ α
− β+k−1

β+1+k−1 b
βk

β+1+k−1
(
k4 k!dβke!

) 1
k(β+1+k−1) − 1

α
. (2.46)

and when βk + 1 ≤ αk,

n′k ≤ α
− β

β+1 b
βk+1
β+1

(
k4 k!dβke!

) 1
(β+1)k + k − 1, (2.47)

and when βk + 1 > αk,

n′k ≤ α
− β

β+1 b
βk+1
β+1

(
k4 k!dβke!

) 1
(β+1)k +

β

α
k − α−1 − 1. (2.48)

Obviously, when k is sufficiently large, n′k < nk+1, since

n′k = O(b
βk

β+1k
1

β+1 ) and nk+1 = O(b
β(k+1)

β+1 (k + 1)
1

β+1 ).

Proof of 2: From inequalities (2.43) - (2.45), one can verify that

nk+1

nk
= b

β
β+1 + o(1),

and
nk+2

nk+1
= b

β
β+1 + o(1) + o(1).

Therefore,
nk+2 − nk+1

nk+1 − nk
=

nk+2

nk+1
− 1

1− nk
nk+1

→ b
β

β+1 . (2.49)

Lemma 2.11.4. Following the definition of Uk(m,n, β), we immediately have

EUk =
(

m

dβke

)(
n

k

)
pdβkek
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and

EU2
k =

k∑
l=0

(
n

k

)(
k

l

)(
n− k

k − l

) dβke∑
r=0

(
m

dβke

)(
dβke
r

)(
m− dβke
dβke − r

)
· p2 dβkek−lr.

By Lemma 2.11.4, one has

g(Uk) :=
V ar Uk

(EUk)2
=

k∑
l=0

dβke∑
r=0

(
k
l

)(
n−k
k−l

)(
n
k

) (dβke
r

)(m−dβke
dβke−r

)(
m
dβke

) blr − 1,

where b = p−1.

Lemma 2.11.5. Fix α > 0 and β ≥ 1. When k is sufficiently large, for every n′k(α, β) <

n < nk+1(α, β) and m = dαne, one can show that

g(Uk(m,n, β)) = O(k−2). (2.50)

Proof of Lemma 2.11.5: By reasons similar to those in the proof of Lemma 2.8.3 in

Section 2.8, it suffices to upper bound the following quantity.

g∗(Uk) :=
k∑

l=1

dβke∑
r=1

(
k
l

)(
n−k
k−l

)(
n
k

) (dβke
r

)(m−dβke
dβke−r

)(
m
dβke

) blr.

Let

h(l, r) :=

(
k
l

)(
n−k
k−l

)(
n
k

) (dβke
r

)(m−dβke
dβke−r

)(
m
dβke

) blr.

It is easy to verify that

h(1, 1) =
kdβke(n− k)(m− dβke)b
(k − 1)(dβke − 1)

(
n
k

)(
m
dβke

) ≤ k−4

when k is sufficiently large and n > n′k(α, β) (by inequalities (2.47) and (2.48)). Moreover,

by definition of n′k(α, β),

h(k, dβke) = EUk(m,n, β)−1 ≤ k−4
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when n > n′k(α, β).

In order to bound other terms in g′(Uk), one can verify that for any fixed l < logb
m−2βk−2
(βk+1)2

,

h(l, r + 1)
h(l, r)

=
(dβke − r)2bl

(r + 1) (m− 2dβke+ r + 1)
≤ (βk + 1)2bl

m− 2βk − 2
< 1,

and that for any fixed l > logb(βk + 2)m,

h(l, r + 1)
h(l, r)

=
(dβke − r)2bl

(r + 1) (m− 2dβke+ r + 1)
≥ bl

(βk + 2)m
> 1.

Thus,

h(l, r) ≤ h(l, 1) + h(l, dβke), when l ∈ [logb(m− 2βk)− logb βk, logbm+ logb(βk + 2)]c.

Similarly,

h(l, r) ≤ h(1, r) + h(k, r), when r ∈ [logb(n− 2k)− logb k, logb n+ logb(k + 2)]c.

It remains to consider h(l, r) when l = logbm + o(logbm) and r = logb n + o(logb n). A

straightforward calculation yields that

logb h(r, l) ≤ 2l logb k + 2r logbdβke − l logb(n− k)− r logb(m− dβke)

+k logb k + dβke logbdβke+ (1 + o(1)) logbm logb n

≤ O(k) logb k − (1 + o(1)) logbm logb n ≤ −4,

when l = logbm + o(logbm), r = logb n + o(logb n), k is sufficiently large and n′k(m,β) <

n < nk+1(m,β) (by inequalities (2.43) - (2.48)).

Thus

g∗(Uk) ≤ βk2 · k−4 +
k∑

l=1

(h(l, 1) + h(l, dβke)) +
dβke∑
r=1

(h(1, r) + h(k, r))

≤ O(k−2) +
k∑

l=1

(h(1, 1) + h(k, dβke)) +
dβke∑
r=1

(h(1, 1) + h(k, dβke))
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= O(k−2),

where the second inequality comes from the monotonicity of h(·, 1), h(·, dβke), h(1, ·) and

h(k, ·) and the last inequality comes from the upper bounds on h(1, 1) and h(k, dβke).

Lemma 2.11.6. Fix α > 0, β > 1. For any sufficiently large k, when n′k(α, β) ≤ n ≤

nk+1(α, β), M(Z,m, n, β) = k eventually almost surely.

Proof of Lemma 2.11.6: By Lemma 2.11.4 and Markov’s inequality , we have

P (M(Z,m, n, β) > k) = P (Uk+1(m,n, β) > 0) ≤ E(Uk+1(m,n, β)) ≤ 1
k4
, (2.51)

when n ≤ nk+1(α, β).

By Lemma 2.11.4 and Chebyshev inequality, we have

P (M(Z,m, n, β) < k) = P (Uk(m,n, β) = 0) ≤ V ar(Uk(m,n, β))
E2(Uk(m,n, β))

(2.52)

When n′k(α, β) ≤ n ≤ nk+1(α, β), it immediately follows from Lemma 2.11.5 that

P (M(Z,m, n, β) < k) ≤ O(k−2). (2.53)

Note that M(Z,m, n, β) is monotone increasing with n for any given α > 0 and m =

dαne. Therefore,

∑
k

P (∃n s.t. n′k ≤ n ≤ nk+1 and M(Z, dαne, , n, β) 6= k)

≤
∑

k

P (M(Z, dαn′ke, n′k, β) < k) +
∑

k

P (M(Z, dαnk+1e, nk+1, β) > k)

< ∞.

By Borel-Cantelli lemma, one can conclude that when k is sufficiently large,M(Z, dαne, n, β) =

k with probability 1 if n′k ≤ n ≤ nk+1.

Proof of Theorem 2.3.2: Since the basic idea here is the same as that in the proof of

Theorem 2.2.4, we will only address the difference.
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For each m ≥ 1, let Am = ∪n≥mBn with Bn = {|M(Z, dαne, n, β)− s(dαne, n, β)| ≥ 5
2},

and define index sets

I1
m = {n ≥ m such that n′k(dαne, n, β) ≤ n ≤ nk+1(dαne, n, β) for some

k 6∈ (s(dαne, n, β)− 5
2
, s(dαne, n, β) +

5
2
)},

I2
m = {n ≥ m such that n′k(dαne, n, β) ≤ n ≤ nk+1(dαne, n, β) for some

k ∈ (s(dαne, n, β)− 5
2
, s(dαne, n, β) +

5
2
)},

I3
m = {n ≥ m such that n belongs to no interval

[n′k(dαne, n, β), nk+1(dαne, n, β)] for k ≥ 1}.

Again, we want to show P (Aj
m) → 0 as m tends to infinity for j = 1, 2, 3.

First, we still want to showA1
m is empty. From inequalities (2.43) and (2.44), one can ver-

ify that if there exists a k such that n′k ≤ n ≤ nk+1, then k ∈ (logb n+ β
β+1 logb

m
n ,

β+1
β logb n+

logb
m
n ). By arguments to those in the proof of Theorem 2.2.4, it follows that

(1 + o(1))φ(k + 2, αn, n, β) ≤ EUk+1(n) ≤ EUk+1(nk+1)

≤ k−3−ε < 1 = (1 + o(1))φ(s(αn, n, β), αn, n, β),

and

(1 + o(1))φ(k, αn, n, β) ≥ EUk(n) ≥ EUk(n′k)

≥ k3+ε > (1 + o(1)) = (1 + o(1))φ(s(αn, n, β), αn, n, β).

By the monotonicity of φ(·), it is clear that k ≤ s(αn, n, β) ≤ k + 2, which implies A1
m is

empty.

Since the arguments on limm→∞ P (A2
m) = 0 are almost identical to those in the proof

of Theorem 2.2.4, it will be omitted here.

It remains to show that limm P (A3
m) = 0. By a similar argument as that in the proof

of Theorem 2.2.4, one can verify that for any sufficiently large n, if there does not exist

any k s.t. n′k(dαne, n, β) ≤ n ≤ nk+1(dαne, n, β), then there must exist a k such that
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nk(dαne, n, β) < n < n′k(dαne, n, β). Again, if we regard Zdαne,n as the left upper corner

of an infinite dimensional binary matrix, then M(Z, dαne, n, β) is monotone increasing

when n is increasing. Therefore if nk(dαne, n, β) < n < n′k(dαne, n, β) for any certain k,

then M(Z, dαnke, nk, β) ≤M(Z, dαne, n, β) ≤M(Z, dαn′ke, n′k, β). Moreover, from Lemma

2.11.6, we have k − 1 ≤ M(Z, α, n, β) ≤ k. By following the arguments in the proof of

Theorem 2.2.4, it now suffices to show

s(αn′k, n
′
k, β)− s(αnk, nk, β) = o(1),

which is obvious from (2.6) and the bounds on nk(dαne, n, β) and n′k(dαne, n, β). Thus,

limm P (A3
m) = 0.
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CHAPTER 3

Noise Sensitivity of Frequent Itemset Mining and
Recoverability of Error-Tolerant Frequent Itemset

Mining in Binary Matrices with Noise

3.1 Noise Sensitivity Analysis

3.1.1 Noise

The data to which data mining methods are applied are typically obtained by high-

throughput technologies. Data of this sort is subject to varying levels of error and noise

effects. Systematic errors are often identified and removed in preprocessing before data

mining. For example, in DNA microarray analysis, the biases such as those caused by the

efficiency of dye incorporation, DNA concentration on arrays and batch variation are usually

removed by normalization. Noise that remains after preprocessing is usually considered

unavoidable and as randomness of the model. For example, in DNA Microarray analysis

such as (66; 48), biologists carry out multiple replicate experiments on the aliquots that

come from a same sample, and study the variations of the gene expression values among

different aliquots. The result there shows that moderate noise exists for all genes in their

experiment. Another example can be found in transaction data. Errors such as missing

values, incorrect inputs caused by machine malfunctions are common and can be viewed as

random errors.

Some data mining methods commonly used by computer scientists, such as standard

frequent itemset mining algorithms, do not account for the effect of noise and errors in their

search for distinguished submatrices. In the next section, we will show how the noise can

severely affect the performance of standard frequent itemset mining.



3.1.2 Binary Statistical Additive Noise Model

In order to account for the potential effects of noise on data mining tasks such as frequent

itemset mining, we study under a simple statistical model where the observed data is equal

to the (modulo 2) sum of a “true” unobserved data matrix plus random noise. Formally,

Y = X⊕ Z. (3.1)

We define and interpret each matrix in turn. Each of the matrices Y, X and Z has n

columns and m rows. Each column corresponds to a sample or an experimental condition.

Each row corresponds to a binary variable or a feature measured on each sample. The

matrix X = {xi,j} is a deterministic binary matrix that consists of the true data values in

the absence of noise. Z ∼ Bern(p) is a random matrix, whose entries zi,j are independent

Bernoulli random variables (coin tosses) with P (zi,j = 1) = p = 1 − P (zi,j = 0) for some

p ∈ (0, 1). The matrix Y = {yi,j} represents the observed binary data.

The operation ⊕ is the standard exclusive-or: 0⊕ 0 = 1⊕ 1 = 0 and 0⊕ 1 = 1⊕ 0 = 1.

The model (3.1) states that yi,j = xi,j ⊕ zi,j for each 1 ≤ i ≤ m and 1 ≤ j ≤ n. Thus the

noise effect is equivalent to randomly flipping some of the values of X in Y.

Here is a simple example illustrating the additive noise model described above.



... ... ...

...
1 1

...
0 1

... ... ...


=



... ... ...

...
1 1

...
1 1

... ... ...


⊕



... ... ...

...
0 0

...
1 0

... ... ...


Observed Matrix Y Pattern X Noise Z

The statistical model (3.1) is the binary version of the standard additive noise model

in statistical inference. It is also equivalent to a standard communication model, where

the values of X are observed after being passed through a binary symmetric channel. This

model is motivated by statistical practice, and is intended to capture the effects of random

errors on the search for structures in noisy environments.
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Suppose that the pattern matrix X contains some sort of strong signal structure, for

example a large submatrix of ones. If the noise is small (i.e. the error probability p is close

to zero), we hope that this structure would be readily reflected in the observed matrix Y

and could be approximately recovered by standard methods without too much additional

effort. In the following section, we will study the recoverability of standard frequent itemset

mining under this proposed binary additive noise model.

3.2 Noise Sensitivity of Frequent Itemset Mining

Frequent itemset mining is widely used in real world applications. However, it does not

account the effects of noise (errors). The following discussion indicates that frequent itemset

mining is very sensitive to noise. Indeed, this negative conclusion is already apparent from

Theorem 2.2.4 and Proposition 2.2.3. Suppose as above that Z ∼ Bern(p), and assume that

X, Y and Z are of dimension n×n. If each entry of X is zero, then Y = Z and the largest

k × k submatrix of ones in Y has k roughly equal to 2 logb n, where b = p−1. On the other

hand, at the other extreme where each entry of X is equal to one, it is easy to see that

the entries of Y are simply independent Bernoulli(1− p) random variables. In this case the

largest k × k submatrix of ones in Y has k roughly equal to 2 logb′ n, where b′ = (1− p)−1.

Proposition 2.2.3 tells us that it is very unlikely to find a block with a larger size. In the

extreme cases X = 0 and X = 1, the largest block structure in Y is of logarithmic size; the

only change is in the base of the logarithm. The next result extends this conclusion to any

underlying pattern matrix X.

Proposition 3.2.1. Fix any ε > 0. Let Xn be a non-random n × n square binary matrix

and let Yn = Xn ⊕ Zn, where Zn ∼ Bern(p). Eventually almost surely, (2 − ε) logb n <

M(Yn) ≤ 2 logb′ n, where b = p−1 and b′ = (1− p)−1.

Proof of Proposition 3.2.1: Fix n and let Wn = {wi,j} be an n× n binary matrix with
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independent entries, defined on the same probability space as {zi,j}, such that

wi,j =



Bern
(

1−2p
1−p

)
if xij = yij = 0

1 if xij = 0, yij = 1

yi,j if xij = 1

(3.2)

Note that the above definition is valid since we assume noise level p < 1
2 here. Define

Ỹn = Yn ∨Wn to be the entry-wise maximum of Yn and Wn. Clearly M(Yn) ≤ M(Ỹn),

as any submatrix of ones in Yn must also be present in Ỹn. Moreover, it is easy to check that

ỹi,j ’s are i.i.d. with P (ỹi,j = 1) = 1−p for every 1 ≤ i, j ≤ n. Therefore, Ỹn ∼ Bern(1−p).

Now it follows from Theorem 2.2.4 that M(Yn) ≤ 2 logb′ n eventually almost surely.

To obtain the inequality of the other direction, let

w̃i,j =



Bern
(

1−p
p

)
if xij = yij = 1

0 if xij = 1, yij = 0

yi,j if xij = 0

(3.3)

Define Yn = Yn ∧ W̃n to be the entry-wise minimum of Yn and W̃n. By an argument

similar to above for Ỹn, it follows that M(Yn) ≥ M(Yn) and the entries in Yn are i.i.d.

Bern(p). Thus, by Theorem 2.2.4, M(Yn) ≥ (2− ε) logb n eventually almost surely.

Proposition 3.2.1 can be interpreted as follows. No matter what type of block structures

might exist in X, in the presence of random noise these structures leave behind only loga-

rithmic fragments in the observed data. In particular, under the additive noise model (3.1)

block structures existing in the pattern matrix cannot be recovered, even approximately, by

methods such as frequent itemset mining that look for maximal submatrices of 1’s without

errors.

3.3 Error-Tolerant Frequent Itemsets

As we argued in the previous sections, transaction related data is often contaminated

with noise, and we also showed that the standard frequent itemset mining algorithm is
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very sensitive to noise. In particular, the output submatrices of standard frequent itemset

mining do not directly recover the block structures prior to the noise contamination. To

overcome this potential drawback of standard frequent itemset mining, error-tolerant fre-

quent itemset mining algorithms are proposed. To be specific, a modified frequent itemset

mining algorithm is called error-tolerant if it allows some fraction of zeros existing in the re-

sulting submatrices. There are a number of different error-tolerant frequent itemset mining

algorithms (53; 52; 58; 42; 41). Most of them still require the average of the identified sub-

matrices to be greater than a user specified threshold τ . We can use this common property

to assess the statistical significance of the identified error-tolerant submatrices.

Definition: Given a binary matrix U with an index set C, let

F (U) =

∑
(i,j)∈C ui,j

|U|

be the fraction of ones in U, equivalently the average of the entries of U.

Definition: Given τ > 0, define Mτ (Zn) to be the largest k such that there exists at least

one k × k submatrix U in Zn satisfying F (U) > τ .

Under the same binary random matrix model in Chapter 2, and by applying a first

moment argument analogous to that in Proposition 2.2.3 and a probability upper bound on

the tails of the binomial distribution, one can easily establish the following proposition.

Proposition 3.3.1. Fix 0 < γ < 1 and suppose that 0 < p < τ < 1. When n is sufficiently

large, P (Mτ (Zn) ≥ 2 logb∗ n + r) ≤ 2n−2r (logb∗ n)3r for each 1 ≤ r ≤ γ n. Here b∗ =

exp{3(τ − p)2/8p}.

Proof: For l ≥ 1 let Vl(n) be the number of l× l submatrices U of Zn with F (U) ≥ τ . Note

that E(Vl(n)) =
(
n
l

)2
P (F (Zl) ≥ τ). The random variable l2 · F (Zl) has a Binomial(l2, p)

distribution. Using a standard inequality for the tails of the binomial distribution, (c.f.

Problem 8.3 of (17)), we find that P (F (Zl) ≥ τ) ≤ ql2 where q = 1/b∗. It then follows

from Stirling’s approximation that EVl(n) ≤ 2 when l = l(n) = 2 logb∗ n. For l = r + l(n),

P (Mτ (Zn) ≥ l) ≤ E(Vl(n)) and the stated inequality then follows from arguments analogous
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to those in the proof of Proposition 2.2.3.

Remark: It can be seen from the above proof that the base b∗ = exp{3(τ − p)2/8p} of

the logarithm is derived from an upper bound on the tails of the binomial distribution (See

Problem 8.2 in (17)). This upper bound may not always be the sharpest one. For example,

when τ → 1, b∗ = exp{3(τ − p)2/8p} fails to converge to p−1. Thus, the probability bound

provided in Proposition 2.3.1 does not agree with that of Proposition 2.2.3. In this case,

we need a sharper upper bound on the tails of the binomial distribution to get a base of

logarithm larger than the above b∗. In fact, the probability bound in (33) can provide such

an alternative base of the logarithm, namely b∗ =
((

τ
p

)τ (
1−τ
1−p

)1−τ
)

, which tends to p−1

as τ → 1. When τ is not close to 1 and p ≥ 1
2 , the upper bound on tails of the binomial

distribution in (49) provides b∗ = exp{(τ −p)2/2p(1−p)}, which may be better than the b∗

derived from the two probability upper bound mentioned above. In general, in order to get

the best base of logarithm, one need calculate all three b∗ described above or even more,

and choose the largest one.

3.4 Non-Square Matrices

In this section, we extend the significance analysis results of square submatrices with a

large fraction of ones in square matrices to the case of non-square submatrices in non-square

matrices. We use the same notation and setting for row/column aspect ratios as those in

Section 2.3, except that we consider the following quantity instead.

Definition: Fix α > 0, τ > 0 and β ≥ 1. Given an m × n binary matrix Zmn with

m = dαne, let Mτ (Z,m, n, β) be the largest k such that there exists a dβke × k submatrix

U with F (U) > τ in Zmn.

By adopting similar steps as those in the proof of Proposition 2.3.1, one can easily

establish the following result. Since the proof is trivial, it is omitted.

Proposition 3.4.1. Fix 0 < γ < 1 and α > 0. For each 1 ≤ r ≤ γ n, when n is sufficiently

large,

P (Mτ (Z, dαne, n, β) ≥ k(n, α, β, τ) + r) ≤ n−(β+1) r 2(logb∗ n)(β+2)r, (3.4)
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where k(n, α, β, τ) = β+1
β logb∗ n+ logb∗ α, and b∗ = exp{3(τ − p)2/8p}.

Remark: See the discussion following Proposition 3.3.1. The base b∗ in the above propo-

sition can also be replaced by values derived from other probability upper bounds on the

tail of binomial distribution.

For discovered submatrices having a large fraction of ones, we can use Proposition 3.4.1

to evaluate their statistical significance. In the following example, we demonstrate how to

do the calculation explicitly.

Example. Proposition 3.4.1 can be applied to find an approximate significance values for

submatrices having a larger fraction of ones than the background level. Suppose that an

error-tolerant frequent itemset mining algorithm is applied to a 4, 000×100 binary matrix Y,

65% of whose entries are equal to 1. This error tolerant frequent itemset mining algorithm

finds a 73 × 25 submatrix U′ in Y with 95% 1s. Since in this case p > 1
2 , the discussion

immediately after Proposition 3.3.1 suggests using b∗ = exp{(0.95−p)2/2p(1−p)} = 1.2187.

By plugging each corresponding term into (3.4), one obtains a significance value p(U′) ≤

0.04802.

3.5 Simple Recovery Problem

In the previous sections, we showed that frequent itemset mining can not directly recover

underlying block structures if noise is present. This motivates us to consider whether the

algorithms other than those directly searching for submatrices of 1’s can recover underlying

block structures. We show below that block structures can, in principle, be recovered by

some algorithms that search for submatrices having a large fraction of ones.

We referred several error-tolerant frequent itemset mining criteria in the previous sec-

tions. In this section, we will study the recoverability of a particular error-tolerant frequent

itemset mining, approximate frequent itemset mining proposed in (42). The following defi-

nition of error-tolerant itemsets is introduced in (42). An algorithm for finding such itemsets

is given in (41).

Definition: Given any binary matrix Y, a k × l submatrix U of Y is a τ -approximate
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frequent itemset (τ−AFI) if each of its rows satisfies F (ui∗) ≥ τ and each of its columns

satisfies F (u∗j) ≥ τ . Let AFIτ (Y) be the collection of all τ -AFIs in Y.

The recovery problem we are going to study in this dissertation is a simple recovery

problem as follows.

A simple recovery problem: Let X be an n× n binary matrix that consists of an l × l

submatrix of 1’s, with an index set C∗, and all other entries equal to 0. (The rows and

columns of C∗ need not be contiguous.) Given an observation Y = X⊕Z with Z ∼ Bern(p)

and 0 < p < 1/2, we wish to recover the submatrix C∗.

To recover C∗, let p0 be any number such that p < p0 < 1/2, and let τ = 1 − p0

be the associated error threshold. We estimate C∗ by the index set of the largest square

τ−AFI in the observed matrix Y. More precisely, let Ĉ be the family of index sets of square

submatrices C ∈ AFIτ (Y), and define

Ĉ = argmaxC∈Ĉ |C|

to be any maximal sized submatrix in Ĉ. Note that Ĉ and Ĉ depend only on the observed

matrix Y. Let the ratio

Λ(Ĉ) = |Ĉ ∩ C∗|/|Ĉ ∪ C∗|

measure the overlap between the estimated index set Ĉ and the true index set C∗. Thus

0 ≤ Λ ≤ 1, and values of Λ close to one indicate better overlaps.

The following theorem is about the recoverability of AFI estimator Ĉ.

Theorem 3.5.1. When n is sufficiently large, for any 0 < α < 1 such that 8α−1(logb n +

2) ≤ l we have

P

(
Λ(Ĉ) ≤ 1− α

1 + α

)
≤ ∆1(l) + ∆2(α, l). (3.5)

Here ∆1(l) = 2e−
l(p−p0)2

3p , ∆2(α, l) = 2n−
1
4
αl+2 logb n, and b = exp{3(1− 2 p0)2/8p}.

Remarks: (i) Note that among the two terms on RHS of the above inequality, the second

term is less than 2n−4/α and it is the dominant term in the probability upper bound when

l >> lnn and l >> (p−p0)2

p .
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(ii) Note that b in the above proposition is larger than b̃ = exp{3(1 − 2 p0)2/8p0} and

that when l is sufficiently large, crudely, ∆1(l) ≤ ∆̃1(l) := e−
√

l. Thus, by replacing b with

b̃ and ∆1(l) with ∆̃1(l) in (3.5), one can obtain a probability bound which does not depend

on the unknown parameter p.

Example: The following is an example illustrating Theorem 3.5.1. Let X be an n × n

binary matrix with n = 800 and let C∗ be an l × l submatrix of X with l = 300. Suppose

the noise level p = 0.1 and suppose the user specified noise level p0 = 0.17. When α = 1/4,

since l > 8α−1(logb n + 2) = 156.8989, it follows from Theorem 1 that P (Λ(Ĉ) ≤ 3
5) ≤

2(e−4.9+800−12.944) = 0.015, i.e. the probability that the overlap between the AFI estimator

and C* is less than 0.6 is small (less than 2%).

Theorem 3.5.1 can readily be applied to the asymptotic recovery of structure in a se-

quential framework. Suppose that {Xn : n ≥ 1} is a sequence of square binary matrices,

where Xn is n×n and consists of an ln× ln submatrix C∗
n of 1s with all other entries equal

to 0. For each n we observe Yn = Xn ⊕ Zn, where Zn ∼Bern(p). Let Λ(Ĉn) measure the

overlap between C∗
n and the estimate Ĉn produced by the AFI recovery method above. The

result below follows from Theorem 3.5.1 and the Borel-Cantelli lemma.

Corollary 1. If ln ≥ 8ψ(n)(logb n+2) where ψ(n) →∞ as n→∞, then eventually almost

surely

Λ(Ĉn) ≥ 1− ψ(n)−1

1 + ψ(n)−1
→ 1.

Proof of Corollary 1: Theorem 3.5.1 implies that if we can bound both ∆1(ln) and

∆2(ψ(n)−1, ln) by 2n−2 for any sufficiently large n, then Borel -Cantelli Lemma can be

applied to establish the almost sure convergency.

When n is sufficiently large, the condition ln > 8ψ(n)(logb n − logb logb n + 2) and

ψ(n) → ∞, implies ln > 6p
(p−p0)2

lnn. By plugging this lower bound on ln into ∆1(ln), one

can get ∆1(ln) < 2n−2. Meanwhile, by plugging the condition that ln > 8ψ(n)(logb n −

logb logb n+ 2) into ∆2(ψ(n)−1, ln), one can get ∆2(ψ−1(n), ln) < 2n−2.
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3.6 Discussion

Reuning-Scherer studies several recovery problems in (55). In the case considered above,

he calculates the fraction of ones in every row and every column of Y, and then selects those

rows and columns with a large fraction of ones. His algorithm is consistent when l ≥ nα

for α > 1/2. However, it is easy to show that individual row and column sums alone are

not sufficient to recover C∗ in the above recovery problem when l ≤ nα for α < 1/2. To be

more concrete, suppose C∗ has rows c∗1, ..., c
∗
l . By central limit theorem, one can show that

for any row ci ∈ {c∗1, ..., c∗l }c and c∗j ∈ {c∗1, ..., c∗l }, P
(
F (ci∗) > F (c∗j∗)

)
≥ γ > 0 if l ≤ nα

for α < 1/2. In this case, one gains considerable power by directly considering submatrices,

and as the result above demonstrates, one can consistently recover C∗
n if ln/ lnn→∞. By

Theorem 2.2.4, this ratio requirement on ln is almost weakest if one wants to recover C∗.

3.7 Proof of Theorem 3.5.1

The following lemmas are used in the proof of Theorem 3.5.1. Among these, Lemma

3.7.1 implies that |Ĉ| is greater than or equal to |C∗| with high probability, and Lemma

3.7.4 shows that Ĉ can only contain a small proportion of entries from outside C∗. Lemma

3.7.2 and Lemma 3.7.3 are used in the proof of Lemma 3.7.4.

Lemma 3.7.1. Under the conditions of Theorem 3.5.1, P
(
|Ĉ| < l2

)
≤ ∆1(l).

Proof of Lemma 3.7.1: Let u1∗, ..., ul∗ be corresponding rows of C∗ in Y and let V be

the number of rows satisfying F (ui∗) < 1 − p0, where F (·) is the function measuring the

fraction of ones. By Markov’s inequality,

P (V ≥ 1) ≤ E(V ) =
l∑

i=1

P (F (ui∗) < 1− p0). (3.6)

Using standard bounds on the tails of the binomial distribution, when ln is sufficiently large,

P (V ≥ 1) ≤ l · e−
3l(p−p0)2

8p ≤ e
− 1

3p
l(p−p0)2

,

when l is sufficiently large.
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Let u∗1, ..., u∗l be corresponding columns of C∗ in Y and let V ′ be the number of columns

satisfying F (u∗i) < 1− p0. A similar calculation as above shows that

P (V ′ ≥ 1) ≤ E(V ′) ≤ l · e−3
l(p−p0)2

8p

≤ e
− 1

3p
l(p−p0)2

.

Since {|Ĉ| < l2 = |C∗|} ⊂ {C∗ /∈ AFIτ (Y)} ⊂ {V ≥ 1} ∪ {V ′ ≥ 1},

P{|Ĉ| < l2} ≤ P (V ≥ 1) + P (V ′ ≥ 1)

≤ 2e−
1
3p

ln(p−p0)2 = ∆1(l).

Lemma 3.7.2. Given 0 < τ0 < 1, if there exists a k × r binary matrix M satisfying

F (M) ≥ τ0, then for v = min{k, r}, there exists a v × v submatrix D of M such that

F (D) ≥ τ0.

Proof of Lemma 3.7.2: Without loss of generality, we assume v = k ≤ r. Then we rank

each column according to its fraction of ones, and reorder the columns in descending order.

Let the reordered matrix be M1. Let D = M1[(1, ..., v) × (1, ..., v)]. One can verify that

F (D) ≥ τ0.

Lemma 3.7.3. Let 1 < γ < 2 be a constant, and let W be a n×n binary matrix. Let R1 and

R2 be two square submatrices of W satisfying (i) |R2| = k2 with k < n, (ii) |R1\R2| > kγ

and (iii) R1 ∈ AFIτ (W ). Then there exists a square submatrix D ⊂ R1\R2 such that

|D| ≥ k2γ−2/16 and F (D) ≥ τ .

Proof of Lemma 3.7.3: For any R1\R2, after suitable row and column permutations, it

can be verified that R1\R2 can be expressed as a single maximal rectangular submatrix W1

or can be expressed as the union of two overlapping maximal rectangular W1 ∪W2. Here

we say Wi is a maximal rectangular submatrix of R1\R2, if there does not exist any other

rectangular submatrix of R1\R2 that contains Wi.

Case 1: Suppose R1\R2 = W1. Let l1 and l2 be the side length of W1. Notice that

R1\R2 = W1 and |R2| = k2 imply the side length of square submatrix R1 must be less than
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k, which yields max(l1, l2) ≤ k. Since |R1\R2| ≥ kγ , it follows that min(l1, l2) ≥ kγ−1. By

the condition AFI(R1) ≥ p and AFI(R2) ≥ p, it is trivial to conclude that F (W1) ≥ p.

Then by Lemma 3.7.2, there exists a v × v submatrix D of W1 such that F (D) ≥ p and

v ≥ min(l1, l2) ≥ kγ−1 > kγ−1/4.

Case 2: Suppose R1\R2 = W1∪W2. It follows immediately that max(|W1|, |W2|) ≥ |R1\R2|
2 .

Without loss of generality, we assume |W1| ≥ |W2|. By the definition of AFI and the

condition that AFI(R1) ≥ p, it also follows that F (W1) ≥ p. Therefore, if we can show

the length of the shorter side of W1 is greater than kγ−1/4, then there must exist a square

submatrix V ⊂W1 such that |V | ≥ k2γ−2/16 and F (V ) ≥ p by Lemma 3.7.2.

Let the side length of W1 be l1 and l2. To show min(l1, l2) ≥ kγ−1/4, we will instead

show that min(l1, l2) < kγ−1/4 will lead to a contradiction.

Notice that when min(l1, l2) < kγ−1/4, it follows that max(l1, l2) > |R1\R2|
2kγ−1/4

. Since

square submatrix |R1| satisfies |R1| = max(l1, l2)2, immediately we have |R1| > |R1\R2|2
k2γ−2/4

.

Therefore

|R1\R2| ≥ |R1| − |R2|

>
|R1\R2|2

k2γ−2/4
− k2. (3.7)

Dividing both sides of inequality (3.7) by |R1\R2|, it yields

1 >
|R1\R2|
k2γ−2/4

− k2

|R1\R2|
. (3.8)

Since by the condition, |R1\R2| ≥ kγ , the right side of inequality (3.8) is greater than

4k(2−γ) − k(2−γ) > 1 when k > 0. This leads to a contradiction with inequality (3.8).

Therefore, min(l1, l2) ≥ kγ−1/4.

Lemma 3.7.4. Let A be the collection of C ∈ Ĉ such that |C| > l2

2 and |C∩C∗c|
|C| ≥ α. Let

A be the event that A 6= ∅. If n is sufficiently large, then l ≥ 8α−1(logb n+ 2) implies that

P (A) ≤ ∆2(α, l).
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Proof of Lemma 3.7.4: If C ∈ A then

(i) |C∗| = l2,

(ii) |C\C∗| = |C| · |C∩C∗c|
|C| ≥ l2 · α

2 = lγ , where γ = 2 + logl
α
2 ,

(iii) C ∈ AFI1−p0(Y).

Thus, by Lemma 3.7.3, there exists a v×v submatrix D of C\C∗ such that F (D) ≥ 1−p0

and v ≥ αl
4 , which implies that

max
c∈Ĉ

Mτ (C ∩ C∗c) ≥ v ≥ αl

4
,

where τ = 1− p0.

Let W(Y, C∗) be an n × n binary random matrix, where wij = yij if (i, j) /∈ C∗, and

wij ∼ Bern(p) otherwise. It is clear that

Mτ (W) ≥ max
c∈Ĉ

Mτ (C ∩ C∗c) ≥ αl

4
.

By Proposition 3.3.1, when n is sufficiently large and l ≥ 8α−1(logb n + 2), we can bound

P (A) with

P (A) ≤ P (max
c∈Ĉ

Mτ (C ∩ C∗c) ≥ αl

4
)

≤ P (Mτ (W) ≥ αl

4
) ≤ 2n−(αl/4−2 logb′ n), (3.9)

where b′ = e
3(1−p0−p)2

8p . As p0 > p, it is trivial to verify that b < b′. Consequently, one can

bound the RHS of inequality (3.9) by ∆2(α, l).

Proof of Theorem 3.5.1: Let E be the event that {Λ(Ĉ) ≤ 1−α
1+α}. It is clear that E can

be expressed as the union of two disjoint events E1 and E2, where

E1 = {|Ĉ| < |C∗|} ∩ E

and

E2 = {|Ĉ| ≥ |C∗|} ∩ E
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One can bound P (E1) by ∆1(l) via Lemma 3.7.1.

It remains to bound P (E2). By the definition of Λ(·), the inequality Λ(Ĉ) ≤ 1−α
1+α can

be rewritten equivalently as

1 +
|Ĉ ∩ C∗c|
|Ĉ ∩ C∗|

+
|Ĉc ∩ C∗|
|Ĉ ∩ C∗|

≥ 1 + α

1− α
.

When |Ĉ| ≥ |C∗|, one can verify that |Ĉ ∩ C∗c| ≥ |Ĉc ∩ C∗|, which implies that

1 +
|Ĉ ∩ C∗c|
|Ĉ ∩ C∗|

+
|Ĉc ∩ C∗|
|Ĉ ∩ C∗|

≤ 1 + 2
|Ĉ ∩ C∗c|
|Ĉ ∩ C∗|

.

Therefore, E2 ⊂ E∗
2 , where

E∗
2 = {|Ĉ| ≥ |C∗|} ∩

{
1 + 2

|Ĉ ∩ C∗c|
|Ĉ ∩ C∗|

≥ 1 + α

1− α

}

⊂ {|Ĉ| > l2

2
} ∩

{
1 + 2

|Ĉ ∩ C∗c|
|Ĉ ∩ C∗|

≥ 1 + α

1− α

}
.

Notice that 1 + 2 |Ĉ∩C∗c|
|Ĉ∩C∗|

≥ 1+α
1−α implies |Ĉ∩C∗c|

|Ĉ|
≥ α. Therefore, by Lemma 3.7.4, P (E∗

2) ≤

∆2(α, l).
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CHAPTER 4

Significance Analysis of Biclusters in a Real-Valued
Matrix

In the previous chapters, we gave a detailed analysis of the statistical significance of

submatrices of 1’s and submatrices with a large fraction of ones in binary matrices. Many

of these results can be easily extended into the case of categorical data. However, if the

data is continuous, such extensions are less obvious, especially when we do not want to

discretize the data. In this part of the dissertaion, we consider the problem of assessing

the significance of submatrices with high average or low ANOVA residuals in real-valued

matrices. By assuming the entries of the matrices follow i.i.d. Gaussian or other appropriate

distributions, we obtains several probability bounds for the limiting distribution on the size

of the largest submatrices with high average or low ANOVA residuals. These bounds are

similar in form to those in Chapter 2.

Algorithms that search for submatrices with high average or low ANOVA residuals

belong to the category of biclustering or subspace clustering in the data mining literature. In

general, given anm×n data matrix, where entries are real values, a bicluster corresponds to a

submatrix satisfying certain criterion. Some popular biclustering criteria are summarized by

Madeira and Oliveira in (44) into four types: biclusters with constant entries, biclusters with

constant rows/columns, biclusters with coherent values, biclusters with coherent evolutions.

Applications of different biclustering algorithms in gene expression data analysis are also

discussed in (44). In this dissertaion, we will only focus on biclustering algorithms based

on average criterion and ANOVA criterion.



4.1 Average Criterion

One motivation to consider the average criterion comes from the gene expression analy-

sis. There, a heat map is used to represent a data matrix by assigning a color to each entry

in the data matrix according to its value. In DNA microarray analysis, biologists often re-

order the locations of rows and columns in the heat map so that the resulting map displays

large blocks of high red or high green areas. Such a visual display often reveals interesting

information. For example, Perou et al. study the breast cancer subtypes in (54). They

classify the patients into subtypes according to different expression levels based on several

important genes, where the selection of important genes is motivated by the block patterns

in the reordered heat map. Recalling the connection between heat maps and data matrices,

we see that these red or green blocks correspond to submatrices with high absolute averages.

For a simple illustration, we only consider submatrices with high positive averages in this

dissertation. Formally speaking, the average criterion can be described as follows.

Average Criterion: Recall that for any given submatrix U, F (U) = |U|−1
∑

ij∈U uij .

Given a threshold τ > 0, U is said having a high average if F (U) is greater than τ .

Note that the criterion itself is the same as the average criterion in the case of binary

matrices. For simplicity, for any given matrix X we will use a similar notation, Kτ (X), to

denote the size of largest square submatrix U ⊂ X with F (U) > τ .

In Section 2.1, we introduced a correspondence between binary data matrices and bipar-

tite graphs. In fact, for real-valued data matrices, such a correspondence also exists, except

that the regular bipartite graphs are replaced by edge-weighted bipartite graphs and a sub-

matrix with high average corresponds to a high edge-weighted subgraph. The problem of

finding the largest high average submatrices is still NP-complete, since its equivalent prob-

lem, finding the maximum edge-weighted subgraphs in bipartite graphs, is NP-complete. A

slight variation to the problem of finding the largest high average submatrix is the problem

of finding the CUT NORM of a matrix. Given an m× n data matrix X, the CUT NORM

‖X‖c of X is max |
∑

i∈A,j∈B zij |, where A ⊂ {1, ...,m} and B ⊂ {1, ..., n}. Finding the

CUT NORM of a data matrix is known to be NP-complete. Alon and Naor in (4) study
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the CUT NORM problem for real-valued matrices. They propose a method that can find

a ρ-approximation of the CUT NORM in polynomial time. Alon and Naor also show that

with high probability, the absolute value of the sum of the entries in their output submatrix

is greater than 0.56 · ‖X‖c. Another variation related to the problem of finding the largest

high average submatrices in a data matrix is studied by Dhillon et al in (18), where Dhillon

et al propose a heuristic method using SVD to find a partition of the rows and columns of

the data matrix. After reordering rows and columns according to this partition, the sum

of the entries in the diagonal submatrices is largest. An extension of this algorithm with

applications in DNA Microarray analysis can also be found in (36).

4.2 Significance Analysis under Average Criterion

We first propose a real-valued random matrix model for assessing significance of biclus-

ters with high average. The most natural model is to assume that the entries in the data

matrix follow i.i.d. standard Gaussian distribution. For simplicity, we first consider the

case of square primary matrices and square submatrices.

Gaussian random matrix model: Let W = {wi,j : i, j ≥ 1} be an infinite array of

independent N(0,1) random variables. For n ≥ 1, let Wn = {wi,j : 1 ≤ i, j ≤ n}.

Thus Wn is an n× n random matrix with Gaussian entries comprising the “upper left

corner” of the collection {wi,j}.

To study the statistical significance of submatrices with high average in Wn, we again

use a first moment argument. Let Uk(n, τ) be the number of k× k submatrices in Wn with

average greater than τ . Note that for any fixed τ > 0, sufficiently large k and any k × k

submatrix V , one has P (F (V ) ≥ τ) ≤ e−
τ2k2

2 . Thus, EUk(n, τ) ≤
(
n
k

)2
e−

τ2k2

2 . Using the

Stirling approximation of
(
n
k

)
, one can then define

φ̃(n, k) = (2π)−
1
2 nn+ 1

2 k−k− 1
2 (n− s)−(n−k)− 1

2 e−
τ2k2

4 ≈ (EUk(n, τ))
1/2 . (4.1)

Clearly, φ̃(n, k) is an approximation of EUk(n, τ)
1
2 . Let s̃(n) be any real root of equation

φ̃(n, s) = 1, where s ∈ R+. By an argument similar to that in Section 2.2 and Lemma

2.2.1, it is not hard to verify that s̃(n) always uniquely exists for any sufficiently large n.
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Moreover, when n is sufficiently large, one can show that (c.f. Lemma 2.11.2)

s̃(n) =
4
τ2

lnn − 4
τ2

ln(
4
τ2

lnn) + C̃ + o(1), (4.2)

where C̃ = 4
τ2 ln e− 4

τ2 ln 2.

To assess the statistical significance of square submatrices with high averages under this

Gaussian random matrix model, we establish the following proposition by bounding the

probability P (Kτ (Wn) > k) for k > s̃(n) + 1 from above.

Proposition 4.2.1. Fix 0 < γ < 1 and τ > 0. When n is sufficiently large, for every integer

1 ≤ r ≤ γ n we have P
(
Kτ (Wn) ≥ k̃(n) + r

)
≤ 4τ−2n−2 r(2 ln n

τ2 )3r, where k̃(n) = ds̃(n)e.

Proof of Proposition 4.2.1: The proposition above can be easily established by following

a first moment argument similar to that in Proposition 2.2.3, in conjunction with the fact

that EUk(n, τ) ≤
(
n
k

)2
e−

τ2k2

2 when n and k are sufficiently large.

Remark: Hartigan (private communication) has pointed out that a similar result can also

be obtained by applying the comparison principle for Gaussian sequences (cf. (60)). To be

specific, for any individual submatrix V of size k, it is clear that F (V ) follows a Gaussian

distribution. Thus, the set {F (V ) : V = A×B,A,B ⊂ {1, ..., n} and |A| = |B| = k} can be

viewed as a positively correlated Gaussian sequence with
(
n
k

)2 different elements. Suppose

{B∗
1 , ..., B

∗
m}, where m =

(
n
k

)2, is a sequence of i.i.d. Gaussian random variables with the

same marginal means and variances as those of {F (V )}. According to the comparison

principle for Gaussian sequences (60), for any given k,

P (Kτ (Wn) > k) = P (max{F (V )} ≥ τ) ≤ P (max{B∗
1 , ..., B

∗
m} ≥ τ) .

Thus it suffices to bound P (max{B∗
1 , ..., B

∗
m} ≥ τ). Arratia et al. give a probability upper

bound and lower bound on the extreme value of an independent Gaussian sequence via

Poisson approximation in Section 4.4 of (7). Note that this upper bound is of the same

magnitude as the probability upper bound in Proposition 4.2.1.

When the data matrix follows the i.i.d. Bernoulli random matrix model, we showed in
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Theorem 2.2.4 that M(Zn) takes at most three integer values around s(n) eventually almost

surely. When the matrix has i.i.d. Gaussian entries, one can establish a slightly weaker

result for Kτ (Wn), though more works on calculating and bounding the second moment

are required.

Theorem 4.2.2. Under the above model, eventually almost surely,

bs̃(n)− C̃ − 12τ−2 ln 2c − 2 ≤ Kτ (Wn) ≤ ds̃(n)e+ 1,

where C̃ is the same constant defined in (4.2).

Remarks: (i) Theorem 4.2.2 suggests that asymptotically, Kτ (Wn) can only take values

in a constant range around s̃(n). This constant range is independent of n, but it varies for

different threshold τ .

(ii) In the proof of Theorem 4.2.2, the assumption of normality is important. Without such

an assumption, one may not be able to easily obtain a result as tight (up to a constant)

as that above for Kτ (Wn). In particular, we make critical use of the fact that under i.i.d.

Gaussian assumption, for any individual k × k submatrix V of Wn, there exist a simple

upper bound and a simple lower bound on P (F (V ) ≥ τ) and that the ratio of this upper

bound and this lower bound is less than τγkγ for some constant γ ≥ 0. Note that, without

this fact, it is still possible to show that there exists a positive constant ρ < 1 such that

Kτ (Wn) ≥ ρ · kτ (n) eventually almost surely. For example, given any threshold τ > 0,

suppose that P (F (V ) ≥ τ) ≤ p1. A crude lower bound follows immediately from Theorem

2.2.4 in Chapter 2 that Kτ (Wn) ≥ 2 logp−1
1
n eventually almost surely.

4.3 ANOVA Criterion

The high average criterion is simple and intuitive. As we discussed in the previous

sections, there are many other biclustering criteria. Among them, an important family of

criteria try to identify coherent values in the submatrices. The ANOVA criterion is one of

them.

The ANOVA criterion can be described as follows.

Definition: Suppose X is an m × n data matrix. A submatrix V = A × B of X satisfies
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an ANOVA criterion with threshold τ > 0, if there exist real constants ai, bj and c, where

i ∈ A and j ∈ B, s.t.
1

|A||B|
∑

i∈A,j∈B

(wij − ai − bj − c)2 ≤ τ. (4.3)

Biclustering algorithms based on ANOVA type of criterion have been proposed and

studied in (15) and in the PLAID model (40). Cheng and Church in (15) give a heuristic

algorithm which finds submatrices with small sum of squares of ANOVA residuals. The

PLAID model in (40) is based on a modified ANOVA type criterion, where the data matrix is

modeled as a sum of layer submatrices and each layer submatrix has low ANOVA residuals.

To implement their algorithm, Lazzeroni and Owen rewrote the original problem as an

optimization problem, which can be relaxed and then solved iteratively. Some examples of

applications of biclustering techniques based on ANOVA criteria can also be found in these

two papers.

4.4 Significance Analysis under ANOVA Criterion

To assess the statistical significance of a submatrix with low ANOVA residuals, we make

the following definitions.

Let

g(V ) = k−2
∑

i∈A,j∈B

(wij − wi. − w.j + w..)2,

where wi., w.j , and w.. correspond to the row, column, and the whole submatrix entry

averages respectively. Note that by standard facts in ANOVA analysis, it is clear that

g(V ) = min
ai,bj ,c∈R

k−2
∑

i∈A,j∈B

(wij − ai − bj − c)2.

Definition: Given an n × n matrix Wn and 0 < τ < 1, let Lτ (Wn) be the size of the

largest square submatrix V = A×B in Wn such that g(V ) ≤ τ .

By following similar steps as those in the proof of Proposition 4.2.1 and in conjunction

with a simple probability upper bound on left tail of χ2 distribution, one can establish the

proposition below for LA
τ (Wn).
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Proposition 4.4.1. Fix 0 < γ, τ < 1 and fix 0 < ε < 1. When n is sufficiently large, for

every integer 1 ≤ r ≤ γ n we have

P
(
LA

τ (Wn) ≥ kA(n) + r
)
≤ 2n−2 r,

where kA(n) = d2 ln n
h(τ) e and

h(τ) = (1− ε)
(

1− τ

2
− 1

2
ln(2− τ)

)
.

Remark: Note that Proposition 4.4.1 immediately implies LA
τ (Wn) ≤ kA(n) eventually

almost surely.

Proof of Proposition 4.4.1: It is clear from the proof in Proposition 2.2.3 that to obtain

the right hand side of probability bound above, it suffices to obtain an exponential upper

bound on P (g(V ) ≤ τ) for any individual square submatrix V ∈ W with size k. As entries

of Wn are i.i.d. Gaussian. g(V ) has a χ2 distribution with k2 − 2k + 1 degrees of freedom.

Using a Chernoff type argument, it is easy to check that for any δ > 0,

P (g(V ) ≥ δ · (k − 1)−2) ≤ min
s≤ 1

2

(1− 2s)
(k−1)2

2 e−sδ

=

((k − 1)2

δ

)− (k−1)2

2δ

exp{−1− (k − 1)2/δ
2

}

δ

.

In conjunction with the following lemma, it is easy to show that

P (g(V ) ≤ τ) ≤
(

(k − 1)2

(2− τ)(k − 1)2 − 4

)− (k−1)2

2

× exp{−1
2
((1− τ)(k − 1)2 − 4)},

which implies Proposition 4.4.1.

Lemma 4.4.2. Suppose X ∼ χ2
k for any k ≥ 3. If 0 < t < k − 2 is any constant, then

P (X ≤ t) ≤ P (X ≥ 2k − 4− t).
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Proof of Lemma 4.4.2: Let f be the density function of X. Since

P (X ≤ t) =
∫ t

0
f(s)ds

and

P (X ≥ 2k − 4− t) ≥
∫ 2k−4

2k−4−t
f(s)ds,

it suffices to show that the ratio

f(s)
f(2k − 4− s)

≤ 1, (4.4)

for any 0 < s < t. Eventually we show below that the above ratio is less than 1 for any

0 < s < k − 2.

Note that the ratio (4.4) can be rewritten as

f(s)
f(2k − 4− s)

=
s(k−2)/2e−s/2

(2k − 4− s)(k−2)/2e−(2k−4−s)/2

=
[
(1− 2k − 4− 2s

2k − 4− s
)e4(k−2−s)/(k−2)

](k−2)/2

(4.5)

Let u = 2k−4−s
2k−4−2s . The ratio (4.5) becomes

f(s)
f(2k − 4− s)

=
[
(1− 1

u
)e

2
2u−1

](k−2)/2

A routine calculation shows that the derivative of above over u is

[
(1− 1

u
)e

2
2u−1

]′
= e

2
2u−1 ·

(
u−2 + (1− 1

u
)(

2
2u− 1

)′
)

= e
2

2u−1 · (2u− 1)2 − 4(u− 1)u
u2(2u− 1)2

≥ 0;

and that when u→∞, which is equivalent to s→ k − 2,

lim
u→∞

(1− 1
u

)e
2

2u−1 = 1.
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Therefore, f(s)
f(2k−4−s) ≤ 1 for any 0 < s < k − 2.

4.5 Significant Analysis of Non-square Biclusters in Real Ma-

trices

Here we extend the results obtained in Sections 5.2 and 5.4 to the case of non-square

matrices Wmn and non-square target submatrices. Suppose the row/column aspect ratio of

Wmn, m
n = α, is fixed for some α > 0. For any β ≥ 1, let Kτ (W, dαne, n, β) be the largest

k such that there exists at least one dβke × k submatrix in Wn with its average greater

than τ . One can generalize Proposition 4.2.1 and obtain the proposition below by following

similar steps as those in the proof of Proposition 3.4.1.

Proposition 4.5.1. Fix 0 < γ < 1. When n is sufficiently large,

P (Kτ (W, dαne, n, β) ≥ k(dαne, n, β, τ) + r) ≤ 2n−(β+1) r (4.6)

for each 1 ≤ r ≤ γ n. Here k(dαne, n, β, τ) = 2β+2
τ2β

lnn+ 2
τ2 lnα.

Definition: Given 0 < τ < 1, let LA
τ (W, dαne, n, β) be the largest k such that there exists

at least one dβke × k submatrix V in Wn with g(V ) ≤ τ .

Similarly, the non-square result below can be generalized from Proposition 4.4.1 in the

same fashion as above.

Proposition 4.5.2. Fix 0 < γ < 1 and 0 < τ < 1. When n is sufficiently large,

P{LA
τ (W, dαne, n, β) ≥ kA(dαne, n, β, τ) + r} ≤ 2 n−(β+1) r (4.7)

for each 1 ≤ r ≤ γ n, where

kA(dαne, n, β, τ) =
β + 1
h(τ)β

lnn+ h(τ)−1 lnα,

and h(τ) is defined same as that in Proposition 4.4.1.

Note that by Borel-Cantelli lemma, it follows immediately that Kτ (W, dαne, n, β) ≤
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k(dαne, n, β, τ) and LA(W, dαne, n, β) ≤ kA(dαne, n, β, τ) eventually almost surely. Since

the proofs of the above two propositions are straightforward, they are omitted.

4.6 Significance Analysis Under Non-Gaussian Assumption

In the previous sections, we assume entries are i.i.d. Gaussian. In the following analysis,

instead, we assume the entries of matrix Θ = {θij} are i.i.d. and follow any bounded

distribution with Eθ = 0 and V ar(θ) = 1. Namely, we have the alternative random

matrix model below. Note that we will only consider square primary matrices and square

submatrices here. The generalization to non-square cases is apparent from Section 4.5.

Alternative real-valued random matrix model: Let Θn be an n×n real-valued matrix

with i.i.d. entries such that |θij | < κ <∞ with probability 1.

DefineKτ (Θn) same as that in the previous section. Since the entries in Θn are bounded,

one can easily establish the following proposition onKτ (θn) by applying Hoeffding’s inequal-

ity and by following similar steps as those in the proof of Proposition 2.2.3.

Proposition 4.6.1. Fix 0 < γ < 1 and 0 < ε < 1. Let kB(n) = 4κ2 ln n
τ2 . When n

is sufficiently large, for every integer 1 ≤ r ≤ γ n, we have P (Kτ (Θn) ≥ kB(n) + r) ≤

2n−(2−ε) r.

Remark: In fact, to obtain a probability upper bound like above, the bounded assumption

can be further relaxed. For example, one can assume that the following alternative random

matrix model where the entries are i.i.d. sub-Gaussian distributed.

Alternative real-valued random matrix model II: Let Θ̃n be an n × n real-valued

matrix with i.i.d. entries θ̃ij having distribution P . Let f be any real-valued differentiable

function. Suppose θ̃ij further satisfies

∫
f2 ln f2dP∫
f2dP

≤ 2c
∫
f ′2dP,

where c is a constant.

Note that the above inequality is known as log-Sobolev inequality. This condition is

also known to be equivalent to θ̃ij following an absolutely continuous distribution with a
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sub-Gaussian tail. To generalize Proposition 4.6.1 under this alternative random matrix

model, one may also need the following well known result.

Lemma 4.6.2. (Herbst) Suppose random variable X ∼ P with log-Sobolev inequality con-

stant c. If G is a Lipschitz function on Rd with Lipschitz constant |G|L, then for any

δ > 0,

P (|G(x)− EP (G(x))| ≥ δ) ≤ 2e−δ2/2c|G|2l .

Now, we are ready to establish the following result.

Proposition 4.6.3. Suppose θ̃ij in the above alternative real-valued random matrix model

follows a distribution satisfying log-Sobolev inequality with constant c. Then, for any fixed

τ , 0 < ε < 1, and sufficiently large n, it follows that

P
(
Kτ (Θ̃n) ≥ kL(n) + r

)
≤ 2n−(2−ε) r,

where kL(n) = 4c2

τ2 lnn.

Proof of Proposition 4.6.3: Let V be any k × k submatrix in Θ̃. By the proof of

Proposition 2.2.3, it suffices to show that P (F (V ) ≥ τ) ≤ e−τ2k2/2c2 . Note that F (V ) =∑
vij

k2 is a Lipschitz function with constant k−2. Thus, by the assumption that θ̃ij satisfies

log-Sobolev inequality with constant c and by Herbst lemma, it is clear that

P (F (V ) ≥ τ) ≤ e−τ2k2/2c2 ,

which completes the proof.

Now, we want to get a result similar to Proposition 4.6.1 for biclusters satisfying the

ANOVA criterion. Note that for any square submatrix V of Θn, g(V ) can be expressed as

a sum of dependent random variables. Moreover, from the assumption that the entries of

Θn are bounded, it is easy to see that g(V ) satisfies the conditions of McDiarmid inequality

(17). By applying McDiarmid inequality to P (g(V ) ≤ τ), it is readily to establish the

following proposition. The detailed proof can be found in Section 4.8.
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Proposition 4.6.4. Fix 0 < γ < 1 and 0 < τ < 1. When n is sufficiently large, for

every integer 1 ≤ r ≤ γ n, P (M τ
A(W) ≥ sA(n) + r) = 2n−(2−ε) r, where sA(n) = c ln n

(1−τ) and

c = 3600κ4.

Remark: The constant c can be further reduced in particular applications with known

correlation structures.

4.7 Proof of Theorem 4.2.2

Lemma 4.7.1. Fix τ > 0. There exist n0 and k0 such that for any n ≥ n0 and k0 ≤ k ≤

s̃(n)− 2, there exists a constant C1 > 0 such that

V ar Uk(τ, n)
(EUk(τ, n))2

≤ C1

k∑
l=1

k∑
r=1

(
k
l

)(
n−k
k−l

)(
n
k

) (
k
r

)(
n−k
k−r

)(
n
k

) k4 · exp
{
rlτ2

2

(
1 +

k2 − rl

k2 + rl

)}
. (4.8)

Proof: Let Sk be the collection of all index sets of k × k square submatrices in Zn with

k ≤ s̃(n)− 2. It is clear that

EUk(n, τ) =
∑

V ∈Sk

EI{F (V ) > τ} =
(
n

k

)2

(1− Φ(kτ)) , (4.9)

where Φ(·) is the CDF of the standard normal distribution. In a similar fashion, we have

EU2
k (n, τ) =

∑
V ∈Sk

EI{F (V ) > τ}

2

=
∑

Vi,Vj∈Sk

EI{F (Vi) > τ} · I{F (Vj) > τ}.

One can decompose EU2
k (n, τ) as EU2

k (n, τ) = H1+H2+H3 according to different degrees of

overlap between index sets (Vi, Vj). Here H1 includes pairs of submatrices without common

entries, H2 includes pairs of submatrices with both common and non-common entries, and

H3 includes pairs of submatrices with all entries being common. To be more precise, for

any pair (Vi, Vj), let r be the number of common rows between Vi and Vj and let l be the

number of common columns. Then,

H1 =
∑

{Vi,Vj∈Sk}

I{Vi ∩ Vj = ∅} · EI{F (Vi) > τ} · I{F (Vj) > τ}
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=
∑

r, l s.t.
min(r, l) = 0
max(r, l) ≤ k

I{Vi ∩ Vj = ∅}P (F (Vi) ≥ τ)2,

H2 =
∑

{Vi,Vj∈Sk}

I{Vi ∩ Vj 6= ∅, Vi ∩ Vj 6= Vi} · [EI{F (Vi) > τ} · I{F (Vj) > τ}]

=
k∑

l=1

k∑
r=1

(
n

k

)(
k

l

)(
n− k

k − l

)(
n

k

)(
k

r

)(
n− k

k − r

)
∫ ∞

−∞

√
rl√
2π
e−

rlt2

2 ×
(

1− Φ(
k2τ − rlt√
k2 − rl

)
)2

· I{rl 6= k2}dt

(4.10)

and

H3 =
∑

{Vi,Vj∈Sk}

I{Vi ∩ Vj = Vi} · E[I{F (Vi) > τ} · I{F (Vj) > τ}]

=
(
n

k

)2

(1− Φ(kτ)) .

Note that, as argued in the proof of Theorem 2.2.4,

V ar Uk(n, τ)
(EUk(n, τ))2

=
k∑

l=0

k∑
r=0

(
k
l

)(
n−k
k−l

)(
n
k

) (
k
r

)(
n−k
k−r

)(
n
k

) (
P (F (Vi) > τ, F (Vj) > τ)

P (F (Vi) > τ)2
− 1
)
.

Moreover, P (F (Vi) > τ, F (Vj) > τ)/P (F (Vi) > τ)2 − 1 = 0 for any pair (Vi, Vj) without

common entries. Thus,
V ar Uk(n, τ)
(EUk(n, τ))2

≤ H2 +H3

(EUk(n, τ))2
.

It is also clear that

H3

(EUk(n, τ))2
=
(
n

k

)−2

(1− Φ(kτ))−1 ≤ C2

(
n

k

)−2

exp
{
rlτ2

2

}
,

where the last inequality follows from the fact that when u is sufficiently large and rl = k2

for H3, 1 − Φ(u) ≥ c u−1 e−
u2

2 for some constant c > 0. This corresponds to r = l = k in
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(4.8). It remains to bound H2
(EUk(n,τ))2

. When k is sufficiently large,

EUk(n, τ) ≥ c

(
n

k

)2

(kτ)−1e−
k2τ2

2 .

Thus, we only need to show that

H2 ≤ C ·
k∑

l=1

k∑
r=1

(
k

l

)(
n− k

k − l

)(
n

k

)(
k

r

)(
n− k

k − r

)(
n

k

)
k2

× exp
{
−k2τ2 +

rlτ2

2

(
1 +

k2 − rl

k2 + rl

)}
· I{rl 6= k2}. (4.11)

By considering the cases |k2τ − rlt| ≥ 1 and |k2τ − rlt| < 1 separately, one can rewrite H2

as

H2 =
k∑

l=1

k∑
r=1

(
n

k

)(
k

l

)(
n− k

k − l

)(
n

k

)(
k

r

)(
n− k

k − r

)

I{rl 6= k2}
∫ ∞

−∞

√
rl√
2π
e−

rlt2

2 ·
(

1− Φ
(
k2τ − rlt√
k2 − rl

))2

I{|k2τ − rlt| ≥ 1}

+

√
rl√
2π
e−

rlt2

2 ·
(

1− Φ
(
k2τ − rlt√
k2 − rl

))2

I{|k2τ − rlt| < 1}dt. (4.12)

To begin, we will bound the integral of the first term in the brackets above. By the

assumptions that rl 6= k2 and |k2τ − rlt| ≥ 1, it follows that

1− Φ
(
k2τ − rlt√
k2 − rl

)
≤

√
k2 − rl√

2π(k2τ − rlt)
exp

{
−(k2τ − rlt)2

2(k2 − rl)

}
≤ O(

√
k2 − rl) exp

{
−(k2τ − rlt)2

2(k2 − rl)

}
=: G.

Thus, the first term in the brackets in (4.12) is bounded by
√

rl√
2π
e−

rlt2

2 ·G2 ·I{|k2τ−rlt| ≥ 1}.

Moreover, we observe that the exponential part of e−
rlt2

2 ·G2 is

−(k2τ − rlt)2

(k2 − rl)
− rlt2

2
= −(k2 − rl)2τ2 + 2rl(τ − t)(k2 − rl)τ + r2l2(τ − t)2

k2 − rl
− rlt2

2

= −(k2 − rl)τ2 + 2rlτ(t− τ)− r2l2(τ − t)2

k2 − rl
− rlt2

2

= −(k2 − rl

2
)τ2 − 3

2
τ2rl + 2rlτt − r2l2(τ − t)2

k2 − rl
− rlt2

2
.
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Comparing this with (4.11), we only need to verify,

3
2
τ2rl − 2τrlt +

rlt2

2
+

r2l2(τ − t)2

k2 − rl
≥ −rlτ

2(k2 − rl)
2(k2 + rl)

. (4.13)

This inequality is easy to verify as a quadratic function of τ . Thus, when rl 6= k2,

∫ ∞

−∞

√
rl√
2π

e−
rlt2

2 ·G2 · I{|k2τ − rlt| ≥ 1} dt

≤ O(k2 − rl) exp
{
−(k2 − rl

2
)τ2 +

rlτ2(k2 − rl)
2(k2 + rl)

}
.

Next, we consider the integral of the second term in the bracket of (4.12). Note that

|k2τ − rlt| < 1 is equivalent to t ∈ (k2τ−1
rl , k2τ+1

rl ). Thus, it follows that

I{rl 6= k2}
∫ ∞

−∞

√
rl√
2π
e−

rlt2

2 ×
(

1− Φ
(
k2τ − rlt√
k2 − rl

))2

· I{|k2τ − rlt| < 1}dt

≤
∫ k2τ+1

rl

k2τ−1
rl

√
rl√
2π
e−

rlt2

2 dt = Φ
(
k2τ + 1√

rl

)
− Φ

(
k2τ − 1√

rl

)
≤ 1− Φ

(
k2τ − 1√

rl

)
≤ k

√
rl√

2π(k2τ − 1)
e−

(k2τ−1)2

2rl
−ln k. (4.14)

Comparing the right hand side of inequality (4.14) with (4.11), we wish to show that,

for any fixed τ > 0, when k is sufficiently large,

(k2τ − 1)2

2rl
+ ln k ≥ (k2 − rl

2
)τ2.

By elementary algebra, this is equivalent to

(k2 − rl)2τ2 − 2k2τ + 1 + 2rl ln k ≥ 0. (4.15)

Suppose first that rl ≥ k2 − k√
ln k

. In this case, the quantity above is at least

−2k2τ + 1 + 2rl ln k ≥ −2k2τ + 1 + 2k2 ln k − 2k
√

ln k > 0,

when k is sufficiently large. Suppose now that rl < k2− k√
ln k

, or equivalently k2−rl > k√
ln k

,
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As a quadratic function of τ , (4.15) takes its minimum value at τ = k2

(k2−rl)2
, and the

corresponding minimum value is rl[−2k2 + rl+2(k2− rl)2 ln k]/(k2− rl)2. In this case, our

assumption yields that

−2k2 + rl + 2(k2 − rl)2 ln k > rl > 0.

This establish (4.11) and complete the proof for I{rl 6= k2}

Lemma 4.7.2. Fix τ > 0. There exists k0 > 0 such that for any k > k0 and n satisfies

k ≤ 4
τ2 lnn− 4

τ2 ln
(

4
τ2 lnn

)
− 12 ln 2

τ2 ,

V ar Uk(τ, n)
(EUk(τ, n))2

≤ k−2. (4.16)

Comments: In fact, one only needs to show that the sum of the left hand side above over

k is finite. Here, k−2 is obviously enough, and showing the inequality above for k−2 can

also avoid the complicated notations in the proof.

Proof: By Lemma 4.7.1, it suffices to show that

k∑
l=1

k∑
r=1

(
k
l

)(
n−k
k−l

)(
n
k

) (
k
r

)(
n−k
k−r

)(
n
k

) · k4 · exp
{
rlτ2

2

(
1 +

k2 − rl

k2 + rl

)}
≤ k−2. (4.17)

To establish (4.17), we wish to show that each term in the sum is less than k−4. To begin,

note that (
k
l

)(
n−k
k−l

)(
n
k

) ≤
(
k
l

)
kl(n− k)k−l

(n− k)k
=
(
k

l

)
kl(n− k)−l,

and that (n− k)−l = O(1)n−l when l ≤ k = o(n1/2). Therefore,

(
k
l

)(
n−k
k−l

)(
n
k

) (
k
r

)(
n−k
k−r

)(
n
k

) k4 ≤ k4 ·
(
k

r

)(
k

l

)
· kr+l · n−r−l ·O(1).

(4.18)

Rewriting the condition on k as lnn ≥ τ2k
4 + ln( 4

τ2 lnn) + 3 ln 2, one has

kr+l · n−r−l · exp
{
rlτ2

2

(
1 +

k2 − rl

k2 + rl

)}
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≤ kr+l · e−3(r+l) ln 2 · (
4
τ2

lnn)−r−l · exp
{
τ2

2

(
rl

2k2

k2 + rl
− k

2
(r + l)

)}
.

Moreover, the assumption that k < 4
τ2 lnn implies

kr+l · e−3(r+l) ln 2 · ( 4
τ2

lnn)−r−l ≤ e−3(r+l) ln 2. (4.19)

Thus, to establish (4.18), it suffices to show that

(
k

r

)(
k

l

)
e−3(r+l) ln 2 · exp

{
τ2

2

(
rl

2k2

k2 + rl
− k

2
(r + l)

)}
≤ k−8. (4.20)

To this end, we first examine the exponential term above. Since r + l ≥ 2
√
rl and

k2 + rl ≥ 2
√
k2rl, it follows that

rl
2k2

k2 + rl
− k

2
(r + l) ≤ 2rlk2

2
√
k2 · rl

− k
√
rl = 0. (4.21)

Suppose now that r + l > 3k
4 and k is sufficiently large. Then,

(
k

r

)(
k

l

)
e−3(r+l) ln 2 ≤

(
2k
r + l

)
· e−3(r+l) ln 2 ≤ 22k · 2−

9k
4 ≤ k−8, (4.22)

where the first inequality follows from the simple fact that
(
k
r

)(
k
l

)
=
(

2k
r+l

)
and the second

inequality follows from the fact that
(

2k
r+l

)
≤ 22k.

Now, it remains to establish (4.20) when k is sufficiently large and r + l ≤ 3k
4 . To show

this, one may verify that

k8 ·
(

2k
r + l

)
· exp

{
τ2

2
[rl

2k2

k2 + rl
− k

2
(r + l)]

}
< exp

(
τ2

2
[
(r + l)2

2
− k

2
(r + l)] + 8 ln k + (r + l) ln 2k

)
= exp

(
τ2(r + l)

2
[
(r + l)

2
− k

2
+

16 ln k
(r + l)τ2

+
2 ln 2k
τ2

]
)

≤ exp
(
τ2(r + l)

2
[
3k
8
− k

2
+

16 ln k
τ2

+
2 ln 2k
τ2

]
)
≤ 1 (4.23)

where the first inequality follows by rl 2k2

k2+rl
≤ (r+l)2

4 · 2k2

k2+rl
≤ (r+l)2

2 and the last inequality
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holds when k is sufficiently large.

Putting (4.21), (4.22) and (4.23) together, we have completed the proof.

Proof of Theorem 4.2.2: By Proposition 4.2.1 and the Borel-Cantelli lemma, eventually

almost surely, Kτ (Wn) ≤ ds̃(n)e + 1. Thus, we only need to establish a lower bound on

K(Wn). To this end, let

f(n) =
4
τ2

lnn− 4
τ2

ln
(

4
τ2

lnn
)
− 12 ln 2

τ2

for any integer n > 0, and let g(k) = min{r ≥ 1, bf(r)c = k} for any integer k > 0. It

is not hard to verify that for sufficiently large k, g(k) is strictly monotone increasing, and

g(k) tends to infinity as k tends to infinity. Thus there exists an integer n0 ≥ 1 such that

for any n ≥ n0, there exists k = k(n) such that

g(k) ≤ n < g(k + 1). (4.24)

Now, let

Am =
⋃

n>m

{Kτ (Wn) < s̃(n)− 12 ln 2
τ2

− C̃ − 2}.

By the above argument, when m is sufficiently large,

Am ⊂
⋃

k≥bf(m)c

⋃
g(k)≤n<g(k+1)

{Kτ (Wn) < s̃(n)− 12 ln 2
τ2

− C̃ − 2}.

Note that when n satisfies (4.24), the definition of g(·) ensures that k ≤ f(n) < k + 1

and

1 = k + 1− k > f(n)− bf(g(k))c ≥ f(n)− f(g(k))

= s̃(n)− C̃ − o(1)− 12 ln 2
τ2

− [s̃(g(k))− C̃ − o(1)− 12 ln 2
τ2

],
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which is equivalent to s̃(n) < s̃(g(k)) + 1. Thus,

Am ⊂
⋃

k≥bf(m)c

⋃
g(k)≤n<g(k+1)

{Kτ (Wn) < s̃(g(k))− 12 ln 2
τ2

− C̃ − 1}.

By the monotonicity of Kτ (Wn) in n, it immediately follows that Kτ (Wg(k)) ≤ Kτ (Wn).

Consequently,

Am ⊂
⋃

k≥bf(m)c

⋃
g(k)≤n<g(k+1)

{Kτ (Wg(k)) < s̃(g(k))− 12 ln 2
τ2

− C̃ − 1}.

Let k∗ = bs̃(g(k))− 12 ln 2
τ2 − C̃c. Then, by Chebyshev’s inequality, it follows that

∞∑
k=1

P
(
Kτ (Wg(k)) < k∗ − 1

)
=

∞∑
k=1

P (Uk∗−1(τ, g(k)) = 0)

≤
∞∑

k=1

V ar Uk∗−1(τ, g(k))
(EUk∗−1(τ, g(k)))2

.

Note that by definition, k∗(n)−1 < bf(g(k))c, which satisfies the condition of Lemma 4.7.2.

Thus
∞∑

k=1

P
(
Kτ (Wg(k)) < k∗ − 1

)
<∞,

and the Borel-Cantelli lemma immediately implies that P (Am) → 0 as m→∞.

4.8 Proof of Proposition 4.6.4

Let V be any l×l submatrix of Θn satisfying g(V ) ≤ τ with l = k(n)+r. From the proof

of Proposition 4.2.1, it is clear that one only needs to show that P (g(Vl) ≤ τ) ≤ e−l2(1−τ)2/C

for some constant C, where 0 < τ < 1. Let V (i′j′) be an identical replicate submatrix of

V except replacing the (i′, j′) entry of V with another random replicate v∗i′j′ with the same

distribution. One can verify that

g(V )− g(V (i′j′)) =
I + II + III

l2
,
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where

I =
∑

i6=i′,j 6=j′

(vi′j′ − v∗i′j′)
2

l4
− 2

∑
i6=i′,j 6=j′

(vij − vi. − v.j + v..)(vi′j′ − v∗i′j′)

l2
,

II =
∑

i=i′,j 6=j′

(vi′j′ − v∗i′j′)
2(

1
l
− 1
l2

)2 + 2
∑

i6=i′,j=j′

(vij − vi. − v.j + v..)(vi′j′ − v∗i′j′)(
1
l
− 1
l2

)

+
∑

i6=i′,j=j′

(vi′j′ − v∗i′j′)
2(

1
l
− 1
l2

)2 + 2
∑

i6=i′,j=j′

(vij − vi. − v.j + v..)(vi′j′ − v∗i′j′)(
1
l
− 1
l2

),

and

III =
∑

i=i′,j=j′

(vi′j′−v∗i′j′)2(1+
1
l
− 1
l2

)2+2
∑

i=i′,j=j′

(vij−vi.−v.j +v..)(vi′j′−v∗i′j′)(1+
2
l
− 1
l2

).

Since |vij | and |v∗ij | are both bounded by κ, it is easy to check that sup |I + II + III| ≤

29κ(2κ + κ/l) for any (i′, j′). Let C = 3600κ4. By the concentration type inequality

of McDiarmid ((17)) and the condition that E(g(V )) = 1 − o(1), it follows directly that

P (g(V ) ≤ τ) ≤ e−2l2(1−τ)2/C .
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CHAPTER 5

Recoverability of High Average Submatrices in
Real Matrices with Noise

Recall that in order to account for, and study the potential effects of, noise on frequent

itemset mining, we studied a simple binary additive noise model (3.1) in Chapter 3:

Y = X⊕ Z.

We then obtained results on the recoverability of AFI estimator and showed that block

estimation by AFI estimator asymptotically converges to the true underlying block in simple

recovery problems. In the case of real-valued matrices, we are still interested in studying

the recoverability of biclusters satisfying certain biclustering criteria. Here, we only focus

on the simplest criterion, the average criterion.

5.1 Additive Gaussian Noise Model

We consider the standard Gaussian additive noise model,

Y = X + Z, (5.1)

where the matrix Y = {yi,j} is the observed data, X = {xi,j} is a deterministic matrix, and

Z = {zi,j} is a random matrix with independent standard Gaussian entries. Model (5.1) is

widely used in statistics and engineering. For example, Arias-Castro et al. in (6; 5) study

how to detect smoothed geometric shapes in noisy images under model (5.1). Their method,

like most of other methods in image de-noising, deals with contiguous data structures. Some

problems involving recovery of non-contiguous data with particular structures have also



been studied. For example, Zhou and Woodruff in (71) study how to recover a standard

clustering similarity matrix from noise by matrix powering. However, none of the existing

studies is coincident with our interests here. We are interested in a more general family of

target matrices X than those considered above. For example, we do not assume X to be

symmetric or have contiguous (smooth) structure.

Note that this additive noise model can be viewed as a special case of a more general

additive model. In the more general model, X is not deterministic but has a Gaussian

mixture structure, which can be regarded as foreground signals. The objective of recovery

then becomes detecting and recovering foreground signals from background noise. This is

also the model proposed in PLAID(40). Our model is a special case of the Gaussian mixture

model in which each entry has the same variance.

5.2 Recoverability of Submatrices with High Average

Let X be an n× n target matrix. Suppose that X contains an l × l submatrix U with

an index set C∗. The entries belonging to C∗ are greater than some constant µ > 0, and

the entries belonging to X\C∗ are zero.

Fix 0 < µ̂ < µ and let Ĉ be the family of index sets of square submatrices U ⊂ Y with

F (U) > µ̂. We estimate C∗ by the index of the largest high average square submatrix in

the observed matrix Y. More precisely, define

Ĉ = argmaxC∈Ĉ |C|

and let the ratio

Γ(Ĉ) = |Ĉ ∩ C∗|/|C∗|

measure the proportion of entries recovered by Ĉ in the true index set C∗.

Note that by Proposition 4.2.1, we should not expect to find a large submatrix with its

average greater than µ. Therefore, we are using a threshold µ̂ which is less than µ. The

estimator Ĉ described above satisfies the following theorem.

Theorem 5.2.1. Fix 3
2 < δ < 2, 0 < ε < 2− δ and 0 < α < 2δ − 3. When n is sufficiently
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large, if l satisfies (lnn)1/α ≤ l < n, then

P

(
|Ĉ|
|C∗|

≥ µ

µ̂

)
≤ n−2 and P

(
Γ(Ĉ) <

l2

l2 + lδ

)
≤ 3n exp{−l2−2ε}+ 3n−2, (5.2)

where Γ(Ĉ) = |Ĉ∩C∗|
|C∗| .

Remark: (i) The probability bounds n−2 and 3n−2 above can be improved. The resulting

proof does not substantially differ from the current proof of 5.2.1 and is omitted.

(ii) It follows from the proof of Theorem 5.2.1 that the i.i.d Gaussian assumption can

be further relaxed to the i.i.d. sub-Gaussian condition used in Proposition 4.6.3.

(iii) Theorem 5.2.1 shows that, with high probability, Ĉ contains a large proportion of

C∗, but allows Ĉ to be larger than C∗. By contrast, the AFI estimator Ĉ of Theorem

3.5.1 is an estimator such that |Ĉ| is not much larger than |C∗|. One reason for the better

performance of the AFI estimator is that the AFI criterion requires both the averages of each

row and each column in the submatrix be large, which is stronger than the average criterion

in this section. In fact, if µ can be estimated accurately enough such that µ̂ = µ−O(l−2),

then the result in Theorem 5.2.1 can be improved to

P

(
Λ(Ĉ) <

l2

l2 + lδ

)
= O(n−2),

where Λ(Ĉ) is defined as in Chapter 3. However, in practice, estimation of µ̂ can not always

be guaranteed. In order to better recover C∗, one may further explore the estimator Ĉ

obtained from the procedure described above. To be specific, the independent row and

column scanning of Reuning-Scherer in (55) can be applied to Ĉ. Since by Theorem 5.2.1
|Ĉ|
|C∗| ≤

µ
µ̂ with high probability, the row and column scanning will be effective and by

choosing a threshold properly, one can further show this two-stage estimation can provide

a consistent estimate of target submatrix C∗.

5.3 Proof of Theorem 5.2.1

The proof of Theorem 5.2.1 requires a simple preliminary lemma which has been stated

before in Chapter 3 in the binary case. It is easy to verify that it is also true here.
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Lemma 5.3.1. If for some 0 < η < 1, there exists a k×s submatrix R satisfying F (R) ≥ η,

then for any v ≤ min{k, s}, there exists a v × v submatrix R′ of R such that F (R′) ≥ η.

Proof of Theorem 5.2.1: Let β > µ
µ̂ be any constant. First, we want to bound P (|Ĉ| ≥

β |C∗|). We begin with the following simple argument. Letm = d
√
β|C∗|e. When |Ĉ| > m2,

one can rank the columns in Ĉ according to their averages, and drop the
√
|Ĉ|−m columns

with smallest averages. After performing a similar row operation on the new rectangular

submatrix, one obtains a submatrix C̃ such that satisfies |C̃| = m2 and F (C̃) ≥ µ̂ by the

definition of Ĉ. By the entry-wise normality assumption, it is easy to see that for any m×m

submatrix V in Y having r rows and k columns in common with C∗, F (V ) ∼ N
(

rkµ
m2 ,m

−2
)
.

Therefore,

P

(
|Ĉ|
|C∗|

≥ β

)
≤ P

(
max
V⊂Y,

F (V ) ≥ µ̂

)

≤
l∑

r=1

l∑
k=1

(
n− l

m− r

)
·
(
l

r

)
·
(
n− l

m− k

)
·
(
l

k

)
× exp{−m2 · (µ̂− β−1 µ)}

≤ n−2, (5.3)

where the max in the first inequality is taken over all m × m submatrices in Y, and the

second inequality follows from the fact that for any m×m submatrix V , E [F (V )] = rkµ
m2 ≤

|C∗|µ
m2 ≤ µβ−1 ≤ µ̂ (by the definition of β). The last inequality follows from the fact that∑l

r=1

(
n−l
m−r

)
·
(

l
r

)
≤
(

n
m

)
, the assumption on α, and the proof of Proposition 1.

Next, we want to give a lower bound on |Ĉ|. Actually, we wish to bound P
(

µ−l−ε

µ̂+l−ε >
|Ĉ|
|C∗|

)
from above. To this end, we will show that with high probability, one can always construct

a sufficiently large square submatrix D containing C∗ and satisfying F (D) ≥ µ̂. To begin,

let ε be any number between 2 − δ and 1
2 . Suppose C∗ = A × B. Consider each column

ci, i = 1, ..., n − l, in Y [A×Bc]. It is easy to see that F (ci) ∼ N(0, l−1). Thus, when l is

sufficiently large,

P

(
min

i=1,...,n−l
F (ci) ≥ −l−ε

)
≥ 1− (n− l) · exp{−l1−2ε}. (5.4)
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Similarly, for each row ri, i = 1, ..., n− l, in Y [Ac ×B],

P

(
min

i=1,...,n−l
F (ri) ≥ −l−ε

)
≥ 1− (n− l) · exp{−l1−2ε}. (5.5)

Moreover, since F (C∗) ∼ N(µ, l−2),

P
(
F (C∗) < µ− l−ε

)
≤ exp{−l2−2ε}. (5.6)

Let B be the event that there does not exist a square submatrix R = A′×B′ in Y[Ac×Bc]

with average greater than −l−ε and |A′| = |B′| =
⌈
l (
√

µ−l−ε

µ̂+l−ε − 1)
⌉
. Clearly,

P (B) ≤ P

(
min

V ∈Y[Ac×Bc]
F (V ) < −l−ε

)
≤ lε

(
n− l

m

)l

exp{−l−2εm2}, (5.7)

where the minimum is taken over all m×m submatrices V ∈ Y[Ac ×Bc] with m = |A′| =

|B′|. Note that the assumption lα ≥ lnn implies l satisfies

m =

⌈
l (

√
µ− l−ε

µ̂+ l−ε
− 1)

⌉
≥ 2 lnn

l−2ε
→∞,

as n→∞. It follows from (2.4) that the right hand side of (5.7) is bounded by n−2.

By (5.4), (5.5), (5.6), and (5.7), we have shown that with probability at least 1 −

3n exp{−l2−2ε}− n−2, the average of every column in Y [A×Bc], the average of every row

in Y [Ac ×B], and the average of C∗ are greater than −l−ε, −l−ε and µ− l−ε respectively,

and B 6= ∅. In order to give probability upper bound on the event
{

µ−l−ε

µ̂+l−ε |C∗| > |Ĉ|
}

, one

only need to verify that submatrix D = (A ∪A′)× (B ∪B′) satisfies

F (D) =
F (C∗)|C∗|+ F (D\C∗)|D\C∗|

|D|

≥
(µ− l−ε) · l2 − l−ε · (µ−l−ε

µ̂+l−ε − 1)l2

µ−l−ε

µ̂+l−ε l2
= µ̂+

µ+ l−ε

µ− l−ε
l−ε ≥ µ̂.

Now, we have shown that with probability at least 1 − 3n exp{−l2−2ε} − 2n−2, there
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exists a square submatrix D ∈ Y which satisfies that F (D) ≥ µ̂ and

|D| = µ− l−ε

µ̂+ l−ε
|C∗| ≤ |Ĉ| ≤ β|C∗|. (5.8)

Let A be the event that the above inequality holds. Now, we will bound

P

({
Γ(Ĉ) <

l2

l2 + lδ

}
∩ A

)
.

To begin, consider any integer k ∈ I0 := [
√

µ−l−ε

µ̂+l−ε l,
√
β]. It is clear that any j× j submatrix

Vj in Y having r rows and k columns in common with C∗ satisfies F (Vj) ∼ N
(

rkµ
j2 , j

−2
)
.

Moreover, j ≥ k implies that when Γ(Vj) < l2

l2+lδ
,

E [F (Vj)] =
rkµ

j2
= Γ(V (m))

l2µ

j2
≤ l2µ

l2 + lδ
· µ̂+ l−ε

µ− l−ε
.

Thus,

A ∩
{

Γ(Ĉ) <
l2

l2 + lδ

}
⊂

{
max
j∈I0

max
Vj

[F (Vj)− E [F (Vj)]] ≥ µ̂− rkµ

j2

}
⊂

{
max
j∈I0

max
Vj

[F (Vj)− E [F (Vj)]] ≥ µ̂

(
1− l2

l2 + lδ
·
µ+ µ

µ̂ l
−ε

µ− l−ε

)}
.

It is easy to check that when l is sufficiently large and ε < 2− δ (by definition),

l2

l2 + lδ
·
µ+ µ

µ̂ l
−ε

µ− l−ε
≤ 1.

Thus, probability

P

(
Γ(Ĉ) <

l2

l2 + lδ
∩ A

)
≤

∑
j∈I0

P

(
max

all j×j Vj

[F (Vj)− E[F (Vj)]] ≥ µ̂

(
1− l2

l2 + lδ
·
µ+ µ

µ̂ l
−ε

µ− l−ε

))

≤
√
β l ·max

j∈ I0

exp

−j2 · µ̂2

(
1− l2

l2 + lδ
·
µ+ µ

µ̂ l
−ε

µ− l−ε

)2
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×

(
l∑

r=1

l∑
k=1

(
n− l

j − r

)
·
(
l

r

)
·
(
n− l

j − k

)
·
(
l

k

))]

≤
√
β l ·max

j∈ I0

exp

−j2 · µ̂2

(
1− l2

l2 + lδ
·
µ+ µ

µ̂ l
−ε

µ− l−ε

)2
×

(
n

j

)2


≤
√
β ln−3 (5.9)

≤ n−2.

where the inequality (5.9) comes from the fact that the assumption lα ≥ lnn is a sufficient

condition to ensure that every j ∈ I0 satisfies that

j ≥ 2 lnn · (1− l2

l2 + lδ
·
µ+ µ

µ̂ l
−ε

µ− l−ε
)−2 ≥ 2 l4−2δ lnn,

the right hand side of which goes to infinity as n→∞. Consequently,

P

(
Γ(Ĉ) <

l2

l2 + lδ

)
≤ P

(
Γ(Ĉ) <

l2

l2 + lδ
∩ A

)
+ P (Ac) ≤ 3n exp{−l2−2ε}+ 3n−2.
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CHAPTER 6

Conclusion and Future Work

6.1 Conclusion

In this dissertation, we have studied some statistical problems related to biclustering

algorithms. Biclustering algorithms are a type of data mining techniques used in bioinfor-

matics, drug activity analysis and market basket analysis. Our goal is to provide a rigorous

statistical theory to guide the application of biclustering techniques.

In Chapter 2, we focused on frequent itemset mining. Frequent itemset mining has an

equivalent matrix form, where frequent itemsets correspond to maximal submatrices of 1’s

in binary matrices. The objective of the research is to evaluate the statistical significance of

the identified submatrices of 1’s. For this purpose, an i.i.d. Bernoulli random matrix model

was assumed. By extending existing results on clique number by Bollobás and Erdős in

random graph theory (11; 10), we established a probability upper bound on the existence

of large-sized submatrices of 1’s in the Bernoulli random matrix model. Further, we showed

that as the size of the data matrix goes to infinity, eventually almost surely, the size of the

largest submatrix of 1’s (with a fixed row/column aspect ratio) only takes values in a set of

five consecutive integers, whose values only depend on the size of the data matrix and the

Bernoulli distribution parameter. An upper bound and a lower bound on the sizes of the

smallest square maximal submatrices of 1’s in square Bernoulli random matrices are also

given in Chapter 2.

In Chapter 3, the noise sensitivity of standard frequent itemset mining was studied. It

was shown that standard frequent itemset mining is very sensitive to noise and it can not

be directly used to recover the block structures when the data is contaminated with ran-



dom noise. Then, we considered the statistical properties of error-tolerant frequent itemset

mining, which had been proposed as a generalization of standard frequent itemset mining.

We first showed how to evaluate the statistical significance of submatrices identified by a

general class of error-tolerant frequent itemset mining algorithms. Then, we showed that

approximate frequent itemset mining (41), a particular error-tolerant frequent itemset min-

ing algorithm, can asymptotically recover the underlying block structure in simple recovery

problems, where standard frequent itemset mining fails.

In Chapter 4, we considered the biclustering algorithms for real-valued matrices. We

established results parallel to those of frequent itemset mining in Chapter 2 for biclusters

with high averages under i.i.d. Gaussian random matrix assumption. In Chapter 4, we

also studied the statistical properties of biclusters with low ANOVA residues, where the

biclustering methods based on ANOVA type criterion are introduced and studied in Cheng

and Church (15), and in Lazzeroni and Owen (40). In order to evaluate the significance of

submatrices with low ANOVA residuals, several probability bounds on the size of identified

submatrices under appropriate random matrix assumptions were given in Chapter 4.

In Chapter 5, we showed that in a simple recovery problem with Gaussian noise, there

exists a procedure that is able to recover the underlying single block structure with high

probability.

6.2 Future Work

Many of the results described here are based on an i.i.d. random matrix model. How-

ever, certain dependence structures are known to exist in particular applications. The

statistical significance problem for frequent itemset mining under a simple Markov chain

type of dependence for binary random matrix was considered in Chapter 2. Future work

includes the study of biclustering methods under other dependence structures.

The recovery problems addressed in Chapter 3 and Chapter 5 consider recovery of a

single square block from a square matrix. The results there could be further extended to

the case of non-square blocks and non-square matrices under certain row/column aspect

ratio restrictions. A further step is to consider multiple blocks in the underlying pattern

matrix.
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