
 
 
 

 
 

GENETIC AND EPIGENETIC MECHANISMS REGULATING SMOOTH MUSCLE CELL 
DIFFERENTIATION 

 
 

 
 

Kevin Dale Mangum 
 
 
 
 

A dissertation submitted to the faculty at the University of North Carolina at Chapel Hill 
in partial fulfillment of the requirements for the degree of Doctor of Philosophy in 

Pathology in the School of Medicine. 
 
 
 
 

Chapel Hill 
2017 

 
 
 
 

Approved by: 
 

Christopher P. Mack 
 

Victoria L. Bautch 
 

Jiandong Liu 
 

Praveen Sethupathy 
 

Joan M. Taylor  
 
 

 
 
 

 
 
 
 



	 ii 

 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

© 2017 
Kevin Dale Mangum 

ALL RIGHTS RESERVED 
 
 
 
 
 
 
 



	 iii 

 
 
 
 

ABSTRACT 
 

Kevin Dale Mangum: Genetic and Epigenetic Mechanisms Regulating Smooth Muscle 
Cell Differentiation 

(Under the direction of Christopher P. Mack) 
 
 

Smooth muscle differentiation is a complex process, involving numerous 

molecular, genetic, and epigenetic mechanisms. Notably, smooth muscle cells (SMCs) 

retain marked plasticity in their ability to convert between synthetic and more 

differentiated contractile gene programs. In vascular diseases, including hypertension, 

atherosclerosis, and restenosis, SMCs dedifferentiate from their healthy, mature state to 

a more immature “phenotypically modulated” cell type capable of migrating, 

proliferating, and producing extracellular matrix, all of which contribute to disease. 

Additionally, genetic alterations in various components of the smooth muscle 

transcriptional machinery result in cardiovascular disease and even death. Thus, a more 

complete understanding of the exact mechanisms regulating SMC differentiation is 

crucial for the development of novel targets in the diagnosis and treatment of vascular 

disease.   

The work herein interrogates several points along the RhoA axis and defines 

their roles in SMC differentiation. First, the genetic and epigenetic mechanisms 

regulating expression of a smooth muscle-specific gene, GRAF3, are uncovered. 

GRAF3, also referred to as ARHGAP42, was first described by my collaborators in Joan 

Taylor’s Lab as a smooth muscle selective Rho-GAP essential for blood pressure 

control in mice. Single nucleotide polymorphisms in the GRAF3 gene were associated 
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with changes in blood pressure, and the rs604723 T-allele variant located in a highly 

conserved DHS increased GRAF3 expression by promoting SRF binding to this region. 

In addition to SRF, we show that the transcription activity of this region as well as 

GRAF3 expression are controlled by the transcription factors, RBPJ and TEAD1.  

In subsequent chapters, we describe novel mechanisms regulating function of 

MRTF-A. Given that MRTF-A is essential for full activation of smooth muscle-specific 

gene expression, we hypothesize that these newly identified mechanisms regulate SMC 

differentiation. We describe our approach for identifying post-translational modifications 

and binding partners that regulate MRTF-A function. In our search for novel MRTF-A 

binding partners, we identified the putative histone lysine methyltransferase, PRDM6, 

and demonstrated that it was required for SMC differentiation. In overexpression 

experiments in COS-7 cells, we detected significant methylation on MRTF-A. 

Surprisingly, SMYD2 and SET7/9 strongly methylated MRTF-A, but PRDM6 did not. We 

found that SMDY2 methylated K27 within MRTF-A’s highly conserved basic nuclear 

localization signal. SMYD2-mediated methylation at K27 inhibited MRTF localization as 

well as MRTF-dependent activation of SMC transcription.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



	 v 

 
 
 

 
 

ACKNOWLEDGMENTS 
 
 

It goes without saying that the past four and a half years have been quite the 

journey and influenced by so many individuals. I have to start off by acknowledging my 

scientific mentor and role model, Chris Mack. Your enthusiasm, curiosity, and, yes, 

even skepticism were highly inspiring to me as a budding scientist, and, for that matter, 

are what I consider the qualities of a true scientist to be. What I’m grateful for the most 

is your unwavering approachability, which made it so easy to test drive experimental 

ideas and hypotheses. No matter if it was first thing in the morning and I hadn’t even 

stepped into my office, you always welcomed new ideas, no matter the practicality. As a 

result, science became even more addicting, and my passion for it flourished under your 

mentorship. Thank you. I’ll forever be indebted to you for that.   

I must also thank Joan Taylor, who helped me find protocols, design primers, etc. 

on countless occasions. Dr. Taylor, you’ve been such a crucial member of my 

committee and a tremendous asset to the development of my research goals. To the 

rest of my committee members, Vicki Bautch, Jiandong Liu, and Praveen Sethupathy, 

thank you for your willingness to serve on my committee. Your input over the past few 

years has been helpful.  

Next, it’s only fitting that I acknowledge the UNC MD/PhD program. During my 

second year of medical school, I decided that I wanted to pursue my PhD. The first talk I 

had about joining the program was with Dr. Orringer, who never hesitated and 

immediately made it a matter of what was best for me. Among this same cohort who 



	 vi 

helped my transition into the Program are Alison Regan, Carol Herion, and Mohanish 

Deshmuk. Thank you all for taking a chance on me. I can’t tell begin to explain how 

much saying yes in that moment impacted me.  

It’s hard to imagine four years without good company. I really hit the jackpot in 

the Mack-Taylor Lab by being surrounded be so many kind, dedicated, and intelligent 

individuals. Laura-Weise Cross, even though you’ve already graduated, I was so lucky 

to work with you for the majority of my grad school experience. Kaitlin Lenhart, a 

previous graduate student in the Taylor Lab, always provided me with encouragement 

and helpful advice at the start of my graduate school career. Thank you, Rachel Dee for 

always smiling and being so wonderful to work with. I’m also fortunate to have worked 

with my other lab members: Xue Bai, Qiang Zhu, and Zack Opheim.  

To my family, thank you for supporting me during my endeavors, especially my 

Mom and Dad. I know it’s been a long road and you’ve been there every step of the 

way. To Tanner Mangum, you made it so easy for me to take a step back from science 

and laugh a little, which has been so invaluable. Thank you Trish for being there as well. 

Your support means everything to me. I have to acknowledge my grandparents, and 

roots in general, for helping me stay humble. Meme, especially, thank you for teaching 

me that “there’s more than one way to skin a cat.” I truly believe that this contributed to 

my scientific creativity from a very early age.  

To my friend Negeen Hamedani, thank you for your encouragement over the last 

five years. I’m so grateful to have you as a friend.  

   

 
 
 
 



	 vii 

   
 
 
 
 

TABLE OF CONTENTS 
 
 

LIST OF FIGURES ........................................................................................................... x 

LIST OF TABLES  ........................................................................................................ xiii 

LIST OF ABBREVIATIONS .......................................................................................... xiv 

CHAPTER 1: BACKGROUND AND SIGNIFICANCE .................................................... 1 

Blood vessel development, structure, and function .............................................. 1 

Developmental diversity of SMCs ......................................................................... 3 

Role of SMC phenotypic switching in cardiovascular disease .............................. 3 

Transcriptional regulation of SMC differentiation .................................................. 8 

Epigenetic regulation of SMC differentiation ...................................................... 23 

ENCODE Consortium, UCSC Genome Browser, and GTEx Database ............. 30 

Genetic and molecular basis of blood pressure regulation ................................. 31 

Objectives of this dissertation research .............................................................. 39 

CHAPTER 2: BLOOD PRESSURE-ASSOCIATED POLYMORPHISM  
CONTROLS ARHGAP42 EXPRESSION VIA SERUM RESPONSE  
FACTOR DNA BINDING ............................................................................................... 40 
 

Overview ............................................................................................................. 40 

Introduction ......................................................................................................... 41 

Materials and Methods ....................................................................................... 42 

Results ................................................................................................................ 51 

Allele-specific differences of ARHGAP42 expression in SMCs ............... 51 

ARHGAP42 expression in SMCs controls BP ......................................... 53 



	 viii 

 

ARHGAP42 genotype and human hypertension ..................................... 53 

Identification of regulatory elements within the ARHGAP42 gene ........... 55 

The minor allele sequence at rs604723 binds SRF ................................. 59 

SRF is required for ARHGAP42 expression and for the effects  
of the rs604723 variation ......................................................................... 62 

ARHGAP42 expression is upregulated by RhoA signaling ...................... 62 

Activation of ARHGAP42 expression attenuates the development of 
hypertension ............................................................................................ 65 
 

Discussion .......................................................................................................... 76 

CHAPTER 3: REGULATION OF ARHGAP42 EXPRESSION BY RBPJ and TEAD1..80 

Overview ............................................................................................................. 80 

Introduction ......................................................................................................... 81 

Materials and Methods ....................................................................................... 84 

Results ................................................................................................................ 88 

  Engineering a novel dCas-SRF fusion protein to target endogenous  
loci ............................................................................................................ 88 

Identification of the core regulatory region required for GRAF3 
transcription ............................................................................................. 89 
 
RBPJ and TEAD1 bind to a conserved sequence within the DHS .......... 89 

Activity of the GRAF3 DHS is required by Notch/RBPJ and TEAD1 ....... 94 

  Endogenous GRAF3 expression in SMC is required by RBPJ 
and TEAD1 .............................................................................................. 98 

 
Cooperativity between RBPJ and TEAD1 ............................................. 100 

The long non-coding RNA, AK124326, inhibits GRAF3 expression ...... 102 

Mir-505-3p represses GRAF3 expression ............................................. 104 



	 ix 

Discussion ........................................................................................................ 107 

 
CHAPTER 4: IDENTIFICATION OF MRTF-A POST-TRANSLATIONAL 
MODIFICATIONS AND BINDING PARTNERS .......................................................... 111 
 

Overview ........................................................................................................... 111 

Introduction ....................................................................................................... 112 

Materials and Methods ..................................................................................... 115 

Results .............................................................................................................. 118 

Identification of SMC-specific MRTF-A binding partners ....................... 118 

Validation of PRDM6 as an MRTF-A binding partner ............................ 118 

PRDM6 is required for SMC differentiation ............................................ 125 

Identification of post-translational modifications on MRTF-A ................. 125 

Identification of lysine methyltransferases that methylate MRTF-A ....... 129 

K27 is required for nuclear import of MRTF-A ....................................... 131 

SMYD2 interacts with MRTF-A .............................................................. 135 

SMYD2 inhibits MRTF-A nuclear localization ........................................ 135 

SMYD2 inhibits MRTF-A-dependent smooth muscle transcription ........ 139 

Actin dynamics regulate MRTF-A band shifs ......................................... 139 

Discussion ........................................................................................................ 143 

CHAPTER 5: CONCLUSIONS, PERSPECTIVES, AND FUTURE DIRECTIONS ..... 147 
 

Pharmacologic regulation of RhoA- and Rho-dependent pathways ................. 147 

Regulation of MRTF-A-dependent transcription as a way to direct SMC 
differentiation .................................................................................................... 151 

 
References .................................................................................................................. 153 
 

 



	 x 

LIST OF FIGURES 

 
Figure 1.1. SMC vessel structure and phenotypic switching .......................................... 4 
 
Figure 1.2. RhoA signaling regulates MRTF nuclear localization in SMC .................... 13 
 
Figure 1.3. Domain structure and conservation of myocardin and the MRTFs ............ 15 
 
Figure 1.4. Contrasting the transcription mechanisms that regulate                           
SMC differentiation in the healthy versus phenotypically modulated SMC ................... 24 
 
Figure 1.5. Signaling mechanisms regulating SMC contraction ................................... 33 

Figure 1.6. Pharmacologic and genetic regulation of the RhoA signaling axis ….…….36 

Figure 2.1. ARHGAP42 expression in SMC is regulated by allele-specific    
mechanisms and controls blood pressure ………………………………………….………52 
 
Figure 2.1 (continued). ARHGAP42 expression in SMC is regulated by                  
allele-specific mechanisms and controls blood pressure………………………….………54 
 
Figure 2.2. An enhancer within the ARHGAP42 first intron displays                        
strong SMC-specific and allele-specific activity and is required for                  
endogenous ARHGAP42 expression ............................................................................ 58 
 
Figure 2.2 (continued). An enhancer within the ARHGAP42 first intron               
displays strong SMC-specific and allele-specific activity and is required                        
for endogenous ARHGAP42 expression ....................................................................... 60 
 
Figure 2.3. The minor T allele at rs604723 promotes SRF binding ……………...……..61 

Figure 2.3 (continued). The minor T allele at rs604723 promotes SRF binding ......... 63 

Figure 2.4. The allele-specific activity of the DHS2 enhancer is SRF-dependent ........ 64 

Figure 2.5. ARHGAP42 expression is activated by RhoA signaling and cell stretch .... 67 

Figure 2.6. ARHGAP42 expression limits the development of hypertension ............... 68 

Figure 2.6 (continued). ARHGAP42 expression limits the development of 
hypertension .................................................................................................................. 69 
 
Supplemental Figure II. Tamoxifen treatment of Arhgap42gt/gtSM-MHCCreERT2          
mice restored blood pressure homeostasis ................................................................... 70 
 
Supplemental Figure III. Gel shift ................................................................................ 71 
 



	 xi 

Supplemental Figure IV. Tamoxifen treatment of DOCA-salt-treated                
Arhgap42gt/gt     SM-MHCCreERT2 mice restored arhgap42 expression in                  
mesenteric arteries ........................................................................................................ 72 
 
Supplemental Figure V. TMEM133 is an extension of the ARHGAP42 3’ UTR ......... 73 

Figure 3.1. SRF targeted to the conserved DHS increases endogenous GRAF3 
expression ..................................................................................................................... 91 
 
Figure 3.2. Preliminary mapping of the core regulatory region within  
the GRAF3 DHS ............................................................................................................ 92 
 
Figure 3.3. A core DNase I Hypersensitive regulatory region drives GRAF3  
transcription ................................................................................................................... 93 

Figure 3.4. The core DHS regulatory region binds RBPJ and TEAD1 ......................... 96 

Figure 3.5. RBPJ and TEAD1 binding sites are required for GRAF3 transcription ...... 97 

Figure 3.6. GRAF3 transcription is regulated by Notch signaling ................................. 99 

Figure 3.7. RBPJ/Notch is required for GRAF3 expression ....................................... 101 

Figure 3.8. TEAD1 is required for GRAF3 expression ............................................... 103 

Figure 3.9. The LNC RNA AK124326 negatively regulates GRAF3 expression ........ 105 

Figure 3.10. mir-505-3p suppresses GRAF3 expression ........................................... 106 

Figure 4.1. The N-terminal RPEL domains and basic/Q-rich/SAP region                        
of MRTF-A mediate its interaction with PRDM6 .......................................................... 123 
 
Figure 4.2. Actin bridges MRTF-A and PRDM6 through MRTF’s                                   
N-terminal RPEL domains ........................................................................................... 124 
 
Figure 4.3. PRDM6 interacts directly with the SRF-binding reigon of MRTF-A .......... 126 
 
Figure 4.4. PRDM6 is required for SMC differentiation .............................................. 127 

Figure 4.5. MRTF-A is methylated in vivo .................................................................. 130 

Figure 4.6. Additional predicted methylation sites within MRTF-A ............................. 132 

Figure 4.7. SMYD2 and SET7/9 methylate MRTF-A in vitro and in vivo .................... 133 

Figure 4.8. SMYD2 methylates MRTF-A at K27 ......................................................... 134 



	 xii 

Figure 4.9. K27 is essential for MRTF-A nuclear import ............................................. 136 

Figure 4.10. SMYD2 interacts with MRTF-A .............................................................. 137 

Figure 4.11. SMYD2 inhibits MRTF-A nuclear localization ......................................... 140 

Figure 4.12. SMYD2 inhibits MRTF-A-dependent promoter activity ........................... 141 

Figure 4.13. Cytochalasin D treatment induced formation of the                               
higher mobility MRTF-A species ................................................................................. 142 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



	 xiii 

LIST OF TABLES 

Table 2.1 Analysis of ARHGAP42 genotype and blood pressure in  
human populations ........................................................................................................ 56 
 
Supplemental Table I. Characteristics of clinical cohort .............................................. 74 

Supplemental Table II. Analysis of Arhgap42 genotype in human population ............ 75 

Table 4.1. MRTF-A binding partners in mouse SMC .................................................. 119 

Table 4.1 (continued). MRTF-A binding partners in mouse SMC ............................. 120 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	 xiv 

LIST OF ABBREVIATIONS 

 
ACE:   Angiotensin Converting Enzyme  
 
AII:  Angiotensin II 

AJ:  Adherens Junction  

ATP:   Adenosine Triphosphate  

BP:  Blood Pressure  

BSA:   Bovine Serum Albumin 

CAD:  Coronary Artery Disease  

CADASIL:    Cerebral Autosomal-Dominant Arteriopathy with Subcortical    Infarcts and 
Leukoencephalopathy  

 
CNN:   Calponin 

COS:   CV-1 in Origin with SV40 genes  

CRISPR:  Clustered Regularly Interspaced Short Palindromic Repeats 

CRM-1:  Chromosomal Mainenance-1 

CT:   Threshold Cycle  

DAPI:  4',6-Diamidino-2-Phenylindole, Dihydrochloride 

DAPT:  N-[(3,5-Difluorophenyl)acetyl]-L-alanyl-2-phenyl]glycine-1,1-dimethylethyl 
ester 

 
DHS:   Dnase-I Hypersensitive Site  

DMEM:  Dulbecco's Modified Eagle Medium 

DNA:   Deoxyribonucleic Acid 

DOCA:  Deoxycorticosterone acetate 

DTT:   Dithiothreitol  

EC:  Endothelial Cell  



	 xv 

EDTA:  Ethylenediaminetetraacetic Acid 

EEL:  External Elastic Lamina 

EMSA:  Electrophoretic Mobility Shift Assay 

ENCODE:  Encyclopedia of DNA Elements  

ERK:  Extracellular signal-related kinase  

ES:   Embryonic Stem  

EV:   Empty Vector  

FAK:  Focal Adhesion Kinase  

FBS:   Fetal Bovine Serum 

FCS:  Fetal Calf Serum  

GAP:  GTPase Activating Protein  

GAPDH: Glyceraldehyde 3-phosphate dehydrogenase 

GDP:   Guanosine-5'-diphosphate 

GEF:  Guanine nucleotide exchange factor  

GFP:   Green Fluorescent Protein  

GO:  Gene Ontology  

GPCR:  G Protein Coupled Receptor  

GRAF:  GTPase Regulator Associated with Focal Adhesion Kinase 

GST:   Glutathione-S-transferase  

GTP:   Guanosine-5'-triphosphate 

GWAS: Genome Wide Association Study  

HEPES:     4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

HTN:  Hypertension  

IACUC:  Institutional Animal Care and Use Committee 



	 xvi 

ID:   Identify/Identification  

IEL:  Internal Elastic Lamina 

IP:  Immunoprecipitation  

IRB:   Institutional Review Board 

IV:  Intravenous  

KCL:  Potassium Chloride  

LARG: Leukemia-associated Rho GEF 

LD:  Linkage Disequilibrium  

LNC:  Long Non-coding 

LZ:  Leucine Zipper  

MADS:     MCM1, Agamous, Deficiencs, SRF 

MAF:  Mean Allele Frequency 

MAML:  Mastermind-like 

MCAT: Muscle-CAT 

MEK:  MAP/ERK kinase 

MHC:  Myosin Heavy Chain 

MLC:  Myosin Light Chain  

MLCK: Myosin Light Chain Kinase  

MRTF: Myocardin-Related Transcription Factor  

MYOSLID:  MYOcardin-induced Smooth muscle LncRNA, Inducer of Differentiation 
 
MYPT:  Myosin Phosphatase Targeting Protein  

NEB:  New England Biolabs 

NICD:    Notch Intracellular Domain  

NIH:  National Institutes of Health  



	 xvii 

NLS:  Nuclear Localization Sequence/Signal 

NTC:  Non-Targeting Control  

PAGE: Polyacrylamide Gel Electrophoresis  

PBS:   Phosphate Buffered Saline  

PCR:  Polymerase Chain Reaction  

PDGF: Platelet Derived Growth Factor  

PDZ: Psd-95 (Post Synaptic Density Protein), DlgA (Drosophila Disc Large 
Tumor Suppressor) and ZO1 (Zonula Occludens-1 Protein) 

 
PH:  Plekstrin Homology  

PKA:  Protein Kinase A  

PKC:  Protein Kinase C  

PKMT: Protein Lysine Methyltransferase  

PMSF:  Phenylmethylsulfonyl Fluoride 

PTM:  Post Translational Modification  

RBPJ:  Recombination Signal Binding Protein For Immunoglobulin Kappa   J 
Region 

 
RIPA:  Radioimmunoprecipitation assay buffer 

RNA:   Ribonucleic acid 

ROCK: Rho-associatd protein kinase  

RT:  Real Time  

SAM:  S-adenosylmethione  

SAP:  SAF-A/B, Acinus and PIAS 

SDS:  Sodium Dodecyl Sulfate  

SEM:  Standard Error of the Mean  

SET:   Su(var)3-9, Enhancer-of-zeste and Trithorax 



	 xviii 

SFM:  Serum Free Media  

SM:  Smooth Muscle  

SMA:  Smooth Muscle Alpha-Actin 

SMC:  Smoth Muscle Cell  

SMMHC: Smooth Muscle Myosin Heavy Chain  

SMYD: SET And MYND Domain Containing 

SNF:  SWItch/Sucrose Non-Fermentable 

SNP:  Single Nucleotide Polymoerphism  

SRF:  Serum Response Factor  

STAT:  Signal transducer and activator of transcription 

SUMO: Small Ubiquitin-like Modifier 

SWI:  SWItch/Sucrose Non-Fermentable 

TAD:  Transcriptional Activation Domain  

TAGLN: Transgelin 

TEAD: TEA domain family member 1 

TEF:  Transcriptional Enhancer Factor  

TET:  Ten-eleven Translocation  

TGF:  Transforming Growth Factor  

TK:  Tyrosine Kinase  

TSS:  Transcription Start Site  

UCSC: University of California, Santa Cruz 

UNC:  University of North Carolina  

UTR:  Untranslated Region  

VEGF: Vascular endothelial growth factor 



	 xix 

VSMC: Vascular Smooth Muscle Cell  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	 1  

 

 
 
 

CHAPTER 1: BACKGROUND AND SIGNIFICANCE 

Blood vessel development, structure, and function  

Blood vessels supply the developing embryo and adult with sufficient oxygen and 

nutrients required to support organ growth, function, and life. The mature artery is 

comprised of three main layers: the tunica intima, tunica media, and tunica adventitia 

(Figure 1). The tunica intima, which is the innermost layer, consists of a single lining of 

endothelial cells and is separated from the tunica media by the internal elastic lamina. 

The tunica media is composed of multiple sheets of vascular smooth muscle cells 

(SMCs), which contract to regulate vessel diameter, tone, and, consequently, 

downstream tissue perfusion. The external elastic lamina separates the tunica media 

and the tunica adventitia, which is formed from connective tissue. The connective tissue 

of the adventitia houses peripheral nerves, immune cells, fibroblasts, and resident 

vascular progenitor cells that are thought to play a role in vascular disease and repair 

(1, 2).    

The embryonic vascular system begins as an endothelial network, which arises 

from undifferentiated precursors, called angioblasts. Extensive remodeling of the 

endothelial network is driven by vascular endothelial growth vector (VEGF), which 

stimulates vascular sprouting from tip cells (3). S1P signaling limits endothelial 

sprouting, thereby stabilizing the developing network (4, 5). As such, mice lacking 

endothelial-specific S1PR1 have deformed vasculature due to excessive sprouting (6). 

Although endothelial cells are required for initiation of blood vessel development, they 
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alone are unable to maintain and stabilize the developing vascular system (7, 8). 

Maturation and stabilization of the developing vasculature by SMCs is essential for a 

functional vascular network. After extensive remodeling of the endothelial plexus, the 

first step in vascular maturation is investment of the plexus by mural cells (smooth 

muscle cells and pericytes), which relies heavily on PDGF, TGFβ, and Notch signaling 

(8-10). Intact PDGF-B/PDGF-Rβ signaling is required for SMC investment during blood 

vessel development, as global homozygous deletion of the PDGF-B ligand or its 

receptor results in hemorrhage and embryonic lethality from diminished SMC coverage 

in capillary beds (12). Another important regulator of SMC migration during vessel 

development is Notch signaling, loss of which leads to significantly reduced SMC 

coverage in developing vessels (13). This will be discussed in greater detail below.    

During vessel maturation, SMCs begin to express essential proteins that are 

required for their function. Several of these proteins are routinely used to specify the 

smooth muscle lineage, and hence termed “smooth muscle-specific” genes. Smooth 

muscle alpha actin (ACTA2/SMA) and transgelin (TAGLN/SM22) and are the earliest 

genes expressed by the SMC, while calponin (CNN) and smooth muscle-myosin heavy 

chain (MYH11/SM-MHC) are considered more mature markers of SMC differentiation 

since they are expressed later along the differentiation timeline. SMA is the first marker 

to be expressed and can be seen in mouse as early as E8.5. Transgene expression 

using the smooth muscle alpha actin promoter to drive LacZ reporter activity was 

detected at E10.5 (14). SM22 is expressed at ~E9.5 in mouse and persists into 

adulthood in all smooth muscle tissues. However, in the heart, SM22 is transiently 

expressed between E8.0 and E12.5, and between E9.5 and E12.5 in skeletal muscle 

cells (15). SM-MHC transcripts are detected first in the aorta and its arches at E10.5, in 
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other locations beginning at E12.5, and then in all smooth muscle tissues by E17.5 (16). 

Finally, calponin is expressed in the heart as early as E8.5 but persists until E13.5, at 

which time calponin transcripts are detected in smooth muscle-containing tissues (17).  

Developmental diversity of SMCs 

SMCs have a profound developmental diversity, since they are not derived from 

a single embryonic origin (18). Rather, various primordial embryonic tissues give rise to 

the different SMC lineages that are found in the adult, and each lineage is regionally 

specified according to which tissue it arose from. Consequently, SMCs throughout the 

adult arterial tree form a patchwork of the different embryonic origins from which they 

derive. Genetic fate mapping approaches have been particularly helpful in delineating 

these different sources of SMCs, which include the neural crest, second heart field, 

proepicardium, somites, splanchnic mesoderm, mesothelium, and various 

mesangioblasts and stem cells. Neural crest cells migrate then differentiate into SMCs 

within the ascending and arch portions of the aorta as well as the carotid arteries. 

Second heart field cells migrate to the cardiac outflow track where they form SMCs at 

the base of the aortic root and pulmonary trunk. SMCs of the coronary arteries are 

derived from the proepicardium, while those in the descending aorta arise from somites.  

Role of SMC phenotypic switching in cardiovascular disease  

Unlike cardiac and skeletal muscle, smooth muscle cells do not terminally 

differentiate, but, instead, retain marked plasticity in their ability to switch between 

synthetic and contractile phenotypes (19, 20). Such phenotypic switching is a hallmark 

of SMCs and can be directly correlated with their differentiation (i.e. more differentiated 

SMCs express a more contractile gene program) (Figure 1.1). Downregulation of these 

contractile genes and upregulation of growth-related, proliferate, and synthetic genes is 
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Figure 1.1. SMC vessel structure and phenotypic switching. Blood vessels are 
comprised of three layers: The Tunica intima (composed of endothelial cells), Tunica 
media (composed of SMCs), and the Tunica adventitia (composed of connective tissue 
and nerves). The internal elastic lamina (IEL) separates the tunica intima from the 
tunica media, while the external elastic lamina (EEL) separates the tunica media and 
the adventitia. In the healthy blood vessel, SMCs are quiescent and express high levels 
of contractile genes (SMA, SM22, CNN, and SM-MHC). However, during 
atherosclerosis or after vascular injury (e.g., restenosis), SMCs undergo extensive 
phenotypic switching characterized by loss of contractile markers and upregulation of 
proliferate genes. In the case of vascular injury, SMCs undergo intimal hyperplasia.   
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not only a hallmark of vascular disease, but contributes significantly to disease  
 
pathogenesis (21-23). Thus, SMCs play a fundamental role in the development of 

several vascular diseases, including atherosclerosis, restenosis post-angioplasty, aortic 

aneurysm, and hypertension. The contribution of the SMC within the context of each 

specific disease will be discussed, and the discussion on hypertension is saved for a 

subsequent section.  

Atherosclerosis 

 Atherosclerosis is the leading cause of morbidity and mortality in the United 

States (24). The disease begins as a fatty streak on the luminal surface of blood 

vessels. With age, the fatty plaque enlarges and endothelial cells retain lipoprotein 

particles that evoke an inflammatory response by macrophages (25-27). The low-grade 

inflammation leads to endothelial and SMC activation. In response to this, SMCs 

undergo extensive phenotypic switching characterized by a downregulation in 

contractile gene expression, increase in proliferation and early growth response genes, 

as well as production and deposition of extracellular matrix (22, 23). Eary in disease, 

phenotypic modulation of the SMC is adaptive and allows for vessel repair by walling off 

the underlying thrombogenic material with a fibrous cap, thereby preventing clot 

formation. With chronic inflammation, however, macrophages secrete proteases that 

degrade the extracellular matrix of the stable fibrous cap, resulting in an unstable 

plaque with a thin cap (28). Continued inflammation leads to unstable plaque rupture, 

clot formation, and myocardial infarction/stroke.  

Several transcription mechanisms mediating phenotypic modulation in SMCs 

have been identified (29). First, it is well established that PDGF-BB is a strong repressor 

of smooth muscle differentiation in cultured SMC (30). PDGF-BB binds to its tyrosine 
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kinase receptor and activates the Ras/Raf/MEK/ERK kinase pathway to stimulate Elk-1 

phosphorylation and subsequent SRF-dependent early growth response genes (31). In 

response to PDGF-BB, phosphorylated Elk-1 (pElk-1) outcompetes myocardin, MRTF-

A, and MRTF-B for SRF, ultimately leading to inhibition of mature SMC genes. pElk-1 

recruits HDACs, thereby leading to decreased H4 acetylation and reduced SMC gene 

expression (32-35). To what degree PDGF-BB ligand contributes to SMC phenotypic 

modulation during atherosclerosis in vivo, however, is less understood. Although PDGF 

receptor blockade reduced atherosclerotic fibrous cap formation in athero-prone ApoE -

/- mice, it is unclear how much of this is due to an SMC-specific effect since PDGFRβ 

was inhibited in several cell types in these studies (36). The Olson Lab inhibited the 

PDGFRβ-activated transcription factor, STAT1, in SMCs and found that plaque size was 

reduced in a mouse model of atherosclerosis. This study suggests that aberrant PDGF 

signaling activates STAT-mediated pathways specifically in vascular SMC to contribute 

to atherosclerotic lesion formation (37). Despite these data, however, SMC-specific 

PDGF receptor deletion mouse models will be required to directly assess the role of 

PDGFRβ activation in SMC. Second, dynamic binding of repressive complexes at GC 

repressors within SMC-specific promoters drastically reduces smooth muscle gene 

expression during disease. Proximal promoter regions within several smooth muscle 

genes that drive SMC-specific expression in vivo have been identified (14, 38, 39). 

Interestingly, a GC repressor in the SM22 promoter was required for downregulation of 

SM22 expression during atherosclerosis in vivo. Mutation of this GC repressor inhibited 

reduction of SM22-LacZ transgene expression in an ApoE -/- atherosclerosis mouse 

model (40). Although SRF is required for SMC differentiation, it can bind activating or 

repressing co-factors, as seen above for pElk-1 in response to PDGF-BB stimulation, 
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and can thus toggle between active or repressive transcriptional modules, respectively 

(41). During phenotypic switching, SRF binds KLF4, which inhibits SMC differentiation 

by binding to GC repressors in smooth muscle promoters (42, 43). Several studies have 

demonstrated that KLF4 is required for SMC phenotypic switching during 

atherosclerosis. In ApoE -/- mice a repressive complex consisting of KFL4, pELk-1, and 

HDAC2 is recruited to GC repressors in the SM22 promoter (44). Furthermore, in 

cultured SMC at least, KLF4 overexpression significantly reduces myocardin expression 

as well as that of smooth muscle-specific markers, suggesting that KLF4 is an important 

repressor of SMC differentiation during phenotypic switching (45).  

Restenosis  

 Angioplasty uses balloon dilatation or metal stents to open a coronary artery that 

has been occluded from atherosclerotic narrowing. While these treatments improve 

mortality, they are associated with eventual restenosis, which usually occurs within 6 

months after the procedure (46, 47). While bare metal stents reduce the likelihood of 

restenosis to 25% compared to the 60% chance associated with balloon angioplasty 

alone, there still remains considerable risk of restenosis from stenting (48, 49). 

Restenosis is caused by injury to the intimal surface of the artery, which stimulates SMC 

proliferation and migration around the stented region, a process referred to as intimal 

hyperplasia. Intimal hyperplasia can result in vessel occlusion and myocardial infarction. 

Several studies using wire injury models of restenosis have shown that PDGF-BB is 

required for the excess SMC proliferation and migration seen intimal hyperplasia (50-

52). Similar to the changes that occur in atherosclerosis, SMCs undergo phenotypic 

modulation and lose their contractile protein repertoire. In fact, many of the same 

mechanisms that mediate transcriptional repression of SMC genes in atherosclerosis 
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also lead to phenotypic switching after vascular injury and restenosis, such as KLF4 

binding to GC repressors in smooth muscle-specific gene promoters (40). Additionally, 

GATA-6, a transcription factor expressed in healthy, quiescent SMCs, is significantly 

downregulated with balloon injury to carotid arteries in mice (53, 54). As a result, SMC 

differentiation is inhibited and neointimas subsequently form. In this same model, 

smooth muscle gene expression is restored with GATA-6 rescue but not with a GATA-6 

construct lacking the DNA binding domain. This study indicates that downregulation of 

GATA-6 after balloon angioplasty drives repression of smooth muscle gene expression.  

Transcriptional regulation of SMC differentiation  

The processes controlling SMC gene transcription are exceedingly complex, 

since multiple factors and different combinations thereof contribute to SMC 

differentiation and phenotype (29). In its vascular niche, the SMC responds to a myriad 

of growth factors, injury stimuli, extracellular matrix, components, cell-cell contacts, 

diffusible factors, and mechanical cell stretch, all of which converge to regulate smooth 

muscle gene expression. How all of these cues are integrated within the SMC to control 

differentiation is a major focus of vascular research and a key question in understanding 

how the SMC converts between contractile and synthetic gene programs so readily 

during development and different disease states. The transcription mechanisms 

underlying phenotypic switching of the SMC during disease have been presented 

above. In the sections that follow, the transcription factors and signaling molecules that 

regulate SMC differentiation under normal conditions will be presented.  

Regulation of SMC differentiation by SRF, myocardin, and the MRTFs 

In contrast to cardiac and skeletal muscle, a single transcriptional “master 

regulator” of smooth muscle-specific differentiation has yet to be identified. SRF, 
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although critical for SMC differentiation, also regulates cardiac and skeletal muscle 

gene expression and thus cannot be considered a master regulator of SMC-specific 

transcription (55-57). In fact, cardiac, skeletal, and smooth muscle express many of the 

same transcription factors, suggesting that additional transcription mechanisms and/or 

factors distinguish a SMC from a cardiomyocyte and skeletal muscle cell. As indicated 

above, unique combinations of transcription factors with isoform-specific distribution 

contribute to SMC-specific gene expression. Additionally, as will be discussed below, 

transcription factor binding is intricately tied to the epigenetic signature of the SMC.  

SMC differentiation is controlled by serum response factor (SRF), which was first 

identified as a MADS box-containing protein that binds a serum element in the c-fos 

gene (58) The MADS box family of transcription factors are highly conserved and play 

critical roles in transcriptional regulation (59). The MADS box mediates DNA binding, 

homodimerization, as well as interaction with other transcription factors (60, 61). SRF is 

essential for differentiation of the mesoderm, as SRF null mouse embryonic stem cells 

fail to develop into this lineage or express muscle-specific genes (e.g., smooth muscle 

alpha actin) (59). SRF binds to consensus CC(A/T)6GG (CArG) sequences in the 

promoters and enhancer elements in virtually all smooth muscle-specific genes, and the 

SRF-CArG association is critical for SMC differentiation (62-67).  

Several seminal studies demonstrated that CArG elements in the SMA and SM-

MHC promoters were essential for SMC-specific expression in vivo (66, 38, 39). One of 

these studies, for example, showed that a large region including the promoter and first 

intron of the SM-MHC gene, which contain several CArG boxes, were sufficient to 

recapitulate SMC-specific expression in a variety of tissues (38). Further mutational 

analyses revealed that the promoter CArG regions were required for the smooth 
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muscle-selective expression pattern, but the intronic CArG was only required for 

expression in large arteries (39). These data suggest that CArG elements can function 

differentially depending on their genomic context. Furthermore, studies from our lab 

using LacZ transgenic mouse models indicated that a CArG in the promoter of the 

mDia2 promoter was required for smooth muscle-specific expression in various tissues, 

including aorta, bladder, and lung (unpublished data). Recently, our group and others 

have used CRISPR/Cas9 gene editing to delete CArG elements in vivo. CRISPR/Cas9 

technology has become the “holy grail” for studying gene function, since it allows 

researchers to edit a gene or critical gene region in its endogenous context. Such an 

approach is particularly useful for identifying key regulatory regions important for gene 

expression because the effects of deletions on native chromatin interactions can be 

studied, which was not possible with previous transgenic reporter approaches (e.g., 

promoter-Lacz). As demonstration of this approach’s utility, CRISPR/Cas9-mediated 

deletion of a CArG in the endogenous calponin mouse gene drastically reduced its 

expression in vivo, thereby allowing identification of an essential regulatory element (69, 

70).    

 Although SRF is required for SMC differentiation, it is unable to fully drive smooth 

muscle gene expression. Additional co-activators including myocardin and the 

myocardin-related transcription factors (MRTF-A and -B) bind to SRF to fully 

transactivate SMC differentiation (71-79). Also, SRF binding to either of these 

transcription factors increases its association with SMC promoters (63). Although the 

myocardin family members are required to stimulate SRF-dependent gene expression, 

each co-factor has its own unique expression pattern and, consequently, its own 

associated distinct phenotype in response to its deletion in vivo. Myocardin, although 
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expressed in several cell types, is preferentially expressed in SMCs and 

cardiomyocytes and its deletion results in fatal yolk sac and vascular defects associated 

with loss of smooth muscle marker gene expression (80, 81). Alternatively, MRTF-B 

ablation results in failed differentiation of neural crest-derived SMCs, causing late 

embryonic lethality (~E17.5) due to aortic arch and outflow track defects (82). Finally, 

MRTF-A null mice display defective myoepithelial differentiation, which causes 

decreased mammary gland function and eventually involution. As a result, pups of 

MRTF-A -/- mothers exhibit a failure to thrive syndrome from decreased feeding and 

malnourishment (83).  

Regulation of SMC differentiation by RhoA signaling 

The Rho GTPases consist of a family of proteins that translate extracellular cues 

into signaling cascades that regulate critical cell functions including migration, polarity, 

maintenance of cell-cell junctions, and contraction (84-87). The 22 different Rho 

GTPases fall into one of three categories: RhoA, Rac-1, or Cdc42. While each Rho 

GTPase has its own predominant function within the cell, coordination between all of the 

individual GTPases is required for successful cell motility. In general, Rac-1 and Cdc42 

act at the cell’s leading edge to stimulate lamellipodia and filopodia formation, 

respectively, while RhoA activation at the back of the cell stimulates retraction through 

actomyosin contraction. RhoA is also responsible for actin stress fiber formation (88). 

Precise spatiotemporal regulation of Rho GTPase activity is required for these 

coordinated cell functions to occur (89). Rho GTPases cycle through active, GTP-bound 

and inactive, GDP-bound states, which are catalyzed by guanine nucleotide exchange 

factors (GEFs) and GTPase activating proteins (GAPs), respectively (Figure 1.2A). 

Guanine nucleotide dissociation inhibitors (GDIs) inhibit Rho GTPases by sequestering 
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them in the cytosol, thereby preventing them from interacting with downstream effectors 

at the cell membrane (90). In total, there are approximately 80 RhoGEFs (91-93). The 

GEF’s basic catalytic unit is a Dbl-homology (DH) domain that mediates the exchange 

of GDP for GTP on the Rho GTPase. A plekstrin-homology (PH) domain is located C-

terminal to the DH domain and mediates the GEF’s interaction with the cell membrane. 

Other downstream accessory regions within the GEF are variable and mediate protein-

protein and protein-lipid interactions. The GEFs counterpart, RhoGAPs, catalyze the 

slow intrinsic hydrolytic activity of the GTPase, thereby promoting the GDP (inactive) 

form. RhoGAPs are comprised of about 65 different members (94). The basic catalytic 

unit of the RhoGAP is the GAP domain, which hydrolyzes GTP into GDP. Like GEFs, 

RhoGAPs often contain additional domains that mediate interactions with membrane 

phospholipids and other proteins.  

Our lab and others have shown that MRTF-dependent SMC differentiation is 

activated strongly by the small GTPase, RhoA (95-97). Under basal, unstimulated 

conditions, MRTF-A is sequestered in the cytoplasm by G-actin. In response to G-

protein coupled receptor (GPCR) stimulation by a variety of ligands (e.g., S1P), RhoA 

stimulates actin polymerization, a process mediated by the RhoA effectors, ROCK and 

mDia1/2. Conversion of G-actin to F-actin frees MRTF-A from actin, thereby unmasking 

a nuclear localization sequence (NLS) within the G-actin-binding RPEL domains of 

MRTF-A (98, 99). With the NLS exposed, MRTF-A enters the nucleus via an importin-

based mechanism and then binds SRF to transactivate expression of SMC-specific 

genes (e.g., SM22, smooth muscle alpha-actin, calponin) required for mature SMC 

function (100) (Figure 1.2B). Myocardin, which cannot binding G-actin and is 

constitutively nuclear, is therefore different from the MRTFs in this regard.  
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Figure 1.2. RhoA signaling regulates MRTF nuclear localization in SMC. A) RhoA 
GTPase cycling between active (GTP-bound) and inactive (GDP-bound) forms is 
catalyzed by GEFs and GAPs, respectively. B) Under serum starved conditions, MRTF-
A is sequestered in the cytoplasm by G-actin. MRTF-A is rapidly exported out of the 
nucleus by Crm-1 (exportin). Serum stimulation leads to RhoA activation, which induces 
F-actin polymerization. MRTF-A enters the nucleus via an importin-based mechanism 
and activates SRF-dependent genes.   
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Myocardin and the MRTFs contain several conserved domains that mediate their 

transcriptional activity (Figure 1.3). First, myocardin, MRTF-A, and MRTF-B all possess 

a B1 domain located between the RPEL and glutamine-rich region near the N-terminus 

of the proteins. The B1 domain mediates the interaction with SRF (73). All three factors 

share an SAP domain, whose function is less defined. However, in other proteins, the 

SAP domain controls nuclear dynamics and organization (101). A leucine zipper (LZ) 

domain, located at the center of each transcription factor, mediates homo- and 

heterodimerization between myocardin and the MRTFs. Finally, at the C-terminal 

region, myocardin contains a transcriptional activation domain (TAD) required for 

complete transactivation of SRF target genes (102). Interestingly, the TAD is weakly 

conserved between myocardin and the MRTFs, suggesting disparate mechanisms of 

regulation between the two transcription factors.  

Previous studies from our lab indicated that S1PR2 signals through the RhoA 

GEF, LARG, to drive SMC differentiation and inhibit migration (103). Other studies 

demonstrated that LARG knockout mice exhibit decreased sensitivity to salt-induced 

hypertension (104). Further, combined deletion of LARG and PDZ Rho-GEF (PRG) in 

mice results in vascular branching defects, indicating that combinatorial interactions 

between RhoA GEFs influence vascular morphogenesis and/or overlapping function 

between two or more GEFs exists (105). Additional experiments from the Mack Lab 

identified an important role for the RhoA effectors, mDia1 and mDia2, in SMC 

differentiation. Knockdown of mDia1/2 significantly decreased smooth muscle markers, 

including SM-MHC, calponin, SMA, and SM22, and further inhibition of mDia signaling 

prevented directional migration in SMC (106). In further support of mDia1/2’s role in 

SMC phenotypic modulation, dominant negative mDia (DNmDia) driven by a SM22-Cre 
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Figure 1.3. Domain structure and conservation of myocardin and the MRTFs. 
Conserved domains in the mouse myocardin, MRTF-A, and MRTF-B transcription 
factors include RPEL domains, Basic regions (B1 and B2), a Q-rich region, SAP 
domain, Leucine Zipper (LZ) domain, and a transactivating domain (TAD). MRTF-A and 
MRTF-B share near identical sequence conservation with each other.  

TAD LZ SAP Q ++ ++ 

B1 B2 1 2 3 

RPEL 

MYOCARDIN 

MRTF-A 

MRTF-B 

-- 67% --             85%   65%         69%                                          29%  

-- 66% --           85%   62%          63%                                        28%  

Chromatin 
remodeling 

*Transcriptional activation 
*Nuclear export 

Dimerization 

*Nuclear import 
*SRF binding 

Actin binding 



	 16  

reporter prevented re-expression of SM-MHC and calponin 7 days after carotid artery 

ligation in a mice. Interestingly, ligated arteries from DNmDia mice displayed reduced 

neo-intimas compared to wild-type littermates, most likely due to its inhibitory effects on 

SMC migration and polarity. Of note, a subset of SM22-Cre+/DNmDia+ mice exhibited a 

runted, hairless phenotype, patent ductus arteriosus, and embryonic hemorrhagic 

phenotypes (107). In addition to conventional RhoA signaling, our lab and others 

demonstrated that nuclear RhoA signaling is a novel mechanism regulating SMC 

differentiation. mDia2, which shuttles between cytoplasmic and nuclear compartments, 

stimulates nuclear actin polymerization as well as MRTF-dependent SMC transcription. 

Furthermore, forced expression of NLS-tagged LARG significantly enhanced promoter 

activities of SMC-specific genes by upregulating RhoA signaling in the nucleus (108).    

Post-translational modifications of SRF, myocardin, and MRTF-A   

In addition to directly regulating chromatin dynamics, post-translational 

modifications (PTMs) also affect transcription factor function and downstream target 

gene expression (109). Some of these PTMs include phosphorylation, ubiquitylation, 

methylation, acetylation, and oxidation. Myocardin acetylation by p300 enhances its 

association with SRF, stabilizes the myocardin-SRF-CArG complex, and upregulates 

smooth muscle and cardiac gene expression (110, 111). Myocardin is also 

phosphorylated by GSK3β and ERK, which both inhibit myocardin-dependent smooth 

muscle transcription (112, 113). Phosphorylation of SRF at T159 by PKA inhibits its 

interaction with CArG boxes, thereby diminishing downstream SMC-specific promoter 

activity (114).  

Early studies identified a critical ERK phosphorylation site within MRTFA (S454), 

which inhibited MRTF-A’s nuclear localization by stabilizing its interaction with 
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cytoplasmic G-actin (115). More recent reports indicate that MRTF-A is phosphorylated 

at several other residues, each of which has varied effects on its nuclear localization 

(116). Interestingly, sumoylation of MRTF-A represses its ability to transactivate smooth 

muscle promoters, while SUMO modification activates myocardin at cardiac genes (117, 

118). Clearly, tight post-translational regulation of SRF and the myocardin family of 

transcription factors is an important mechanism controlling smooth muscle gene 

expression in response to different stimuli and contexts. It will be necessary to identify 

additional PTMs regulating activity of smooth muscle transcription factors and their 

effects on SMC differentiation.  

Regulation of SMC differentiation by Notch/RBPJ 

Although myocardin and the MRTFs are by far the most potent drivers of SMC 

differentiation, additional transcription factors regulate smooth muscle gene expression. 

The transcription factor RBPJ is ubiquitously expressed and binds to consensus 

GTGGG sequences in Notch target genes (119-121). Notch/RBPJ signaling is required 

for arterial specification during development and maintains blood vessel integrity by 

inducing SMC differentiation (122, 123). Work in zebrafish revealed that Notch signaling 

was essential for arterial specification. Specifically, inhibition of Notch diminished 

expression of the arterial markers ephrinB2 and deltaC, while overexpression of Notch 

repressed venous specification. Further, Notch inhibition causes various vascular 

defects including arterio-venous shunting, cranial hemorrhage, and reduced circulation 

through specific vascular beds (124, 125). Deletion of the Notch3 receptor in mice leads 

to loss of cerebral vascular integrity due to degenerative SMCs that do not express 

smooth muscle markers. As a result, Notch3 deficient cerebral vessels are leaky and do 

not exhibit normal contractile properties (126, 127). Notch3 deficiency is phenocopied in 
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the human disease, CADASIL, in which patients suffer from transient ischemic attacks 

due to subcortical infarcts. Histological examination of post-mortem tissues from 

CADASIL patients revealed loss of cerebrovascular SMC, very similar to that seen in 

Notch3 deficient mice (127, 128).  

Notch is activated when a cell expressing jagged or delta-like ligand engages the 

Notch receptor expressed on the surface of a neighboring SMC. Upon notch activation, 

gamma secretase cleaves the notch intracellular domain (NICD), which translocates 

into the nucleus to bind to RBPJ. Under unstimulated conditions, RBPJ binds 

mastermind-like (MAML), which represses notch target genes. However, with notch 

activation, NICD displaces MAML and increases RBPJ/Notch-dependent transcription. 

While this model implies that RBPJ activates gene expression, independent studies 

indicate that the effect of RBPJ on SMC differentiation is highly context specific (129, 

130). For example, one study demonstrated that NICD overexpression and jagged-1 

stimulation increased SM-MHC expression in SMC, while another study from the same 

lab reported that HERP-1, a notch target gene, was induced after arterial balloon injury 

and repressed myocardin-dependent smooth muscle transcription by physically 

inhibiting SRF-CArG binding (131-133). Furthermore, our lab recently showed that 

RBPJ binds to methylated GC repressors in the SM-MHC promoter to inhibit 

transcription after vascular injury (120). All together, these studies suggest that Notch 

can function as both a repressor as well as an activator of SMC differentiation 

depending on its specific context.  

Regulation of SMC differentiation by the TEADs 

The transcriptional enhancer family (TEF)/TEA domain (TEAD) transcription 

factors are downstream mediators of the Hippo signaling axis (134). In brief, activation 
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of Hippo leads to phosphorylation of the Mst1/2 serine/threonine kinases, which activate 

another set of serine/threonine kinases, called Lats1/2. Active Lats1/2 phosphorylate 

and inhibit Yap/Taz, which prevents their nuclear accumulation and subsequent 

activation of the TEAD transcription factors. Thus, when the Hippo pathway is activated, 

TEADs inhibit target gene expression. Only when Hippo is inactive are Yap/Taz able to 

translocate to the nucleus to bind to the TEADs to relieve target gene repression. The 

Hippo signaling cascade has been implicated in a variety of cellular functions, including 

regulating cell size, proliferation, cell-cell communication, stem cell renewal, and 

differentiation (135-137).  

Members of the TEAD family, composed of TEADs 1-4, are expressed to varying 

degrees in smooth, cardiac, and skeletal muscle tissues and regulate expression of 

muscle-specific genes (138). TEAD1 is highly smooth muscle-specific and has been 

shown to regulate SMC differentiation, although the exact direction of effect is not 

understood (139, 140). All TEAD proteins contain a highly conserved N-terminal TEA 

DNA-binding domain, which recognizes consensus motifs. In particular, TEAD1 

recognizes the MCAT motif (CATTCCT), which is found in regulatory regions of several 

smooth muscle-specific genes, including SMA (141, 142). Intriguingly, the effect of 

MCAT site mutation differed significantly in SMCs versus granulation tissue fibroblasts. 

While MCAT mutation abolished LacZ expression in granulation tissue, there was no 

effect of the mutation in adult SMCs (143). It is possible that additional interactions 

between TEAD1 and other cell-type specific transcription factors coordinate the ultimate 

effect on differentiation. Indeed, interactions between TEAD1 and other transcription 

factors have been identified. TEAD1 and SRF interact and cooperatively regulate 

expression of the skeletal alpha-actin gene (144). TEAD1 also interacts with MEF2C to 
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drive expression of muscle-specific genes (145, 146). It is thought that unique 

combinations between TEAD1 and other transcription factors contribute to SMC-specific 

gene expression and may explain the different effects of TEAD1 on smooth muscle 

differentiation at different developmental stages.           

Regulation of SMC differentiation by Nkx-3.2 and GATA-6 

 Nkx-3.2 and GATA-6 form a tripartite complex with SRF to modulate smooth 

muscle-specific differentiation. Interestingly, when either the Nkx, GATA, or CArG DNA 

binding motif is mutated within the alpha1 integrin luciferase promoter construct, 

transcription activity is significantly reduced, indicating cooperativity between all three of 

these factors (147-149). Furthermore, Nkx-3.2, GATA-6, and SRF have overlapping 

expression in the arterial SMCs, which differs from the cardiac-specific expression 

patterns of Nkx-2.5 and GATA-4 (150). These studies indicate that transcription factors 

other than myocardin and the MRTFs likely function in an SRF/CArG-dependent 

manner to further distinguish smooth versus cardiac muscle differentiation.  

Regulation of SMC differentiation by TGFβ 

TGF-β upregulates SMC differentiation by activating the SMAD family of 

transcription factors and is an important environmental cue for the SMC during 

development and disease. In in vitro models of SMC differentiation, TGF-β converts 

undifferentiated, fibroblast-like 10T1/2 cells into elongated, contractile SMCs (151). 

Additionally, TGF-β plays a critical role in vascular development. Specifically, TGF-β is 

required for migration and differentiation of the cardiac neural crest cells into SMCs of 

the ascending aorta (152). TGF-β is also required for recruitment of SMCs to other 

locations throughout the developing vascular network. Genetic deletion of both TGF-β 

alleles in mice leads to embryonic lethality due to reduced SMC coverage of the yolk 
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sac (153). TGF-β also plays a pivotal role in development of aortic aneurysms, in which 

aortic dilatation is due to degeneration of the artery’s medial layer. Although aortic 

aneurysms are relatively rare, they are associated with a strikingly high mortality rate. 

By far, the most direct line of evidence linking SMCs and aortic aneurysms are human 

mutations within the TGFβ signaling axis that lead to varying degrees of pathology. To 

date, mutations have been identified in TGFBR1, TGFBR2, TGFB2, SMAD3, and 

SMAD4, which are found in patients with aortic aneurysm syndromes (e.g., Loeys-Dietz 

Syndrome) (154-159). Of note, smooth muscle gene expression is downregulated in 

aortic aneurysm samples and is observed in a mouse model of early aortic aneurysm 

formation, indicating that failed SMC differentiation may contribute to disease (160).  

The SMAD family of transcription factors, specifically SMAD2, 3, and 4, are 

critical for SMC differentiation and normal vascular development (152). The SMAD 

transcription factors (hereon referred to as SMADs) are downstream of TGF-β signaling. 

Briefly, cleaved TGF-β ligand binds to type II TGF-β receptor, which leads to 

phosphorylation of the type I receptors. Subsequently, phosphorylated type I TGF-β 

receptor recruits and phosphorylates SMAD2 and SMAD3, which promotes their 

interaction with SMAD4. The SMAD2/3/4 complex translocates into the nucleus, where 

it binds to a GTCT DNA element, but with low affinity. Given such weak binding, the 

SMADs interact with other transcription factors to drive robust TGF-β-dependent gene 

expression. For example, SMAD3 interacts with deltaEF1 to transactivate TGF-β-target 

genes. Importantly, some of the effects of TGF-β are SRF-CArG-dependent, and 

SMAD3 can interact with SRF directly to fully activate SMC-specific gene expression 

(161). The SRF-SMAD3 complex recruits myocardin to potentiate this effect (162). In 

further support of this, mutation of CArG elements in luciferase reporters prevents 
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transcriptional activation by TGF-β (163-165). In addition to these direct effects, TGF-β 

indirectly upregulates SMC differentiation by increasing the expression of genes that 

themselves enhance SMC transcription. For example, TGF-β increases expression of 

the RhoA GEFs, Net-1 and GEF-H1, which activate RhoA-dependent SMC-gene 

transcription (166, 167).  

Regulation of SMC differentiation by extracellular matrix and cell stretch 

 Various extracellular matrix proteins signal through integrin receptors to 

differentially regulate SMC differentiation and phenotype (168-171). Freshly isolated 

SMCs grown on fibronectin are more synthetic and proliferative, while collagen IV and 

laminin maintain the SMC in its differentiated, contractile state (172). This response is 

best exemplified during the SMC’s response to injury, where breakdown of extracellular 

matrix proteins and re-expression of fibronectin stimulates SMC dedifferentiation and 

proliferation (173, 174). In brief, upregulation of extracellular matrix-integrin signaling by 

fibronectin leads to activation of the non-receptor tyrosine kinases, focal adhesion 

kinase (FAK) and Src, which activate the ERK signaling pathway (175). ERK activation 

downregulates SMC differentiation. In contrast, collagen IV upregulates SMC 

differentiation by increasing expression of myocardin as well as enhancing enrichment 

of SRF at CArG boxes in SMC-specific gene promoters (176). The exact signaling 

mechanisms downstream of laminin and collagen IV that lead to increased SMC 

transcription, however, are less understood. 

 Stretch of the blood vessel, particularly in hypertension, results in increased 

contractile gene expression in the SMC. Additionally, prolonged stretch induces 

remodeling to a thicker vessel (177-179). The stretch response is largely dependent on 

RhoA activity, which induces actin polymerization and MRTF nuclear translocation. The 
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role of RhoA in the stretch response is demonstrated by inhibiton of stretch-induced 

upregulation of SMC-specific gene expression in cells treated with the Rho inhibitor, C3 

transferase, and to a lesser extent with the ROCK inhibitor, Y-27632 (180). Additionally, 

there is some evidence that FAK, ERK, and Akt are involved in the stretch response. 

Specifically, FAK and ERK phosphorylation increases in response to portal vein stretch, 

and FAK activity was required for the differentiation of mesenchymal stem cells 

subjected to stretch (181, 182).   

Please refer to Figure 1.4 for a summary of the transcription mechanisms regulating 

SMC differentiation under normal conditions as well as in the phenotypically modulated 

disease-associated state.  

Epigenetic mechanisms regulating SMC differentiation  

Histone acetylation and methylation  

 Epigenetic regulation of gene expression is characterized by mechanisms that 

reversibly modify DNA bases, histone tails, or transcription factors, without changes to 

the DNA sequence. Thus, two cells that are genotypically identical can have completely 

opposite phenotypes due to very different epigenetic mechanisms controlling their gene 

expression. One of the ways epigenetic mechanisms regulate transcription is by 

affecting the accessibility of critical transcription factors to DNA (183). In its native 

conformation, genomic DNA is wrapped around core histones to form a nucleosome, 

which is the basic unit of chromatin. Histone modifications, which alter histone charge 

and thus interaction with other histone components and DNA, affect nucleosome 

density and chromatin organization. Less dense, more unpacked nucleosome 

configurations allow transcription factors to contact the DNA to influence gene 

expression directly by recruiting other DNA binding proteins, including RNA polymerase  
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Figure 1.4. Contrasting the transcription mechanisms that regulate SMC 
differentiation in the healthy versus phenotypically modulated SMC. Left) Multiple 
environmental cues and signaling pathways converge to regulate expression of mature 
SMC markers (e.g., SM-MHC). These include cell stretch, extracellular matrix, and 
GPCR activation, which signal through RhoA. TGFβRII and Notch activation are also 
potent stimulators of SMC differentiation. Right) Signaling mechanisms regulating 
dedifferentiation in SMC in disease states such as atherosclerosis. Injury stimulates 
downstream Ras/Raf/MEK/ERK pathways directly and indirectly by activating PDGF-BB 
signaling. Note that FAK inhibition of RhoA is transient and later leads to RhoA 
activation. Expression of early response growth genes is upregulated, leading to 
proliferation and fibronectin production, which further propogates phenotypic switching.   
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II, to initiate transcription.  

Histone acetylation and methylation occur mainly on lysines and are catalyzed by 

histone acetyltransferases and histone methyltransferases, respectively. These histone 

marks are reversed by histone deacetylases and demethylases, respectively, as their 

names suggest. Generally, histone acetylation leads to a more “open” chromatin  

configuration (referred to as euchromatin), while methylation results in both open or 

closed (heterochromatin) chromatin states, depending on which histone and histone tail 

residue is modified. H3K4 and H3K79 methylation are associated with transcriptionally 

active, open regions in SMC-specific genes, while H3K9, H3K27, and H4K20 

methylation mark heterochromatinized gene regions (184). Several histone/chromatin 

modifiers that regulate SMC differentiation have been identified, and these will be 

discussed below.  

 Histone modifications are tightly connected to the SRF/CArG interaction (185). 

Seminal work by the Owens Lab indicated that myocardin interacted with H3K4 

dimethylation and enhanced SRF binding to CArG boxes in SMC gene promoters. This 

same study revealed that SRF enrichment at CArGs led to H3K9 acetylation and H3K79 

dimethylation, both features of active transcription, since CArG mutant promoters did 

not display these features of open chromatin (63). Separate studies found that 

myocardin induced acetylation of histones by recruiting the histone acetyltransferase, 

p300 (111). Thus, epigenetic mechanisms directly enhance SRF/myocardin binding to 

DNA, which in turn recruits histone-modifying enzymes that deposit specific marks to 

further promote accessibility of key transcription factors.  

Chromatin and epigenetic modifiers in SMC 

 Additional histone modifiers in SMC have drastic effects on smooth muscle 
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transcription. Histone lysine methylation is catalyzed by SET (Su(var)3 to 9, Enhancer 

of Zeste, Trithorax) domain-containing lysine methyltransferases. Seven families of 

histone methylransferases exist: SUV39, SET1, SET2, RIZ, SMYD, EZ, and SUV 4-20. 

Some methyltransferases, including SET7/9 and SET8, do not belong to any of these 

families. The most studied is the SUV39 family, which includes G9a, SUV39H1, 

SUV39H2, SETDB1, and SETDB2 and specifically methylate H3K9. Lysine 

methyltransferases can mono-, di-, or tri-methylate a single lysine residue, and the 

degree of methylation for each methyltransferase is different (186). Additionally, each 

methyltransferase may methylate more than one lysine per histone. For example, 

SMYD2 methylates H3K4 and H3K36 (187). Adding to this complexity, methylation at 

one histone lysine residue may prevent or promote methylation at an adjacent lysine 

(183). Furthermore, there is additional crosstalk between methylation and other histone 

modifications, including acetylation and phosphorylation. Histone methylation is 

reversed by various histone demethylases, each of which recognizes different lysines 

on specific histones. The H3K9-specific demethylase Jmjd1a is expressed in multiple 

tissues, including SMCs, and decreases H3K9 methylation at CArG-containing smooth 

muscle promoters. Interestingly, our lab showed that Jmjd1a interacts with all three 

myocardin family members, and Jmjd1a overexpression resulted in significant 

transactivation of myocardin/MRTF-dependent transcription of SMA and SM22 

promoters. Conversely, Jmjd1a knockdown in SMC inhibited MRTF-dependent gene 

expression, which coincided with upregulation of H3K9 dimethylation at multiple SMC-

specific promoters (188).  

Although SET-containing histone methyltransferases have not been examined 

with respect to SMC differentiation per se, there is evidence to suggest a role for them 
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in regulating histone methylation at smooth muscle promoter regions. Inhibiting either 

SET7/9 or G9a in mice reduces renal fibrosis and expression of smooth muscle 

markers, such as SMA (189, 190). Furthermore, SET7/9 induces expression of smooth 

muscle genes in mouse embryonic stem cells (191). In addition to their canonical roles 

in methylating histones, histone methyltransferases can also methylate non-histone 

proteins. For example, YY1, a transcriptional repressor of SMC differentiation, is 

methylated by SET7/9. YY1 methylation at K173 and K411 increased its binding affinity 

to p53, RAD1, and ABL1 promoters (192). Whether or not SET7/9 methylation of YY1 

affects binding to smooth muscle-specific promoters has yet to be determined. Also, 

further studies are needed to determine if YY1 methylation affects its interaction with 

SRF, since YY1 is a known SRF-interacting protein.  

 Brg1 and Brm, which are components of the ATP-dependent chromatin 

remodeling SWI/SNF complex, are required for myocardin/MRTF-dependent gene 

expression in SMC. Brg1, SRF, and MRTF-A form a transcriptional complex, and Brg1 

facilitates the ability of both myocardin and MRTF-A to increase binding of SRF to CArG 

boxes (193, 194).  

 DNA methylation and demethylation are significant epigenetic mechanisms 

regulating smooth muscle gene transcription (195). The TET family of DNA 

demethylases cause gene activation by oxidizing methylated-cytosine. Base excision 

repair converts (i.e. demethylates) methyl-cytosine to unmethylated-cytosine. TET2 

associates with CArG elements and is necessary for SMC differentiation. TET2 

expression correlates with SMC phenotype and is upregulated in mature, contractile 

SMCs but downsregulated after vascular injury and in atherosclerotic lesions. 

Importantly, TET2 knockdown exacerbates the injury response due to further repression 
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of smooth muscle gene expression (195, 197).  

DNase-I Hypersensitivity  

 DNase-I Hypersensitivity is employed to identify open chromatin regions 

throughout the genome. Several software programs can be used to call the DNase 

Hypersensitive Sites (DHS) as peaks and thus indicate regions that are accessible to 

transcription factors (198, 199). In this manner, DHS can be used in combination with 

other relevant bioinformatic datasets (ChIP-seq, 3C, conservation, etc.) to denote 

critical promoter and enhancer regions as well as long-range chromatin interactions that 

control cell type-specific gene expression (200).  

Non-coding RNAs in SMC differentiation   

Nearly 75% of the human genome is transcribed, but only 3% is actually 

translated into (i.e. “encodes”) protein (201). Over the last two decades, non-coding 

RNAs (ncRNAs) have emerged as significant regulators of cell function, affecting 

processes including proliferation, apoptosis, and differentiation (201-204). Although 

there are several categories of ncRNAs, the two most studied are the microRNAs 

(miRNAs) and long non-coding RNAs (lncRNAs). miRNAs are short single-stranded 

RNAs about 22 nucleotides in length that generally silence gene expression by binding 

to the 3’UTR of mRNA to block translation (205). Importantly, a single miRNA can target 

multiple genes, which is once reason why miRNAs can have such drastic effects on cell 

phenotype. Several miRNAs that affect SMC differentiation and/or phenotype have 

been identified, including miR-221 and miR-222, which inhibit vascular smooth muscle 

differentiation and increase SMC proliferation (206, 207). Knockout of these two 

miRNAs in mice led to reduced SMC proliferation and neointima formation after balloon 

angioplasty (208). While roles have been described for additional miRNAs in regulating 
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SMC differentiation, the most studied miRNAs are the miR-143/145 cluster. miR-143 

and miR-145, which are transcribed from the same gene locus, are highly expressed in 

SMC. Numerous studies characterizing the expression pattern of the miR-143/145 

cluster in vivo indicate that their expression is highly specific to vascular SMCs (209). 

miR-143/145 repress proliferation by inhibiting KLF4 and Elk-1 and activate 

differentiation by stabilizing myocardin (210). The miR-143/145 duo is thus a rare 

example of miRNAs that selectively enhance rather than repress their target. 

Interestingly, this miRNA cluster is regulated via an SRF-dependent mechanism, and 

thus can increase its own expression via a feed-forward mechanism by directly targeting 

and increasing myocardin levels. Furthermore, miR-145 represses several actin-

remodeling proteins, which results in substantial cytoskeletal reorganization (211, 212). 

Given that actin polymerization is directly linked to MRTF nuclear translocation and 

subsequent activation of SRF-dependent SMC genes, this is yet another pathway by 

which mir-145 affects SMC differentiation. 

Long non-coding RNAs (lncRNAs) refer to a class of ncRNAs longer than 200 

nucleotides. LncRNAs are classified based on 1) where they are transcribed from 

relative to a coding gene and 2) local (cis-lncRNA) or distant (trans-lncRNA) targeting. 

From these two broad categories, several types of lncRNAs exist. The most studied 

types include antisense transcripts (NATs), intronic, and intergenic lncRNAs. NATs are 

located at the 5’ or 3’ ends of coding genes and contain exons that overlap those of 

their gene targets. NATs can affect transcription by competing with the coding DNA 

strand for RNAPol II and other transcription factors, especially if the lncRNA and coding 

gene share the same promoter (213). Alternatively, the lncRNA may recruit histone 

modifiers that repress transcription of the coding gene. Intronic lncRNAs originate from 
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the introns of the coding genes they overlap, while intergenic lncRNAs are transcribed 

from genomic loci between genes (214).  

Several lncRNAs in SMCs have been identified. One of the first lncRNAs to be 

identified was ANRIL at the CDKN2B-AS1 locus, which contains several DNA variants 

associated with cardiovascular disease (215) Interestingly, mutations in ANRIL lead to 

increased SMC proliferation and are associated with higher rates of coronary artery 

disease (CAD) (216). It is hypothesized that SNPs affecting ANRIL expression also 

control the expression of nearby cell-cycle control genes, CDKN2A and CDKN2B, and 

that aberrant SMC proliferation contributes to CAD (217). The most well characterized 

lncRNA in SMC, however, is MYOSLID (MYOcardin-induced Smooth muscle LncRNA, 

Inducer of Differentiation). MYOSLID was identified in a screen for lncRNAs that were 

significantly upregulated by myocardin overexpression in human coronary SMC. 

MYOSLID contains 3 CArG boxes in its promoter. In addition to myocardin, MYOSLID is 

also regulated by TGFβ/SMAD signaling. Importantly, MYOSLID is localized to the 

cytoplasm, and thus does not directly affect SMC-specific gene transcription. Instead, 

MYOSLID is required for actin polymerization as well as SMAD2 phosphorylation, which 

regulate downstream SRF- and TGFβ-dependent smooth muscle genes, respectively. 

As partial evidence of this, knockdown of MYOSLID significantly reduces expression of 

SMA, CNN, and SM22 in human coronary SMC (218).   

ENCODE Consortium, UCSC Genome Browser, and GTEx Database  

 Our lab collaborated with several members of the ENCODE Consortium (Terry 

Furey, Gregory Crawford, and Jason Lieb) to identify DHS in human aortic SMC. Data 

from these efforts as well as SRF ChIP-seq were uploaded to the UCSC Genome 

Browser (https://genome.ucsc.edu) for use in experiments by our lab. The UCSC 
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Browser contains extremely useful bioinformatic datasets of transcriptionally interesting 

features deposited by different labs. One advantage of this tool is that information from 

multiple cell types is available, which is useful for making determinations regarding cell-

type specificity of respective gene regions. Briefly, selected features that can be used to 

make predictions about active promoter/enhancer regions include H3K27Ac, H3K4me1, 

and DHS identified in various cell types. Furthermore, the UCSC Broswer integrates 

data from predictive biobases, such as miRNA binding sites from TargetScan as well as 

tissue specific gene expression from GTEx. All of these features allow the user to 

analyze the multitude of transcription mechanisms that potentially regulate expression 

of a gene of interest.  

 Another useful web-based tool, the Genotype Tissue Expression (GTEx) 

database (www.gtexportal.org), catalogues RNA-seq data from 53 different tissues as 

well as the genotype associated with each sample so eQTLs can be calculated for given 

genes. Users can view the top genes expressed in a specific tissue, search for eQTLs 

based on a gene or SNP ID, as well as view gene expression across all tissue types. 

One recent feature is the “histology image viewer,” where the user can view various 

tissue samples, each with an attached pathology note.  

Genetic and molecular basis for blood pressure regulation1 

RhoA signaling and hypertension 

 While monogenic diseases affecting renal salt-handling contribute to 

hypertension, the fundamental cause of high blood pressure is increased peripheral 

vascular resistance. Increased vascular resistance is a direct result of increased SMC 

																																																								
1 The remaining sections of Chapter 1 are from a review published in The World Journal of 
Hypertension. The original citation is: Bai X, Dee R, Mangum KD, Mack CP, Taylor JM. RhoA 
signaling and blood pressure: The consequence of failing to “Tone it Down”. World J Hypertens. 
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contractility, which is regulated by myosin light chain (MLC) phosphorylation. Activation 

of G-protein coupled receptors (GPCRs) by vasoconstrictors (angiotensin II, endothelin-

1, etc.) leads to RhoA activation and a rise in intracellular calcium. RhoA signals 

through its effectors, ROCK and mDia1/2, to increase actin polymerization, which has a 

direct effect on vessel tone. Calcium-calmodulin-dependent phosphorylation of MLC by 

myosin light chain kinase (MLCK) is the predominant mechanism regulating SMC 

contractility. ROCK inhibits myosin light chain phosphatase, thereby leading to 

sustained MLC phosphorylation and SMC contractility (Figure 1.5). Given the 

importance of RhoA in regulating SMC contractility, it is no surprise that perturbation in 

upstream mediators or downstream effectors of RhoA in SMC affects blood pressure. 

Deletion of the SMC-specific RhoGAP GRAF3 (ARHGAP42) results in significant 

hypertension in mice due to increased RhoA activity and vascular resistance (219). In 

mouse models of hypertension, the RhoGEF p115 mediates angiotensin II-dependent 

RhoA activity and SMC contractility, while LARG is required for salt-induced 

hypertension (104, 220). While it is clear that RhoA directly increases SMC contractility 

and blood pressure, the degree to which RhoA-dependent upregulation of contractile 

gene expression in SMC contributes to hypertension is not as apparent.  

Public health relevance of hypertension  

Hypertension is a devastating disease associated with significant morbidity and 

mortality due to detrimental pressure-related effects on the kidneys, heart, lungs, brain, 

and peripheral vasculature. Hypertension affects roughly 80 million people 

(approximately 32.6% of adults) in the United States alone and was predicted to be 

primarily responsible for 25% of deaths worldwide in 2010 (221). Despite the fact that 

nearly 70 drugs (from 15 distinct classes of compounds) are approved for treatment of  
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Figure 1.5. Signaling mechanisms regulating SMC contraction. Vasoconstrictors 
bind to GPCRs, leading to calcium/calmodulin-dependent activation of myosin light 
chain kinase (MLCK), which phosphorylates myosin light chain (MLC). MLC is also 
activated by Rho-coiled kinase (ROCK). Phosphorylated myosin light chain incrases 
SMC contraction. In reponse to GPCR stimulation, GEFs promote RhoA-GTP, which 
activates ROCK. ROCK inhibits myosin phosphatase (MYPT-1), thereby leading to 
sustained MLC phosphorylation. RhoA is inactivated by the RhoGAPs, GRAF3. GRAF3 
expression is upregulated with sustained cell stretch to limit the amount of SMC 
contraction. P, phosphorylation. 
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hypertension in the United States, estimates project that reasonable BP control is 

achieved in only about half of hypertensive patients. This reality coupled with recent 

projections that the incidence of hypertension will increase to about 41% in the US by 

2030, indicate the urgent need for better screening and treatment modalities (222). 

Improvements in the detection and management of hypertension will undoubtedly be  

accomplished through a better understanding of the complex etiology of this disease.  

One way to better predict patient response to therapy is to gain a more 

comprehensive understanding of the genes and genetic variants that influence BP 

regulation. Recent projections indicate that up to 60% of BP variation can be explained 

by genetic factors, but that no single gene exerts a principal effect. Thus, BP is 

considered to have a complex non-Mendelian mode of inheritance. Indeed a 

combination of classic positional cloning strategies in families with numerous affected 

members combined with more recent population-based GWAS studies have led to the 

identification of 25 rare mutations and 53 SNPs that are predicted to contribute to BP 

control (223). The aim of this section of is to highlight variants that impinge on the 

expression or activity of members of the RhoA signaling axis.  

RhoA-related forms of monogenic hypertension  

Virtually all known cases of monogenic hypertension are associated with volume 

expansion resulting from mutations in genes involved in renal salt handling or hormones 

that affect mineralocorticoid activity. However, although hypertensive patients with 

Gordon’s Syndrome (pseudohypoaldosteronism type IIE) present with salt handling 

abnormalities, the high BP in these patients is caused by an autosomal dominant 

mutation in the Cullin-3 gene (224). Interestingly, this E3 ligase helps target RhoA for 

proteosomal degradation and in vitro studies indicate that increased RhoA/ROCK 
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signaling in vascular SMC may also play a role in Gordon’s Syndrome patients. 

Exclusion of exon 9 abrogates the Cullin-3 dependent interactions between RhoBTB 

and the E3 ligase and as RhoBTB serves as a chaperone to recruit RhoA to this 

degradation complex, expression of exon 9-deficient Cullin-3 leads to aberrant RhoA 

accumulation (225, 226).  

SNPs/EQTLs in RhoA-signaling molecules  

Because Rho kinases are major RhoA effector proteins and because both animal 

and human studies have shown that treatment with Rho-kinase inhibiting compounds 

lowers BP, a number of case-controlled studies were designed to determine if genetic 

variants in these genes might influence the development of human hypertension (Figure 

1.6). One group examined the effect of ROCK2 genetic variations on BP in 168 pairs of 

mono- and dizygotic twins. In this study, four variants were identified in ROCK2, the 

most notable of which was a nonsynonymous SNP in exon 10 that resulted in a 

substitution of Thr with Asn at amino acid 431. Importantly, the Asn substitution was 

associated with increased systemic vascular resistance and BP and was predicted to 

account for 3-5% of the BP variance between these patients (227). Another study in 

which 18 tag SNPs within the ROCK2 locus were genotyped in 586 normotensive 

controls and 607 hypertensive Caucasian patients identified a haplotype defined by four 

SNPs (rs965665, rs10178332, rs6755196, rs10929732) that was recessively associated 

with a lower risk of hypertension (p=0.003). However, a subsequent study in a separate 

population of 1344 Chinese patients with coronary artery disease and hypertension and 

1267 ethnically and geographically matched controls did not find an association 

between this haplotype and either BP or cardiovascular disease (228, 229). Thus, future 

studies are necessary to determine the relevance of these SNPs with respect to BP  



	 36  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6. Pharmacologic and genetic regulation of the RhoA signaling axis. 
Schematic  ndicating the sites of action of pharmacological inhibitors (bold) of RhoA 
signaling molecules. Polymorphisms (SNPs/eQTLs) that could influence RhoA signaling 
are also shown. AJ: Adherens junction; A2R: Angiotensin type II receptor; ARBs: 
Angiotensin receptor blockers; ACEIs: Angiotensin converting enzyme inhibitors; 
ASAH1: Acid ceramidase; SPHK1: Sphingosine kinase 1. 
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control in the general population.  

Recent studies have implicated artery stiffness in the pathology of HTN and this 

parameter has been shown to be a valuable predictor of end organ failure (230-234). 

Decreased vessel compliance elevates the mechanical load on the myocardium but  

also increases peripheral pulse-pressure in the microvasculature resulting in tissue 

damage in high flow organs such as the brain and kidneys. Until very recently, 

increased vascular stiffness during aging or the development of HTN was thought to 

result from changes in extracellular matrix content and composition (i.e. elastin 

degradation, collagen deposition, etc.). However, new studies suggest that the intrinsic 

mechanical properties of VSMC (including RhoA-dependent formation of force-

generating actin filaments, and increased cell adhesion to the extracellular matrix) may 

also play a role (235, 236). Notably, Liao et. al. identified two SNPs in ROCK2 that were 

in complete linkage disequilibrium and associated with arterial stiffness in 1483 un-

selected patients from a Chinese population in Taiwan. Subsequent in vitro studies 

revealed that both SNPs were functional. One SNP, rs978906, affected ROCK2 

expression by interfering with microRNA(miR)-1183 binding to its 3’UTR, while the 

other, rs9808232, which was located in a protein-coding region, increased ROCK2 

activity (237). 

As noted above, S1P is a major upstream activator of RhoA in SMC and has 

vasoconstrictive effects in vivo (238). Interestingly, Fenger et. al. assessed the 

significance of 353 genetic variants contained within exons of genes in the metabolic 

sphingolipid network. Of these SNPs, 34 and 40 haplotypes were associated with 

changes in diastolic or systolic pressures, respectively, in their 2556 subjects. They 

found that while the BP effects could not be explained by any single gene, several 2-
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gene interaction pairs were highly correlated with BP variations. S1P is generated from 

ceramide in a process that involves two critical enzymes ceramidase (ASAH1) and 

sphingosine 1- kinase (SPHK1) and the most significant of the 2-gene interactions 

identified were contained in these genes (239, 249), further supporting a role for RhoA 

signaling in the development of hypertension. It is likely that future gene interaction 

studies such as these will provide a powerful approach to both predict hypertension risk 

and possibly inform treatment options.  

In the past decade, many GWAS studies have identified common genetic 

variations in coding and non-coding genomic regions that vary between individuals and 

are associated with changes in BP and several of these variants occur in genes linked 

to the Rho signaling cascade. Notably, one GWAS study that used hypertension as a 

dichotomous trait identified eight loci associated with BP, and two of these variants were 

located in RhoA-related genes. One of the target genes was the aforementioned 

RhoBTB1, which functions with the Cullin-3 complex to maintain low RhoA levels (224, 

225). Another SNP was found at the rhotekin-2 (RHTKN) locus. Although rhotekin was 

one of the first identified RhoA effector molecules (it has high affinity to Rho-GTP and is 

widely used in pull down assays for activated RhoA, (241)), how Rhotekin functions at a 

cellular level is still unclear. Nonetheless this association is provocative and clearly 

indicates that future studies are warranted. Two separate GWAS for BP variation and 

hypertension have identified significant association signals in the RhoA-interacting 

protein, plekstrin homology domain containing family A member 7 (PLEKHA7) (242, 

243). PLEKHA7 is highly expressed in the kidney and heart and localizes on the 

cytoplasmic surface of adherens junctions, where it interacts with junctional proteins 

cingulin and paracingulin to regulate the activity of Rho family GTPases, including RhoA 
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(244). While the functional SNP(s) have yet to be identified, the finding that PLEKHA7 is 

required for the development of salt-induced hypertension in vivo, highlights the 

functional importance of this RhoA-interacting protein in BP regulation (245).  

Collectively, these studies will likely have important implications in the future 

diagnosis and treatment of hypertension. For example, patients predicted to exhibit 

aberrantly high levels of RhoA signaling may respond better to anti-hypertensive 

regimens directly targeting vessel tone, compared to those that target blood volume. 

Moreover, they reveal that the RhoA signaling axis may provide highly selective targets 

for the treatment of human hypertension and related cardiovascular sequelae.  

Objectives of this dissertation research  

It is clear that numerous transcription mechanisms regulate SMC differentiation 

and that many of the pathways required during vascular development also lead to 

phenotypic switching of the SMC during disease. The first major component of this 

research has been to determine the transcription mechanisms regulating expression of 

GRAF3, a smooth muscle-specific RhoGAP that negatively regulates blood pressure. 

To address this, this objective has been divided into four major aims. 1) To identify DNA 

variants in the GRAF3 gene that regulate its expression, 2) To determine the 

transcription mechanisms driving allele-specific expression of GRAF3, 3) To correlate 

SNPs with GRAF3 expression and blood pressure in humans, and 4) To identify 

additional, non-SRF dependent transcription mechanisms that regulate GRAF3 

expression. A second major focus of this dissertation has been to discover novel 

mechanisms regulating MRTF-A function, which includes identification of MRTF-A 

binding partners and post-translational modifications and their effects on SMC 

differentiation.  
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CHAPTER 2: BLOOD PRESSURE-ASSOCIATED POLYMORPHISM 

CONTROLS ARHGAP42 EXPRESSION VIA SERUM RESPONSE 

FACTOR DNA BINDING2 

Overview 

Our recent demonstration that smooth muscle cell (SMC) selective expression of 

ARHGAP42 controls blood pressure by inhibiting RhoA-dependent contractility provided 

a novel mechanism for the blood pressure-associated locus within this gene. The goals 

of the current study were to identify polymorphisms that affect ARHGAP42 expression 

and to better assess ARHGAP42's role in the development of hypertension. Using 

DNaseI hypersensitivity methods and ENCODE data, we identified a regulatory element 

encompassing SNP rs604723 that exhibited strong SMC-selective, allele-specific 

activity. Importantly, CrispR/Cas9-mediated deletion of this element in cultured human 

SMC significantly reduced endogenous ARHGAP42 expression. DNA binding and 

transcription assays demonstrated that the minor T allele variation at rs604723 

increased the activity of this fragment by promoting SRF's interaction with a cryptic SRF 

cis element. ARHGAP42 expression was increased by cell stretch and sphingosine 1-

phosphate in a RhoA-dependent manner, and Arhgap42 deletion enhanced the 

progression of hypertension in mice treated with DOCA-salt.  Our analysis of a well-

characterized cohort of untreated borderline hypertensive patients suggested that 

ARHGAP42 genotype has important implications in regard to hypertension risk. Taken 

																																																								
2 Chapter 2 was published as a research article in The Journal of Clinical Investigation. Its 
formal citation is: Bai X, Mangum KD, Dee RA, Stouffer GA, Lee CR, Oni-Orisan A, Patterson C, 
Schisler JC, Viera AJ, Taylor JM, Mack CP. J Clin Invest. 2017 Feb 1;127(2):670-680. 
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together, our data add significant insight into the genetic mechanisms that control blood 

pressure and provide a novel, perhaps individualized, target for antihypertensive 

therapies. 

Introduction 

Although hypertension is a major risk factor for stroke, myocardial infarction, and 

kidney failure (248), surprisingly little is known about the genetic mechanisms that 

contribute to its development. Genome wide association studies have begun to identify 

common genetic variants that contribute to variations in blood pressure (BP) (see (223, 

249) for reviews). While some of these loci have been fairly well-characterized others 

are found within genes that have no known connection to the control of BP. One such 

locus was identified on chromosome 11 within the GTPase activating protein (GAP), 

ARHGAP42 (250-252). The minor allele at this locus was associated with a decrease in 

BP of ~0.5 mm Hg per allele and had a minor allele frequency (MAF) of 0.27 in the 

European population in which it was identified (251). 

ARHGAP42, also known as GRAF3, is a member of the GRAF (GAP for Rho 

Associated with Focal adhesion kinase) family of Rho-specific GAPs previously 

characterized by our group (253-256). Based upon our demonstration that ARHGAP42 

was highly and selectively expressed in smooth muscle in mouse and human tissues 

(219) and the fact that RhoA signaling controls smooth muscle cell (SMC) contractility 

(257), we hypothesized that ARHGAP42's association with BP was mediated by its 

ability to modulate vascular resistance. Indeed, Arhgap42-deficient mice exhibited 

significant hypertension and increased pressor responses to AngII and endothelin-1, 

and these effects were prevented by treatment with the Rho-kinase (ROCK) inhibitor, Y-

27632 (219). Further supporting this idea, we showed that large and small arteries from 
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Arhgap42-deficient mice exhibited increased contractility in vitro and in vivo, while 

kidney structure and function were unchanged. 

According to the Haplo-reg v4 database from the Broad Institute, the BP-associated 

allele in the European population is currently defined by 4 single nucleotide 

polymorphisms (SNPs rs604723, rs633185, rs607562, and rs667575) in high linkage 

disequilibrium (LD) (r2>0.8). Importantly, all of these SNPs are present within the non-

coding 80Kb ARHGAP42 first intron. Thus, we hypothesized that minor allele variations 

within the BP-associated locus increase ARHGAP42 expression by enhancing the 

transcriptional activity of a yet to be identified regulatory element. The goals of the 

present study were to identify the transcription mechanisms that drive ARHGAP42 

expression in SMC, to test whether variations within the ARHGAP42 BP-associated 

locus affect ARHGAP42 transcription, and to further characterize the role of ARHGAP42 

expression in the regulation of BP and the development of human hypertension. 

Materials and Methods 

Cell culture 

Human aortic, coronary, and bronchial smooth muscle cells were purchased from Lonza 

and maintained in smooth muscle growth medium-2 (SmGM-2) supplemented with 

growth factors and 5% FBS. Primary aortic SMC were isolated from 2 month old Wistar 

rats as previously described (63). In brief, thoracic aortae were stripped of endothelial 

and adventitial layers by microdissection and then SMC were dispersed by treatment 

with trypsin and collagenase. Cells were maintained in Dulbecco’s modified eagle 

medium supplemented with F12 and 10% fetal bovine serum and used from passage 5–

15. SMC preparations are routinely tested for smooth muscle-differentiation marker 

gene expression and only those that are deemed at least 85% pure by these 
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measurements are utilized for further experimentation. Primary mouse endothelial cells 

were immortalized by transformation with Large T-antigen and maintained in Dulbecco’s 

Modified E Medium (Gibco).  

Generation and characterization of ArhGAP42gt/gtSM-MHCcreERT2 mice 

The Arhgap42 gene trap mouse line was created as previously described (219). In 

brief, Arhgap42 gene trap ES cells (SIGTR ES CE0477) were obtained from the Mutant 

Mouse Regional Resource Center (University of California, Davis).  Chimeric mice were 

produced in-house by blastocyst injection of Arhgap42+/gt ES cells using standard 

procedures, and a Arhgap42gt/gt line on a C57/Bl6 background was generated by 

backcrossing for at least 8 generations. For ARHGAP42 rescue experiments, 

Arhgap42gt/gt mice were bred to a tamoxifen-inducible SM-MHCcreERT2 line generously 

provided by Stefan Offermanns (University of Heidelberg, Germany) on a pure C57/Bl6 

background. Cre activity in this model was controlled by treatment with tamoxifen (100 

mg/kg) by IP injection for 5 consecutive days or oral gavage for 3 consecutive days. All 

experiments were performed in male mice 2-4 months old using age, sex, and littermate 

genetic controls. Genotyping was performed using DNA isolated from tail biopsies using 

either LacZ (5′-GCATCGAGCTGGGTAATAAGCGTTGGCAAT; 3′-

GACACCAGACCAACTGGTAATGGTAGCGAC) or locus-specific primers (5′-

TTCGTTGAGACAACTGCACACC; 3′-CCCTTCACACTTTGCTCTCTTAGC). 

Blood pressure measurements 

Conscious blood pressure measurements were made in mice aged 9–20 weeks by 

radio-telemetry using the PA-C10 telemeter (Data Sciences International) or tail cuff 

methods using the BP-100 probe (Iworx). For telemetry, after positioning the telemetry 

catheter tip in the thoracic aorta (fed through the left carotid), the transmitter was 
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inserted subcutaneously on the back/flank of mice. Mice were housed individually in a 

standard polypropylene cage placed on a radio receiver, maintained in a 12 h light/dark 

cycle, and allowed 7 days of recovery/equilibration before BP measurements were 

begun. All BP measurements were recorded and stored using the Ponemah v6.10 

system (Data Sciences International). Five-minute recordings were collected every 

30 min and data were analyzed using Excel software. Tail cuff measurements were 

performed as previously described (219). In brief, mice were fitted with the BP-100 

probe and subjected to 20 BP measurements over 20 min every day (between 14:00 

and 16:00) for 7 consecutive days. 

DNase Hypersensitivity 

Approximately 80 million fresh HuAoSMC were serum starved for 24 hours and 

then washed twice with cold 1X PBS. Cells were pooled and collected in cold RSB 

buffer (10 mM Tris-Cl, pH 7.4, 10 mM NaCl, 3 mM MgCl2). Nuclei were isolated by 

lysing cells in RSB buffer + 0.1% NP-40 and centrifuging at 500xg for 10 min. at 4°C. 

Supernatant was removed from the pellet. Pelleted nuclei were suspended in cold 1X 

DNase incubation buffer (NEB) and mixed. The nuclei suspension was treated with 1 U 

DNaseI (Sigma, D5025) for 15 min at 37°C. After 15 min, 50 mM EDTA was added to 

stop the digestion reaction. DNase I-digested DNA was embedded in low-melt agarose 

plugs to minimize additional shearing, and then blunt-ended, extracted, and ligated to 

biotinylated linkers (Linker 1a: 5’-Bio-ACAGGTTCAGAGTTCTACAGTCCGAC-3’; Linker 

1b: 5-GTCGGACTGTAGAACTCTGAAC-Amm-3’). Biotinylated fragments were digested 

with MmeI and incubated with streptavidin-coated DynaI beads to purify digested DNA 

fragments. A second linker was ligated to the MmeI-digested DNA-linker-bead complex, 

and purified DNA fragments were PCR-amplified, sequenced by Illumina/Solexa (Linker 
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2a: 5’-P-TCGTATGCCGTCTTCTGCTTG-3’; Linker 2b: 5’-

CAAGCAGAAGACGGCATACGANN-3’), and then aligned to the human genome using 

Bowtie. 

 For targeted, allele-specific DNase Hypersensitivity assays, nuclei from 

heterozygous HuAortic SMC were treated with increasing amounts of DNaseI from 0 to 

1mg. Reactions were subjected to PCR using primers specific to the major-C or minor-T 

alleles and PCR band intesities were expressed relative to untreated samples set to 1. 

Generation of luciferase constructs, DNA transfection, and reporter assays 

Regulatory regions of interest were PCR amplified from human aortic smooth 

muscle genomic DNA and then cloned into the pGL3 basic vector (Promega). HuBrSMC 

or EC were seeded in 24-well culture plates the day prior to transfections at a density of 

approximately 2.5x104 cells/well. Cells were transfected with 50 ng DNA per well. In co-

expression experiments, cells were transfected with 25 ng of luciferase reporter DNA 

and 25 ng of flag-tagged myocardin or empty expression construct per well. In all 

experiments, cells were transfected in triplicate and a promoterless pGL3 basic vector 

was transfected in parallel. After 48 hours of incubation at 37°C, luciferase assays were 

performed using the Steady-Glo Luciferase Kit (Promega) following the manufacturer’s 

instructions. Raw luciferase values were normalized to the activity of the promoterless 

pGL3 vector.  

Electrophoretic mobility shift assays (EMSA) 

HuAoSMC nuclear lysates were prepared using the Nuclear Isolation kit from 

ThermoScientific. Lysates were dialyzed in Dignam Buffer D (20 mM HEPES, pH 7.9, 

20% (v/v) glycerol, 0.1 M KCL, 0.2 mM EDTA, 0.5 mM PMSF, and 0.5 mM DTT). Flag-

tagged SRF was translated in vitro using the TnT kit (Promega). Major and minor allele 
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633185 and rs604723 gel shift probes were prepared by PCR amplifying a 100 bp 

fragment from the corresponding DHS1 or DHS2 luciferase reporter plasmids with the 

polymorphism at the center. Each binding reaction contained 10 ug lysate or 1 ul in vitro 

translated-SRF, 20,000 cpms of 32P-labeled oligonucleotide probe, and 0.20 ug dIdC in 

binding buffer (10 mmol/L Tris, pH 7.5, 50 mmol/L NaCl, 100 mmol/L KCl, 1 mmol/L 

DDT, 1mmol/L EDTA, 5% glycerol). 

Chromatin Immunoprecipitation (ChIP) experiments 

ChIP assays were performed according to X-ChIP protocol (Abcam) with slight 

modifications. In brief, HuAo or coronary (HuCo) SMC were fixed for 5 minutes in 0.7% 

formaldehyde. The crosslinking reaction was stopped by incubating cells with 0.125 M 

glycine for 5 minutes. Cells were scraped in lysis buffer (5 mM PIPES, pH 8.0, 85 mM 

KCl, 0.5% NP40) and then nuclei isolated by centrifugation at 2,300xg for 5 minutes. 

Nuclei lysis buffer (50 mM Tris-Cl, pH 8.1, 10 mM EDTA, 0.13% SDS) was added to 

pelleted nuclei. Chromatin was sheared into 500 bp fragments by sonication and 

immunoprecipitated with 1 ug of anti-SRF antibody (Santa Cruz, cat# sc-335) or normal 

rabbit IgG antibody (Cell Signaling, cat# 2729) as a negative control for non-specific 

binding. An alpha-tubulin antibody was used for a loading control (Sigma, cat# T6074). 

SRF affinity precipitations 

Nuclear extracts from human aortic SMCs were prepared using NUPER nuclear 

extraction kit (Thermo Scientific) according to manufacturer protocol. For precipitations, 

5' biotinylated 20 bp double stranded oligonucleotides (2.5 mM final concentration) were 

combined with 200 mg of nuclear extract in binding buffer (10mM Hepes pH7.4, 8% 

glycerol, 1mM MgCl2, 0.05% Triton x100, DTT 1.3 mM, protease and phosphatase 

inhibitors) at room temperature w/ rotation. After 10 min, streptavidin agarose beads 
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(CL-4B, SIGMA 8588) were added and reactions were incubated for another 30 min. 

After 2 washes (KCl 75mM, Hepes 5mM pH7.4, MgCl2 0.5mM, glycerol 4%, Tween 20 

0.05%, DTT 1mM) precipitates were eluted in 2x sample buffer and run on a 10% SDS-

PAGE for Western blotting with an SRF Ab (Santa Cruz). 

SRF knockdown 

The following short-interfering (si)RNAs were obtained from Invitrogen; nontargeted 

control siRNA (NTC) (to GFP) 5’-GGUGCGCUCCUGGACGUAGCC-3’, SRF 5’-

UAAUACUCAUGGCAAACAU[dT][dT]-3’ (sense) and 5’-

AUGUUUGCCAUGAGUAUUA[dT][dT]-3’ (antisense). SRF siRNA was obtained as a 

sense/antisense mixture. Human bronchial SMC (HuBrSMC) were transfected with 50 

nM SRF or NTC siRNA using Dharmafect siRNA transfection reagent (Dharmacon). For 

luciferase assays in SRF knockdown cells, siNTC or siSRF-treated HuBrSMC were split 

48 hours after knockdown and then seeded into 24-well culture plates. The following 

day, NTC and SRF knockdown cells were transfected with pGL3-promoterless, -

DHS2C, or -DHS2T constructs. Luciferase experiments were performed 48 hours 

following transfection of pGL3 reporters. For allele specific transcript measurements, 

HuAoSMC were harvested 72 hours after knockdown.  

Quantitative PCR 

RNA was isolated from cells or tissues using RNeasy mini kit (Qiagen). RNA was 

treated with DNAse (Qiagen) to eliminate contaminating genomic DNA. RNA underwent 

first strand cDNA synthesis using the iScript cDNA synthesis kit (BioRad). 20 ng cDNA 

was used in quantitative or semi-quantitative PCR assays. Semi-quantitative PCR 

primers; mouse Arhgap42 exons 1–4, 5′-CTGCCCACTCTGGAGTTCAGCG, 3′-

GCTGCACCGATCTGTTCTTTTCG; mouse Arhgap42 exons 10-17, 5′-
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GAACCGATTTACACGTTACCCG, 3′-GGTTGGACCAAATATGACACCG; GAPDH,  5′-

ATGGGTGTGAACCACGAGAA, 3′-GGCATGGACTGTGGTCATGA.  Real-time PCR 

primers; ARHGAP42 exons 2-4, 5’-TTGGAGATGCAGAAACTGATGA, 3’-

TTTGAATCAGTCTACGCCTTTCTTC; rat Arhgap42, 5’-

TTCTGCATCTCCGATACAGTC, 3’-ATCAAAGAGCTGCTGAAGGATG; GAPDH, 5′-

ATGGGTGTGAACCACGAGAA, 3′-GGCATGGACTGTGGTCATGA. allele-specific PCR 

primers for rs604723 variation, 5’-TGTTGTTCCAAGGGTTCTT-3’ (T) and 5’- 

TGTTGTTCCAAGGGTTCTC -3’ (C). 

CrispR/Cas9-mediated gene editing 

 Guide RNAs that flanked the 100 bp conserved DHS2 region (see below for 

sequences) were designed using sgRNA CRISPR design tool from the Zhang lab (38) 

and cloned into the sgRNA expression cassette of the pSpCas9(BB)-2A-Puro (PX459) 

plasmid (Addgene Cat#62988). HuBrSMC were transfected with either 15 mg of PX459 

plasmid or with 7.5 mg of PX459 plasmid containing each guide RNA. 48h after 

transfection, cells were treated with puromycin (2 mg/mL) for 48 h and then allowed to 

recover in normal growth media for an additional 24 h. Genomic DNA and mRNA were 

isolated using the AllPrep DNA/RNA Kit (Qiagen). Deletion efficacy was tested by PCR 

using primers that flanked the deleted region. ARHGAP42 message was measured 

using semi-quantitative PCR as described above. Guide RNAs used were as follows; 

gRNA1sense 5’-CACCGCTTGGAACAACATTAGACTG; gRNA1as 5'- 

AAACCAGTCTAATGTTGTTCC AAGC; gRNA2sense 5’-

CACCGCAGCTGGACTGTGGGTCAGA; gRNA2as 5’-

AAACTCTGACCCACAGTCCAGCTGC. 
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Cell and vessel stretch assays 

The Flexercell FX-4000 Tension apparatus (Flexcell International Corp, NC, USA) 

utilizes regulated vacuum pressure to deform flexible-bottomed culture plates. Rat aortic 

SMCs were cultured on collagen I coated BioFlex culture plates and were loaded into 

the FX-4000T cyclic tension device and subjected to 0 or 20% equibiaxial elongation at 

1Hz for 18 hours.  Longitudinally cut rat portal vein strips were placed into ex vivo 

culture in DMEM/F-12 with 2% dialyzed FCS and 10 nM insulin as previously described 

(258, 259). Strips were stretched for 3 days by attaching a 600 mg stainless steel 

weight at one end of the vessel. Mouse portal vein rings were cultured as above and 

subjected to 300 mg of stretching force for 5 days. For LacZ staining, tissues were 

rinsed in phosphate-buffered saline (PBS) and fixed in 4% paraformaldehyde for 20 min 

at room temperature. After three 10-min washes in PBS, tissues were incubated 

overnight at RT in X-Gal staining solution (in PBS;  2mM MgCl, 5 mM ferrocyanide, 

5 mM ferricyanide, 0.1% sodium deoxycholate, 0.2% NP-40, and 1 mg/ml of X-Gal). 

Tissues were processed for standard microscopy including H and E staining. 

Hypertension models 

For DOCA-salt experiments, mice were implanted subcutaneously with a 50mg 21-

day slow-release DOCA pellet (Innovative Research of America) and fed 0.9% NaCl in 

drinking water for 3 weeks. Control mice were subjected to a sham operation and fed 

water. For L-NAME experiments, mice were treated with L-NAME in drinking water (450 

mg/L) for 14 days. All groups were maintained on standard chow.  

Human subjects 

In brief, participants were enrolled via a combination of passive (signs) and active 

(e-mail) recruitment.  Potentially eligible participants included adults 30 years or older, 
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with a recent office (clinic) BP measurement that was borderline high (120-149 mm Hg 

systolic and/or 80-95 mm Hg diastolic with neither value greater than 149/95 mm Hg).  

Exclusion criteria included diabetes, pregnancy, dementia, any condition that would 

preclude wearing an ambulatory BP monitor, and persistent atrial fibrillation or other 

arrhythmia.  Written informed consent took place during the first visit, during which time 

the patients were given ample opportunity to ask questions and to review the consent 

form in detail.  In addition to carefully measured triplicate office BP measurements, 

participants underwent 24-hour ambulatory blood pressure monitoring (ABPM) using the 

Oscar 2 oscillometric monitor (Suntech Medical, Morrisville, NC). The monitors were 

programmed to measure BP at 30 minute intervals from 6am to 10pm and at 1 hour 

intervals from 10pm to 6am. The minimum number of readings we accepted as an 

adequate ABPM session was 14 for awake and 6 for sleep. ARHGAP42 genotype at 

rs604723 and rs2055450 were determined on patient blood samples as previously 

described (219). 

Statistics 

All data represent least three separate experiments presented as means ± SEM. 

Means were compared by two-tailed Student’s t-test or analysis of variance (where 

indicated) and statistical significance was considered as a p value of <0.05. All gels 

shown are representative of at least three individual experiments and band intensities 

were quantified using ImageJ software. 

Study Approval 

The present studies in animals and/or humans were reviewed and approved by an 

appropriate institutional review board.  All animal procedures were approved by the 

Institutional Animal Care and Use Committee (IACUC) of the University of North 
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Carolina (Chapel Hill, NC).  All animals were housed in facilities accredited by the 

American Association for Accreditation of Laboratory Animal Care. All clinical 

investigations were conducted according to Declaration of Helsinki principles and have 

been approved by the Institutional Review Board (IRB) at the University of North 

Carolina, Chapel Hill, NC (IRB: UNC 10-0595).  All human study procedures took place 

in a clinical research center and all subjects provided informed consent prior to their 

participation in the study.  

Results 

Allele-specific differences of ARHGAP42 expression in SMC 

To begin to test our hypothesis that BP-associated variations in the ARHGAP42 

gene have allele specific effects on ARHGAP42 expression in SMC, we developed PCR 

primers that can distinguish between the major C and minor T alleles at the rs604723 

SNP and used qPCR to measure ARHGAP42 mRNA levels in human aortic SMC 

cultures that are heterozygous at the ARHGAP42 BP-associated locus. One caveat to 

this approach is that it can only measure unprocessed transcripts that contain the first 

intron. As shown in Figure 2.1A, ARHGAP42 transcripts containing the minor allele 

were significantly higher than those containing the major allele, and control experiments 

+/- DNAse and +/- reverse transcriptase confirmed that these results were not 

influenced by contaminating genomic DNA. In strong support of these findings, the NIH-

sponsored GTEx consortium identified an expression quantitative trait locus (eQTL) at 

rs604723 by correlating ARHGAP42 mRNA levels in human tibial artery samples with 

ARHGAP42 genotype (260). As shown in Figure 2.1B, our more recent analysis of 

GTex data revealed that ARHGAP42 mRNA levels in aorta and coronary artery samples 

were approximately 3 fold higher from individuals homozygous for the          
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Figure 2.1. ARHGAP42 expression in SMC is regulated by allele-specific 
mechanisms and controls blood pressure.  A) Total RNA isolated from HuAoSMC 
heterozygous at the rs604723 SNP (C/T) was subjected to first strand cDNA synthesis 
using reverse transcriptase. Reaction products were then subjected to a TaqMan-based 
PCR assay using allele-specific primers to the ARHGAP42 rs604723 variation. Data 
represent mean ± SEM of n=4 experiments; *p<0.01 versus the major C allele; 
(student's t-test). B) ARHGAP42 mRNA levels were measured by the Genotype-Tissue 
Expression (GTEx) consortium. The minor T ARHGAP42 allele at the rs604723 
polymorphism was significantly associated with increased ARHGAP42 expression in 
aortic and coronary artery samples.  
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minor allele at rs604723 than in samples taken from individuals homozygous for the 

major allele. Aside from a relatively small difference in ARHGAP42 expression in  

subcutaneous adipose (a highly vascularized tissue), ARHGAP42 eQTLs were not 

detected in other organs strongly supporting the idea that the BP effects of this locus 

are mediated by changes in ARHGAP42 expression in SMC. 

ARHGAP42 expression in SMC controls blood pressure 

To provide additional direct evidence that ARHGAP42 expression in SMC is critical 

for BP regulation, we rescued its expression in our hypertensive global Arhgap42-

deficient genetrap mice (Arhgap42gt/gt) by crossing them to a SM-MHCcreERT2 line that 

expresses a tamoxifen-inducible Cre under the control of the smooth muscle myosin 

heavy chain promoter (104). As shown in Figure 2.1C, the inhibitory Arhgap42 gene-

trap cassette is flanked by loxP sites, and treatment of Arhgap42gt/gtSM-MHCcreERT2 mice 

with tamoxifen permanently restored ARHGAP42 expression in aortic SMCs, and 

completely reversed the hypertensive phenotype in this model by 2 weeks after 

tamoxifen treatment (Figure 2.1D). These data provide conclusive evidence that 

ARHGAP42 levels in SMC control BP homeostasis and that the hypertensive phenotype 

in Arhgap42gt/gt mice was reversible and most likely due to an increase in SMC 

contractility. 

ARHGAP42 genotype and human hypertension 

To better assess ARHGAP42's role in the development of human hypertension, we 

genotyped a group of 346 borderline hypertensive patients who were part of a clinical 

study comparing the effectiveness of blood pressure monitoring protocols at the 

University of North Carolina (See (261, 262) and Suppl Table I). Importantly, blood 

pressures in this group were extremely well-characterized by repeated office  
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Figure 2.1 (continued). ARHGAP42 expression in SMC is regulated by allele-
specific mechanisms and controls blood pressure. C) Schematic of the Arhgap42 
gene trap and SMMHC-CreERT2 mice used for SMC-specific ARHGAP42 rescue 
experiments.  D) Wt and Arhgap42gt/gtSM-MHCcreERT2 mice were injected 
intraperitoneally with vehicle (corn oil) or tamoxifen (100 mg/kg) for 5 consecutive days 
as indicated. Two weeks after the last injection, BP was measured by tail cuff method 
and ARHGAP42 mRNA levels in the aorta were measured by semi-quantitative RT-
PCR analysis using primers to exons 1 and 4. Data are expressed as mean± SEM;  n=6 
for Wt and Arhgap42gt/gtSM-MHCcreERT2 mice with vehicle treatment, n=5 for 
Arhgap42gt/gtSM-MHCcreERT2 mice with tamoxifen treatment. *p<0.05 versus Wt, 
**p<0.05 vs. corn oil treated (ANOVA). Note that tamoxifen treatment restored 
ARHGAP42 expression and reduced blood pressure to Wt levels (representative of 3 
separate experiments). 
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measurements and none of these individuals were being treated with anti-hypertensive 

therapies. Several findings illustrated in Table 2.1 are worth noting. First, we observed 

an age-independent decrease in BP in subjects homozygous for the minor allele than in 

subjects homozygous for the major allele (76.9 mmHg vs 81.8 mmHg; p=0.028). The 

relative magnitude of this decrease (5mmHg vs 1mmHg measured in GWAS) 

suggested that ARHGAP42's effects on BP may be greater than originally estimated. 

Second, the MAF (as defined by rs604723) trended lower in the group of patients that 

were categorized as hypertensive as defined by AHA guidelines (systolic BP > 140 mm 

Hg), and the percentage of subjects that exhibited hypertension trended lower in 

subjects who had copies of the minor allele (69%, 64%, and 60% for the C/C, C/T and 

T/T genotypes, respectively). Finally, the MAF of the protective T allele in this cohort 

was dramatically lower in African Americans than in Caucasians (6.5% vs. 26.6%; 

p<0.001), and sequencing of over 1,000 individuals from this and additional UNC 

cardiovascular cohorts (263-266) confirmed this result.  

Identification of regulatory elements within the ARHGAP42 gene. 

It is clear that gene regulatory regions exhibit distinct chromatin signatures, and we 

and others have shown that SMC-specific gene expression is regulated by alterations in 

chromatin structure (194, 195, 63, 97). Thus, to prioritize our search for regulatory 

regions that drive ARHGAP42 expression, we performed DNase hypersensitivity 

measurements in human aortic SMC to identify regions of open chromatin. As shown in 

the ARHGAP42 gene schematic in Figure 2.2A, we identified two approximately 600 bp 

DNAse hypersensitivity sites (DHS1 and DHS2) within the first intron and a larger DHS 

that covered about 2Kb of the transcription start site (TSS). Additional analyses of 

ENCODE data sets revealed that all three regions were marked by histone  
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Table 2.1 Analysis of ARHGAP42 genotype and blood pressure in human 
populations. A group of 346 borderline hypertensive patients were genotyped at the 
rs604723 variation using a Taqman-based allelic discrimination assay. The resulting 
genotypes were then correlated with repeated office blood pressure measurements or 
hypertension status (i.e. greater or less than 140 mmHg) or grouped by race.  ^ p<0.05 
vs diastolic BP measured in patients homozygous for the major allele (C/C); * p<0.001 
vs MAF in Caucasians; Chi-squared test. 
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modifications known to be associated with transcriptionally active regions (i.e. H3K4 

methylation and H3K27 acetylation) and contained stretches of highly conserved 

sequence. Of particular interest, the rs604723 SNP was in the middle of a highly 

conserved 100 bp region at the center of DHS2. All three regions were PCR amplified 

from human genomic DNA and cloned into the pGL3 luciferase vector. It is important to 

note that the DHS1 region was extended to include the nearby SNP, rs633185, so that 

the functional effects of this variation could be tested. Also, because the other two SNPs 

within the BP-associated LD block (rs607562 and rs667575) were not near open 

chromatin regions or conserved DNA sequences, we did not further examine their 

contributions to ARHGAP42 expression.  

As shown in Figure 2.2B, the DHS2 exhibited very strong transcriptional activity (38 

fold over the promoterless pGL3 vector) that was significantly higher in SMC than in 

endothelial cells suggesting that this element is an important driver of SMC-selective 

ARHGAP42 expression. The TSS exhibited moderate activity in SMC and in EC 

consistent with idea that it functions as more of a basal promoter. We next used site-

directed mutagenesis to generate allelic series for the rs633185 and rs604723 SNPs 

within the context of the DHS1 and DHS2 regulatory elements, respectively. As shown 

in Figure 2.2C, the DHS2 containing the minor T allele exhibited significantly higher 

activity than the DHS2 containing the major C allele while the variation at rs633185 had 

no effect on the relatively low SMC-selective activity of the DHS1 region. Interestingly, 

the rs604723 variation did not affect DHS2 activity in EC. 

To test whether the DHS2 element was required for expression of the endogenous 

ARHGAP42 gene, we used CrispR/Cas9-mediated gene editing to delete the 100 bp 

conserved element within the DHS2 in human bronchial SMC cultures (Figure 2.2D).  
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Figure 2.2. An enhancer within the ARHGAP42 first intron displays strong SMC-
specific and allele-specific activity and is required for endogenous ARHGAP42 
expression. A) Map of the chromatin determinations used to characterize potential 
regulatory elements near the ARHGAP42 BP-associated locus. The SNPs that define 
the BP-associated allele (r2 >0.8) are shown at the top. B) The indicated DNase 
hypersensitive (DHS) regions were cloned into the pGL3 luciferase vector and 
transfected into primary human bronchial SMC and mouse ECs. Luciferase activity in 
cell lysates was measured two days later and is expressed as fold over the 
promoterless pGL3 vector. Data represent mean ± SEM of n=6 experiments; *p<0.001 
versus in ECs (student's t-test) C) Site-directed mutagenesis was used to test the 
effects of the major/minor alleles on DHS1 and DHS2 enhancer activity. Data represent 
mean ± SEM of n=6 experiments; *p<0.01 versus the major allele (student's t-test).  
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Although we observed somewhat variable deletion efficacy (from 45-95% in 5 

separate experiments), our deletion protocol resulted in a significant decrease in 

ARHGAP42 mRNA expression (Figure 2.2E). These results strongly support our 

conclusion that the DHS2 region regulates ARHGAP42 expression and that rs604723 is 

the functional SNP in this BP-associated LD block. 

The minor allele sequence at rs604723 binds SRF. 

To begin to identify the mechanisms that mediate the transcriptional activity of the 

DHS2 fragment and the effects of the minor T allele variation, we used gel shift assays 

to compare protein binding to 100bp probes that encompassed the highly conserved 

region at the center of the DHS2. As shown in supplemental figure III, we observed two 

relatively weak T-allele specific binding complexes one of which had a mobility similar to 

that of SRF, a transcription factor known to be critical for SMC-specific gene expression 

(see (29) for a review). Interestingly, the presence of the minor T allele at rs604723 

results in a DHS2 sequence that conforms to a consensus SRF-binding CArG element 

at 8 out of 10 residues while the presence of the major C allele within the A/T rich region 

would be predicted to inhibit SRF binding to this sequence (see Figure 2.3A). To test 

the involvement of SRF we performed additional gel shift assays using recombinant 

SRF protein. Our results clearly show that the minor T-allele sequence interacted with 

SRF while the major C allele sequence did not (Figure 2.3B). Similar results were 

obtained when biotin-labeled T and C allele oligonucleotides probes were conjugated to 

avidin coated beads and used to precipitate SRF from SMC lysates (Figure 2.33C). We 

next used ChIP assays to test whether SRF bound to the DHS2 in the context of the 

endogenous ARHGAP42 gene. As shown in figure 3D, we observed significant SRF 

binding in our human aortic SMC that are heterozygous (C/T) at rs604723 but no  
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Figure 2.2 (continued). An enhancer within the ARHGAP42 first intron displays 
strong SMC-specific and allele-specific activity and is required for endogenous 
ARHGAP42 expression. D) Schematic of the 102 bp deletion (in red) generated by our 
CrispR/Cas9-mediated gene editing protocol. E) ARHGAP42 message was measured by semi 
quantitative RT PCR in human bronchial SMC cultures transfected with expression plasmids 
encoding Cas9 and the guide RNAs shown in D (n=5). The reduction in ARHGAP42 expression 
was normalized to the efficiency of DHS2 deletion which ranged from 45-95%. Data represent 
mean ± SEM of n=5 seperate experiments *p<0.05 versus cells transfected with empty guide 
RNA expression plasmid (student’s t-test). 
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Figure 2.3. The minor T allele at rs604723 promotes SRF binding. A) Schematic of 
sequence conservation at the center of the DHS2 region and of CArG homology at the 
rs604723 SNP. B) Gel shift assays were performed by combining recombinant SRF 
with radiolabeled 100 bp oligonucleotide probes containing the major or minor alleles at 
rs633185 and rs604723. Representative image shown from n=2. C) Biotin-labeled 20 bp 
oligonucleotides containing the major C or minor T allele at rs604723 or a consensus 
CArG element were conjugated to streptavidin beads and incubated with HuAoSMC 
nuclear extracts. Washed immunoprecipitates were analyzed for the presence of SRF 
by Western blotting. Data are representative of two separate experiments. 
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binding when ChIP assays were performed in human coronary SMC that are 

homozygous major (C/C) at this sequence. Moreover, the increased presence of T 

allele-containing DNA in SRF immunoprecipitates (Figures 2.3E) strongly suggested 

that SRF interacts more readily with this sequence in the context of the endogenous 

gene, and targeted allele-specific DNAse hypersensitivity assays revealed that the 

DHS2 region containing the T-allele sequence was in a more active chromatin 

conformation (Figure 2.3F). 

SRF is required for ARHGAP42 expression and for the effects of the rs604723 

variation 

To test whether ARHGAP42, like most other SMC-specific markers, is regulated by 

SRF we used several gain/loss of function approaches. As shown in Figure 2.4A, over-

expression of the SRF cofactor, myocardin, in HuBrSMC transactivated the DHS2-

luciferase fragment containing the minor T allele by 12 fold, but had significantly less of 

an effect on the DHS2 fragment containing the major C allele. Moreover, knockdown of 

SRF in these cells by siRNA decreased the transcriptional activity of the DHS2 minor 

allele to a level that was similar to that of the major allele (Figure 2.4B). Importantly, 

SRF knockdown in our HuAoSMC line also decreased the level of endogenous 

ARHGAP42 message containing the minor allele as measured by our allele-specific RT 

PCR methods (Figure 2.4C). 

ARHGAP42 expression is upregulated by RhoA signaling 

We and others have shown that RhoA signaling enhances SMC-specific gene 

expression by promoting the nuclear localization of the myocardin-related transcription 

factors (MRTFs) (100, 106, 267). In support of this mechanism, ARHGAP42 expression 

in primary rat aortic SMCs was up-regulated by sphingosine 1-phosphate (S1P), a  



	 63  

 

     

Figure 2.3 (continued). The minor T allele at rs604723 promotes SRF binding. D) 
ChIP assays were used to measure SRF binding to the DHS2 region in cultured 
HuAoSMC and HuCoSMC that are heterozygous (CT) and homozygous major (CC) at 
the rs604723 SNP, respectively. Data represent mean ± SEM of n=4 experiments; 
*p<0.05 vs IgG in HuAoSMC (student's t-test) E) SRF-ChIP immunoprecipitates from 
HuAoSMC were subjected to a TaqMan-based assay that discriminates between the 
major and minor alleles at the rs604723 SNP. Data represent mean ± SEM of n=4 
experiments;*p<0.01 versus major allele (student's t-test). F) Increasing amounts of 
DNase I (0-1 µg) were added to permeabilized nuclei isolated from HuAoSMC. 
Following genomic DNA isolation, allele-specific primers were used to amplify a 300 bp 
region containing the rs604723 SNP. Data represent mean ± SEM of n=3 
experiments;*p<0.05 (student's t-test). 
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Figure 2.4. The allele-specific activity of the DHS2 enhancer is SRF-dependent.  A) 
Major and minor DHS2 luciferase constructs were transfected into HuBrSMC along with 
myocardin or empty expression vector. Data represent mean ± SEM of n=5 
experiments;*p<0.05 versus major allele plus Myocardin (student's t-test). B) DHS2-
luciferase activity was measured in HuBrSMC treated with control (NTC) or SRF siRNA. 
Data represent mean ± SEM of n=6 experiments; *p<0.01 versus the minor allele 
(student's t-test). C) Allele-specific GRAF3 mRNA levels were measured by semi-
quantitative RT PCR in control and SRF knockdown HuAoSMC. Data represent mean ± 
SEM of n=3 experiments; *p<0.05 versus the major C allele in control cells; **p<0.05 
versus minor T allele in control cells (student's t-test). D) Confirmation of SRF 
knockdown in SMC treated with control or SRF siRNAs. Data are representative of 3 
separate experiments. 
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strong activator of RhoA signaling in many cell-types including SMC (97), and this effect 

was abolished by pretreatment with the rho-kinase inhibitor, Y27632 (Figure 2.5A). 

Physical forces such as cell stretch and tension are also well known activators of RhoA 

signaling and are known to be increased in the vessel wall under hypertensive 

conditions (258). As shown in Figure 2.5B, ARHGAP42 mRNA levels were significantly 

upregulated in SMC cultures subjected to cyclic stretch using the FX-4000T Flexcell 

system™ and this effect was also rho-kinase-dependent. ARHGAP42 mRNA levels 

were also upregulated in isolated portal vein segments subjected to static stretch 

(Figure 2.5C). The fact that LacZ expression was upregulated by stretch in portal veins 

isolated from Arhgap42 LacZ genetrap mice strongly indicated that this effect was 

mediated transcriptionally (Figure 2.5D).  

Activation of ARHGAP42 expression attenuates the development of hypertension 

Since RhoA/MRTF/SRF-dependent up-regulation of ARHGAP42 would serve as as 

a transcriptionally mediated negative feedback loop for RhoA signaling in SMC, we 

postulated that this mechanism prevents excessive SMC constriction by hypertensive 

signals. In support of this idea, and in accordance with the results of our cell stretch 

experiments, arterial ARHGAP42 mRNA levels were significantly increased in mice 

made hypertensive by L-NAME or DOCA-salt regimens (Figures 2.6A and 2.6B). To test 

whether upregulation of ARHGAP42 expression under these conditions counteracted 

the development of hypertension, we subjected Wt and ARHGAP42 deficient mice 

(Arhgap42gt/gtSM-MHCcreERT2) to a DOCA-salt regimen and monitored blood pressure by 

telemetry. Although the initial DOCA-salt mediated increase in BP was similar in both 

groups (Figure 2.6C), blood pressure in Arhgap42gt/gtSM-MHCcreERT2 continued to 

increase over the next week at a rate of 1.5 mmHg/d compared to 0.9 mmHg/d in Wt  
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mice (p<0.05).  As previously observed, the BP pressure difference between these two 

groups was completely reversed by treatment of Arhgap42gt/gtSM-MHCcreERT2 with 

tamoxifen which also restored ARHGAP42 expression (Supplemental Figure IV). 
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Figure 2.5. ARHGAP42 expression is activated by RhoA signaling and cell stretch 
A) Primary rat aortic SMCs were treated with 10 µM sphingosine 1-phosphate (S1P) ± 
the rho-kinase inhibitor, Y-27632. ARHGAP42 expression was measured after 72 h by 
seimi-quantitative PCR. Data represent mean ± SEM of 4 experiments; *p< p<0.001 
versus control; ** p<0.001 versus S1P-treated (ANOVA). n=4.  B) Using the FX-4000T 
Flexcell system™, primary rat aortic SMCs were subjected to 0 (Ctrl) or 20% equibiaxial 
elongation at 1Hz (cyclic strain). ARHGAP42 message was measured at 18 hours by 
qPCR. Data represent mean ± SEM; n=3 from two independent experiments; * p<0.001 
versus no cyclic strain, ** p<0.05 versus minus Y-27632 (ANOVA). C) Rat portal veins 
placed in ex vivo culture were subjected to 0 or 600 mg of static stretching force. At 72 h 
ARHGAP42 message was measured by semi-quantitative RT PCR. Graph shows 
ImageJ-based quantification of 3 independent experiments. *p<0.05 (student's t-test)  
D) Portal veins isolated from Arhgap42+/gt  mice were cultured ex vivo and subjected to 0 
or 300 mg of static stretching force for 5 days. After Lac Z staining, tissues were 
processed for standard microscopy including hematoxylin and eosin staining. Scale bar 
= 200 microns. Data are representative of three independent experiments.  
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Figure 2.6. ARHGAP42 expression limits the development of hypertension.   A) Wt 
mice were treated with L-NAME (450 mg/L in drinking water). After 14 days blood 
pressure was measured by tail cuff method, and ARHGAP42 message in isolated 
mesenteric arteries was measured by quantitative PCR. Data represent mean ± SEM; 
n=4 per group; *p<0.05 versus untreated (student's t-test). B) Wt mice were implantated 
with a 50mg slow-release DOCA pellet and then fed 0.9% NaCl in drinking water. After 
3 weeks blood pressure was measured by tail cuff method, and ARHGAP42 message in 
aorta was measured by quantitative PCR. *p<0.05 versus untreated; n = 6 per group 
(student's t-test). 
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Figure 2.6 (continued). ARHGAP42 expression limits the development of 
hypertension. C) Following radio-telemeter implantation and equilibration, 3 Wt  and 5 
Arhgap42gt/gtSM-MHCcreERT2 mice were implantated with a 50mg slow-release DOCA 
pellet and then fed 0.9% NaCl in drinking water for 3 weeks. Ten days after the start of 
the DOCA-salt regimen, both groups were treated with tamoxifen (100 mg/kg) by oral 
gavage for 3 consecutive days. Graph represents average mean arterial blood pressure 
averaged over each 24h period. p<0.05 (SlopesTest).  
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Discussion 

We have previously shown that the Rho-specific GTPase activating protein, 

ARHGAP42, is highly and selectively expressed in SMC and that global gene-trap-

mediated reduction in ARHGAP42 levels resulted in hypertension (219). By 

characterizing the transcription mechanisms that control human ARHGAP42 

expression, we have now identified a novel mechanism for the BP-associated locus 

within the ARHGAP42 first intron. Our data strongly indicate that rs604723 is the 

causative SNP at this locus and that the minor T allele variation increases ARHGAP42 

expression by promoting SRF binding to a SMC-selective intronic regulatory element. 

Our demonstration that the minor ARHGAP42 allele is more highly expressed in 

HuAoSMCs, when coupled with similar data from human artery samples, strongly 

supports our hypothesis that this variation reduces blood pressure by inhibiting RhoA-

dependent constriction of resistance vessels.  

To our knowledge, this is the first demonstration of a genetic variant that alters 

SRF-binding and that directly connects SRF function to a GWAS locus. Although we 

have not yet identified the precise mechanisms that control ARHGAP42 transcription, 

our data are in excellent agreement with the known role of SRF in the regulation of 

SMC-specific gene expression (29). DHS2 transcriptional activity was responsive to 

myocardin overexpression, and knockdown of SRF clearly decreased the activity of the 

DHS2 regulatory element and of endogenous ARHGAP42 mRNA containing the minor 

T-allele. Because most SMC marker genes are regulated by multiple SRF binding CArG 

elements (14, 32, 268), it will be important to determine whether additional CArGs are 

critical for endogenous ARHGAP42 expression. Interestingly, we saw little effect of SRF 

knockdown on ARHGAP42 mRNA containing the major C allele. Although this may be 
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explained by residual SRF expression in SRF knockdown cells, it may suggest that SRF 

is not absolutely required for expression of the major ARHGAP42 allele or that 

enhanced ARHGAP42 expression of the minor allele is more sensitive to SRF levels. 

The latter possibility would be consistent with the low binding affinity of this degenerate 

CArG element. The DHS2 fragment containing the major allele exhibits relatively high 

transcriptional activity suggesting that sequences outside of the SRF binding region are 

important and we are currently attempting to identify the transcriptional mechanisms 

involved. It is also interesting to note that the DHS2 element had significant 

transcriptional activity on its own and when cloned upstream of a heterologous minimal 

promoter (data not shown) suggesting that its contributions to ARHGAP42 transcription 

are complex and that it does not function as an enhancer in the traditional sense.  

We cannot rule out the possibility that other SNPs in the rs604723 LD block play a 

role in the control of ARHGAP42 expression and/or blood pressure regulation. During 

the completion of the current studies, Kato et.al. demonstrated that a minor allele 

variation 7.5 Kb upstream from the ARHGAP42 transcription start site (rs2055450) was 

associated with decreased BP in European, East Asian, and South Asian populations 

as well as methylation of a DNA region within the ARHGAP42 first intron (6). According 

to the 1000 genomes database and additional genotyping of our Caucasian and African 

American patient populations (Suppl Table II), rs2055450 is in relatively high LD with 

rs604723 significantly extending the functional significance of the minor ARHGAP42 

allele in the control of blood pressure in diverse human populations. However, like the 

other SNPs within the ARHGAP42 blood pressure locus, rs2055450 is not located in a 

region that exhibits sequence conservation or open/active chromatin signatures. Thus, 

when coupled with our extensive data on the role of the DHS2 and rs604723, it is likely 
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that rs2055450 and the other variations in this LD block are "bystanders" in regard to 

the regulation of ARHGAP42 expression and blood pressure. In support of this 

conclusion, the rs633185 SNP (the variation nearest to a potential regulatory element) 

had no effect on the transcriptional activity of the DHS1 fragment or protein binding to a 

100 bp probe containing this sequence (see Supplemental Figure III)  

Interestingly, the GTEx data base indicates that minor ARHGAP42 allele LD 

block was significantly associated with increased expression of TMEM33, a 

hypothetical, uncharacterized RNA just downstream of ARHGAP42.  However, as 

shown in Supplemental Figure V, our RNA seq and targeted RT PCR data indicate that 

TMEM133 is not transcribed as a separate gene, but is actually an extension of the 

ARHGAP42 3' UTR. These data fully explain why variations that alter ARHGAP42 

expression also affect "TMEM133", and by default, eliminate changes in TMEM133 

expression as an explanation for the blood pressure locus within ARHGAP42. 

Our data add to a growing body of evidence that common non-coding variants alter 

cardiovascular risk by altering transcription factor binding and gene expression (268, 

269), and support previous studies implicating RhoA signaling in the regulation of BP 

homeostasis in mice (14, 36, 37).  Our human genetic data from well-characterized 

untreated patients confirmed that the minor ARHGAP42 allele was associated with 

decreased blood pressure. Although the effect size may be relatively small, it has been 

observed in multiple diverse populations (250-252) indicating that ARHGAP42 genotype 

plays an important role. Although our data support the possibility that ARHGAP42 

genotype contributes to the susceptibility of African Americans to the development of 

hypertension (248), the very low MAF in this population has also made it difficult to 

confirm this idea. Given the paucity of genetic mechanisms that explain this 
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susceptibility, we are expanding our genotyping and blood pressure analyses in this 

population. Our results also suggest that ARHGAP42 genotyping could also prove 

useful for individualizing antihypertensive therapies. For example, we predict that 

hypertensive patients homozygous for the major allele would respond better to 

antihypertensive agents that target SMC contractility (an endpoint directly controlled by 

RhoA) and that hypertensive patients homozygous for the minor allele may respond 

better to agents that target cardiac or kidney function. Finally, the regulation of 

ARHGAP42 expression and/or activity provides a novel therapeutic target for the 

development of antihypertensive therapies. 
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CHAPTER 3: IDENTIFICATION OF TRANSCRIPTION MECHANISMS THAT 

REGULATE EXPRESSION OF THE SMOOTH MUSCLE-SPECIFIC, BLOOD 

PRESSURE-ASSOCIATED GENE, ARHGAP42  

Overview  

Our group recently demonstrated that the smooth muscle-specific RhoGAP, 

GRAF3, is required for adequate blood pressure control, as deletion of this RhoGAP 

resulted in significant hypertension in mice. Further, variations within the GRAF3 gene 

are associated with alterations in blood pressure in the human population, and we were 

the first to demonstrate that the rs604723 minor allele variant increased GRAF3 

expression by promoting SRF binding to a novel regulatory DNaseI Hypersensitivity Site 

(DHS) in the first intron. Interestingly, the major allele-containing DHS still exhibited 

significant activity, suggesting that additional factors regulate the transcription activity of 

this region. Based on our finding that this DHS was required for GRAF3 expression, we 

sought to identify the transcription mechanisms regulating the full activity of this key 

regulatory region. Here, using sequence analysis, affinity purification, chromatin 

immunoprecipitation, and gain and loss of function experiments, we identify two 

transcription factors, RBPJ and TEAD1, that bind to a core DHS sequence to regulate 

GRAF3 expression. We also demonstrate regulation of GRAF3 expression by a long 

non-coding RNA (AK124326) at GRAF3’s transcription start site and by the microRNA 

mir-505-3p that targets GRAF3’s 3’ UTR. This study is the first to identify a 

transcriptional unit composed of SRF, RBPJ, and TEAD1 that regulates expression of a 
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smooth muscle-specific, blood-pressure gene and provides a novel mechanism 

regulating GRAF3 expression by two non-coding RNAs. 

Introduction 

 Hypertension contributes to significant morbidity and mortality due to its effects 

on the cardiovascular, nervous, and renal organ systems. Despite its prevalence and 

adverse effects on multiple organ systems, the exact genetic and epigenetic 

mechanisms leading to hypertension are not completely understood. Accordingly, the 

majority of individuals with high blood pressure have “essential” hypertension, which 

has no known cause. Indeed, very few Mendelian cases of hypertension exist, 

suggesting that hypertension is largely a disease of multiple genetic interactions. To 

begin to dissect these highly complex genetic pathways that contribute to hypertension, 

genome-wide association studies (GWAS) have identified candidate genes that may 

play a role in blood pressure regulation by locating single nucleotide polymorphisms 

(SNPs) in genes whose function was previously unknown (250-252). In support of the 

utility of this approach, many of these disease-associated SNPs are located within well-

characterized genes known to be important for blood pressure regulation.  

Separate GWAS identified SNPs within the first intron of the GRAF3 gene that 

were associated with changes in blood pressure in the human population. The minor 

allele (MAF = 0.27), defined by SNPs rs633185 and rs604723 that are in perfect linkage 

disequilibrium, was associated with a 0.5 mmHg reduction in blood pressure (250-252). 

In collaboration with the Taylor lab, we demonstrated that GRAF3 was a RhoGAP 

expressed selectively in smooth muscle that was essential for normal blood pressure, 

thus providing a potential mechanism for the GRAF3 blood pressure locus in the 

development of human hypertension (219). Recently, using DNase I hypersensitivity 
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and ENCODE data, we identified a regulatory element that contained rs604723 and 

exhibited strong allele-specific, SMC-selective activity. Deletion of the SNP-containing 

region using CRISPR/Cas9 led to a significant reduction in GRAF3 expression. The 

rs604723 minor T-allele variant increased SRF binding to this region, and SRF was 

required for the effect of the minor allele on GRAF3 transcription. GRAF3 expression 

was increased by cell stretch and sphingosine 1-phosphate in a RhoA-dependent 

manner, and deletion of GRAF3 increased the development of hypertension in mice 

treated with DOCA-salt. Furthermore, the minor allele correlated with lower blood 

pressures in a cohort of untreated patients with borderline hypertension (273).  

 Based on the fact that changes in GRAF3 expression play a major role in the 

development of hypertension in the human population, identifying the transcription 

mechanisms that control GRAF3 expression in SMCs will be important for further 

understanding of blood pressure regulation. We have already shown that GRAF3 

expression is regulated in an SRF- and RhoA-dependent manner, similar to other SMC-

specific genes, including SMA, SM22, calponin, and SM-MHC (14, 63, 66, 69, 273). It is 

well established that while SRF and the myocardin factors are potent drivers of smooth 

muscle-specific gene expression. In brief, SRF binds to CArG elements in promoter and 

enhancer regions of smooth muscle-specific genes. Myocardin and MRTF-A/B bind to 

SRF to transactivate SMC differentiation (71, 100). Although SRF and the myocardin 

transcription factors play a requisite role in SMC differentiation, it is clear that additional 

transcription factors are also responsible, since myocardin overexpression alone does 

not fully recapitulate the entire gene repertoire that defines a SMC (76). Furthermore, 

SMA and SM22 expression in the mouse precede myocardin expression, suggesting 

that unidentified transcription factors expressed early in development contribute to SMC 
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differentiation (14, 15).  

SMC differentiation is also regulated by non-coding RNAs, including microRNAs 

(miRNAs) and long non-coding RNAs (lncRNAs). Generally, miRNAs bind directly to the 

3’ UTR of transcribed genes to decrease mRNA stability, thereby resulting in decreased 

target gene expression. The most well characterized miRNAs with respect to SMC 

differentiation are mir-143 and mir-145, which are significantly enriched in vascular 

SMCs and transcribed as a cluster from the same gene (209). Transcription of mir-

143/145 is regulated by SRF and myocardin and is further transactivated by the Nkx 

factors. Mir-143/145 regulates the balance between contractile and synthetic smooth 

muscle gene programs. Specifically, mir-143/145 maintains differentiation by stabilizing 

myocardin, which further enhances transcription of the miRNA cluster in a positive 

feedback manner. Additionally, mir-143/145 represses expression of KLF4 and Elk-1, 

which both antagonize the myocardin-SRF interaction. Thus, by stabilizing myocardin 

and repressing KLF4 and Elk-1, mir-143/145 maintains SMC differentiation by 

upregulating contractile smooth muscle markers. One of the most well-known examples 

of lncRNAs that regulate SMC-specific differentiation is MYOSLID (MYOcardin-induced 

Smooth muscle LncRNA, Inducer of Differentiation), which was identified in a screen for 

lncRNAs that were significantly upregulated by myocardin overexpression in human 

coronary SMC (218). MYOSLID contains 3 CArG boxes in its promoter, which bind 

SRF, as determined by chromatin immunoprecipitation experiments. MYOSLID 

expression is also regulated by TGFβ/SMAD signaling. Importantly, MYOSLID is 

localized to the cytoplasm, and thus does not directly affect SMC-specific gene 

transcription. Rather, MYOSLID is required for actin stress fiber formation and SMAD2 

phosphorylation and thus exerts significant regulation over downstream SRF- and 
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TGFβ-dependent smooth muscle genes, respectively.  

The goals of the present study were to identify the transcription mechanisms that 

regulate expression of the smooth muscle-specific gene, GRAF3. To begin to do this, 

we first defined the minimal core region within the blood pressure-associated DHS that 

mediated GRAF3 transcription. Then, we used multiple biochemical and mutation 

approaches to identify transcription factors that bind to this core DHS region and 

regulate its activity. Next, to determine if one or more of these factors are required for 

GRAF3 expression, we utilized several loss-of-function approaches including siRNA-

mediated gene knockdown as well as a smooth muscle-specific deletion mouse model. 

Finally, we describe additional miRNA and lncRNA-based mechanisms that regulate 

GRAF3 expression.  

Materials and Methods 

Cell culture 

Human aortic and bronchial smooth muscle cells were purchased from Lonza 

and maintained in Clonetics Smooth Muscle Growth Medium-2 (SMGM-2) and 

supplemented with growth factors and 5% FBS (Lonza).  

Plasmids 

For the SRF-dCas9 fusion protein, SRF was subcloned into the pcDNA-dCas9-

VP64 vector (Addgene, plasmid #47107) in which VP64 had been cut out. pcDNA-

dCas9 (plasmid #47106) and pSPgRNA (plasmid  #47108) were purchased from 

Addgene. pGL3-GRAF3 DHS reporter constructs were generated as previously 

described (273). RBPJ and TEAD1 site mutations were introduced in pGL3-DHS 

plasmids using the QuickChange site-directed mutagenesis protocol. All mutations were 

verified by Sanger sequencing. For 3’ UTR stability experiments, the GRAF3 3’ UTR 
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was amplified from HuAoSMC genomic DNA by PCR and then cloned into pGL3 basic 

vector using In Fusion cloning (Clontech).   

Luciferase assays 

HuBrSMC were seeded in 24-well plates the day prior to transfections at a 

density of approximately 2.5x104 cells/well. 10T1/2 cells were seeded in 48-well format 

plates at a density of 1.2x104 cells/well the day before transfecting. Cells were 

transfected with 50 ng DNA/well for 24-wells or 25 ng DNA/well for 48-wells and 

incubated at 37°C, and luciferase assays were performed 48 hours later. For Jagged-1 

stimulation experiments, HuBrSMC were transfected with luciferase constructs and then 

trypsinized and plated on negative control or Jagged-coated dishes the following day. 

Values were measured 16 hours later. Luciferase assays were performed using the 

Steady-Glo Luciferase Kit (Promega) according to the manufacturer’s instructions. Raw 

luciferase values were normalized to the activity of the promoterless pGL3 empty 

vector.  

Jagged-1 coating 

6-well plates were incubated with 3 ug of anti-human IgG (Fc-specific) (Sigma) 

diluted in PBS for 4 hours at room temperature. Following incubation, the antibody 

solution was completely removed. Wells were then coated with 3 ug rat Jagged-1, 

human Fc recombinant protein (R&D Systems) or 3 ug human Fc negative control 

recombinant protein (Millipore) diluted in PBS overnight at 4°C. The next day, the 

solution was aspirated and cells were seeded on coated plates for 16-24 hours after 

which cells were harvested for luciferase assays or RNA.  

Mir-505-3p transfections 

HuBrSMC were transfected in 6-wells with 80 nM mir-505-3p mimetic or negative 
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control mimetic (Invitrogen) for 48 hours.  

Knockdowns 

HuBrSMC were transfected with 20 nM siRNA targeted to TEAD1 or a GFP non-

targeting negative control for 72 hours. RNAiMax (Invitrogen) was used as the 

transfection reagent. For knockdown of the AK124326 long non-coding RNA, HuBrSMc 

were transfected with 100 nM siRNA, using Dharmafect (Dharmacon) as the 

transfection reagent.  

qRT-PCR 

RNA was isolated from cells using the RNeasy mini kit (Qiagen) and treated with 

DNase (Qiagen) to eliminate contaminating genomic DNA. RNA was converted to cDNA 

using the iScript cDNA synthesis kit (Biorad). 12-50 ng cDNA was used in downstream 

quantitative real-time PCR.  

Electrophoretic mobility shift assays 

HuAoSMC nuclear lysates were prepared using the Nuclear Isolation kit from 

ThermoScientific. Lysates were dialyzed in Dignam Buffer D (20 mM HEPES, pH 7.9, 

20% (v/v) glycerol, 0.1 M KCL, 0.2 mM EDTA, 0.5 mM PMSF, and 0.5 mM DTT). Each 

reaction contained 10 ug lysate or 1 ul in vitro translated-SRF, 20,000 cpms of 32P-

labeled oligonucleotide probe, and 0.20 ug dIdC in binding buffer (10 mmol/L Tris, pH 

7.5, 50 mmol/L NaCl, 100 mmol/L KCl, 1 mmol/L DDT, 1mmol/L EDTA, 5% glycerol). 

Chromatin Immunoprecipitation (ChIP) experiments 

ChIP assays were performed according to X-ChIP protocol (Abcam) with slight 

modifications. In brief, HuBrSMC were fixed for 5 minutes in 0.7% formaldehyde. The 

crosslinking reaction was stopped by incubating cells with 0.125 M glycine for 5 

minutes. Cells were scraped in lysis buffer (5 mM PIPES, pH 8.0, 85 mM KCl, 0.5% 
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NP40) and then nuclei were isolated by centrifugation at 2,300xg for 5 minutes. Nuclei 

lysis buffer (50 mM Tris-Cl, pH 8.1, 10 mM EDTA, 0.13% SDS) was added to pelleted 

nuclei. Chromatin was sheared into 500 bp fragments by sonication and 

immunoprecipitated overnight at 4°C with 1 ug of anti-RBPJ antibody (Cell Signaling), 

anti-Notch3 antibody (Santa Cruz), anti-TEAD1 (Santa Cruz), or normal rabbit IgG 

antibody (Cell Signaling) or mouse IgG (Millipore) as a negative control for non-specific 

binding. For re-ChIP assays, chromatin was incubated with 1 ug of TEAD1 antibody. 

DNA was eluted with re-ChIP elution buffer and then diluted with 3x volume ChIP buffer.  

Eluted DNA was incubated with 1 ug RBPJ antibody or 1 ug normal rabbit IgG antibody.  

SMC-specific RBPJ deletion 

RBPJ floxed/floxed mice (RBPJf/f) were crossed with SM-MHCcreERT2 mice, which 

were provided by Stefan Offermanns (University of Heidelberg, Germany). Experiments 

were performed in male mice 2-4 months old using age, sex, and littermate genetic 

controls. Genotyping was performed using DNA isolated from tail biopsies. Cre activity 

in this model was induced with tamoxifen (100 mg/kg) by IP injection for 5 consecutive 

days or oral gavage for 3 consecutive days. For controls, genotypically identical 

littermates were injected with corn oil. Approximately 1 week after the last tamoxifen 

administration, aorta and bronchi were harvested. Aortas were stripped of adventitia 

and bronchi were cleaned of surrounding non-SMC tissue. Tissues were frozen in liquid 

nitrogen, crushed, and protein was extracted in RIPA buffer. Protein expression was 

measured using standard Western blotting with an RBPJ antibody (Cell Signaling) and 

tubulin (Sigma) as a loading control.  
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Results 

Engineering a novel dCas9-SRF fusion protein to target endogenous loci.  

 CRISPR-Cas9 has been used widely to modify specific genomic loci with minimal 

off targeting effects (70). Recently, a catalytically inactive “dead” Cas9 (dCas9) 

molecule has been generated by introducing D10A and H840A mutations that render 

the Cas9 nuclease inactive. In combination with sgRNAs, the dCas9 can used to target 

specific regulatory regions and disrupt gene expression by depositing dCas9 at these 

loci. In this manner, dCas9 provides a steric obstacle for critical transcription factors, 

which cannot bind to critical promoter/enhancer regions. As alluded to, this approach 

has been extremely useful for identifying functional regulatory regions in the 

endogenous gene context without using a gene editing CRISPR approach. More 

recently, transcriptional repressors (e.g., KRAB) and activators (e.g., VP64) have been 

fused to dCas9 to create synthetic transcription factors that strongly inhibit or enhance 

gene expression, respectively (271, 272). We took advantage of this novel approach by 

engineering an SRF-dCas9 molecule in which SRF was fused to the dCas9 molecule 

(Figure 3.1A). The SRF-dCas9 fusion protein was efficiently expressed in HuBrSMC 

(Figure 3.1B). Next, we designed sgRNAs that targeted the endogenous GRAF3 DHS 

locus (Figure 3.1C). Experiments with SRF-dCas9 were performed in parallel with 

dCas9. In order to control for non-specific effects of SRF on gene expression (rather 

than an effect due to targeting specific loci), SRF-dCas9/dCas9 was also transfected 

with sgRNA empty vector. As seen in Figure 3.1D, dCas9 targeted to the DHS reduced 

endogenous GRAF3 expression in HuBrSMC, suggesting that the dCas9 is a critical 

regulatory region. In line with our hypothesis, SRF-dCas9 targeted to DHS upregulated 



	 89  

GRAF3 expression; however, it was a small effect (Figure 3.1E). It is important to note 

that the effect of SRF at the DHS was most likely underestimated by this approach, 

since there were likely negative effects imparted by the steric hindrance of the dCas9-

SRF molecule. Regardless, these data are in excellent agreement with our previous 

observations that SRF binding specifically to the DHS regulates GRAF3 expression.  

Identification of the core regulatory region required for GRAF3 transcription.  

We had previously determined that a 604 bp DHS within the GRAF3 first intron 

exhibited significant SMC-specific transcription activity. This DHS contained the SNP 

rs604723, however, apart from the minor T allele’s positive effect on transcription 

activity of this region, the major C allele still exhibited 20-fold activity over empty vector 

(273). This suggested that transcription factors within the conserved DHS, in addition to 

SRF, mediated the full activity of this region. To begin to identify the transcription 

mechanisms that mediate non-SRF dependent regulation of the DHS fragment, we 

generated a deletion series comprised of 200 bp overlapping fragments that spanned 

the GRAF3 DHS. Each 200 bp fragment was cloned upstream of luciferase in a 

promoterless pGL3 vector, and the activity of each construct was measured in 

HuBrSMC. Two fragments that together spanned 200-500 bp showed the greatest 

luciferase activity (Figure 3.2). To narrow our search down to individual cis elements 

regulating activity of the entire 604 bp region, we generated another deletion series in 

which 100 bp fragments within the high activity 200-500 bp sequence were cloned into 

luciferase vectors and transfected into HuBrSMC as described. As shown in Figure 

3.3A, a fragment from 300-400 bp nearly recapitulated the activity of the full length DHS 

(25-fold compared to 30-fold over empty pGL3 vector, respectively), suggesting that 

transcription factors binding to this core 100 bp region were required for GRAF3 
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transcription.  

RBPJ and TEAD1 bind to a conserved sequence within the DHS.  

To identify the transcription factors mediating the activity of the 300-400 bp 

region, we searched for consensus binding motifs throughout the 100 bp sequence 

(Figure 3.3B). We identified two GTGGG consensus sequences that bind the Notch 

transcription factor, RBPJ, in the smooth muscle myosin heavy chain promoter (120). 

One of these sites was well conserved in mammals. The Notch pathway is activated 

when a neighboring cell expressing Jagged-1 engages the notch receptor on the SMC, 

resulting in cleavage of the notch receptor intracellular domain (NICD) by gamma-

secretase. NICD translocates into the nucleus to displace repressors that are bound to 

RBPJ (122). The NICD-RBPJ complex drives expression of downstream Notch target 

genes (123).   

We also identified a conserved MCAT consensus cis element (CATTCCT), which 

binds the Hippo downstream transcription factor, TEAD1 (141). Of note, there was also 

a cryptic MCAT motif that varied from the consensus by one base pair embedded within 

the proximal part of the second MCAT site. Hippo activation leads to phosphorylation of 

the Mst1/2 serine/threonine kinases, which activate Lats1/2 serine/threonine kinases. 

Active Lats1/2 phosphorylate and inhibit Yap/Taz, which prevents their nuclear 

accumulation and subsequent activation of the TEAD transcription factors. Thus, Hippo 

activation represses TEAD-dependent gene expression, which is relieved by Hippo 

pathway inactivation when Yap/Taz translocate into the nucleus and bind the TEADs.  

Our observations that RBPJ and/or TEAD1 bound to the GRAF3 DHS were 

based on in silico predictions using published consensus motifs. Thus, to directly test 

whether the 100 bp fragment harboring the predicted cis elements could bind their 
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Figure 3.1. SRF targeted to the conserved DHS increases endogenous GRAF3 
expression. A) Schematic of engineered SRF-dCas9 protein. B) Western blotting 
analysis of dCas9 and SRF-dCas9 expression in HuBrSMCs. C) Conserved 100 bp 
region within the GRAF3 DHS labeled with the sgRNAs used to target dCas9 and 
dCas9-SRF. D) HuBrSMC transfected with dCas9 or dCas9-SRF (E) and guide RNAs 
(sgRNAs) for 72 hours were collected for RNA isolation and downstream Taqman qRT-
PCR for GRAF3 expression.  
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Figure 3.2. Preliminary mapping of the core regulatory region within the GRAF3 
DHS. 200 bp overlapping regions spanning the full 604 bp DHS were cloned into the 
pGL3 vector and transfected into HuSMC. Luciferase assays were performed 48 hours 
later.  
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Figure 3.3. A core DNase I Hypersensitive regulatory region drives GRAF3 
transcription. A) The 200-500 bp region exhibiting the highest transcription activity was 
divided into three 100 bp fragments and cloned separately into luciferase vectors (n=4). 
HuBrSMC were transfected for 48 hours and then luciferase assays were performed 
*p<0.05 (student’s two-tailed t-test). B) 100 bp high transcription activity region is boxed 
and the predicted transcription factor binding sites are highlighted in yellow.  
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respective transcription factors, we synthesized 100 bp biotin-labeled oligonucleotide 

probes that contained the conserved RBPJ and MCAT cis elements. Probes were 

incubated with human SMC nuclear extracts to purify the protein complexes that bound 

to this region. As shown in Figure 3.4A, RBPJ, NICD, and TEAD1 were detected in the 

purified sample, and none of these were detected in the non-specific negative control 

sample. Additionally, RBPJ bound very strongly to this region in gel shift assays, as well 

as in supershift assays in which an RBPJ antibody was added to the probe-nuclear 

extract reaction (Figure 3.4B). In these experiments, we used gel shift probes that 

contained either the rs604723 C or T SNP, since SRF binding (T allele) could 

theoretically affect RBPJ binding to this region. There were no differences in RBPJ 

binding to C or T probes. Because in vitro transcription factor binding assays do not 

always reflect binding at the endogenous gene locus, we used chromatin 

immunoprecipitation (ChIP) to examine binding to the GRAF3 DHS in vivo. Chromatin 

from HuBrSMC was incubated with antibodies to RBPJ, TEAD1, or an IgG antibody to 

control for non-specific binding. ChIP’ed DNA was subjected to PCR using 100 bp 

primer sets that flanked the region containing RBPJ and TEAD1 binding sites. As 

observed in Figure 3.4C, both RBPJ and TEAD1 bound to the GRAF3 DHS in vivo.  

Activity of the GRAF3 DHS is regulated by Notch/RBPJ and TEAD1. 

To determine if RBPJ and TEAD1 binding were required for the transcription 

activity of the full-length DHS, we used site-directed mutagenesis to disrupt each 

transcription factor’s predicted sequence within the pGL3-DHS construct. To assess the 

contribution of each binding site on DHS activity, we generated a variety of mutation 

constructs that contained mutation of a single binding site or combinations thereof. Each 

RBPJ site was mutated individually, and a construct was generated with both RBPJ 
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binding sites abolished. Because there were two overlapping MCAT motifs (one 

consensus and another proximal element that varied from the consensus by one base 

pair), our mutagenesis strategy abolished both MCAT sites. To determine if additional 

sequences in this region (other than the RBPJ and TEAD1 sites) were required for 

GRAF3 transcription, we also generated a reporter construct harboring mutations in 

both RBPJ sites and the TEAD1 site (Figure 3.5A). As seen in Figure 3.5B, mutation of 

both RBPJ binding sites led to an 80% reduction in DHS activity, while disruption of the 

TEAD1 site caused about a 50% decrease in activity. Mutation of all three binding sites 

did not decrease luciferase activity lower than that seen for the double RBPJ site 

mutant, indicating additional binding sites may exist or may reflex non-specific activity.  

Given that mutation of both RBPJ binding sites led to an 80% decrease in 

luciferase activity, we hypothesized that Notch regulated GRAF3 transcription. To date, 

four notch receptors (1-4) have been identified; however, Notch3 is preferentially 

expressed in differentiated arterial SMC and cleaved to generate NICD3, which 

activates Notch target genes (126). Thus, to begin to test our hypothesis that Notch 

signaling upregulates GRAF3 transcription, we co-transfected a flag-NICD3 expression 

construct with the full-length DHS in 10T1/2 cells. NICD3 increased GRAF3 DHS 

activity by 6-fold, which was significantly diminished by mutation of both RPBJ binding 

sites (Figure 3.6A). Both endothelial and vascular SMC express the ligand Jagged-1, 

which binds to the Notch receptor (131). Thus, as another way to activate the Notch 

pathway, we seeded HuSMC transfected with pGL3-DHS luciferase constructs on 

recombinant Jagged-1 ligand. Activation of Notch by Jagged-1 increased DHS 

transcriptional activity by 2-fold (Figure 3.6B). Third, treatment with the gamma-

secretase inhibitor, DAPT, which prevents NICD cleavage and thus inhibits Notch,  
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Figure 3.4. The core DHS regulatory region binds RBPJ and TEAD1. A) TEAD1, 
RBPJ, and NICD3 were affinity purified from HuSMC nuclear lysates with 100 bp biotin-
tagged oligonucleotides linked to streptavidin beads. B) 20 bp probes containing the 
conserved RBPJ site were radiolabeled with P32 and incubated with HuSMC nuclear 
extracts. C) TEAD1 and RBPJ chromatin immunoprecipitation (ChIP) samples were 
subjected to targeted PCR using 300 bp primer sets spanning the GRAF3 DHS.  
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Figure 3.5. RBPJ and TEAD1 binding sites are required for GRAF3 transcription. 
A) RBPJ and TEAD1 binding sites within the full-length DHS were mutated using site-
directed mutagenesis. B) Constructs were transfected into HuBrSMC and luciferase 
assays were performed 48 hours later. Results are presented as % activity relative to 
the DHS2T-pGL3 construct. *p<0.05 compared to wild-type pGL3-DHS (student’s two-
tailed t-test).  
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significantly reduced DHS luciferase activity but not the activity of the minimal TK 

negative control promoter that does not harbor RBPJ binding sites (Figure 3.6C). 

Notably, there was no difference in response to Notch perturbation between C and T 

alleles, which supports our gel shift experiments indicating that the presence of SRF 

does not affect RBPJ binding, nor does Notch activate gene expression in an SRF-

dependent manner.   

Endogenous GRAF3 expression in SMC is regulated by RBPJ and TEAD1.  

Based on our observation that RBPJ binding was critical for DHS activity and that 

the Notch pathway significantly upregulated GRAF3 transcription, we hypothesized that 

Notch/RBPJ would also be required for endogenous GRAF3 expression. We first tested 

this in vitro by plating human aortic SMC (HuAoSMC) on Jagged-1 ligand, as described 

above. As demonstrated in Figure 3.7A, GRAF3 expression was upregulated by Notch 

activation nearly 2-fold after 24 hours of stimulation with Jagged-1. To provide direct 

evidence that RBPJ was essential for GRAF3 expression in vivo, we crossed mice 

harboring an RBPJ floxed allele (RBPJf/f) to SM-MHCcreERT2 mice that express a 

tamoxifen-inducible Cre driven by the smooth muscle-myosin heavy chain (SM-MHC) 

promoter (104). Upon injection with tamoxifen, Cre-recombinase translocates to the 

nucleus where it excises the RBPJ allele, which is flanked by LoxP sites, only in cells 

that express RBPJ and Cre. Because SM-MHC is a smooth muscle-specific promoter, 

RBPJ is selectively deleted from Cre-expressing SMCs. As seen in Figure 3.7B, 

tamoxifen injection reduced RBPJ expression by over half and completely abolished 

GRAF3 expression compared to mice injected with corn oil. Our promoter data 

suggested that TEAD1 regulated GRAF3 expression. Thus, to test if this was the case, 

we used siRNA-mediated knockdown of TEAD1 in HuBrSMC. As shown in Figure 3.8A,  
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Figure 3.6. GRAF3 transcription is regulated by Notch signaling. A) Flag-NICD3 
was co-expressed with pGL3-wildtype DHS or pGL3-DHS with mutated RBPJ sites. B) 
HuBrSMC were transfected with DHS-C or DHS-T luciferase constructs and then 
seeded onto recombinant negative control or jagged-1 protein. C) HuBrSMC were 
transfected with luciferase plasmids and then treated with DAPT for 16 hours. *p<0.05 
compared to pGL3-RBPJ 1+2 mut and pGL3-TEAD1 mut (top); p<0.05 compared to 
negative control or vehicle (bottom).  
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knockdown of TEAD1 reduced GRAF3 expression by half. 

Cooperativity between RBPJ and TEAD1. 

It is accepted that transcription factor occupancy at promoters and enhancers 

can cooperatively regulate binding of other proteins (44). Given the proximity of the 

TEAD1 and RBPJ binding sites in the conserved DHS, we hypothesized that the two 

transcription factors may associate, and, perhaps, influence binding of each other. First, 

in order to determine if TEAD1 and RBPJ interacted, we carried out a co-

immunoprecipitation in HuBrSMC nuclear extracts. Indeed, we were able to detect 

significant interaction between TEAD1 and RBPJ (Figure 3.8B). While this suggests 

physical interaction between the two transcription factors, it does not address if the two 

proteins are localized on the same DNA strand, as would be expected if the two were 

participating in a cooperative interaction. Thus, to directly test if the two proteins 

occupied the same DNA fragment, we performed Re-ChIP assays. ChIP using an RBPJ 

antibody incubated with TEAD1 ChIP’ed DNA revealed significant enrichment of RBPJ 

binding the same sequences to which TEAD1 was bound compared to an IgG negative 

control antibody (Figure 3.8C). We hypothesized that TEAD1 facilitated RBPJ, and, 

perhaps, Notch-dependent activation of GRAF3 transcription. To examine this 

possibility, we overexpressed flag-NICD3 with wildtype DHS- or with the DHS 

containing a mutant TEAD1 binding site-luciferase construct in 10T1/2 cells. 

Interestingly, TEAD1 binding was required for transactivation of DHS luciferase activity, 

strongly suggesting that TEAD1 enhances RBPJ binding to the GRAF3 DHS (Figure 

3.8D). 
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Figure 3.7. RBPJ/Notch is required for GRAF3 expression. A) HuSMC were plated 
on recombinant Jagged and GRAF3 expression was measured 24 hours later. B) SM-
MHC Cre mice were crossed to RBPJ floxed/floxed mice to generate smooth muscle-
specific deletion of RBPJ. GRAF3 was measured in aorta and bronchi protein lysates. 
*p<0.01 (student’s two-tailed t-test).  
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The long non-coding RNA, AK124326, inhibits GRAF3 expression. 

 We sought to identify additional transcription mechanisms controlling GRAF3 

expression. The long non-coding RNA, AK124326, is transcribed opposite to the 

GRAF3 gene and overlaps with the GRAF3 transcription start site (TSS) (Figure 3.9A). 

LncRNAs can affect transcription either in trans or in cis (213). Typically, in cis lncRNAs 

have some degree of overlap with their target gene, as is the case for AK124326. Thus, 

we hypothesized that AK124326 affected GRAF3 expression by competing with 

essential components of GRAF3’s transcriptional machinery, such as RNA Pol II and 

specific transcription factors. To first determine if AK124326 was expressed in 

HuBrSMC, we designed primers that spanned the predicted first exon of this lncRNA. 

AK124326 expression was moderately low in SMC, but was increased upon serum 

starvation (data not shown). To test if AK124326 played a role in regulating GRAF3 

expression, we designed a set of siRNAs to knockdown AK124326. As shown in Figure 

3.9B, this siRNA set led to about a 60% reduction in AK124326 mRNA levels in 

HuBrSMC. We noticed variable knockdown efficiency of AK124326 and therefore used 

only SMC in which knockdown efficiency of mRNA was at least 50%. AK124326 

knockdown resulted in about a 2-fold increase in GRAF3 expression, suggesting a 

repressive role for this lncRNA (Figure 3.9C). AK124326 overlaps with the first exon and 

TSS of GRAF3 and is transcribed opposite of the GRAF3 gene. Therefore, we 

examined the possibility that AK124326 functions in cis by inhibiting RNA polymerase II 

(RNA Pol II) and transcription factor binding to the GRAF3 promoter, thereby interfering 

with GRAF3 transcription. To address this question, we performed ChIP assays for RNA 

Pol II and H3K9Ac, which are features of active transcription, in siControl and 

siAK124326-treated HuBrSMC. We tested RNA Pol II and H3K9Ac enrichment at the  
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Figure 3.8. TEAD1 is required for GRAF3 expression. A) HuBrSMC were transfected 
with TEAD1 siRNA or control siRNA for 72 hours. GRAF3 expression was measured by 
TaqMan real-time PCR. B) Flag-NICD3 was co-expressed with pGL3-wildtype DHS or 
pGL3-DHS containing mutated TEAD1 site. C) TEAD1 was immunoprecipitated from 
HuBrSMC nuclear extracts and probed for RBPJ by SDS-PAGE Western blotting. D) 
TEAD1 ChIP samples were subjected to Re-ChIP for RBPJ, and Re-ChIP DNA was 
used in downstream targeted PCR with primers spanning the GRAF3 DHS. *p<0.01 
(student’s two-tailed t-test).  
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GRAF3 TSS and at a SMC-specific DHS in the GRAF3 4th intron, which exhibited 

relatively high transcription activity in SMC (data not shown). As seen in Figure 3.9D, 

AK124326 knockdown increased binding of RNA Pol II and H3K9Ac enrichment at the 

TSS and SMC-specific DHS. This indicates that AK124326 is directly repressing 

GRAF3 transcription.  

mir-505-3p represses GRAF3 expression.  

 To continue our search for non-coding mechanisms that regulated GRAF3 

expression, we used the Target Scan algorithm on the UCSC genome browser to 

identify miRNAs predicted to target the 3’ UTR of the GRAF3 gene. One conserved 

miRNA, mir-505-3p, was predicted with high confidence to target the GRAF3 3’ UTR 

(Figure 3.10A, B). Accordingly, we hypothesized that mir-505-3p would inhibit GRAF3 

expression. To test this, we transfected a mir-505-3p mimetic into HuBrSMC and 

measured GRAF3 expression by TaqMan qRT-PCR. Interestingly, mir-505-3p reduced 

endogenous GRAF3 message by approximately 25% compared to the negative control 

mimetic (Figure 3.10C). Because the predominant mechanisms underlying gene 

silencing by miRNAs is via 3’ UTR targeting and mRNA destabilization, we first 

examined whether the 3’ UTR of GRAF3 could enhance the message stability. As such, 

we cloned the 1.2 kb distal (3’) most portion of the GRAF3 3’ UTR downstream of 

luciferase in the promoterless pGL3 vector and then transfected this construct into 

HuBrSMC. As seen in Figure 3.10D, the GRAF3 3’ UTR increased luciferase by 

approximately 30-fold over empty vector, indicating that this region functions as a robust 

stabilizer of the mature GRAF3 transcript. These data suggest that targeting of the 

GRAF3 3’UTR by mir-505 post-transcriptionally represses relative levels of GRAF3 

message in SMC.  
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Figure 3.9. The LNC RNA AK124326 negatively regulates GRAF3 expression. A) 
HuBrSMC were transfected with control siRNA or siRNA targeting siAK124326 LNC 
RNA for 24 or 48 hrs. B) GRAF3 expression was measured by TaqMan qRT-PCR 48 
hours after AK124326 knockdown. C) Control and AK124326 knockdown HuBrSMC 
were subjected to H3K9Ac and RNAPolII ChIP, and ChIP’ed DNA was subjected to 
downstsream PCR using primers to the GRAF3 transcription start site (TSS) or SMC 
specific DHS.  
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Figure 3.10. mir-505-3p suppresses GRAF3 expression. A, B) Diagram of mir-505-
3p conservation and alignment with the GRAF3 (TMEM133) 3’ UTR. C) mir-505-3p 
overexpression in HuBrSMC for 48 hrs. decreased GRAF3 expression relative to a 
negative control non-targeting mir. D) A 1.2Kb extension of the GRAF3 3’ UTR was 
cloned into the pGL3 basic vector and transfected into HuBrSMC.  
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Discussion 

 We previously demonstrated that the smooth muscle-specific Rho-GAP GRAF3 

was required for blood pressure regulation and that the rs604723 minor allele, located in 

the first intron of GRAF3, decreased hypertensive risk by increasing GRAF3 expression 

(219, 273). In the current study, we have continued to identify transcription mechanisms 

that regulate GRAF3 expression and provide strong evidence that RBPJ and TEAD1, in 

addition to SRF, converge at the blood pressure-associated regulatory region to control 

GRAF3 expression.  

  Our previous work showed that GRAF3 expression was regulated in an SRF-

dependent manner. Accordingly, we propose that RBPJ, TEAD1, and SRF are essential 

transcriptional regulators of smooth muscle differentiation. This hypothesis has in part 

stemmed from our observation that CACCC and CArG elements cluster in DNase 

Hypersensitive Sites of smooth muscle-specific genes and previous studies that 

demonstrated interaction between SRF and TEAD1 (unpublished data, 144). The 

significance of this enrichment has yet to be determined, but it is likely that the co-

occurrence of these three motifs mark key regulatory regions in smooth muscle-specific 

genes important for their transcription. It will be interesting to determine if expression of 

RBPJ, TEAD1, and SRF altogether mark a specific SMC lineage and/or if 

overexpression of these factors is sufficient to induce SMC differentiation from an 

undifferentiated precursor cell.  

Our study indicates that TEAD1 and its binding MCAT sequence (CATTCCT) are 

required for GRAF3 expression in SMCs. These findings are in excellent agreement 

with previous data demonstrating that the MCAT element is necessary for endogenous 

expression of other smooth muscle-specific genes (142, 143). However, as these other 
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studies suggested, yet-to-be-identified transcription mechanisms cooperate with TEAD1 

/MCAT to drive cell type-specific gene expression during different developmental 

windows. One such mechanism identified in the present study was the ability of the 

MCAT motif to regulate Notch-dependent GRAF3 transcription. It is highly likely that this 

effect was due to the inability of Notch to transactivate the MCAT mutant DHS, rather 

than a secondary effect of the mutation abolishing all promoter activity since there was 

still 50% remaining luciferase activity in the mutant compared to wild-type DHS in the 

absence of Notch. Importantly, Notch inhibition with DAPT did not affect upstream YAP 

localization or phosphorylation in SMCs, indicating that RBPJ and TEAD1 cooperativity 

occurs very locally at the GRAF3 DHS. Given the interaction between RBPJ and 

TEAD1 as well as the enrichment of RBPJ at TEAD1-bound DNA, an attractive 

hypothesis is that TEAD1 occupancy at an MCAT motif regulates RBPJ binding to its 

adjacent promoter-enhancer region. It will be critical to test this hypothesis in the 

context of other smooth muscle-specific gene promoters that are enriched for TEAD1 

and RBPJ binding sites.  

GRAF3 expression is regulated by a complex negative feedback mechanism, 

whereby RhoA activity increases the expression of GRAF3, which ultimately inhibits 

RhoA (273). In hypertension, SMCs are subjected to significant cell stretch, which 

increases RhoA activity. In response to this, MRTFs translocate into the nucleus to 

increase GRAF3 expression by binding to SRF, ultimately limiting RhoA activation (180-

182). Interestingly, in response to endothelial cell stretch, the Hippo effectors YAP and 

TAZ translocate into the nucleus to activate gene expression, similar to the MRTFs 

(274). Thus, as is the case for MRTF/SRF-dependent transcription, increased RhoA 

signaling during hypertension may increase the association between YAP/TAZ with 
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TEAD1 to increase GRAF3 expression and consequently limit RhoA activity. Although 

the rs604723 SNP did not seem to influence RBPJ binding or Notch-dependent GRAF3 

transcription, whether or not the presence of SRF bound to the minor T-allele affects 

TEAD1 DNA binding is still undetermined. This is an attractive hypothesis since 

previous studies indicate that SRF and TEAD1 physically interact (144). In this model, 

increased cell stretch may synergistically enhance GRAF3 expression via a RhoA-SRF-

TEAD1-dependent mechanism. Future studies will examine this fascinating possibility.  

 Tight control of GRAF3 expression is a key mechanism regulating blood pressure 

(219). Thus, we hypothesized that higher order transcription mechanisms may fine tune 

GRAF3 expression. Transcriptional control of gene expression is highly complex and 

involves not only transcription factors, as described above, but also non-coding 

mechanisms of gene regulation. The long non-coding RNA, AK124326, functions in cis 

to decrease GRAF3 expression by preventing RNA Pol II from binding to the TSS. 

Interestingly, a similar effect was observed when we analyzed RNA Pol II enrichment at 

a downstream smooth muscle-specific DHS within the GRAF3 fourth intron, suggesting 

that AK124326 sponges RNA Pol II as well as other transcription factors from these 

regulatory regions. Another intriguing possibility is that this long non-coding RNA 

influences complex chromatin interactions between the GRAF3 TSS and downstream 

enhancer regions. Mir-505-3p also significantly decreased GRAF3 expression. 

Interestingly, mir-505-3p was detected at much higher levels in the plasma of 

hypertensive patients than in healthy controls, suggesting it plays a role in blood 

pressure regulation (275). The authors of this study argued that mir-505’s effects on 

blood pressure were mediated by its ability to silence the FGF18 gene thereby affecting 

endothelial function. Although endothelial dysfunction has been reported in 
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hypertension, the authors disregard effects on other cell types, such as SMCs, which 

have a direct role in the pathogenesis of hypertension. We propose that mir-505-3p 

targets the GRAF3 3’ UTR to reduce GRAF3 expression, thereby increasing RhoA 

activity, SMC contractility, vascular tone, and blood pressure.  
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CHAPTER 4: IDENTIFICATION OF MRTF-A POST-TRANSLATIONAL 
MODIFICATIONS AND BINDING PARTNERS  

 
Overview  

 Tight control over myocardin-related transcription factor (MRTF-A/B) activity is 

essential for proper regulation of smooth muscle differentiation. The goal of the current 

study was to identify novel mechanisms regulating MRTF-A function. To accomplish 

this, we used a mass spectrometry-based approach to identify novel MRTF-A binding 

partners and post-translational modifications. We identified the smooth muscle-specific 

histone lysine methyltransferase PRDM6 as an MRTF-A interacting protein. MRTF-A 

physically interacted with PRDM6 in co-immunoprecipitation and far western assays. 

Importantly, knockdown of PRDM6 significantly reduced expression of smooth muscle-

specific genes, including SMA, SM22, calponin, and SM-MHC (p<0.05). Furthermore, 

MRTF-A was significantly methylated in vivo at its N-terminus. After testing several 

candidate protein lysine methyltransferases (PKMTs) in vitro, we determined that 

SET7/9 and SMDY2 methylated MRTF-A. Both PKMTs also methylated MRTF-A in 

vivo; however, only SMYD2 interacted with MRTF-A. Interestingly, SMYD2 methylated 

MRTF-A at K27, which is located within the nuclear localization sequence in MRTF’s N-

terminal RPEL domain, and overexpression of SMYD2 inhibited MRTF-A nuclear 

localization and MRTF-dependent SMC promoter activity. These studies present novel 

evidence that MRTF-A is controlled by SMYD2-mediated methylation. Furthermore, our 

identification of the MRTF-A interactome in SMC will be useful in identifying innovative 

mechanisms regulating SMC differentiation.  
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Introduction 

 Smooth muscle cell (SMC) differentiation is regulated by a host of mechanical, 

genetic, and epigenetic cues, all of which exert transcriptional control over SMC-specific 

genes (29). Differentiated SMCs must express various contractile markers in order to 

carry our important functions throughout development and in the healthy adult blood 

vessel. Intriguingly, SMCs are unlike other cells in that they do not terminally 

differentiate and can revert to immature gene programs. This so called phenotypic 

switching involves the downregulation of contractile genes and upregulation of 

proliferative genes in the SMC, and is a hallmark of different vascular diseases (19). 

SMC gene transcription is largely regulated by serum response factor (SRF) and the 

myocardin family of transcription factors (MRTF-A and MRTF-B) (63, 71, 79). SRF binds 

to CArG elements in the promoters of SMC-specific genes. While SRF is a strong 

activator of smooth muscle gene transcription, MRTF-A and MRTF-B are required for 

maximum transcriptional activation. Therefore, SMC differentiation is highly dependent 

on MRTF function and the processes that regulate it. Under basal conditions MRTF-A 

and -B are sequestered in the cytoplasm by monomeric G-actin. In response to various 

stimuli that activate the small GTPase RhoA, the MRTFs rapidly translocate into the 

nucleus to bind SRF and activate SRF/MRTF-dependent genes. Nuclear translocation 

of the MRTFs is tightly linked to actin dynamics. G-actin is bound to conserved RPEL 

domains in MRTF-A and -B. Interestingly, there are two basic nuclear localization 

sequences (NLS) embedded in the RPEL domains, which are both masked by G-actin 

(98, 99). RhoA activation mediates actin polymerization through its effectors, the 

formins (mDia1/2) and Rho kinase (ROCK) (106). Briefly, RhoA activation relieves the 

autoinhibited state of mDia1/2, thus allowing them to mediate F-actin capping, which is 
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required for actin filament assembly and polymerization. ROCK activates LIM kinase, 

which inhibits the actin destabilizer, cofilin. Thus, in response to RhoA-dependent actin 

polymerization, G-actin is freed from the MRTFs, thereby exposing the NLS and 

allowing MRTF nuclear translocation via an importin-based mechanism. Our lab was 

one of the first to show that nuclear translocation of the MRTFs was required for SMC 

differentiation (100). In agreement with these studies, the Mack lab provided strong 

evidence that sphingosine 1-phosphate (S1P), a strong activator RhoA, stimulates 

MRTF-A nuclear translocation (97). Furthermore, inhibition of RhoA signaling with the 

ROCK inhibitor Y-27632 prevents MRTF-A nuclear accumulation and expression of 

various SMC-specific genes, including smooth muscle alpha actin (SMA), transgelin 

(SM22), calponin (CNN), and smooth muscle-myosin heavy chain (SM-MHC) (100). 

 In addition to the N-terminal RPEL domains, the myocardin factors contain other 

conserved domains that are are important for their function. A highly basic region and 

glutamine-rich region are required for interaction of the myocardin factors with SRF. 

Myocardin, MRTF-A, and MRTF-B also share a SAP domain, which mediates chromatin 

and nuclear organization in other proteins (101). However, its function in the myocardin 

factors is less understood. All three members also contain a leucine zipper-like (LZ) 

domain and a transactivation domain (TAD). The LZ domain mediates homo- and 

heterodimerization between myocardin and the MRTFs. The TAD is required for 

transactivation of SRF-dependent genes. However, while there is almost complete 

sequence conservation between the TADs of MRTF-A and MRTF-B, there is only about 

30% homology between the TADs of MRTFs and myocardin, suggesting disparate 

modes of regulation between the MRTFs versus myocardin.  

 Several studies have identified post-translational modifications (PTMs) that 
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directly affect activity of myocardin and the MRTFs. Acetylation of myocardin by p300 

enhances its association with SRF, leading to upregulation of smooth muscle- and 

cardiac-specific genes (110). Myocardin is also phosphorylated by PKC, GSK3β, and 

ERK, all of which inhibit myocardin-dependent smooth muscle gene transcription (112, 

113). Early studies identified a critical ERK phosphorylation site within MRTF-A (S454), 

which inhibited MRTFs nuclear localization by promoting its interaction with cytoplasmic 

G-actin (115). More recent reports indicate that MRTF-A is phosphorylated at multiple 

other residues, each of which has varied effects on its nuclear localization (116). 

Interestingly, sumoylation of MRTF-A represses its ability to transactivate smooth 

muscle promoters, while SUMO activates myocardin at cardiac genes (117, 118). 

Clearly, tight post-translational regulation of the myocardin family of transcription factors 

is an important mechanism controlling smooth muscle gene expression in response to 

different stimuli and contexts.  

 MRTF-A is expressed in multiple cell types, while myocardin is expressed mainly 

in smooth and cardiac muscle. Currently, it is unknown why cells, despite expressing 

relatively high levels of MRTF-A, still differentiate into non-SMC and, to some extent, 

non-mesenchmal lineages. Here, we investigate the hypothesis that PKMTs limit the 

activity of MRTF-A in non-SMCs, thereby inhibiting smooth muscle differentiation in 

these other cell types. Furthermore, it is possible that yet-to-be identified PTMs and/or 

binding partners control SMC phenotypic switching that occurs in disease. The work 

herein lays the groundwork for future studies that may examine some of these points of 

MRTF-A regulation in various developmental and disease-associated contexts.   
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Materials and Methods 

Immunoprecipitations 

 For identification of binding partners, mouse SMCs were grown to 80% 

confluence and then scraped and lysed in RIPA buffer plus protease and phosphatase 

inhibitors. Approximately 2 mg of protein was incubated with protein G beads 

Dynabeads (Invitrogen) linked to anti-MRTF-A antibody (Santa Cruz) or rabbit IgG 

antibody to control for non-specific binding (Cell signaling) overnight at 4°C with 

rotation. The following day, immunoprecipitated reactions were washed extensively in 

RIPA buffer and then boiled in sample buffer. Eluted complexes were submitted directly 

for mass spectrometry analysis. For identification of MRTF-A post-translational 

modifications, COS-7 cells were transfected with Flag-MRTF-A or Flag-empty vector 

expression plasmids. After 48 hours, cells were scrapped and collected in RIPA buffer. 

Cleared cell lysates were incubated with Flag M2 magnetic beads (Sigma) overnight. 

Immunoprecipitated reactions were washed the following day, eluted from beads in 

sample buffer, and then run on an 8% SDS-PAGE gel, which was submitted to the 

mass spectrometry core at UNC.  

LC/MS/MS analysis 

 For the endogenous MRTF-A IP experiment, samples underwent LC/MS/MS 

analysis on a nanoACQUITY-Orbitrap Velos. Samples were eluted over a 150 min. 

gradient from 1-40%, where mobile phase A was 0.1% formic acid and mobile phase B 

was acetonitrile with 0.1% formic acid. The top 8 most intense ions were chosen for 

HCD fragmentation. For Flag-tagged samples immunoprecipiated from COS-7 cells, gel 

bands were excised and the proteins were reduced, alkylated, and digested with trypsin. 

The peptides were extracted, lyophilized, and resuspended in 2% acetonitrile/98% 
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(0.1% formic acid). Samples were analyzed in duplicate using LC-MS/MS on a 

nanoACQUITY-Orbitrap Velos similar to above.  

GST pulldowns 

 GST pulldowns were performed as described previously. In brief, cells were 

lysed in RIPA buffer and incubated with fusion protein immobilized on GST beads for 2 

hours at 4C. Beads were washed with RIPA buffer and boiled in sample buffer for 5 

mintues to elute pulled down complexes. Samples were loaded on SDS-PAGE gels and 

analyzed by standard Western blotting.  

Far Western blotting  

 Flag-tagged proteins were immmunoprecipitated from COS-7 cells, then resolved 

by SDS-PAGE, transferred to nitrocellulose, and proteins were renatured according to 

previously established methods (276). Renatured proteins were incubated with GST-

PRDM6 recombinant protein diluted in blocking buffer. GST interacting proteins were 

detected using a homemade GST antibody.  

Cytochalasin D treatments 

 Cells were treated with 10 uM cytochalsin D for 30 minutes prior to 

immunoprecipitations. Once lysates were harvested, cytochalasin D was again added to 

the IP reaction at 1:1000 to prevent G-actin-MRTF binding.  

siRNA knockdowns 

 Rat aortic SMCs were plated in 6-well dishes approximately 100K cells/well the 

day prior to knockdowns. SMCs were treated with 80 nM PRDM6 or GFP non-targeting 

siRNA. RNA was collected 72 hours after knockdown using the RNeasy kit (Qiagen). 

RNA underwent first strand cDNA synthesis (Biorad), and approximately 20 ng cDNA 

was used in downstream qRT-PCR using SYBR green chemistry.  
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Immunofluorescence 

 10T1/2s were seeded at 17K/well in 4-well chamber slides the day before 

transfections. Cells were co-transfected with Flag-EV or Flag-SMYD2 and GFP-MRTF-

A plasmids. After 48 hours, cells were fixed in 4% paraformaldehyde, permeabilized in 

0.4% triton x-100 in PBS, and blocked in 20% goat serum/3% BSA. Cells were 

incubated with an anti-flag antibody (Santa Cruz) and an anti-rabbit 488-conjugated 

alexafluor secondary antibody. Cells were counterstained with DAPI in all experiments. 

Cells in multiple fields were counted.  

In vitro methyltransferase assays 

 In vitro methyltransferase assay were performed as previously described (192). 

In brief, recombinant proteins (Epicypher and abcam) were incubated with 2 uCi SAM-

H3 for 1 hour at 37C. Reactions were boiled for 5 minutes and resolved by SDS-PAGE. 

Gels were fixed, stained in coomassie, and incubated in EN3HANCE reagent 

(Amersham). Gels were dried for 2 hours and then exposed to autoradiography. For 

modified in vitro methyltransferase assays, GST-MRTF-A beads were incubated with 2 

uM cold SAM (NEB) for 2 hours with or without recombinant SMYD2 enyzme. Beads 

were washed in methylation buffer and incubated with cleared 10T1/2 cell lysate for 2 

hours. Immunprecipitated samples were washed and analyzed by SDS-PAGE Western 

blotting.  

In vivo methylation experiments 

 Endogenous MRTF-A or overexpressed flag-MRTF-A were immunoprecipitated 

from cells as described above and resolved by SDS-PAGE Western blotting using a 

mono-methyl-lysine antibody (Cell signaling).  
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Results 

Identification of SMC-specific MRTF-A binding partners  

 To begin to uncover novel mechanisms regulating SMC differentiation, we 

employed a mass spectrometry-based approach to identify MRTF-A binding partners. In 

brief, endogenous MRTF-A was immunoprecipitated from mouse SMCs using a 

commercial antibody, and purified complexes were submitted to the UNC Michael 

Hooker Proteomics Core for LC/MS/MS analysis. Identified binding partners are listed in 

Table 4.1. The peptide coverage of immunoprecipitated MRTF-A was 26.8%. Gene 

Ontology (GO) analysis was performed on the MRTF-A binding partners to highlight 

specific pathways and cell functions the identified proteins were involved in. Not 

surprisingly some of the most enriched classifications were transcriptional regulation, 

chromatin, and differentiation. Several interesting proteins belonging to these categories 

include the histone acetyltransferase, p300, which is a known MRTF-A interacting 

protein; SMC hinge domain 1, which is associated with transcriptional repression at 

specific gene loci; importin 9, which MRTF-A utilizes to enter the nucleus; and the 

histone arginine methyltransferase, CARM1. Interestingly, a number of RhoA/actin-

associated proteins were also identified, including the RhoA GEF, LARG. We were 

excited to identify the smooth muscle-specific histone methyltransferase, PRDM6. While 

little is known about this protein, studies indicate that PRDM6 inhibits SMC 

differentiation by associating with the H3K9-specific methyltransferase, G9a, and 

enhancing its repressive ability (278). Based on these reports as well as its highly 

selective expression in SMC, we chose to pursue PRDM6 further. 

Validation of PRDM6 as an MRTF-A binding partner 

 The high sensitivity gained from using mass spectrometry to identify binding  
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Table 4.1. MRTF-A binding partners in mouse SMC. MRTF-A was 
immunoprecipitated from mouse SMCs, and binding partners were identified by 
LS/MS/MS analysis. 
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Table 4.1 (continued). MRTF-A binding partners in mouse SMC. MRTF-A was 
immunoprecipitated from mouse SMCs, and binding partners were identified by 
LS/MS/MS analysis.  
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partners can lead to false positives and/or interactions that are not significantly  

meaningful. Thus, in order to validate PRDM6 as a bona fide binding partner of MRTF-

A, we used several approaches. First, we performed co-immunoprecipitation 

experiments in 10T1/2 cells overexpressing myc-PRDM6. In these experiments, myc-

PRDM6 was immunoprecipitated from cell lysates, and precipitated samples were 

analyzed by SDS-PAGE Western blotting. As seen in Figure 4.1A, an interaction was 

detected between endogenous MRTF-A and myc-PRDM6. As another measure of 

binding, we incubated GST-PRDM6 beads with 10T1/2 cell lysates and analyzed the 

purified complexes by Western blotting. In these experiments, MRTF-A was purified 

with GST-PRDM6 (Figure 4.1B). To begin to map the MRTF-A domains that mediated 

the interaction with PRDM6, we used a standard deletion MRTF-A series previously 

generated by our lab. A total of three MRTF-A constructs were used. The first fragment, 

which contained the first N-terminal 108 amino acid residues of MRTF-A, contained the 

RPEL domains that mediate the interaction with G-actin. The second fragment spanned 

residues 109-475 and contained the B1 basic domain, the Q-rich domain, and the SAP 

domain. Finally, the third fragment, which corresponded to residues 480-930, encoded 

the LZ and TAD. In order to determine which of these regions within MRTF-A interacted 

with PRDM6, and thus begin to understand how PRDM6 might be regulating MRTF, we 

performed additional co-immunoprecipitation experiments in which we overexpressed 

myc-PRDM6 with each of the flag-tagged MRTF-A fragments. As observed in Figure 

4.1C, PRDM6 interacted with the N-terminal 1-108 fragment and the central 109-475 

fragment. In separate experiments, we determined that PRDM6 could bind actin. Thus, 

to exclude the possibility that actin mediated the PRDM6-MRTF interaction, we treated 

COS-7 cells that were co-transfected with flag-MRTF-A and myc-PRDM6 as well as the 
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immunoprecipitation reactions with cytochalasin D. Cytochalasin D inhibits G-actin-

MRTF binding. Thus, abolishing this interaction would also be expected to prevent 

PRDM6 from co-precipitating with MRTF-A if G-actin was bridging the two proteins. As 

shown in Figure 4.2A, cytochalasin D reduced the levels of G-actin that bound to MRTF-

A, but did not affect PRDM6 binding to full-length MRTF-A. To further test whether actin 

binding to the RPEL domain mediated the interaction with PRDM6 with this fragment, 

we performed co-immunoprecipitation with myc-PRDM6 and the flag-MRTF-A 1-108 

fragment. Immunprecipitation reactions were treated with cytochalasin D. As seen in 

Figure 4.2B, cytochalsin D completely inhibited the interaction between PRDM6 and the 

RPEL domain, indicating that PRDM6 was not directly binding to this region. In 

agreement with these experiments, PRDM6 was still able to interact with a flag-MRTF-A 

construct lacking the RPEL domain (Figure 4.2C). These experiments indicated that 

actin was not required for interaction between the two proteins, suggesting that PRDM6 

was directly binding to MRTF-A at the 109-475 region. To test this hypothesis, we 

analyzed the PRDM6-MRTF interaction by Far Western. In these experiments, purified 

bait proteins are resolved by standard SDS-PAGE and transferred to a membrane. 

Denatured proteins are renatured, blocked, incubated with a recombinant protein probe, 

and then analyzed by standard Western blotting. In our particular experiment, we 

subjected immunoprecipitated full-length MRTF-A as well as the different MRTF-A 

fragments to Far Western using a GST-PRDM6 probe. As observed in Figure 4.3, using 

an anti-GST antibody, we detected direct binding of the GST-PRDM6 probe to only full-

length MRTF-A as well as the 109-475 fragment, which contains the SRF binding and 

SAP domains.  
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Figure 4.1. The N-terminal RPEL domains and basic/Q-rich/SAP region of MRTF-A 
mediate its interaction with PRDM6. A) 10T1/2s were transfected with myc-PRDM6 
or myc-EV. Lysates were collected and underwent immunoprecipitation with a myc 
antibody. Immunoprecipitates were run on SDS-PAGE gel and probed for MRTF-A by 
Western blotting  B) Mouse SMC lysates were incubated with GST-PRDM6 or GST 
fusion proteins linked to beads. GST pulldown samples were resolved by SDS-PAGE 
and probed for MRTF-A. C) Lysates from COS cells transfected with myc-PRDM6 and 
different flag-MRTFA fragments were incubated with Flag M2 beads. IP samples were 
analyzed by Western blotting for myc.  
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Figure 4.2. Actin bridges MRTF-A and PRDM6 through MRTF’s N-terminal RPEL 
domains. A) COS cells transfected with flag-MRTFA and myc-PRDM6 were treated 
with Cytochalasin D, and lysates were incubated with Flag M2 beads. Samples were 
subjected to Western blotting for myc and β-actin. B) Same as in A) except flag-RPEL 
domain of MRTF-A was transfected with myc-PRDM6 instead of full length MRTF-A.  
C) GST-PRDM6 or GST fusion protein on beads were incubated with lysates from COS 
cells expressing either full length flag-MRTFA or flag-MRTFA lacking the N-terminal 
RPEL domains.      
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PRDM6 is required for SMC differentiation  

 One previous study indicated that PRDM6 repressed SMC differentiation (278). 

To determine if this was the case, we designed siRNAs to knockdown PRDM6 in rat 

aortic SMC and then measured expression of smooth muscle markers in this cell type. 

As seen in Figure 4.4, PRDM6 knockdown significantly reduced the relative expression 

levels of SMA, SM22, calponin, and SM-MHC by approximately 50%. These data are 

very different from reports by Davis et al., showing that PRDM6 knockdown increased 

expression of smooth muscle markers. Of note, this particular study did not assess 

expression levels of SMA, SM22, or calponin, but instead measured other markers.  

Identification of post-translational modifications on MRTF-A 

 It is clear that post-translational modifications play a major role in regulating 

protein function (109). Thus, we set out to identify novel PTMs on MRTF-A, 

hypothesizing that one or more of these would affect MRTF function and downstream 

smooth muscle gene expression. In the mass spectrometry experiment to identify novel 

MRTF-A binding partners in SMC, we found that MRTF-A was phosphorylated at 

Threonine 488 (T488). These data are in agreement with studies that also identified 

phosphorylation at T488 (115, 116). One limitation of PTM discovery by mass 

spectrometry is the low level of stoichiometry of modified to unmodified endogenous 

protein. To overcome this, we used an overexpression approach in mouse SMC and in 

COS-7 cells, which are routinely used for these types of experiments because they are 

readily transfectable and they express recombinant protein at very high levels, making 

them highly suitable for detecting PTMs by mass spectrometry. In each experiment, we 

transfected flag-MRTF-A or a flag-empty vector (to serve as a control for non-specific 

binding) and immunoprecipitated the flag-tagged protein 48 hours later. In the case of 
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Figure 4.3. PRDM6 interacts directly with the SRF-binding reigon of MRTF-A. Flag-
MRTF-A fragments were purified from cos cells and subjected to Far Western blotting 
using an anti-GST antibody.  
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Figure 4.4. PRDM6 is required for SMC differentiation. Rat aortic SMCs were treated 
with siRNAs targeted to PRDM6 or a control non-targeting siRNA for 72 hours. Smooth 
muscle marker gene expression was analyzed by qRT-PCR and normalized to GAPDH, 
*p<0.05.  
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the overexpression experiment in mouse SMCs, the entire immunoprecipitated mixture 

was submitted to the UNC Proteomics Core for LC/MS/MS analysis. However, 

immunoprecipitated samples from COS-7 cells were resolved by SDS-PAGE, and the 

flag-MRTF-A bands were excised and submitted for mass spectrometry analysis. 

Several findings from this experiment are worth noting. First, MRTF-A 

immunoprecipitated from mouse SMCs was phosphorylated at Serine 492 (S492), 

which was one of the phosphorylation sites confirmed in previous reports (115). 

Second, phosphorylation was detected with high confidence on a peptide containing 

Serine 810, Tyrosine 817, and Threonine 822, indicating that one of these residues was 

phosphorylated. Finally, COS-7 overexpressed MRTF-A was significantly 

phosphorylated and methylated. Many of the phosphorylation sites identified in this 

experiment were corroborated by recent data from the Treisman Lab showing that 

phosphorylation of over 25 different serine and threonine residues differentially 

controlled MRTF-A localization (116). Given this already published data, we chose not 

to assess the contribution of phosphorylation on MRTF-A activity any further. We were 

surprised to find that MRTF-A was substantially methylated at multiple lysines and 

arginines. Because PTMs, including methylation, can result from byproducts of the 

mass spectrometry analysis procedure, we first tested whether endogenous MRTF-A 

was methylated in vivo. From previous experiments, we had already established a 

protocol for efficiently immunoprecipitating endogenous MRTF-A from SMCs, thereby 

allowing us to examine the methylation status of MRTF-A in vivo. Immunoprecipitated 

MRTF-A was subjected to SDS-PAGE Western using a specific antibody to mono-

methyllysine. As seen in Figure 4.5A, MRTF-A was methylated in SMCs. Our mass 

spectrometry determinations indicated that lysine methylation occurred throughout 
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MRTF-A. To narrow our search for functional methyllysines, we used our in vivo 

methylation IP protocol to detect regions of MRTF-A that were methylated in cells. Flag-

MRTF-A fragments were immunoprecipitated from COS-7 cells and subjected to 

Western blotting with the anti-methyllsyine antibody. As shown in Figure 4.5B, 

methylation was detected on fragments 1-108 and fragments 109-475.  

Identification of lysine methyltransferases that methylate MRTF-A 

 Numerous studies have demonstrated that lysine methylation of non-histone 

proteins regulates their activity, stability, and interaction with other proteins (179-181, 

192). Interestingly, many common SET-containing protein lysine methyltransferases 

(PKMTs) that were once thought to methylate only histones have been implicated in 

methylating non-histone proteins. Importantly, several PKMTs have known consensus 

sites in the targets they recognize. Thus, we scanned the N-terminal and central regions 

of MRTF-A for known consensus sites recognized by PKMTs. Of note, we identified 

several SMYD2 sites, one G9a site, and two SET7/9 sites (Figure 4.6). We also 

hypothesized that PRDM6, which was identified as an MRTF-A binding partners in 

SMCs, may methylate MRTF-A. We next screened each of these predicted PKMTs in 

an in vitro methyltransferase assay with GST-N-terminal MRTF-A (1-260). As seen in 

Figure 4.7A, SMYD2 and SET7/9 methylated MRTF-A in vitro. In support of these data, 

SMDY2 increased methylation of MRTF-A in vivo as did SET7/9 (Figure 4.7B, C). Of 

note, basal MRTF-A methylation was reduced by a catalytically inactive SET7/9 H297A 

mutant construct, implying this mutant functioned as a dominant negative in this 

experiment. Given that our rationale for analyzing SMYD2 and SET7/9 was based on 

our identification of their conserved target sites within MRTF-A, we expected mutation of 

lysine (K) to arginine (R) at each of the predicted sites to abolish SMYD2- and SET7/9- 
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Figure 4.5. MRTF-A is methylated in vivo. A) MRTF-A was immunoprecipitated in 
various SMC lines and probed for monomethyl lysine (MMK) to detect methylation on 
MRTF-A in vivo. B) Flag-MRTFA fragments were transfected into COS cells and then 
IP’d. Purified fragmented underwent Western blotting for MMK. 
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dependent methylation. To date, we have only performed mutational analysis for the 

SMYD2 target lysines. As shown in Figure 4.8A, out of four lysines that were in 

predicted SMYD2 target sites (282), K27 was the only site required for SMYD2-

dependent methylation of MRTF-A. In order to increase our sensitivity of MRTF-A 

methylation by SMYD2, we performed an in vitro methyltransferase assay with cold 

SAM and GST-N-terminal MRTF-A either with or without SMYD2 and then submitted 

the reactions for quantitative mass spectrometry analysis. These results were highly 

consistent with our data that K27 is the predominant SMYD2 methylation site, which 

was methylated nearly 12-fold over the unmethylated peptide obtained from the in vitro 

reaction without SMYD2 (Figure 4.8B). Also consistent with our initial in vitro 

experiments, K60 was not methylated by SMYD2. Moreover, K237 was methylated by 

approximately 5-fold over the unmethylated peptide, indicating that our previous 

analysis of the K237R mutant may have underestimated the degree of methylation of 

this lysine. Further, SMYD2 overexpression increased MRTF-A methylation in vivo, 

which was prevented by the K27R mutant in vivo (not shown). The observation that 

mutating K27 noticeably abolished methylation of MRTF-A by SMYD2 in vivo suggests 

that methyl-K27 is in high stoichiometry relative to unmethylated lysine 27.  

K27 is required for nuclear import of MRTF-A  

 K27 is located within the B2 region of MRTF-A’s RPEL domain, and previous 

studies using scanning alanine mutagenesis indicate that this location is essential for 

MRTF nuclear localization (99). To determine if K27 is required for nuclear import, we 

introduced a lysine to alanine mutation at K27 and transfected 10T1/2 cells with 

wildtype or K27A flag-MRTF-A. As shown in Figure 4.9A and B, the K27A MRTF-A 

mutant was constitutively cytoplasmic in nearly 80% of the cells, whereas wildtype flag- 
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Figure 4.6. Additional predicted methylation sites within MRTF-A. Multiple 
methyltransferase targets were present in the N-terminus of MRTF-A. These included 
SMYD2, G9a, and SSET7/9 sites (substrate lysines in red).  
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Figure 4.7. SMYD2 and SET7/9 methylate MRTF-A in vitro and in vivo. A) In vitro 
methyltransferase assay was performed with 2 ug of each methyltransferase, 2 ug of 
GST-N.-term. MRTF-A, and 2 uCi of SAM-3H. Reactions were allowed to incubate at 37 
degrees C for 1 hour after which reaction were run on an SDS-PAGE. The gel was dried 
and exposed to autoradiography. B) Myc-MRTF-A was co-expressed with SMYD2 or 
SET7/9 (C) in COS-7 cells. Myc-MRTF-A was immunoprecipitated and analyzed by 
Western blotting using a mono-methyl-lysine antibody.  
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Figure 4.8. SMYD2 methylates MRTF-A at K27. A) In vitro methyltransferase assays 
were performed with SMYD2 and K>R mutants for eadh of the predicted SMYD2-target 
sites. B) In vitro methyltransferase assay performed with SMYD2, GST-N.term MRTFA, 
and cold SAM. Reactions were submitted to mass spectrometry for quantitiatve 
identification of methylated lysines.  
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MRTF-A was purely cytoplasmic in only 10% of the 10T1/2s. These data provide 

compelling evidence that K27 is absolutely required for MRTF-A nuclear localization 

and support our hypothesis that methylation of K27 regulates MRTF-A localization.   

SMYD2 interacts with MRTF-A 

 Because histone modifiers can form stable complexes with transcription factors, 

as is the case for the H3K9-specific demethylase Jmj1a and the myocardin factors, we 

pursued the idea that SMYD2 and MRTF-A might interact. Flag-SMYD2 and myc-

MRTF-A were co-expressed in COS-7 cells, and MRTF-A was immunoprecipitated 

using an anti-myc antibody. Because our data suggested that SET7/9 strongly 

methylates MRTF-A, we also performed co-immunoprecipitation experiments with Flag-

SET7/9 and myc-MRTF-A. As seen in Figure 4.10, SMYD2 and MRTF-A interacted 

strongly, further supporting the hypothesis that SMYD2 regulates MRTF-A function. Of 

note, SET7/9 did not interact with MRTF-A. This later observation does not diminish our 

finding that SET7/9 methylates MRTF-A, since methylation is a transient event that 

does not require a stable interaction between the PKMT and substrate.  

SMYD2 inhibits MRTF-A nuclear localization  

 Several lines of evidence indicated that SMYD2 might affect MRTF-A nuclear 

import. First, SMYD2 is located almost exclusively in the cytoplasm. Second, SMYD2 

methylates MRTF-A at K27, which is located within a highly conserved NLS. Third, the 

K27A MRTF-A mutant was constitutively cytoplasmic. To begin to examine the 

interesting possibility that SMYD2 regulates MRTF-A nuclear entry, we overexpressed 

GFP-MRTF-A with flag-empty vector or with flag-SMYD2 in 10T1/2s for 24 hours, which 

was followed by 16 hours of overnight serum starvation. In some experiments, after 

serum starvation 10T1/2s were stimulated with 10% serum for one hour to induce 
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Figure 4.9. K27 is essential for MRTF-A nuclear import. A) flag-MRTFA wild-type 
and K27A were transfecged into 10T1/2s, incubated, with flag antibody, and 
counterstained with DAPI. B) Quantitation of panel A results. Four different fields were 
counted in 4-well chamber slides.  
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Figure 4.10. SMYD2 interacts with MRTF-A. Co-immunoprecipiation in COS-7 cell 
lysates transfected with myc-MRTF-A and flag-SET7/9 or flag-SMYD2 plasmids. IP’s 
were perfomed with a flag antibody (Sigma) and purified complexes were analyzed via 
standard Western blotting using a myc antibody to detect binding.   
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nuclear localization of GFP-MRTF-A. As shown in Figure 4.11A, in the serum starved 

10T1/2s, GFP-MRTF-A was nuclear in 15% of cells co-transfected with the empty 

vector control. However, GFP-MRTF-A was nuclear in only 7% of cells co-transfected 

with flag-SMYD2. In the 10% serum stimulated condition, the results were even more 

striking. GFP-MRTF-A was nuclear in 72% of control cells but only 40% in cells 

expressing flag-SMYD2. MRTF-A enters the nucleus via an importin-dependent 

mechanism. Very briefly, the B1 and B2 regions within MRTF’s RPEL domain bind the 

importin-α/β heterodimer (99). Therefore, we hypothesized methyl-K27 would have a 

lower affinity for importin compared to unmethylated-MRTF-A. To investigate whether 

this was the case, we developed an assay to differentially test methylated versus 

unmethylated MRTF-A binding. In short, equal amounts of beads containing GST-N-

term MRTF-A, which includes the RPEL, B1, and B2 domains, was subjected to the 

cold in vitro methyltransferase assay with and without recombinant SMYD2. After 2 

hours of in vitro methylation, beads were used to purify importin-β from 10T1/2 cell 

lysates. As indicated in Figure 4.11B, methylated (+SMYD2) MRTF-A bound 

significantly less importin-β, which was consistent with our data that SMYD2-mediated 

methylation inhibits MRTF-A nuclear localization.  

SMYD2 inhibits MRTF-A dependent smooth muscle transcription  

 Nuclear localization of the MRTFs strongly upregulates smooth muscle-specific 

gene transcription (100). Indeed, inhibiting MRTF-A nuclear entry with pharmacologic 

agents such as leptomycin B, which prevents G-actin dissociation from the MRTFs, 

dramatically reduces expression of SMC markers. Based on these well-supported 

pieces of data in conjunction with our striking evidence that SMYD2-mediated 

methylation of MRTF-A at K27 inhibits its localization, we hypothesized that SMYD2 
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would negatively regulate MRTF-dependent smooth muscle transcription. Indeed, in 

luciferase assays SMYD2 inhibited relative MRTF-A transactivation of the smooth 

muscle alpha-actin promoter by nearly half (Figure 4.12).  

Actin dynamics regulate MRTF-A band shifts  

 Prior Western blot data from our lab indicated that MRTF-A was present in two 

fractions: lower and higher molecular weight species. Interestingly, the higher molecular 

weight MRTF-A fraction was induced with serum stimulation. Each fraction was 

separated from the other by approximately 10 kD. Studies by Prywes et al. 

demonstrated similar size differences for MRTF-A, which were attributed to 

phosphorylation at three residues. Interestingly, these same phospho-residues were 

identified in our mass spectrometry experiments. We hypothesized that this band shift 

also resulted from additional PTMs. In separate experiments, we noticed that treatment 

of SMCs with cytochalasin D, which frees MRTF-A from G-actin, also induced a higher 

molecular weight fraction (Figure 4.13). While outside the scope of this dissertation, this 

data led us to pursue the idea that actin dynamics are intricately linked to MRTF-A 

modifications, especially methylation. This is a highly likely scenario given that K27 is 

located within the actin-binding RPEL domain. In support of this, we noticed that the 

K27R mutant led to a lower molecular weight species compared to wildtype MRTF-A, 

suggesting that methylation at K27 itself contributes to increased molecular weight 

and/or that methylation at this residue controls PTMs at other sites (data not shown).  
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Figure 4.11. SMYD2 inhibits MRTF-A nuclear localization. A) GFP-MRTFA was co-
expressed with flag-EV or flag-SMYD2 in 10T1/2s seeded in 4-well chamber slides. 
Cells were serum starved the day after transfections for approximately 16 hours and 
then left in SFM or stimulated with 10% serum. Separate fields were counted in all 
experiments (n=2). B) GST-MRTFA beads underwent methylation by SMYD2 (or 
without SMDY2 as an unmethylated negative control) and were then used to purify 
importin from 10T1/2 cell lysates.  
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Figure 4.12. SMYD2 inhibits MRTF-A-dependent promoter activity. 10T1/2s were 
co-transfected with a pGL3-SMA promoter construct, MRTF-A, and either EV or 
SMYD2. Luciferase assays were performed 48 hours later. Values are presented as 
fold-change over pGL3 EV plus MRTF-A (n=2).  
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Figure 4.13. Cytochalasin D treatment induced formation of the higher mobility 
MRTF-A species. 10T1/2s were treated for 1 hour with Cytochalasin D to inhibit the 
MRTF-A-G-actin interaction. Lysates were collected and analyzed by Western blotting 
using a commercial MRTF-A antibody (Santa Cruz).  

 -    +   
Cytochalasin D 

MRTF-A 



	 143  

Discussion  

 Here, we present several novel pieces of data. First, MRTF-A interacts with the 

histone lysine methyltransferase, PRDM6, and PRDM6 knockdown resulted in a 

significant decrease in smooth muscle-specific gene expression. Previous studies 

demonstrated that PRDM6 repressed SMC differentiation and promoted the expression 

of proliferative gene in primary SMCs, while we show the opposite (278). Thus, it is 

highly likely that PRMD6 exerts context-specific control over SMC gene transcription, 

which is a well-characterized phenomenon for chromatin remodelers. Interestingly, one 

polymorphism, rs13359291, within the human PRDM6 gene is linked to blood pressure 

(252). Based on its highly SMC-selective expression pattern and requirement for 

smooth muscle gene expression, we hypothesize that the PRDM6 blood pressure locus 

(defined by 14 SNPs in high linkage disequilibrium that are located in the second intron 

of PRDM6) alters blood pressure by affecting PRDM6 expression. In strong support of 

our hypothesis, the GTEx database indicates that the rs13359291 minor allele is 

associated with decreased PRDM6 expression. Importantly, each copy of the minor 

allele is correlated with a 0.57 mmHg increase in blood pressure. With all of this in mind, 

we hypothesize that lower PRDM6 expression leads to higher blood pressures. Studies 

by our lab have already shown that PRDM6 knockdown does not affect MLC 

phosphorylation. Since PRDM6 knockdown reduced SMC marker expression, one 

possible mechanism is that minor allele carriers have reduced smooth muscle markers, 

leading to vasculature that is more sensitive to phenotypic modulation. Of course, this 

hypothesis still needs to be tested. We have also begun to identify the SNP(s) that 

affect PRDM6 expression. As mentioned above, there are a total of 14 SNPs, several of 

which cluster around DNase Hypersensitive sites and conserved regions.  
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 An important remaining question is how PRDM6 affects SMC differentiation. Our 

initial hypothesis was that PRDM6 methylated MRTF-A; however, our data indicate that 

this is not the case. Rather, it is possible that PRDM6 is working with other 

methyltransferases such as G9a to methylate key histones at SMC-specific gene loci. 

Targeted H3K9me chromatin immunoprecipitation in control versus PRDM6 knockdown 

SMC will be critical for answering this question. Finally, coding mutations in PRDM6 

cause patent ductus arteriosus (PDA) (284, 285). Although PDA is thought to be caused 

by a decrease in smooth muscle contraction and/or SM marker gene expression during 

development, how exactly PRDM6 contributes is undetermined.  

 Second, we present strong evidence that SMYD2 and SET7/9 methylate MRTF-

A in vitro and in vivo. The SMYD family of lysine methyltransferases consists of five 

proteins (SMYD1-5) that contain highly conserved SET and MYND domains. The 

SMYDs are preferentially expressed in cardiac and skeletal muscle and have been 

shown to regulate myofiber assembly (283). While it is known that SMYD2 is highly 

expressed in cardiomyoctyes, to our knowledge, no other studies to date have 

examined SMYD2 expression in SMC. Importantly, SMYD2 methylates MRTF-A at K27, 

which is embedded within MRTF’s NLS. Interestingly, SMYD2 inhibited MRTF-A nuclear 

localization and MRTF-dependent transactivation of SM promoter activity in luciferase 

assays. It is currently unknown why non-SMC that, despite expressing SRF, and in the 

cases of cardiomyocytes, also myocardin and the MRTFs, fail to differentiate into SMC. 

One hypothesis of ours is that cell type-specific mechanisms repress the smooth 

muscle gene program. For example, SMYD2 is highly expressed in left ventricle 

(GTEx). Therefore, SMYD2 may inhibit MRTF-A nuclear localization in cardiomyocytes 

to inhibit SMC differentiation. To more directly address this, experiments are needed to 
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probe for SM markers in SMYD2-knockdown cardiomyocytes. Re-expression of SM-

specific genes after SMYD2 knockdown would support this interesting hypothesis.  

 One particularly observation is that while amino acid 27 is both evolutionarily 

conserved and conserved between MRTF-A and MRTF-B, amino acid 27 in myocardin 

is actually an arginine, which cannot be methylated. It is well-known that myocardin is 

nearly constitutively nuclear in SMC, while the MRTFs translocate in and out of the 

nucleus in response to various stimuli. Thus, the difference between K and R at this 

residue may explain in part why myocardin is more nuclear, especially coupled with the 

fact that myocardin’s affinity for importin is much higher than MRTF-A’s. Indeed, the 

K27R MRTF-A mutant exhibited increased affinity for importin. Additional experiments 

are needed to determine if the K27R mutant is more nuclear than wild-type MRTF-A as 

well as in the presence and absence of SMYD2. It is also important to note that in a 

mass spectrometry screen for SMYD2 methyl-substrates, K27 was identified in MRTF-

B, thus lending even greater confidence to our results. Furthermore, when comparing 

the sequences of all the identified SMYD2 substrates, the consensus sequence of a 

SMYD2 methylatable site was “KR”. Given that the KR motif is highly enriched in the 

NLS of other proteins, a very attractive hypothesis is that SMYD2-mediated methylation 

of lysines within NLS is a conserved mechanism to fine-tune nuclear localization in 

these other proteins. While this is a very broad-sweeping hypothesis that applies to 

lysine methylation of NLS contained within negative and positive regulators, additional 

investigation into this may yield fascinating results.  

 Post-translational modifications can affect other PTMs on nearby residues within 

the same molecule. For example, methylation of p53 by SET7/9 enhances its 

acetylation (286). Data from our studies and others indicates that MRTF-A is 
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phosphorylated at multiple serine and threonines (115, 116). Thus, it is possible that 

methylation of MRTF-A affects phosphorylation or vice versa. This is especially 

plausible given that the serum-inducible shift that represents MRTF-A phosphorylation 

seemed to be diminished in the K27R mutant.    

 Finally, while not fully explored in the current work work, SET7/9 strongly 

methylated MRTF-A. Our lab is currently making K to R mutations for the two SET7/9 

target sites within MRTF-A, K224 and K227, to directly test if these are in fact the 

methylatable lysines. SET7/9 methylation of the transcription factor YY1 increases its 

binding to p53, RAD1, and ABL1 promoters (192). Thus, it is plausible that SET7/9 may 

affect the transcription activity of MRTF-A. Interestingly, both K224 and K227 are 

located within the B1 region that mediates SRF binding. Importantly, a recent report of 

SET7/9 knockdown in mouse embryonic stem cells showed that SET7/9 was required 

for induction of SMC-specific genes including SMA, SM22, CNN1, and others (191). 

Although the authors suggested that SET7/9 modified SRF, they did not present 

convincing data to show this. Rather, SET7/9-mediated methylation of MRTF-A may 

enhance binding to SRF at CArGs within smooth muscle-specific genes, thereby 

upregulating SMC differentiation in ES cells. This is a highly novel and exciting 

hypothesis that our lab will address.  
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CHAPTER 5: CONCLUSIONS, PERSPECTIVES, AND FUTURE DIRECTIONS 

Pharmacological regulation of RhoA and Rho-dependent pathways  

Current standard of care  

Despite the importance of RhoA signaling in the development of hypertension, 

few treatments are currently available that target this signaling axis. However, some 

commonly used anti-hypertensives may interfere with RhoA signaling. For example, 

since RhoA-dependent regulation of vascular tone is a major contributor to AII-mediated 

increases in BP, the highly utilized class of anti-hypertensives that target AII (i.e. ACE 

inhibitors and AII receptor blockers) may exert some of their BP lowering effects by 

reducing RhoA activation (220, 246). Moreover, although used to treat high cholesterol, 

HMG-CoA reductase inhibitors such as simvastatin and atorvastatin also have anti-

hypertensive properties (247) and their BP lowering effects have been attributed to their 

ability to block RhoA signaling. RhoA is known to be modified by covalent attachment of 

a geranylgeranyl isoprenyl to a C-terminal Cys, and this modification (which is blocked 

by simvastatin treatment) is required for membrane localization and activation of RhoA 

(286).  

ROCK inhibitors  

While not yet included in standard of care treatment for hypertension, several 

pharmacologic agents have been developed for inhibiting Rho kinases. In general, 

kinases make good drug targets due to the relative ease of targeting specific molecules 

to the ATP-binding pockets of these enzymes. To date, most of the Rho kinase 



	 148  

inhibitors utilized in animal studies and clinical trials target the ATP-binding pockets of 

both ROCK isoforms (288-290). Although not clinically used in the United States, 

studies abroad provide compelling evidence for the use of this therapeutic approach for 

BP control. One particularly effective ROCK inhibitor, fasudil, is currently used in Japan 

to treat cerebral vasospasm and clinical trials determined that fasudil was also effective 

in decreasing peripheral vascular resistance in hypertensive patients (291).  

Despite the wide use of these pharmacologic agents in cells and animal disease 

models, neither fasudil nor Y-27632 exhibit suitable specificity for a therapeutic as they 

can inhibit the activity of several other kinases including PKC, PKA, and MLCK, at 

higher concentrations (292, 293). These compounds also suffer from having short half-

lives, which is a highly undesirable attribute of a drug designed to treat a longstanding 

disease (294). Thus, there is great need for development of additional potent, yet 

specific, ROCK inhibitors that can be safely used in patients (295). While a few such 

compounds have been developed recently with such attributes (296-300), whether any 

these compounds exhibit the necessary selectivity and pharmacogenetic profiles 

required for BP management in patients requires further study. Moving forward, given 

the importance of RhoGEFs and RhoGAPs in the control of SM contractility and BP, we 

believe that it will be possible to engineer clinically-relevant small molecule regulators of 

these enzymes that could be used to develop new and effective anti-hypertensive 

therapies.  

Future of anti-hypertensive therapy: Personalization of drug regimens  

Current anti-hypertensive therapy is often empirically based and involves multiple 

drug regimens (301, 302) – an approach that is moderately effective at best as it 

frequently contributes to unwanted side effects and intolerance or non-adherence to 
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medication. Accordingly, more effective and specific anti-hypertensive agents that inhibit 

targets very selectively are necessary. Moreover, based on the fact that BP is a highly 

variable trait among individuals, a better understanding of the genetic mechanisms 

regulating this disease is critical for a more personalized treatment plan for patients. 

Given the numerous regulatory and counter-regulatory mechanisms modulating the 

RhoA axis, this central axis provides an excellent opportunity for identifying genetic 

biomarkers that correlate with different levels of hypertensive risk and drug responses.  

Indeed, genetic variations in both upstream activators and downstream 

mediators of RhoA have been linked to BP regulation. Screening for such variants could 

potentially be used to tailor more effective individualized treatments. For example, one 

study showed that the BP lowering effects of the ACE inhibitors or the angiotensin 

receptor blockers were more pronounced in patients carying a GG genotype at the -391 

RGS2 (Regulators of G-protein signaling 2) locus when compared to responses in GC 

or CC genotype carriers, while no differences were observed in the responses to 

calcium channel antagonists (303). Although RGS2 is known to couple to ATR1, the 

underlying mechanism by which these polymorphisms lead to altered sensitivity is 

currently unknown. Another example is seen with the association between 

polymporphisms in the G-protein coupled receptor kinase 4 gene and reduced BP-

lowering effects of the b-blocker atenolol (304). Whether any of the aforementioned 

Rho-signaling SNPs influence specific responses to or bio-availability of anti-

hypertensive treatments remains a critical unexplored question. The clinical utility of 

targeting the RhoA pathway should also be further explored.  

GRAF3 rs604723 genotype as a predictor of response to anti-hypertensive therapy 

 Another component of the RhoA axis that has significant implications for 
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predicting patient response to anti-hypertensives is the RhoGAP, GRAF3. GRAF3 is 

required for blood pressure homeostasis, since GRAF3 deficient mice are significantly 

hypertensive (219). A major focus of this dissertation has been to identify 

polymorphisms in the GRAF3 gene that regulate its expression, since SNPs in this 

locus were linked to blood pressure in the human population (250, 251). As such, the 

current study has made great strides in identifying the basis for blood pressure 

regulation in the human population. Collectively, this research indicates that the 

rs604723 modifies hypertensive risk by affecting SRF binding at a novel intronic 

regulatory region (273). The minor allele at this blood pressure locus enhances SRF 

binding, thereby increasing GRAF3 expression, and decreasing RhoA-dependent SMC 

contractility. Furthermore, cell stretch increased GRAF3 expression. Because 

resistance vessels of hypertensive individuals are under significant strain, this presents 

a novel mechanism whereby vessel stretch, which leads to SMC phenotypic switching 

and vascular remodeling, increases GRAF3 expression to counteract the increased 

SMC contractility.  

 Patients harboring the rs604723 major allele have increased blood pressure and 

decreased GRAF3 expression. Therefore, based on the fact that decreased GRAF3 

expression results in increased RhoA-dependent SMC contractility, we hypothesize that 

that patients with the major allele (i.e., increased SMC contractility) will be more 

responsive to anti-hypertensive regimens that target SMC contractility directly rather 

than diuretics. As already listed, some of these agents include ACE inhibitors, Ang II 

receptor blockers, and better yet, ROCK inhibitors. We also predict that patients will 

exhibit increased dose responsiveness to these drugs per copy of the major allele. In 

collaboration with the Taylor Lab, these analyses correlating GRAF3 genotype with drug 



	 151  

responsiveness are underway.  

Regulation of MRTF-A-dependent transcription as a way to direct SMC 

differentiation 

 In atherosclerosis and restenosis, SMCs undergo extensive phenotypic 

modulation characterized by downregulation of contractile gene expression and 

upregulation of growth-related genes that promote proliferation and matrix production 

(21). These transcriptional changes contribute to a SMC phenotype that is detrimental 

to the health of the blood vessel, ultimately leading to atherosclerotic plaque rupture 

and/or intimal hyperplasia. Both of these processes lead to vessel occlusion and 

decreased downstream tissue perfusion, which can result in stroke and/or myocardial 

infarction. For these reasons, atherosclerosis and restenosis contribute to significant 

morbidity and mortality in the United States. Given that many of the disease features 

are initiated by transcriptional changes in the SMC, identification of novel SMC-selective 

inhibitors of this process are crucial. This dissertation research has identified roles for 

select epigenetic modifiers in regulating SMC differentiation. Furthermore, given their 

cell type-specific expression patterns, they could perhaps represent novel targets for 

directing SMC differentiation during phenotypic switching.  

 One interesting possibility is that SMDY2 prevents MRTF-A nuclear translocation 

during phenotypic switching, thereby contributing to reduced SMC gene transcription. 

This is certainly the case for Erk-mediated phosphorylation, which enhances MRTF’s 

binding to G-actin and cytoplasmic sequestration (115). Testing the following 

hypotheses will likely address this: Does SMYD2 expression increase in vascular SMCs 

during diseases like atherosclerosis and restenosis? If so, will inhibiting SMYD2 rescue 

some of the reduction in SMC-specific transcription that occurs during phenotypic 
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switching? Interestingly, LLY-507, a SMYD2 selective pharmacologic inhibitor, is 

commercially available and may be useful for answering some of these important 

questions (305).  
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