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ABSTRACT 

Timothy J. Barr: Interfacial Electron Transfer at Sensitized Nanocrystalline TiO2 Electrolyte 

Interfaces: Influence of Surface Electric Fields and Lewis-Acidic Cations 

(Under the direction of Gerald J. Meyer) 

 

Interfacial electron transfer reactions facilitate charge separation and recombination 

in dye-sensitized solar cells (DSSCs).  Understanding what controls these electron transfer 

reactions is necessary to develop efficient DSSCs. Gerischer proposed a theory for interfacial 

electron transfer where the rate constant was related to the energetic overlap between the 

donor and acceptor states. The present work focuses on understanding how the composition 

of the CH3CN electrolyte influenced this overlap. It was found that the identity of the 

electrolyte cation tuned the energetic position of TiO2 electron acceptor states, similar to how 

pH influences the flatband potential of bulk semiconductors in aqueous electrolytes.  For 

example, the onset for absorption changes, that were attributed to electrons in the TiO2 thin 

film, were ~0.5 V more positive in Mg2+ containing electrolyte than TBA+, where TBA+ is 

tetrabutylammonium. Similar studies performed on mesoporous, nanocrystalline SnO2 thin 

films reported a similar cation dependence, but also found evidence for electrons that did not 

absorb in the visible region that were termed ‘phantom electrons.’ 

Electron injection is known to generate surface electric fields on the order of 2 

MV/cm. The rearrangement of cations in response to surface electric fields, termed 

screening, was investigated. It was found that magnitude of the electric field and the 

screening dynamics were dependent on the identity of the electrolyte cation. The rate of 
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charge recombination to the anionic iodide/triiodide redox mediator correlated with the 

screening ability of the cation, and was initially thought to control charge recombination. 

However, it was difficult to determine whether electron diffusion or driving force were also 

cation dependent.  

Therefore, a in-lab built apparatus, termed STRiVE, was constructed that could 

disentangle the influence electron diffusion, driving force, and electric fields had on charge 

recombination. It was found that electron diffusion was independent of the electrolyte cation. 

Furthermore, charge recombination displayed the same cation-sensitivity using both anionic 

and cationic redox mediators, indicating electric fields did not cause the cation-dependence 

of charge recombination. Instead, it was found that the electrolyte cation tuned the energetic 

position of the TiO2 acceptor states and modulated the driving force for charge 

recombination. 
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CHAPTER 1: INTRODUCTION 

1.1 The case for solar energy 

The industrial revolution brought forth unprecedented power through the burning of 

energy rich fossil fuels that provided ample energy to forever change transportation, 

manufacturing, and nearly every aspect of daily life. Such power came with a price: the 

release of carbon dioxide into the atmosphere at rates never before recorded. Carbon dioxide 

is a known greenhouse gas, meaning it absorbs infrared light and converts it into thermal 

energy in the atmosphere. Global temperatures for the past 400,000 years have correlated 

with CO2 concentration.1 By 1950, CO2 levels had surpassed 300 ppm, a concentration not 

recorded for the past 400,000 years and in 2016,1,2 the concentration remained above the 

landmark 400 parts per million (ppm) threshold for the entire year.3 There is ample evidence 

to show that the Earth is warming: an increase in global temperatures, rise in sea level, 

shrinking ice sheets, and more frequent extreme weather and all consistent with global 

warming.4 The financial impact of global warming has already begun, where millions of 

dollars have been spent relocating people in low-lying regions due to rising sea levels.5,6 

Furthermore, CO2 uptake by the ocean acidifies the water that harms marine organisms and 

corals that are sensitive to small changes in pH. 

In 2017, humans are predicted to consume energy at an average rate of ~ 20 TW (20 x 

1012 W).7 The United States alone consumes ~3.3 TW or ~ 16.5 % of the world energy 

consumption despite representing only 4.4 % of the world population.8 By 2040, global 

energy uses are projected to increase to by 37 %, with a large fraction from by developing 
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countries. For example, the United States is expected to consume only ~6.7 % more energy 

while India is expected to consume ~110 % more energy.7 From an environmental point of 

view the global increase in energy demand is frightening.  The current rate of CO2 release 

may already lead to irreversible global warming,9–11 making efforts to decrease CO2 

production urgently needed.    

In order to minimize CO2 release and provide a sustainable future, alternative (non-

fossil fuel) sources of power must be developed. Alternative energy sources are unlikely to 

completely replace fossil fuels as the main source of power in the foreseeable future, 

however, they can still have a significant impact by providing the 37 % energy increase that 

will help keep CO2 production near current levels. One promising source of alternative 

energy is the sun. Solar illumination provides ~175,000 TW of power constantly to the earth. 

About 30 % is scattered at 20% absorbed by the surface,12 resulting in ~90,000 TW reaching 

the surface that has the potential to be harnessed for human use.13 Capturing just 0.015 % of 

the solar flux could power all current human needs. Using 10 % efficient solar cells, this 

would require about 0.17% of the earth’s surface. For the United States (~3.3 TW), an area 

about the size of North Dakota would be required, which is comparable to the land covered 

by public roads.13    

Most commercial solar cells use semiconductors to absorb the solar energy and 

separate charges to produce electrical power. The amount of light absorbed is directly related 

to the current, where one photon typically gives one electron. The probability a particular 

photon will be absorbed depends on the photon energy and the semiconductors bandgap, 

where essentially all photons with energy greater than the bandgap will be absorbed. Since 
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the maximum cell voltage is determined by the bandgap, this single property is critical when 

designing a solar cell.  

All solar cell devices are defined by the amount of power (voltage x current) 

produced when illuminated with sunlight. Current is maximized by using a lower bandgap 

material that absorbs more photons, while voltage is optimized with a larger bandgap. 

Therefore, the bandgap must be chosen based on the solar spectrum to maximize power. The 

ideal bandgap can be calculated using the terrestrial solar spectrum, shown in Figure 1.01A14 

compared to an ideal blackbody emitter. The ideal blackbody spectrum differs from the 

theoretical AM 1.5 spectrum measured on the surface of the Earth due to absorption and 

scatter. Assuming 100 % of the incident photons with energy greater than or equal to the 

bandgap are absorbed and are collected and with the energy of the bandgap, an ideal bandgap 

of the semiconductor can be estimated, Figure 1.01B. For the terrestrial solar spectrum, the 

ideal absorption onset corresponds to a wavelength of 1108 nm, or a bandgap of 1.12 eV. 

However, any onset between 910 and 1380 nm (1.36 to 0.89 eV) is expected to differ by ≤ 5 

%. The bandgap of silicon (1.1 eV = 1130 nm) lies in the middle of this range and is one 

reason for the dominance of Si solar cells in the industry.  
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Figure 1.01. (A) Solar irradiance measured on the Earth’s surface (terrestrial, black) 

compared to an ideal blackbody emitter at 5778 K (red). (B) Theoretical power output of a 

100 % efficient solar cell absorbing all photons of higher energy than the cutoff value. The 

maximum power is termed the ‘ideal cutoff.’ 

Although silicon solar cells are the most common and are decreasing in price 

rapidly,15 they do not collect diffuse light efficiently, are still relatively expensive, and 

require high purity materials. An alternative solar cell that excels in all of these areas is the 

dye-sensitized solar cell. Due to the unique morphology, it collects diffuse light quite well 

and requires low purity TiO2 as a foundation, which allows for low fabrication costs. 

1.2 The dye-sensitized solar cell 

The possibility that solar energy could power present and future energy demands and 

a global awareness of climate change has led to increased public interest in solar power. One 

device that has received considerable interest over the past 25 years is the dye-sensitized 

solar cell (DSSC), popularized by Brian O’Regan and Michael Grätzel in 1991.16 The DSSC 

uses molecular dyes to absorb light and transfer an electron into a wide bandgap 

semiconductor, typically TiO2. The term ‘sensitization’ refers to the ability of a surface 
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bound dye to absorb (visible) photons and induce a photoelectric effect that was absent 

without the dye.  

Sensitization was first observed over 100 years ago.17,18 Dye-sensitization was studied 

on TiO2 in the 1970s, but was hindered by the maximum amount of sunlight that could be 

harvested (< 1%) with a monolayer of dyes on a flat surface.19 Better light absorption was 

achieved by having thick (~1 µm) dye layers, however this resulted in poor electron 

collection efficiencies due to the low exciton diffusion length.20 The breakthrough design 

was to use a mesoporous thin film composed of small (~20 nm diameter) TiO2 

nanocrystallites that gave an active surface layer ~1000 times larger than the top down, 

geometric surface area. This method proved to have both high charge collection efficiencies 

and high light absorption producing record efficiencies of 7-8 %.16 Two advantages of 

DSSCs over conventional silicon-based solar cells are the tunability, which is directly 

controlled by the dye, and the cost of fabrication, which has the potential to be very low due 

to the low purity requirement and high availability of TiO2. 

A schematic diagram showing the basic electron transfer processes in a typical DSSC 

is shown in Figure 1.02. Solar energy is absorbed by the sensitizer to form an excited state on 

the surface. Excited-state electron injection into the TiO2 acceptor states is often 

thermodynamically favorable and occurs on the fs-ps timescale with near unit efficiency. The 

oxidized sensitizer is then regenerated by a redox mediator, R+/0, on the ns-µs timescale 

while the injected electron diffuses to the fluorine-doped tin oxide (FTO) back contact on the 

µs-ms timescale. After reaching the back contact, the electron travels through an external 

circuit where it can perform work before reducing the oxidized form of the redox mediator at 

a platinized counter electrode, completing the circuit.  
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Figure 1.02. Schematic diagram of the desired (straight/curved black arrows) and unwanted 

(red arrows) electron transfer processes in a DSSC following light (hν, squiggly arrow) 

absorption by the sensitizer, S. Also included is a general redox mediator, R+/0, that mediates 

electron transfer between the oxidized sensitizer and the Pt counter electrode. 

Two prominent electron loss pathways exist that prevent all the injected electrons 

from being collected: back electron transfer to the oxidized sensitizer and charge 

recombination to the oxidized redox mediator. Charge recombination is usually negligible at 

short circuit where electrons spend relatively short periods of time in the TiO2 thin film. 

However, at the maximum power output of the cell or at open circuit, electron loss due to 

back electron transfer and charge recombination decrease device performance.21,22 The 

average time an electron spends in the film before recombination by any mechanism is 
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known as the electron lifetime, which largely influences the maximum voltage a cell can 

build under illumination at open circuit. 

As with all solar cells, the current is dictated by number of photons absorbed and 

collected at the back contact. For DSSCs, the number of photons absorbed is determined by 

the absorptance spectrum of the dye. The open circuit voltage in DSSCs is not dependent on 

the metal oxide bandgap, but rather the difference between the quasi-Fermi level of the 

current collectors, often approximated as the TiO2 quasi-Fermi level and the potential of 

solution the redox mediator. Therefore, what controls current and voltage in a DSSC are 

decoupled and can be independently optimized. Of note, DSSCs are still a single junction 

solar cell and have the same thermodynamic limits as silicon single junction solar cells. As 

such, the ‘ideal cutoff’ of ~1100 nm still holds for DSSCs, where absorbing all light of 

wavelength shorter than 1100 nm leads to the optimum power. The following sections 

discuss in more detail some individual components of DSSCs related to this dissertation and 

how they relate to device performance.  

1.3 Description of the electronic states in TiO2 

The distribution of electronic states in bulk, single crystal semiconductors is well 

understood. For metal oxides, the valance band is typically formed by overlap of the oxygen 

p-orbitals and the conduction band by metal d-orbitals. In an ideal case, the density of states 

as a function of energy, N(E), shows a parabolic dependence on energy as given by Equation 

1.01:23 

 
N(E)=

1

2π2ћ
3

(2m*)
3/2

E1/2 1.01 

where m* is the effective mass, ћ is Plank’s constant divided by 2π, and E is the potential.   
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The density of states is position independent within the bulk semiconductor, but is 

perturbed at the surface when placed in contact with a redox electrolyte. Equilibrium occurs 

by spontaneous electron transfer across the semiconductor-electrolyte interface until the 

Fermi levels align.  For the case of n-type metal oxides such as TiO2, electrons are usually 

transferred from the semiconductor to the electrolyte. Excess charge within the 

semiconductor is not completely screened due to the low charge carrier density. This results 

in a space-charge or depletion layer where the majority carrier (electrons) are depleted at the 

interface relative to the bulk. In the region where the charge is not fully screened, an 

‘internal’ electric field within the semiconductor exists such that an electron placed within 

the semiconductor at the interface would migrate away from the interface towards the bulk.  

The electric potential and width of the space-charge layer can be calculated by 

solving Poisson’s equation with the appropriate boundary conditions. For a flat surface 

extending infinite distance in the x and y directions, the 1-D Poisson equation has been 

solved where the voltage and width of the space charge layer as a function of distance from 

the interface, z, is given in Equations 1.02 and 1.03: 

 
𝑉(𝑧) = −

𝑒𝑁𝑑

2𝜀𝜀0
(𝑧 − 𝑤)2 1.02 

 

𝑤 = √
2𝜀𝜀0

𝑒𝑁𝑑
 1.03 

where, e is the (positive) elementary charge, 𝑁𝑑 is the number of donors, w is the width of the 

space charge layer, ε is the relative permittivity, and ε0 is the permittivity of free space. With 

typical values for TiO2, 𝑁𝑑 =1017 cm-3 and εTiO2=100, the depletion layer would extend over 

300 nm into the semiconductor.   
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The band bending in thin films of ~20 nm diameter TiO2 nanocrystallites used in 

DSSCs is much different due to the shape and small size of the nanocrystallites. For particles 

of this size, the width of the depletion layer calculated for a flat interface would be much 

larger than the particle diameter. Furthermore, the interface of the spherical nanocrystallites 

are not accurately approximated as an infinitely flat surface. Albery and Bartlett solved 

Poisson equation for the case for a spherical nanoparticle, which results in the maximum 

potential difference between the center of the particle of radius r and the surface according to 

Equation 1.04:24,25  

 

𝑉𝑚𝑎𝑥 =
𝑒 𝑟2 𝑁𝑑

6 𝜀𝜀0
 1.04 

For typical doping densities of a 1017 cm-3, εTiO2=100, the potential difference between the 

interface and the center would be less 1 mv, much less than thermal energy, kBT/e≈26 mV. 

The result is that no conventional, i.e. internal, electric field and no significant band-bending 

occurs in 20 nm diameter TiO2 nanocrystallites.  

The morphological complexity of the nanocrystalline, mesoporous TiO2 thin films 

with a large number of grain boundaries and surface sites suggests that localized states may 

be more relevant than carriers in delocalized bonds. Indeed, there appears to be an 

exponential distribution of localized acceptor states that may or may not be composed of 

‘conduction band’ states. The ideal DOS is compared to the experimentally observed 

acceptor state distribution in Figure 1.03. 
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Figure 1.03. Theoretical energetic dependence of the density of states, N(E), for a bulk 

semiconductor (left) and the experimentally observed density of states for mesoporous thin 

films of ~20 nm diameter TiO2 nanocrystallites (right). 

Electrochemical reduction of TiO2 thin films results in population of the acceptor 

states and charge compensation by the electrolyte cation. However, it is experimentally 

difficult to ascertain whether the charge compensation mechanism involves cation adsorption 

to the surface or intercalation into the lattice. The intercalation of Li+ cations is known in 

occur in bulk26,27 and nanostructured28 TiO2 where the maximum Li/Ti ratio is ½, 

corresponding to Li0.5TiO2. The intercalation behavior has been studied by in-situ X-ray 

diffraction by van de Krol et. al. when the TiO2 thin film was immersed in 1M LiClO4 

propylene carbonate electrolyte.28 A change is crystal structure was observed above at Li/Ti 

ratios above 5 % Li+, indicating that intercalation was clearly occurring. However, this study 

could not identify the charge compensation mechanism below 5 %. Intercalation could be 
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present where the TiO2 was able to support the addition of small amount of cations without 

lattice distortions, however cation adsorption may also have been present. 

New insights were gained by carefully monitoring the UV/Vis spectrum of the TiO2 

thin film during the application of a negative bias in CH3CN electrolytes.29 When a small 

amount of charge was transferred to the thin film, broad, superimposable UV/Vis absorption 

spectra were observed. The spectra bear some similarity to a classical Drude absorption for 

free electrons in a conduction band, where adjustments due to phonon scattering and ion 

impurities have been used for TiO2 thin films to account for the discrepancies.30 Furthermore, 

the spectrum was independent of the identity of the electrolyte cation and was observed with 

the non-intercalating tetrabutylamminium cation as the charge compensating ion. Therefore, 

the spectra taken under mildly reducing conditions are attributed to the population of the 

TiO2 acceptor states without significant cation intercalation. Further reduction of the TiO2 

thin films results in a quantitatively different spectrum. The spectrum has a clear peak near 

700 nm that is attributed to a more localized transition related to Li+ intercalation into the 

lattice.29,30   

The type of electronic state that is reduced upon application of mild biases is debated 

in the literature.31,32 The primary differences between the models is the number of electronic 

states present. One theory is that there are multiple types of states and that the electron is 

typically localized or trapped, perhaps at a TiIII center, and only transiently occupies a higher 

lying ‘conduction band’ state. High vacuum (solventless) techniques have provided some 

evidence for localized TiIII trapped states below a conduction band.33,34 In aqueous 

electrolytes, a pre-peak is often observed before bulk reduction in cyclic voltammetry 

experiments that may be associated with a small absorbance signature.35 However, in CH3CN 
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electrolytes, superimposable UV/Vis absorption spectra and a lack of a pre-peak in cyclic 

voltammograms suggest there is only one type of electron acceptor. 

The uncertainty about where the electron resides has become more prevalent when 

assigning the extinction coefficient of electrons within the thin film. The extinction 

coefficient has been measured by comparing the total charge within the film to the optical 

absorbance and is typically near 1000 M-1cm-1 at 700 nm.30,36,37 However, Hamman and co-

workers have recently argued that the absorption feature is due to a small fraction of the total 

electron concentration that resides in a conduction band, which is distinct from trapped states 

where the majority of the electrons reside.38,39 Using variable temperature 

spectroelectrochemistry, an extinction coefficient of ~10,000 M-1cm-1 for the conduction 

band electrons was reported. Throughout this dissertation the term ‘acceptor states’ is used to 

acknowledge the uncertainty in the assignment of the electronic states in nanocrystalline 

TiO2 thin films.  

1.4 Influence of electrolyte cations 

Electrolyte pH is known to influence the flatband potential of many bulk metal-oxide 

semiconductors, including TiO2, SnO2, SrTiO3, ZnO, Zn2TiO4, and KTaO3.
40,41 This behavior 

has been attributed to surface acid/base chemistry related to the protonation state surface 

oxygen atoms, –O-/-OH. Determining the flatband potential for mesoporous thin films of 

anatase TiO2 nanocrystallites by the conventional Mott-Schottky approach is precluded by 

the lack of band bending in the nanocrystallites. Fitzmaurice et. al. applied 

spectroelectrochemistry to correlate optical changes to the presence of electrons within the 

thin film,32 and reported a 59 mV/pH dependence on the absorption features in aqueous 
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electrolyte, indicating the Nernstian behavior of bulk semiconductors extended to 

nanocrystalline thin films. 

When spectroelectrochemical studies were performed in non-aqueous solvents, the 

identity of the electrolyte cation was found to determine the potential onset where absorption 

changes were observed.42 Such cations became known as ‘potential determining ions,’ 

because they determined the energetic position (akin to the flat band potential) of the TiO2 

acceptor states. For example, the position of the TiO2 acceptor states was ~1 V more positive 

in Li+ than TBA+ containing electrolyte, where TBA+ is tetrabutylammonium. The electrolyte 

cation was thought to be attracted to the negatively charged surface and interact through an 

adsorption or intercalation mechanism.  

Directly related to the energetic position of the TiO2 acceptor states are the electron 

injection efficiency,43 sensitizer photoluminescence,44 incident-photon-to-current 

efficiency,45 and open circuit voltage.45 The rate of electron injection is understood in the 

framework of Marcus-Gerischer theory according to Equation 1.05:46,47  

 
𝑘𝑒𝑡 =

4𝜋2

ℎ
∫ 𝑔(𝐸)𝑓(𝐸, 𝐸𝐹)|𝐻𝐴𝐵|2𝑊(𝐸)𝑑𝐸 1.05 

Where g(E) is the distribution of acceptor (TiO2) states, f(E, Ef) is the Fermi-Dirac function 

that describes the occupancy of the acceptor states, HAB is the electronic coupling element, 

and W(E) is the distribution of donor states related to solvent fluctuations and the 

reorganization energy. The rate of electron injection is optimized by increasing the energetic 

overlap between the donor and acceptor states. For a given sensitizer, the rate of electron 

injection can be tuned by the electrolyte cation to maximize injection. For example, in Li+ 
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containing electrolyte, the energetic overlap between the donor states and the TiO2 acceptor 

states is much greater than in TBA+, as shown in Figure 1.04. 

 

Figure 1.04. Comparison of strong (left, Li+ containing electrolyte) and weak (right, TBA+ 

containing electrolyte) energetic overlap between the electron donors, W(E), and acceptors, 

g(E), during charge injection into nanocrystalline TiO2. The area in gray represents regions 

of favorable energetic overlap.  

Marcus-Gerischer theory describes the rate constant for electron transfer, not the 

overall quantum yield. Once the excited state is formed, a kinetic competition occurs 

between injection, radiative, and other non-radiative relaxation pathways. A faster charge 

injection rate constant leads to a greater fraction of excited chromophores relaxing through 

injection. In the case of ruthenium polypyridyl compounds used in DSSCs, the rate constant 

is large enough that unit efficiency can often be realized. 

An indirect way to monitor electron injection is sensitizer photoluminescence (PL). 

Electron injection serves as a quenching mechanism for the excited state and decreases the 

Li+, faster injection TBA+, slower injection 
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PL quantum yield. Kelly et. al. monitored sensitizer PL when the cation identity and 

concentration was systematically varied.43 It was found that the degree of quenching 

correlated with the charge-to-size ratio of the cation and was consistent with the electrolyte 

cation tuning the energetic position of the TiO2 acceptor states. 

A second indirect measurement of electron injection is the incident-photon-to-

current-efficiency (IPCE), sometimes called the external quantum efficiency (EQE). This 

technique reports the ratio of incident photons illuminating the cell and the number of 

electrons collected at the back contact. With some assumptions, this serves as a direct 

comparison of electron injection efficiency. Comparing IPCE values measured in electrolytes 

containing Lewis-acidic cations such as Li+ to TBA+ containing electrolytes indicates 

significantly less electron injection in TBA+ containing electrolytes as seen by lower IPCE 

values.45 

The open circuit voltage, VOC, represents the difference between the quasi-Fermi 

level of the electrodes, that is often assumed to be the quasi-Fermi level of the TiO2 electrons 

versus the potential of the redox mediator. The influence of electrolyte cations on VOC is 

more complicated because the cation influences multiple cell parameters. For example, 

cations influence the energetic position of the TiO2 acceptor states and the injection yield, 

both of which contribute to VOC. In general, a higher VOC either indicates a higher electron 

concentration within the thin film or a more negative TiO2 acceptor state distribution, as 

depicted in Figure 1.05.  
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Figure 1.05. Influence of charge density (left) and energetic position (right) of the TiO2 

density of states on open circuit voltage (VOC, double sided arrows). The VOC value can be 

increased by adding more charge carriers to the film or by increasing the energetic position 

of the TiO2 acceptor states.  

1.5 Interfacial electric fields  

In this section the detection and influence of local electric fields at dye-sensitized 

TiO2 interfaces is discussed. However, it is important to keep in mind that what is typically 

measured are changes in the electric field following some perturbation. Strong electric fields 

may exist in the ground state, especially at semiconductor-electrolyte interfaces. These 

ground-state electric fields are often poorly understood and can cause unavoidably different 

equilibrium (dark) conditions. 

Changes in electric fields, simply referred to hereafter as electric fields, are detected 

by the UV/Vis absorbance spectra of the dye in what is called an electroabsorption or Stark 

(sometimes LoSurdo-Stark) effect that was independently discovered by both Johannes Stark 

and Antonino Lo Surdo in 1913.48–51 Strong electric fields induce shifts in the UV/Vis 

VOC VOC 
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absorbance spectrum that reflect the change in transition energy upon stabilization or 

destabilization of the ground and excited states in the presence of an electric field.52  

The extent of (de)stabilization for a single state is usually dominated by the dipole 

moment, 𝜇⃑, and/or polarizability, 𝛼, of each state according to Equation 1.06.53 The electric 

field influences both the ground and excited states energies such that the observed change in 

transition energy corresponds to the difference in dipole moment, ∆𝜇⃑, and polarizability, ∆𝛼, 

between the two states according to Equation 1.07:53  

 
∆𝐸𝑠𝑖𝑛𝑔𝑙𝑒 𝑠𝑡𝑎𝑡𝑒(𝐸⃑⃑) = −𝜇 ∙ 𝐸⃑⃑ −

1

2
𝐸⃑⃑ ∙ 𝛼 ∙ 𝐸⃑⃑ 1.06 

 
∆𝐸𝑡𝑟𝑎𝑛𝑠(𝐸⃑⃑) = −∆𝜇⃑ ∙ 𝐸⃑⃑ −

1

2
𝐸⃑⃑ ∙ ∆𝛼 ∙ 𝐸⃑⃑ 1.07 

  

Note that these are vector (or tensor, 𝛼) quantities, which means the relative angle 

between the two is critically important. In classic Stark experiments, isotropically oriented 

molecules were immobilized in a rigid matrix between two parallel plate electrodes that were 

used to apply a unidirectional electric field. In this arrangement, equal numbers of molecules 

were aligned parallel and anti-parallel to the field, resulting in a broader peak and decreased 

amplitude, Figure 1.06. We shall now briefly consider how the relative orientation influences 

spectral shifts caused by dipole moment and polarizability differences separately.   
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Figure 1.06. (A) Jablonski-type diagram depicting the ground and excited state energies for 

molecules aligned antiparallel (blue) orthogonal (green) and parallel (red) to the electric 

field, Fext. Note the transition energy for the orthogonal transition is identical to the ground 

state transition energy. (B) UV/Vis spectra of an arbitrary transition in the presence of an 

electric field (gray). Also shown are the individual contributions for molecules oriented 

parallel (red), orthogonal (green) and antiparallel (blue) to the electric field. 

The dipole moment represents the unequal distribution of charge in the molecule that 

is taken as a constant even in the presence of an electric field. Therefore, a given molecular 

state will either be stabilized or destabilized by the electric field due to the orientation 

between the two. When the ‘field-on’ spectrum of immobilized, isotropically oriented 

molecules is compared to the ‘field-off’ spectrum, the peak broadens and decreases in height 

due to the stabilization of some molecules and destabilization of others. The difference 

between these spectra can be well modelled by the second derivative of the ground state 

absorption spectrum as described by Liptay.54  
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The polarizability represents the ability of a molecule to redistribute its charges in 

response to an electric field. The polarizability acts as an induced dipole moment or a 

correction to the constant dipole moment in the presence of an electric field. The 

redistribution of charge occurs such that the net field across the molecule is minimized, 

which means that the induced dipole moment is typically aligned with the electric field 

regardless of the molecular orientation. The result is typically a stabilization of both the 

ground and excited states, however the magnitude of the stabilization may be different for the 

two states leading to either a red or blue shift for all molecules, regardless of orientation. 

Therefore, ‘field-on’ minus ‘field-off’ spectral changes due only to ∆𝛼 can be well-described 

by the first derivative of the ground state absorption spectrum because the transition energy 

increases (or decreases) for all molecules.     

The electric fields detected in DSSCs represent a unique situation. In these materials, 

the anchoring of the chromophore to the surface dictates a limited range of binding angles 

and orientations between the molecule and the surface. Since these electric fields emanate 

from the surface, the molecules are oriented relative to the field. Every molecules exists in a 

similar orientation relative to the field which results in similar (de)stabilizations due to ∆𝜇 

and ∆𝛼 for all molecules. The resulting spectral shift is unidirectional and well-fit by the 

first-derivative of the ground state absorption spectrum even for molecules whose change in 

dipole moment dictate the stark spectrum. To distinguish between shifts caused by ∆𝜇⃑ and 

∆𝛼, the field-dependence of the Stark spectrum must be investigated because ∆𝜇⃑ scales with 

𝐸⃑⃑ while ∆𝛼 scales with 𝐸⃑⃑2.    

Experiments performed in our lab typically employ ruthenium poly-pyridyl 

compounds as dyes or sensitizers whose UV/Vis absorbance spectrum display metal-to-
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ligand charge transfer (MLCT) transitions. In the presence of an electric field, changes in the 

MLCT excitation energy are dominated by ∆µ⃑⃑ associated with transferring an electron from 

the metal center to a ligand. The peak shift (in wavenumbers, ∆𝜈 ) is related to the electric 

field according to Equation 1.08:    

 

∆𝜈 = −
|∆µ⃑⃑| ∙ |𝐸⃑⃑|𝑐𝑜𝑠𝜃

100 ℎ𝑐
 1.08 

Where ℎ is plank’s constant, c is the speed of light, ∆𝜇⃑ is the change in dipole 

moment between the ground and excited state, 𝐸⃑⃑ is the electric field magnitude, 𝜃 is the 

angle between ∆𝜇⃑ and 𝐸⃑⃑, and 100 is a conversion factor between m and cm. Due to the broad 

nature of the MLCT bands, precisely determining the peak maximum (do find ∆𝜈) is not 

always trivial. An alternative means to calculate the electric field is by fitting the difference 

spectrum to the derivative of the ground state spectrum according to Equation 1.09:      

 

∆𝐴 = −
𝑑𝐴

𝑑𝜈

|∆µ⃑⃑| ∙ |𝐸⃑⃑|𝑐𝑜𝑠𝜃

ℎ
 

1.09 

 

Where ∆A is the difference absorption spectrum and 𝑑𝐴/𝑑𝜈 is the first derivative of the 

absorption spectrum in wavenumbers. This method generally provides more accurate results 

as there are more data points in the fit than a single point estimation of spectral shifts. For our 

calculations, it has been assumed that 𝜃 = 180˚, which corresponds to the electron transfer 

from the Ru center to the anchoring ligand as normal to the surface.  

The UV/Vis absorbance spectra of sensitized TiO2 that is consistent with the presence 

of an electric field has been quantified in three independent experiments: following the 
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addition of Li+ to the acetonitrile electrolyte, upon electrochemical reduction of the TiO2 thin 

film, and following excited-state electron injection into TiO2 nanocrystallites. We will briefly 

discuss the evidence for electric fields and then several studies reporting the influence 

electric fields may have on device performance. 

Stark shifts with cation addition: Addition of Lewis-acidic Li+ cations to the electrolyte 

surrounding a sensitized TiO2 thin film resulted in a large bathochromic (red) shift of both 

the MLCT absorbance and PL spectrum relative to that in neat CH3CN, consistent with a 

decrease in the surface electric field.55 The as-synthesized TiO2 nanoparticles are thought to 

have a negative charge on the surface caused by the deprotonation of surface Ti-OH 

groups.56,57 The cationic Li+ ions would be attracted to the negatively charged surface and 

partially screen the surface electric field. 

However, the location of the Li+ cations that screen the field is still unknown. Due to 

the direction of the shift, it is clear that net electric field reported by the sensitizer is 

attenuated indicating the cations reside within the Helmholtz layer, however it is unknown if 

they interact more directly with the TiO2 surface or the chromophore.  It is known that 

related ruthenium complexes that differ from the compounds discussed here by the 

protonation state of the carboxylic acid (having deprotonated carboxylates instead of the 

carboxylic acids here) display similar red shifts upon Li+ addition in fluid solution.58 In fluid 

solution, the red-shift was attributed to the Lewis-acidic cations interacting with carboxylate 

groups on the bipyridine ligands, but it was stated that inductive effects could not be 

distinguished from electric field effects. If direct interactions were occurring on the TiO2 

surface, the chromophore would be expected to desorb. Since these shifts have been reported 

for chromophores with only one binding group without desorption,59 it is likely that the 
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cations reside near the chromophore, but do not outcompete the TiO2 surface for binding to 

the carboxylate anchoring group.  

Stark shift from excited-state electron injection: Nanosecond pulsed laser excitation of 

sensitized TiO2 thin films immersed in 100 mM LiClO4 and 250 mM tetrabutylammonium 

iodide (TBAI) results in MLCT excitation and excited-state electron injection into the TiO2 

thin film on the fs to ps timescale and then regeneration of the oxidized sensitizer by iodide 

within 1 µs. The regeneration and recombination reactions were monitored by nanosecond 

transient absorption spectroscopy. Following sensitizer regeneration, the expected spectral 

signatures of TiO2(e
-)s and triiodide were observed. However, in addition to these expected 

features, a large first-derivative shape consistent with a Stark shift of the ground-state MLCT 

transition was observed.55,60,61 This feature was most easily seen when the oxidized 

chromophore was regenerated, but has also been identified in previous data from our group 

and others that did not regenerate the oxidized chromophore.60  

Stark shift from potentiostatically injected electrons: Further support for the assignment 

of the spectral shifts as an electric field effect was found when sensitized TiO2 thin films 

were employed as the working electrode in a standard 3-electrode setup. Application of 

forward (negative) bias to thin films immersed in 100 mM LiClO4 acetonitrile electrolytes 

resulted in population of the TiO2 acceptor states which could be quantified by the broad 

absorption of TiO2 electrons (TiO2(e
-)s) across the UV/Vis spectrum. At the same time, a 

blue-shift of the MLCT transition of surface-bound chromophore was observed consistent 

with a Stark effect.60 
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Spatial extent of electric field: The discovery of electric fields in dye-sensitized solar cells 

was surprising to some since macroscopic parameters, i.e. electron diffusion instead of 

migration within the mesoporous thin films, did not suggest their presence. Perhaps the 

injected electron resided as a localized electron on a TiIII ion as a ‘trapped electron’ and only 

effected a single chromophore that did not affect bulk properties. In this light, two studies 

were conducted to investigate the spatial extent the electric field extended at the interface.  

In the first, TiO2 thin films were co-sensitized with two sensitizers whose absorption 

spectra were distinct enough to permit selective excitation and monitoring of each sensitizer. 

Selective excitation of one chromophore resulted in excited-state electron injection and 

sensitizer regeneration. Transient difference spectra recorded at 1 µs after the laser pulse 

displayed first-derivative features for both sensitizers. This clearly indicated that the electric 

field extended to laterally across the surface. The magnitude of the spectral shifts indicated 

that at least two neighboring sensitizers were maximally affected by the electric field, 

although this result was indistinguishable from a higher number of nearby sensitizers being 

effected to a lesser extent.  

In the second study, a series of ruthenium compounds were synthesized where the 

distance between a surface anchoring group and the ruthenium center was systematically 

varied with phenylene ethynylene bridge units between the anchoring group and the 

ruthenium. The surface to Ru distances were estimated to range from 7 to 18.6 Å.62 As the 

distance from the surface increased, the magnitude of the measured field decreased from 0.85 

with zero bridge units to 0.22 MV/cm with two phenylene ethynylene units.62 Together, these 

studies indicate electric fields extend nanometers across the surface and into solution. 
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Non-Nernstian redox behavior: The redox behavior of the dyes in dye-sensitized TiO2 thin 

films has been reported to deviate from the Nernst equation, where a 59 mV change in 

applied potentials is expected to cause a factor of 10 change in the mole fraction of oxidized 

and reduced species for a one-electron process.63,64 Instead, it often takes a much larger 

potential step to achieve a factor of 10 change in the mole fraction. Such data is modelled by 

the inclusion of an ideality factor, 𝛼, into the Nernst equation, as shown in Equation 1.10. 

When 𝛼 is unity, Equation 1.10 reduces to the Nernst equation. It has been suggested that a 

distribution of reduction potentials,65 intermolecular (Frumpkin) interactions,66,67 or electric 

fields,68 may be responsible for this non-Nernstian behavior.  

 

𝐸 = 𝐸0 − 𝛼 59.2 𝑚𝑉 𝑙𝑜𝑔 (
[𝑅]

[𝑂]
) 1.10 

Multiple studies have reported the non-ideal behavior to be surface coverage 

independent, ruling out Frumpkin-type interactions as the cause for non-ideal behavior. 

There is no a priori reason to believe there should be a distribution of reduction potentials on 

the surface, however there is evidence that strong electric fields are present at the surface. If 

surface electric fields were inducing non-Nernstian redox chemistry, the non-ideality is 

expected to be sensitive to the magnitude of the electric field. This hypothesis could be tested 

by studying compounds that underwent multiple one-electron reductions, either at the same 

or different locations, where the electric field was different for each reduction.   

A study where both reductions occurred at the same location utilized a cobalt 

prophryn that underwent CoIII/II and CoII/I reductions on the TiO2 surface.63 As the potential 

was stepped negative, electrons populated the acceptor states causing a surface electric field 
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proportional to the number of electrons. In TBA+ containing electrolytes, the TiO2 acceptor 

states were negative enough that the first and second reduction occurred with minimal 

change in the TiO2(e
-) concentration and the ideality factors were within error the same 

(although still larger than 1). In Li+ containing electrolytes, the distribution of TiO2 acceptor 

states were more positive than in TBA+ electrolytes. There were significantly more TiO2(e
-)s 

during the second reduction than the first, corresponding to a larger electric field for the 

second reduction. A significantly larger ideality factor was observed for the second 

reduction, consistent with electric-field induced non-Nernstian behavior.  

A second study that addressed the electric field influence on non-Nernstian redox 

behavior utilized a Ru-bridge-TPA, where TPA is triphenylamine, donor-π-acceptor complex 

where both the Ru center and TPA moiety were redox active. The ruthenium center was 

bound to the surface and was approximately 15 Å closer than the TPA. Electrochemical 

oxidation was non-Nernstian at both redox centers, but the Ru center showed on average 

larger non-ideality than the TPA group. These two examples strongly support that electric 

fields induce the non-Nernstian redox chemistry on the surface of TiO2.  

1.6 Charge transport and recombination in DSSCs:   

Understanding charge transport and recombination in DSSCs is critical for both 

practical and fundamental purposes. Practically, these two parameters determine the charge 

collection-and therefore total device- efficiency. The electrons must diffuse through the film 

and be collected at the back contact faster than they recombine with an oxidizing equivalent 

at the surface or in solution. A fundamental understanding of what controls transport and 

recombination therefore allows devices to be designed that optimize charge collection.  
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Charge transport in mesoporous thin films of TiO2 nanoparticles has been measured 

by a number of techniques, including intensity-modulated photocurrent spectroscopy 

(IMPS),69 electrochemical impedance spectroscopy (EIS),70–72 pulsed laser transients,73 

stepped light-induced transient measurements (SLIM),74,75 and transient photocurrent 

decay.11,76–79 Likewise, the electron lifetime (inverse of charge recombination rate) has been 

investigated with intensity-modulated photovoltage spectroscopy (IMVS),80 EIS, 70–72 open-

circuity voltage decay,10 and transient photovoltage decay.81 Neither charge transport nor 

recombination are constant under all operating conditions (incident light intensity). The term 

‘effective’ (effective diffusion coefficient or effective electron lifetime) is often used to 

highlight that the reported values are reported under specific conditions.  

Due to the sensitivity of diffusion/recombination on the operating conditions, it has 

not always been clear how to compare devices, i.e. what independent variable serves as a 

reference. Early studies found the electron lifetime to exponentially decrease with voltage79 

and the diffusion coefficient increase with current.75 Comparisons were therefore made at 

matched voltage or current values, however this analysis became invalid if the energetic 

position or density of the TiO2 acceptor states changed between different DSSCs. With the 

development of several methods to measure the charge within the thin film,82,83 it has become 

increasingly common to use total charge in the illuminated DSSC as the independent variable 

when investigating both electron lifetime and diffusion.  

Electron diffusion and recombination appear to be intimately linked. As the light 

intensity increases, the effective diffusion coefficients increases while the effective lifetime 

decreases. Researchers have speculated that transport and recombination are mediated by a 

trapping/detrapping mechanism that influences both electron transport and recombination in 
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DSSCs.11 Dispersive electron transport has been extensively studied for bulk, single crystal 

semiconductors and is often modelled by a multiple trapping84–87 or continuous-time random 

walk88–90 mechanism, both of which imply a distribution of bandgap states. More recently, a 

random flight model has been developed for nanostructured thin films, where a trapped 

electron can thermally access the conduction band and travel much farther than the nearest 

neighbor.91 However, most, if not all, recent studies investigating charge transport and 

recombination in DSSCs are interpreted in the framework of the multiple trapping model as 

described by Bisquert and Vikhrenko.92 This theory is the basis for comparing kinetic 

parameters at matched electron concentrations as summarized below.  

The foundation of the multiple trapping model is based on multiple types of 

electronic states present in the TiO2 thin film. They are often called conduction band states 

(that contain mobile electrons) and localized states (where the electron are effectively 

‘trapped’, 𝑛𝐿). Under steady state conditions, an equilibrium is established between the 

conduction band and localized electrons. The number of electrons in the conduction band, 𝑛𝑐, 

can be calculated for a given quasi-Fermi level, nEF, using the total number of conduction 

band states, 𝑁𝑐, and the conduction band energy, Ec, by Boltzmann statistics, Equation 1.11. 

The occupancy of trapped states, f, is described by Fermi-Dirac statistics, Equation 1.12:  

 𝑛𝑐 = 𝑁𝑐𝑒(𝑛𝐸𝐹−𝐸𝑐)/𝑘𝑏𝑇 1.11 

 
𝑓 =

1

1 + 𝑒(𝐸𝐿−𝑛𝐸𝑓)/𝑘𝑏𝑇
 1.12 

It is assumed that an equilibrium between the conduction band and localized states is 

maintained even when a small perturbation is applied to the total electron concentration 
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either by a light pulse or a change in the applied bias. This is called the quasi-static 

approximation and is mathematically represented by Equation 1.13:  

 𝑑𝑛𝑙

𝑑𝑡
=

𝑑𝑛𝑙

𝑑𝑛𝑐

𝑑𝑛𝑐

𝑑𝑡
 1.13 

The effective electron lifetime, 𝜏𝑛, of the electron is related to the free electron lifetime, 𝜏0, 

according to Equation 1.14, where the final equality holds when 
𝑑𝑛𝐿

𝑑𝑛𝑐
≫ 1: 

 
𝜏𝑛 = (1 +

𝑑𝑛𝐿

𝑑𝑛𝑐
) 𝜏0 = (1 +

𝑑𝑛𝐿

𝑑𝑛𝐸𝐹

𝑑𝑛𝐸𝐹

𝑑𝑛𝑐
) 𝜏0

= (
𝑘𝐵𝑇

𝑁𝑐
𝑒𝑥𝑝 (

𝐸𝑐−𝑛𝐸𝐹

𝑘𝐵𝑇0
) 𝑔(𝑛𝐸𝐹)) 𝜏0 

1.14 

Here, g(nEF) is the distribution of trapped states that is often experimentally observed to 

increase exponentially with voltage. Equation 1.14 highlights that it is not the absolute 

voltage (quasi-Fermi level) applied to the cell that determines the electron lifetime, but the 

difference between the applied voltage and the conduction band energy, (Ec-nEF). The 

absolute value of the conduction band energy is influenced by the electrolyte and surface 

bound species. Therefore, comparisons made between different cells are often inaccurate 

when done at the same voltage because (Ec-nEF) is not the same. Assuming the localized and 

conduction bands shift together (the relative density and energetic position of the localized 

and conduction band states is constant), (Ec-nEF) will be matched in different cells when the 

cells have the same total electron concentration. Since it is difficult to determine the 

conduction band energy in mesoporous thin films of TiO2 nanocrystallites, the total charge is 

often used instead because it can be readily measured. It is worth noting the similarity of this 

method to measuring kinetic parameters is conventional systems (solution reaction rates, for 
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example), where the concentration of the reacting species must be explicitly taken into 

account.  

As with the electron lifetime, the electron diffusion coefficient, 𝐷𝑛, can be expressed 

relative to the free electron diffusion coefficient, 𝐷0, according to Equation 1.15: 

 
𝐷𝑛 = (1 +

𝑑𝑛𝐿

𝑑𝑛𝑐
)

−1

𝐷0 = (
𝑘𝐵𝑇

𝑁𝑐
𝑒𝑥𝑝 (

𝐸𝑐−𝑛𝐸𝐹

𝑘𝐵𝑇0
) 𝑔(𝑛𝐸𝐹))

−1

𝐷0 1.15 

Again it is clear that in this model, comparisons should be performed at matched (Ec-nEF) or 

total charge. In practice, the same charge often does not coincide with matched operating 

voltage or incident light intensity. Therefore, measurements are often performed under a 

wide range of operating conditions and compared over similar values in electron 

concentration.   

Knowing the diffusion coefficient and electron lifetime, the diffusion length, 𝐿𝑛, 

defined to be the average distance an electron travels in the thin film before recombination, 

can be calculated. This model predicts a constant diffusion length according to Equation 

1.16.  

 𝐿𝑛 = √𝜏𝑛𝐷𝑛 = √𝜏0𝐷0 1.16 

Reports of the diffusion length as a function of voltage are often observed to generally follow 

this model, i.e. are constant, however slight differences are often observed that have been 

attributed to nonlinear recombination or recombination from trapped states.93–95   

Charge collection efficiency is related to the diffusion length by knowing the 

thickness of the TiO2 thin film, d. If 𝐿𝑛 >> d, the collection efficiency is essentially unity. 

However, when 𝐿𝑛 and d become comparable, electron losses are unavoidable. There have 



30 

been several reports of how to relate 𝐿𝑛 to collection efficiency, 𝜂, shown in Equations 1.17-

1.19:96    

 
𝜂 =

𝐿

𝑑
𝑡𝑎𝑛ℎ (

𝑑

𝐿
) 1.17 

 𝜂 = 1 −
𝜏𝑐,𝑛

𝜏𝑣,𝑛
 1.18 

 
𝜂 = 1 −

𝜑𝑜𝑐(𝑉)

𝜑𝑠𝑐(𝑉)
 1.19 

where 𝜏𝑐,𝑛 and 𝜏𝑣,𝑛 and the transient photocurrent and photovoltage lifetimes at electron 

concentration n, respectively, and 𝜑𝑜𝑐(𝑛) and 𝜑𝑜𝑐(𝑛) are the incident light intensities to 

generate a given electron concentration within the TiO2 thin film at open circuit and short 

circuit, respectively. These methods generally agree for 𝐿𝑛/d > 2, which corresponds to ~90 

% charge collection efficiency, but differ when significant losses occur. It is unclear how a 

constant diffusion length calculated this way is reconciled with several reports that the 

collection efficiency decreases at the power point or under open circuit conditions of  

DSSC.21,22 It is possible that these authors observed a relatively small fraction of injected 

electron recombine prior to their impact on transient electronic techniques that measure the 

response at the collecting substrate.  

Investigating the electron lifetime and diffusion coefficient as a function of total 

charge within the thin films provides a ‘snapshot’ of the fundamental processes governing 

cell efficiency. During the course of my Ph.D. studies I built an instrument, termed STRiVE 

for “Sequential Time-Resolved current (i) Voltage Experiments,” that is capable of 

automatically measuring these parameters under a wide range of operating conditions. For 

details about the hardware and software, see Chapter 7 and the Appendix.   
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CHAPTER 2: ELECTRIC FIELDS AND CHARGE SCREENING IN DYE 

SENSITIZED MESOPOROUS NANOCRYSTALLINE TiO2 THIN FILMS* 

2.1 Introduction 

The 1991 Nature paper by Grätzel and O’Regan introduced the clever idea of 

utilizing mesoporous thin films of nanocrystalline TiO2 in photoelectrochemical cells.1 The 

idea turned out to be revolutionary and created whole new fields of science based on energy 

conversion with nanometer-sized semiconductor materials.2,3 The nanometer length scale 

often results in very different photoelectrochemical behavior than that observed with bulk 

semiconductor materials. For example, in single crystal and thin films materials, 

electron−hole pairs are efficiently separated by a surface electric field (the “depletion” or 

“space charge” region) that is absent in weakly doped semiconductor nanocrystallites.4 In 

fact, the three bias conditions identified for single crystal semiconductor materials, that is, 

depletion, inversion, and accumulation, are not particularly useful for quantifying or 

modeling the photo-electrochemistry of semiconductor nanocrystallites. In the case of dye-

sensitized solar cells (DSSCs), it has generally been assumed that any electric fields that 

might be present under illumination would be completely screened from the surface anchored 

dye molecules by the large dielectric constant of TiO2, εr =7−50;5 the high permittivity of 

acetonitrile, εr = 37;6 and the half molar ionic strength of the electrolyte.  
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The assumption of quantitative charge screening at sensitized TiO2 interfaces was 

proven to be incorrect in 2010, when two groups reported that electrons injected into TiO2 

had a profound influence on the absorption spectrum of dye molecules anchored to the 

surface.7,8 The absorption changes measured after the injection of charge were similar to 

those previously reported in traditional Stark spectroscopic measurements9−12 but were 

unidirectional due to the fixed orientation of the molecular dipole moment relative to the 

TiO2 surface. With some assumptions, the spectral shifts reported directly on the magnitude 

of the electric field that was found to be substantial, on the order of 2.7 MV/cm.7 It remains 

unclear whether this electric field or charge screening is relevant to power conversion in 

DSSCs. The spectral shift of the dye molecules is generally small and does not appreciably 

change the light harvesting efficiency of the sensitized thin film. Likewise, the potential drop 

experienced by the dye molecules represents a fairly small value of ∼40 mV that corresponds 

to only about 5% of the open circuit photovoltages reported for gold standard DSSCs.7 In 

fact, charge screening may have a deleterious influence on energy conversion efficiencies 

with anionic redox mediators like I−/I3
−. Synonymous to increasing the width of the space-

charge layer in bulk semiconductor solar cells, increasing the Debye length for charge 

screening at the semiconductor electrolyte interface should aid in the generation of even 

further spatially separated and longer-lived anionic charges, that is, TiO2(e−)s and I3
−, and, 

hence, improve solar conversion efficiencies. While speculative, fundamental studies of 

surface electric fields and charge screening may provide new insights into the fabrication of 

superior DSSCs. Such studies are also of intellectual interest in their own right.  

An intriguing observation from previous research was that following pulsed laser 

excitation of sensitized TiO2 thin films immersed in an acetonitrile electrolyte, the magnitude 
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of the Stark effect decreased over time periods in which the TiO2(e
−) concentration was 

constant.7 This behavior was attributed to the reorganization of interfacial ions and solvent 

molecules responding to the electrons that were photoinjected into TiO2, a process often 

referred to as “screening.” While screening of this type is well-known in the electrochemical 

and photoelectrochemical literature,13−18 to our knowledge this represents the first 

opportunity to probe the dynamics of this process on short time scales. The kinetics for 

charge screening were reported to be sensitive to whether Mg2+ or Li+ cations were present in 

the electrolyte.19 The study of [Ru(dtb)2(dcb)] (PF6)2, where dtb is 4,4′-(tert-butyl)2-2,2′-

bipyridine and dcb is 4,4′-(CO2H)2-2,2′-bipyridine, was utilized as the compound is a 

particularly sensitive probe of the surface electric field, Scheme 2.1. Here these studies were 

expanded to include Li+, Na+, Mg2+, and Ca2+. These ions influenced the magnitude of the 

electric field experienced by the compound as well as the screening dynamics quantified after 

excited state injection. These cations were also found to alter the interfacial density of states 

and the excited state injection yields. 

Scheme 2.1: Structure of Ru(dtb)2(dcb)2+ 

 



41 

2.2 Experimental 

Materials: The following reagents and substrates were used as received from the indicated 

commercial suppliers: acetonitrile (CH3CN; Burdick & Jackson, spectrophotometric grade); 

deionized water; lithium perchlorate (LiClO4; Sigma-Aldrich 99.99%); sodium perchlorate 

(NaClO4; Sigma-Aldrich, 99%); magnesium perchlorate (Mg(ClO4)2; Sigma-Aldrich, ACS 

reagent); calcium perchlorate tetrahydrate (Ca(ClO4)2· 4H2O; Sigma-Aldrich, 99%); tetra-n-

butylammonium perchlorate (TBAClO4; Aldrich, ≥99.0%); tetra-n-butylammonium iodide 

(TBAI; Fluka, ≥99.0%); argon gas (Airgas, >99.998%); oxygen gas (Airgas, industrial 

grade); titanium(IV) isopropoxide (Sigma-Aldrich, 97%); fluorine-doped SnO2-coated glass 

(FTO; Hartford Glass Co., Inc., 2.3 mm thick, 15 Ω/□); and glass microscope slides (Fisher 

Scientific, 1 mm thick). [Ru(dtb)2(dcb)](PF6)2 was available from previous studies.7  

Preparations: Transparent TiO2 nanocrystallites (anatase, ∼15 nm in diameter) were 

prepared by acid hydrolysis of Ti(i-OPr)4 using a sol−gel method previously described in the 

literature.20 The sols were cast as transparent mesoporous thin films by doctor blading onto 

glass microscope slides for spectroscopic measurements and transparent FTO conductive 

substrates for electrochemical measurements with the aid of transparent cellophane tape as a 

mask and spacer (∼10 μm thick). The films were sintered at 450 °C for 30 min under an 

atmosphere of O2 flow and either used immediately or stored in an oven for future use. 

Sensitization was achieved by immersing the thin films in acetonitrile sensitizer solutions 

(mM concentrations) for hours to days depending on the desired surface coverage. Unless 

otherwise noted, the thin films were sensitized to roughly maximum surface coverage, Γ ∼ 7 

× 10−8 mol/cm2, which was determined using a modified Beer− Lambert law,21 
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 𝐴𝑏𝑠 = 1000 × 𝜀 ×  Γ 2.01 

 

where ε is the molar decadic extinction (absorption) coefficient (16400 M−1cm−1 at 465 nm) 

that was assumed to have the same value when anchored to the surface. Sensitized films were 

soaked in neat acetonitrile for at least 1 h prior to experimentation.  

Spectroscopy: UV−Visible Absorption: Steady-state UV−visible absorption spectra were 

obtained on a Varian Cary 50 or an Agilent Cary 60 spectrophotometer at room temperature 

in 1.0 cm path length quartz cuvettes. Sensitized TiO2 thin films were positioned at a 45° 

angle in cuvettes filled with the indicated acetonitrile solutions. The solutions were purged 

with argon gas for a minimum of 30 min prior to transient absorption and 

spectroelectrochemical studies.  

Photoluminescence: Steady-state photoluminescence (PL) spectra were obtained with a Spex 

Fluorolog spectrophotometer equipped with a 450 W Xe lamp for the excitation source. PL 

spectra of sensitized thin films were obtained under ambient conditions at room temperature 

with excitation 45° to the surface and detection from the front face of the sample. Quenching 

experiments were performed by obtaining the PL spectrum of the sensitized thin film in neat 

solvent and after replacement of the neat solvent with the electrolyte solution of interest. 

Transient Absorption: Nanosecond transient absorption measurements were obtained with an 

apparatus similar to that which has been previously described in the literature.22 Briefly, 

samples were excited by a Q-switched, pulsed Nd:YAG laser (Quantel U.S.A. (BigSky) 

Brilliant B; 5−6 ns full width at half- maximum (fwhm), 1 Hz, ∼10 mm in diameter) tuned to 

532 nm with the appropriate nonlinear optics. The excitation fluence was measured by a 
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thermopile power meter (Molectron) and was typically 1−5 mJ/pulse so that the absorbed 

fluence was typically <1 mJ/pulse. A 150 W xenon arc lamp served as the probe beam and 

was aligned orthogonal to the laser excitation light. The lamp was pulsed with 100 V for 

detection at sub-100 μs time scales. Detection was achieved with a monochromator (Spex 

1702/04) optically coupled to an R928 photomultiplier tube (Hamamatsu). Appropriate glass 

filters were positioned between the probe lamp/sample and the sample/detection 

monochromator. Transient data was acquired with a computer-interfaced digital oscilloscope 

(LeCroy 9450, Dual 350 MHz) with an overall instrument response time of ∼10 ns. 

Typically, 30 laser pulses were averaged at each observation wavelength over the range 

400−750 nm, at 3 or 5 nm intervals. Full spectra were generated by averaging 2−10 points on 

either side of the desired time value to reduce noise in the raw data. For single wavelength 

measurements, 90−180 laser pulses were typically averaged to achieve satisfactory signal-to-

noise ratios. Relative excited-state electron injection yields were measured by comparative 

actinometry on the nanosecond time scale for samples in different metal cation solutions 

using lithium as the reference.23,24  

Electrochemistry: A potentiostat (Bioanalytical Scientific Instruments, Inc. (BAS) model 

CV-50W or EC Epsilon electrochemical analyzer) was employed for electrochemical 

measurements in a standard three-electrode arrangement with a TiO2 thin film working 

electrode, a Pt gauze counter electrode (BAS), and a nonaqueous silver reference electrode 

(BAS). The ferrocenium/ferrocene (Fc+/0) half-wave potential was measured both before and 

after experiments in a 100 mM TBAClO4/acetonitrile electrolyte that was used as an external 

standard to calibrate the reference electrode. All potentials are reported versus the normal 

hydrogen electrode (NHE) through the use of a conversion constant of −630 mV from NHE 
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to Fc+/0 in acetonitrile at 25 °C.25 Spectroelectrochemistry was conducted via simultaneous 

application of an applied potential while monitoring the UV−vis absorption spectra of TiO2 

thin-film electrodes in the indicated electrolytes. Each applied potential was held for 2−3 

min, until the absorbance in the 700−900 nm region became invariant in time. Single-

wavelength absorption features plotted as a function of the applied potential were 

proportional to the cumulative formation/loss of states; for the TiO2(e
−) absorption features, 

this was directly related to the cumulative TiO2 density of acceptor states.26  

Spectroelectrochemical charge extraction measurements were performed on 

unsensitized TiO2 thin films to obtain the extinction coefficient of the TiO2(e
−)s. In these 

experiments, the absorbance at 700 nm was recorded as the potential was stepped from +200 

mV to increasingly negative values. The charge present in the film was measured 

coulometrically after stepping the potential back to the original +200 mV value.27−29 The 

absorption values were corrected for the 45° angle of the thin film in relation to the optical 

path. Each charge extraction cycle was repeated 3 times at each applied bias.  

Data Fitting: Kinetic data fitting and spectral modeling were performed in Origin 9.0 

with least-squares error minimization accomplished using the Levenberg−Marquardt iteration 

method. 

2.3 Results 

Thin films of TiO2 on glass substrates were reacted with Ru(dtb)2(dcb)2+, abbreviated 

Ru(dtb)2(dcb)/TiO2, in acetonitrile solutions to a maximum surface coverage, Γ ∼ 7 × 10−8 

M−1 cm2.7 Representative absorption spectra of Ru(dtb)2(dcb)/TiO2 immersed in neat 

acetonitrile and 100 mM perchlorate acetonitrile solutions are shown in Figure 2.01.  
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Figure 2.01. Steady-state UV−vis absorbance (A) and photoluminescence (B) spectra of 

Ru(dtb)2(dcb)/TiO2 in neat acetonitrile and in the presence of 100 mM metal perchlorate 

electrolyte. 

The Ru(dtb)2(dcb)/TiO2 samples exhibit a metal-to-ligand charge transfer (MLCT) 

absorption band centered at 465 nm in neat acetonitrile and the fundamental TiO2 absorption 

below 380 nm. The spectrum measured in neat acetonitrile and in 100 mM TBAClO4 (where 

TBA is tetra-n-butylammonium) were within experimental error the same. Replacement of 

the neat acetonitrile solvent bath with 100 mM metal perchlorate salt acetonitrile electrolytes 

resulted in a bathochromic shift, the magnitude of which was dependent on the cation. The 

MLCT absorption shifts to ∼480 nm for monovalent cations, Li+ and Na+, and to ∼486 nm 

for divalent cations, Mg2+ and Ca2+, shown in Figure 2.01A.  

Visible light excitation of the MLCT absorption band resulted in room temperature 

photoluminescence (PL), shown in Figure 2.01B. In neat acetonitrile, Ru(dtb)2(dcb)/TiO2 

exhibited a PL maximum at 665 nm. Upon replacement of the neat solvent with 100 mM 
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metal perchlorate electrolytes: the PL maximum red-shifted and the PL intensity was 

quenched to varying extents dependent on the nature of the cation. The corresponding 

quantities are compiled in Table 2.1. 

Table 2.1. Photophysical and Electrochemical Properties of Ru(dtb)2(dcb)/TiO2 in 100 mM 

Metal Perchlorate Acetonitrile Solutions 

cation 

Absmax
a 

(nm) 

PLmax 

(nm) 

ΔGes
b 

(eV) 

E0(RuIII/II)c 

(V vs 

NHE) and 

(α) 

E0(RuIII/II*)d 

(V vs NHE) 

Neat 

CH3CN 

465 665 2.05   

Li+ 480 700 1.86 1.46 

(1.39) 

-0.40 

Na+ 480 690 1.88 1.43 

(1.35) 

-0.45 

Mg2+ 486 710 1.88 1.49 

(1.58) 

-0.39 

Ca2+ 486 700 1.90 1.50 

(1.74) 

-0.40 

aWavelengths are ±1 nm. bThe free energy stored in the excited state. cThe RuIII/II reduction 

potential and the ideality factor, α. dThe excited state reduction potential calculated using 

Equation 2.03. 

Electrochemical reduction of unsensitized TiO2 thin films resulted in a blue shift of 

the fundamental absorption and the appearance of a broad absorption in the visible region. 

When measured as difference spectra, the blue shift of the fundamental absorption appears as 

a bleach, the magnitude of which was sensitive to the identity of the cation. Charge 

extraction experiments were performed on unsensitized TiO2 thin films to determine the 

molar extinction coefficients of the TiO2(e
−) absorption band in each of the four metal 
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perchlorate electrolytes. The absorption at 700 nm was monitored while the applied potential 

was stepped from 200 mV to −400 mV vs NHE for 65 s and then returned to the initial 200 

mV potential. The absorption was corrected for the 45° angle of the thin film relative to the 

optical path. Plotting the corrected absorbance versus the extracted charge from the film at 

multiple potentials allowed for determination of the molar extinction coefficient from the 

slope of a linear fit to the data, shown in Figure 2.02. The extinction coefficient was 

independent of the electrolyte composition within experimental error and was determined to 

be ε(TiO2(e
−)) = 930 ± 50 M−1cm−1 at 700 nm. The application of more negative potentials, 

that is, <−1.2 V, resulted in new absorption features that were not studied in detail due to the 

irreversible nature of the absorption changes.  

 

Figure 2.02. Absorbance as a function of the charge extracted from un-sensitized TiO2 thin 

films immersed in 100 mM metal perchlorate acetonitrile solutions. The black line indicates 

the best fit to the data which yields a molar extinction coefficient of 930 ± 50 M-1cm-1. 

 

In order to understand the ground-state behavior, spectroelectrochemistry was 

performed on sensitized TiO2 thin films in 100 mM metal perchlorate acetonitrile 
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electrolytes. Application of a positive applied potential resulted in spectral changes consistent 

with the oxidation of RuII to RuIII. The equilibrium potential where the concentration of RuII 

and RuIII were equal was taken as the E°(RuIII/II) reduction potential for Ru(dtb)2(dcb)/TiO2. 

The spectroelec- trochemical data were fit to Equation 2.01 

 
𝑥 =

1

1 + 10𝑒𝑥𝑝 (
𝐸𝑎𝑝𝑝 − 𝐸0

𝛼 × 59 𝑚𝑉
)

 
2.01 

 

where x is the fraction of molecules in each oxidation state, Eapp is the applied potential, and 

α is the ideality factor. Knowledge of E°(RuIII/II) allowed for the estimation of the reducing 

power of the excited state, which was calculated through a free energy cycle using Equation 

2.02: 

 𝐸0(𝑅𝑢𝐼𝐼𝐼/𝐼𝐼∗) = 𝐸0(𝑅𝑢𝐼𝐼𝐼/𝐼𝐼) − ∆𝐺𝐸𝑆 2.02 

where ΔGES is the Gibbs free energy stored in the MLCT excited state determined by a 

tangent line extrapolation back to zero intensity on the high energy side of the PL spectrum. 

The formal reduction potentials and ideality factors are summarized in Table 2.1.  

Application of a forward (negative) bias resulted in reduction of TiO2 that was 

monitored by the characteristic broad absorption features from 400 to 1100 nm attributed 

toTiO2(e
−)s. Concomitant with the appearance of TiO2(e

−)s, the MLCT absorption band blue-

shifted. Both of these spectral features are evident in Figure 2.03 for a Ru(dtb)2(dcb)/TiO2 

thin film in 100 mM LiClO4 acetonitrile solution with an applied bias ranging from 150 to 

−750 mV vs NHE. The normalized spectroelectrochemical absorption spectra are shown in 
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Figure 2.03A and after subtraction of the contributions from TiO2(e
−)s in Figure 2.03B. 

Difference spectra of these same data are shown in Figure 2.03C,D.  

 

Figure 2.03. Spectra of a potentiostatically controlled Ru(dtb)2(dcb)/TiO2 film in 100 mM 

LiClO4 acetonitrile solution (A) and after subtraction of the long-wavelength TiO2(e
−) 

absorption (B). The difference spectra for the data shown in A and B are given in C and D, 

respectively. The insets in A and B indicate the electric field strength calculated by two 

different analyses. The spectra in dark blue were recorded at +150 mV and spectra recorded 

at more negative potentials (up to −750 mV) are indicated in red. The arrows indicate the 

direction of change with increased negative applied potential. 
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The electric field experienced by the surface-bound sensitizers as a function of the 

applied potential bias was calculated using both peak-to-peak and first-derivative analysis 

methods and are compared in the insets of Figure 2.03A,B. For the peak-to-peak analysis, the 

electric field was calculated using Equation 2.03: 

 
∆𝜈 = −

|∆𝜇⃑| |𝐸⃑⃑| 𝑐𝑜𝑠 𝜃

100 ℎ𝑐
 2.03 

 

where h is Planck’s constant, c is the speed of light in a vacuum, Δυ is the change in 

spectroscopic peak maximum (in wavenumbers), ∆𝜇⃑ is the change in dipole moment vector 

between the ground and the excited state, 𝐸⃑⃑ is the electric field vector, and θ is the angle 

between the latter two quantities. With the assumption of θ = 180° and ∆𝜇⃑= 4.75 D,9,30 the 

electric field was calculated at each applied bias. Similarly, the first-derivative analysis was 

performed using Equation 2.04: 

 
∆𝜈 = −

𝑑𝐴

𝑑𝜈

∆𝜇⃑𝐸⃑⃑

ℎ
 2.04 

 

where ΔA is the difference spectrum, or delta absorbance, and dA/dν is the first derivative of 

the absorbance spectrum (in wavenumbers).8 The electric field calculated using both the 

peak-to-peak analysis and the first-derivative analysis were in good agreement, as seen in the 

insets of Figure 2.03A,B.  
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Figure 2.04. Electric field experienced by Ru(dtb)2(dcb)/TiO2 in acetonitrile solutions 

containing 100 mM Li+,Na+,Mg2+,or Ca2+ as a function of (A) the applied potential and (B) 

the number of TiO2(e
−)s on a per particle basis. 

The electric field experienced by the surface-bound sensitizers was calculated using 

the electron corrected spectra and the first-derivative method for all four cations and is shown 

in Figure 2.04 as a function of the applied potential (A) and the estimated electron 

concentration per TiO2 nanoparticle (B). The latter was calculated by converting the applied 

potential to the number of TiO2(e
−)s per 15 nm diameter particle through the measured 

absorbance and Beer’s law using the measured extinction coefficient and the effective optical 

path length for a 10 μm thick film of 50% porosity.31 For example, in 100 mM metal 

perchlorate solution where ε = 930 M-1cm−1, an absorbance of 0.0124 would correspond to 

20 TiO2(e
−)s/particle with Equation 2.05: 

 𝐴𝑏𝑠 = 𝜀 × 𝑙 × 𝑐(𝑇𝑖𝑂2(𝑒−))

= 930 (𝑀−1𝑐𝑚−1) × 14.14 × 10−4(𝑐𝑚) × 50% 

2.05 
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×
𝑇𝑖𝑂2(𝑒−)

(4/3)𝜋(7.5 × 10−9(𝑚))3 × 𝑁𝐴 × 103(𝐿/𝑚3)
 

The relative injection yields were measured by comparative actinometry 100 ns after 

pulsed 532 nm light excitation of Ru(dtb)2(dcb)/TiO2 in 100 mM metal perchlorate 

acetonitrile solutions.12 The yields were within experimental error unity for Li+,Mg2+, and 

Ca2+ and were found to be 0.95 for Na+.  

Pulsed light excitation into the MLCT absorption band of Ru(dtb)2(dcb)/TiO2 thin 

films immersed in 100 mM metal perchlorate solutions with 250 mM of tetrabutylammonium 

iodide, present to regenerate the sensitizer, generated long-lived charge separated states, 

composed of TiO2(e
−)s and triiodide. Representative transient absorption spectra shown in 

Figure 2.05. 

 

Figure 2.05. Transient absorption spectra obtained 2.5 μs after pulsed 532 nm excitation of 

Ru(dtb)2(dcb)/TiO2 in acetonitrile electrolyte solutions containing 100 mM of the indicated 

perchlorate salts and 250 mM tetra-n-butylammonium iodide. 
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were obtained 2.5 μs after laser excitation, a delay time chosen to ensure that all sensitizers 

had been regenerated and all iodide oxidation chemistry was complete. The transient 

absorption spectra exhibit (1) small absorption features from 400−425 nm, attributed to 

formation of triiodide; (2) a first-derivative shaped feature centered around 485 nm, 

attributed to the TiO2(e
−)-induced Stark effect; and (3) absorption from 600−750 nm, 

attributed to TiO2(e
−)s. The transient absorption spectra were modeled with first-derivatives 

of the ground-state absorption spectra and the electric fields calculated using Equation 2.04 

are collected in Table 2.2. 

Table 2.2. Ionic Radii, Spectral Shifts, and Electric Field Strength for Ru(dtb)2(dcb)/TiO2 

cation 

ionic 

radiia 

electrochemically 

accumulated TiO2(e
-)sb photoinjected TiO2(e

-)sc 

electric field (MV/cm) Δν (cm-1) electric field (MV/cm) 

Li+ 0.76 1.3 53 0.66 

Na+ 1.02 1.1 22 0.28 

Mg2+ 0.72 1.8 78 0.98 

Ca2+ 1.00 2.2 30 0.38 

aIonic radii obtained from Shannon, ref 33. bElectric field change measured after the 

potentiostatic injection of approximately 20 TiO2(e
−) per nanoparticle. cChange in electric 

field measured 2.5 μs after pulsed laser excitation. 

Single-wavelength absorption changes monitored at wavelengths characteristic for 

TiO2(e
−)s and the Stark effect were quantified over 7 orders of magnitude, from 100 ns to 1 s, 

shown in Figure 2.06. Care was taken to adjust the incident irradiance such that the long 

wavelength absorption measured 2.5 μs after the laser excitation was the same for all the 

sensitized materials, such that the number of TiO2(e
−)s was constant. The observed kinetics 
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were nonexponential, but were well-modeled by the Kohlrausch−Williams−Watts (KWW) 

stretched exponential function, Equation 2.06 

 𝐼(𝑡) = 𝐼0𝑒𝑥𝑝[(−𝑘𝑡)𝛽] 2.06 

 

where I0 is the initial amplitude, k is a characteristic rate constant, and β is inversely 

proportional to the width of an underlying Lévy distribution of rate constants, 0 < β <1.7,32 

The data were fit with β fixed to a value of 0.2 and the abstracted rate constants were kLi+,Na+ 

=5 × 104 s−1 and kMg2+,Ca2+ =5 × 102 s−1. 

 

Figure 2.06. Single-wavelength transient absorption kinetic data of Ru(dtb)2(dcb)/TiO2 in 

acetonitrile electrolyte solutions containing 100 mM of the indicated perchlorate salts with 

250 mM tetra-n-butylammonium iodide observed at the maximum of the Stark effect bleach, 

∼500−510 nm. Overlaid in black are fits to the KWW function. The dotted vertical line 

represents the time when the TiO2(e
−) concentration began to decrease due to recombination 

with the redox mediator. 
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2.4 Discussion 

The nature of the cations present in 100 mM acetonitrile electrolytes surrounding a 

Ru(dtb)2(dcb)/TiO2 sensitized thin film were varied to test whether they had an influence on 

the surface electric field and the dynamics of interfacial charge screening. This was indeed 

realized and both the kinetics and the electric field were found to be acutely sensitive to the 

nature of the cation. As is often found to be the case in studies of sensitized materials, the 

alteration of this one cation variable influenced many properties of the sensitized material, 

including the interfacial energetics and, hence, the excited state injection yields. The 

plausible origin(s) of the cation-dependent interfacial energetics are described first followed 

by a description of the electric fields and charge screening dynamics.  

Cation Dependent Interfacial Redox Properties: The adsorption of ions on semiconductor 

surfaces is known to have a strong influence on the valence and conduction band edge 

positions. A well-documented example for metal oxide semiconductors in aqueous solution is 

the 59 mV shift of the band edges that accompanies a factor of 10 change in the proton 

concentration.26,34,35 The surface adsorption of alkali and alkaline earth metal cations can 

have a similar influence and are hence sometimes referred to as “potential determining 

ions”.36−39 In general, cation adsorption shifts the band edge positions positive on an 

electrochemical scale away from the vacuum level. High efficiency dye-sensitized solar cells 

(DSSCs) utilize anatase TiO2 in nonaqueous solvents, very often CH3CN, where dramatic 

energetic shifts have been reported. For example, the conduction band edge position has been 

reported to be −2.1 V vs SCE in 1.0 M TBAClO4, where the tetrabutylammonium (TBA) 

cation was reasonably asserted to interact only weakly with the TiO2 surface, and shifted 1.1 

V positive when Lewis acidic Li+ cations were present.36 Similar behavior has been reported 



56 

in other nonaqueous electrolytes.37,40 The band edge position often varies nonlinearly with 

cation concentration and one generally needs to determine the values experimentally under 

the conditions of interest.  

Spectro-electrochemistry has been widely utilized to characterize the acceptor states 

of the mesoporous anatase TiO2 thin films used in DSSCs.29,41,42 Reduction of TiO2 results in 

a black coloration as well as a blue shift of the fundamental absorption. For a given cation, 

the measured spectra were normalizable over the potential range that was investigated, 0.0 to 

−1.0 V vs NHE. The extinction coefficients were calculated from the measured absorption 

spectra and the amount of charge present in the film as was determined by the charge 

extraction technique of unsensitized TiO2.
27−29 The value measured at 700 nm of ε = 930 ± 50 

M−1 cm−1 were within experimental error the same and in good agreement with previously 

published values.29,40,43  

While the coloration associated with TiO2 reduction is well-known, an assignment of 

the underlying electronic transition(s) is not. The blue shift of the fundamental absorption has 

been attributed to both an electric field15,44,45 and a band-filling, that is, a Burstein−Moss shift 

effect.40,42,46 There is no consensus on which assignment is correct. Under the conditions 

described herein, the absorption increases through the visible region and displays no clear 

peak out to 1100 nm. The lack of a maximum and the high extinction coefficient are 

inconsistent with assignment as a ligand field (t2g → eg*) transition, like that seen in Ti(III) 

compounds such as Ti(H2O)6
3+, λmax = 475 nm, and ε =5 M−1cm−1.47 This implies that the 

long wavelength TiO2 absorption has some intervalence TiIV/III character and results from 

electronic transitions that are not easily reconciled on a molecular level. All the unsolvated 

cations under study are small enough to intercalate into the (101) anatase TiO2 lattice where 
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they could inductively interact with Ti centers throughout the nanocrystallite.33,36,40,48−51 

Under more strongly reducing conditions, new absorption features appear that were clearly 

dependent on the nature of the cation present. The spectra measured in a Li+ electrolyte were 

consistent with the known spectrum of the fully intercalated Li0.5TiO2 phase.40,52 Strong 

reduction in the presence of the other cations may also lead to intercalated phases; however, 

this was not studied in as much detail, as such conditions were found to irreversibly change 

the TiO2 material, as evidenced by significant hysteresis in absorption versus applied 

potential scans. 

Application of a sufficiently positive potential to a Ru(dtb)2(dcb)/TiO2 thin film 

resulted in absorption changes due to the oxidation of Ru(II) to Ru(III). The electrochemistry 

itself was non-Nernstian. The equilibrium potential where the concentrations of the two 

redox states were equal was taken as an estimate of the formal reduction potential. The 

E0(RuIII/II) values were about 50 mV more positive with the dicationic Mg2+ and Ca2+ relative 

to Na+ and Li+, that is, E0(RuIII/II)= 1.50 V versus E0(RuIII/II) = 1.45. More significant were 

the deviations from Nernstian behavior, where a factor of 10 change in concentration 

required 80 mV for Li+ and 103 mV for Ca2+, Table 2.1. Previous studies of non-Nernstian 

redox chemistry of molecules anchored to TiO2 concluded that the nonidealities resulted 

from surface electric fields.53,54 Since cation adsorption does significantly influence the 

electric field experienced by the sensitizer (see below), the results here are in agreement with 

this conclusion.  

The spectro-electrochemical data was utilized to construct a density of states diagram 

using a previously described method53,55,56 for Ru(dtb)2(dcb)/TiO2 in the different 

electrolytes, Figure 2.07. The density of TiO2 acceptor states was found to increase 
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exponentially as the Fermi-level was raised toward the vacuum level, behavior that is 

consistent with many other reports.4,55 The cation dependency is clearly seen at any potential 

of interest. For example at −0.5 V, a potential that corresponds with the excited state 

reduction potential, the density increases in the order Na+ <Li+ <Ca2+ <Mg2+, a trend that was 

clear at all potentials where a measurable concentration of TiO2(e
−)s were present. The 

chemical capacitance distributions for the RuIII/II redox chemistry are not Gaussian and 

reflect the non-Nernstian redox chemistry described above. The magnitudes of the chemical 

capacitances were proportional to the surface coverage, and the different values given in 

Figure 2.07 were not significant and likely result from the unknown extinction coefficients of 

the surface anchored compounds. The reduction potential of the thermally equilibrated 

excited states, E0(RuIII/II*), were calculated through a thermochemical cycle, and the 

distribution was assumed to be the same as the ground state.  
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Figure 2.07. Density of states obtained from spectroelectrochemical measurements of 

Ru(dtb)2(dcb)/TiO2 sensitized thin films in 100 mM acetonitrile electrolytes of the indicated 

perchlorate salts. 

The free energy stored in the thermally equilibrated excited state ΔGes was abstracted 

from the steady state photoluminescence (PL) spectra. It was found that the presence of 100 

mM of these cations in the electrolyte that surrounded a Ru(dtb)2(dcb)/TiO2 thin film resulted 

in a bathochromic (red) shift of both the absorption and the PL spectra of magnitude Na+ 

<Li+ <Ca2+ <Mg2+, Figure 2.01. The absorption data is discussed in more detail in the 

following section. The PL spectral shifts were accompanied by a dramatic quenching of PL 

intensity. The decrease in intensity is reasonably attributed to quenching by the TiO2 acceptor 

states. Indeed, the interfacial density of states shown in Figure 2.07 indicates that excited 

state injection should be favorable for Ru(dtb)2(dcb)/TiO2 under all conditions. However, PL 

is an indirect probe of electron transfer and the radiative and nonradiative rate constants for 

excited state relaxation may also be influenced by cation adsorption. Indeed, it was recently 
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shown that the PL spectra of Ru(dtb)2(dcb)/TiO2 was sensitive to the excitation irradiance 

and blue-shifted as the number of incident photons was increased, behavior attributed to a 

local electric field.30 If the PL quenching were solely due to excited state injection and 

injection did not occur in neat acetonitrile, then the PL data would indicate injection yields of 

0.95 for Na+ and essentially unity for the other cations. The values measured by comparative 

actinometry 100 ns after laser excitation were found to be unity for all the cations except 

Na+, indicating that excited state electron transfer to TiO2 was indeed the main excited state 

relaxation pathway. The injection yields were consistent with previous studies that showed a 

correlation between injection yields and the charge-to-size ratio.39 This prior work was done 

at only 2 mM concentrations where the present studies were performed under concentrations 

where the influence of the cation had reached its maximum value.  

Electric Fields and Screening: Abstraction of the electric field strength from the 

absorption data was accomplished by an analysis described in the Results and in previous 

publications.7,8,19,30 In brief, the magnitude of the absorption shift that accompanied a change 

in the electric field experienced by the surface anchored Ru compounds was quantified by 

both first- derivative and peak-to-peak analyses and found to give the same values within 

experimental error. The first-derivative spectral features indicated that the field was collinear 

with the dipole moment change that was assumed to be ∆𝜇⃑ = 4.75 D under all conditions 

studied.9,30 Previous studies have shown that orientation of the dipole moment vector change 

that accompanies light excitation parallel or antiparallel to the surface electric field results in 

absorption shifts that occur in opposite directions.8 Very recent studies have shown that 

electroabsorption can be used to quantify the distance between the molecular chromophore 

and the TiO2 surface.57 The data reported herein have enabled characterization of electric 
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field changes that accompany injection in the presence of electrolytes where only the identity 

of the cation was altered.  

The adsorption of ions to semiconductor surfaces is known and expected to generate 

local electric fields.38,58−63 Previous studies have focused mainly on Li+ cations that are most 

widely utilized in DSSCs. Adsorption isotherms provided an estimate of the room 

temperature equilibrium constant, K =15−80 M−1.7 Here it was discovered that closely related 

spectral shifts were observed with Na+ and alkaline earth metal cations. The data support the 

widely held notion that prior to any surface treatments the sol−gel processed TiO2 

nanocrystallites present in the mesoporous TiO2 thin films are negatively charged.38 This 

negative charge is not attributed to injected electrons as there is no spectroscopic evidence 

for their presence and the spectral shifts were observed in air saturated solutions, conditions 

where the injected electrons are known to rapidly react. Instead the charge is attributed to 

specific functional groups, most likely deprotonated titanol groups, Scheme 2.2. 
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Scheme 2.2. Schematic Depiction of the Light- and Potentiostatically-Induced Generation of 

Injected Electrons 

 

Whatever there chemical nature might be, the significant bathochromic (red) shift of 

the MLCT absorption that accompanied cation exposure reflects both the screening of this 

charge from the sensitizer and the field that is generated by the cation adsorption itself. The 

magnitude was sensitive to the identity of the cation and followed the trend Na+ <Li+ <Ca2+ < 

Mg2+. A key point though is that there is no a priori reason to expect that the surface charge 

due to cation adsorption is the same for each cation. This is important as the electric fields 

quantified after excited state injection or electrochemical reduction represent the change in 

the electric field from the initial condition of 100 mM cation concentration, as is shown in 

Scheme 2.2.  

Injection of electrons into a Ru(dtb)2(dcb)/TiO2 thin film resulted in a bathochromic 

shift of the MLCT absorption that was opposite in sign to that measured with cation 
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adsorption. Measurements as a function of applied potential revealed a strong cation 

dependence, Figure 2.03. The potential dependent data was recast as the number of TiO2(e
−)s 

per anatase nanocrystallite. While some experimental uncertainty was introduced by this 

conversion, the trends reported remain the same. The conversion was important for internal 

comparisons as the number of electrons present at any applied potential were found to be 

cation dependent. For all four cations studied, the magnitude of the electric field first 

increased linearly with the number of TiO2(e
−)s and then more slowly with the number of 

TiO2(e
−)s, Figure 2.04. The data suggests that the first electrons injected into TiO2 reside 

near the interface and subsequent electrons reside further away from the surface where they 

have a smaller influence on the surface anchored compounds.  

About 20 TiO2(e
−)s are thought to reside in each nanocrystallite at the power point 

condition of optimized DSSCs,5,64 so it is of interest to compare the electric fields reported by 

the sensitizer at this condition. The field strengths varied by about a factor of 2 and increased 

in the order Na+ < Li+<Mg2+ <Ca2+, Table 2.2. Since the number of TiO2(e
−)s was the same, 

the variations in field reflect the ability of the cations to screen the TiO2(e
−)s charge from the 

surface anchored Ru compound. The largest diameter cation, Ca2+, was the poorest at 

screening charge yet Na+ was more effective than the smaller Li+. Interestingly, Mg2+ was 

found to screen the field more effectively than did Li+, but only when the number of 

TiO2(e
−)s per nanoparticle exceeded about 70. Hence, the dication Mg2+ was more effective 

at charge screening when the number of TiO2(e
−)s was large. As was described in the 

Introduction, it is not clear whether electric fields and charge screening influence the 

efficiency of DSSCs; however, for recombination to negatively charged acceptors like I3
−, 

screening could be detrimental.38,60  
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Pulsed laser excitation enabled charge screening dynamics to be probed after excited 

state injection. Experimentally, it was found that this was most easily accomplished when 

iodide was present in the cell. Charge recombination to the oxidized iodide species was much 

slower than to the oxidized dye and the first derivative absorption signature associated with 

the Stark effect was much more easily observed spectroscopically after regeneration by 

iodide, Figure 2.05. The magnitudes of the field measured 2.5 μs after the laser excitation 

followed the trend Na+ <Ca2+ <Li+ <Mg2+, Table 2.2. However, the amplitudes of the Stark 

effect were time dependent for each cation making comparisons difficult. After pulsed laser 

excitation and regeneration by iodide, there existed a large time window between 500 ns and 

1 ms where the number of TiO2(e
−)s was constant, yet the spectral feature associated with the 

electric field decreased rapidly. Burdziński and co-workers have suggested that these 

dynamics reflect electron trapping at grain boundaries.65 The strong cation dependence 

reported here indicates that this is not the sole source of the observed dynamics, as there is no 

a priori reason to believe that trapping at grain boundaries would also be cation dependent. It 

was found that the monovalent cations screened charge much more rapidly than did the 

dications, kLi+,Na+= 5.0 × 104 s−1 and kMg2+,Ca2+ = 5.0 × 102 s−1 (see Figure 2.06), presumably 

because the small number of electrons injected into TiO2 resulted in spatially isolated Ti(III) 

sites that were more easily screened by the monovalent cations. These rate constants indicate 

that charge screening of the field generated by excited state injection was not fully 

established before recombination to oxidized iodide occurred. Hence, the use of an 

alternative redox mediator that underwent slower charge recombination with TiO2(e
−)s would 

be expected to enable more complete screening by these cations. 
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2.5 Conclusion 

Local electric fields are generated when electrons are injected into TiO2 

nanocrystallites interconnected in the mesoporous thin films commonly used in dye-

sensitized solar cells. The MLCT absorption of Ru(dtb)2(dcb)2+ compounds anchored to the 

TiO2 surface were found to be sensitive probes of these electric fields. Exposure of a 

Ru(dtb)2(dcb)/TiO2 thin film immersed in acetonitrile to cations resulted in bathochromic 

(red) shifts of the MLCT absorption that followed the trend Na+ <Li+ <Ca2+<Mg2+. Injection 

of electrons into TiO2, from a potentiostat or an excited state, resulted in hypsochromic (blue) 

shifts. Pulsed laser excitation enabled the kinetics for charge screening at the interface to be 

quantified. On average, screening was about 100× faster for the alkali cations relative to the 

alkaline earths. This behavior was attributed to excited state injection yielding localized 

Ti(III) states that were more easily screened by ions with a single positive charge. 
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CHAPTER 3: ELECTRIC FIELDS CONTROL TiO2(e−)+I3

−→CHARGE 

RECOMBINATION IN DYE-SENSITIZED SOLAR CELLS* 

3.1 Introduction 

Electrons injected into the mesoporous TiO2 nanocrystalline (anatase) thin films 

commonly used in dye-sensitized solar cells (DSSCs) generate an electric field that 

significantly perturbs the absorption spectra of the dye molecules anchored to its surface. The 

electroabsorption signature, similar to that observed in Stark spectroscopy, and the >1 

MV/cm electric field magnitude were only recently discovered, and a full appreciation of 

how the presence of this field might be exploited for practical applications remains 

uncertain.1,2 The electroabsorption signature appears as a first derivative of the ground-state 

absorption that has proven to be a valuable experimental tool for the characterization of dye-

sensitized TiO2 interfaces.3−7 Indeed, insight into the relative orientation of the molecular 

dipole as well as the dye−semiconductor distance has been revealed through systematic 

studies with different dye molecules.2,8 In addition, pulsed laser excitation has permitted the 

dynamics for charge screening by the electrolyte to be quantified on microsecond and longer 

time scales.9−11 Yet despite these advances in fundamental science, there is no clear 

indication that these electric fields have any practical relevance to the light-driven electron-

transfer reactions that promote or inhibit electrical power generation in DSSCs. One would 

reasonably anticipate that the surface electric field would repel anions like tri-iodide and 
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hence inhibit the unwanted charge recombination reaction with electrons injected into TiO2. 

However, until now, there has been no compelling evidence that the anionic nature of these 

redox mediators is at all relevant to operational DSSCs.  

3.2 Results and Discussion 

The mesoporous TiO2 thin films utilized in this study were sensitized to visible light 

by [Ru(dtb)2(dcb)](PF6)2, where dtb is 4,4′-(tert-butyl)2-2,2′-bipyridine and dcb is 4,4′-

(CO2H)2- 2,2′-bipyridine, abbreviated Ru(dtb)2(dcb)/TiO2. This sensitizer was selected as it 

gives rise to a very large amplitude electroabsorption signature, although conventional 

sensitizers such as isothiocyante Ru polypyridyl compounds as well as D−π−A type organic 

compounds behave similarly.1,2 Figure 3.01 shows the visible absorption spectra of a 

Ru(dtb)2(dcb)/TiO2 thin film immersed in neat acetonitrile and in acetonitrile solutions that 

contain 100 mM iodide with Li+,Na+,Mg2+,or Ca2+ cations. The extinction coefficients were 

calculated relative to Ru(dtb)2(dcb)/TiO2 in CH3CN, which was assumed to have the same 

value as the [Ru(dtb)2(dcb)](PF6)2 dissolved in CH3CN. A significant red shift in the metal-

to-ligand charge- transfer (MLCT) absorption was observed in the electrolyte solutions 

relative to neat CH3CN as well as a small decrease in the maximum absorption intensity. The 

magnitude of the red shift increased in the order Na+ <Li+ <Mg2+ ≈ Ca2+. These data with the 

iodide salts are in excellent agreement with that previously reported for the perchlorate salts, 

which is consistent with the proposal that adsorption of these Lewis acidic cations to TiO2 

induces the spectral shifts with negligible contributions from the anions.10  
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Figure 3.01. Visible absorbance spectra of a Ru(dtb)2(dcb)/TiO2 thin film immersed in 

acetonitrile in the absence (gray) or presence of 100 mM LiI (black), 100 mM NaI (red), 50 

mM MgI2 (blue), and 50 mM CaI2 (green). 

Partial electrochemical reduction of the sensitized TiO2 thin films in a standard three-

electrode cell results in a blue shift of the MLCT absorption, as has been previously 

described.1,10 Figure 3.02A shows such data as difference spectra where the absorption 

spectra of the reduced film are subtracted from the initial spectrum under conditions where 

about 20 electrons were present in each TiO2 nanocrystallite.  

Pulsed laser excitation of the Ru(dtb)2(dcb)/TiO2 thin films immersed in the iodide 

acetonitrile electrolytes gave rise to significant absorption changes that were monitored on 

nanosecond and longer time scales. Light absorption by the Ru sensitizer resulted in rapid 

excited-state injection and sensitizer regeneration through iodide oxidation that were 

complete within a microsecond. The oxidation of iodide to tri-iodide in DSSCs is known to 

occur through disproportionation of an I2
• − intermediate. Disproportionation within the 

mesopores of TiO2 occurs with the same rate constant as that in fluid solution, k = 3 ×
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 109𝑀−1𝑠−1 .12 Hence, only the injected electrons and tri-iodide were expected to 

appreciably absorb light in the visible region on time scales greater than 1 μs. Shown in 

Figure 3.02B are representative spectra recorded 2.5 μs after laser excitation of the 

Ru(dtb)2(dcb)/TiO2 in acetonitrile electrolytes that represented the extremes that were 

observed, 100 mM NaI or 50 mM CaI2. The characteristic absorption of I3
− at ∼360 nm and 

the weak absorption of the injected electrons at 600 nm were evident.13  

 

Figure 3.02. Absorbance change of Ru(dtb)2(dcb)/TiO2 thin films measured (A) under 

conditions of approximately 20 TiO2(e
−)s per TiO2 nanoparticle electrochemically generated 

in 100 mM solutions of NaClO4 (red), LiClO4 (black), Mg(ClO4)2 (blue), and Ca(ClO4)2 

(green) and (B) 2.5 μs after pulsed 532 nm light excitation in 100 mM NaI (red, circles) and 

50 mM CaI2 (green, triangles) acetonitrile solutions. 

The large first-derivative feature between ∼450 and 550 nm arises from a 

unidirectional shift of the ground-state absorption spectra induced by the injected electrons. 

In other words, the electrons injected into TiO2 generate an electric field that significantly 

blue shifts the MLCT absorption of the ruthenium compounds anchored to the surface.1 The 
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magnitude of the intensity change and the spectral shift were significantly more pronounced 

when Ca2+-containing electrolytes were employed, behavior attributed to less effective 

screening of the electric field from the sensitizer. The field strengths were found to follow the 

order Na+ <Li+ <Mg2+ <Ca2+.10 The electric field strength reported by the Ru sensitizers was 

1.1 MV/cm for Na+ and 2.2 MV/cm for Ca2+, with the magnitude of the electric fields 

calculated using previously reported methods and assumptions.1,10,14,15 Because the number 

of TiO2 electrons was held constant, the different field strengths were attributed to the ability 

of the cations to screen the field from the surface anchored sensitizers.  

Shown in Figure 3.03 are absorption changes monitored at 375 nm. This observation 

wavelength was chosen as the I3
− anion absorbs strongly there and it represents an isosbestic 

point between I2
•− and I3

−.12 As a result, the concentration of I3
− can be uniquely probed at 

this wavelength. The nonexponential kinetics were well described by the 

Kohlrausch−Williams− Watts (KWW) model, Equation 3.01. 

 𝐼(𝑡) = 𝐼0𝑒𝑥𝑝[(−𝑘𝑡)𝛽] 3.01 
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Figure 3.03. Absorption changes that correspond to TiO2(e−)+ I3
−→charge recombination 

measured in 100 mM LiClO4 (black), NaClO4 (red), Mg(ClO4)2 (blue), and mM Ca(ClO4)2 

(green) acetonitrile solutions with 250 mM TBAI. Overlaid on the data are fits to the KWW 

function with β = 0.45. The inset shows a plot of the recombination rate constant versus the 

electric field. 

Here, β is inversely related to the width of an underlying Lévy distribution of rate 

constants, 0 < β < 1, and k is a characteristic rate constant. In kinetic analysis, the value of β 

was fixed to be 0.45, and k was allowed to float. An “average” rate constant was calculated 

as the first moment of this distribution using Equation 3.02, and data are given in Table 3.1.  
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Table 3.1. TiO2(e
−)+I3

− → Charge Recombination with the Indicated Cations 

 
Electric field 

(MV/cm)a 𝑘 (𝑠−1)𝑏 𝑘𝐾𝑊𝑊(𝑠−1) 𝑡 

Na+ 1.1 450 180 0.40 

Li+ 1.3 210 80 0.73 

Mg2+ 1.8 160 60 0.80 

Ca2+ 2.2 20 10 0.97 
aElectric field change measured after the potentiostatic injection of approximately 20 

TiO2(e
−)s per nanoparticle. bβ fixed to 0.45. 

The inset of Figure 3.03 is a plot of the recombination rate constant versus the electric 

field. This and the raw experimental data clearly show a marked electric field dependence for 

the unwanted TiO2(e
−)+I3

− → charge recombination rate constant. This correlation provides 

compelling evidence that the larger the electric field, the slower the unwanted charge 

recombination reaction with I3
−. Recall that I3

− is generated within the mesopores after the 

disproportionation of two I2
•− ions. Mass transfer of I3

− by both diffusion and migration to the 

TiO2 surface must then occur before recombination is possible. Extrapolation of the best-fit 

line to zero electric field provides an estimate of the diffusional contributions to the 

recombination reaction that occurs in the absence of an electric field, k = 300 s−1. Because 

rate constants are proportional to current, the total current at zero field is the diffusional 

current, i0 = id. The rate constants decrease when electrons are injected into TiO2 because the 

anionic charge of the I3
− is repelled by the field generated by the TiO2(e

−)s. Hence, the total 

current decreases in the presence of the field due to migration of I3
− away from the TiO2 

interface, i = id − im. The ratio of the average rate constant measured in the presence of the 

field to that in the absence has some analogy to transference coefficients, t = i/i0, that have 
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been quantified in electrochemical cells.16 Here, t represents the fractional ability of the 

electric field to block the unwanted TiO2(e
−)+I3

− → charge recombination reaction. The t 

values are given in Table 3.1.  

It should be pointed out that other iodine species may also accept electrons in DSSCs. 

Indeed, there exists compelling evidence that molecular iodine I2 is reduced by TiO2(e
−)s. As 

tri-iodide and molecular iodine are in equilibrium, Equation 3.03, both are always present in 

solution.17 However, under the current experimental conditions, iodide was the only species 

present before laser excitation, and the concentrations of I3
− generated with light were on the 

order of 10 μM, rendering the equilibrium concentration of I2 negligibly small. Hence, the 

present study has effectively stacked the deck to ensure that recombination occurs 

predominantly to tri-iodide. This differs from an operational DSSC where a mixture of 0.5 M 

LiI and 0.05 M I2 in an acetonitrile solution is typically utilized. The equilibrium constant for 

reaction 4 has been estimated to be Keq =106, indicating that equilibrium concentrations are 

0.45M I−, 0.05 M I3
−, and 2 μM I2.

13  

 𝐼2 + 𝐼− ⇌ 𝐼3
− 3.03 

It should also be emphasized that changing the cations in the electrolytes of DSSCs 

influences many parameters, including the transport of the injected electrons,18−20 dye 

regeneration,21 and the energy levels of the TiO2 acceptor states.10,22,23 Nevertheless, the 

implications of the results presented herein to DSSCs are clear and significant. Akin to 

enlarging the space−charge layer thickness in single semiconductor solar cells, increasing the 

Debye length for charge screening supports more spatially separated and longer-lived 

TiO2(e
−), I3

− donor−acceptor pairs. Hence, screening of the electric field by these alkali and 

alkaline earth cations in the electrolyte is detrimental to the solar conversion efficiency. This 
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is particularly important at the power point and open-circuit conditions where the number of 

electrons is large and the TiO2(e
−)s may be capable of accessing the two-electron reduction 

of I3
−, E0(I3

−/3I−) = 0.35 V, which is much more favorable than the one-electron reduction 

potential, E0(I3
−/I2

•−,I−) = −0.35 V versus NHE.13 Interestingly, complete screening of the 

electric field should instead be beneficial for the cationic Co(III/II) redox mediators, such as 

[Co(bpy)3]
3+/2+, employed in champion DSSCs24 because migration will enhance the mass 

transfer of Co(III) to the interface where recombination with injected electrons occurs.  
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CHAPTER 4: ELECTROLYTE CATION CONTROLS DRIVING FORCE FOR 

CHARGE RECOMBINATION IN DYE-SENSITIZED SOLAR CELLS 

4.1 Introduction  

Interfacial electron transfer reactions are critically important to dye-sensitized solar 

cells (DSSCs), where the desired electron injection and unwanted charge recombination 

reactions occur at the interface. The maximum current a solar cell can produce, Jsc, is directly 

related to the spectral harvesting of the sensitizer and how many of the absorbed photons lead 

to injected electrons. Once injected, there are two primary loss pathways, where the electrons 

recombine with either the oxidized sensitizer or the oxidized redox mediator. The average 

time an electron remains in the TiO2 thin film before recombining is known as the electron 

lifetime, which influences the ability of cell to build a voltage at open circuit, Voc. It is now 

clear that the electron lifetime also influences the maximum power output of a cell, where 

electrons are lost due to back electron transfer to the oxidized sensitizer.1,2 Therefore, 

understanding the charge recombination reaction and what controls the electron lifetime in 

operational DSSCs is critically important to optimize device performance. 

Previous studies in our group have investigated charge recombination to I3
-, TPA+, 

and PTZ+, where TPA is triphenylamine and PTZ is phenothiazine, that were sensitive to the 

identity of the Lewis-acidic cation in the surrounding electrolyte.3,4 Three mechanisms have 

been proposed to account for these observations: electric fields, electron diffusion, and 

driving force. Unravelling which of these influences is the dominant feature controlling the 
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electron lifetime is complicated by the fact that electrolyte cation may influence each of these 

parameters separately. 

Electron transfer reactions are known to be dependent on the thermodynamic driving 

force in the framework of Marcus,5,6  or, at the interface, Marcus-Gerischer theory.7,8 

Attempts to alter the driving force by modifying the identity of the electron acceptor in 

solution or bound to the surface have been reported for charge recombination. Charge 

recombination to the oxidized sensitizer typically has a driving force well over 1 eV and has 

been reported to be in the Marcus-inverted region, i.e. larger driving force leads to slower 

charge recombination,9,10 although this behavior is not always observed.11,12 In contrast, 

charge recombination to the redox mediator is typically reported in the Marcus-normal 

region, i.e. larger driving force leads to faster charge recombination.13–17  

An alternative means to vary the driving force would be to adjust the reducing power 

of electrons within the TiO2 thin film (TiO2(e
-)s). This has been attempted by doping,18,19 the 

addition of Lewis acidic or Lewis basic additives to the surrounding electrolyte,20–22 or, in 

aqueous systems, by adjusting the electrolyte pH.16 Lewis-acidic cations are known to shift 

the energetic position of the TiO2 acceptor states positive on an electrochemical scale to a 

degree that roughly correlates with the charge-to-size ratio of the cation,23,24 similar to how 

electrolyte pH influences the flat-band position of many semiconductors in aqueous 

electrolyte.25,26 Directly related to the position of the TiO2 acceptor states are the electron 

injection efficiency,27 sensitizer photoluminescence,24 incident-photon-to-current 

efficiency,28 and open circuit voltage.28  

In order for the driving force to have a significant influence on charge recombination, 

the reaction must not be diffusion limited by the ability of the injected electron and oxidizing 
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equivalent to encounter each another. This is known as the reaction limited regime. In 

DSSCs, the conditions for reaction limited and diffusion limited charge recombination have 

been theoretically studied by Ansari-Rad et.al.29 The authors concluded that in typical I-/I3
- 

based DSSCs, charge recombination is most likely in the reaction limited regime. The 

examples for driving force dependent charge recombination listed above suggest this is 

correct, however the fact that driving force is not universally observed to influence charge 

recombination hints that recombination may be on the border of between the reaction limited 

and diffusion limited regimes depending on the experimental conditions. Factors such as 

surface electric fields and slow electron diffusion coefficients may be enough to tip the scale 

towards the diffusion limited regime. 

Surface electric fields have been observed following excited-state electron injection 

into TiO2 nanocrystallites. These fields have been reported by surface-bound sensitizers to be 

on the order of 2 MV/cm.30,31 They are known to extend nanometers into the electrolyte32 and 

across the surface.31 Cations in the surrounding acetonitrile electrolyte rearrange to screen the 

electric field,33–35 where the dynamics of charge screening are sensitive to the identity of the 

Lewis-acidic electrolyte cation.24  

Although these fields are well characterized, their impact on device performance 

remains unknown. Evidence for electric-field controlled, and charge screening dependent, 

charge recombination to I3
- has been reported.4 If the electric field repelled the negatively 

charged I3
-, the concentration of acceptors at the interface would decrease and the observed 

recombination rate would decrease even if the rate constant was unaffected. Screening of the 

field by cations in the electrolyte would therefore be deleterious and increase charge 

recombination. That conclusion has recently been challenged by using neutral/cationic redox 
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mediators as the electron acceptor.3 Their results displayed a similar charge screening 

dependence, inconsistent with the idea that electric fields significantly influenced charge 

recombination. However, the timescale for charge recombination was much faster and 

competed with the charge screening process.  

Similar to how electric fields may influence the arrival of electron acceptors to the 

surface, electron diffusion may dictate the arrival of TiO2(e
-)s to recombination centers. Early 

studies examining charge transport in DSSCs at matched Jsc values suggested that the 

diffusion coefficient of TiO2(e
-)s was sensitive to the electrolyte cation through an ambipolar 

mechanism.36 However, it has become increasingly clear that for DSSCs, kinetic parameters 

should be compared at matched electron concentrations. More recent studies have 

reexamined electron diffusion at matched TiO2(e
-)s concentrations and found no cation 

dependence on the diffusion coefficient,28 however the generality of this finding has yet to be 

established.  

Here, complete DSSCs were constructed and analyzed on an in-lab purpose built 

instrument, termed STRiVE (Sequential Time Resolved current(i) Voltage Experiments), 

which is similar to other reported devices.37–39 The STRiVE allows for direct measurement of 

the electron concentration, lifetime, and diffusion coefficient under a wide range on incident 

light intensities. This makes it possible to directly investigate the possible influence of 

driving force and electron diffusion on the electron lifetime. Furthermore, by comparing 

DSSCs constructed with the anionic iodide/triiodide redox mediator to those with a cationic 

cobalt redox mediator, the influence of electric fields on charge recombination can be 

directly tested. The sensitizer, Ru(dcb)(dtb)2(PF6)2 (Scheme 4.1), was chosen because it was 

used in previous studies where the electric field has been thoroughly characterized.3,4,24,31,33 
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The results indicate that driving force largely controls the cation-dependence of charge 

recombination in DSSCs with minimal contribution from electron diffusion or electric fields.  

Scheme 4.1. Ru(dcb)(dtb)2(PF6)2 Structure 

 

 

4.2 Experimental 

Materials: The following reagents were used as received: lithium perchlorate (LiClO4; 

Sigma-Aldrich, 99.99%); sodium perchlorate (NaClO4; Sigma-Aldrich, ≥ 98.0%); 

magnesium perchlorate (Mg(ClO2)2; Sigma-Aldrich, ACS reagent); calcium perchlorate 

tetrahydrate (Ca(ClO4)2•4H2O; Sigma-Aldrich, ≥ 99%); hydrogen hexachloroplatinate(IV) 

hydrate (H2PtCl6•xH2O; Aldrich); oxygen gas (Airgas, industrial grade); titanium(IV) 

isopropoxide (Sigma-Aldrich, 97%); nitric acid (HNO3, Fisher, Certified ACS); fluorine-

doped tin oxide-coated glass (FTO; Hartford Glass Co., Inc., 2.3 mm thick, 15 Ω/□); 

acetonitrile (CH3CN, Fluka, 99.9%); 2-propanol ((CH3)2CHOH, Fisher Scientific, 99.9%); 

methanol (CH3OH, Fisher, 99.9%); Surlyn (Meltonix 1170-25, Solaronix, 25 µm); glass 

cover slip (Microscope Cover Glass 12-541-A, Fisher Scientific); cobalt(II) chloride 
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hexahydrate (CoCl2 •6H2O, Sigma-Aldrich, 98%); 4,4′-di-tert-butyl-2,2′-bipyridine 

(C18H24N2, Sigma-Aldrich, 98%); silver hexafluorophosphate (AgPF6, Strem Chemicals, 

98%); potassium hexafluorphosphate (KPF6, Sigma-Aldrich, 98%); bromine (Br2, Sigma-

Aldrich, reagent grade);  

Synthesis of the CoIII/II(dtb)3 redox couple: Synthesis of [Co(dtb)3](PF6)2 was carried out 

according to previous reports.40,41 Briefly, 3.5 g (3.1 eq.) of 4,4′-di-tert-butyl-2,2′-bipyridine 

(dtb) was added to 1 g CoCl2●6H2O in 100 mL CH3OH. The solution immediately changed 

color but was refluxed for 1 h to ensure complete reaction. After cooling to room 

temperature, 2 g (2.5 eq.) KPF6 in minimal H2O was added to the solution, which was 

filtered, washed with H2O and CH3OH, and dried in a vacuum oven at 100˚C to give the 

desired product (98 % yield). Oxidation of [Co(dtb)3](PF6)2 was accomplished by adding 45 

µL Br2 (l) to 0.33 g [Co(dtb)3](PF6)2 dissolved in minimal CH3CN (~10 mL). The solution 

was stirred for 30 mins at room temperature and then 0.075 g AgPF6 was added to for the 

anion metathesis. After filtering the AgBr, the solvent was removed under reduced pressure 

at 50 ˚C. The solid was washed with deionized water to remove any excess AgPF6 and dried 

in a vacuum oven at 100˚C to give the desired product (88% yield). 

Cell Fabrication: Synthesis of approximately 15 nm diameter TiO2 nanoparticles of was 

carried out by the acid hydrolysis of titanium(IV) isopropoxide as previously reported.42 Thin 

films were cast on fluorine-doped tin oxide glass (FTO) by doctor blading using Scotch tape 

as the spacer. After resting for 30 minutes, films were sintered in an oven at 450 ˚C for 30 

minutes under oxygen flow. Excess TiO2 was manually removed from the FTO surface using 

glass microscope slides to prevent iron contamination. The resulting electrode measured ~2.5 

x 1.5 cm2 with a TiO2 active area of ~0.3 cm2. Platinized counter electrodes were prepared by 
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evaporating two drops of 6.5 mg/mL H2PtCl6 in 2-propanol onto a cleaned FTO surface 

followed by heating at 450 ˚C for approximately 20 minutes. Cells were heat sealed with a 

thermal gasket (Surlyn, ~25 µm). Electrolyte was introduced into the cell through a hole pre-

drilled in the Pt counter electrode by the vacuum backfilling method. This hole was sealed 

with a piece of Surlyn and a glass cover slip.   

Device Analysis: The performance of DSSCs was tested on an in-lab built system, termed 

‘STRiVE,’ which is similar to other reported systems.37–39 Cell current was measured by the 

voltage drop across a 1 Ohm resistor in series with the external circuit. This voltage was 

amplified by an instrument amplifier (INA 128, Texas Instruments) using gains between 100 

and 5000 depending on the operating conditions. The amplified voltage as well as the 

operating voltage between the working and counter electrode could be simultaneously 

measured by a 16-bit data acquisition board (NI-6251) with a maximum sampling rate of 

1.25 MHz. The cell was held at open or short circuit by fast solid state switches (MOSFETs). 

Illumination was provided by an array of white LEDs (not a solar spectrum) and/or an array 

of colored LEDs controlled by fast solid-state switches with switching times of ~250 ns. 

Potentials were applied to the cell using a PAR 362 scanning potentiostat.  

Transient Photovoltage Decay: Cell voltage was set at open circuit by the intensity of the 

white background LEDs. After a 45 second equilibration time, a pulse of blue LED light was 

superimposed on the background light. The voltage perturbation was recorded and the decay 

could be easily fit to a single exponential decay. The magnitude of the perturbation was kept 

at ~4 mV, controlled by the duration of the colored LED pulse, which was typically 10-500 

µs.   
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Transient Photocurrent Decay: Transient photocurrent decay was done similarly to 

transient photovoltage decay. The current was set at short circuit by the intensity of the white 

background LEDs. Cells were equilibrated for 30 seconds before being illuminated by a 

pulse of blue LED light. The current perturbation was set to ~25 µA by adjusting the pulse 

time.  

Charge Extraction: The cell was held at either open or short circuit depending on the 

experiment for 45 seconds under a given light intensity. The light was then turned off and, if 

the cell was originally at open circuit, was short circuited. The resulting current transient was 

recorded for 4 seconds and integrated to give the charge.  

4.3 Results 

The performance of DSSCs sensitized with [Ru(dtb)2(dcb)](PF6)2, where dcb is 4,4′-

(CO2H)2-2,2′-bipyridine and dtb is 4,4′-(C(CH3)3)2-2,2′-bipyridine, and a CH3CN electrolyte 

containing 100 mM Li+, Na+, Mg2+, or Ca2+ perchlorate, 250 mM tetrabutylammonium 

iodide, and 50 mM iodine is shown in Figure 4.01 and summarized in Table 4.1. The short-

circuit current density, Jsc, was nominally independent of the electrolyte cation. The low 

currents reflected the limited spectral harvesting of the sensitizer (Figure 4.01B) and not the 

poor electron collection efficiency of these DSSCs. The open-circuit voltage, Voc, was 

strongly dependent on the electrolyte cation and followed the trend 𝑀𝑔2+ < 𝐶𝑎2+ < 𝐿𝑖+ <

𝑁𝑎+.  
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Table 4.1.DSSC Figures of Merit from Current-Density Curve in the Indicated Cations 

 

 

 

*Due to the lack of a true solar spectrum, reported efficiencies are estimates and should only 

be used for comparative purposes. 

 

Figure 4.01. (A) Current density voltage curves for DSSCs composed of [Ru(dtb)2(dcb)-

](PF6)2 sensitized TiO2 thin film and a CH3CN electrolyte containing 100 mM Li+, Na+, 

Mg2+, or Ca2+ perchlorate, 250 mM tetrabutylammonium iodide, and 50 mM iodine under 

approximately 1 sun illumination. (B) Typical UV/Vis spectrum of Ru(dtb)2(dcb) bound to 

TiO2 overlaid with the relative power distribution output from the white LEDs. 

The concentration of electrons within the TiO2 thin film was estimated by charge 

extraction (Figure 4.02). The shape of the TiO2 acceptor states was independent of the 

electrolyte cation, as be seen by the parallel slopes in Figure 4.02. However, the energetic 

position of the acceptor states was dependent on the electrolyte cation and followed the trend 

𝑀𝑔2+ ≈ 𝐶𝑎2+ < 𝐿𝑖+ < 𝑁𝑎+. The acceptor state distribution in Ca2+ and Mg2+ was about 70 

 Voc / mV Jsc / mA cm-2 Fill Factor Efficiency* 

Li+ 445 ± 5 5.4 ± 0.3 0.52 ± 0.01 1.26 ± 0.04 

Na+ 470 ± 5 5.5 ± 0.3 0.57 ± 0.02 1.49 ± 0.03 

Mg2+ 375 ± 15 5.7 ± 0.4 0.45 ± 0.03 0.95 ± 0.1 

Ca2+ 420 ± 10 6.1 ± 0.1 0.48 ± 0.01 1.24 ± 0.05 

A  B 
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mV more positive than Li+ and 120 mV more positive than Na+. This trend has been reported 

previously24 and is similar to the pH control of the flat-band potential of bulk semiconductors 

in aqueous solution.25,26  

             

Figure 4.02. Charge extracted from open-circuit over a wide range of voltages, set by the 

incident light intensity, for DSSCs containing 100 mM Li+ (Black), Na+ (Red), Mg2+ (Blue), 

or Ca2+ (Green) perchlorate, 250 mM TBAI, and 50 mM I2.  

Charge recombination was measured at open circuit using transient photovoltage 

decay. Since the electron lifetime is known to be a function of the incident light intensity, this 

measurement was repeated under a wide range of light intensities and plotted against the 

charge extracted from the device under matched conditions. The results are given in Figure 

4.03. The electron lifetime at any electron concentration (Figure 4.03) showed a clear cation-

dependence that followed the trend 𝑁𝑎+ < 𝐿𝑖+ < 𝑀𝑔2+ < 𝐶𝑎2+.   

 

 

 

120 mV 

70 mV 



93 

 

 Figure 4.03. (A) Transient photovoltage decay measurements for a DSSC containing 100 

mM NaClO4, 250 mM TBAI, 50 mM I2. (B) Electron lifetimes measured from the single-

exponential decay in transient photovoltage measurements DSSCs containing 100 mM Li+ 

(Black), Na+ (Red), Mg2+ (Blue), or Ca2+ (Green) perchlorate with 250 mM TBAI, and 50 

mM I2. 

Diffusion coefficients were measured by transient photocurrent decay at short circuit 

where the photocurrent lifetime was related to the diffusion coefficient by Equation 4.01: 

        𝐷𝑛 =
𝑑2

2.77 𝑡𝑛
 4.01 

  

where d is the film thickness, 𝐷𝑛 and 𝑡𝑛  are the diffusion coefficient and photocurrent decay 

lifetime at electron concentration n. This expression has been used by several other groups43–

46 where the factor of 2.77 comes from the time it takes half the electrons to diffuse half the 

film thickness.43 At any given electron concentration, the diffusion coefficient was 

independent of the electrolyte cation (Figure 4.04).  

A                 B              

             B 
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Figure 4.04. (A) Transient photocurrent decay measurements for a DSSC containing 100 mM 

NaClO4, 250 mM TBAI, 50 mM I2. (B) Diffusion coefficient calculated from the single-

exponential decay in transient photocurrent measurements DSSCs containing 100 mM Li+ 

(Black), Na+ (Red), Mg2+ (Blue), or Ca2+ (Green) perchlorate with 250 mM TBAI, and 50 

mM I2 .   

Charge extraction, transient photovoltage, and transient photocurrent studies were 

also conducted on DSSCs containing [CoIII/II(dtb)3]
3+/2+ redox mediator to investigate the 

possibility of electric fields influencing charge recombination reaction. The results are shown 

in Figure 4.05. Note data for Mg2+ are not shown as the electrolyte was unstable and formed 

a precipitate over the course of several hours. Diffusion coefficients at matched electron 

concentrations were independent of the electrolyte cation (Figure 4.05B). The electron 

lifetime displayed a strong cation dependence, following the trend 𝑁𝑎+ < 𝐿𝑖+ < 𝐶𝑎2+ at any 

matched electron concentration.  

A      B 
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Figure 4.05. Electron lifetimes (A) and diffusion coefficients (B) for DSSCs containing 100 

mM Li+ (Black), Na+ (Red), or Ca2+ (Green) perchlorate with 135 mM CoII(dtb)3(PF6)2, and 

15 CoIII(dtb)3(PF6)3 in CH3CN. 

4.4 Discussion   

Charge recombination in DSSCs can influence the voltage and current a cell 

produces. Therefore, understanding what controls charge recombination is critically 

important to optimize performance. Our group has previously investigated the charge 

recombination reaction between TiO2(e
-)s and solution phase electron acceptors by transient 

absorption spectroscopy (with only the TiO2 photoanode in CH3CN electrolyte) when the 

identity of the electron acceptor was I3
-, TPA+, and PTZ+, where TPA is triphenylamine and 

PTZ is phenothiazine. In all of these cases, the recombination rate was dependent on the 

identity of the electrolyte cation and followed trend Ca2+<Mg2+<Li+<Na+. Two questions 

immediately come to mind: does this reaction matter in complete DSSCs and what is the 

fundamental reason charge recombination cares about the electrolyte cation. It is expected 

that charge recombination will influence Voc and the maximum power output of a cell but is 

not expected to significantly influence Jsc, as was observed herein. Three possibilities have 

been discussed to account for the cation-dependence on the charge recombination rate 

A   B 
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constant: driving force, electron diffusion, and electric fields. By expanding our studies to 

complete devices, the electron lifetime, diffusion coefficient, and energetic position of the 

TiO2 acceptor states could be independently monitored to disentangle the effects of electron 

diffusion and driving force on charge recombination. Then, by comparing anionic and 

cationic redox mediators, the impact surface electric fields have on charge recombination 

could be assessed. 

Analyzing complete devices by our home-built STRiVE instrument introduced 

several experimental differences from our previous transient absorption (TA) studies. In full 

devices, both the oxidized and reduced form of the redox mediator were present in mM 

concentrations, where in the TA experiments only the reduced form was needed to regenerate 

the oxidized sensitizer. Furthermore, the equilibrium or reference electron concentration was 

different between the two instruments. TA monitored absorbance changes relative to the 

dark, where background illumination was often used in STRiVE experiments. Finally, TA 

monitors optical changes on the nanosecond and longer timescale while the STRiVE 

monitors the current/voltage response of the substrate on the µs and longer timescale. 

Therefore, processes that occur on the sub-microsecond timescale cannot be observed by the 

STRiVE.    

 There have been several reports of electrolyte effects on DSSC performance, including a 

paper by Wang et. al. investigating a similar series of Lewis acidic cations in acetonitrile 

electrolytes.28 Their results displayed the opposite trend in electron lifetime as we report here 

and in our previous model studies3,4 and was one reason why we undertook the present study. 

Several key differences between their DSSCs and ours exist. We limited our electrolytes to 

only iodine, iodide, the cations of interest, and spectator counter-ions. The performance 
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enhancer 4-tert-butylpyridine was not present nor was a TiCl4 treatment of the TiO2 thin film 

performed. Furthermore, they sensitized their TiO2 with N719 while this study used 

Ru(dcb)(dtb)2(PF6)2. This was done to keep the results comparable to our previous reports on 

the model systems. We found the same cation-dependence on electron lifetime as our 

previous studies,3,4,24 highlighting the importance of systematic studies on related systems. 

The mechanism that underlies the different cation effects is under investigation and will be 

reported shortly.  

DSSC Performance: The open circuit voltage (Voc) showed a clear cation dependence 

following the trend 𝑀𝑔2+ < 𝐶𝑎2+ < 𝐿𝑖+ < 𝑁𝑎+. When electron injection is the same, these 

differences are dominated by the position of the TiO2 acceptor states and/or the electron 

lifetime. These two properties were independently investigated to identify the underlying 

cause for the different Voc’s. Comparing the position of the TiO2 acceptor states to the open 

circuit voltages revealed that the Voc differences were smaller than would be expected from a 

simple shift in the TiO2 acceptor states. For example, the position of the TiO2  acceptor states 

in Ca2+ containing electrolyte measured by charge extraction was 115 mV more positive than 

in Na+ electrolyte, yet the Voc’s were only separated by 50 mV. This is illustrated in Table 

4.2, where the position of the TiO2 acceptor state distribution and Voc are listed relative to 

their values in Na+ containing electrolyte. As can be seen, the Voc did not shift as much as the 

TiO2 acceptor state distribution, confirming that the electron lifetime (charge recombination 

rate) at open circuit is influenced by the electrolyte cation. This is highlighted when 

comparing Mg2+ to Ca2+ containing electrolytes. The energetic positon of the TiO2 acceptor 

states for Mg2+ or Ca2+ containing electrolytes were essentially identical, yet large differences 

in Voc were reported between these two cations.  
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Table 4.2. TiO2 DoS, Voc, and electron lifetime values relative to DSSCs in Na+ electrolyte. 

 ΔDoS ΔVoc 
ΔDoS-

ΔVoc 

TVD τn/ 

τNa
+ 

TA* τn/ 

τNa
+ 

Li+ 55 25 30 2.5 2.3 

Na+ 0 0 0 1 1 

Mg2+ 120 95 25 5.3 3 

Ca2+ 115 50 65 12.5 18 
*Values measured by transient absorption from ref. 29. 

It has become increasingly clear that electronic characteristics of TiO2 thin films, i.e. 

the electron lifetime, diffusion coefficient, and diffusion length, should be compared at 

matched electron concentrations.28,47,48 Using electron concentration as a reference state is 

based on a trap-limited diffusion/recombination model where electrons reside in ‘traps’ and 

can be thermally excited to occupy a more mobile state from which they can diffuse or 

recombine.47 The number of electrons in the mobile states is related to the total electron 

concentration in the film. Therefore, for comparisons between different DSSCs to be accurate 

they must be done at matched electron concentrations.  

Our results indicate that the electron lifetime in Li+, Na+, Mg2+, and Ca2+ electrolyte 

displayed essentially the same sensitivity to the TiO2 electron concentration (same slope), yet 

had an inherent offset that was determined by the electrolyte cation. The relative rates 

compared at any electron concentration are comparable to those measured by transient 

absorption in a previous study,4 Table 4.2, highlighting the translation of our previous model 

studies to complete devices. The measurements here suggest the electron concentration in the 

film during the transient absorption studies, which was not directly measured, was 1-2 x 1018 

cm-3.  
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The electron lifetime is known in influence Voc. One model that quantitatively 

describes this relationship is the diode,49 Equation 4.02:  

 
𝑉𝑜𝑐 =

𝑘𝐵𝑇

𝑞
𝑙𝑛 (

∅𝛤0

𝑛 𝑘 [𝐴]
) 4.02 

where 𝑘𝐵 is Boltzman’s constant, T is the absolute temperature, q is the elementary charge, ∅ 

is the quantum yield for electron injection, 𝛤0 is the photon flux, 𝑛 is the equilibrium surface 

electron concentration, 𝑘 is the rate constant for electron transfer, and [𝐴] is the 

concentration of acceptor species. This model predicts a 59 mV decrease in Voc for every 

order of magnitude increase in charge recombination rate. Comparing the relative lifetimes to 

the difference between the acceptor state and Voc shift reveals a logarithmic dependence that 

has a slope near 59 mV/decade (Figure 4.06). This indicates that the inability of Voc to 

simply track shifts in the TiO2 acceptor states is a result of the increase in charge 

recombination rate.     

 

Figure 4.06. Difference between the shift of the TiO2 acceptor state distribution and the 

change in Voc relative to Na+ containing DSSCs as a function of the lifetime relative to Na+.   
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Most every study on the electron transport in DSSCs has concluded that the diffusion 

coefficient under typical operating conditions (high salt concentration) was dominated by 

electron diffusion within the TiO2 thin film without significant influence from the electrolyte 

cation.50–52 The results presented herein agree with this finding, where the diffusion 

coefficient was independent of the electrolyte cation when compared at matched electron 

concentrations in both iodide/triiodide and cobalt based redox mediators. 

The electron diffusion length, 𝐿𝑛, is often of interest when studying DSSCs and is 

calculated according to Equation 4.03:47,53–55 

 𝐿𝑛 = √𝐷𝑛𝑡𝑛 4.03 

  

In order to accurately calculate the diffusion length, the diffusion coefficient and lifetime 

values were compared at matched concentrations of TiO2(e
-)s. However, in our experiments 

the lifetime was measured at open-circuit while the diffusion coefficient was measured at 

short circuit, leading to large differences between the electron concentration in the two 

experiments (Figure 4.07A). Therefore, a fit to the diffusion coefficient vs. electron 

concentration was extrapolated to the electron concentrations used in the transient 

photovoltage decay measurements. The resulting diffusion lengths are shown in Figure 

4.07B. Included in Figure 4.07B is a line representing the thickness of the TiO2 film. All the 

diffusion lengths calculated here are at least a factor of 3 longer than the film thickness, 

indicating quantitative electron collection in these devices. Comparing diffusion lengths 

measured in different electrolyte cations reveals same the cation-dependence seen throughout 

this study, 𝑁𝑎+ < 𝐿𝑖+ < 𝑀𝑔2+ < 𝐶𝑎2+.   
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Figure 4.07. (A) Electron diffusion coefficient and lifetime as a function of TiO2(e
-)s and (B) 

diffusion length calculated at matched electron concentrations for DSSCs containing 100 

mM Li+ (Black), Na+ (Red), Mg2+ (Blue), or Ca2+ (Green) perchlorate, 250 mM TBAI, and 

50 mM I2.   

Cation Influence on Charge Recombination: One purpose of this investigation was to 

investigate why the identity of the electrolyte cation influenced charge recombination. Three 

possible factors that could influence charge recombination were discussed previously:3 

electron diffusion, driving force, or surface electric fields. Using complete DSSCs, each of 

these possibilities could be uniquely tested as described below.  

Electron Diffusion: Electron diffusion would be expected to control charge recombination in 

the diffusion limited regime. Since electron lifetimes are measured on the millisecond and 

longer timescale, they would not be diffusion limited if the two reactants were free to diffuse 

in fluid solution. However, electron motion within the nanocrystalline TiO2 network is 

restricted and often modelled in a multiple trapping model. In this model, electrons typically 

reside in ‘localized’ states and are thermally excited to ‘mobile’ states from which they can 

Thickness 

A                B 
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diffuse (and then re-trap) or recombine. Diffusion limited recombination would be related to 

the time spent in the localized vs mobile states or the rate of trapping/detrapping.   

Pushing the diffusion limited recombination case to the extreme, charge 

recombination would simply be controlled by the detrapping event, where recombination 

would occur following every detrapping event. This extreme case is of course not realistic 

because electrons are collected at the back contact and must undergo many 

trapping/detrapping events to diffuse the length of the thin film. Trapping/detrapping must 

therefore occur many times prior to a charge recombination event, but experimentally 

measuring the trapping/detrapping rate is challenging. However, the diffusion coefficient is 

expected to be proportional to the rate of trapping/detrapping, hence comparing the diffusion 

coefficient in a series of electrolytes gives an estimate for the relative trapping/detrapping 

rate. If charge recombination were diffusion limited, faster charge recombination would be 

accompanied by faster electron diffusion. The electron diffusion coefficient measured here 

was independent of the electrolyte cation in both I-/I3
- and cobalt redox mediators. The fact 

that different charge recombination rates were observed yet the diffusion coefficient was 

identical indicates that charge recombination was not controlled by the electron diffusion 

under these experimental conditions. 

Electric Fields: Our group has extensively studied surface electric fields following electron 

injection into TiO2 nanocrystallites. Field strengths on the order of 2 MV/cm have been 

reported by surface anchored chromophores.30,31 Fields of this magnitude are expected to 

influence the motion of ions near the surface and evidence for cation motion to screen the 

field has been reported.33–35 The extent of charge screening is sensitive to the identity of the 

electrolyte cation and follows the trend 𝐶𝑎2+ < 𝑀𝑔2+~𝐿𝑖+ < 𝑁𝑎+.24  Since the field would 
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be expected to repel triiodide, screening the field more effectively (Na+) would lead to faster 

recombination than less screening (Ca2+). This trend was indeed found, which led to the 

initial assignment of the recombination rates being related to surface electric fields.4 

Similar studies were performed using neutral/cationic redox mediators, but the 

timescale for charge recombination competed with charge screening.3 Transient absorption 

experiments where both the reduced and oxidized form of the redox mediator were cationic 

and had slow enough charge recombination to allow for screening were hindered due to the 

minimal UV/Vis absorption of cobalt polypyridyl compounds. Here, charge recombination 

was monitored electrically and could easily be tested where both forms of the redox mediator 

were either anionic or cationic. The same cation-dependence on the electron lifetime was 

observed in using either redox mediator, indicating electric fields are not the primary 

influence on charge recombination under these conditions. 

Driving Force: The thermodynamic driving force is expected to influence the rate of charge 

recombination in either the Marcus or Marcus-Gerischer theory of electron transfer.5–8 For 

DSSCs, the driving force for charge recombination is typically tuned through the identity of 

the electron acceptor in solution.13–15 Alternatively, the reducing power of the TiO2(e
-) could 

be tuned by the composition of the surrounding electrolyte. This has been experimentally 

attempted in several cases by the addition of Lewis-acidic or Lewis-based additives.20–22  

However, the reducing power of TiO2(e
-)  using the Alkali and Alkaline Earth ions 

investigated here has not been discussed in the context of charge recombination.  

Charge recombination to the redox mediator is typically observed in the Marcus 

normal region, where larger driving forces correspond to faster rates of charge 

recombination. In the context of interfacial electron transfer and Marcus-Gerischer theory, 
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electron transfer rate constants correspond to greater energetic overlap between the donor and 

acceptor states. If driving force did control the rate of electron transfer here, a more negative 

acceptor state distribution (Na+) would be expected to increase the rate of charge 

recombination. Figure 4.08 shows the relative electron lifetime as a function of DoS position 

reported here. This is strong evidence that identity of the electrolyte cation tunes the TiO2(e
-) 

reducing power and controls the rate constant for charge recombination.  

 

Figure 4.08. Dependence of electron lifetime on the relative DoS position for DSSCs 

containing 100 mM Li+ (Black), Na+ (Red), Mg2+ (Blue), or Ca2+ (Green) perchlorate, 250 

mM TBAI, and 50 mM I2. Circles represent lifetimes measured in I-/I3
- containing DSSCs 

while diamonds represent DSSCs using CoIII/II redox mediators. 

The slope reports on the free energy dependence of the rate constant for charge 

recombination. According to Marcus-Gerischer theory,8 this value is dependent on the 

reorganization energy and the energetic overlap between the donor and acceptor states. Note 

that recombination to both the iodide/triiodide (circles) and cobalt based redox mediators 

(diamonds) show a similar dependence on the energetic position of the TiO2 acceptor states. 

Even though there are large difference in the reorganization energy for the one-electron 
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reduction of CoIII(dtb)3 and I3
- or I2 (>1.25 eV for cobalt redox mediators56 which is must 

greater than for iodide/triiodide57) the relatively small range in driving forces probed here 

(<150 mV) prevents differences from being readily detected.  

4.5 Conclusions 

Charge recombination was investigated in Li+, Na+, Mg2+, and Ca2+ containing 

electrolytes with both the traditional iodide/triiodide and an alternative CoIII/II redox 

mediator. The results were analyzed in the context of the driving force, electron diffusion, 

and electric field influence on charge recombination. It was found that the energetic position 

of the TiO2 acceptor states had a strong impact on the charge recombination rate constant 

with negligible influences from either electric fields or electron diffusion.  
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CHAPTER 5: CHARGE RECTIFICATION AT MOLECULAR-

NANOCRYSTALLINE TiO2 INTERFACES: OVERLAP OPTIMIZATION TO 

PROMOTE VECTORIAL ELECTRON TRANSFER* 

 

5.1 Introduction 

Separation of semiconductor electron-hole pairs generated upon supra band gap light 

absorption is critical to the performance of photovoltaics.1 Electron-hole pairs created within 

the depletion region of silicon are rapidly and quantitatively separated by the electric field 

that defines it; behavior that underlies the dominance of these materials in the photovoltaic 

industry.1 However, when the semiconductor’s physical dimensions are reduced to the 

nanometer length scale, the depletion region no longer plays a significant role in charge 

separation particularly when the material has a low dopant density.2  Hodes and Peter 

suggested a new concept in nanocrystalline photovoltaic cells wherein control of the rate 

constants for interfacial electron and hole transfer would result in efficient charge separation 

even in the absence of a depletion region.3  Gerischer predicted that such rate constants would 

be determined by the overlap of the molecular and semiconductor electronic states.4  Herein, 

we have characterized electrochemically driven redox chemistry at pyridinium-TiO2 

nanocrystallite interfaces where this overlap was systematically varied.  The interfacial 

density of states was quantified by in situ spectroelectrochemistry and was optimized through 
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the identity of the pyridinium acceptor and by the presence of potential determining cations 

in the external electrolyte.   

The materials under study are the mesoporous nanocrystalline TiO2 thin films 

commonly used in dye-sensitized solar cells.  It is well known that redox active molecules 

anchored to the surfaces of these materials can be reversibly oxidized and reduced when 

employed as working electrodes in a standard three-electrode electrochemical cell.5,6,7  Two 

discrete mechanisms for this redox chemistry have been identified.8   In the first, electron 

transfer is initiated at the transparent conductive oxide (TCO) that supports the mesoporous 

thin film, and proceeds away from the surface by lateral intermolecular self-exchange 

electron transfer, a process sometimes called ‘hole hopping’.9  Complete oxidation of all the 

molecules within the film requires a surface coverage greater than about ½ the saturation 

value such that a percolation pathway to each molecule is present.10  Such lateral hole 

hopping has also been observed after excited state injection by a dye molecule and hence can 

be initiated with light.11,12   

The second mechanism involves the direct participation of the redox active states in 

TiO2 that are sometimes idealized to be conduction band states, but appear to be better 

considered as localized TiIV/III species or trap states.8  An advantage of this mechanism is that 

the redox active molecules may be present in very low surface coverages as a percolation 

pathway is not required.  In this regard, the electrochemistry is similar to that observed on 

highly-doped degenerate semiconductors like those commonly used as TCOs.13,14  A 

disadvantage however, is that the formal reduction potentials of the molecules must be 

proximate to the TiIV/III potentials that mediate the molecular redox chemistry,  a requirement 

that excludes large classes of molecules such as the dye molecules commonly used in dye-
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sensitized solar cells. This study focuses on such TiO2 mediated molecular redox chemistry 

that provides insights into the kinetics for interfacial electron transfer. 

The three pyridiniums [1-(2-ethoxycarbonyl-ethyl)-4,4'-bipyridine]+ (MEV), [1,1'-(2-

ethoxycarbonyl-ethyl)2-4,4'-bipyridine]2+
 (DEV), and [1,1'-(ethoxycarbonyl-phenyl-methyl)2-

4,4'-bipyridine]2+ (DPEV) were characterized in fluid acetonitrile electrolytes and when 

anchored to the mesoporous TiO2 thin films.  These pyridiniums given in Scheme 5.1 are 

listed in order of increasing reduction potentials and span a 660 mV range.  They were 

selected as the first reductions occur commensurate with or after the reduction of the TiO2 

nanocrystallites that comprise the mesoporous thin film.  In addition, pyridinium reduction 

results in significant color changes that enabled the redox chemistry to be quantified 

spectroscopically.  

  

Scheme 5.1 Pyridinium structures 
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5.2 Experimental 

Materials: The following reagents were used as received: lithium perchlorate (LiClO4; 

Sigma-Aldrich, 99.99%); tetrabutylammonium perchlorate (TBAClO4; Sigma-Aldrich, ≥ 

99.0%); ammonium hexafluorophosphate (NH4PF6; Fluka, ≥98.0%); ethyl-3-

bromopropanoate (Sigma-Aldrich, 98%); ethyl α-bromophenylacetate (Alfa Aesar, 97%); 4-

phenylpyridine (Sigma-Aldrich, 97%); 4,4'-bipyridine (Sigma-Aldrich, 98%); argon gas 

(Airgas, >99.998%); oxygen gas (Airgas, industrial grade); titanium(IV) isopropoxide 

(Sigma-Aldrich, 97%); fluorine-doped tin oxide-coated glass (FTO; Hartford Glass Co., Inc., 

2.3 mm thick, 15 Ω/□); acetonitrile (CH3CN, Fluka, 99.9%); deuterated acetonitrile (CD3CN; 

Cambridge Isotope Laboratories, Inc., D 99.8%); chloroform (CHCl3; Fisher, 99.9%); ethyl 

acetate (Fischer, 99.9%); ethanol (EtOH; Decon Laboratories, Inc., 200 proof); hexanes 

(Fischer, mixture of isomers).  

NMR: NMR spectra were obtained on a Bruker Avance III 400 MHz spectrometer in 

CD3CN at approximately 298 K. All peaks are referenced to the solvent peak at 1.96 and are 

in units of δ (ppm).15 

ESI-MS: High resolution electrospray ionization mass spectrometry data were collected with 

a Thermo LTQ FT hybrid mass spectrometer using a micro-electrospray source at a flow rate 

of 3 µL/min. 

Synthesis: Synthesis of 1,1'-(ethoxycarbonyl-phenyl-methyl)2-4,4'-bipyridinium 

hexafluorophosphate (DPEV) was accomplished by reacting a 6:1 molar ratio of ethyl α-

bromophenylacetate and 4,4'-bipyridine in 25 mL CH3CN for 24 hours. The resulting yellow 

solid was filtered and washed with CH3CN, ethyl acetate, and CHCl3 then dissolved in water. 

The PF6 salt was crashed out of the aqueous solution after the addition of a minimal amount 
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of aqueous NH4PF6. The resulting solid was filtered and washed with water to give the 

desired product. 1H NMR in CD3CN resulted in resonances at δ 8.97 (4H, d), 8.38 (4H, d), 

7.61 (10H, m), 6.90 (2H, s), 4.42 (4H, m), and 1.31 (6H, t). ESI-MS resulted in peaks 

corresponding to (m/z): [M - (PF6)]
+ calcd for C30H30N2O4P1F6, 627.18419; found 627.18419, 

and [M2 – (PF6)]
+ calcd for C60H60N4O8P3F18, 1399.33311; found 1399.33195. 

Synthesis of 1,1'-(2-ethoxycarbonyl-ethyl)2-4,4'-bipyridinium hexafluorphosphate 

(DEV) was achieved by reacting a 6:1 molar ratio of ethyl 3-bromopropanoate and 4,4'-

bipyridine in 25 mL CH3CN for 24 hours. The resulting yellow solid was filtered, washed 

with CH3CN, and dissolved in water. The PF6 salt was crashed out of water after addition of 

a minimal amount of aqueous NH4PF6, which was filtered and washed with water. 1H NMR 

in CD3CN resulted in resonances at δ 8.99 (4H, d), 8.39 (4H, d), 4.89 (4H, t), 4.13 (4H, q), 

3.13 (4H, t), 1.22 (6H, t). ESI-MS resulted in peaks corresponding to (m/z): [M – (PF6)]
+ calc 

for C20H26N2O4PF6, 503.15288; found 503.15306 and [M2 – (PF6)]
+ calc for 

C40H52N4O8P3F18, 1151.27051; found  1151.27072. 

Synthesis of 1-(2-ethoxycarbonyl-ethyl)-4,4'-bipyridinium hexafluorphosphate 

(MEV) was accomplished by an overnight reaction of a 1.2:1 molar ratio of ethyl 3-

bromopropanoate and 4,4'-bipyridine and in 100 mL CH3CN. The CH3CN was removed 

under vacuum and the remaining oil, a mixture of unreacted starting materials and both 

mono-and di-substituted products, was dissolved in water. This solution was washed with 

CHCl3 and then hexanes to remove any unreacted starting materials. The PF6 salts of mono-

and di-substituted products were obtained by adding a minimal amount of aqueous NH4PF6, 

filtering, and washing with water. MEV was purified from DEV on an alumina column using 

3:1 EtOH/H2O as the eluent. The solution was removed under vacuum and washed with 
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EtOH to give the pure product. 1H NMR in CD3CN resulted in resonances at δ 8.86 (4H, m), 

8.32 (2H, d), 7.80 (2H, m), 4.81 (2H, t), 4.12 (2H, q), 3.09 (2H, t), 1.22 (3H, t). ESI-MS 

resulted in peaks corresponding to (m/z): [M – (PF6) – C2H4]
+ calcd for C13H13N2O2, 

229.09715; found 229.09706, [M – (PF6)]
+ calcd for C15H17N2O2, 257.1274; found 

257.12829, and [M2 – (PF6)]
+ calcd for C30H34N4O4PF6, 659.22164; found 659.22033. 

TiO2 Thin Film Preparation: Synthesis of TiO2 nanoparticles of approximately 20 nm 

diameter was carried out by the acid hydrolysis of titanium(IV) isopropoxide as previously 

described.5 Thin films of approximately 5 µm were prepared by doctor blading the colloidal 

solution onto transparent FTO using cellophane tape as the spacer, followed by sintering at 

450 ˚C for 30 minutes under oxygen flow. Thin films were either used immediately or stored 

in an over at ~80 ˚C until use. Attachment of pyridiniums to the surface was carried out by 

overnight immersion in micro- to milli-molar acetonitrile (depending on target surface 

coverage) solutions of the desired viologen. Surface coverages could not be determined prior 

to starting an experiment as the ground state viologen absorption (~260 nm) is obscured by 

the absorbance of the TiO2 thin film, which absorbs below ~370 nm. However, surface 

coverages often could be estimated in situ using the absorbance of the reduced compounds 

and a modified Beer-Lambert law, Equation 5.01: 

 𝛤 = 𝐴𝑏𝑠/(1000𝜀) 5.01 

 

where 𝛤 is the surface coverage (mol/cm2), 𝜀 is the extinction coefficient (M-1cm-1) and 1000 

is a conversion factor between cm3 and L.  
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Electrochemistry: Cyclic voltammetry: Cyclic voltammetry was performed in argon purged 

100 mM TBAClO4 acetonitrile or 100 mM LiClO4 acetonitrile solutions in a standard 3 

electrode configuration. Both the working and counter electrodes were platinum disks and 

the potential was applied versus a non-aqueous Ag/AgCl reference electrode. The average 

ferrocinium/ferrocene half-wave potential measured in 100 mM TBAClO4 CH3CN solutions 

before and after each experiment was used to serve as an external standard for the calibration 

of the non-aqueous reference electrode. The value for the ferrocinium/ferrocene half-wave 

potential was taken to be +630 mV vs NHE in acetonitrile.16   

Solution Spectroelectrochemistry: The spectra of the reduced pyridiniums was obtained by 

bulk reduction at Pt honeycomb working electrode (Pine Research Instrumentation) in argon 

purged 100 mM Li+ or TBA+ perchlorate acetonitrile solutions. This specially designed 

electrode was used in a standard 3 electrode configuration with a Pt counter electrode and a 

non-aqueous Ag/AgCl reference electrode described above. Spectra were monitored by an 

Avantes AvaLight DHc light source coupled to an Avantes StarLine AvaSpec-2048 

UV/Visible spectrometer synchronized to a Pine Wavenow Potentiostat controlled by 

Aftermath software (Pine). 

Surface Spectroelectrochemistry:  Spectroelectrochemistry of bare and viologen-anchored 

TiO2 thin films was performed by monitoring the UV/Vis absorption spectrum during the 

application of an applied potential. Potentials were applied by a BASi CV-50W potentiostat 

operating in a standard 3 electrode configuration where the TiO2
 thin film was the working 

electrode and Pt gauze electrode (BASi) was the counter electrode in argon purged 100 mM 

TBAClO4 or LiClO4 acetonitrile solutions. Potentials were applied versus a non-aqueous 

Ag/AgCl reference electrode (BASi) described above while the UV/Vis absorbance was 
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monitored on a Varian Cary 50 Spectrophotometer. Experiments were performed by stepping 

and holding at (typically) increasingly negative potentials while monitoring the absorption 

spectra. When no more spectral changes were observed (~2-3 minutes), the potential was 

moved to the next value. 

Spectroelectrochemical charge extraction measurements were performed by 

monitoring the UV/Vis absorption spectrum of TiO2 thin films with and without pyridiniums 

anchored to the surface during two potential steps. Starting from +200 mV vs NHE, the bias 

was stepped to a potential negative of the viologen reduction potential, held for typically 45 

seconds, and then returned to the initial potential. The UV/Vis absorbance spectra during 

these steps were monitored by either an Avantes AvaLight DHc light source coupled to an 

Avantes StarLine AvaSpec-2048 UV/Visible spectrometer or an HP 8453 UV/Vis 

spectrophotometer while a Pine Wavenow Potentiostat controlled by Aftermath software 

(Pine) or an EC Epsilon (BASi) applied the desired voltage in the same 3-electrode 

configuration described above. A 400 nm long pass filter (GG400) was used to prevent direct 

excitation of the TiO2. The spectral changes observed were similar to those during the steady 

state spectroelectrochemistry, however the CCD detector allowed complete spectra to be 

obtained with 0.5 s resolution, providing accurate kinetic data throughout the experiment.  

5.3 Results and Discussion 

Cyclic voltammetry was used to quantify the pyridinium formal reduction potentials 

in acetonitrile electrolytes.  Two single reductions were observed for DPEV and DEV while 

only one was observed for MEV with potential excursions to -1.0 V vs NHE.  The redox 

chemistry is best classified as quasi-reversible as the anodic and cathode peak potentials were 
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the same, ipa/ipc = 1, and the peak-to-peak separation was greater than 59 mV.  The formal 

reduction potentials are tabulated in Table 5.1. 

 

Table 5.1. Reduction Potentials and Ideality Factors for Pyridiniums in Solution and 

Anchored to the TiO2 surface. 

 

The pyridiniums were anchored to mesoporous nanocrystalline (20 nm anatase) TiO2 

thin films deposited on fluorine-doped tin oxide (FTO) glass by overnight reactions in 

CH3CN. Surface coverages were controlled by the solution concentration and for kinetic 

experiments were kept below 1/3 of the saturation surface coverage, ~1.5 × 10-8 mol/cm2, 

which was lower than the percolation threshold required for lateral intermolecular 

electron/hole-hoping.10  

Electrochemical reduction of the surface functionalized TiO2 thin films in a standard 

three-electrode cell resulted in the expected absorption features from the reduced pyridiniums 

and the TiO2(e
-)s.7,8 The potential dependent concentration of these two species were 

quantified spectroscopically using the Beer-Lambert Law.  An exponential rise of the TiO2(e
-

) concentration, determined from the magnitude of the near IR absorption, was observed as 

the Fermi level of the FTO substrate was raised toward the vacuum level.  The density at any 

potential was dependent on the nature and concentration of cations present in the CH3CN 

 

E0 in Solution 

mV vs NHE 

E0
 on TiO2 

mV vs NHE (α) 

Pyridinium 1st Red 2nd Red TBA+ Li+ 

MEV −680 ± 10 - −700 ± 50 (2.3) −310 ± 50 (1.3) 

DEV −150 ± 10 −570 ± 10 −400 ± 40 (2.4) −240 ± 50 (1.9) 

DPEV −20 ± 10 −440 ± 10 −270 ± 20 (2.2) −130 ± 30 (1.3) 
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solution.  Surface adsorption of Lewis acid Li+, often referred to as a ‘potential determining’ 

ion, resulted in a strong positive shift in the electrochemical reduction of TiO2 relative to that 

measured in tetrabutyl ammonium electrolytes, Figure 5.01.7,8  

 

 

Figure 5.01.  The spectroelectrochemical reduction of the indicated pyridiniums/TiO2 in 0.1 

M TBAClO4 (left hand side) or LiClO4 (right hand side) CH3CN electrolytes. 

The pyridinium redox chemistry did not follow the Nernst equation, which for a one 

electron transfer equilibrium at room temperature is given in Equation 5.02, 

 
𝐸 = 𝐸𝑜 − 59𝑚𝑉 𝑙𝑜𝑔10

[𝑟𝑒𝑑]

[𝑜𝑥]
 5.01 
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where E is the applied potential and Eo is the formal reduction potential.  An ideality factor, 

α, was introduced into the Nernst Equation that with rearrangement led to Equation 5.03,9   

 
𝑥 =

1

1 + 10
𝐸−𝐸0

α ×59 mV

 5.03 

where x is the fraction of pyridinium present in the reduced state.   

Although the origin(s) of the non-ideality remain uncertain, those measured in TBA+ 

containing electrolytes were on average larger α = 2.2 ± 0.2 than those measured in Li+ 

electrolytes, α = 1.6 ± 0.3, data consistent with the notion that surface electric fields induce 

the non-ideal behavior and that Li+ is able to screen such fields more effectively than does 

TBA+.17,18  The appearance of non-Nernstian behavior raises questions about the value of the 

formal reduction potentials that were approximated herein to be the equilibrium potential 

where the concentrations of the pyridinium and its reduced form were present in equal 

concentrations, Table 5.1.   

Pyridiniums of this class are known to aggregate, behavior that could influence 

interfacial behavior on TiO2.
19–21  For this reason, comparative spectroelectrochemical 

generation of the reduced pyridiniums by bulk electorlysis from dilute CH3CN electrolytes 

was also performed, Figure 5.02.  The absorption spectra of DPEV+ and DEV+ were very 

similar to that for singly reduced methyl viologen in dilute solution.22  Extinction coefficients 

were estimated by comparing the absorbance of the reduced species to the ground state 

absorbance where the extinction coefficients were measured. The maximum visible 

extinction coefficient for MEV0 was less than 1/2 that of the other two pyridiniums, Table 

5.2.  
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Figure 5.02. The UV/Visible absorption spectra of the indicated pyridiniums in 0.1 M LiClO4 

or TBAClO4 CH3CN electrolyte. 

The absorption spectra of the reduced pyridiniums on TiO2 were in good agreement 

with that measured in fluid CH3CN solution, Table 5.2.  Note that the maximum wavelengths 

given in Table 5.2 for the pyridiniums on TiO2 were not corrected for the underlying 

absorption of the TiO2(e
-)s and this is the likely origin of the small red shifts in the reported 

maxima.  However, when higher surface coverages were employed significant deviations 

from solution spectra were evident.  Application of a forward bias to DPEV anchored TiO2 

thin films with surface coverages greater than 1 × 10-8 mol/cm2 resulted in a growth along the 

high energy side of the visible absorption and a broad absorbance trailing into the near-

infrared region. The spectral data were consistent with aggregation of the singly reduced 

species, DPEV+, on the TiO2 surface and served as an upper limit for surface coverages used 

in the study.19,20 It is worth noting that the presence of such aggregation was monitored for 

DPEV in both Li+ and TBA+ electrolytes and did not affect the observed sluggish oxidation 

kinetics discussed below.   

 

 



123 

Table 5.2.  UV/Visible Absorption Properties of the Pyridiniums 

 DPEV2+ DEV2+ MEV+ DPEV+ DEV+ MEV0 

λa
max / nm 263 261 263 597 603 545 

(on TiO2)  (603) (605) (545) 

ε / M-1cm-1 24,600 23,200 31,600 14,100 13,800 6,700 

a. Peak maxima are taken to be ± 2 nm. 1 

The reduction kinetics were quantified by chronoabsorptometry after a potential step 

that induced redox chemistry.  Figure 5.03 shows representative data for a mesoporous TiO2 

thin film in TBA+ or Li+ containing electrolytes that did not contain surface anchored 

pyridiniums.  As the potential was stepped to more negative values the magnitude of the 

absorption change associated with the presence of TiO2(e
-)s increased exponentially.  The 

time required to reach a steady state TiO2(e
-) concentration also increased as the final 

potential was made more negative.  The data shown in Figure 5.03 were normalized to 

emphasize this kinetic behavior.  About 25 seconds were required to achieve a steady state 

TiO2(e
-) concentration at the most negative potentials shown for data recorded in TBA+ 

containing acetonitrile electrolyte.  In sharp contrast, greater than the 40 s were acquired to 

reach the highest steady state TiO2(e
-) concentration in the Li+ containing electrolyte, 

presumably due to Li+-TiO2 surface interactions that were absent in TBA+ containing 

electrolytes.   
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Figure 5.03.   The absorption change for an unfunctionalized TiO2 thin film measured at 900 

nm after a potential step from 0.2 V to the indicated potentials (mV) at time zero in 0.1 M 

TBAClO4 (left hand side) and LiClO4 (right hand side) CH3CN electrolyte.  The potential 

was stepped back to +0.2 V after 45 s. 

Stepping the potential back to the initial value resulted in oxidation of the TiO2(e
-) 

and the time scale for this was approximately independent of the number of TiO2(e
-)s that 

were present in the mesoporous thin film. While the origin of the slow reduction and fast 

oxidation kinetics are not fully understood, this behavior has been reported elsewhere and is 

well documented in the literature.23,24 One possible explanation is understood with the 

depiction in Scheme 5.2. Since the applied potential for reduction, Vred, lies within a high 

density of TiO2 acceptor states, there was no significant driving force for filling the highest 

lying states and complete reduction took tens of seconds to minutes. This was contrasted to 
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the oxidative step where the oxidizing potential, Vox, was more positive with a very low 

density of TiO2 states. In that case, there was always a strong driving force for oxidation and 

it was correspondingly faster. Another possible consideration for the disparate redox 

dynamics is diffusion of electrons in the TiO2 thin film. It is known that TiO2 reduction is 

accompanied by uptake of Li+ cations from the electrolyte25 while for TiO2 oxidation cations 

in/on the surface may  slowly release after the electron leaves TiO2. 

 

Scheme 5.2. Energetics of the TiO2 Acceptor States Compared to Reductive, Vred, and 

Oxidative, Vox, Step Potentials for Interfacial Electron Transfer Between the TiO2 Thin Film 

and the Conductive Contact, FTO. 

 

 

The chronoabsorptometry measurements were repeated for the pyridinium 

functionalized TiO2, representative data is given in Figure 5.04 where the step potential was 

sufficient to produce the singly reduced pyridinium.  The absorption changes were monitored 

at the wavelengths of maximum pyridinium absorption change determined from the steady 

state spectro-electrochemical data, Figure 5.01 and Table 5.2.  Although the TiO2(e
-)s also 
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absorb at these wavelengths, least-squares spectral deconvolution using the solution spectra 

and the known spectra of TiO2(e
-)s confirmed that the single wavelength kinetics reported 

here accurately represent the appearance of reduced viologen.  

The time required to reduce the surface anchored pyridiniums was dependent upon 

the final applied potential.  The kinetics were non-exponential and the general trends were 

emphasized herein.  For any given pyridinium the time required to reach an equilibrium 

concentration of the reduced form was dependent on the magnitude of the potential step and 

followed the same trend as that observed for the TiO2(e
-): the more negative the potential the 

more time necessary for achievement of equilibrium. For example, MEV required the most 

negative potential step for significant reduction and it required about 20 seconds to reach a 

steady-state value while DPEV, which was the most easily reduced, required less than five 

seconds.   

 

Figure 5.04. The normalized absorption change measured at the reduced pyridinium 

maximum wavelength after a step from +0.2 V to the indicated potentials (mV) at time zero 

in 0.1 M TBAClO4 (left hand side) and LiClO4 (right hand side) CH3CN electrolyte. The 

potential was stepped back to +0.2 V after 45 s. 
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The oxidation of the reduced pyridiniums in Li+ containing electrolytes was 

independent of the identity of the pyridinium and was similar to that observed for oxidation 

of TiO2(e
-).  The reduced pyridinium oxidation in TBA+ electrolyte was more interesting;  

DEV+ and DPEV+ oxidation showed a slow component that tailed out into the tens of 

seconds timescales that was absent for MEV0 oxidation. 

Chronoabsorptometry measurements were also performed with potential steps into 

the second reduction of DPEV in TBA+ containing electrolyte, Figure 5.05. Time dependent 

absorption spectra were observed consistent with the sequential one electron reductions of 

DPEV2+ to DPEV+, and then to DPEV0.  The large absorption changes present when the 

reactions were monitored at a single wavelength resulted from the fact that the singly reduced 

DPEV+ species absorbed more visible light than did the doubly reduced DPEV0.  A potential 

step back to the initial value resulted in the oxidation of DPEV0 to DEPV+ followed by 

production of the initial DPEV2+ state.  The absorption spectra revealed about 30% of the 

surface anchored DPEV molecules were present in the intermediate DPEV+ state, however it 

is suspected that all of the pyridiniums underwent two sequential one-electron transfers and 

that the slow ~ 0.5 s time resolution did not allow all of them to be quantified.26 
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Figure 5.05. UV/Vis absorbance changes for DPEV functionalized TiO2 in 0.1 M 

TBAClO4/CH3CN during potential steps from +200 mV to -600 mV at time zero and back to 

+200 mV vs NHE at t = 30 seconds. Single wavelength traces (600 nm) are shown in (A), 

with close-ups in (C) and (E). Full spectra are shown just before and after each potential step 

in (D) and (F) to highlight the observation of DPEV+ as an intermediate. Extinction 

coefficient spectra for DPEV2+, DPEV+, and DPEV0 are shown in (B) for reference. Long 

C                                                                            D 

A                                                                          B 

E                                                                            F 
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wavelength absorption changes in (D) and (F) are caused by the broad absorption of TiO2 

electrons during reduction. 

The interfacial pyridinium redox kinetics can be understood with thermodynamic data 

recast in Figure 5.06 where the measured cumulative charge was differentiated and expressed 

as a chemical capacitance, a metric very similar to the density of states.27,28 These 

distributions are not Gaussian and should not be confused with the those often depicted in 

Gerischer diagrams, which are not directly probed by electrochemical measurements.4 The 

peaks of the distributions represent the equilibrium potentials where equal concentrations of 

the pyridinium and its one electron reduced form were present and were taken as the formal 

reduction potential.  The two pyridiniums chosen for this Figure, DPEV2+/+ and MEV+/0, 

represent the extremes in potential characterized in this study.  Also shown is the TiO2 

chemical capacitance that displayed an exponential dependence on the applied potential.   

The reduction data can be understood as a ‘band filling’ or ‘cup of wine’ analogy, we 

prefer the latter as it is most likely that the TiO2 electronic states do not comprise the 

conduction band. Under this simplistic model electrons injected into the TiO2 film from the 

FTO substrate quickly relax to the lowest available energy level and the acceptor states are 

effectively filled from the bottom up as a cup of wine is filled. A more negative applied 

potential is analogous to filling the cup to a higher level which requires more time. In other 

words, the fill (pour) rate is fixed and the time required is determined only by the number of 

states (volume) available.  Hence the longer time required at a fixed potential in a Li+ 

containing acetonitrile electrolytes relative to a TBA+ containing electrolytes reflects the 

higher density of TiO2 acceptor states in Li+ electrolytes much like filling a larger cup 

requires more time.  One would anticipate that thicker TiO2 films would result in even slower 
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reduction kinetics.  Surprisingly, the cup filled with approximately the same rate regardless 

of whether the acceptor state was the TiO2 itself or the surface anchored pyridinium.  One 

might have suspected that the two would be different due to coulombic repulsion between 

electrons within TiO2 and the large electric field that were created with continued reduction.  

The more positive formal reduction potentials of the surface anchored pyridiniums in 0.1 M 

Li+/CH3CN relative to 0.1 M TBA+/CH3CN electrolytes likely reflect the interfacial electric 

field yet it does not appear to influence the kinetics.29,30     

Figure 5.06.   The chemical capacitance of DPEV2+/+ (blue) and MEV+/0 (purple) and the TiO2 

(gray) measured in 0.1 M TBAClO4 (left) and LiClO4 (right) CH3CN electrolyte. 

An additional complication with these nanocrystalline films was that the potential 

step at the FTO interface was immediate yet the time required for this potential change to 

extend through the mesoporous thin film was unknown. Hence, pyridiniums and TiO2 

nanocrystallites near the FTO surface were likely to undergo electron transfer first after the 

potential step while those farther from the FTO surface would require more time. While 

some spatial inhomogeneity of this type likely occurred within the films before steady-state 

was achieved, the observation of two sequential one-electron transfer events for DPEV in 

TBA+/CH3CN strongly suggests that the slow approach to steady-state was not due to 
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inhomogeneous reduction of the TiO2 thin film but was in fact due to quasi-Fermi level 

changes as steady-state was neared described by the ‘cup of wine’ model. 

When the overlap between the viologen donor states and the TiO2 acceptor states was 

large, the oxidation of the films occurred as if the cup were being drained from the bottom.  

The oxidation required less time than the reduction presumably because of a larger 

thermodynamic driving force for the reaction. For measurements in Li+ containing electrolyte 

and for MEV0 and DPEV0 oxidation in TBA+ electrolyte, the oxidation of the pyridiniums 

was fast and indistinguishable from that of the un-functionalized TiO2 thin films. For these 

interfaces, the overlap of the electronic states with the unfilled states in TiO2 was sufficiently 

high such that interfacial electron transfer was fast relative to extraction of electrons from the 

thin film. This allowed a quasi-equilibrium to be maintained during oxidation and the ‘cup of 

wine’ model alone was sufficient to describe the oxidation behavior.  In contrast, the 

oxidation of DPEV+ and DEV+ in 0.1 M TBA+ was slow and distinctly different than 

oxidation of un-functionalized thin films. For these interfaces, the ‘cup of wine’ analogy 

alone was insufficient to completely describe the oxidation behavior because the energetic 

overlap between the viologen donor states and TiO2 acceptor states was low such that 

interfacial electron transfer was slow and a quasi-equilibrium could not be maintained during 

oxidation.   

The slow oxidation that did occur was attributed to activated electron transfer to the 

TiO2 acceptor states.  While it could not be proved directly, it is likely that those reduced 

pyridiniums with the longest lifetimes corresponded to those that were furthest from the 

fluorine doped tin oxide (FTO) substrate where the redox chemistry was initiated.  One 

would expect that redox active molecules with more positive formal reduction potentials 
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would have even longer lifetimes and could possibly be permanently trapped in their reduced 

forms in these potential step experiments.  Potential steps that initiated two sequential 1-

electron transfer reactions with the pyridiniums provided additional evidence for the ‘cup of 

wine’ model. The DPEV2+/+ donor states had a much lower overlap with the TiO2 acceptor 

states than did the DPEV+/0 donor states resulting in slow and fast electron transfer, 

respectively.  

We note that the rapid reduction of pyridiniums after bandgap excitation of TiO2 is 

well documented in the literature and has been exploited for ultrafast color displays15,16 and 

photochromics.31 These light-induced reactions are inherently different as interfacial electron 

transfer is not rate limited by charge transport from the FTO substrate.32  The redox 

chemistry reported here bares some similarity to the forward bias condition of rutile TiO2 

single crystals in electrochemical cells where the high density of conduction band states can 

result in reversible redox chemistry with molecules that have sufficiently negative formal 

reduction potentials that they lie within the conduction band.33  For the interfacial studies 

carried out here, the exponential tail of the semiconductor nanocrystallite density of states 

represents an interesting situation.  These electronic states provide sufficient overlap for 

rapid reduction of the surface anchored pyridiniums yet do not as effectively accept an 

electron from the reduced pyridinium providing a means of charge rectification.  As a tailing 

density of states may be a common feature of nanocrystalline semiconductor materials, we 

anticipate that the rapid charge separation and inhibited charge recombination reported 

represents general behavior that can be optimized at the molecular level for solar energy 

conversion and other applications with semiconductor nanocrystalline thin films.   
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5.4 Conclusions 

Three pyridinium molecules anchored to mesoporous TiO2 thin films displayed non-

Nernstian behavior that was well modelled by the inclusion of ideality factors.  The reduction 

of TiO2 and the pyridiniums occurred with rates that were within experimental error the 

same, consistent with a ‘cup of wine’ model where the number of states reduced determined 

the time required.  The oxidation of the reduced pyridiniums was rapid when the formal 

reduction of the pyridinium had a high overlap with the TiO2 density of states; however, this 

redox chemistry was much more sluggish when the overlap was low.  This slower redox 

chemistry was attributed to activated transport through the mesoporous thin film to the 

conductive substrate.  The data hence provides a new means for controlling interfacial redox 

chemistry that cannot be realized with lateral ‘hole hopping’ when the surface coverage 

exceeds the percolation threshold.  
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CHAPETER 6: PHANTOM ELECTRONS IN MESOPOROUS 

NANOCRYSTALLINE SnO2 THIN FILMS WITH CATION DEPENDENT 

REDUCTION ONSETS 

 

6.1 Introduction 

Mesoporous thin films composed of wide band-gap semiconducting metal oxide 

nanocrystallites have been the focus of intense study due to their applications in solar energy 

conversion,1 photocatalysis,2 photochromics,3 and lithium-ion batteries.4,5 Dye-sensitized 

solar cells (DSSCs) utilize metal oxide semiconductors as an electron acceptor and transport 

material that facilitates charge separation and collection remarkably well. Photons are 

absorbed by surface anchored chromophores that then undergo excited-state electron transfer, 

termed ‘injection,’ into the oxide material.  Ideally, the injected electrons are transported 

through the thin film to a conductive back contact where they are collected in an external 

cell. The efficiency of electron injection has been predicted,6 and experimentally observed,7–

10 to be related to the energetic overlap between the semiconductor acceptor states and the 

donor states of the excited chromophore. The ‘acceptor states’ of the metal oxide 

nanocrystallites are often idealized as conduction band states. Therefore, knowledge about 

the energetic position and density of states is crucial for the strategic design of DSSCs.  
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The most widely used metal oxide for DSSCs has been TiO2, largely due to the 

favorable band-edge position and ability to transport injected electrons micrometer distances 

without significant loss. However, SnO2 has considerable promise as a replacement for TiO2 

due to a ~100 times larger electron diffusion coefficient11,12 and a ~0.5 V more positive 

conduction band position.13,14 These two properties would, in theory, allow for more efficient 

electron collection with near-IR absorbing chromophores that are weak photoreductants.  

The ‘acceptor states’ in these nanocrystalline thin films is often experimentally 

modelled as an exponential distribution of localized acceptor states, sometimes referred to as 

‘trap’ states. Due to the large surface area and number of grain boundaries in these 

polycrystalline thin films, the presence of multiple types of electronic states, i.e. trapped 

states vs conduction band states, is often discussed.15,16 A significant reduction in charge 

recombination has been observed after just a single atomic layer deposition of TiO2 onto 

SnO2 nanoparticles that was attributed to surface state passivation.17,18 Additional evidence 

for electron trapping in SnO2 thin films has been obtained by terahertz spectroscopy.19 While 

models often require, and common sense suggests, that both conduction band and localized 

‘trap’ states should be present, little spectroscopic evidence for multiple electronic states 

exists, particularly for TiO2 thin films in acetonitrile electrolytes at applied potentials 

relevant to DSSCs.  In TiO2 thin films, population of these acceptor states results in a broad 

optical absorption band across the visible into the near-IR region.20,21,22 This absorption has 

been shown to be linearly related to the total charge within the thin film, in accordance with 

Beer’s Law, and has led to the wide use of this absorption signature as a direct measurement 

of their occupancy.23,24 Although the UV/Vis absorbance of SnO2 thin films under forward 



139 

bias conditions displays similar spectral signatures,25 detailed studies reported herein show 

that the direct relationship between absorbance and charge is not present.  

The band-edge position of semiconductor materials in photoelectrochemical cells is 

known to be intimately related to the composition of the electrolyte. For example, solution 

pH influences the flat-band potentials of metal-oxide semiconductors in a Nernstian manner 

through surface hydroxyl protonation/deprotonation acid-base chemistry.13,26  Such behavior 

has also been reported for nanocrystalline TiO2 and SnO2 thin films.20,27 More recently, it has 

become evident that the electrolyte cation influences the position of TiO2 acceptor states to a 

degree that roughly correlates with the cation’s Lewis acidity in the organic nitrile solvents 

commonly used in DSSCs.24,28 The generality of this behavior in other metal oxides, such as 

the SnO2 thin films reported here, is unknown. 

Here, we report electrochemical and spectroelectrochemical studies of nanocrystalline 

SnO2 thin films in acetonitrile electrolytes and compare the results to the well-known TiO2 

thin films commonly used in DSSCs. Reduction of the SnO2 thin films resulted in absorption 

spectra that were potential-dependent over an applied potential window where only one state 

was observed for TiO2.  At low applied potentials, the majority of electrons in SnO2 appeared 

to reside in optically-inactive states, termed ‘phantom electrons,’ that may account for the 

reported examples of ‘trap states’ in SnO2 thin films.  More negative applied potentials 

results in spectra for SnO2 and TiO2 thin films that were very similar.  These spectroscopic 

features were found to be reversible when the applied potential was stepped back to positive 

values.  At applied potentials more negative than -1.3 V vs Fc+/Fc, a new absorption 

appeared in the ultraviolet region for SnO2 thin films that was not completely reversible.  The 

importance of this redox chemistry to applications in solar energy conversion are discussed. 
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6.2 Experimental  

Materials: The following reagents were used as received: lithium perchlorate (LiClO4; 

Sigma-Aldrich, 99.99%); sodium perchlorate (NaClO4; Sigma-Aldrich, ≥ 98.0 %); 

magnesium perchlorate (Mg(ClO2)2; Sigma-Aldrich, ACS reagent); calcium perchlorate 

tetrahydrate (Ca(ClO4)2•4H2O; Sigma-Aldrich, ≥ 99 %) tetrabutylammonium perchlorate 

(TBAClO4; Sigma-Aldrich, ≥ 99.0%); SnO2 nanoparticles (15% w/v, 15 nm diameter, Alfa-

Aesar), argon gas (Airgas, >99.998%); oxygen gas (Airgas, industrial grade); titanium(IV) 

isopropoxide (Sigma-Aldrich, 97%); fluorine-doped tin oxide-coated glass (FTO; Hartford 

Glass Co., Inc., 2.3 mm thick, 15 Ω/□); acetonitrile (ACN, Fluka, 99.9%); glacial acetic acid 

(C2H4O2; Fisher, 99.7%); polyethylene glycol (H(OCH2CH2)nOH, Alfa Aeser, MW = 

12,000) ; polyethylene oxide (-CH2CH2O)n, Alfa Aeser, MW = 100,000).  

SnO2 and TiO2 Thin Film Preparation: SnO2 nanoparticles were synthesized according to 

a previously described method.27,29 Briefly, 0.5 mL of glacial acetic acid was added dropwise 

to 15 mL of rapidly stirring colloidal suspension of SnO2 nanoparticles, which was allowed 

to stir for approximately 12 hours. The resulting solution was transferred to a hydrothermal 

digestion vessel and heated at 450 ˚C for 60 hours. The resulting mixture was sonicated for 

10 minutes and then polyethene glycol and polyethene oxide polymers (12,000 and 100,000 

Da) were each added to 2.5 wt%. Synthesis of TiO2 nanoparticles of approximately 15 nm 

diameter was carried out by the acid hydrolysis of titanium(IV) isopropoxide as previously 

described.30 Thin films of SnO2 and TiO2 nanoparticles of 3-5 µm were prepared by doctor 

blading the colloidal solution onto transparent FTO using Scotch tape (~35 µm) as the 

spacer, followed by sintering at 450 ˚C for 30 minutes under oxygen flow. Thin films were 

either used immediately or stored in an oven at ~80 ˚C until use. The geometric area and 
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height of samples was measured using a profilometer (Bruker DektakXT Profilometer). Film 

porosity was estimated comparing the mass of the thin film removed from the FTO surface to 

the predicted mass based of the estimated volume of the film. 

Electrochemistry: Spectroelectrochemistry was performed on SnO2 and TiO2 thin films 

immersed in Ar-saturated CH3CN in a standard 3 electrode configuration using the metal-

oxide thin film as the working electrode and a platinum gauze counter electrode. Potentials 

were applied by a BASi CV50W potentiostat referenced to a non-aqueous Ag/AgCl pseudo-

reference electrode calibrated to the ferrocinium/ferrocene half wave potential taken to be 

+630 mV vs NHE.31 While under applied bias, UV/Vis absorption spectra of the thin films 

were measured by a Cary 50 UV/Vis spectrophotometer. Equilibrium spectra were taken 

when the spectra no longer changed with time, which typically took 2 minutes. 

Charge extraction measurements were performed in a standard 3 electrode setup with 

the metal-oxide thin film as the working electrode, a platinum gauze counter electrode, and a 

non-aqueous pseudo-reference electrode in Ar-saturated CH3CN as described above. Spectra 

were monitored by an Avantes AvaLight DHc light source coupled to an Avantes StarLine 

AvaSpec-2048 UV/Visible spectrometer while potentials were applied by a Pine Research 

Instrumentation (PRI) Wavenow Potentiostat controlled by Aftermath software (PRI). 

Current transients monitored during potential steps were integrated to give the total charge as 

a function of time.   

Cyclic voltammograms were taken on a PRI Wavenow Potentiostat in a standard 3 

electrode setup with the metal-oxide thin film was the working electrode, a platinum gauze 

counter electrode, and a non-aqueous reference electrode described above immersed in Ar-

saturated CH3CN at a scan rate of 20 mV/s.  
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6.3 Results 

The absorption spectra of TiO2 thin films immersed in 100 mM Li+, Na+, Mg2+, Ca2+, 

and TBA+  (where TBA+ is tetrabutylammonium) perchlorate acetonitrile electrolyte were 

monitored at increasingly negative applied biases. Representative difference spectra in 100 

mM LiClO4 acetonitrile electrolyte are shown in Figure 6.01A. The data were in good 

agreement with previous studies22 that reported normalizable spectral changes for TiO2 

reduction under moderate applied potentials. We note that at much more negative applied 

potentials the absorption spectra of the Li+ intercalated TiO2, Li0.5TiO2, was observed but 

was not a focus of this study.32,33  For TiO2, an exponential function was used in the potential 

associated spectra (PAS) analysis (see discussion for details) because it is well known that 

the TiO2 acceptor states show an exponential dependence on applied potential, Equation 

6.01:  

 ∆𝐴𝑏𝑠(𝐸, 𝜆) = 𝑎(𝜆)𝑒−𝑏 𝐸 6.01 

where b was an adjustable parameter held constant for a given electrolyte and the 

wavelength-dependent amplitude, 𝑎(𝜆), was varied to fit the data as a function of potential, 

E. The calculated PAS here was in good agreement with the normalized spectral changes on 

TiO2 as seen in Figure 6.01B. 
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Figure 6.01. A) Raw and B) normalized absorption difference spectra of mesoporous, 

nanocrystalline TiO2 thin film in 100 mM LiClO4 acetonitrile electrolyte at increasingly 

negative applied potentials ranging from 0 V to -1.5 V vs Fc+/Fc. Overlaid on the normalized 

spectra in B is the calculated PAS (black). 

UV/Vis absorption difference spectra taken at increasingly negative applied potentials 

for a SnO2 thin film in 100 mM Ca(ClO4)2 acetonitrile solution are shown in Figure 6.02A. 

The normalized difference spectra were non-superimposable, Figure 6.02B, and displayed 

three distinct features: (1) a broad absorbance across the visible region attributed to electrons 

in the SnO2 nanocrystallites (SnO2(e
-)s), (2) a loss of absorbance at wavelengths less than 

350 nm consistent with a hypsochromic (blue) shift of the fundamental (valance band to 

conduction band) absorption, and (3) an irreversible absorption peak at < 400 nm that shifted 

towards shorter wavelengths at increasingly negative biases.  Spectra measured in 100 mM 

Li+, Na+, Mg2+, and TBA+ perchlorate acetonitrile electrolytes were insensitive to the identity 

of the cation, but the potential onset at which these spectra appeared was cation dependent. 

The UV/Vis absorption spectra were deconvoluted using the PAS method into three 

distinct spectra, shown in Figure 6.02C. Because the absorption spectra were non-

A B -1.5 V 

0 V 
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normalizable, additional functions were required to fit the single-wavelength absorbance at 

each applied potential, Equation 6.02:    

 

 ∆𝐴𝑏𝑠(𝐸, 𝜆) =
𝑎1(𝜆)

1 + 10^
(

𝐸1−𝐸

𝛼1 59.2 𝑚𝑉
)

+
𝑎2(𝜆)

1 + 10^
(

𝐸2−𝐸

𝛼259.2 𝑚𝑉
)

+ 𝑎3(𝜆)𝑒−𝑏 𝐸 6.02 

where E1, E2, 𝛼1, 𝛼2, and b were adjustable parameters held constant in a given cation and 

𝑎1(𝜆), 𝑎2(𝜆), and 𝑎3(𝜆) were varied to fit the data as a function of potential, E, and 

wavelength, 𝜆. The additional sigmoidal functions chosen had previously been used to model 

localized redox transitions,34,35 however their success in the modelling does not necessarily 

indicate that a localized redox state is present. The UV/Vis absorbance changes in all 

electrolytes could be accurately reconstructed from the three PAS shown.   
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Figure 6.02. A) Raw and B) normalized absorption difference spectra of mesoporous, 

nanocrystalline SnO2 thin film in 100 mM Ca(ClO4)2 acetonitrile electrolyte at increasingly 

negative applied potentials ranging from 0 to -1.5 V vs Fc+/Fc. The inset in A) shows the raw 

difference spectra from 0 to -700 mV. C) PAS deconvolution of A). D) UV/Vis difference 

spectra of A) after returning to the initial potential overlaid with PAS 3. 

Indeed, the three PAS correlate well with the spectroelectrochemical data: PAS 1 

accounts for the long-wavelength absorption, PAS 2 for the blue-shift of the fundamental 

absorption, and PAS 3 is a growth along the fundamental absorption. Interestingly, the blue-

shift of the fundamental absorption (PAS 2) occurred prior to significant growth at long 

wavelengths (PAS 1). Additionally, what appeared as a peak near 360 nm in the raw data was 

revealed to be the superposition of a bleach of the fundamental absorption (PAS 2) and a 

growth in a similar spectral region (PAS 3). Comparing PAS 3 (the growth) to the spectrum 

C 
D 

A 
B 

0 mV 

-1600 mV 
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of SnO2 after returning to positive potentials, seen in Figure 6.02D, gives credence to its 

shape and the assertion that while a peak in the raw data was observed, there exists no 

distinct species that has a peak in this spectral region. 

Single wavelength absorption changes monitored at 950 nm for TiO2 and SnO2 thin 

films immersed in 100 mM Li+, Na+, Mg2+, Ca2+, and TBA+ perchlorate electrolytes as a 

function of applied potential are shown in Figure 6.03. This wavelength was chosen because 

only one PAS for each metal oxide contributed to this absorption with an extinction 

coefficient that was very similar for the two metal oxide materials, vide infra. The potential 

onset at which an absorbance change was first quantified are listed in Table 6.1. These values 

were estimated by a linear extrapolation of absorption vs. applied potential plots to zero 

absorbance change; this estimation gave potentials similar to that when the absorption 

intensity had a signal-to-noise ratio greater than 3. Absorbance features were observed at 

potentials 300 ±  100 mV more positive for SnO2 thin films compared to TiO2 thin films 

when the electrolyte cation was the same. Additionally, both semiconductors were sensitive 

to the nature of the electrolyte cation, where the onset potential of absorbance changes 

followed 𝑇𝐵𝐴+ < 𝑁𝑎+ < 𝐿𝑖+ < 𝑀𝑔2+ ≈ 𝐶𝑎2+.  

At potentials where the reduced oxide thins films were colored, the absorptivity of the 

TiO2 thin films was much more sensitive to the the applied potential than were the SnO2 thin 

films. For example, in Li+ containing electrolytes a potential step of ~1 V was needed to 

increase the absorbance by ~0.05 for SnO2 thin films, but a comparable absorption was 

observed for TiO2 with only ~450 mV potential change. The thin films were measured to be 

between 3-4 µm thick by profilometry and in all cases, the SnO2 thin film was as thick or 

thicker than the comparable TiO2 film. Porosity estimates were calculated by comparing the 
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mass of the metal oxide thin films mechanically removed from the FTO substrate to the 

expected mass based on the measured volume and reported density. For anatase TiO2, this 

value was taken as 3.9 g/cm3, and SnO2 was taken as 6.85 g/cm3.36 The results indicate that 

the thin films have similar porosities, 68 ± 3 %.  

 

Figure 6.03. Absorbance changes monitored at 950 nm for SnO2 (A) and TiO2 (B) thin films 

in 100 mM Li+ (black), Na+ (red), Mg2+ (blue), Ca2+ (green), and TBA+ (brown) perchlorate 

acetonitrile electrolyte solutions at the indicated potentials.  

 

 

 

A 

B 
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Table 6.1. Absorbance onset potentials for SnO2 and TiO2 thin films in the indicated 100 mM 

Mn+(ClO4
-)n acetonitrile electrolytes. 

Substrate 

Absorbance Onset Potential (mV vs Fc+/Fc) 

Li+ Na+ Mg2+ Ca2+ TBA+ 

SnO2 -700 -950 -650 -500 -1100 

TiO2 -900 -1100 -850 -900 -1300 

 

Spectroelectrochemical charge extraction was performed to correlate the charge 

density within the film to the absorbance magnitude in 0.1 M LiClO4/CH3CN. This method 

has been successfully used to determine the extinction coefficient of TiO2 electrons in the 

past,23,24 and the results are comparable to other methods, such as redox titrations37 or cyclic 

voltammetry.38 Experiments performed on TiO2 thin films resulted in a linear relationship 

between charge extracted and the absorbance with an intercept at the origin (x-intercept 0.01 

± 0.01 C cm-2), shown in Figure 6.04A. The data were well-fit by a modified Beer-Lambert 

Law given in Equation 6.03 (derived in the Appendix):  

 
∆𝐴𝑏𝑠 =

1000𝜀

𝐹𝑠𝑖𝑛𝜃
(

𝐶

𝐴
) 6.03 

where 𝜀 is the molar (decadic) extinction coefficient, F is Faraday’s constant, 𝜃 is the angle 

of the thin film relative to the beam path (45˚), C is the charge extracted in Coulombs, A is 

the film area in cm2, and 1000 is a conversion factor between L and cm3. An extinction 

coefficient for TiO2(e
-)s of 970 M-1cm-1 at 700 nm and 1200 M-1cm-1 at 900 nm is abstracted 

from the slope, in good agreement with previous studies.24 

When the same procedure was performed with SnO2 electrodes, significant deviation 

from linearity was observed in plots of absorbance versus charge density. This indicated that 
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the absorbance did not follow Beer’s Law, Figure 6.04B. Instead, an offset from the origin 

was observed where significant charge was extracted with a much smaller color change than 

that measured at more negative applied potentials where Beer’s Law did appear to hold.  A 

linear fit of the charge abstracted at more negative potentials provided an SnO2(e
-) extinction 

coefficient of 910 M-1cm-1 at 900 nm and a large x-intercept of 0.69 ± 0.08 C cm-2.   

 

Figure 6.04. Absorbance change at 900 nm during spectroelectrochemical charge extraction 

of TiO2 (A) and SnO2 (B) thin films immersed in 100 mM LiClO4 acetonitrile electrolyte 

solutions. Charge extracted was normalized by the geometric area of the thin film. Overlaid 

in red are linear fits to Equation 6.03.  

 

 

A

 
 (2) 

B 

𝜀900 = 1200 𝑀−1𝑐𝑚−1 𝜀900 = 910 𝑀−1𝑐𝑚−1 
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Figure 6.05. Cyclic voltammograms of SnO2 (dashed) and TiO2 (solid) thin films in 100 mM 

LiClO4 (red) and TBAClO4 (black) acetonitrile electrolyte solutions at a scan rate of 20 

mV/s. Currents were normalized by the geometric area of the thin film.  

Cyclic voltammograms of SnO2 and TiO2 thin films in Li+ and TBA+ containing 

electrolytes are shown in Figure 6.05. Current onset potentials (COPs) given in Table 6.2 

show that both SnO2 and TiO2 thin films were sensitive to the the electrolyte cation. The 

COPs were calculated as the intersection between a linear fit to the baseline (non-Faradaic) 

current and a linear extrapolation of the Faradaic onset. The COPs in Li+ electrolyte were 

approximately 475 ± 25 mV more positive than those in TBA+ containing electrolyte for 

both TiO2 and SnO2 thin films, in agreement with the spectroelectrochemical studies. 

Additionally, SnO2 thin films were found to have a 425 ± 25 mV more positive COP than 

TiO2 in both electrolytes. Interestingly, an irreversible peak was observed for SnO2 thin films 

in Li+ electrolytes at ~ -1500 mV vs Fc+/Fc. This potential coincided with the irreversible 

features observed in spectroelectrochemical experiments and further supports the belief that 

irreversible chemical changes occur at sufficiently negative applied biases.  
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Table 6.2. Current onset potentials measured by cyclic voltammetry in the indicated 100 mM 

M+(ClO4
-) acetonitrile electrolytes. 

Substrate 

Current Onset Potential 

(mV vs  Fc+/Fc ) 

Li+ TBA+ 

SnO2 -500 -950 

TiO2 -900 -1400 

 

6.4 Discussion 

In this study, the energetic position and distribution of the acceptor states in 

mesoporous, thin films comprised of SnO2 nanocrystallites was investigated by spectroscopic 

and electrochemical techniques and compared to the more well studied thin films comprised 

of anatase TiO2 nanocrystallites.  Comparative studies between mesoporous metal oxide thin 

films are complicated by the fact that it is experimentally difficult to change only the identity 

of the metal oxide without also influencing other parameters. It is therefore useful to briefly 

state the physical characteristics of the SnO2 and TiO2 films used in this study. In both 

materials, nanocrystallites of ~15 nm in diameter composed of metal ions coordinated to six 

oxygen ions in a pseudo-octahedral arrangement were used. The SnO2 was present as rutile 

nanocrystallites while the TiO2 were in the anatase polymorph.  Mesoporous thin films were 

cast of each metal oxide measuring 3-4 µm in thickness and porosities of ~65%. Therefore, 

direct comparisons of absorption and currents are reasonable without consideration of the 

film thickness or morphology.   

A key result was that over the potential window of -200 to -1800 mV vs Fc+/Fc, three 

unique spectra were observed for SnO2 reduction, while only one was observed for TiO2.  
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The most easily reduced states in SnO2 induced a small blue-shift in the fundamental 

absorption, but did not absorb light appreciably in the visible region and were hence termed 

‘phantom electrons.’  More negative applied potentials yielded SnO2 electrons that had 

absorption features remarkably similar to that observed for TiO2.  At potentials more 

negative than about -1.3 V vs Fc+/Fc, a new absorption spectrum was identified that led to 

irreversible chemistry and was not examined in detail. 

A new method was developed to quantify the potential dependence of the spectral 

features when the underlying spectra were unknown. This method, termed ‘potential 

associated spectra’ (PAS), was closely related to the ‘decay associated spectra’ (DAS) 

deconvolution method previously used to deconvolute photoluminescence spectra.39,40  Both 

methods utilize simultaneous analysis of multiple data sets with parameters held constant that 

can experimentally be overdetermined.  The analysis provides spectra that can be compared 

to experimental values to test specific models.  For TiO2 reduction, only a single state was 

observed that displayed an exponential dependence on the applied potential.  For SnO2, three 

different spectra were observed and the PAS analysis provided their amplitude at each 

applied potential.  Although individual PAS may correspond to a single chemical species, 

this need not be the case. The PAS method cannot differentiate between correlated spectral 

changes and instead demonstrates that a global analysis of all the spectral data reveals that it 

is well described by three underlying absorption spectra.   

We note that two distinct processes have been suggested to counterbalance charge 

during the electrochemical reduction of metal oxides: cation adsorption and cation 

intercalation.  It is often difficult experimentally to differentiate between these two processes. 

However, for anatase TiO2 thin films in Li+ containing CH3CN electrolyte, two unique 
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UV/Vis spectra have been identified. 33,41,32,42  One spectrum corresponds to the Li+ 

intercalated material which shows a maximum absorbance in the visible region that was not 

observed herein.   The other spectrum shows no measurable sensitivity to the nature of the 

cations present in the electrolyte like that reported herein.  This characteristic spectra shows 

no clear maximum and has been assigned to the absorption by electrons in the metal oxide 

similar to Drude absorption that displays a monotonic increase into the near IR region. Such 

spectra are also observed in electrolytes that contain the non-intercalating 

tetrabutylammonoim cation43  and have been reported for reduced WO3 and ZnO thin 

films.25,44,45  Therefore, we tentatively assign the monotonically increasing absorption in 

these SnO2 thin films under forward bias to the SnO2(e
-)s yet acknowledge that some cation 

intercalation that does not alter this spectrum may be occurring. 

Evidence for phantom electrons: The spectroscopic and electrochemical behavior of the 

mesoporous TiO2 and SnO2 thin films were quantitatively different. Reduction of the TiO2 

thin films in a standard 3-electrode configuration resulted in a broad absorbance increase 

across the visible region and into the near-IR with a blue-shift of the fundamental absorption. 

These absorbance features were normalizable over a wide range of applied potentials as has 

been reported previously.22 The long-wavelength absorption has been attributed to the 

presence of electrons within the TiO2 thin film.20  Likewise, the blue-shift of the fundamental 

absorption signals an increase in the apparent band-gap that has been rationalized by the 

filling of acceptor states, i.e. a Burstrin-Moss shift,46,47 or an electric field (Stark) effect. 48,49    

Spectroelectrochemical reduction of SnO2 thin films resulted three distinct spectra: 1) 

a broad absorbance increase across the visible region, 2) a blue-shift of the fundamental UV 

absorption, and 3) a potential-dependent peak at wavelengths less than 400 nm. Unlike the 
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TiO2 thin films, the absorbance features of SnO2 thin films measured at different applied 

potentials were not normalizable. Conventional spectral deconvolution was not possible 

because the distinct absorbance features were not known. Therefore, the new deconvolution 

method to identify potential-induced absorbance spectra, termed potential associated spectra 

(PAS) was developed as described above.  

Applying the PAS method to SnO2 thin films under forward bias resulted in three 

spectra that were consistent with the above observations yet revealed that the potential-

dependent peak was in fact a superposition of a blue-shift in the fundamental absorption and 

a separate, more broad, absorption increase at potentials negative of -1300 mV. For SnO2 

thin films, the fundamental absorption blue-shifted before significant absorption was 

observed in the visible region, behavior in contrast with TiO2 thin films where both features 

appeared concurrently. This observation was most consistent with the presence of electrons 

in the SnO2 thin film that did not absorb visible light, but still induced a bleach of the 

fundamental absorption through either a Burstein-Moss or a Stark shift. Since there was no 

kinetic data to suggest these states are less mobile than the absorbing states, and hence may 

or may not be ‘trapped,’ we term them ‘phantom electrons,’ to simply represent electrons that 

have a negligible extinction coefficient in the visible region. 

The presence of multiple types of states within SnO2 thin films was perhaps most 

clearly evident in the charge extraction measurements. In these experiments, the charge 

density in the mesoporous thin films was compared to the color change. Plots of the 

absorbance at 900 nm as a function of charge density displayed the expected linear response 

for TiO2 thin films, but were nonlinear for SnO2 thin films, particularly at low potentials (-

800 mV) where very small absorbances were observed yet significant charge was extracted. 
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At potentials between -1000 mV and -1300 mV, corresponding to charge densities of 1-3.5 

mC cm-2, the data became linear and an extinction coefficient of 910 M-1cm-1 at 900 nm was 

abstracted from the slope. If it is assumed that only one type of state was responsible for this 

absorption as the PAS suggests, then at early potentials approximately 80% of the measured 

charge exists as phantom electrons. This value decreases to approximately 20% at -1100 mV 

at which point all remaining charge appears to occupy light-absorbing states. Under normal 

operating conditions, we estimate that 20-50 % of the charge within the thin film resides as 

‘phantom electrons.’ At potentials negative of -1300 mV (charge density greater than 3.5 mC 

cm-2, not shown), deviations from linearity were again observed due to irreversible chemistry 

changes that occurred under these more highly reducing conditions. The details of the 

irreversible chemistry remain unknown, however theoretical calculations suggest that 

formation of partially reduced SnO2 (SnOx, where x<2) results in a material with a lower 

bandgap. Extrapolation of the high-energy portion of PAS 3 resulted in an estimated bandgap 

of 2.8 eV, corresponding to Sn2O3 or Sn3O4.
50 

Comparison of the absorbance (Table 6.1) and current (Table 6.2) onset potentials 

also support the existence of phantom electrons in SnO2 thin films. A current response was 

observed at potentials 200 mV more positive than the absorbance onset in Li+ containing 

electrolytes. Of note, this discrepancy between current and absorbance onset potentials was 

not observed in TiO2. Furthermore, if the current onset potential measured by cyclic 

voltammetry corresponded to the SnO2 acceptor states, then one would conclude SnO2 has a 

425 mV more positive acceptor state distribution than TiO2, in good agreement with many 

literature reports of a more positive conduction band edge for SnO2.
25,51  
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We note that spectroscopic evidence for more than one type of TiO2(e
-) has been 

reported in aqueous electrolyte.52  Boschloo and Fitzmaurice observed a very weak 

absorbance centered at 400 nm that appeared at more positive potentials than did the 

characteristic spectrum that is also reported here. They absorption feature was attributed to 

surface trapped electronic states.16 Curiously these states are not observed in CH3CN 

electrolytes. 

Similar spectroelectrochemical studies on highly doped nanostructured SnO2:Sb have 

been performed where no evidence for phantom electrons was reported.53 The SnO2:Sb band-

gap is only 2.8 eV, compared to 3.6 eV for un-doped SnO2. Antimony, as an n-type dopant, 

would be expected to introduce states below the conduction band. Therefore, if any ‘phantom 

electron’ states were present in their material, they would likely overlap with the phantom 

states and this could obscure their detection.  In addition, the extinction coefficient calculated 

for the SnO2:Sb material (2400 M-1cm-1 at 700 nm) are a factor of 4-5 times higher than that 

measured here, suggesting phantom electrons were not present at all with these highly doped 

materials. 

The lack of a significant color change upon moderate reduction is important for 

applications of these materials as transparent conductive oxide electrodes. Wide bandgap 

semiconductors, such as SnO2, are known to behave as conductive oxides following electron 

injection. Indeed, Bard has shown that under such forward bias conditions, rutile TiO2 single 

crystals behave much like a Pt electrode in cyclic voltammetry experiments.14 Generally, in 

all transparent conductive oxide (TCO) materials, a trade-off exists between conductivity and 

transparency in the visible region. Highly conductive TCOs have lower transmission 

efficiencies than do less conductive materials.  If these ‘phantom electrons’ do in fact 
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promote conductivity, the results indicate that doping can be achieved without significant 

color change.  

Cation effects on energetic distribution of acceptor states: Spectroelectrochemistry has 

been utilized previously to quantify the energetic position and density of acceptor states in 

TiO2 thin films and a similar approach was utilized herein for SnO2 thin films.43,21 For TiO2 

thin films, the measured absorbance change was directly related to the charge within the thin 

film through Beer’s Law, allowing the chemical capacitance to be readily calculated. This 

process was complicated in SnO2 thin films by the presence of phantom electrons that caused 

deviations from Beer’s Law. Instead, complete spectral deconvolution was required by the 

PAS method. This allowed the chemical capacitance of each state to be uniquely estimated 

from the magnitude of the PAS. For example, the concentration of phantom electrons could 

be estimated from the magnitude of PAS2. We note that although the presence of phantom 

electrons was inferred from changes to the fundamental absorption, they do not appreciably 

absorb light in the 400-1100 nm region. Figure 6.06 compares the electronic distributions for 

TiO2 and SnO2 thin films immersed in all the electrolytes studied. 
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Figure 6.06. A) Chemical capacitance for TiO2 (left) and SnO2 (right) thin films in 100 mM 

metal perchlorate acetonitrile solutions of Li+ (black), Na+ (red), Mg2+ (blue), Ca2+ (green), 

and TBA+ (brown). For SnO2 thin films, the smaller distributions represent phantom 

electrons and the larger optically-active electrons. 

Figure 6.06 clearly shows the energetic distribution of both SnO2 and TiO2 electrons 

were sensitive to the nature of the electrolyte cation.  The distributions follow the trend 

 𝑇𝐵𝐴+ < 𝑁𝑎+ < 𝐿𝑖+ < 𝑀𝑔2+ ≈ 𝐶𝑎2+ consistent with the cation size-to-charge ratio and 

suggests Lewis acidity may be an important determining parameter for how cations affect the 

electronic distributions of metal oxide semiconductors. While this behavior is well 

documented for mesoporous TiO2 thin films,20,24 to our knowledge this is the first time SnO2 

thin films have been shown to be sensitive to the electrolyte cation.  

The phantom electron distribution in SnO2 thin films was more positive than the non-

phantom distribution on an electrochemical scale and did not monotonically increase but 

rather reached a maximum. The shape of this distribution more closely resembled a localized 

transition than an extended band, where 95 % of the total phantom distribution resided within 

500 mV of the peak. The fact that these states resided at more positive potentials than the 
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states that absorb visible light suggests that electrons injected through dye-sensitization may 

relax into them which could complicate kinetic analysis. 

Interestingly, the absorbance change as a function of applied bias did not increase 

exponentially in the SnO2 thin films but appeared to reach a plateau. Therefore, the chemical 

capacitance, which is proportional to the derivative of the absorbance change, was non-

exponential and displayed a maximum. This maximum chemical capacitance for non-

phantom electrons should be viewed with caution as irreversible spectral changes occurred 

when the charge density in SnO2 exceeded about 8 mF/cm2; subsequent measurements made 

on films that had stored such high charge resulted in different capacitances. 

Larger chemical capacitances were measured for TiO2 thin films relative to SnO2. 

This may be due to the effective mass, me, of electrons in each semiconductor. In a simplified 

conduction band model the density of states is proportional to me
3/2.  A wide range of 

effective masses for TiO2 electrons has been reported, most ranging from 1-10, while SnO2 

electrons have an effective mass of 0.2 me.
54–58 These values predict that the TiO2 conduction 

band will have an 10-350 times greater density of states than does SnO2 depending on the 

choice of TiO2 electron effective mass. The chemical capacitances calculated here support 

the higher density of states for TiO2, but the exact value is difficult to determine 

experimentally. Since the conduction band position is ill-defined and is certainly not the 

same for the two metal oxides, a direct comparison at a given potential was not possible. 

Furthermore, the shape of the electronic distributions were different which prevented a 

simple offset adjustment. Larger chemical capacitances indicate a higher density of states. 

Therefore, the change in capacitance for a given potential step was used to estimate the 

relative density of states for the two thin films. Using this method, the experimentally 
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determined density of states in SnO2 is ~2-3 times smaller than in TiO2. This suggests that 

the effective mass of an electron in TiO2 is closer to 1 me, as measured by Tang et.al.54 

An alternative, and perhaps more intuitive, explanation for the disparate density of 

states in these materials is based on their dielectric constants.  Anatase TiO2 has a large 

dielectric constant reported to be between 30 and 60,59–61 while SnO2 has a smaller value of 

9-14.36  Therefore, electrons injected into SnO2 nanocrystallites are less effectively screened 

from one another and repel each other more strongly than do electrons in TiO2.  In other 

words, there is a larger Coulombic penalty for each additional electron in SnO2 which 

decreases the number of states within a given energy range. The ratio of dielectric constants 

is between 3 and 4 and this value is surprisingly close to the density of states ratio measured 

near -1.1 V vs Fc+/Fc. The data measured for these nanocrystalline thin films is more 

consistent with localized electronic states instead of a conventional conduction band. 

The lower density of SnO2 states measured herein is consistent with previous 

observations that excited-state injection into TiO2 is faster than SnO2.
62,63  Such transient data 

could not be rationalized by the more positive conduction band edge of SnO2.  Instead, a 

smaller density of acceptor states provides less overlap with the dye excited states resulting 

in slower electron injection as predicted by Gerischer theory.6 

6.5 Conclusions 

The distribution of acceptor states in nanocrystalline SnO2 thin films was studied by 

spectroelectrochemical and electrochemical methods.  Simultaneous analysis of potential 

dependent data resulted in the identification of three unique ‘potential associated spectra’ for 

reduced SnO2 while only one was identified for TiO2.  Reduction of SnO2 resulted in the 

appearance of: 1) a broad absorption that spans across the visible and near IR regions; 2) a 
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blue-shifted fundamental absorption; and 3) an absorption band in the blue region.  The 

absorption onsets were dependent on the electrolyte cation, present as the perchlorate salt of 

Li+, Na+, Mg2+, Ca2+ and TBA+. Correlations of the thin film charge with the absorbance 

intensity revealed that significant charge was transferred to SnO2 films without a 

measureable color change. This suggests presence of electrons within the SnO2 thin films that 

do not absorb visible light and are termed ‘phantom electrons.’  The density of acceptor 

states in SnO2 was found to be significantly lower than that measured for TiO2 which 

represents behavior consistent with previous reports of more rapid excited state injection into 

TiO2. 
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CHAPTER 7: STRiVE DESCRIPTION AND OPERATION 

7.1 Introduction 

The STRiVE is an apparatus designed to measure charge density, charge transport, 

and recombination in dye-sensitized solar cells. The hardware consists of two LED arrays, 

one white and one colored, which provide constant and pulsed illumination, respectively. 

Solar cells are held at open or short-circuit by fast solid state switches, with switching times 

~250 ns. STRiVE is an acronym for “Sequential Time-Resolved current(i)-Voltage 

Experiments.” The STRiVE monitors electrical signals and is capable of measuring the 

voltage and current simultaneously with ~ µs time resolution. As described below, the 

experiments and their analysis are generally divided into either large or small perturbation 

regimes.  

For large perturbation experiments, cells equilibrate in the presence of an external 

perturbation, either light or an applied potential. The perturbation is then removed and, 

depending on the experiment, the cell may be switched between open and short circuit. An 

example of such an experiment is charge extraction from open circuit. In this experiment, the 

solar cell equilibrates at open circuit under steady state white light illumination. After 

equilibration is reached, the light is turned off and the cell is short-circuited. The current that 

flows through the circuit is integrated and represents the charge present in the cell under 

illumination.  
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The small perturbation techniques monitor kinetic responses of the solar cells as they 

return to steady state conditions following an external perturbation. Steady-state conditions 

are typically under illumination by an array of white LEDs at either open or short-circuit. A 

short (µs-ms) pulse from a separate array of colored LEDs then acts a small perturbation 

from the steady state (white light) conditions. Because the response is monitored as the cell 

returns to steady state (pre pulse) conditions, the cell is always kept at either open or short 

circuit conditions. A common example of a small perturbation technique is transient 

photovoltage decay. The voltage response is monitored and the decay is fit to a single 

exponential to obtain the electron lifetime. 

This STRiVE is generally based on Brian O’Regan’s ‘TRACER’ (TRAnsient and 

Charge Extraction Robot),1,2 however the hardware and software have been substantially 

modified. The STRiVE was developed at Johns Hopkins University and UNC Chapel Hill 

between 2013-2016. The design team was led by Tim Barr, who wrote the LabVIEW based 

software and led the mechanical and electrical engineering aspects of the instrument. C. 

Tilden Hagan IV also assisted with the overall circuit design that improved signal to noise 

ratios. Matthew Verber built and arranged the circuit board and assisted with troubleshooting. 

This chapter is intended to be a physical description and brief summary of the 

experiments the STRiVE can perform, but not an exhaustive review of the underlying theory. 

Comprehensive reviews have been published focusing on the background theory and 

interpretation of measurements.3,1,4,5 A brief summary of small perturbation theory and its 

applications in DSSCs was presented in Chapter 1.    
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7.2 Hardware Description 

 

Figure 7.01. White and blue LED arrays illuminating a typical DSSC inside the STRiVE 

apparatus. Fog was generated from liquid nitrogen carefully poured between the LED array 

and the cell. Picture taken by Lars Sahl. 

Light Sources and Power Supplies: Cells can be illuminated by two different circular LED 

arrays, Figure 7.01. The outer array consists of 12 white LEDs (Luxeon SR-12-WN300). 

These LEDs come equipped with a lens to focus the light at a 9˚ beam angle onto the solar 

cell. The output irradiance, given in Figure 7.02, is white to the eye but is not precisely 

calibrated to the AM1.5 solar spectrum. The LEDs are connected in series, each requiring ~3 

V to produce light. Therefore, the total voltage applied by a Kepco Bipolar Operational 

Power Supply/Amplifier to the LEDs is set to 36-37 V at all times. Illumination intensity is 

controlled by the current, which is typically defined by the user or the STRiVE 
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automatically. Typical operating currents are less than 500 mA, however the LEDs are rated 

to 1A.   

 

Figure 7.02. Relative spectral power distribution of the white LEDs.6 

The inner array consists of 8 RGB tri-colored LEDs (Luxeon SP-03; Red: LXM2-

PD01-0050, λmax=627±20 nm, FWHM=20 nm; Green: LXML-PM01-0090, λmax=530±10 

nm, FWHM=30 nm; Blue: LXML-PB01-0040, λmax=470±15 nm, FWHM=20 nm), where an 

individual color is used for a given experiment. The spectral distribution is shown in Figure 

7.03 for all available colored LEDs. The installed LEDs are Blue, Green, and Red. Each 

color is independently connected in series to allow for a single color to be used at a time. The 

minimum voltage required to produce light is variable (variable photon energy), but a 

constant voltage of ~38 V is applied by a MASTECH HY5003D DC Power Supply to the 

array for all colors. The colored LEDs are typically used for short (µs-ms) pulses for the 

transient experiments. 
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Figure 7.03. Relative spectral distribution of colored LEDs. Blue, Green, and Red are 

installed on the STRiVE. 

These power supplies are set to run in controlled current mode. The user sets a 

maximum voltage limit, which is applied when there is no current flow. When the lights are 

turned on, the voltage is adjusted within the allowed range to provide the desired current. 

DAQ Board: Communication between the computer and each instrument is managed by a 

NI-6251-BNC data acquisition (DAQ) board. It converts computer commands into voltage 

outputs which control essentially all functions (open/short circuit, applied potential, 

illumination intensity etc.) and converts analog voltage signals into digitized values that are 

stored on a computer. The maximum sampling rate is 1.25 MHz, which corresponds to 0.8 

µs. This sampling rate can only be realized when a single input/output is used. Using 

multiple channels divides the maximum sampling rate by the number of channels used. 

The act of measuring a voltage requires some current to flow. Our solar cells typically 

have very small active areas (<1 cm2) and provide low current (typically <3 mA). For these 

devices, measuring a voltage can, in some cases, draw enough current to make an open 
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circuit measurement not be truly at ‘open circuit.’ We empirically found that the amount of 

current drawn by the act of measuring was related to the sampling rate. Reducing the 

sampling rate to 100 kHz (as opposed to 1.25 MHz) was sufficient to prevent the act of 

measuring from influencing the results. Therefore, the maximum sampling rate has been 

fixed at 100 kHz (10 µs/sample).  

Integrated Circuit: The integrated circuit used is shown schematically in Figure 7.04A and 

pictorially in 7.04B. The cell electrical connections (open/short circuit) are controlled by 

metal-oxide semiconductor field effect transistors (MOSFETs) shown on the left. MOSFETs 

operate by allowing current to pass between the ‘source’ and ‘drain’ if a voltage is applied to 

a ‘gate’ (relative to source). The original design by Brian O’Regan connected two MOSFETs 

‘drain to drain,’ which was replicated here.7 This was done because some MOSFETs are 

better rectifiers in one direction (i.e. source to drain) versus the opposite (drain to source).8 

Therefore, connecting two MOSFETs drain-to-drain prevents essentially all current when the 

gate is off. There are two pairs of two MOSFETs. One pair controls if the cell is at open/short 

circuit, the other allows the external potentiostat (PAR 362) to be in electrical 

communication with the DSSC. Both pairs should never be ‘closed’ at the same time because 

it would effectively short the potentiostat.  
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Figure 7.04. Picture (Top) of the integrated circuit used in the STRiVE shown schematically 

on the Bottom. On the left are MOSFETs used to hold the cell at open/short circuit or allow 

the potentiostat to be connected to the circuit. On the right are the amplifiers to accurately 

measure the current.  

Under open circuit conditions, all the MOSFETs are ‘open’ and no current flows. 

Under short-circuit, the pair of MOSFETs that allow open/short circuit are ‘closed’ and 

current flows from the TiO2 working electrode, across a 1 Ohm resistor to measure the 

current, and then to the counter electrode. Since less than 5 mA are typically output, the 
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voltage drop across the resistor is in the 10-6 to 10-3 V range. The DAQ board cannot 

accurately measure voltages this small, so the signal is amplified (INA 128P) by a factor of 

100-5000. The amplification amount is controlled by the resistance of what has been termed 

an ‘amplifying resistor,’ which is fixed and not easily changed. Since measurements are 

taken over a wide range of operating conditions, the current varies from 10-6-10-3 A. 

Therefore, the same amplification ratio is not ideal under all operating conditions. To ensure 

the user does not have to manually adjust this parameter, four separate amplifiers are used, 

each with a different amplification ratio (100, 500, 1000, 5000). Every output is measured by 

the DAQ, where the software calculates the optimal amplification ratio and uses only that 

data. 

Faraday Cage: The sample and LEDs are enclosed in a copper Faraday cage to minimize 

environmental (line) noise. The decrease in the noise was actually small, but the cage was 

still used as a ‘black box’ to prevent unwanted light from illuminating the cell. 

Potentiostat: Although the DAQ board is capable of outputting a voltage, it can only output 

~10 mA current. Therefore, if high efficiency cells were used it would not be able to supply 

enough current to reach the desired voltage. To overcome this obstacle, an external 

potentiostat was used. A PAR Model 362 Scanning Potentiostat was utilized for this work, 

however any potentiostat with an external input can be used. The external potentiostat is set 

to apply the voltage specified by the DAQ board, but is capable of providing up to amps of 

current as needed and can therefore easily apply any potential of interest. The potentiostat is 

connected to the circuit through the a pair of MOSFETs. The potentiostat is not in electrical 

contact unless the MOSFETs are closed. When closed, the reference and counter electrodes 
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are connected to the counter electrode of the DSSC and the working electrode is connected to 

the TiO2 electrode in the DSSC. 

7.3 Software Description and Typical Operation 

The software that controls the STRiVE is written in LabVIEW and is designed to 

make device analysis fast, robust, and hands-off. This is accomplished by ‘grouping’ 

parameters (light intensity, pulse time, open-circuit voltage/short-circuit current) for 

sequential experiments. Grouping experiments are automatically performed under matched 

operating conditions without the user having to manually enter parameters. Key cell 

parameters (electron concentration, lifetime, diffusion coefficient) are a function of incident 

light intensity. Therefore, experiments are repeated under a wide range of light intensities 

and compared at matched electron concentrations. Typical operation starts by measuring the 

steady-state current-voltage curve of the cell and then using the results as guidelines for time-

dependent experiments. For example, a cell with an open-circuit voltage, VOC, of 600 mV 

would be analyzed under light intensities that produce VOC’s ranging from ~300-650 mV. 

These bounds are empirically set by the feasible reasonable range of incident light intensities 

that can be accurately output without introducing neutral density filters (on the low side) or 

lenses to focus the light (on the high side).  

When investigating DSSCs, the parameters of interest are typically the electron 

lifetime, diffusion coefficient, and charge within the TiO2 thin film. Electron lifetime is 

typically measured by the transient photovoltage decay (TVD) technique from open circuit, 

but could also be measured by the large perturbation technique open-circuit photovoltage 

decay. The diffusion coefficient is measured by transient photocurrent decay (TCD) from 

short circuit, although could be performed under an applied bias (see Transient Photocurrent 
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Decay below). The electron lifetime, 𝜏𝑛, and diffusion coefficient, 𝐷𝑛, are often used to 

calculate the diffusion length, 𝐿𝑛, according to Equation 7.01: 

 𝐿𝑛 = √𝜏𝑛𝐷𝑛 7.01 

 

where the n’s in Equation 7.01 represent that the lifetime and diffusion coefficient used must 

be compared at the same TiO2 electron concentration. Since TVD is at open circuit and TCD 

is at short circuit, the electron concentration is much different at the same light intensity. 

Therefore, charge extraction is performed to estimate the charge within the film under both 

open and short circuit, which allows the lifetime and diffusion coefficient to be accurately 

compared at matched electron concentrations.  

General User Interface: The experiment(s) to be performed are selected from the list of 

dropdown boxes titled ‘Select Experiments.’ The individual experiments will be discussed in 

detail below. Experiments can be grouped together by selecting ‘yes’ for the group 

parameter. When grouped, the first experiment acts as a ‘master’ experiment and all 

parameters set during that experiment (light intensity, cell current/voltage, pulse time) will be 

shared with subsequent experiments where relevant. If ‘grouped’ is not yet to ‘yes,’ each 

experiment will be performed as defined without modifying the parameters from the ‘master’ 

experiment. Once an experiment is selected, clicking ‘Set Parameters’ bring up a dialog 

where the user can set parameters for the experiment. Execution of all selected experiments 

is begun by clicking the ‘Run’ button at the bottom. The ‘Stop’ button stops experiments in 

progress (although not instantly) and stops execution of the STRiVE software. All data 

collected is automatically saved in the selected folder. The file name always begins with the 
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experiment name, i.e. “Transient Photovoltage Decay…” followed by an extension, defined 

in the Parameters dialog.  

Common parameters that are independent of the experiment are input, such as the 

user name, a cell description, cell area, etc. are defined in the general user interface and saved 

into every data file. Email options are setup, where the STRiVE computer has its own Gmail 

account. The user can select the option to send all data as it is collected (through email) or a 

single message that informs the user when data collection is complete. This latter method is 

more common and very useful because the user does not need to constantly check when the 

STRiVE is done. Below, an overview, user-defined parameters, and automatic data workup 

are discussed for each experiment.  

Jsc and Voc: Overview: The experiment Jsc and Voc is the simplest experiment the STRiVE 

performs. The cell is placed at open circuit by the MOSFETs and illuminated. The voltage is 

monitored and displayed in real-time until it is constant (under 2 % variability) for 2 seconds 

or the maximum time is reached. Next, the cell is placed at short circuit and the current is 

monitored, again until it remains constant (within 0.1 mV) for 1 seconds or until the 

maximum time is reached.   

User-defined Parameters: (See Figure 7.05) The user simply sets the maximum amount of 

time and the LED current, which determines the illumination intensity. 
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Figure 7.05: The “Set Jsc and Voc Parameters” dialog box with typical values shown. 

Data Workup: The VOC and JSC values will be displayed along with the standard deviation for 

the last ~1 second during the measurement.  

Current-Voltage (iV) Curve: Overview: The overall solar cells performance is evaluated by 

a current-voltage (iV) curve. Cell current is monitored as the voltage applied between the 

working and counter electrode is varied. This is typically done in the dark and under 

illumination. The voltage applied by the STRiVE is not applied directly to the electrodes as 

would be done with a stand-alone potentiostat. Instead, the voltage is applied to two points 

inside the circuit.  When voltage is applied from the potentiostat, voltage drop occurs across 

all resistive elements in the circuit. In this case, the significant resistive elements are the 

MOSFETs, the DSSC, and the measuring resistor. Practically, this means that the total 

applied voltage must be greater than the desired voltage drop across the cell. However, the 

resistance in the DSSC is a function of the applied voltage. Therefore, the amount of ‘extra 

voltage’ needed to apply the correct voltage is not constant. The STRiVE empirically 

corrects for this in a point-by-point fashion, but does not apply the exact desired voltage. It 
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should be noted that the voltage directly across the DSSC is measured independently and 

reported in the output.  

User-Defined Parameters: The input parameters are displayed in Figure 7.06. Basic 

parameters are the scan direction positive (higher photovoltages) or negative, the initial 

potential, high and low potentials, the voltage step between points, the light intensity, and 

number of scans (one scan is a complete cycle, going forward and reverse). The ‘Voltage 

Bounds (+/-)’ option is total voltage applied by the potentiostat. Due to the need to apply 

‘extra’ potential to the circuit to achieve the desired voltage drop across the DSSC, the 

correction will, in rare cases, fail and try to apply huge voltages (this used to happen if the 

working and counter electrodes were switched; the STRiVE would try to correct the wrong 

way and the error would get progressively larger). The ‘Voltage Bounds’ button serves to 

protect the cell from huge voltage in the case of this error.  

 

 



180 

 

Figure 7.06: The “Set iV Curve Parameters” dialog box showing typical experimental 

conditions for a DSSC with a VOC near 440 mV. 

Data Workup: The STRiVE will output the raw data for the light on and light off scans in 

addition to the light-on power scan (voltage x current). The software will also automatically 

workup the data and calculate short circuit current (JSC), open circuit voltage (VOC), the 

maximum power, and the fill factor (FF). The results are typically quite accurate as long as 

there are sufficient data points. The JSC is calculated by fitting a line through all the points 

within 50 mV of zero voltage and calculating the intercept. Deciding which points to take to 

calculate VOC is more complicated because the cell current varies depending on the 

composition and the light intensity so a similar fixed range, i.e. +/- 0.1 mA, does not always 

contain points. Therefore, points are taken that are below 20 % of the JSC value. The 

maximum power is easily calculated by the maximum value of the power curve. The fill 
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factor is calculated using the current and voltage at the power point (pp) relative to JSC and 

VOC according to Equation 7.02: 

 
𝐹𝐹 =

𝐽𝑝𝑝𝑉𝑝𝑝

𝐽𝑠𝑐𝑉𝑜𝑐
 7.02 

Transient Photovoltage Decay (TVD): Overview: Transient photovoltage decay is one of 

the most common techniques used to measure the electron lifetime in dye-sensitized solar 

cells. The cell is illuminated under open-circuit conditions and then a short pulse is 

superimposed on the background illumination. The cell voltage is monitored before, during, 

and after the pulse. The decay is well-fit to a single exponential decay, where the “decay 

lifetime” is the lifetime of the injected electrons. The number of extra electrons injected by 

the pulse is related to the magnitude of the voltage response by the chemical capacitance. In 

the small perturbation regime, the chemical capacitance can be approximated as a constant so 

that at a given VOC, a pulse with 2x the intensity results in a 2x larger voltage. The term of 

‘short pulse’ has a precise meaning here: it means that the decay lifetime is independent of 

the pulse intensity; conditions that are achieved by injecting so few electrons that the total 

electron concentration in the TiO2 thin films is essentially unchanged (< 5 %).  

Experimentally, this is achieved by having a small voltage perturbation, usually about 4 mV.   

The number of injected electron can be controlled by the duration of the pulse when 

the intensity is fixed. Since the chemical capacitance increases exponentially with cell 

voltage, the same pulse time does not result in the same peak at all VOC’s. At higher VOC’s, 

the pulse time must be increased so that enough electrons are injected to produce a 4 mV 

voltage spike. The STRiVE software is coded to automatically find the correct pulse duration 

to give a voltage spike of a set magnitude. 
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One detail to keep in mind for STRiVE experiments is that the response is measured 

from the FTO substrate that supports the mesoporous TiO2 thin film. Therefore, the electron 

concentration profile as a function of distance from the FTO substrate impacts the results. In 

TVD experiments, the voltage response at early times is dependent on how the cell is 

illuminated, either through the TiO2 or through the counter electrode, and how strongly the 

light is absorbed. If the cell is illuminated though the TiO2 electrode, the highest light 

intensity, and therefore number of injected electrons, is at the FTO/TiO2 interface (due to 

absorption). This results in a short transient voltage that may briefly flatten out before 

following an exponential decay. Alternatively, if illuminated through the counter electrode, 

the highest electron concentration is generated at the TiO2 electrolyte interface. If the light is 

strongly absorbed, this creates a time-of-flight type measurement where the response at the 

FTO contact is delayed due to the time it takes the electrons to diffuse through the film and 

be collected. Illuminating through the counter electrode is preferred because it is 

experimentally easier to determine where the decay begins. Another benefit of illuminating 

through the counter electrode is that the rise time can be used to determine the electron 

diffusion coefficient.9,10 However, the rise time is influence by the capacitance of the 

substrate and in our experience does not provide results that are as robust as transient 

photocurrent decay.   

User-Defined Parameters: The TVD parameter dialog is shown in Figure 7.07. The user has 

the option to choose how the cell voltage is controlled in the ‘Experiment Type’ menu. 

Normal operation is with a desired VOC that allows the STRiVE to find the light intensity that 

gives the desired VOC. Alternatively, the user can set a light intensity that the STRiVE will 

not adjust, or set the voltage using a potentiostat. An examination of the left columns of 
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Figure 7.07 shows the equilibration time, pre-pulse collection time, pulse duration, and post 

pulse collection times. The user can choose to set the pulse time manually (Pulse Control 

Method-Time) or allow the STRiVE to find a pulse that produced a voltage spike of given 

magnitude (Pulse Control Method-Voltage Spike and Red LED Pulse Spike (mV) ). If this 

option is selected, the STRiVE will use the defined pulse time as a first ‘guess’ and adjust the 

pulse time from there until the desired spike is achieved. Adjusting the pulse duration to 

produce a given voltage spike is the normal operating procedure as this method allows the 

total charge injected to be kept as a small fraction of the total electron concentration. 

Since the electron concentration is a function of light intensity (VOC) it is common to 

perform a number of TVD experiments at varying light intensities. The right hand side of the 

parameters in Figure 7.07 allow the user to set the number of TVD experiments performed 

(Number of VOC Steps), how many pulses are averaged at a single VOC (Number of Scans per 

Voc), and the voltage step between experiments (Voc Step (mV) ). The x-spacing (dx) in the 

data collected can be selected (Time Step (aka dx, us) ) menu. This option is included for two 

reasons: (1) Some responses are very slow and this can prevent excess data from being taken 

and (2) to increase the signal-to-noise ratio. The signal-to-noise is not improved on the DAQ 

board by measuring slower, but the STRiVE software will always measure at the fastest 

possible rate (100 kHz) and can average the data into user-defined segments. Therefore, a 

larger ‘dx’ results in higher signal-to-noise ratio.  
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Figure 7.07. The “Set Transient Photovoltage Parameters” dialog box showing typical values 

when employed as the first grouped experiment.  

Data Workup: The STRiVE will automatically calculate VOC by the voltage recorded in the 

pre-pulse period. It will also attempt to calculate the electron lifetime, although this number 

can sometimes be calculated more rigorously in Mathematica or Origin. The electron lifetime 

is easily calculated by fitting the decay to a single exponential decay, however the trick for 

accurately calculating the electron is in defining where to start and stop the fit. The STRiVE 

defines the start time as the first data point that is past the peak and has a value below 80 % 

the peak value. The Stop time is the first data point after the peak whose magnitude is within 
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the noise of the pre-peak data collection. Once the data is selected, the decay is fit to a single 

exponential function, Equation 7.03: 

 𝑉(𝑡) = ∆𝑉0𝑒−𝑡/𝜏𝑛 7.03 

 

where the initial amplitude, ∆𝑉0, and electron lifetime, 𝜏𝑛, are readily calculated. The initial 

amplitude is not typically used for anything other than the fit, but it can provide an 

alternative method to calculate the chemical capacitance (usually calculated via charge 

extraction) according to Equation 7.04:  

 
𝐶ℎ𝑒𝑚𝑖𝑐𝑎𝑙 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑎𝑛𝑐𝑒 =

∆𝑉0

∆𝑄
 7.04 

where ∆𝑄 is the charge injected from the pulse, that can be calculated by integrating a 

transient photocurrent experiment with an identical pulse. 

Transient Photocurrent Decay (TCD): Overview: Transient photocurrent decay is used to 

measure the electron diffusion coefficient in dye-sensitized solar cells. The cell is illuminated 

under (typically) short-circuit conditions and then a short pulse is superimposed on the 

background illumination. The cell current is monitored before, during, and after the pulse. 

The decay is well-fit to a single exponential decay, where the decay lifetime is related to the 

diffusion coefficient of the injected electrons. If is often assumed that recombination is 

negligible during TCD, i.e. all injected electrons are collected. Models to account for 

recombination during TCD have been proposed where the decay lifetime is related to both 

the electron (recombination) lifetime and the photocurrent lifetime.1 The number of electrons 

injected by the pulse can be estimated by integrating the current response. The term ‘short 

pulse’ again has a precise meaning: conditions where that the decay lifetime is independent 



186 

of the pulse intensity, which is achieved by injecting few enough electrons that the total 

electron concentration in the TiO2 thin films is essentially unchanged (< 5 %).  

Experimentally, this is achieved by having a small current response, about 25 µA.  

The illumination direction (though the TiO2 or through the counter electrode) again 

influences the current response. In theory, the same shape should be observed as in TVD: 

illumination through the TiO2 would give a voltage spike then decay while through the 

counter electrode would give a slower rise then decay. However, a voltage spike is often 

observed in our lab when illuminated from either illumination direction.  The absence of the 

delayed rise when illuminating through the counter electrode may result from the 

photocurrent response of the FTO (very small), scattered light, or some other unknown 

reason. In any case, the decay is typically well-fit to a single exponential from which the 

diffusion coefficient can be calculated.  

In addition to performing TCD from short circuit, the current transient can monitored 

at any applied potential.9 This is rarely done, but has the potential to be very useful. In this 

experiment, the cell voltage is controlled by the external potentiostat and the current is 

monitored during an otherwise normal TCD experiment. The advantage of this technique is 

that the electron concentration in the TiO2 thin film is equal to the electron concentration for 

the TVD experiment, so the two lifetimes can be directly compared. However, data obtained 

in this dissertation research often provides RC limited lifetimes that appear (as has been 

reported9) and do not vary as expected with light intensity. It is unclear where the limitation 

comes from, but the potentiostat, MOSFETs, and the DSSC itself may play roles.   

User-Defined Parameters: The parameter dialog for TCD is shown in Figure 7.08. The user 

can define how the experiment is performed in the Experiment Type box. When run as 
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individual experiment, this is typically ‘Set Jsc, ’ where the STRiVE will adjust the light 

intensity to a desired JSC value. When TCD is run after a TVD experiment in a series of 

grouped experiments, the user should select ‘No Jsc Control’ to use the light intensity from 

the TVD experiment. The other option less commonly used is ‘Set voltage and monitor 

current’ as discussed above. The pre-pulse, pulse, and post-pulse times can be set in the 

appropriate boxes. As with TVD, there are two options on how to define the pulse duration 

set by the ‘Pulse Control Method’ box. The options are to manually set the time or to define a 

current spike and allow the STRiVE calculate the pulse time needed. I have found that a 

current spike of ~ 25 µA has sufficient signal-to-noise but is small enough to not appear to 

influence the results. On the right hand side of Figure 7.08, the Number of Scans, which 

defines how many experiments are averaged at a single JSC, and the time spacing are set. 
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Figure 7.08. The “Set Transient Photocurrent Parameters” dialog box displaying typical 

values when TCD is run as part of a series of grouped experiments (not the first). 

Data Workup: The STRiVE will automatically calculate JSC by the current recorded in the 

pre-pulse period. It will also attempt to calculate the photocurrent lifetime, although, as with 

TVD, this number can sometimes be calculated more rigorously in Mathematica or Origin. 

The photocurrent lifetime is calculated by fitting the decay to a single exponential function. 

As with TVD, the STRiVE defines the start time as the first data point that is past the peak 

and has a value below 80 % the peak value. The Stop time is the first data point after the 

peak whose magnitude is within the noise of the pre-peak data collection. Once the data is 

selected, the decay is fit to a single exponential function, Equation 7.05: 
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 𝐽(𝑡) = ∆𝐽0𝑒−𝑡/𝜏𝑐 7.05 

where the initial amplitude, ∆𝐽0, and photocurrent decay lifetime, 𝜏𝑐, are readily calculated. 

The photocurrent lifetime is used to calculate the diffusion coefficient, 𝐷𝑛, (at electron 

concentration 𝑛) of films with known thickness, 𝑑, according to Equation 7.06:  

 
𝐷𝑛 =

𝑑2

2.77𝜏𝑐
 7.06 

The factor of 2.77 is an empirical number that corresponds to the time it takes half the 

electron to diffuse through half the film and converting from natural log (in the lifetime fit).11 

Other values (2.3512, 2.471) have been reported in the literature, which slightly impact the 

magnitude of the diffusion coefficient, but not any reported trends.  

Charge Extraction: Overview: It is now well established that the electron lifetime and 

diffusion coefficient of one DSSC to another should be compared at matched electron 

concentrations. One method to estimate the charge within the TiO2 thin film is charge 

extraction. Charge extraction is typically performed at open-circuit while the cell is 

illuminated, but can be done from any starting condition (short-circuit or under applied bias). 

After the DSSC equilibrates, any external perturbation (light or applied potential) is removed 

while the cell is short-circuited. The current that flows is recorded and integrated to give the 

charge.  

User-Defined Parameters: The parameters dialog for charge extraction is shown in Figure 

7.09. The user can select the Experiment, which can be from the open-circuit (OC) condition, 

the short-circuit (SC) condition, or under potentiostatic control. When not under 

potentiostatic control, the light intensity can be pre-defined (No Voc Control or No Jsc 

control) or adjust by the STRiVE to achieve a desired VOC or JSC (Set Voc/Jsc with light 
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intensity). When under potentiostatic control, the light intensity is pre-defined. Depending on 

the type of experiment chosen, the user can select a given light intensity, VOC, or applied 

current.  Next, the user defines the collection time window. Typically, equilibration is 

performed for 45 seconds, followed by a 10 ms pre-short circuit collection window (used to 

calculate VOC or JSC), and finally a ~4 s window where the cell is short circuited and data is 

recorded. The amount of time required to collect all the carriers is light intensity dependent, 

but 4 seconds is usually long enough. Extra time does not significantly influence the 

measurement as essentially no current flows after all the charge is extracted. Like the other 

experiments, there is an option to repeat the charge extraction measurement a number times 

at a given VOC (Number of Scans per Step) as well as repeating the measurement over a wide 

range of VOCs (Number of Steps). Due to the high signal-to-noise ratio of this measurement, 

only one scan is typically needed for accurate data. 

 

Figure 7.09. The “Charge Extraction Experimental Parameters” dialog box showing typical 

values when performed as ‘grouped’ and not the first experiment. 
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Data Workup: The charge extracted is automatically calculated and output by the STRiVE. 

Assuming that there is no non-Faradaic current, a plot of charge as a function of time will 

plateau at long times. In some cases, especially when there is very low total charge, the 

charge will appear to increase or decrease due to minor zero-offsets in the current 

measurement (presumably due to non-Faradaic current). Therefore, the STRiVE calculates 

the final charge extracted by fitting a line to the last 20 % of the data, where the y-intercept in 

the fit represents the total charge extracted. This method corrects for minor current flow that 

may cause the charge to artificially appear to indefinitely increase or decrease.   

 Current Interrupt Voltage: Overview: Electron transport in the TiO2 thin film is well-

defined by Fick’s Law of diffusion, where electrons are driven towards the collecting 

substrate by a concentration gradient that increases with distance from the substrate. 

Therefore, charge must exist in the thin film under short circuit conditions to drive the 

electrons towards the FTO substrate. Current interrupt voltage is an alternative technique to 

charge extraction that estimates the charge in the TiO2 thin film under short-circuit 

conditions. The experiment is performed by allowing the DSSC to reach a steady-state 

condition, typically under illumination at short circuit. The perturbation (light or current) is 

then removed as the cell is switched to open-circuit. The voltage is monitored where the peak 

value has been shown to give a reasonable value of the average quasi-Fermi level of the 

electrons in the thin film. This value, sometimes called Vsc or Vint, represents the average 

internal voltage in the TiO2 thin film at short circuit.  

User-Defined Parameters: The user can define the equilibrium starting conditions by the 

‘Variable to control’ box shown in Figure 7.10. The user can choose to set the light intensity 

or the current. If the user chooses to set the current, the ‘White Light Current (mA)’ box 
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serves as a starting point when the STRiVE attempts to find the light intensity that results in 

the requested current. Equilibration time (again ~45 seconds), pre-open circuit, and post 

open-circuit collection times are easily defined. The user can define how many times the 

measurement is repeated at a given light intensity/current in the ‘Number of scans’ box. The 

time spacing between x-data points is defined, where typical values are around 0.5-2 ms. 

Finally, the number of experiments performed at different starting conditions and the 

magnitude of the light intensity or current step between experiments are set.  

 

Figure 7.10. The “Current Interrupt Voltage Parameters” dialog box with values for typical 

operation when performed as a ‘grouped’ (not the first) experiment.  

Data Workup: The STRiVE will automatically report the maximum voltage measured as the 

internal voltage, Vint, as well as an approximate open circuit voltage, Voc, under identical 

operating conditions. The accuracy of Vint can be tested by comparing the internal voltage 
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and charge at short circuit to the open circuit equivalents. It is often found that the charge 

extracted at short circuit versus the internal voltage (from current interrupt voltage) often lies 

on the line for the open circuit charge versus VOC, as shown in Figure 7.11. Therefore, Vint 

often does not need to be calculated more carefully, however if electron collection is less 

than unity, recombination may need to be considered.  

 

Figure 7.11. Comparison of charge extracted from open-circuit and Voc to the charge extracted 

at short-circuit and Vint, the internal voltage calculated from current interrupt voltage. 

Open Circuit Photovoltage Decay: Overview: Open circuit photovoltage decay is a 

common large perturbation technique to estimate the electron lifetime. The experiment is 

simply performed by perturbing the DSSC with light or an applied bias and then removing 

the perturbation while monitoring the cell voltage from open circuit. The derivative of the 

voltage change as a function of time, 
𝑑𝑉𝑜𝑐

𝑑𝑡
, is related to the electron lifetime by Equation 

7.07:3 

 
𝜏𝑛 =

𝑘𝐵𝑇

𝑒
(

𝑑𝑉𝑜𝑐

𝑑𝑡
)

−1

 7.07 
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where 𝑘𝐵 is Boltzmann’s constant, T is the absolute temperature, and 𝑒 is the elementary 

charge. This method provides similar (although not identical) values for the electron lifetime 

as does transient photovoltage decay.1  

It can take a long time for the voltage to reach zero (due to the increasing electron 

lifetime as voltage decreases). This can make it difficult for the user to know how long to let 

the experiment run. New software was developed that allows the user to choose an end 

condition (time, absolute, or relative voltage) by monitoring the voltage in real time (normal 

STRiVE data collection is defined by a preset number of points that are all collected before 

they can be analyzed). Essentially, a fast measurement is taken, checked to see if the end 

condition is satisfied, and then the experiment stops or takes another measurement. This 

limits the minimum time spacing between data points to 35 ms when an end condition other 

than time is specified. The code must collect the data and analyze it before the next data 

point. If the user tries to take data spaced more closely than 35 ms, time is the default end 

condition.   

User-Defined Parameters: The selectable parameters are shown in Figure 7.11. The user can 

choose to control the light intensity or VOC in the ‘Variable to control’ box. The ‘End 

Condition’ (described above) defines when the experiment will stop. Options are time, 

absolute, or relative (to the initial voltage) voltage. The user can again select the time spacing 

between data points. If the time spacing is less than 35 ms, the ‘time’ end condition is 

automatically used. If relative or absolute voltage is used as the end condition, the stop time 

still represents the maximum amount of time the experiment will run. A small, ~10 ms,  

amount of data is typically collected before the perturbation (light or bias) is removed. Again, 
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the experiment can be repeated over a range of light intensities or applied biases by the 

‘Number of Steps’ button. 

 

 

Figure 7.12. The “[Open Circuit Photovoltage Decay] Set Parameters Dialog” box for typical 

values when performed in a series of ‘grouped’ experiments (not the first).  

Data Workup: Open circuit photovoltage decay was rarely used in this dissertation work, so 

very effort was set to automate this. The program will output the VOC and experimental 

conditions, but will not automatically differentiate the data or calculate the lifetime.  
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Figure A.01. STRiVE 5.0 user interface ‘Front Panel’ where the experiments selected reflect normal operating procedure. 
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Figure A.02. STRiVE user interface ‘Block Diagram.’ The left and right rectangles are event structures, which execute only for a user-

defined event, such as selecting an experiment or zooming on a graph. In the center is a loop that executes all selected (ungrouped) 

experiments and then performs grouped experiments.  
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Figure A.03. STRiVE user interface ‘Block Diagram’ selecting the first experiment, Jsc and Voc.  
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Figure A.04. Measure Jsc and Voc ‘Block Diagram’ depicting how VOC is measured. 

 

Figure A.05. Measure Jsc and Voc ‘Block Diagram’ depicting how JSC is measured. 
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Figure A.06. STRiVE user interface ‘Block Diagram’ selecting the second experiment, iV Curve.  
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Figure A.07. iV Curve ‘Block Diagram’ Step 1: determine the time to wait between data points on the curve and connect the 

potentiostat.  

 

Figure A.08 iV Curve ‘Block Diagram’ Step 2: run the dark iV curve. This code is essentially the same as the light-on iV curve. 
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Figure A.09 iV Curve ‘Block Diagram’ Step 3: calculate JSc and then VOC and display the results. 
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Figure A.10 iV Curve ‘Block Diagram’ Step 4: plot the dark, light, and power curves. 
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Figure A.11 iV Curve ‘Block Diagram’ Step 5: export the iV data as a .TDMS file and ensure the potentiostat is set to zero V. 
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Figure A.12. STRiVE 5.0 user interface ‘Block Diagram’ selecting the third experiment, transient photovoltage decay.  
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Figure A.13. Transient photovoltage decay ‘Block Diagram’ where multiple experiments are performed and then the results are 

collected and plotted.  
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Figure A.14. Transient photovoltage decay experimental ‘Block Diagram’ step 1: calculate the sampling parameters. 
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Figure A.15. Transient photovoltage decay experimental ‘Block Diagram’ step 2: start with the lights and potentiostat off. 

 

Figure A.16. Transient photovoltage decay experimental ‘Block Diagram’ step 3: set the light intensity. As shown, a subVI is selected 

where the STRiVE finds the light intensity to give a desired VOC. This code is displayed in Figures A.24-A.27 
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Figure A.17. Transient photovoltage decay experimental ‘Block Diagram’ step 4: set the pulse LED duration. As shown, the STRiVE 

will find the duration to give a desired ‘Voltage Spike.’ This code is displayed in Figure A.30. 
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Figure A.18. Transient photovoltage decay experimental ‘Block Diagram’ step 5: finalize sampling parameters using the LED pulse 

time defined in step 4. 
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Figure A.19. Transient photovoltage decay experimental ‘Block Diagram’ step 6: collect the data. This code is found in Figures A.28-

29. 

 

Figure A.20. Transient photovoltage decay experimental ‘Block Diagram’ step 7: turn everything off. 
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Figure A.21. Transient photovoltage decay experimental ‘Block Diagram’ step 8: baseline the data and calculate the electron lifetime. 
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Figure A.22. Transient photovoltage decay experimental ‘Block Diagram’ step 9: display the results and export the data as a .TDMS 

file. 
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Figure A.23. Set light intensity step 0: begin with the user defined current.  
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Figure A.24. Set light intensity step 1: monitor the voltage as the light intensity is adjusted. The most 3 recent data points are used in a 

fit to better approximate the next light intensity output. 
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Figure A.25. Set light intensity step 2: set light intensity as the one that was produced the nearest VOC to the target.  

 

Figure A.26. Set light intensity step 3: Monitor the voltage for 5 seconds and check if the equilibrium value is within 5 mV of the 

target VOC. 
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Figure A.27. Set light intensity step 4: Output the light intensity. 

 

 

 

 

 



 

 

2
1
9
 

 

Figure A.28. Transient photovoltage decay Collect Data step 1: equilibrate with the light on. 
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Figure A.29. Transient photovoltage decay Collect Data step 2: use an internal time ‘counter’ to control the pulse LED and trigger 

data collection (Reference Digital Edge) that monitors the cell voltage. This process is repeated and averaged.  
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Figure A.30. Transient photovoltage decay ‘Set Voltage Spike’ key code. The pulse time is adjusted and the transient photovoltage 

peak is calculated. The most 3 recent pulses are used to fit and better estimate the required pulse time. 
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Figure A.31. STRiVE 5.0 user interface ‘Block Diagram’ selecting the fourth experiment, transient photocurrent decay.  
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Figure A.32. Transient photocurrent decay ‘Block Diagram’ where multiple experiments are performed and then the results are 

collected and plotted.  
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Figure A.33. Transient photocurrent decay experimental ‘Block Diagram’ step 1: calculate the sampling parameters. 
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Figure A.34. Transient photocurrent decay experimental ‘Block Diagram’ step 2: start at short-circuit but with the light and 

potentiostat off. 
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Figure A.35. Transient photocurrent decay experimental ‘Block Diagram’ step 3: set the light intensity. As shown the STRiVE will 

adjust the light intensity to get a defined JSC. This code is very similar to adjusting the light intensity to set the VOC, Figures A.24-27. 
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Figure A.36. Transient photocurrent decay experimental ‘Block Diagram’ step 4: set the pulse LED duration. As shown, the STRiVE 

will adjust the pulse time to reach the defined current spike. This code is shown in Figure A.43. 



 

 

2
2
8
  

Figure A.37. Transient photocurrent decay experimental ‘Block Diagram’ step 5: Apply the set parameters. 
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Figure A.38. Transient photocurrent decay experimental ‘Block Diagram’ step 6: collect the data. This code can be found in Figure 

A.42. 
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Figure A.39. Transient photocurrent decay experimental ‘Block Diagram’ step 7: turn everything off and disconnect the potentiostat. 
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Figure A.40. Transient photocurrent decay experimental ‘Block Diagram’ step 8: baseline the data and calculated the photocurrent 

lifetime. 
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Figure A.41. Transient photocurrent decay experimental ‘Block Diagram’ step 9: plot the data and export the results as a .TDMS file. 
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Figure A.42. Transient photocurrent decay Collect Data ‘Block Diagram.’ An internal time counter is used to define the pulse time 

and trigger the start of data acquisition. This process is repeated a defined number of times and averaged.  
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Figure A.43. Transient photocurrent decay Set Current Spike ‘Block Diagram.’ The STRiVE adjusts the pulse time and monitors the 

current spike. The 3 most recent spikes are fit to more accurately determine the next pulse time. 
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Figure A.44. STRiVE 5.0 user interface ‘Block Diagram’ selecting the fifth experiment, charge extraction. 
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Figure A.45. Charge extraction ‘Block Diagram’ displaying how multiple experiments are performed and displayed. 
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Figure A.46. Charge extraction experimental ‘Block Diagram’ step 1: define the experimental parameters. 
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Figure A.47. Charge extraction experimental ‘Block Diagram’ step 2: set the light intensity. As shown the STRiVE will find the light 

intensity for a given VOC. This code can be found in Figure A24-27. 
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Figure A.48. Charge extraction experimental ‘Block Diagram’ step 3: perform the experiment and average the data.  
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Figure A.49. Charge extraction experimental ‘Block Diagram’ step 4: integrate the current to calculate the charge extracted. This code 

can be found in Figure A.52. 
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Figure A.50. Charge extraction experimental ‘Block Diagram’ step 5: display the results and export the data as a .TDMS file. 
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Figure A.51. Charge extraction collect data ‘Block Diagram.’ Use the digital output to switch between open and short-circuit and 

trigger acquisition.   
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Figure A.52. Charge extraction integrate current and calculate charge extracted ‘Block Diagram.’ 
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Figure A.53. STRiVE 5.0 user interface ‘Block Diagram’ selecting the sixth experiment, current interrupt voltage. 
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Figure A.54. Current interrupt voltage ‘Block Diagram’ where multiple experiments are performed and then the results are collected 

and displayed.  
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Figure A.55. Current interrupt voltage experimental ‘Block Diagram’ step 0: start at open-circuit with the light only the light on. 
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Figure A.56. Current interrupt voltage experimental ‘Block Diagram’ step 1: set the light intensity. 
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Figure A.57. Current interrupt voltage experimental ‘Block Diagram’ step 2: perform the experiment a defined number of times and 

average the results. The code to collect the data can be found in Figure A.61. 

 



 

 

2
4
9
 

 

Figure A.58. Current interrupt voltage experimental ‘Block Diagram’ step 3: display the data. 
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Figure A.59. Current interrupt voltage experimental ‘Block Diagram’ step 4: turn off the potentiostat, lights, and leave cell at open-

circuit. 
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Figure A.60. Current interrupt voltage experimental ‘Block Diagram’ step 5: export the data as a .TDMS file. 
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Figure A.61. Current interrupt voltage Collect Data ‘Block Diagram.’ An internal time counter is used to switch between short and 

open-circuit and trigger the start of data acquisition. 
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Figure A.62. STRiVE 5.0 user interface ‘Block Diagram’ selecting the seventh experiment, open-circuit photovoltage decay. 
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Figure A.63. Open-circuit photovoltage decay ‘Block Diagram’ where multiple experiments are performed and then the results are 

collected and displayed.  
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Figure A.64. Open-circuit photovoltage decay experimental ‘Block Diagram’ step 0: start with everything off. 

 

Figure A.65. Open-circuit photovoltage decay experimental ‘Block Diagram’ step 1: set the light intensity. As shown the STRiVE 

adjusts the light intensity to produce the defined VOC. This code can be found in Figures A.24-27. 
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Figure A.66. Open-circuit photovoltage decay experimental ‘Block Diagram’ step 2a: collect data when the spacing between data 

points is greater than 35 ms. In this case, the end condition can be monitored and the experiment will stop when met. 
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Figure A.67. Open-circuit photovoltage decay experimental ‘Block Diagram’ step 2b: collect data when the spacing between data 

points is less than 35 ms. In this case, the end condition cannot be monitored and the experiment will stop when the time is reached. 
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Figure A.68. Open-circuit photovoltage decay experimental ‘Block Diagram’ step 3: export the data as a .TDMS file. 
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Figure A.69. STRiVE 5.0 user interface ‘Block Diagram’ selecting the grouped experiment. 
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Figure A.70. Grouped experiments ‘Block Diagram’ showing how shared parameters are set. The rest of the code runs through the 

experiments similar to the STRiVE 5.0 as shown above. 

 

 


