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Guided Lamb waves are commonly used in nondestructive evaluation to monitor plate-like structures or to characterize properties
of composite or layered materials. However, the dispersive propagation and multimode excitability of Lamb waves complicate their
analysis. Advanced signal processing techniques are therefore required to resolve both the time and frequency content of the time-
domain wave signals. The chirplet transform (CT) has been introduced as a generalized time-frequency representation (TFR)
incorporating more flexibility to adjust the window function to the group delay of the signal when compared to the more classical
short-time Fourier transform (STFT). Exploiting this additional degree of freedom, this paper applies an adaptive algorithm based
on the CT to calculate mode displacement ratios and attenuation of Lamb waves in elastic plate structures. The CT-based algorithm
has a clear performance advantage when calculating mode displacement ratios and attenuation for numerically-simulated Lamb
wave signals. For experimental data, the CT retains an advantage over the STFT although measurement noise and parameter
uncertainties lead to larger overall deviations from the theoretically expected solutions.

1. Introduction

Ultrasonic waves are often used in nondestructive testing
to evaluate the integrity of structural components, as
well as to determine material properties of composite or
layered materials. In various disciplines such as civil or
aerospace engineering, multimode, dispersive guided waves
such as Lamb waves have been applied, see Chimenti
[1] for an overview. However, complicated signal analysis
is the trade off for their versatility. In fact, the main
challenges to process Lamb wave signals are due to their
very characteristics. Firstly, dispersion phenomena require
a resolution of the frequency content of a Lamb wave
signal over time which is inherently compromised by the
uncertainty principle. Secondly, Lamb waves are multi-
modal, which means that interferences between individual
modes complicate the allocation of energy and displacement

related quantities to a specific mode of excitation. A powerful
technique to address these difficulties are time-frequency
representations, see for an overview Niethammer et al. [2].
To improve results obtained with conventional methods like
the STFT or WT, Hong et al. [3] developed an advanced
algorithm based on the STFT using window functions that
approximated the group delay of each mode of propagation
individually. Kuttig et al. [4] further refined this approach
by using the chirplet transform as a generalized TFR, which
allows for higher order approximations of the group delay.
Encouraged by these advances in signal processing, this
paper further explores the potential of CT-based methods
for dispersive wave analysis. The problem considered is
to extract displacement and energy-related quantities of
individual Lamb wave modes in elastic plates, a problem
which is relevant for several NDE applications. Variations of
the energy associated with a particular mode can for example
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be used to localize notches in plates by means of a correlation
technique, see [5]. Ultrasonic attenuation describes the
amplitude decay of wave modes due to energy leakage or
the geometry of a specimen. Geometric spreading of Lamb
waves in plate structures was examined by Luangvilai et al.
[6] using the STFT. Energy leakage in absorbing plates was
studied by Luangvilai et al. [7] to determine attenuation
coefficients using a refined STFT algorithm. While STFT-
based techniques analyze multimode time-domain signals
as a whole, the CT-based algorithm uses basis functions
specially adjusted to the dispersion relation of each mode of
propagation. Physical quantities like displacement or energy
can thus be allocated more consistently to individual modes.
Since the shaping of the basis functions depends on the
knowledge of the dispersion relation for a given set-up,
this work considers both numerically simulated ([6]) and
experimentally generated ([5]) time-domain signals of Lamb
waves in an aluminum plate to evaluate the robustness of the
CT-based algorithm as well as its performance.

The paper is organized as follows: first a general def-
inition of the CT is given before describing its use in
NDE applications to resolve the time-frequency content of
dispersive wave signals by means of an adaptive model-based
algorithm. Section 3 contains a description of the candidate
NDE problem. The results for mode displacement ratios and
geometric spreading of both theoretically and experimentally
generated wave signals are presented in Section 4. The
concluding remarks of Section 5 outline possibilities to apply
the presented technique to other NDE applications.

2. The Chirplet Transform and Its Use in
Dispersive Wave Analysis

The chirplet transform has been introduced as a generalized
time-frequency representation by Mann and Haykin [8].
The basis function can be adjusted by means of shift,
shear, and scaling operators, resulting in a five-dimensional
parameter space for the energy density which comprises as
projections the respective densities obtained from a short-
time Fourier transform (time and frequency shift) and a
wavelet transform (time shift and scaling).

2.1. Definition of the Chirplet Transform. The standard
definition of the chirplet transform is given by the inner
product of a basis function g(t) and the signal x(t),

Cct(t0,ω0, s, q, p
) =

∫∞

−∞
x(t)g∗t0,ω0,s,q,p(t)dt

= 1
2π

∫∞

−∞
X(ω)G∗t0,ω0,s,q,p(ω)dω,

(1)

where ∗ denotes complex conjugation. The basis function
g(t) as well as its Fourier transform G(ω) belongs to a family
of chirp signals,

Gt0,ω0,s,q,p(ω) = Tt0 Fω0 SsQqPpH(ω),

gt0,ω0,s,q,p(t) = Tt0 Fω0 SsQqPph(t),
(2)

where the operators Tt0 , Fω0 , S s, Qq, and Pp act in the
following manner on the window function h(t) or its Fourier
transform H(ω), respectively,

Time shift:

Tt0h(t) = h(t − t0), Tt0H(ω) = e−iωt0H(ω). (3)

Frequency shift:

Fω0h(t) = eiω0th(t), Fω0H(ω) = H(ω − ω0). (4)

Scaling:

Ssh(t) = 1√
s
h(t/s), SsG(ω) = √sG(sω). (5)

Time shear:

Pph(t) = (ip)−1/2 exp

[

i
t2

2p

]

� h(t),

PpH(ω) = exp
[
i
p

2
ω2
]
H(ω).

(6)

Frequency shear:

Qqh(t) = exp
[
i
q

2
t2
]
h(t),

QqH(ω) = (iq)−1/2 exp

[

i
2ω2

q
�H(ω)

]

.

(7)

Higher order time shear Pp1,p2,...H(ω) can also be applied
resulting in

Pp1,p2,...H(ω) = exp
[
i
(
p1

2
ω2 +

p2

3
ω3 + · · ·

)]
H(ω), (8)

and similarly, higher order frequency shear is given by

Qq1,q2,...h(t) = exp
[
i
(
q1

2
t2 +

q2

3
t3 + · · ·

)]
h(t). (9)

The energy density Pct of the chirplet transform at every
point (t0,ω0, s, q, p) in the five dimensional parameter space
is given by

Pct(t0,ω0, s, q, p
) = ∣∣Cct(t0,ω0, s, q, p

)∣∣2
. (10)

By comparison, the short-time Fourier transform only
allows to shift the window function in time and frequency,

Gt0,ω0 (ω) = Tt0 Fω0H(ω), gt0,ω0 (t) = Tt0 Fω0h(t), (11)

to obtain

Cstft(t0,ω0) =
∫∞

−∞
x(t)g∗t0,ω0

(t)dt

= 1
2π

∫∞

−∞
X(ω)G∗t0,ω0

(ω)dω.

(12)

The energy density of the STFT, the spectrogram, is given by

Pstft(t0,ω0) =
∣
∣
∣Cstft(t0,ω0)

∣
∣
∣

2
. (13)

A more detailed discussion of TFRs used for dispersive wave
analysis can be found, for example, in [2].
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2.2. Adaptive Algorithm Based on the Chirplet Transform. For
ease of visualization, only subspaces of the five-dimensional
parameter space of the chirplet transform are considered.
In a fashion analogous to the STFT and its energy den-
sity representation, the spectrogram, the time-frequency
plane is chosen to analyze dispersive waves. According
to the definition of the energy density Pi, i ∈ {stft, ct},
the squared amplitude of a time-domain signal recording
particle displacement is proportional to the energy of the
incident Lamb wave, but comprises contributions of all
modes of propagation. The objective is to identify energy
or displacement related components of individual modes
in regions of sufficient mode separation. To that end, the
energy content of the time-domain signal is averaged in the
time-frequency plane over a region around every point of
the dispersion curve of a particular mode using a specially
designed window function. In the case of the STFT, time
and frequency shift operations result in a region of averaging
that approximates the group delay of an individual mode
of propagation with zeroth order, whereas the CT-based
algorithm as described by Kuttig et al. [4] additionally uses
time shearing resulting in higher order approximations. Note
that the dispersion curves for a given system depend on the
material properties—in the example of a single aluminum
plate, its elastic modulus and density as well as its thickness—
which determines the robustness of the CT-based algorithm.

For this research, the CT is calculated with a normalized
Gaussian window

g(t) = 1
4
√
πs20

exp

[

−1
2

(
t − t0
s0

)2
]

, (14)

with a default value of s0 = 2.2μs. Scaling Ss is 1 by default
unless the 3σ-isopleths of (14) described by ellipses with
half-axis of 3s0 in time and 1/(3s0) in frequency intersect with
the dispersion curve of another mode. Thus, at least 99.9%
of the energy of the window function is concentrated around
the mode of interest. The dispersion curves are approximated
by a fifth-order polynomial around every point (t0,ω0),

t(ω) = t0 + p1(ω − ω0) + p2(ω− ω0)2 + · · · + p5(ω− ω0)5.
(15)

The group delay τg(ω) of a signal H(ω) = A(ω) exp[iφ(ω)]
in frequency domain is given by

τg(ω) = − d
dω

φ(ω). (16)

The group delay of the window function Gt0,ω0,p1,p2,...,p5 (ω) =
Tt0 Fω0 Pp1,p2,...,p5H(ω) can thus be fitted to (15) for every
mode of propagation by a fifth-order time shear (8) with
parameters p1, . . . , p5. Figure 1 depicts the 3σ-regions of
window functions adjusted by the adaptive algorithm for
the first symmetrical mode s0. The CT is not calculated
in frequency regions of interference with other modes, for
example, around 2 MHz at the intersection of the a0- and
s0-mode. More details about the adaptive algorithm can be
found in [4]. The same Gaussian window function (14) was
also used for the STFT-based analysis.
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Figure 1: CT basis functions adjusted to the s0-mode using 5th-
order time shear. The dispersion curves are the solution of the
Rayleigh-Lamb equations (17) for an aluminum 3003 plate of
thickness 0.99 mm and source-receiver distance of 90 mm.

3. Problem Setting

In this paper, Lamb waves traveling in aluminum plate
structures are considered. Due to the relatively simple
geometry of the plate, it is possible to compute dispersion
curves based on the analysis of the Rayleigh-Lamb equations
for stress-free boundaries as derived in Achenbach [9],

tan
(
qh
)

tan
(
ph
) = − 4k2pq

(
q2 − k2

)2 ,

tan
(
qh
)

tan
(
ph
) = −

(
q2 − k2

)2

4k2pq
,

(17)

where

p2 = ω2

c2
L

− k2, q2 = ω2

c2
T

− k2, (18)

and 2h is the plate thickness. The numerical solution of (17)
for an aluminum plate is shown in Figure 1 up to frequencies
of 10 MHz. The a0- and s0- mode are well separated in the
frequency ranges 0–1.8 MHz and again between about 2-
3 MHz. The same holds for the a1-mode between 2-3 MHz
and 4-5 MHz and for s1-mode between 3.5–5 MHz, so that
the evaluation will be restricted to the first two symmetric
(si) and antisymmetric (ai) modes in these frequency ranges.
Consider two different time-domain signals: firstly, numer-
ically simulated data was taken from Luangvilai et al. [6] to
have an undisturbed signal for performance evaluation. The
authors used normal mode expansion to simulate the out-
of-plane displacement field for particles on the plate surface
excited by a point-like source for source-receiver distances
between 50 mm and 90 mm. Secondly, real measurement
data of the out-of-plane velocity field at the surface of an
aluminum plate acquired by Benz et al. [5] was available to
determine the robustness of the proposed signal processing
technique. The experimental setup in this case consisted of
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Figure 2: Out-of-plane displacement ratio of mode s0 normalized
to mode a0 for the synthetic signal.

an aluminum plate of dimensions 100 mm × 100 mm ×
1 mm and a noncontact, point-like laser measurement and
detection system. A laser source was used to generate Lamb
waves in the aluminum plate for different source-receiver
distances ranging from 50 to 150 mm.

For each of the two data sets, the mode displacement
ratios for selective modes are determined as a means to detect
material irregularities, for example, for notch localization
as in [5]. Apart from that, the amplitude decay over time
of individual modes is analyzed as it contains information
about the geometry of the specimen. Geometric spreading is
given by the quotient

√
d2/d1 for two propagation distances

d1 < d2. Such a normalized measure for geometric spreading
is chosen since the effect of the excitation source on the
energy density will be canceled out.

4. Results

First consider the results obtained for the numerically
simulated signal. The particle displacement associated to a
particular mode is extracted from the modulus |Ci(t0,ω0)|,
i ∈ {stft, ct} of each transform. To eliminate the effect of the
excitation source, these values are normalized to a particular
mode—Table 1 contains the results for normalization with
respect to a0 and s0—by taking the point-by-point quotient
of the respective moduli at every frequency ω0. Figure 2
shows the ratio s0/a0 as obtained from the STFT- and CT-
based algorithm versus the exact theoretical solution. The
latter are very close to the theoretical solution, while the
amplitude ratio extracted from the STFT deviates especially
at frequencies where individual modes are highly dispersive
such as the s0-mode for frequencies between 2 and 3 MHz.
Since the STFT does not use window functions adjusted to
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Figure 3: Geometric attenuation for the a0-mode of the synthet-
ically generated signal determined with the STFT (b) and CT (a).
Dashed lines represent the theoretically expected solution

√
d2/d1,

dash-dotted lines are the results obtained from the CT- and STFT-
based algorithm, respectively, for the distances 40 mm (pink),
50 mm (green), 60 mm (black), 70 mm (blue), and 80 mm (red)
related to 90 mm of propagation distance.

the dispersion behavior of individual modes, drastic changes
in the group delay can lead to inconsistent values using the
STFT, whereas the CT can keep a high level of accuracy.

In order to quantify the level of accuracy of each method,
a simple metric p is introduced that maps a function x(t) on
a positive real number,

x(t) �−→ p(x(t)) =
√〈x(t), x(t)〉

L
, (19)

where L = ∫∞−∞ dt and 〈·, ·〉 is defined as the inner product for
functions [10], 〈x(t), y(t)〉 = ∫∞

−∞ x∗(t)y(t)dt. This metric
will be used to measure the mean absolute deviation of
quantities extracted with the introduced signal processing
techniques from the theoretical solution. Note that the
adaptive CT-based algorithm only computes energy densities
in frequency regions where individual modes are sufficiently
separated, that is, when the 3σ-region of averaging does not
intersect with any other mode. The performance measure for
both the STFT- and the CT-based method will therefore be
restricted to these regions only. Table 1 confirms that the CT-
based results for the numerically simulated signal deviates
much less from the theoretical solution compared to the ones
obtained from the STFT.

A similar observation also holds true when calculating
geometric spreading for individual modes. Figure 3 depicts
the results for the first antisymmetric mode a0 for frequen-
cies up to 3 MHz. The dashed lines indicate the theoretically
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Table 1: Average deviation from theoretical mode displacement ratio in %.

displacement ratio a1/a0 s0/a0 s1/a0 a0/s0 a1/s0 s1/s0

numerical signal
CT (in %) 9.49 67.89 8.46 10.54 4.00 12.19

STFT (in %) 18.60 686.36 14.65 51.33 66.28 10.24

experimental signal
CT (in %) 173.73 46.96 343.88 35.75 272.29 484.40

STFT (in %) 115.36 83.06 223.07 52.99 289.76 385.70

Table 2: Average deviation in % from theoretical geometric attenuation.

distance
mode a0 mode a1 mode s0 mode s1

CT STFT CT STFT CT STFT CT STFT

Synthetically generated signal

80/90 mm 0.31 3.64 1.65 2.54 1.71 9.08 5.61 19.96

70/90 mm 0.43 6.40 2.80 3.62 1.99 11.78 8.39 24.37

60/90 mm 0.49 8.48 4.65 5.20 6.23 24.37 13.19 24.09

50/90 mm 0.24 10.12 1.79 7.80 6.56 28.91 38.22 32.26

40/90 mm 0.28 14.04 3.14 7.28 6.33 28.26 132.4 40.03

Experimentally generated signal

120/150 mm 1.91 4.16 15.03 22.78 17.01 20.91 32.92 18.7

90/150 mm 7.26 14.95 15.83 22.08 9.63 20.63 24.63 16.38

60/150 mm 2.50 16.48 9.71 26.91 13.56 32.68 67.88 14.46

50/150 mm 3.44 19.21 3.12 14.56 10.78 31.37 76.49 5.29

expected ratio
√
d2/d1 for different source receiver distances

normalized to the longest distance 90 mm. The theoreti-
cal solution is compared to the quotient of the moduli
|Ci(t0,ω0)|, i ∈ {stft, ct} which represent the amplitudes
calculated at a frequency ω0 for a particluar mode. The CT-
based algorithm almost exactly predicts geometric spreading
over the frequency range from about 0.3 to 1.5 MHz. In
contrast, the STFT results differ from the theoretically
expected amplitude decay even in those regions where the
a0-mode is separated. This is confirmed by earlier results of
Luangvilai et al. [6] who reported that the amplitude decay
due to the propagation pattern cannot be recalculated exactly
using the spectrogram. A similar observation can be made
for modes a1, s0, and s1 as well, that is, the relative error for
the CT is up to ten times smaller than the STFT results, c. f.
Table 2. Only in frequency regions in which the group delay
is almost constant, for example, at about 1-2 MHz for the a0-
mode, both transforms produce similar amplitude ratios. In
general, longer propagation distances improve the resolution
due to better mode separation in the time-frequency plane.

The analysis of the experimentally obtained data yields
smaller differences between the two methods as shown by
the mean relative deviations from the exact solution for
both the mode displacement ratios and geometric spreading,
see Tables 1 and 2. The CT produces results closer to the
theoretically expected solution, especially if source-receiver
distances are large enough as can be seen in Figure 4 when
comparing geometric spreading for propagation distances of
50 mm (green curve) and 120 mm (red curve) relative to
150 mm. However, the level of accuracy drops considerably
compared to the previous results. The extraction of both
displacement and energy related quantities associated with

individual modes from a time-frequency representation
depends on the dispersion relation, which in turn is deter-
mined by the material properties of the specimen. Parameter
variations as well as measurement noise therefore influence
the accuracy of the STFT-based approach and even more
the CT-based algorithm since in the latter case, the basis
functions are adjusted for the dispersion, too. When the
theoretical dispersion curves are closely matched as for the
numerically simulated signal, the performance advantage of
the CT-based algorithm becomes apparent.

5. Conclusions

The main goal of this paper is to evaluate the potential of the
chirplet transform for dispersive wave analysis. The problem
of associating displacement or energy related quantities to
individual modes of propagation is of interest in nondestruc-
tive evaluation. The theoretical advantage of the proposed
method, that is, tailoring regions of averaging to individual
modes based on the dispersion relation, becomes apparent
when analyzing numerically simulated Lamb wave signals
traveling in an aluminum plate. Extracting displacement
ratios and geometric spreading for individual modes of
propagation succeed with high accuracy in regions with
sufficient mode separation. This strongly indicates that
the CT-based algorithm can achieve a better performance
than more conventional approaches like the spectrogram.
The potential to extract displacement and energy-related
quantities associated with a particular mode of a dispersive
wave therefore qualifies it as a versatile tool in NDE
applications. As a model-based approach, the CT based
algorithm uses information about the dispersion relation.
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Figure 4: Geometric attenuation for the a0-mode of the experimen-
tally generated signal determined with the STFT (b) and CT (a).
Dashed lines represent the theoretically expected solution

√
d2/d1,

dash-dotted lines are the results obtained from the CT- and STFT-
based algorithm, respectively, for the distances 50 mm (green),
60 mm (black), 90 mm (blue), and 120 mm (red) related to 150 mm
of propagation distance.

Since the dispersion relation in turn depends on the
material properties and geometry of the specimen, precise
knowledge about experimental set-up is a prerequisite to
obtain reliable results with this technique. Consequently,
the level of accuracy is considerably lower when applied
to the experimentally generated data, also for the STFT-
based approach. Improving robustness properties as well
as algorithmic efficiency remains a goal of future research
to make the CT-based technique more easily available and
applicable for quantitative nondestructive evaluation.
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