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ABSTRACT

Bashima Islam: Scheduling Tasks on Intermittently-Powered Real-Time
Systems

(Under the direction of Shahriar Nirjon)

Batteryless systems go through sporadic power on and off phases due to intermittently available

energy; thus, they are called intermittent systems. Unfortunately, this intermittence in power

supply hinders the timely execution of tasks and limits such devicesâ potential in certain application

domains, e.g., healthcare, live-stock tracking. Unlike prior work on time-aware intermittent systems

that focuses on timekeeping [1, 2, 3] and discarding expired data [4], this dissertation concentrates

on finishing task execution on time. I leverage the data processing and control layer of batteryless

systems by developing frameworks that (1) integrate energy harvesting and real-time systems, (2)

rethink machine learning algorithms for an energy-aware imprecise task scheduling framework, (3)

develop scheduling algorithms that, along with deciding what to compute, answers when to compute

and when to harvest, and (4) utilize distributed systems that collaboratively emulate a persistently

powered system.

Scheduling Framework for Intermittently Powered Computing Systems. Batteryless

systems rely on sporadically available harvestable energy. For example, kinetic-powered motion

detector sensors on the impalas can only harvest energy when the impalas are moving, which cannot

be ascertained in advance. This uncertainty poses a unique real-time scheduling problem where

existing real-time algorithms fail due to the interruption in execution time. This dissertation proposes

a unified scheduling framework that includes both harvesting and computing.

Scheduling Mutually Exclusive Computing and Harvesting Tasks in Deadline-Aware

Intermittent Systems. The lack of sufficient ambient energy to directly power the intermittent

systems introduces mutually exclusive computing and charging cycles of intermittently powered

systems. This introduces a challenging real-time scheduling problem where the existing real-time

algorithms fail due to the lack of interruption in execution time. To address this, this dissertation
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proposes Celebi, which considers the dynamics of the available energy and schedules when to

harvest and when to compute in batteryless systems. Using data-driven simulation and real-world

experiments, this dissertation shows that Celebi significantly increases the number of tasks that

complete execution before their deadline when power was only available intermittently.

Imprecise Deep Neural Network Inference in Deadline-Aware Intermittent Systems.

This dissertation proposes Zygarde- an energy-aware and outcome-aware soft-real-time imprecise

deep neural network (DNN) task scheduling framework for intermittent systems. Zygarde leverages

the semantic diversity of input data and layer-dependent expressiveness of deep features and infers

only the necessary DNN layers based on available time and energy. Zygarde proposes a novel

technique to determine the imprecise boundary at the runtime by exploiting the clustering classifiers

and specialized offline training of the DNNs to minimize the loss of accuracy due to partial execution.

It also proposes a single metric, η to represent a systemâs predictability that measures how close

a harvester’s harvesting pattern is to a constant energy source. Besides, Zygarde consists of a

scheduling algorithm that takes available time, available energy, impreciseness, and the classifier’s

performance into account.

Persistent System Emulation with Distributed Intermittent System. Intermittently-

powered sensing and computing systems go through sporadic power-on and off periods due to

the uncertain availability of energy sources. Despite the recent efforts to advance time-sensitive

intermittent systems, such systems fail to capture important target events when the energy is absent

for a prolonged time. This event miss limits the potential usage of intermittent systems in fault-

intolerant and safety-critical applications. To address this problem, this dissertation proposes Falinks,

a framework that allows a swarm of distributed intermittently powered nodes to collaboratively

imitate the sensing and computing capabilities of a persistently powered system. This framework

provides power-on and off schedules for the swamp of intermittent nodes which has no communication

capability with each other.
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CHAPTER 1

Introduction

The advancement in low-power computing systems works as the catalyst for the exponential

growth of the internet of things (IoT), and their number will surpass one trillion by 2035 [5]. These

extremely low-power tiny computing devices address the growing need for affordable, intelligent

sensing and control solutions for a wide range of application domains, from infrastructure monitoring

to wildlife tracking and long-term health monitoring. We envision a vast number of sensors

embedded in clothing, jewelry as wearable and implantable, which will impact human, planetary,

and infrastructure health. However, for mobility and ease of deployment, the current IoT world

is dominated by battery-powered edge devices that are bulky and require periodic maintenance

(replacing or recharging). IoT devices’ boom will result in 274 million daily battery replacements [6],

even with an ambitious battery lifetime of 10 years. Replacing that vast amount of batteries is

unscalable, costly, and is an enormous threat to our environment when dumped in the environment [7].

Thus considering the maintenance cost, convenience, lifetime, and environmental effects, it is

more logical to move from batteries and focus on available ambient energies, e.g., solar energy,

thermal energy, kinetic energy, and radio frequencies. However, most ambient harvestable energy is

not sufficient to power the IoT devices directly, and thus we need to accumulate adequate energy

before using it. As a result, these devices go through power-on and power-off periods and experience

intermittence during execution. Therefore, these systems are called intermittent systems. These

systems typically consist of microcontrollers (MCUs), energy-harvesting and management circuitry,

capacitors to store energy, sensors, and communication radios to transmit the data and interact with

the environment. However, literature shows that communication radios are one of the most power-

hungry components of batteryless systems. Instead of transmitting large raw data, sending the output

is 98X more energy efficient [8]. Besides, on-device computation preserves privacy, reduces delay, and

is more suitable for trillions of devices sharing the limited bandwidth. However, the intermittence

of the available energy hinders the forward progress of the code execution. To ensure this forward
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progress, a new paradigm of computing has emerged for these systems, known as intermittent

computing [9]. Most existing works on intermittent computing systems concentrate preliminary on

the lower-level goals, e.g., instruction execution and memory consistency [10, 11, 8, 12, 13], and

allows successful on-device computation in intermittent systems.

By designing tiny systems that efficiently operate on intermittently available harvested energy,

we can realize our vision of sustainable computing dust, which will sense, compute, and learn

forever. These devices are applicable in various application domains requiring long-term sensing and

inference, such as wildlife monitoring [14, 15], environment monitoring [16, 17], smart agriculture [18],

infrastructure monitoring [19], wearables [20, 21, 22, 23, 24, 25, 26], and implantables [27]. Like

most IoT devices, batteryless systems applications involve event detection, where they use sensors

to sense the environment and detect if the target event took place. While every IoT application

has an expected response time, many of them require timely feedback. For instance, in acoustic

sensing systems, such as hearables and voice assistants [28, 29], car detectors [30], and machine

monitors [31], events need to be detected and reported on time to ensure prompt responses, safety,

and timely maintenance. Though batteryless systems are desirable in such scenarios for their

prolonged lifetime, the complexity of on-device computation and unstable power supply from the

ambient sources complicates the timely execution of computing tasks on such systems. Complex

multitasking workloads, e.g., audio and image processing, multi-tenancy, and ensemble learning,

proposed by recent works on intermittent systems [12, 32, 33, 8], further complicate the timely

execution by increasing the CPU utilization.

Prior works on time-aware intermittent computing systems can be broadly categorized into two

types. The first category focuses on time-keeping, i.e., maintaining a reliable system clock [1, 2, 3]

even when the power is out. The second category includes runtime systems that consider data’s

temporal aspect across power failures [4] by discarding data after a predefined interval. Though

works in this category consider timely execution, they focus on discarding tasks after a certain

period rather than concentrating on finishing tasks on time. However, failing to process the result

within the deadline makes such devices unsuitable for the applications mentioned above. To make

batteryless intermittently powered devices applicable in real-world application scenarios and into the

mainstream sensing applications, timely on-device execution of tasks in these devices needs to be

introduced.
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1.1 Research Challenges

Though all these scenarios demand a time-sensitive intermittent system, the sporadic nature of

the intermittence and the high complexity intermittent tasks present unique challenges.

1. In many cases, harvesting and computation can not co-occur, which further complicates

intermittent tasks’ real-time execution. This mutual exclusion creates a scheduling problem

where a balance between harvesting and computing is needed to avoid deadline misses due to

energy or time scarcity.

2. The sporadic nature of intermittent power and the absence of continuous energy hinders the

timely execution of intermittent tasks. Moreover, complex intermittent tasks, e.g., deep neural

networks, 3D reconstruction, impose a heavy workload on intermittent systems’ constrained

resources. The sporadic nature of harvested energy, resource constraints of the embedded

platform, and the computational demand of deep neural networks (DNNs) pose a unique and

challenging real-time scheduling problem for which no solutions have been proposed in the

literature. Though partial execution of tasks is a viable solution to meet the deadline, the

variable semantic complexity of data demands dynamic portions of a task. For such a system

to be feasible, this determination method must ensure minimal overhead for feasibility. Besides,

developing an energy-aware scheduling algorithm requires a prediction of available energy.

Direct energy prediction is not only challenging, but it is also not suitable for short periods.

Moreover, the constrained memory of intermittent systems hinders tracking energy history for

future prediction.

3. Due to the energy intermittence, the system might go through power-off mode when the sensing

event occurs and miss the event. Mitigating such misses due to lack of power is a unique and

exciting challenge as the energy source is uncontrollable and communication is expensive.

1.2 Thesis Statement

The goal of this dissertation to establish the following thesis: "Intermittently-powered systems can

ensure deadline-aware life-long sensing and computation by using unified frameworks that integrate

harvesting and real-time systems, exploiting specialized characteristics of computing tasks to employ

imprecise scheduling, and utilizing a cluster of distributed nodes to resemble a persistently powered

system."
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Through this thesis, I present– (1) a unified framework for scheduling tasks in intermittently

powered real-time systems, (2) scheduling algorithms that, along with deciding what to compute,

answers when to compute and when to harvest, (3) an energy-aware imprecise task scheduling

framework for deadline-aware complex task execution (e.g., deep neural network inference), and (4)

a framework for emulating a persistently powered system with multiple intermittent systems. This

system research focuses on bringing real-time scheduling and adaptive computing in intermittent

systems, impacting the other areas of Computer Science and Computer Engineering.

1.3 Contributions

This dissertation adds a new dimension to intermittent system literature by developing intermit-

tent aware real-time systems that ensure timely response in batteryless Internet of Things. Following

are the three significant contributions I made through this dissertation.

• First, I present scheduling algorithms that, along with deciding what to compute, answers

when to compute and when to harvest. First, I present a unified framework for scheduling

time-aware tasks in an intermittently powered system. (Chapter 3)

• I formulate the scheduling problem for intermittent systems where harvesting and computing

are mutually exclusive. To solve this, I propose an offline and an online scheduling algorithm,

namely Celebi-Offline and Celebi-Online, that schedules both harvesting and computing jobs

to maximize the number of jobs that meet the deadline. I further deduce necessary conditions

for a taskset to be schedulable on an intermittent system. (Chapter 4)

• I devise a deadline-aware runtime framework, Zygarde, for sporadic deep neural network (DNN)

inference on intermittently-powered systems. To ensure timely response in these devices, a

runtime adaptation of a DNN is necessary on top of compile-time compression [8, 34, 35, 36,

37, 38, 39]. Compile-time compression alone is not sufficient when the remaining deadline is

inadequate for full inference of the DNN but long enough to compute the inference result from

the partial execution of the DNN. To achieve this I propose (1) a policy/test to determine

how much partial execution at the runtime, (2) a specialized offline training of the DNNs to

minimize the loss of accuracy due to partial execution, (3) a single factor (η) to model the

energy harvesting pattern by representing the predictability of the system and (4) a scheduling

algorithm that takes both impreciseness and energy availability into account. (Chapter 5)
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• Finally, I propose a distributed scheduling framework, Falinks, that enables a swarm of intermit-

tent nodes to emulate a persistently powered node without any communication collaboratively.

I propose two optimal algorithms (Duty-Cycle, Prime-Coprime) that imitate a persistent node

when each swarm node gets energy from a constant energy source. I formulate variable energy

source scenarios as a Partially Observable Markov Decision Process (POMDP) and propose

different heuristics for updating the states with the varying source. (Chapter 6)

1.4 Dissertation Overview

The rest of the dissertation is organized as follows.

Chapter 2 explains the background materials relevant to all the contributions across this thesis.

Chapter 3 first defines various types of energy, energy source, energy harvester systems, and

tasks. Then it demonstrates a unified real-time scheduling framework for intermittently powered

computing systems.

Chapter 4 presents a pair of scheduling algorithms that not only answers which task to compute

next, but also, when to compute and when to harvest. This chapter also shows schedulability analysis

of the proposed algorithms.

Chapter 5 describes Zygarde, an energy- and accuracy-aware soft real-time task scheduling

framework for batteryless systems that flexibly execute deep neural network inference tasks that are

suitable for running on microcontrollers.

Chapter 6 presents Falinks, a framework that allows a swarm of distributed intermittently powered

nodes to collaboratively imitate the sensing and computing capabilities of a persistently-powered

system. This framework provides power-on and off schedules for the swamp of intermittent nodes

which has no communication capability with each other.

Chapter 7, concludes the dissertation and discuss potential future research directions.
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CHAPTER 2

Background and Related Works

2.1 Intermittent Computing

Most ambient energy sources cannot provide sufficient energy to power the processor directly

due to the tight size constraint on the harvester. As a result, these batteryless computing systems

experience a frequent power failures. Figure 2.1 shows an intermittently powered computing system.

The processor stays off until the energy storage (capacitor) accumulates enough energy to turn on

the processor (Tcharge in Figure 2.1). This phenomenon happens because the power loss corresponds

to the closure trigger that closes the capacitor’s energy path to the processor. Once sufficient energy

is harvested, the open trigger re-opens the energy path to the processor, and the processor turns on.

The processor executes until the harvested voltage reaches the minimum required operating input

voltage to the processor. Note that the time to accumulate enough energy (Tcharge) varies as the

energy available for harvesting may vary.

Tdischarge

Processor Off Processor On

Ha
rv

es
te

d 
Vo

lta
ge

Minimum Required Operating Voltage

Tcharge Tcharge Tcharge Tcharge Tcharge
Tdischarge Tdischarge Tdischarge

Figure 2.1: The charge-discharge cycle of energy harvesting devices forces the processor to compute intermit-
tently.

2.1.1 Intermittent Execution Model

The frequent power failures experienced by the intermittently powered systems reset the software

execution and result in repeated execution of the same code and inconsistency in non-volatile memory.
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When the processor loses power at each interruption, the program loses all state variables, including

program counter, which reside in volatile memory structures. The volatile memory structure includes

registers, SRAM memory, caches, memory-mapped I/O registers of on-chip peripherals, and the

off-chip peripheral registers. In a persistent power system at each boot-up, these program states

are reinitialized, starting the program execution from the beginning. This will result in repeated

execution of the same code and may cause an infinite loop where the code never gets enough energy

to finish. Before the processor turns off, the program or the runtime system must save some state to

non-volatile memory during the execution and restore it upon reboot to avoid this deadlock. The

program state’s size and saving frequency determine the intermittent execution model’s time, energy,

and memory overhead. The intermittence execution model literature aims to minimize this overhead

while maintaining the forward execution and consistency in memory.

Existing works on the execution model can be grouped into two classes – checkpointing-based

models and task-based models.

Checkpoint based Model. The checkpoint-based model’s core idea is to save the program state

to the non-volatile memory at the checkpoints. The checkpoints’ location is either determined during

the compile-time or is determined at the runtime using hardware interrupt.

Mementos [10] save periodic snapshots of the system state to non-volatile memory (NVM),

enabling it to return to a previous checkpoint after a power failure in a software system. It uses

compile-time execution passes to insert checkpoint to codes. It uses runtime energy estimation to

consider that no energy is harvested between the trigger point and power failure. Computational

RFID implements a preliminary design of Mementos [40]. Due to unnecessary periodic checkpoints,

the time and energy overhead of this approach are high.

Mementos [10] saves periodic snapshots of system state to non-volatile memory (NVM), which

enable it to return to a previous checkpoint after a power failure a software system. It uses compile

time execution passes to insert checkpoint to codes. It uses run-time energy estimation where

it considers that no energy is harvested between trigger point and power failure. [40] presents

computational RFID, a preliminary design of Mementos. Due to unnecessary periodic checkpoints,

the time and energy overhead of this approach is high.

To address this, Hibernus/Hibernus++ [11, 41] saves a snapshot of the system to non-volatile
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memory only once, immediately before the power failure. Rather than relying on checkpointing, it

depends on hardware interruption to detect the capacitor’s current-voltage (VCC) drops below a

certain threshold. Though this approach lowers the time and energy overhead, it requires custom

hardware support, which is not suitable for existing systems.

Chinchilla [42] proposed a compiler and runtime system that allows adaptive checkpointing with

no additional hardware support. It disables checkpoints dynamically to adapt to energy conditions

efficiently. DICE [43] uses differential checkpointing To reduce the energy cost and additional

execution times of checkpoint.

While using checkpoints preserves execution progress, it may leave the non-volatile state incorrect

by partially updating it. This memory inconsistency causes the behavior of an intermittent system

to deviate from a persistently powered system.

Task-based Model. Task-based programming and execution models preserve the execution progress

and the non-volatile memory consistency. Such models decompose a program into a collection of

tasks, which are top-level atomic functions. To ensure the atomicity of these tasks, if a power failure

occurs during a task’s execution, the task is re-executed from the beginning. After successfully

executing a task, the system tracks and atomically commit modifications to the non-volatile memory

to maintain the consistency of the program state. The overhead of this approach depends on the

number of atomic commits, which is known as transitions. More task transitions result in higher

runtime overhead. Though larger tasks reduce the number of transitions, they re-execute more work

after a power failure. Moreover, a larger task requires more energy to complete, and the energy

storage often can not hold sufficient energy leading to a non-termination problem.

DINO [44] introduces a programming and execution model to simplify intermittence programming.

It also ensures data consistency between volatile and non-volatile memory. Chain [45] proposed a

model for intermittent programming devices. This runtime library introduces a Chain program, a

set of programmer-defined discrete tasks that compute and exchange data through channels. This

eliminates checkpoint costs and avoids inconsistent state, and guarantees forward progress at task

granularity. Alpaca [13] is a task-based model to ensure low overhead intermittence without a

checkpoint. This framework supports only single thread tasks, and task decomposition needs to be

manually done by the programmer.
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However, these task-based programming approaches require a programmer to decompose a

program into multiple tasks. CleanCut [46] introduces a tool that automatically decomposes code

to terminate the task. It supports non-terminating path bugs and uses an average case statistical

energy model. Coala [47] is an adaptive and efficient task-based execution model which progresses

on a multi-task scale when energy permits and preserves the computation progress on a sub-task

scale if necessary.

Deep Neural Network Inference. To guarantee correct execution, a task-based model suffers

from significant runtime overhead. For a computationally expensive task such as deep neural

network (DNN) inference, such overhead must be avoided. To address this, SONIC [8] exploits

the characteristics of DNNs to allow loop continuation while ensuring that each loop iteration is

idempotent. This loop continuation minimizes task transitions and wasted work.

This dissertation uses SONIC [8] and Alpaca [13] as the intermittent execution model. The

contribution in this dissertation is at the algorithmic level, which complements and enhances the

existing literature.

2.1.2 Time-aware Intermittent Computing Systems

Remanence Time Keeper. Keeping time through power failure in a batteryless system is

challenging. To develop a time-aware intermittent system, keeping track of time during a power

failure is mandatory. A battery-powered real-time clock (RTC) is not suitable in this scenario due

to the long startup time for a lower operation. TARDIS [1] uses time and remanence decay in

Static Random-Access Memory (SRAM) to estimate power failure duration. CusTARD [2] uses a

millimeter-scale capacitor-centered circuit to use the capacitor’s energy dissipation during power

failure to estimate the time as a function of capacitor voltage decay.

However, these techniques can either support a more prolonged power outage or fine grain clock

resolution. Cascaded Hierarchical Remanence Timekeeper (CHRT) [3] supports more extended

power outages and finer resolution by featuring an array of different RC circuits to enable multi-tier

timekeeping architecture.

In Chapter 5 uses CHRT [3] for evaluation.

Data Staleness. Mayfly [4] is a declarative, task-based, and graph-inspired runtime for the timely

execution of sensing tasks on a tiny, intermittently powered, energy harvesting sensing device. Mayfly
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runtime maintains temporal aspects of data automatically across power failure by discarding the

stale data. However, Mayfly does not aim to finish a task within a deadline and minimize stale data.

2.1.3 Runtime for Intermittent Systems

Runtime for intermittent systems aims to increase the number of completed jobs [48, 49, 32]

without explicitly considering their deadlines. InK proposes a kernel for intermittent systems, which

continuously executes the next task’s control flow of the highest-priority task thread. Note that INK

does not consider DNN tasks or utilize partial execution of tasks for increasing schedulability. Unlike

INK, which schedules kernel threads and only one data sample at a time, proposed schedulers in this

dissertation schedule multiple data samples present in the job queue. Moreover, this work does not

consider when to harvest energy or schedule tasks from predefined priority task threads to minimize

missed deadlines.

Several previous works have proposed real-time schedulers to schedule sensing and transmission

tasks in batteryless sensor nodes [50, 51]. However, they only consider sense-and-send operations

where only the consumed energy is considered instead of considering both the consumed energy and

the execution time. This dissertation focuses on both types of demands of computing jobs.

Recently some works for batteryless sensor systems use reinforcement learning for increasing

the performance of batteryless nodes. Automatic Configuration of Energy Harvesting Sensors

(ACES) [52] uses Q-learning at each node for determining their duty-cycle and maximizes each

intermittent nodes sensing performance. However, such algorithms are not suitable for a swarm of

intermittent nodes that operated collaboratively, as shown in Chapter 6.

2.1.4 Energy Storage for Intermittent Systems

Intermittent systems primarily use supercapacitors as energy storage. The size of the capacitor

plays a crucial role in the performance of the system. If the capacitor size is small, more tasks miss

their deadlines as they re-execute an atomic fragment when the power goes off before its completion.

On the other hand, when the capacitor value is high, tasks miss a deadline due to the extra time

required to charge such a large capacitor. Moreover, different intermittent tasks have various energy

requirements, which often can not be satisfied with a single-sized capacitor.

Capybara [53] is a co-designed hardware-software power system with dynamic re-configurable

energy storage capacity to meet varied application energy demands using an array of programmatically

controllable capacitors. Using programmer-specified energy mode allows reactive applications.
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UFoP [54] presents a federated energy storage solution that allows power-hungry operations to

proceed without the device’s immediate ability to use other peripherals. To achieve this, it uses

individual peripheral energy storage and low-power control circuitry to isolate and prioritize individual

peripherals. Besides, an ultra-low-power cooperator is used to prioritize and charge individual energy

storage.

2.1.5 Harvesting Energy Prediction

Previous works on energy harvesting (EH) modeling of a specific energy source has achieved

promising results in predicting available energy [55, 56, 57]. Exponentially Weighted Moving

Average [58, 59, 60, 61] is used to predict solar energy generation, abstract the complex time-varying

nature of sources and impose duty cycle on batteryless sensor nodes. Weather-Conditioned Moving

Average [62] presents a fast and reliable solar prediction algorithm for solar and considers both

current and past weathering conditions and seasonal adaptation. Though some methods use clear-sky

solar performance to measure the average daily solar energy, they are not suitable for short-term

predictions [63]. Some other works have focused on analytically model the trade-off associated

with length of history to maximize forward propagation [64]. However, none of the prior works are

generalizable and fails to model energy harvesting systems irrespective of energy source. Section 5.2

provides a single metric, η factor that models an energy harvesting system’s predictability irrespective

of the source.

2.2 Deep Neural Network

Neural networks are hierarchical structures consisting of an input layer, one or more hidden

layers, and an output layer. A network with at least two hidden layers qualifies as a "deep" neural

network (DNN) [65, 66, 67, 68, 69].

The output of each layer of a DNN expresses a distinct representation of the input. This

representation is fed to the next layer to obtain a new and richer representation. This hierarchical

structure increases the complexity and abstraction of features as the depth increases. For instance,

the first hidden layer of the DNN in Figure 2.2(a) that classifies human faces learns basic geometric

features such as edges, the second hidden layer learns face parts such as nose and eyes that constitutes

these edges, and the third and deeper layers learn more complex features, such as the face abstraction

that constitutes of the face parts.

Because an increased number of hidden layers results in a richer representation of the input signal,
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Layer 1
(Detects Edges)

Layer 2
(Detects Face Parts)

Deeper Layer
(Detects faces)

Layer 1
(Detects Spectrogram)

Layer 2
(Detects Phonemes)

Deeper Layer
(Detects Speaker’s Gender)

(a) Vision (b) Audio

Figure 2.2: Example of DNN learns layers of features.

generally, a deeper network yields a higher classification accuracy [70]. For example, ResNet (152

layers, 2M parameters) achieves higher accuracy than VGGNet (16 layers, 140M parameters) [65].

However, after a certain tipping point, the accuracy does not increase and can drop dramatically if

we continue to add new layers caused by the vanishing gradient effects [71, 72]. This phenomenon

does not affect embedded learners since these memory-constrained systems typically hold a much

smaller number of layers at their limit.

2.2.1 Model Compression

Recent works reduce the cost of DNN inference by pruning and splitting models [35, 73]. Hidden

layers are dropped to reduce the execution cost of a DNN inference. Deep Compression [34]

introduces a compression technique for a deep neural network comprising three stages – pruning,

trained quantization, and Huffman coding [74]. This compression reduces the storage requirement

by 35x to 49x without affecting the accuracy. The first step prunes the network by learning only

the essential connections. Next, the weights are quantized to enforce weight sharing using kmeans.

DeepIoT [36] is a generalized compression technique for deep learning network inference that learns

the dropout probability for dropping hidden elements instead of random or pre-defined dropout

probability. DyNS [75] compresses a network by pruning the connections on the fly. Other works

have focused on resource optimization for DNN models to allow execution on a mobile platform [76].

The reduction of floating-point and weight precision [77, 78, 79] is another approach for compress-

ing a DNN model. A fixed point has been implemented with 8-bit integer activation instead of a 32-bit
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floating-point [80]. Ternary weights and three-bit activation optimizes a fixed-point network [81].

The neural network’s linear structure contributes to finding an appropriate low-rank approximation

of the parameter to compress the network [82]. The fully connected model size is reduced using

a hash function to randomly group connection weights and use global max pooling [83, 84]. This

way, all the parameters of the same hash bucket share a single parameter value. Factorization of

computation [85, 86, 87, 88, 84, 89, 90] is another approach to compress a DNN model. Other works

apply Singular value decomposition (SVD) on the weight matrices of DNN and then restructure the

model based on the original matrices’ inherent sparseness without negligible accuracy loss [91].

DeepX [92] is a software accelerator for deep learning inference execution based on a pair of

inference-time resource control algorithms (Run-time Layer Compression and Deep Architecture

Decomposition). This accelerator dramatically lowers resource overhead by leveraging a mix of

heterogeneous processors. RDeepSense [37] is a deep learning model inference that gives uncertainty

estimation for resource-constrained mobile and embedded systems. It reduces the complexity by

converting arbitrary fully connected NN to NN with uncertainty estimation. It uses dropout training

instead of modeling ensemble (reduces computational complexity) and uses a tuneable proper scoring

rule as a loss function (helps predicting uncertainty in DNN) with distribution estimation instead

of point estimation as output. Predictive uncertainty is a random variable here. Apdeepsense [38]

has the same goal as Rdeepsense but does not have the same need for retaining. It addresses

the retraining issue by replacing the resource-hungry sampling approach with effective layerwise

distribution approximation. It approximated the non-linear activation function as a piece-wise linear

function. However, this will not work for RNN or CNN.

Knowledge distillation is one of the recent approaches to compress a deep neural network

using a teacher and student model [93] and ensemble models [94]. Though these works are crucial

for enabling fast DNN execution, they alone are not sufficient for batteryless systems. Binary

networks [95, 96, 97, 98] are not suitable for batteryless systems due to the higher number of required

parameters [8].

2.2.2 Adaptive Neural Network

Recent works propose early exit during DNN inference [99, 100, 101, 102]. However, they

are not sufficient for highly constrained batteryless systems due to the significant termination

overhead. In most cases, the terminations require a neural layer’s execution requiring 45 times
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more execution cycles than performing utility tests and classification with our proposed algorithm

in Chapter 5. Moreover, these approaches lack model adaptation capability, which is required for

life-long sensing. Some works on anytime neural networks depend on module selection [103, 104, 105],

dynamic layer pruning during inference [106, 107, 100, 108, 105], and depth and width adjusting

techniques [109, 110, 111, 112, 113] for anytime prediction. However, none of these works have

considered the effect of energy intermittence, and they are yet to be modeled as an imprecise task.

2.3 Real-time Scheduling

Systems in which the computations’ correctness depends on logical correctness and temporal

correctness are known as real-time systems. Here, logical correctness impels that the system produces

correct output, and temporal correctness denotes that the system produces outputs at the right time.

In a real-time system, the value of a computation depends not only on the answer’s correctness but

also on how timely it is. In such a system, late completion of computation has diminishing or no

value, while early completion of computation has no extra value.

2.3.1 Definitions

This section describes the definition of different terms used in real-time systems.

Task. The workload of a real-time system is known as the task. In other words, a task is a sequential

piece of code that executes in a system.

Job. A job is an instance of a task that requires resources, e.g., processors, to execute.

Release Time of Arrival Time of a Job. Release time or arrival time of a job is when the job

becomes ready to execute.

Deadline of a Job. The time instant by which a job must complete execution is known as the

deadline of that job.

Periodic, Sporadic, and Aperiodic Task. A task can be of three types – periodic, aperiodic,

and sporadic. A task is periodic when two consecutive jobs have a fixed and known time difference

between their release/arrival time. This time is known as the period. A sporadic task has a known

minimum inter-arrival time among successive instances of a (periodic) task instead of strictly being

periodic. In the worst-case scenario, a sporadic task performs as a periodic task. An aperiodic task

is event-driven, where the release time of the jobs is unknown.
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Implicit, Constrained, and Arbitrary Deadline System. In an implicit-deadline system, the

deadline is equaled to the period for each task. On the other hand, in a constrained-deadline system,

the deadline is less than or equals to the period. There is no relation between the deadline and

periods in an arbitrary-deadline system.

CPU Utilization. Utilization of a task is the ratio between the execution time and period of the

task. The CPU utilization of a taskset is the summation of all the task utilization in a taskset.

This dissertation focuses on periodic and sporadic tasks with implicit, constrained, and arbitrary

deadline systems.

2.3.2 Task Scheduling Algorithms

Earliest Deadline First (EDF) Scheduling Algorithm. Earliest Deadline First (EDF) is a

dynamic priority scheduling algorithm where a task with a shorter deadline has a higher priority.

It executes a job with the earliest deadline. EDF is the optimal online scheduling algorithm for a

single processor in persistently powered systems. A schedule is optimal if the optimal scheduler must

schedule a taskset scheduled by any other scheduler. A real-time system is schedulable under EDF if

and only if
∑
Ui ≤ 1, where Ui is the CPU utilization of task i.

Rate Monotonic (RM) Scheduling Algorithm. Rate Monotonic (RM) scheduling algorithms

prioritize the task with a smaller deadline or period. RM is a static priority scheduling algorithm,

and the static priorities are assigned according to the cycle duration of the job, so a shorter cycle

duration results in a higher job priority.

As-Late-As-Possible (ALAP) Scheduling Algorithm. As-Late-As-Possible (ALAP) scheduling

algorithm schedules each job at the latest opportunity. ALAP scheduling algorithm delays a task as

much as possible without violating the deadline constraint.

2.3.3 Imprecise Job Scheduling

Imprecise computation models divide each task into two portions – mandatory and optional.

By meeting its deadline, such a model refers to executing the mandatory part of a task before its

deadline. After the mandatory portion is scheduled, imprecise schedulers try to schedule as much

as an optional portion as possible. If necessary, the optional portion can be terminated before

it is completed for the task and other tasks to meet their deadline. The result of a prematurely

terminated task has an error which is a non-increasing function of processing time. These sorts
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of tasks are called monotone tasks. A task is a monotone if the quality of its intermediate result

does not decrease as it executes longer. In this model, a feasible schedule refers to completing the

mandatory portion of every task by its deadline.

Online scheduling of imprecise tasks has been studied where the goal is to minimize the total

error of all tasks [114]. This scheduler assumes that the system does not accept tasks whose

mandatory portions cannot be feasibly scheduled at the arrival time. Therefore, the task system

presented to the scheduler satisfies the feasible mandatory constraints. The scheduler reserves a

mandatory interval with reverse scheduling and then uses EDF to schedule optional portions in the

rest of the time intervals. A feedback-driven online scheduler for sporadic real-time processes with

imprecise computing assumes that processes are ready for execution upon their arrival [115]. For the

feedback controller, which controls the admission control, this scheduler considers the number of

processes that missed the deadline and the number of processes that met the deadline. Another

online feedback-driven scheme to schedule a process with imprecise computation utilizes a PID

controller that takes the missing ratio as input from the scheduler(EDF) and then calculates how

long the optional part should be executed [116]. The goal is to bind the deadline-miss ratio to a

set point so that a balanced trade-off between the precision of computation and CPU utilization

exists. A semi-priority scheduling algorithm based on a rate monotonic schedule for imprecise tasks

achieves high schedulability [117]. However, in all these works, mandatory-optional partitions are

fixed, determined in the compile time, and known a priori. In Chapter 5, the proposed algorithm

determines the dynamic imprecise boundary at the runtime.

Existing works on Quality of Service (QoS) based resource management [118, 119] do not handle

the data-dependent dynamic relationship between quality and required execution. Previous works on

mixed-critical systems [120, 121, 122, 123, 124, 125] propose scheduling schemes for predetermines

critical levels, which is a characteristic of a task. However, these algorithms are not suitable, then

the performance of the system varies for each job.

2.3.4 Deep Neural Network Scheduling

Several works focus on scheduling deep neural network tasks within a deadline. ApNet [126] is a

timing-predictable runtime system to guarantee deadlines of DNN via efficient approximation built

upon the theoretical analysis of a multi-layer DNN end-to-end framework. This paper also exploits

that resource sharing and approximation can mutually supplement one another in a multitasking
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environment. The key observation in this paper is that the runtime response of each layer of a

DNN instance to approximation is different; in other words, the approximation potential of various

layers is distinctive. ApNet divides the end-to-end deadline of a task into sub-deadline for each layer.

S3DNN [127] (Supervised Streaming and Scheduling for DNN) optimizes DNN workloads on GPU

in a real-time multitasking environment. Its goal is to optimize real-time correctness and throughput

simultaneously. S3DNN extends least-slack first (LSF) into a kernel-level LSF algorithm to prioritize

and schedule multiple DNN instances. It schedules workload in the granularity of GPU kernels and

dynamically aggregates underutilized kernels. By doing this, it maximizes throughput and GPU

resource utilization. However, these works focus on GPUs and do not consider resource-constrained

systems, unlike the proposed algorithm in Chapter 5.
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CHAPTER 3

Scheduling Framework for Intermittently Powered Computing Systems

This chapter first defines various types of energy, energy sources, and energy harvester systems.

Next, we introduce and formulate different types of tasks. Finally, it provides a scheduling framework

for intermittent systems and describe the major components.

3.1 Energy and Energy Sources

I classify types of energy, energy sources, and energy harvested systems below.

3.1.1 Types of Energy

I define two types of energy for ease of development – harvestable and harvested energy.

Harvestable Energy. The amount of energy available to be harvested from energy sources is

defined as harvestable energy. To simplify scheduling and analysis, I quantize the harvestable energy

into discrete levels. I divide the total energy for each time slot by a constant (unit energy) and

express harvestable energy at each time slot as an integer. The time slots’ length is constant and

depends on the shortest execution time and the lowest energy consumption of a task.

Harvested Energy. The harvested energy is the energy harvested by the system and stored in its

energy storage (e.g., supercapacitor). The MCU consumes this energy to execute jobs. Note that

the harvested energy is not just a cumulative sum of the harvestable energy since (1) it changes as

energy is consumed by the MCU, and (2) the system may decide not to harvest energy at a time

slot even though there is available harvestable energy. I denote harvested energy at time t as Et.

3.1.2 Types of Energy Sources

I categorize the energy source for harvesting energy based on stochasticity and ubiquity.

Categorizing Energy Source based on Stochasticity. Depending on the energy source’s

stochasticity, I categorize harvesting energy sources into two classes – constant energy source and

variable energy source. An energy source is constant if the harvestable energy does not vary over

time. An RF harvester at a constant distance from the RF harvester without any interference
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receives constant harvestable energy. Thus in this scenario, the RF harvester is a constant source.

On the other hand, when the harvestable energy changes with time, the energy source is variable.

The harvestable energy of an energy-harvesting tile that harvests kinetic energy from the pedestrians

is a variable energy source.

Categorizing Energy Source based on Ubiquity. Based on the ubiquity of the harvestable

energy to all the nodes in a swarm, I have further categorized the energy sources into two categories

– balanced and unbalanced. This categorization is practical for a swarm of intermittent nodes. An

energy harvesting source is balanced if the harvestable energy at any node is the same at any point

in time. In other words, if all nodes in the swarm have access to equal harvestable energy, the energy

source is balanced. A swarm on solar-powered nodes in an open field is an example of a balanced

energy source. If the nodes in a swarm get different harvestable energy simultaneously, the energy

source is unbalanced. A group of RF harvester placed at a different distance from the RF transmitter

gets unbalanced harvestable energy.

3.1.3 Types of Energy Harvester Systems

There are two popular designs for energy harvester systems – direct-usage-based design and

energy storage-based design [9]. The direct-usage-based design is the most straightforward design for

an energy harvester system where the harvester output is directly connected to the load. However,

this design is not widely used as it wastes energy when the harvestable energy is not equal to the

required energy to run the system. To illustrate, when harvestable energy < required energy, the

harvestable energy can neither be used nor be stored due to the absence of energy storage. Similarly,

when harvestable energy > required energy, this design only uses the energy required to execute the

system and wastes the access energy that could have been stored if energy storage was present.

On the contrary, in the energy-storage-based design, the load is usually decoupled from the

harvester by an energy buffer, e.g., a capacitor and hardware or software-based controllers control

the charging and discharging of the storage element. Most intermittent computing systems [9, 12,

33, 8, 14, 53, 20, 128] use an energy-storage-based design. In this design, when harvestable energy

is less than the required energy, the capacitor continues to harvest energy to the storage until it

accumulates enough energy to run the system. When the harvestable energy is high, the capacitor

stores the excess energy for future use. Therefore, I use an energy-storage-based energy harvester
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system in this dissertation.

3.2 Tasks

An intermittent computing system can have three types of tasks – (1) computing task, (2)

harvesting task, and (3) NOP task.

3.2.1 Computing Task

I consider the processing of a data stream from a sensor on the device as a computing task.

These computing tasks are sporadic in nature and a task is denoted by τi = (Ti, Di, ci, ei), where Ti

denotes the period (i.e., the minimum separation between two consecutive jobs), Di is the relative

deadline, ci is the worst-case execution time, and ei is the energy consumption rate (i.e., power).

The hyperperiod is the least common multiple of the periods and is denoted by T . Deadlines can be

both implicit where the deadline equals the period, i.e., Ti = Di, and explicit where the deadline

equals the period, i.e., Ti > Di.

An instance of a task τi, aka a job, is defines as jik = (aik, dik, ci, ei), where aik is the arrival

time, dik is the absolute deadline, ci is the computation time and ei is the energy consumption rate.

A job misses its deadline if it fails to execute for ci units of time before the deadline dik.

Intermittency Management for Computing Tasks. The size of a typical job is generally too

large to execute without intermittence. Hence, at the implementation level, to avoid corrupted

results and ensure forward code execution progress, these units are further divided into atomically

executable fragments—which guarantees correct intermittent execution using ALPACA [13] and

SONIC [8] APIs.

Task Preemption. We allow limited preemption [129] of computing jobs where a computing job

can be preempted by another preemptive job only at certain instances, aka a unit. A unit represents

a logical grouping of related modules of the task (more details in Chapter 5). By prohibiting a unit’s

preemption by another computing job and using double buffering [130], I reduce context switching

and read-write overheads and minimize the memory requirements to O(N) for N computing jobs.

Note that harvesting and NOP jobs can preempt a computing job at any point, including within a

unit. However, harvesting and NOP jobs are non-preemptive themselves.
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3.2.2 Harvesting Task.

Energy harvesting aka charging cycles is defined as harvesting tasks. A harvesting job hi =

(ai, di, ci, ei). Here, ai is the arrival time of the job, ci is the execution time or the length of the

charging cycle, di denotes the deadline where di = ai + ci, and ei is the rate of available energy that

is harvested by the harvesting job hi. Harvesting tasks are non-preemptive and have the highest

priority. Based on the relation between the available energy and the computational need, harvesting

jobs and computing jobs can occur concurrently or are mutually exclusive.

3.2.3 NOP Task.

When the harvested energy is insufficient to execute a computing job and the harvestable energy

is zero, no computing or harvesting job can occur. We consider such cases as NOP tasks.

1 2 41

1 1 3 0

0        1        2        3       4        5

0        1        2        3       4        5

0        1        2        3       4        5

(a) Harvestable Energy

(b) Harvested Energy

(c) Schedule

Harvesting Task

Computing Task

NOP Task

Job Arrival

Job Deadline

1

Figure 3.1: An example of the energy and task model over 5 time units. The computing task τ1 = (4, 4, 1, 3).

3.2.4 Example

Figure 3.1 shows an example of the energy and task models for an intermittent system. Fig-

ure 3.1(a) shows the harvestable energy at different time slots, and Figure 3.1(b) shows the harvested

energy (i.e., energy stored in the capacitor) at each time slot. Figure 3.1(c) shows two jobs, j11=(0,

4, 1, 3) and j12=(4, 8, 1, 3), of the computing task τ1 = (4, 4, 1, 3), four harvesting jobs– h1 = (0, 1,

1, 1), h2 = (2, 3, 1, 2), h3 = (3, 4, 1, 1), and h4 = (4, 5, 4, 1), and a NOP job.

At t = 0, harvesting job h1 harvests 1 unit of harvestable energy, and the harvested energy

becomes E0 = 1. At t = 1, the harvestable energy is 0, which is insufficient to run the MCU. Thus,

a NOP task takes place, and harvested energy E1 remains the same as E0. During t = 2, the
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harvesting job h2 takes place, and the harvested energy increases to E2 = 3. The MCU consumes 3

units of energy at t = 3 by executing the computing job j11, which reduces the harvested energy

to E3 = 0. As the harvestable energy is less than the computing job’s energy consumption rate,

it cannot harvest at t = 3. At t = 4, harvestable energy is more than the computing job’s energy

consumption rate, and thus, computing job j12 and harvesting job h4 execute simultaneously. j12

consumes three units of energy harvested by h4, and the harvested energy becomes E4 = 1.

3.3 Scheduling Framework for Intermittent Systems

Figure 3.2 shows the eight major components of a time-aware intermittent computing system:

(1) one or more sensors, (2) a job generator, (3) one or more energy harvester, (4) energy storage, (5)

an energy manager, (6) a processing unit, (7) a timekeeper, and (8) a scheduling unit. This section

provides a generic description of each of these components. The later chapters provide more detailed

descriptions as needed.

Sensors Task Repository

Job Generator Job Queue Scheduler

Energy
Manager

Energy 
Harvester

Energy
Storage

Energy SourceProcessing
Unit

Execute Selected
Job

Harvest
Energy

New
Job

Scheduling Unit

Time
Keeper

Figure 3.2: Scheduling Framework for Intermittent Systems.

Sensors. In real-life scenarios, sensors collect data from the environment and for analyzing or

classifying it. The choice of a sensor highly depends on the application of the system. Some

popular sensors used in battery-less devices are light sensors [131], temperature sensors [132], audio

sensors [133], accelerometers [134], pressure sensors [135], image sensors [136], CO sensors [137].

Table 1 shows the power consumption of different sensors used in the literature.

Sensors collect either analog or digital signals at a given sampling frequency. This sampling
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Table 3.1: Various sensors and their power consumption.

Sensor Power

Ambient Light [138, 131] 2.34µW
Temperature Sensor [139, 132] 27.6µW
Audio Sensor [140, 133] 0.65mW
Accelarometer [141, 134] 0.9 mW
Pressure Sensor [142, 135] 27µW
Image Sensor [143, 136] 4mW
CO Sensor [144, 137] 45µW

frequency varies based on the types of sensors, e.g., accelerometers usually have a 100 Hz sampling

rate while a more standard sampling rate for acoustic signals 11.25 KHz - 44.10 KHz. Sensors that

collect analog signal requires an analog to digital converter (ADC) to convert the analog signal to

digital signals which the processors can use. The granularity of the signal measurement depends on

the sampling frequency of the ADC.

Job Generator. The system reads data from one or more sensors (e.g., microphone and accelerom-

eter) and processes it using one or more preloaded computing tasks from the Task Repository. For

example, a smart earbud may run two tasks – speaker recognition and hotword detection – both

using the same microphone. We define a sensor stream’s processing pipeline as a computing task

and end-to-end processing of a sensor data sample as a computing job. Thus, if this system (having

two tasks) generates k audio frames/second, then after 3 seconds, there will be a total of 6k jobs.

The Job Generator creates and enqueues jobs into the Job Queue, which is part of the scheduling

unit. This process includes writing the sensor data to the non-volatile memory (FRAM) of the

microcontroller using the direct memory access (DMA) for computing jobs.

For creating and enqueuing the harvesting jobs, the job generator relies on the energy manager.

Whenever there is harvestable energy, the job generator creates a harvesting job. Finally, when both

harvesting and computing jobs are absent, the job generator creates a NOP job. A job leaves the

queue when it gets scheduled for execution, or its deadline has passed.

Energy Harvester. One of the most popular energy harvesting techniques is to convert solar

energy into electrical energy [145, 146]. Even though solar energy is uncontrollable (we can not

control the sun’s intensity or the occlusion by cloud), it has certain reliability based on time and

season. Other popular technologies include converting kinetic energy (e.g. human step [147, 148, 149],

wind [150, 151]), thermal energy [152, 153], radiofrequency energy [154, 10, 41, 136] to electric energy.
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In Table 3.2 shows different energy harvester source and their generation capacity [155, 156].

Table 3.2: Various energy harvesters, their energy sources, and harvested energy.

Energy Source Harvesting Technology Harvested Energy

Light [157, 150, 158, 159] Solar Cell 15mW/cm2

Kinetic (Wind) [150] Anemometer 1200mWh/day
Kinetic (Human Motion) [147, 149, 160] Piezoelectric 2.1mW
Kinetic (Vibration in Indoor) [161] Electromagnetic Induction 0.2mW/cm2

Thermal [162, 153, 160] Thermoelectric Generator 25µW/cm2 – 10mW/cm2

RF [154] RF Energy Harvester 0.1µW/cm2 – 1mW/cm2

Energy Storage. Rechargeable batteries and supercapacitors are the most viable choices as the

energy source of an energy harvesting system. Batteries utilize chemical reactions to store energy

and have a limited cycle life. On the other hand, supercapacitors store energy by physical-charge

storage and have an effectively infinite cycle life. Besides, supercapacitors are ideal power buffers

between an energy harvester and a load demanding more power than the energy harvester can deliver

due to its low equivalent series resistance to enable high power delivery, high capacitance to support

peak power demand for the required duration, low leakage current, simple charging, and smaller

footprint.

However, the size of the capacitor plays a crucial role in an intermittent system. If the capacitor

size is too large, it requires more time to charge, and the system stays off for a long time. On the

other hand, if the capacitor is too small, though the system turns on more frequently, it exhausts

the available energy quickly and suffers from higher intermittence overhead. Section 5.7.6 shows the

effect of different supercapacitor sizes with experiments.

Though Capybara [53] proposes an array of supercapacitors to address the abovementioned

challenge to some extent, it fails to consider different types of energy harvesting systems mentioned

in Section 2. To address this, Section 6.4 of Chapter 6 proposes a software-controlled cascading

capacitor array.

Energy Manager. The Energy Manager monitors the energy storage state (e.g., supercapacitor or

capacitor array [53]) and measures the harvestable energy from the energy harvester. The scheduler

uses this information for scheduling decisions (described in Section 5.4). Besides, the job generator

uses the predicted harvestable energy to generate harvesting and NOP jobs. The energy manager

implements an open-source intermittent computing runtime [8, 13] to manage the execution of jobs

24



across power failures. Each job consists of multiple small atomic fragments that maintain a strict

precedence order at the implementation level. These fragments execute atomically, and the runtime

ensures that repeated attempts to execute a fragment are idempotent.

Processing Unit. The processing unit or microcontroller (MCU)draws power from either the

energy storage or the energy harvester or both and executes the scheduled computing jobs. When

no computing job is scheduled, the processing unit goes to the low-power mode or sleep mode to

preserve energy. Chapter 5 describes the sub-components of the processing unit for inferring deep

neural networks imprecisely.

Timekeeper. The most straightforward way to address this problem is to use an external low-power

real-time clock (e.g., NXP PCF2123 [163], DS3231 [164], or Abracon AB08X5 [165] RTC chip), which

is powered by an external coin cell. However, as the battery might wear out and add an external

clock with the battery significantly increases the device footprint, several batteryless timekeepers

have been introduced. Tardis exploits SRAM decay during a power failure, while CusTARD measures

the amount of voltage decay on a dedicated capacitor using an analog-to-digital-converter after a

power failure to estimate elapsed time. Recently CHRT has been proposed that uses remanence

energy of a capacitor-resistor array to support longer elapsed time along with finer granularity.

Scheduling Unit. The scheduling unit consists of a job queue and a scheduler. The job generator

adds jobs to the job queue. Besides, when a job is preempted, it again enters the job queue so

that the remaining portion can the scheduled for execution. The scheduler is a dynamic priority

real-time scheduler that considers the timing aspects, the expected performance of a job, and the

system’s energy harvesting status. The scheduler schedules jobs present in the job queue. The

main contribution of this dissertation lies in this scheduler. The proposed scheduler decides how

much of a computing job needs to be executed (details in Chapter 5). Along with answering which

computing job to execute, this scheduler also determines when to compute and when to harvest

when harvesting and computing are mutually exclusive (details in Chapter 4) or when a swarm of

intermittent computing nodes operates collaboratively (details in Chapter 6).

Figure 3.3 shows an overview of how the scheduler works in an intermittent system. In this

figure, PG and PC are the harvestable energy and energy consumption rate by the computing tasks

(τ1 and τ2). This example shows the first job of each task (j1,1 and j2,1). {τH} is the harvesting
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Figure 3.3: Overview of the scheduler.

task. The scheduler decides how much of a task to execute by partitioning each task into mandatory

(τmi = {jm1,1, jm2,1}) and optional portions (τ oi = {jo1,1, jo2,1}), where executing the mandatory portion

in time is acceptable. Chapter 5 describes how we schedule the computing tasks. This figure

demonstrates two cases: (a) when PG ≥ PC , τH executes concurrently with {τmi , τOi } and harvests

the excess energy; and (b) when PG < PC , {τH} has to harvest energy before {τi} can be executed.

However, there is a trade-off – if we always harvest, there will be sufficient energy but inadequate

time to execute jobs of {τi}. In contrast, if we always execute computing jobs and do not harvest,

there may not be enough energy to finish the jobs. In Chapter 4, I answer this question by proposing

a pair of scheduling algorithms. Figure 3.3 shows: (a) j1,1 and j2,1 are schedulable by EDF when

power is always on; (b) j2,1 misses the deadline when energy is intermittent; and (c) how the proposed

algorithm schedules τH , jm1,1 and jm2,1, and some portion of of jo1,1 andjo2,1.

3.4 Summary

This chapter models the energy, energy source, energy harvesting system and three types of tasks

for an intermittent system. Then it introduces the a scheduling framework for realtime tasks in an

intermittently powered system and describe the major components of the framework with example.
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CHAPTER 4

Scheduling Mutually Exclusive Computing and Harvesting Tasks in
Deadline-Aware Intermittent Systems

The sporadic nature of harvestable energy and the mutually exclusive computing and charging

cycles of intermittently powered systems pose a unique and challenging real-time scheduling problem

where the existing real-time algorithms fails due to the lack of interruption in execution time. This

mutual exclusion is introduced by storage-based energy harvesting system where a capacitor is used

to store the harvested energy when the harvestable energy rate (supply) is less than the energy

consumption rate (demand). Though other cases where harvestable energy rate is higher than

consumed energy rate exists, this work focuses on the demand > supply as many intermittent

systems follows it [8, 12, 13, 4]. The significant research question is – how to integrate the variability

of sporadic harvestable energy in the scheduler to harvest required minimum amount of energy while

maximizing schedulability of the jobs?

Through an array of observations and experiments, I develop scheduling algorithms that schedule

both computational and energy harvesting tasks by harvesting the required minimum amount of

energy while maximizing the schedulability of computational jobs to maximizes the number of jobs

that meets deadline for both known and unknown harvestable energy pattern.

This is the first work that schedules not only the computing cycles but also the energy harvesting

cycles of an intermittent system by considering the dynamic properties of the environment and the

harvestable energy. Through this work, I make three significant contributions.

• First, I formulate the scheduling problem and deduce necessary conditions for a taskset to be

schedulable on an intermittent system.

• Second, I propose an offline scheduling algorithm, namely Celebi-Offline, that schedules both

harvesting and computing jobs to maximize the number of jobs that meet the deadline. To achieve

this goal, after an initial round of scheduling, I iteratively remove energy harvesting cycles that

harvest extra energy and accommodate computing jobs so that they can meet their deadlines.
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• Finally, I present an online version of Celebi-Offline scheduling algorithm called the Celebi-

Online, where the harvestable energy pattern is not known a priori. It is a threshold-based algorithm

that avoids situations where no energy is available to harvest, and the harvested energy is not

sufficient to run the system. It opportunistically execute computing tasks earlier than it is scheduled,

when the harvestable energy is below the threshold.

I implement Celebi in a TI MSP430 microcontroller which is powered by harvesting solar energy.

I implement four different complex sensing and computational applications along with system tasks,

e.g., maintaining clocks, monitoring energy. These applications include – temperature anomaly

detector, DNN based acoustic event classifier, RSA encryption, and bit counter.

I compare our scheduling algorithms with an optimal scheduler and three baseline schedulers

(earliest deadline first, rate monotonic and as late as possible) in simulation, trace-based, and real-life

experiments. Celebi-Offline scheduler, on average, shows 92% similar performance as the optimal

scheduler in controlled experiments. Celebi-Online scheduler schedules 8% – 22% more jobs than

baseline schedulers in controlled evaluation. Finally, in real-life evaluation, Celebi-Online performs

63% better than a non-real-time system and 8% better than the baseline scheduler.

To evaluate Celebi, I conduct simulation as well as trace-based and real-life experiments. Our

results show that the proposed Celebi-Offline algorithm has 92% similar performance as an optimal

scheduler, and Celebi-Online scheduler schedules 8% – 22% more jobs than the earliest deadline first

(EDF), rate monotonic (RM), and as late as possible (ALAP) scheduling algorithms. I deployed

solar-powered batteryless systems where four intermittent applications are executed in the TI-

MSP430FR5994 microcontroller and demonstrate that the system with Celebi-Online misses 63%

less deadline than a non-realtime system and 8% less deadline than the system with a baseline (as

late as possible) scheduler.

4.1 Formulation of Scheduling Problem for Intermittent Systems

In this section, I describe the scheduling problem along with the assumptions and an example

schedule.

4.1.1 Assumptions

• A1: The energy consumption rate is higher than the energy generation rate. Energy harvesters that

power intermittent systems harvest energy at the rate of µW to mW (e.g. solar cell [166, 133], RF
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signal [167, 168, 169, 170, 171, 172], and piezoelectric [173, 174]) harvesters harvest 2.5mW–1mW,

0.1µW–1mW, and 0.2mW–2.1mW, respectively. The active-mode power consumption of an MCU

on the other hand is ≈6mW [175]. Hence, for most intermittent systems [176, 177, 42], the energy

consumption rate is higher than the energy generation rate.

• A2: Harvesting and computing jobs are mutually exclusive. Due to the hardware design choices,

such systems exist. For example, intermittent computing systems with a single capacitor [178, 13] have

mulutally exclusive harvesting and computing tasks. In storage-based models (Section 3.1.3 – Energy

Harvested System Design Choice), where the energy consumption rate is higher than the energy

generation rate, the mutual exclusion between harvesting and computing tasks is a fundamental

characteristic. Other systems where harvesting and computing may happen simultaneously are not

the target of this paper.

• A3: The capacitor has a fixed charging rate. A capacitor’s charging rate is not linear but it

decreases as the voltage across it increases. However, to simplify the scheduling and analysis, I

consider a fixed charging rate. The storage is assumed to be sufficiently large.

• A4: For the offline scheduling algorithm, the harvestable energy pattern is assumed to be known

a priori. Estimating the energy harvesting pattern is an unsolved problem. Many [58, 59, 60, 61,

63, 179, 180] have achieved up to ≈90% accuracy in estimating the energy generation pattern. For

analysis purpose, the offline scheduling algorithm considers that the harvestable energy pattern in

known. Later in this chapter, I provide an online scheduling algorithm where this assumption is

lifted.

4.1.2 Problem Formulation

I formulate an optimization problem that maximizes the number of computing jobs that meet

the deadline given a set of computing (J) and harvesting (H) jobs.

The decision variables are defined as follows:

• xjt ∈ {0, 1} indicates whether job j ∈ J ∪H execute (xjt = 1) or not (xjt = 0) at time t.

• Rj ∈ {0, 1} indicates whether job j ∈ J ∪H executed fully. Rj = 1 when
∑

t xjt = cj , and

Rj = 0 otherwise.

• zj ∈ {−1,+1}, where zj = −1 when j ∈ J and zj = +1 when j ∈ H.
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The optimization problem is expressed as follows:

max
∑
j∈J

Rj (4.1)

s.t.
∑

j∈J∪H

xjt ≤ 1, ∀t ∈ T (4.2)

∑
t∈T

xjt ∈ {0, cj}, ∀j ∈ J ∪H (4.3)

t∑
n=0

∑
j∈J∪H

zjejxjn ≥ 0, ∀t ∈ T (4.4)

(xjt = 1) =⇒ aj ≤ t ≤ dj , ∀t ∈ T ,∀j ∈ J ∪H (4.5)

• Objective Function. The objective function is expressed by Equation (1), which maximizes the

number of computing jobs that get completed.

• Task Constraint. Equation (2) ensures that only one task can execute at any time slot.

• Execution Time Constraint. Equation (3) ensures that a job either executes fully or not at all.

• Energy Constraint. Equation (4) ensures that the harvested energy is always non-negative.

• Deadline Constraint. Equation (5) ensures that no job is scheduled before its arrival or after its

deadline.

To solve this optimization problem, I use a linear programming solver [181] which uses simplex

algorithm. The worst-case computational complexity of the simplex algorithm is exponential,

although it can solve most problems in cubic time [182]. Such a computational cost is not feasible

for larger jobsets and larger hyperperiods.

4.1.3 Example

Figure 4.1 shows a task set having two tasks τ1 = (10, 10, 1, 6) and τ2 = (20, 20, 3, 3). The

hyperperiod T= 20 and there are three jobs: j11 = (0, 10, 1, 6), j12 = (10, 20, 1, 6) and j21 = (0, 20,

3, 3). Figure 4.1(a) shows the schedule and harvested energy when the jobs are scheduled using EDF.

Here, j12 misses the deadline due to the scarcity of energy. In Figure 4.1(b), j12 misses the deadline

when scheduled by a lazy scheduling algorithm that schedules a job as late as possible before the

deadline. In Figure 4.1(c), j21 misses the deadline due insufficient energy. Finally, Figure 4.1(d)

shows an optimal schedule which is obtained by solving Equations (1) – (5).
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Figure 4.1: Comparison of different types of scheduling algorithms.

4.2 Observations

This section describes some key observations, which are later utilized to design the scheduling

algorithms.

Theorem 1. If the task, execution time, energy, and deadline constraints are satisfied, for all

optimal schedules, a computing job is scheduled at time t when harvestable energy is zero.

Proof of Theorem 1. I prove this by contradiction. I assume that a computing job j is schedulable at

time tm or tn, where harvestable energy at tm and tn are k and 0, respectively. Let us assume that

scheduling j at tm is optimal. There are two cases.

In the first case, tm occurs before tn. The harvested energy at (tm− 1) is E. Thus, the harvested

energy at tn, En = E − ej and a computing job j′ where e′j = E − ej + k cannot be scheduled. On
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the other hand, by scheduling j at tn, the harvested energy at tn becomes E − ej + k, which is

sufficient to execute j′. This contradicts our assumption.

In the second case tn occurs before tm and the harvested energy at tn− 1 is E. Like the previous

case, the harvested energy at tm is E − ej which is not sufficient for executing j′. On the contrary,

scheduling at tn provides sufficient harvested energy E − ej + k to execute job j′ at tm + 1, which

contradicts our assumption. �

Theorem 2: If a jobset is schedulable when harvesting and computing jobs are mutually exclusive,

it is also schedulable when harvesting and computing tasks can occur concurrently.

Proof of Theorem 2. I prove this theorem by contradiction. Let us assume that a computing jobset

J is unschedulable when computing and harvesting jobs are not mutually exclusive and schedulable

when they are mutually exclusive. Let, j be the first job that misses deadline, and j − 1 be the

previous job that meets the deadline. A deadline miss occurs if the processor is not available for job

j between its arrival aj and deadline dj for tj time where tj < cj , or the available energy during

that period is e′j where e
′
j < ej . Let us consider ∆t and ∆e be the time and energy difference when

harvesting and computing jobs are mutually exclusive. Thus, the available computation time and

energy for mutually exclusive harvesting and computing jobs are tj + ∆t and e′j + ∆e, respectively.

When harvesting and computing jobs execute in parallel, the execution time is reduced and the

harvested energy is increased. Thus, both ∆t and ∆e are non-positive numbers. Therefore, job

j is not scheduled with mutually exclusive computing and harvesting jobs, which contradicts our

assumption. �

Theorem 3: For a computing jobset to be schedulable, it is necessary that the total energy consumed

by computing jobs must be less than equal to total harvested energy by the harvesting jobs in

that hyperperiod. Thus, a necessary condition for a computing job set J to be schedulable is-∑
j∈J ej ≤

∑
h∈H eh, where H is the harvesting jobset.

Proof of Theorem 3. I prove it by contrapositive [183]. Instead of proving the statement above, I

prove that if
∑

j∈J ej >
∑

h∈H eh, then J is not schedulable.

Let us assume that
∑

j ej >
∑

h eh. Then, there exists a k such that
∑

j ej + k >
∑

h eh. Thus,

there exists a job j′ that fails to compute for cj′
ej′
× k time unit in that hyperperiod. Therefore, j′

misses the deadline and J is not schedulable. �
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Theorem 4: For a set τ of preemptive periodic computing tasks with implicit deadline to be

schedulable, the necessary condition is –

∑
i∈τ

kici +

∑
i∈τ kiei∑
h∈H′ el

cl ≤ T

Here, T is the hyperperiod, ki is the coefficient that denotes the number of jobs of that task, and

H ′ ⊆ H, where H is harvesting taskset.

Proof of Theorem 4. The total computation time of the computing jobs in the hyperperiod T is∑
i∈τ kici and the execution time of required harvesting jobs is (

∑
i∈τ kiei)/(

∑
l∈L′ el) × cl. For

simplicity, let us denote these by m and n, respectively. Thus, the necessary condition becomes

m+ n ≤ T .

I prove this by contradiction. Let us assume that m + n > T . Let us also assume that J

is schedulable. m + n > T can be expressed as m + n = T + k1 + k2, where k1, k2 ∈ IR or,

(m− k1) + (n− k2) = T . Now, there are two cases.

Case 1: When k1 > 0, there exists at least one job j, for which, the available execution time

is less than its computation time. Let us assume that only one job j gets execution time cj − k1.

Hence, j is not schedulable. This contradicts our assumption.

Case 2: If k2 > 0, a sufficient number of harvesting tasks can not be executed. Let, h be the

harvesting job with executing time k2 that fails to execute, and eh is the energy harvested by h.

Thus, a job j fails to execute for cj − ((ej/eh) ∗ k2)) time units and misses the deadline. This

contradicts our assumption. �

Theorem 5: For a set of n preemptive periodic computing tasks with implicit deadline scheduled by

a static/ fixed priority scheduling algorithm where harvestable energy rate el is fixed, and harvesting

and computing tasks are mutually exclusive, the worst case response time Ri of a task τi is ci +(∑i−1
k=1d

Ri
Tk
e(ck ekel )

)
+ ei

el
and the utilization bound is

∑n
i=1

ci+(ei/el)
Ti

≤ n(2
1
n − 1).

Proof of Theorem 5. I prove this by construction. Let us assume that tasks are ordered by their

decreasing priority, P (τi) > P (τj) when i < j . Here, P (.) denotes the priority of the task. The

worst-case response time, Ri of a task, τi depends on:

• The execution time of τi which is ci.

33



• Execution time of higher priority tasks that can preempt τi and increase its response time.

In fixed priority scheduling without energy constraints, this is
∑i−1

k=1d
Ri
Tl
eck. However, for

intermittent systems, the execution time is a combination of computation time and the time

to harvest sufficient energy to execute the job. This can be written as
∑i−1

k=1d
Ri
Tk
e(ck + ek

el ).

• The required time to harvest sufficient energy (ei). When harvestable energy rate el is fixed,

required time is ei
el
.

Thus, Ri = ci +
(∑i−1

k=1d
Ri
Tk
e(ck + ek

el )
)

+ ei
el
.

The utilization bound of a rate monotonic scheduling algorithm for implicit deadline periodic

task model is : Un =
∑n

i=1
ci
Ti
≤ n(2

1
n − 1) [184]. As the computation time of each job includes the

computation time of the harvesting jobs required to harvest sufficient energy, the utilization bound

for intemittent systems, Un =
∑n

i=1
ci+(ei/el)

Ti
≤ n(2

1
n − 1) . �

Lemma 1: Given that the harvestable energy rate is variable, and harvesting and computing tasks

are mutually exclusive, a necessary condition for a preemptive periodic task, τi with implicit deadline

to be schedulable by a fixed priority scheduling algorithm is: el ≥
ei+

∑i−1
k=1d

Ri
Tk
eek

Di−ci−
∑i−1

k=1d
Ri
Tk
eck

Proof of Lemma 1. For a task τi to be schedulable with fixed priority scheduling, Ri ≤ Di must be

true. Using the value of Ri from Theorem 4, I can derive this necessary condition, where el is the

average harvestable energy rate. �

4.3 Celebi-Offline Scheduling Algorithms

This section describes the Celebi-Offline scheduling algorithm for intermittent computing systems

that exploits the observations from Section 4.2. It is an offline scheduling algorithms where the

pattern of harvestable energy is assumed given. I lift this requirement in the next section where an

online version of it is described. Celebi-Offline iteratively removes unnecessary harvesting jobs to

accommodate computing tasks. Celebi-Offline is applicable in scenarios where energy sources are

controllable [185], e.g., in offices and warehouses where the lighting and the position and transmission

power of RF readers are controllable by using timers or by presetting trajectories.

4.3.1 Scheduling Algorithm

Using the example in Figure 4.2, the four steps of Celebi-Offline is described as follows –

• Initialization. First, the time slots and harvested energy list are initialized. The example in
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Figure 4.2: Step-by-step execution of Celebi-Offline algorithm.

Figure 4.2 has 14 harvesting jobs and three computing jobs: j11 = (0, 10, 1, 6), j12 = (10, 20, 1, 6)

and j21 = (0, 20, 3, 3). The hyperperiod T is 20.

• Step 1: Scheduling Harvesting Jobs. In this step, first, I schedule harvesting jobs at all

time-slots where the harvestable energy is present. Then, I update the harvesting energy list by

calculating the cumulative sums of the harvestable energy. Figure 4.2(a) shows the schedule and the

updated harvested energy list after this step.

• Step 2: Scheduling NOP Jobs. I generate and schedule the NOP jobs from the jobset

by checking the empty time slots where harvested energy is smaller that the minimum energy

consumption rate of the computing jobs. Scheduling NOP jobs does not update the harvested energy

list as no energy is being harvested or consumed at that time slot. Figure 4.2(b) shows the updated

schedule with NOP jobs.
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• Step 3: Scheduling Computing Jobs in Empty Time Slots. According to Theorem 1, the

remaining time slots after scheduling the harvesting and NOP jobs are optimal for scheduling the

computing jobs. Using EDF scheduling algorithm and Theorem 4, I determine the computing jobset

that is schedulable in the remaining time slots. Note that fixed priority scheduling algorithms such

as rate monotonic scheduling algorithm, deadline monotonic scheduling algorithm can also be used

instead of EDF having Lemma 1 as a necessary condition. After getting the schedulable jobset I

schedule the jobs using EDF and update the harvested energy list by deducting consumed energy

from the harvested energy. Figure 4.2(c) shows the resultant schedule after this step.

• Step 4: Iterative Removing of Harvesting Jobs. This is the crucial step of the Celebi-Offline

algorithm. In this step, for each unscheduled job, j (starting from largest deadline), I check the

presence of harvesting jobs between the arrival and deadline of job j. If there is no harvesting job,

the computing job cannot be scheduled, and this job is added to an unschedulable list. Otherwise,

for each harvesting job (starting from latest arrival time), I check if the replacement results in energy

scarcity in any of the scheduled jobs. If the job becomes schedulable by replacing the harvesting jobs

without resulting in any energy scarcity for already scheduled jobs, I replace the chosen harvesting

jobs with the computing job and add it to the scheduled job list. In Figure 4.2(d), the harvesting

job at t = 18 gets replaced by j12 and all jobs are scheduled.

The computational complexity of Celebi-Offline is O(nD), where n is the number of computing

jobs and D is the maximum relative deadline of the computing jobs.

4.3.2 Schedulability Analysis

NOP jobs are not assumed for simplicity. I consider two cases: (1) harvesting tasks are periodic,

and (2) harvesting tasks are aperiodic.

• Case 1: Periodic Harvesting Tasks. For a task to be schedulable in an intermittent system,

it has to satisfy two constraints – the timing constraint and the energy constraints.

The first and the third steps of Celebi-Offline schedules the harvesting and computing tasks using

EDF. When both tasksets are periodic, the combined periodic taskset is schedulable if they satisfy

the timing constraint, i.e.,∆(t) ≤ t;∀t > 0 [186]. Here, ∆(t) is the processor demand function that

calculates the maximum execution time requirement of all jobs which have both their arrival times

and their deadlines in a contiguous interval of length t. In an intermittent system, all tasks include
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both the harvesting taskset, H and the computing taskset, τ . ∆(t) for an intermittent system is as

follows–

∆(t) =
∑

i∈τ
⋃
H

max

{
0, 1 +

⌊
t−Di

Ti

⌋}
ci (4.6)

Similarly, the energy constraint is: δ(t) ≥ 0; ∀t > 0. Here, δ(t) is the energy demand function

that denotes the difference between the maximum energy requirement of all computing jobs and

the maximum energy generation of all harvesting jobs which have both their arrival times and their

deadlines in a contiguous interval of length t. δ(t) for an intermittent system is given by–

δ(t) =
∑

i∈τ
⋃
H

max

{
0, 1 +

⌊
t−Di

Ti

⌋}
(cieizi) (4.7)

Here, τ and H are the set of computing tasks and harvesting tasks, and zi = −1 when i ∈ τ and

zi = 1 when i ∈ H. If δ(t) < 0, then the energy demand by the computing tasks are greater than

the energy harvested by the harvesting tasks, and thus, the taskset is not schedulable.

Let us assume that I removed K harvesting tasks during step 4 of Celebi-Offline. Thus, the time

constraint is: ∆(t) ≤ t+ tK , where tK is the total execution time of the removed harvesting jobs.

The energy constraints is: δ(t) ≥ eK , where eK is the harvestable energy during K harvesting jobs.

• Case 2: Aperiodic Harvesting Tasks. When harvesting tasks are aperiodic, each job have

different harvesting tasks between its arrival and the deadline. Thus, I determine whether each job

jik is schedulable on arrival. A job jik is schedulable only if

dik − aik −
∑
m∈H1

cm −
∑
n∈J1

(cn − fn) ≥ cik (4.8)

and

Eaik +
∑
m∈H1

(em × cm)−
∑
n∈J1

en × (cn − fn) ≥ (eik × cik) (4.9)

Here, H1 and J1 are the harvesting and the computing jobsets which have higher priorities than

job jik, and are scheduled between aik and dik. fn is the scheduled execution time of job jn before

aik. Equation 4.8 is the timing constraints which states that the remaining time after the execution

of the high priority jobs between the deadline and the arrival time is greater than or equal to the

execution time of jik. Similarly, Equation 4.9 is the energy constraints which denotes that the
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available energy after the execution of the high priority jobs between the deadline and the arrival

time is greater than or equal to the energy demand of job jik.

4.4 Celebi-Online Scheduling Algorithm

Many IoT tasks demand for an online scheduling approach where the decision needs to be made

on the go. In such algorithms, the harvestable energy is not known a priori. I propose an online,

threshold-based scheduling algorithm for intermittent systems, named Celebi-Online scheduling

algorithm. When the harvestable energy is below a threshold this algorithm executes computing jobs

early. In this algorithm, the harvestable energy at the beginning of each time-slot is either predicted

or measured using a sensor, and is assumed to remain unchanged during that time slot. Section 4.7

measures the harvestable energy with a sensor by measuring the voltage of the solar panel and the

capacitor.

4.4.1 Scheduling Algorithm

The Celebi-Online scheduling algorithm has three steps. Using the example in Figure 4.3, the

steps of Celebi-Online are described as follows –

1 1

1 2 1 3

!"" !#" !#"

(a) Initializing and Pre-Scheduling

Harvestable Energy

(b) Execution of Computing Jobs
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Figure 4.3: Step-by-step execution of Celebi-Online algorithm.

• Step 1: Initializing and Pre-Scheduling. First, I schedule the computing jobs using As Late

As Possible (ALAP) scheduling algorithm [187] based on the deadline and the execution time. As

late as possible scheduling algorithm starts the execution of a job at the latest time as long as

it meets the deadline. This presents the intermittent system with the opportunity to harvest as

much energy as possible before executing the tasks. All the unscheduled jobs after applying ALAP
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algorithm are added to an unscheduled list for consideration at a later step. Figure 4.3(a) shows the

schedule after this step.

• Step 2: Execution of Computing Jobs. If a computing job is scheduled at the current time

by the previous step and the harvested energy is sufficient, I execute the scheduled computing job.

If not, I add this job to the unscheduled list for consideration. I then check the unscheduled list to

see if jobs can be executed at current time, where the remaining time in the schedule is enough to

meet its deadline. If so, then I execute that job; otherwise, I execute a harvesting job (if harvestable

energy is present) or a NOP job (if harvestable energy is zero).

If no jobs are scheduled at the current time and the harvestable energy is greater than a threshold,

I harvest energy. If the predicted harvestable energy is smaller than or equal to the threshold, I check

if any of the scheduled jobs has the opportunity to be executed early. If so, I execute it; otherwise, I

harvest energy. In Figure 4.3(b), I execute j21 earlier than scheduled by ALAP.

• Step 3: Adapting Threshold. The threshold ρ is updated after each hyperperiod if either of

the two conditions are true: (1) the remaining harvested energy after the hyperperiod is greater than

the summation of (a) the maximum energy consumed by a computing job that misses the deadline,

and (b) the minimum harvestable energy, and (2) the total execution time of NOP jobs are greater

than the summation of the maximum execution time a computing job that misses the deadline and

the time required by a harvesting job with lowest energy generation rate to harvest sufficient energy

for executing that computing job. Condition (1) implies that I have wasted time to harvest more

energy than required. Condition (2) refers that the system is not harvesting enough energy and

creating energy scarcity. The updated threshold equals to the minimum harvestable energy during

the previous hyperperiod because a lower threshold might result in condition (1), whereas a higher

threshold might result in energy scarcity.

4.4.2 Computational Complexity

The computational complexity of ALAP is O(1) as it can be prescheduled with known periodic

tasks. The most time consuming computation for Celebi-Online is to determine the schedulable

job when the harvestable energy is below the threshold, given all n jobs are available. Thus, the

computational complexity of Celebi-Online is O(n).
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4.4.3 Schedulability Analysis

For a job j to be schedulable with Celebi-Online, following is a necessary condition:

cj + cH(j) +
∑

k∈HP (j)

(ck + cH(k)) ≤ dj (4.10)

Here, HP (j) are the higher priority jobs than j in the jobset J . cH(j) is the total execution time

of the harvesting tasks that harvest at least (cj × ej) units of energy. In Celebi-Online, the condition

for a job k to be of higher priority than job j is: aj ≤ (dk − ek) ≤ dj .

4.5 Simulation-based Evaluation on Synthetic Dataset

This section compares the performance of Celebi scheduling algorithms against baseline algorithms

using synthetic taskset and harvestable energy pattern.

4.5.1 Baseline Algorithms and Performance Metric.

I evaluate Celebi by comparing them with an optimal scheduler and three online baseline

scheduling algorithms – earliest deadline first (EDF) [184], rate monotonic (RM) [184] and as late as

possible (ALAP) [187]. Table 4.1 shows the worst case computational complexity of these scheduling

algorithms, where n is the number of computing jobs.

Optimal Celebi-Offline Celebi-Online EDF RM ALAP
O(en) O(nD) O(n) O(n) O(1) O(1)

Table 4.1: Worst case computational complexity.

I use the ratio of number of jobs scheduled by the target scheduling algorithm and the number

of jobs scheduled by the optimal scheduling algorithm as the performance metric.

4.5.2 Synthetic Dataset

The synthetic dataset contains 1,000 randomly generated computing tasksets. I provide the

maximum allowed period, the minimum number of tasks, and the CPU utilization, i.e., the summation

of the ratio of the execution time and the period of all computing tasks, as the inputs to the random

task generator, and it generates tasks with random execution time, energy consumption rate, and

periods. The periods are chosen randomly from a predefined range of 1s to 60s, following existing

literature on intermittent computing systems [188, 189, 190, 191, 33, 8, 26, 21, 23]. I choose the

execution time randomly between 1s and the period. The period is considered as the upper bound as
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the execution time can not be greater than the period in an implicit deadline system. The random

selection of execution time depends on the number of tasks (2 to 10) and the CPU utilization (in

multiples of 10). To select the energy consumption rate, I randomly choose one of the three levels of

energy consumption rates. The first two levels correspond to the two levels of power consumption of

an MSP430FR5994 microcontroller in its active mode. Additional sensors consume more energy to

operate; hence, I add the third level to support the activation of these sensors. For each evaluation, I

generate 10 iterations of 1,000 tasksets and report the average performance over these iterations. To

generate synthetic energy traces, I randomly generate four levels of harvestable energy. I use these

synthetic tasksets and harvestable energy traces for evaluation in Section 4.5.3, 4.5.4, and 4.5.5.
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Figure 4.4: Performance of scheduling algorithms for different CPU utilization. The optimal scheduler
schedules 40%–98% of jobs in the jobset.

4.5.3 Effect of CPU Utilization

Figure 4.4 shows the performance of the schedulers for various CPU utilization. The CPU

utilization is the summation of the ratio of the execution time and the period of all computing tasks,∑N
i=1(ci/Ti), for τ1, τ2, ..., τN . To demonstrate the effect of CPU utilization on different tasksets,

I vary the number of tasks to find combinations of periods and execution times that have the

same CPU utilization. Though the performance of Celebi-Offline is unaffected by the variation of

CPU utilization, online algorithms suffer when utilization is high. The inability to rectify greedy/

suboptimal decisions in online algorithms contributes to this by executing jobs which later fails

to meet the deadline due to lack of energy. Celebi-Online schedules 70% of the jobs scheduled by

the optimal scheduler for 80% CPU utilization, whereas EDF, RM, and ALAP schedule 33%, 54%

and 50% jobs, respectively. With further experiment, I observe that at very low CPU utilization

(< 10%) all schedulers behave close to the optimal scheduler. EDF schedules jobs with higher time

and energy demands more frequently which results in energy scarcity for the remaining jobs and

decreases performance. In summary, Celebi scheduling algorithms perform better that the baseline
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algorithms even with high CPU utilization.
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Figure 4.5: Performance of scheduling algorithms for different number of tasks.

4.5.4 Effect of Taskset Size

Figure 4.5 shows the performance of the schedulers over different number of tasks where CPU

utilization is 50%. I randomly choose different periods and calculate the required execution time

within the range to generate task-sets having a fixed number of tasks and a fixed CPU utilization.

The performance of the schedulers drop with increasing number of tasks. Though Celebi-Offline

experiences 2% performance drop, the online schedulers incur 14% – 34% performance drop. Higher

number of jobs results in more choices during selection of jobs. Among the online schedulers,

Celebi-Online shows higher resistance to increasing number of tasks with a performance drop of 14%

because it provides more charging time than the RM and the EDF and has lesser NOP tasks than

the ALAP scheduling algorithm.
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Figure 4.6: Performance of scheduling algorithms for different variance among the periods of the taskset.

4.5.5 Effect of Different Periods

Figure 4.6 shows the behaviour of the schedulers for different task periods. I consider tasksets

with three different variance levels among task periods. At low variance, a taskset has tasks with

same periods. At high variance, periods on all the tasks are significantly different. At medium

variance, a taskset has tasks with same periods as well as tasks with significantly different periods. At

high variance, Celebi-Online, EDF, RM and ALAP incur 7.5%, 8%, 9% and 13% performance drop,
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respectively. In this scenario, RM and EDF achieve relatively better performance by choosing jobs

with short periods over the longer periods. This results in higher number of scheduled jobs but jobs

with the longer period never get scheduled. When the variance is low, Celebi-Online struggles in step

1 to choose between jobs with the same deadline, which decreases the performance. The same reason

also contributes to the lower performance of ALAP, RM and EDF scheduling algorithms. Therefore,

in systems where different tasks have different periods, e.g., small period for timer and large period

for transmission, Celebi-Online performs relatively better than the baseline online schedulers.
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Figure 4.7: Performance of scheduling algorithms for non-periodic tasksets.

Even though our algorithms are intended for periodic task models, they can schedule non-periodic

(sporadic and aperiodic) tasks, if the arrival times of the jobs are known before-hand, in addition

to the execution time, relative deadline, and energy consumption rate of these non-periodic tasks.

Figure 4.7 compares the same scheduling algorithms as in Figure 4.6, except for RM which is

impractical for aperiodic tasks. Figure 4.7 shows that Celebi-Offline and Celebi-Online successfully

schedules ≈39% and ≈23% more jobs, respectively, compared to EDF and ALAP.

4.6 Simulation-Based Evaluation on Trace-based Harvestable Energy

This section evaluates the performance of Celebi with two types of energy sources (i.e., solar

and RF) in two types of scenarios: dynamic and static. I use the synthetic taskset described in

Section 4.5.2 along with real-world energy harvesting traces for this evaluation.

4.6.1 Energy-Trace Collection

Solar Energy Trace. I collect solar energy trace in two scenarios – static and dynamic. In

the static scenario, the harvestable energy is nearly constant. I collect solar energy traces during

cloud-free sunny days to represent the static scenarios (Figure 4.10 (left)). In the dynamic scenario,

the harvestable energy varies over time. This solar energy trace is collected from the side-walk of a

busy street to represent the dynamic scenarios (Figure 4.10 (right)) where pedestrians and passing

vehicles momentarily overshadow the sunlight. To collect the energy trace, I use a Raspberry Pi that
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measures the voltage across the solar panel connected to a load resistor. As the Raspberry Pi is not

equipped with an ADC, I use an Arduino Uno to collect the voltage and send it to the Raspberry Pi

using UART. Figure 4.8 shows the energy trace collection setup.

Figure 4.8: Solar energy trace collection setup. Figure 4.9: RF energy trace collection setup.
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Figure 4.10: Solar energy trace collected beside a window (left) and on the sidewalk (right).
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Figure 4.11: Analog voltage level corresponding to the harvested power at different transmitter to RF
harvester distance in line of sight (left), non line of sight with wooden obstacle (middle), and non line of sight
with human obstacle (right).

RF Energy Trace. To collect the RF energy trace, I use a 915 MHz harvester-transmitter

pair [192, 193] (Figure 4.9). I measure the analog voltage level corresponding to the harvested power

that is provided by pin Dout of the harvester at different transmitter-to-harvester distances using an

Arduino Uno and Raspberry Pi. Figure 4.11 shows the analog voltage level for different distances

and scenarios, i.e., line-of-sight and non-line-of-sight. For the static scenario, the harvester and the

transmitter are in the line-of-sight at 1m distance.

To simulate a real-life dynamic scenario, I collect location trajectory of a mobile robot from [194].
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For each position of the robot, I estimate the RF energy it would have harvested if it carried a RF

harvester. The estimation process maps the distance to RF energy, which is measured in our lab by

varying the transmitter-to-receiver distance of the RF harvester.
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Figure 4.12: Performance of scheduling algorithms over various energy sources for taskset with random
execution time and energy consumption.
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Figure 4.13: Performance of scheduling algorithms over various energy sources for taskset with same execution
time and energy consumption.

4.6.2 Effect of Different Energy Sources

In the dynamic scenario of Figure 4.12, both Celebi-Offline and Celebi-Online perform better

than the rest due to their capability of handling the variation in the harvestable energy. Despite

having less harvestable energy than the solar, the RF harvester in the dynamic scenario is better

for the scheduler as the transmitter-to-receiver distance changes linearly. In the static scenario of

Figure 4.12, Celebi-Online performs slightly better than RM by executing jobs that have larger

periods but smaller execution time or smaller energy consumption rate. Such jobs get interrupted

by jobs with smaller periods in RM and thus, they miss their deadline. In ALAP, more jobs misses

deadline as unlike Celebi-Online, it does not reconsider the unschedulable jobs.

Figure 4.13 evaluates the performance of the scheduling algorithms on the trace-based harvestable

energy and synthetic datasets. In this experiment, all tasks have the same execution time and energy

consumption rate to understand the effect of the energy sources without the influence of the taskset.

I choose the average execution time and the average energy consumption of the tasks in the synthetic
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dataset for these taskset generation. In the dynamic scenarios of Figure 4.13, Celebi-Online and

ALAP performs similarly due to the lack of opportunity to execute a scheduled job early. Both

RM and EDF suffers due to executing tasks too early and choosing non-optimal harvesting tasks.

In the static scenario of Figure 4.13, Celebi-Offline, Celebi-Online and ALAP perform similar to

the optimal scheduler as both the demand of the tasks and the harvestable energy are static, and

therefore, executing any task is optimal.

4.7 Real System Evaluation

This section demonstrates the performance of Celebi in uncontrolled real-life scenarios. Unlike

Section 4.5 and Section 4.6, this evaluation is performed using real tasksets executing on an MSP430

microcontroller that is deployed in the wild.

4.7.1 Hardware Implementation

To implement a real system, I use TI MSP430FR5994 [175] MCU (in Figure 4.14 and 4.15)

having 256KB FRAM, 8KB SRAM, direct memory access (DMA), and an operating voltage range

of 1.8V to 3.6V at 8MHz CPU clock speed. I use a solar panel with polycrystaline solar cells [195]

which outputs at most 5V at 40mA. As the operating voltage of the MCU is below 3.6V, I use a

step-up regulator [196] that ensures that the output voltage is always at 3.3V. As the energy storage,

I use a 680mF super capacitor. To monitor the harvested and harvestable energy, I utilize the analog

to digital converter (ADC) in MSP430 and a 1MΩ capacitor. I use this high capacitance to reduce

energy flow in the measurement circuit which draws energy from the capacitor.

Figure 4.14: System setup.

For sensing, I use an electret microphone [197] and the on-board temperature sensor of the

MSP430FR5994 launchpad. I read the audio sensor at 8KHz using the ADC, perform FFT, and
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write the data to the FRAM using the low energy accelerator (LEA) and direct memory access

(DMA) without involving the CPU. Like [12, 4], I use a real-time clock (DS3132 [164]) connected

via I2C for timekeeping. I use this clock only during the power up to sync and maintain the internal

clocks of the MCU. This clock is replaceable with an SRAM or capacitor-based timekeeping system

during power outages [1, 2]. As the capacitor can charge by draining energy from the battery of the

real-time clock, I implement rectifiers using an N-channel MOSFET and a P-channel MOSFET to

isolate the clock signal (SCA) and data signal (SDA) when the real-time clock is not being used.

Note that the worst-case energy consumption rate of a task can be estimated [198, 199] or measured.

I use TI Energytrace++ [200] to estimate energy requirements.
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Figure 4.15: Real System Evaluation Setup.

Task Type Task Name Execution
Time Period

Sense and
Compute

Temperature Anomaly Detector 0.36s 60s
Acoustic Event Classifier (DNN) 9.72s 60s

Compute RSA Encryptor 4.68s 40s
Bit Counter 2.16s 30s

Table 4.2: Description of the taskset.

4.7.2 Software Implementation

I implement a taskset consisting of four tasks which are described in Table 4.2. The temperature

anomaly detector reads data from the on-board temperature sensor and calculates the local outlier

factor (LOF). If the LOF >> 1, the data sample is an outlier. This task is constructed with

five fragments implemented using an open-source task-based intermittent computing framework,

47



ALPACA [13].

The second sensing task is an acoustic event detector using a scaled-down deep neural network

(DNN) that runs on an MCU. This event detector reads audio signal from the microphone and

executes a 5-layer DNN having 3 convolution layers and 2 fully connected layers. I use max pool

layers and rectified linear unit (RELU) activation function. Due to the high computational demand

of a DNN, this is the highest energy and time consuming task in our taskset. I implement this using

an open-source framework for executing DNN in intermittent systems, named SONIC [8]. SONIC is

a special framework for DNN built on top of ALPACA.

The RSA encrypts a fixed, in-memory input string of an arbitrary size using a fixed encryption

key. I use a 6,000 character string and 64-bit key in our experiment. The bit counter uses seven

different algorithms to count the set bits in a random string and compares their results to ensure

correctness [201]. I repeat each operation 10,000 times. I use the open-source intermittent execution

framework ALPACA [13] to implement these tasks.

I implement Celebi-Online scheduling algorithm and a baseline online ALAP scheduling algorithm

to schedule these four tasks. The execution time overhead of Celebi-Online and ALAP are 12ms

and 1ms over a hyper-period of 120s, respectively. ALAP incurs less overhead as it does not update

at runtime and requires only a queue lookup operation. Considering the task execution time, the

overhead of Celebi-Online is 30x-810x smaller. Similar to previous work [12] where multiple tasks

execute in an intermittent uniprocessor, these tasks are preemptive at fragment boundaries. This

means that a task is only preempted at the end of a fragment. To implement this, I do not execute

a fragment if the remaining time-slot is insufficient. Fragments being more than 20 times smaller

than the time-slots, there is effectively no utilization loss.
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ALAP + ALPACA
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Figure 4.16: Comparison of the performance of Celebi-Online scheduler with a system with ALAP scheduler
and a system without any scheduler.
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4.7.3 Experimental Results

Figure 4.16 observes that ALPACA misses the deadline of 81% of the jobs as it does not check

the deadline and keeps executing jobs from a queue whenever energy is sufficient. Although this is a

non-real-time system, I report the results to demonstrate the necessity of a real-time scheduler for

batteryless systems. The integration of as late as possible (ALAP) scheduler to ALPACA decreases

the deadline miss to 36% by scheduling jobs and allowing the maximum time to harvest energy.

Replacing ALAP scheduler with Celebi-Online scheduler decreases the deadline miss even more,

resulting in a deadline miss ratio 28%. The adaptability of Celebi-Online to the randomness of

harvestable energy contributes to this additional performance boost.

4.8 Discussion

This section discusses the limitations of Celebi along with possible solutions to address them.

The Case of Harvesters Directly Powering the Load. The proposed scheduling algorithms

are not designed for intermittent systems that connect the harvester directly to the load without

using any energy storage in between. These systems behaves like a persistently-powered system as

long as the harvestable energy is abundant. Hence, I recommend using existing real-time scheduling

algorithms for scheduling tasks on them. To incorporate intermittence into the scheduling framework,

these systems can model the power-down phases as high-priority tasks prior to applying the scheduling

algorithms.

The Case of Non-Periodic Tasks. Section 4.5.5 demonstrates that the proposed algorithms

are applicable to non-periodic tasksets with known job arrival times. When the arrival times are

not known apiori, these algorithms are not generally applicable to non-periodic tasks. However,

Celebi-Online, can be extended to support a sporadic taskset. The scheduler, in this case, will

schedule anticipated sporadic jobs based on the minimum period between consecutive sporadic jobs,

and will delay computing jobs by adding more harvesting jobs or NOP jobs until the sporadic job

actually arrives. It will also have to discard a scheduled sporadic job if the sporadic job eventually

does not arrive before the release time of the next anticipated sporadic job.

The Case of Abundant Harvestable Energy. An energy harvesting system that has harvestable

energy (supply) >= required energy (demand) behaves like a persistently-powered system because

there is no intermittence in power supply. These systems are out of scope of this paper.

49



The Case of Highly Varying Harvestable Energy. There may exist energy harvesting systems

where the relationship between the harvestable energy (supply) and required energy (demand) is

unknown and may change at runtime, i.e., sometimes the supply >= demand, and sometimes supply

< demand. To schedule real-time tasks on such systems, the runtime system should isolate these

two cases and apply the proposed scheduling algorithms (Celebi-Offline or Celebi-Online) only when

supply < demand, and use an existing real-time scheduling algorithm (e.g., ALAP) when supply >=

demand. This is because, although Celebi would still be able to execute the real-time tasks correctly,

I acknowledge that there is a loss of opportunity to harvest energy when energy is abundant (supply

> demand) but our algorithm schedules a computing job due to the mutual exclusion of harvesting

and computing jobs. The loss, however, is limited by the size of the capacitor. For instance, the

potential loss of harvestable energy due to the mutual exclusion of harvesting and computing jobs

is 12.6mW–17mW for the systems presented in Section 4.7 which is the difference between the

consumption rate and the maximum rate of harvestable energy.

4.9 Summary

This chapter studies the real-time scheduling problem for intermittent systems that takes into

account the time and energy demands of the tasks as well as the harvestable energy in the environment.

I propose Celebi, an offline and an online scheduling algorithm, that schedule both harvesting and

computing jobs to increase the number of jobs that meet the deadline. Celebi-Offline performs 92%

similar to an optimal scheduler and Celebi-Online schedules 8%-22% more jobs than traditional

scheduling algorithms. In real system evaluation, Celebi-Online scheduling algorithm schedules 63%

more tasks than a non-real-time system and 8% more jobs than a baseline scheduling algorithm.
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CHAPTER 5

Imprecise Deep Neural Network Inference in Deadline Aware Intermittent
Systems

The sporadic nature of harvested energy, resource constraints of the embedded platform, and the

computational demand of deep neural networks (DNNs)1 pose a unique and challenging real-time

scheduling problem for which no solutions have been proposed the literature. Existing works on

time-aware batteryless computing systems primarily focus on maintaining a reliable system clock

across power-failure [3, 1, 2] and removing state data [4, 48, 49, 12]. However, none of these works

aims to finish a task within a deadline. Recent works on batteryless systems [178, 8, 33] have proposed

frameworks and runtime to execute non-real-time DNN tasks on intermittently-powered systems.

The real-time community has proposed techniques [126, 127, 203, 204, 205] for deadline-aware

execution of DNNs, primarily on GPU and server-grade machines. However, due to these techniques’

significant computation overhead, they are not suitable for batterless computing systems. Moreover,

none of these works takes the sporadic nature of energy into account. Despite these commendable

efforts, there is a gap in the existing literature that none has considered all three dimensions, i.e.,

intermittence of harvested energy, the variable utility of DNN inference, and real-time schedulability;

and merely combining existing solutions do not entirely solve the problem. Though a taskset can be

scheduled when the power is persistent, it may suffer from time scarcity when power is intermittent.

To schedule the same taskset in an intermittently powered system within the deadlines, I must use

approximation or imprecise computing, where partial execution with minimal error is acceptable.

I illustrate this using an example in Figure 5.1. The example consider two jobs, J1 and J2,

released at time 0 and 20, respectively. Their relative deadline is 34, and the execution time is 28.

1The DNN, by definition, refers to neural networks having more than one hidden layers [66, 67, 68, 69]. Thus, a
wide variety of networks qualify as a DNN in the existing literature. DNNs considered in this paper have up to 105

neurons and weights combined. They fit into 256KB memory of an MCU; have convolutional, ReLU, pooling, and
fully-connected structures as regular DNNs; and perform on-device inference [8, 33, 202]
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Figure 5.1: (a) With constant power both tasks meet their deadline. (b) With intermittent power, job J2
misses its deadline. (c) When tasks are imprecise, the mandatory parts of both jobs complete on time, and
some optional part of J1 gets done as well.

The intermittency of energy generally has no consistent pattern in the duration of or in the gaps

between ON/OFF phases. Figure 5.1(a) shows that when the power is uninterrupted, both jobs

meet their deadlines under the earliest deadline first (EDF) scheduling. When power is intermittent

(Figure 5.1(b)), task J2 misses its deadline. Figure 5.1(c) illustrates our proposed approach which

partitions a job into mandatory and optional portions and ensures that the mandatory portion

(which is required to achieve a desirable inference accuracy) of each job finishes on time. And if there

is extra time, our proposed approach schedules some optional jobs that may increase the accuracy

further.

The primary research question for scheduling tasks within the deadlines in an intermittent system

is – How to imprecisely execute deep neural network inference without sacrificing significant accuracy

to impose timeliness in intermittent systems? To answer this, I present Zygarde — which is the

first system that enables deadline-aware imprecise execution of DNNs on an intermittently-powered

system. The design of Zygarde is motivated by two observations. First, DNN is a layered architecture,

and deeper layers of a DNN extract a more detailed and fine-grained representation of the input data.

Second, most real-world application scenarios contain both simple and complex data. As a result,

they are imprecise, i.e., error-tolerant, and require partial execution to achieve the desired outcome.

For example, in deep neural network inference, all input data often does not require inferring all

the layers to classify correctly. Zygarde exploits these observations and proposes an imprecise

computing-based [114, 206] online scheduling algorithm, which considers both the intermittence of

energy and the accuracy-execution trade-off of a DNN.

The main contribution of this chapter is a deadline-aware runtime framework for DNNs executing

on intermittently-powered systems, for which, runtime adaptation of a DNN is necessary, on top of
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compile-time compression [8, 34, 35, 36, 37, 38, 39]. Compile-time compression alone is not sufficient

when the remaining deadline is inadequate for a full execution of the DNN, but long enough to

compute the inference result from the partial execution of the DNN. This runtime adaptation process

requires (1) modeling the energy harvesting pattern using a single factor(η), which helps determine

the system how much computation is possible in the near future, and (2) determining the dynamic

imprecise boundary at the runtime with minimal overhead, which decides where the mandatory

portion ends and the optional portion begins. Zygarde also includes a specialized offline training of

the DNNs to minimize the loss of accuracy due to partial execution.

Zygarde complements prior work on batteryless systems such as time-keeping [1, 2] and execution

of non-real-time tasks [178, 8, 10, 207, 11, 41, 13, 45, 42]. In contrast to all previous works, Zygarde’s

contribution is at the framework, modeling, and algorithmic level, while its implementation relies

upon existing open-source frameworks and APIs [8, 13] that handle the lower-level aspects of an

intermittent system.

I implement Zygarde on a TI MSP430FR5994 microcontroller and evaluate its performance using

four standard datasets (MNIST [208], ESC-10 [209], CIFAR-100 [210], and Visual Wake Works [211])

as well as in six real-world acoustic event detection and visual sensing experiments. Zygarde achieves

5%–26% reduction in execution time using early termination. By using the layer-aware loss for

early termination, it also increases the inference accuracy by upto 21% than the state-of-the-art

solutions that use cross-entropy loss [212] and contrastive loss [213]. Moreover, it schedules 9%–34%

more jobs with upto 30% higher inference accuracy than the earliest deadline first (EDF) scheduling

algorithm. Furthermore, it gains up to 28% higher inference accuracy than the imprecise variant of

EDF.

5.1 Zygarde System Design

This section describes the processing and the scheduling units of the scheduling framework

(Section 3.3) for imprecise deep neural network inference along with an example to illustrate its

execution. Figure 5.2 shows the components of processing and scheduling units as well as their

interaction with each other.

5.1.1 Processing Unit

The processing unit of Zygarde contains two components – an agile DNN model and semi-

supervised k-means classifiers.
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Figure 5.2: Zygarde System Architecture.

Agile DNN Model. The Agile DNN Model is a pre-trained deep neural network that converts

data samples into feature representations [214]. The network is trained offline, on a high-end server,

using labeled training data. I use rank-decomposition [85] and separation [34] to compress and fit the

network into the limited memory of a microcontroller. Based on the quality of the input data sample,

Zygarde may terminate the execution of the DNN early at runtime, and hence, I call it an agile DNN

Model. I note that an agile DNN is a special type of anytime DNN [99, 109, 110, 111, 112, 113]

— where the depth of a neural network is dynamically adjusted during inference. However, unlike

anytime networks, where the output of a hidden layer is fed to a secondary shallow neural network for

classification, agile DNN employs a cluster-based classifier to replace expensive matrix multiplication

operations with 4X less costly additions/subtractions [215, 216]. In our implementation of agile

DNN, this design saves 27,750 execution cycles per inference, when compared to anytime neural

networks.

Semi-Supervised k-Means Classifiers. The feature representation obtained from the execution

of the Agile DNN is classified by a semi-supervised k-means clustering algorithm [217]. The clustering

algorithm uses the L1 distance between two feature vectors [218]. For layers (e.g., the convolution

layers) that produce two or more dimensional features, they are flattened or vectorized prior to

computing the L1 norm. Since the execution of an Agile DNN may terminate at any layer depending

on the input data, Zygarde maintains a separate k-means classifier for each layer of the Agile

DNN. These k-means classifiers are trained offline on a server machine. However, to enable online

learning, these classifiers are updated at runtime using a model adaptation process described in
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Section 5.3.3. The motivation behind the k-mean based approach is to reduce the execution time

and energy consumption by avoiding multiplications which is over 4× more expensive than additions

and subtractions.

5.1.2 Scheduling Unit

A job queue and a scheduler together works as the scheduling unit. Zygarde implements an

online, dynamic priority, real-time scheduler that considers not only the timing aspects but also the

expected inference accuracy of a job and the energy harvesting status of the system. It dynamically

partitions an executing job into mandatory and optional portions based on the early termination of

an agile DNN and prioritizes the execution of its mandatory portion to ensure both timeliness and

accuracy under the constraints of intermittently available energy. Note that, the beginning portion

of all jobs are mandatory and whether the next unit is mandatory or optional is determined during

the execution of the current unit. An illustration of the scheduler is described next.

Table 5.1: Description of the workload.

Job Total Layers Mandatory Optional Release Time Deadline
J1,1 4 1 3 t1 t7
J1,2 4 2 2 t3 t9

!" !# !$ !% !& !' !( !) !* !+
,-,-- ,-,/- ,-,// ,-,-/ ,-,/0 ,-,/1

,-,- ,-,/ ,-,- ,-,/
Mandatory Portion Optional Portion

2345

2678

En
er

gy
 S

ta
tu

s

Job Arrival Jod Deadline

,-,-,-,- ,-,/,-,/

29:;;

Figure 5.3: Execution schedule of the workload.

5.1.3 Example Execution

Table 5.1 defines two jobs J1,1 and J1,2 from the same task, τ1. Figure 5.3 demonstrates the

execution of the jobs along with the status of harvested energy over a timeline. Ecurr refers to the

current energy, and Eopt and Eman refer to two thresholds that determines whether the optional

and the mandatory parts of a job should be executed, respectively. Jki,j refers to the kth partition of
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Table 5.2: Explanation of the schedule in Figure 5.3.

Time Actions with Reasoning
t0 There is no job in the system.
t1 J1

1,1 (the only job) gets scheduled.
t2 Since Ecurr < Eopt, optional J2

1,1 is not scheduled.
t3 System prioritized J1

1,2 over J2
1,1 (See: Section 5.4).

t4 Since Ecurr < Eman no job is scheduled.
t5 System prioritized mandatory J2

1,2 over optional J2
1,1 .

t6 Only optional jobs remain and Ecurr >Eopt. The system prioritizes J2
1,1 over J3

1,2 due to its tighter
deadline.

t7 J3
1,2 (the only job) gets scheduled.

t8 J4
1,2 (the only job) gets scheduled.

job Ji,j . Table 5.2 shows the action taken by the scheduler along with the reasoning at each time

step. Here, the mandatory part of J1,2 is longer than the mandatory part of J1,1 because, for the

second data sample, the classifier is not confident enough with the result after the execution of the

first layer. Note that to simplify the illustration, this example assumes that each layer requires

one time unit to execute and the partition (mandatory vs. optional) is known ahead of time. The

proposed scheduling algorithm (described in Section 5.4) handles further complexities such as the

different execution times of different layers, multiple time units per layer, dynamic partitioning, and

power-failure during the execution of a layer.

Setting Eman and Eopt. The Eman is set to the minimum energy required to turn on the MCU

and execute an atomic fragment. During the compile time, Zygarde programming tools (described

in Section 5.5) estimates the maximum energy required by any atomic fragment by running Energy-

Trace++ [200] and sets this threshold. The Eopt, on the other hand, is by default set to the energy

required to fill up the capacitor. This is because, once the capacitor is full, the excess energy gets

wasted if nothing is executing on the MCU. By executing optional tasks, I minimize this wastage,

and increase the performance of the system. However, a developer can override these values using

the APIs provided (Section 5.5.2). If Eopt is small, e.g., comparable or equal to Eman, then all the

optional portion of the tasks will execute, causing starvation of the mandatory tasks. On the other

hand, if Eopt is high, the optional portion of the jobs will never execute.

5.2 Modeling Intermittent Energy

This section models the energy harvesting pattern and derive a single metric, namely the η-factor,

which characterizes an energy harvester used in a particular application. The scheduler uses this

metric for energy-aware scheduling.
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5.2.1 Energy Event

Batterless systems experience intermittence due to two reasons– (1) unavailability of harvestable

energy and (2) required time to accumulate sufficient energy before executing. The intermittence

pattern is stochastic, hard to predict, and heavily dependent on the available harvestable energy.

Hence, instead of modeling and predicting the harvested energy to characterize a harvester, I define

a binary random variable, called the energy event, that denotes the state of the energy storage to

have at least ∆K Joules of energy over a ∆T period, where ∆K and ∆T depend on the application

as well as the underlying system. I empirically determine and set ∆K to Eman’s values based on the

application necessity and chosen energy source. Figure 5.4 illustrates energy events for an RF source

with ∆K = 10mJ and ∆T = 5s.

E

Time

0     0     1     1     0     1     0     1     1     0  

Figure 5.4: Illustration of energy events.

Furthermore, instead of directly dealing with the harvested energy, it is often easier to observe the

physical phenomenon behind energy generation. For instance, for a piezoelectric harvester installed

inside a smart shoe, the number of footsteps that generate at least ∆K Joules over ∆T time can be

equivalently used to define an energy event. Likewise, a certain light-intensity for a solar harvester

and a certain number of packet transmissions for an RF harvester over ∆T time can be used to

define energy events for these systems.

To characterize an energy harvester using the definition of energy events, I conduct a two-month

long study on solar and RF harvesters (using empirically collected data) and human footsteps (using

the dataset [219]) to analyze the energy event’s pattern. Our study reveals that energy events occur

in bursts, i.e., every harvester has a tendency to maintain its current binary state, and there is a

probabilistic relation between consecutive energy events over a period.

For instance, when a person starts walking, the probability that they will continue to walk

is high over the subsequent few time units, and the probability decreases with time. Conversely,

when a person is not walking, the probability that they will continue not to walk will be high over

the following few time units and will diminish with time. This observation enables us to impose
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conditional probability on future energy events, given the recent history of energy events—which is

the key to characterize an energy harvester. I denote an energy event at time t using the random

variable Ht ∈ {0, 1}.

5.2.2 Conditional Energy Event

I define conditional energy event, h(N) as the probability that an energy event will occur, given

the immediately preceding N consecutive energy events have occurred (for N > 0) or have not

occurred (for N < 0):

h(N) =


p(Ht = 1 | Ht−1 ∧ . . . ∧Ht−N = 1), for N > 0

p(Ht = 1 | Ht−1 ∨ . . . ∨Ht−N = 0), for N < 0

(5.1)

To illustrate, h(10) = 90% implies that an energy event will occur with 90% probability if ten

immediately preceding consecutive energy events have occurred.
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Figure 5.5: Conditional energy event for (a) persistent power source, (b) piezo-electric harvester, (c) stationary
solar harvester, and (d) stationary RF harvester. Here, ∆T = 5 minutes.

Figures 5.5(a)-(d) show h(N)’s distribution for a persistently-powered and three energy har-

vested systems. To characterize an energy harvester, I measure the Kantorovich-Wasserstein (KW)

distance [220] between its distribution, H(i) from an ideal (persistent power) source, P to obtain:

KW
(
H

(i),P
)

=

∫ +∞

−∞
|CDF (H(i))− CDF (P)| (5.2)

In Figure 5.5, I observe that h(N) drops when |N | increases. For example, in Figure 5.5(b), h(N)

drops after N = 20 since the person I studied never walked for more than 100 minutes. Similarly, in

Figure 5.5(c), after about five hours of consecutive energy events (i.e., light intensity > 2730 lux),

the probability of energy event drops as the stationary solar harvester was placed beside a window

that does not get enough light after five hours. I also notice that after about 19 hours of the absence

of any energy event (i.e., light intensity < 2730 lux), the following energy event’s probability is high
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as the sun shows up again at the window.

5.2.3 The η Factor

Despite being informative, the KW distance has a limitation that not all h(N)’s are estimated

using the same number of instances. Hence, I normalize the KW score against a purely random

harvesting pattern, R, to obtain a revised metric, called the η-factor:

η = 1−
KW

(
H(i),P

)
KW

(
R,P

) (5.3)

The value of η lies in [0, 1], and it measures how close a harvester’s harvesting pattern is to a

constant energy source. For a persistently-powered system, η = 1, and for an energy harvester that

shows no apparent pattern has η = 0. For any other energy harvesting system, the η-factor will

lie in-between, and it is generally high for small |N |. A higher η-factor indicates less randomness

in its energy harvesting pattern and encourages a scheduler to make more aggressive decisions on

scheduling tasks in the next few time slots. The η-factor needs to be empirically estimated for a

given application-specific system.

5.3 Modeling DNN Tasks

In this section describes the task model of Zygarde, training procedure of agile DNN, and

construction of semi-supervised k-means classifier.

5.3.1 Task Model

Zygarde extends the task model described in Section 3.2 for imprecise DNN tasks. The extended

definition of computing tasks, jobs, and units are provided below.

Tasks, Jobs, Units, and Fragments. Similar to Section 3.2, Zygarde considers the processing of a

sensor data stream for each classification task as an imprecise sporadic task [206], τi = (Ti, Di, ci, ei).

A job, comprises of an ordered sequence of units (introduced in Section 3.2). The first M units

are mandatory and must be completed before the deadline, whereas the rest of the units of a job

are optional and can be executed if time and resources are available. Such a partitioning scheme

is known as the imprecise computing model in real-time systems literature [206, 115, 221]. In this

paper, however, the partition (i.e., the value of M) is dynamic and depends on the input data.

In Zygarde, a job that executes an L-layer agile DNN has L units, where each unit corresponds

to processing one DNN layer, along with the execution of the corresponding semi-supervised k-means

classifier. The cluster centroids of this semi-supervised k-means classifier are updated with new
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unlabeled data. Based on the input data, Zygarde may decide to exit from a unit or continue

executing the next unit. The decision is based on a utility function, which is described next.

Δ2
(a) (b)
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Figure 5.6: Two nearest clusters c1 and c2 of
an input (in the middle) is shown: (a) early
exit does not happen since |∆2 −∆1| is small;
(b) early exit happens since |∆2−∆1| is large.
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Figure 5.7: Sequential execution of units of an agile DNN.

Dynamic Partitioning and Utility. Unlike traditional imprecise computing models [206, 115, 221]

where the partition of a job into mandatory and optional parts is known, the number of mandatory

units in Zygarde is determined at runtime. I propose a utility function that estimates the confidence

in classification at a given unit for that job. This represents the utility of the data where higher

utility at earlier units is desirable.

Since I use a k-means classifier, I assume that a classification result is more likely to be correct

if the input data sample being processed is unambiguously close to exactly one of the k means.

To achieve this, I compute the L1 distance of an input data sample (represented in terms a DNN

layer and then vectorized) from two of its closest of the k means, ∆1 and ∆2, and if their difference

|∆2 −∆1| is above a unit-specific threshold, I decide to classify it as belonging to its closest cluster;

otherwise, the computation of the DNN continues to the next unit. The process is illustrated by

Figure 5.6.

The utility function described above runs in linear time with the number of clusters, i.e., O(k). It

is lightweight, energy-efficient, and suitable for resource-constrained systems as it uses the byproduct

of clustering-based classification which computes the cluster distances, ∆i’s anyways. It, however,

depends on an offline-estimated threshold. Section 5.3.3 describes how the utility threshold is

computed using an empirical dataset. Section 5.9 further discusses alternative utility functions that

are suitable for other types of classifiers.
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Preemption and Task Switching Zygarde allows limited preemption [129] where a job can be

preempted only after a unit completes its execution. The scheduler kicks in at the completion of

a unit and at the deadline of a job. After the execution of a unit, a job returns to the job queue

with updated utility and imprecise status (mandatory or optional). Then the scheduler chooses the

next highest priority job from the job queue using the priority function described in Section 5.4. By

prohibiting preemption of a unit, Zygarde reduces context switching and read-write overheads, and

minimizes the memory requirements to O(N) for N jobs by using double-buffering [130]. Figure 5.7

shows the execution of two units. Each unit is shown as a large dotted rectangle and it contains four

logical modules that are shown as solid rectangular boxes.

5.3.2 Agile DNN Construction

Unlike previous works where inference happens only at the last layer [222] or where a second

classifier is used at hidden layers to decide early exit [99], in Zygarde, the output of any hidden layer

can be directly used as a feature that gets classified by a k-means classifier. Features obtained in this

manner neither guarantee that the data samples from the same class are closer nor guarantee that the

data samples from different classes are farther in the feature space. Hence, to ensure that the feature

representation obtained after an early exit from the DNN execution maximizes the separability of

different classes and minimizes the distance between examples of the same class, Zygarde employs a

layer-aware loss function.

Layer-Aware Loss Function. A convex combination of contrastive losses [213] at each layer is

used as the loss function of an Agile DNN – which is called the layer-aware loss function:

LA =

L∑
i=1

ai × LC
(
W i, Xi

1, X
i
2, · · · , Xi

N

)
(5.4)

where, ai is the convex coefficient for the ith layer and
∑L

i=1 ai = 1; L and N represent the total

number of layers and classes, respectively; W i represent the weights of the ith layer; Xi
1, X

i
2, · · · , Xi

N

are the output vectors corresponding to the members of each class at the ith layer; and LC is the

contrastive loss function. For two classes, LC is defined as:

LC
(
W i, Xi

1, X
i
2

)
=

1

2

(
1− Y

)(
GW i(X

i
1)−GW i(X

i
2)
)

+
1

2
Y max

(
0,∆−GW i(X

i
1)−GW l(X

i
2)
)

(5.5)

where, GW i(Xi
n) is the output feature set of a member of the n-th class (1 ≤ n ≤ N) at layer i.

The coefficient Y = 0, if X1 and X2 belong to the same class, and Y = 1, otherwise. ∆ represents
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the margin between the members of different classes in the feature space.

Training Agile DNN. To train an agile DNN, I use a siamese network architecture [213] as shown

in Figure 5.8. In a siamese network, there are two identical neural networks, called the sister networks,

that share the same weights. From the labeled dataset, I select pairs of data points and use them as

the inputs to the twin networks. Among the selected pairs of data points, 50% belong to the same

class, while the rest belong to different classes. Unlike [213], which only uses the contrastive loss

at the last layer (LC3), I use the layer-aware loss function (Equation 5.4) at every layer to train

these networks. I perform an exhaustive search for hyper-parameter tuning and to determine the

weights of each layer. After the training, I use only one of the sister networks for inference. During

inference, I obtain a representation of the input data from each layer, and use them as features for

the semi-supervised k-means classifiers. Note that, for convolution layers, I flatten the output of

a layer to get a vector instead of a tensor in order to be able to compute the L1-norm during the

clustering-based classification step of Zygarde.
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Figure 5.8: Training agile DNN with Siamese net-
work.
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Figure 5.9: Effect of utility threshold on performance.

Note that although the combination of an agile DNN and semi-supervised k-means classifiers in

Zygarde is inspired by Anytime Neural Networks, an agile DNN is different as it is a representation

learner rather than a classifier. Besides, an agile DNN is trained using a siamese network and it only

has one loss function, which is different from anytime neural networks that use multiple auxiliary

loss functions. Furthermore, the exit policy and the utility function of an agile DNN is different from

that of anytime neural networks, and are optimized for resource-constrained systems. Moreover,

Zygarde forms an imprecise computing problem where an early exit from the network depends not

only on the data but also on the time and energy budget.
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5.3.3 Semi-Supervised k-Means Classifiers Construction

Zygarde maintains a semi-supervised k-means classifier at each unit. This section describes how

to construct and update these classifiers.

Computing Cluster Centroids. Using the trained agile DNN, I obtain a feature representation

from each layer for each data point in the training dataset. Using these representations, I train a

semi-supervised k-means classifier corresponding to each layer of the agile DNN (see Figure 5.7).

Using the labeled training data, I select the top N features using SelectKBest [223] and χ2 tests,

so that the features are computable on the resource-constrained target device. I utilize the labeled

training data to determine the value of k (for k-means) and assign a class label to each cluster.

Finally, I compute the centroid of each cluster in the selected feature space.

Determining Utility Threshold. Utility thresholds are crucial to determining whether a data

point should exit from the current hidden layer or continue processing through the network. A

smaller threshold is likely to force too early exits and thereby, a lower classification accuracy; whereas

a larger threshold is like to delay exits and thereby, increase the inference latency. This trade off is

demonstrated by Figure 5.9 for the first layer of the DNN on the CIFAR-100 dataset. For different

layers, I observe similar trade offs. To determine a suitable utility threshold for each layer, I generate

such a trade off curve and pick a utility threshold that ensures a desired minimum inference accuracy

as configured by the programmer.

Updating Centroids at Run-Time. I incrementally update the means, i.e., the cluster centroids,

of the k-means classifiers at runtime to evolve the classifiers over time and to learn from new

examples—which is common in semi-supervised learning approaches [224, 225, 226]. Referring to

Figure 5.7, this is done inside the Classifier Adapter when the classification result from the k-means

Classifier passes the Utility Test at a unit. A new cluster centroid is computed by taking the

weighted average of the current cluster centroid and the current example. Taking the weighted

average guards against abrupt changes to the centroids due to the presence of an outlier or incorrect

classifications. If the distribution of the input data points changes (e.g., the system is deployed in a

new environment), the cluster centroid gradually shifts towards the new mean of the data points as

it encounters the new data points.

Updating Centroids beyond Mandatory Layers. Due to early exit from the network, a data
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sample fails to update the k-means models of the deeper layers. To achieve this, Zygarde adapts the

cluster centroids of the deeper layers using the corresponding cluster heads of the layer from which

the example exits early. Mathematically, the update operation is ci+1 = 1
rσ
(
W i+1 × r × ci

)
.

Here, ci and ci+1 denote the corresponding cluster centroid of the k-means classifiers of layers i

and i+ 1; W i+1 denotes weights (including the bias term) for layer i+ 1; r denotes the size of a

cluster; and σ(x) = x+|x|
2 is the non-linear activation function [227].

Since this technique estimates the cluster centroids of a deeper layer instead of actually running the

data samples through those layers, it saves O(r) multiplication operations and performs the operation

in O(1); at the maximum approximation error of (
∑r

k=1 |W i+1 ×Xi
k| − |W i+1 ×

∑r
k=1X

i
k|)/(2r).

5.4 Real-Time Scheduler

This section describes the real-time scheduler in Zygarde. First, it introduces an online scheduling

algorithm for dynamically-partitioned, sporadic, imprecise tasks on a persistently-powered system.

Then, it describes extension of the algorithm for intermittently-powered systems.

5.4.1 Scheduler for Persistent Systems

Despite being an optimal online scheduling algorithm for sporadic tasks, the earliest deadline

first (EDF) algorithm [228] is not directly applicable to Zygarde as EDF does not consider the

accuracy of a DNN. Furthermore, traditional scheduling algorithms for imprecise tasks [206, 229] are

not directly applicable to Zygarde as well since the mandatory and optional portions of an agile

DNN is determined dynamically at runtime.

To address these challenges, I propose a priority function to prioritize the units of Zygarde. At

the end of the execution of an unit, the scheduler selects the highest priority unit as the next unit

for execution. The priority function considers not only the remaining deadline of a job, but also

the utility (as defined in Section 5.3.1) and the dynamically determined impreciseness status (i.e.,

mandatory vs. optional) of a unit:

ζli,j =
(

1− α(di,j − tc)
)

+
(

1− βΨl
i,j

)
+ γl

i,j (5.6)

where the first term represents the remaining deadline, which is the difference between a job’s

absolute deadline di,j and the current time tc. The second term ensures that units with lower utility

score Ψl
i,j gets higher priority as these tasks need further execution for accurate classification. The

third term is a binary variable γli,j ∈ {0, 1} that denotes if the unit under consideration is mandatory
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γli,j = 1 or optional γli,j = 0, which is determined at runtime based on the unit-specific utility

threshold. α and β are scaling parameters that normalize the deadline and utility, which are the

inverse of the maximum deadline and utility, respectively.

Note that, Zygarde supports multiple tasks including multiple DNN tasks as long as the required

memory does not exceed the available memory of the system. For non-DNN tasks or other absolute

(non-imprecise) tasks, γi is always 1 and Ψi is a constant for all units. Ψi is user-defined based on

the priority of the task.

5.4.2 Scheduling for Intermittent System

For an intermittently-powered system, I utilize the η-factor introduced in Section 5.2 to extend ζ

as follows:

ζlIi,j =


(
1− α(di,j − tc)

)
+
(
1− βΨl

i,j

)
+ γl

i,j , ηEcurr ≥ Eopt

γl
i,j

((
1− α(di,j − tc)

)
+ (1− βΨl

i,j)
)
, ηEcurr < Eopt

(5.7)

Here, Ecurr is the current energy of the system and Eopt is a threshold that determines if the

system has enough energy to execute both mandatory and optional units. The expression ηEcurr

is high enough to cross the threshold as long as at least one of the two variables η and Ecurr is

high-valued and the other is not extremely low. I identify two cases:

First, when ηEcurr is above the threshold, both mandatory and optional units are considered

for scheduling. Intuitively, it captures the cases when (a) an energy harvester is predictable and

generating at least sufficient energy to keep the capacitor charged, and (b) when an energy harvester

is predictable with medium confidence and generating more than sufficient energy. The explanation

of the three terms are omitted in this case since they are similar to the persistent power system as

described in the previous section.

Second, when ηEcurr is below the threshold, only the mandatory units are considered for

scheduling. It captures the cases when an energy harvester is – (a) unpredictable, (b) predictable but

generates insufficient energy, and (c) predictable with medium confidence and generates sufficient

energy.

ζI minimizes two types of energy waste in batteryless systems: 1) wasted energy due to executing

unnecessary portions of a job, and 2) wasted energy due to not executing any job while the harvester

gets enough energy from the source to keep the capacitor charged [48]. The first type of waste is

avoided by scheduling conservatively when ηEcurr < Eopt, and the second type of waste is avoided
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by executing optional units when ηEcurr ≥ Eopt.

5.4.3 Schedulability Condition

A set of N sporadic tasks is schedulable by an imprecise scheduler if the total utilization,∑N
i=1

ci
Ti
≤ 1 [206], where the execution time, ci includes only the mandatory portion of the task.

Scheduling sporadic jobs in an intermittently-powered system adds further complexity as power

outages essentially blocks the CPU and thus increases the CPU utilization by increasing the execution

time ci, although no task is actually executing on the system as power is out. In order to incorporate

energy intermittence into the schedulability analysis framework, I model power outages event as a

very high-priority job of a sporadic Energy Task. Energy Tasks are either a NOP task or a harvesting

task.

In this extended task set havingN+1 tasks, the schedulability condition becomes
∑N

i=1
ci
Ti

+ ce
Te
≤ 1,

where, ce and Te are the duration and interval of energy intermittence. The execution time of an

energy task, ce is related to the η-factor of the system. The probability that an energy harvester

will remain in its current power-outage state for the next d energy events can be derived from η

using the properties of a geometric distribution ηd(1− η), whose expected value is E[ce] = η/(1− η).

Given this, the necessary condition for an intermittent computing system to be able to schedule N

sporadic tasks is TE ≥ η/(1−η)
1−

∑N
i=1(ci/Ti)

.

5.5 Zygarde Programming Model

Zygarde’s programming model consists of: (i) a Network Trainer tool that is used by the developer

to train and compress agile DNNs and to generate the k-means classifiers and corresponding hyper-

parameters; and (ii) APIs for the target embedded device which are used by the developer to write

custom C application for an intermittently-powered MSP430 MCU. A high-end development machine

is recommended for these one-time, offline steps. At the end of these steps, I obtain an executable

binary file for the MSP430 MCU.

5.5.1 Zygarde Network Trainer

The network trainer takes four inputs from the developer, i.e., (1) a labeled training dataset, (2)

DNN architecture/model, (3) timing parameters, and (4) the η-factor. The network trainer generates

C header files as the output – which are used by the APIs for the target embedded platform described

in the next section. Figure 5.10 shows the intermediate steps inside the Zygarde network trainer.

66



Training the Network with 
Layer-Aware Contrastive 

Loss Function

Labeled Training 
Dataset

DNN 
Architecture

Compress the Network 
using Pruning and 

Quantization

Weight 
Bias Generate Centroids for 

each Layers
Generate Utility 

Threshold for each Layers

Compressed 
Parameters Centroids

Generate C Header Files 
for all Constant 

Parameters

Write Code in C for 
MSP430 using Zygarde

API

Timing 
Parameters

η-Factor

Header 
Files Compile and Upload the 

Binary file in MSP430

Zygarde Network Trainer

Utility Threshold

Figure 5.10: Zygarde Programming Framework.

At first, the network trainer trains the agile DNN model using the labeled dataset using the

layer-aware loss function described in Section 5.3.2. It relies on an exhaustive search for hyper-

parameter tuning, and outputs the weights and bias parameters of the network. Considering the

limited memory of the target device, the DNN is compressed and pruned to reduce its memory

requirement [85, 86, 230, 231, 232, 34, 35]. The network trainer also checks if the compressed network

fits into the memory of the target device and signals an error if it does not. Using this compressed

agile DNN model and the input dataset, the network trainer generates the cluster centroids and the

utility threshold for each layer of the network – following the steps described in Section 5.3.3.

Finally, C header files are generated that contain the compressed DNN parameters, cluster

centroids, utility thresholds, features used in clustering, and task-specific timing parameters (e.g.,

deadline and period) and the energy parameter (i.e., η-Factor).

5.5.2 Zygarde APIs

The Zygarde APIs extend open source SONIC [8] APIs for intermittent DNN computing by

incorporating Zygarde-specific capabilities, such as early termination, cluster-based inference, and

scheduling. Zygarde APIs are divided into two categories: (1) external APIs, and (2) internal APIs.

The external APIs contain library functions that a developer uses to implement early-exit capable

agile DNNs for feature representation and the k-means classifiers. These library functions rely on

the header files generated by the network trainer to access the classifier parameters and are sufficient

for most developers who only want to define the high-level logic of their application. For instance, to

implement the two tasks shown in Figure 5.11 on an MSP430 platform, a developer essentially has

to write a C program that uses Zygarde external APIs to implement a state diagram similar to the

one shown in Figure 5.12.

The internal APIs provide some of the lower level functions that are primarily used by the

67



CONV

FC

Cluster

Cluster

CONV

FC

Cluster

Cluster

CONV Cluster

DataData

Figure 5.11: Two sample
DNNs.

Initialize zd_
get_data

zd_
conv

from_scheduler()

zd_
relu

zd_
pool

zd_
cluster

to_scheduler()
zd_
fc

from_scheduler()

zd_
relu

zd_
cluster

zd_
get_data

zd_
conv

zd_
relu

zd_
pool

zd_
cluster

to_scheduler()

zd_
conv

zd_
relu

zd_
pool

zd_
cluster

to_scheduler()

zd_
fc

from_scheduler()

zd_
relu

zd_
cluster

to_scheduler()
from_scheduler() from_scheduler()

to_scheduler()to_scheduler()

Figure 5.12: State diagram of the sample DNNs.

external APIs. These APIs implement several key features of Zygarde including the scheduler, job

queue management, time management, and handling the timers. If a developer wishes to change the

default implementation of any of these functions, they need to override these methods to provide

their own implementation.

5.6 Implementation

Computing Device. I use TI-MSP430FR5994 [175] MCU (shown in Figure 5.13) that has 256KB

of FRAM, 8KB of SRAM, 6-channel DMA, a low energy accelerator (LEA), and an operating voltage

range of 1.8V to 3.6V. During the training phase, I use an Intel Core i7 PC with RTX2080 GPU to

train and compress the agile DNN, initialize the centroids of semi-supervised k-means classifiers,

and compute the utility thresholds.

Figure 5.13: Zygarde experimental setup.

Energy Harvester. Figure 5.13 shows our solar and RF energy harvester setup. The solar

harvester includes an Ethylene Tetrafluoroethylene (ETFE) based solar panel [233] and a step-up

regulator [196]. I use the Powercast harvester-transmitter pair [192, 193] to harvest RF energy. Like

previous works on intermittent systems [8, 13], both harvesters use a 50mF capacitor.

Sensor Peripheral. I use an electret microphone [197] and the built-in ADC in MSP430 for
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acoustic sensing. For visual sensing, I use an OV2640 CMOS camera module [234] connected via

I2C and SPI. Using LEA and DMA, I perform FFT on audio data and write the audio data to the

FRAM without involving the CPU.

Time Keeping. Like [12, 4], I use a real-time clock, DS3231 [164] for timekeeping in most of the

experiments. I use this clock only during the power up to sync and maintain the internal clocks of the

MCU. This clock is easily replaceable with an SRAM or capacitor-based timekeeping system during

power outages [1, 2]. In order to quantify the effect of such a batteryless timekeeper on Zygarde, I

implement and use an open-source remanence clock, called CHRT [3], in one of the experiments. To

use the CHRT correctly with Zygarde, the energy required to charge the CHRT has been considered

when defining the energy events to estimate the η-factor.

Libraries. Zygarde uses an open-source intermittent execution model SONIC [8] and related APIs

(e.g., ALPACA [13]). I use Tensorflow [235] for training the DNN models.

5.7 Microbenchmarks

In this section evaluates each component of Zygarde using datasets and compare Zygarde with

baseline algorithms. The effect of capacitor size and remanence clock on Zygarde is also observed.

(a) Original Image (b) Downsampled Only (c) Targeted Crop
Figure 5.14: Visual Wake Word dataset: (a) Original image (640×320), (b) Only downsampled (32×32), (c)
After targeted cropping and downsampling (32×32).

5.7.1 Datasets and Environments

Datasets and DNNs. To evaluate the performance of different components of Zygarde, I use four

datasets: MNIST [208], ESC-10 [189], CIFAR-100 [210], and Visual Wake Word [211]. MNIST is

a popular image dataset having 80,000 28 × 28 pixel images (60,000 for training and 10,000 for

testing) and ten classes, and it has been used for evaluating state-of-the-art intermittent computing

systems [8]. ESC-10 also has ten classes and 44.1 kHz five seconds-long audio clips. I use 1s audio
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Table 5.3: DNNs considered in this section.

Dataset MNIST ESC-10 CIFAR-100 VWW
Layers CONV

CONV
FC
FC

CONV
CONV
CONV
FC

CONV
CONV
FC
FC

CONV
CONV
CONV
CONV
FC

Dimensions 20×1×5×5
100×20×5×5
200×1600
500×200

16×1×5×5
32×16×5×5
64×32×5×5

95×256

32×3×5×5
64×32×5×5
384×1600
192×384

16×3×5×5
32×16×5×5
64×32×5×5
64×64×5×5
192×256

Parameters Size 8× 103 55× 103 27× 103 14× 103

downsampled to 8KHz. I split the dataset into 80% training and 20% testing datasets. CIFAR-100

contains 32 × 32 pixel color images from 100 classes. It has 500 training images and 100 testing

images per class. In order to fit this dataset in the MSP430, I use randomized subsets of 5 classes

from the dataset for 100 iterations and report the average.

Visual Wake Word (VWW) is a large dataset containing 82,783 training and 40,504 validation

images from the state-of-the-art vision dataset COCO [236]. To fit these images into the MCU’s

memory, I first crop an image to move the target object (human) in the center and then downsample

the cropped image to 32× 32 pixels. Note that if I only downsample the image to 32× 32 pixels

without cropping it first, the resultant image scales down the target object (human) so much that

they are not recognizable anymore. Figure 5.14 shows an example image from the VWW dataset,

followed by two downsampled versions of it– with and without cropping.

I implement four compressed networks summarized in Table 5.3. Our feature-maps after each

layer consist of a maximum of 150 features selected using k-best select. These feature-maps are used

for the semi-supervised k-means classifiers. The scheduler has a queue-size of 3.

Controlled Energy Sources. To evaluate the system with different η-factors (∆T=1s and

∆K=9.36mJ), I perform controlled experiments. To determine the value of ∆K, I run the system

for multiple iterations and take the highest observed energy consumption. I vary the distance

between the transmitter and the receiver between 1-5 feet for RF. I simulate solar power with three

dimmable bulbs with varying intensity (5.6 Klx - 35 Klx) as shown in Figure 5.13. The seven

scenarios considered for the evaluation is described in Table 5.4. Note that, outdoor scenarios and

windowed rooms are used to get the sunlight for the real-life experiments in Section 5.8.
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Table 5.4: Algorithm Evaluation Scenarios

System Energy
Source η

Average
Power (mW)

1 Battery 1
2 Solar 0.71 600
3 Solar 0.51 420
4 Solar 0.38 310
5 RF 0.71 58
6 RF 0.51 71
7 RF 0.38 80

5.7.2 System Overhead

Figure 5.15 shows the overhead of different components of Zygarde described in Section 5.1.

To measure the execution time and energy consumption, I use the TI eZ-FET debug probe with

EnergyTrace++ [200], which provides milliseconds and µJ resolution data. I isolate each component

of Zygarde and report the average overhead from five repeated measurements. To measure smaller

overheads I repeat the experiment for multiple iterations (e.g., 2000 iterations for energy manager)

and report the mean overhead of a single execution. I use a persistent power source during overhead

measurements.
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Figure 5.15: Overhead of Zygarde.

The job generator reads 1s audio data from the microphone, performs FFT, and writes it to the

FRAM in 1.325s. The first convolution layer (ESC-10 network of Table 1) has 2.6×-3.6× higher

execution time than other convolution layers due to larger input dimension. Using max-pool with

stride decreases the input size, inference time, and energy consumption at each layer. The last

fully-connected layer performs 50% less multiplications than the previous layer and thus has a lower

cost. Each job executes the semi-supervised k-means classifiers at most four times. It is 14× faster

and 13× more energy-efficient than executing the whole DNN. Execution of the k-means classifier

includes performing the utility test, classifying with k-means classifier and updating the model
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centroids for adaptation. For N examples in the system, the scheduler kicks in 4N times and the

overhead of this specific example with three jobs are 3.72 ms and 636µJ, which is less than 1% of

the overall cost of processing an example. The energy manager has negligible cost and runs once

every time the scheduler executes.
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Figure 5.16: Comparison of Loss Functions with Early
Exit.
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Figure 5.17: Comparison of the Termination Poli-
cies.

5.7.3 Effect of Layer-Aware Loss Function

In Figure 5.16, I compare our proposed layer-aware loss function with cross-entropy loss [212] and

contrastive loss [213] functions when early termination is in action. Since loss functions are equally

applicable to both persistently-powered and energy-harvested systems, I conduct this experiment in

a persistently-powered setting. I train three agile DNNs with three different loss functions that have

the same network structure, hyper-parameters, and training dataset. All three networks use the

proposed utility test where the utility-threshold is determined during training.

Though the loss functions achieve similar accuracy (≈98% for MNIST and ≈75% for ESC-10)

without early termination, their performance varies when early termination is applied. Note that,

the inference accuracy of ESC-10 suffers due to downsampling of the 5s and 44KHz data samples to

1s and 8KHz data samples. In Figure 5.16, the layer-aware loss function demonstrates 4.13%-13.40%

higher accuracy than cross-entropy loss by forcing the layers to learn distinguishable features [237].

It also decreases the average inference time by upto 13.97%, by executing the final layer of 14%-26%

less jobs compared to cross-entropy loss. Layer-aware loss function further achieves 2%-5% higher

accuracy and 2%-9% less average inference time than the contrastive loss function. Thus, layer-aware

loss function achieves higher accuracy and lower inference time than other loss functions when early

termination is active.
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Figure 5.18: Real-time Scheduling for different Systems on MNIST test dataset.

80
64 59 56 65 57 52

0
20
40
60
80

ED
F

ED
F-

M

Zy
ga

rd
e

ED
F

ED
F-

M

Zy
ga

rd
e

ED
F

ED
F-

M

Zy
ga

rd
e

ED
F

ED
F-

M

Zy
ga

rd
e

ED
F

ED
F-

M

Zy
ga

rd
e

ED
F

ED
F-

M

Zy
ga

rd
e

ED
F

ED
F-

M

Zy
ga

rd
e

System 1
Battery (η = 1)

System 2
Solar (η = 0.712)

System 3
Solar (η = 0.513)

System 4
Solar (η = 0.382)

System 5
RF (η = 0.712)

System 6
RF (η = 0.513)

System 7
RF (η = 0.382)

N
u

m
b

er
 o

f 
Jo

b
s Deadline Met Correct Result Samples Entering System

Figure 5.19: Real-time Scheduling for different Systems on ESC-10 test dataset.
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Figure 5.20: Real-time Scheduling for different Systems on CIFAR-100 test dataset.
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Figure 5.21: Real-time Scheduling for different Systems on Visual Wake Word test dataset.

5.7.4 Effect of Early Termination

In Figure 5.17, I evaluate the proposed utility test by comparing it with a system that does

not implement early exit and an oracle that knows the exact number of units needed for each data

sample. I use the same persistently-powered system and dataset as in Section 5.7.3. All of these

systems use the same trained network with the layer-aware loss function. Utility-based termination

(exit) achieves similar accuracy while lowering the average inference time by 4%-26%. The difference

in accuracy between these systems is below 2.5%.
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5.7.5 Performance of the Real-Time Scheduler

I evaluate the proposed scheduling algorithm for dynamic imprecise tasks in both persistently

and intermittently powered systems for four different η-factors and two different CPU utilization

described in Table 5.4. To compare our proposed algorithm, I choose earliest deadline first (EDF) and

one of its variants– earliest deadline first mandatory (EDF-M). EDF-M schedules only the mandatory

portions of the jobs. I choose EDF as a baseline because it is the optimal online scheduling algorithm

for sporadic tasks. Here, both Zygarde and EDF-M use the proposed utility test to partition jobs

into mandatory and optional units. For the fairness in comparison, successful completion of a job’s

mandatory units before deadline makes the job schedulable in all algorithms. Note that, I discard a

job after its deadline to avoid domino effect [238].

Persistently Powered System. Figure 5.18 shows the performance of proposed scheduling

algorithm for MNIST dataset for T = 3s and D = 6s. As the CPU utilization (U) is greater than

one, none of the schedulers can schedule all the tasks even on persistent power. However, with early

termination, EDF-M and Zygarde schedule 17% more jobs. In Figure 5.19, I schedule 80 jobs from

the ESC-10 dataset, where U < 1, T = 0.36 minutes, and D = 0.72 minutes. Persistently powered

system (System 1) can schedule all the tasks with EDF, EDF-M, and Zygarde. In Figures 5.20

and 5.21, I schedule 500 and 40,000 jobs for CIFAR-100 and visual wake words (VWW) datasets,

respectively, where the deadline is twice the period. In both cases, EDF-M and Zygarde schedules

all the jobs while EDF fails to do so. As successfully scheduling only the mandatory units of a job

before deadline is sufficient to be schedulable, EDF-M schedules similar number of jobs as Zygarde.

However, Zygarde achieves higher accuracy by opportunistically executing optional units.

Intermittently Powered Systems. For intermittent systems (Systems 2-7), EDF-M schedules

14.98%-19.51% more jobs for MNIST, 9.44%–20.70% more jobs for ESC, 8.59%–33.59% more jobs for

CIFAR, and 16.97%–24.53% more jobs for VWW than EDF. If the utility tests were optimal, EDF-M

would have produced correct results for all the scheduled jobs. However, due to the limitation of

utility tests, Zygarde increases the number of scheduled jobs that produce the correct results by up

to 27.60% by executing some of the optional units. I observe that, Zygarde increases the performance

(i.e., the number of scheduled jobs that produce correct results) from EDF-M when η is high. With

low η, the performance of Zygarde and EDF-M becomes similar as no optional units are executed.
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It is interesting to notice that despite having the same η, solar powered systems schedule 9% - 31%

more jobs than RF powered systems due to more available power.
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Figure 5.22: Effect of Capacitor

5.7.6 Effect of Capacitor Size

The goal of this experiment is to quantify the effect of the capacitor’s size on scheduling. I use

the CIFAR-100 dataset and its corresponding DNN (Table 5.3), and power the system from an

intermittent RF energy source (η = 0.51) at around 0.5m distance. The period of the tasks are

varied between 9s to 11s and the deadline is set to twice the period. I use four different capacitors:

0.1mF, 1mF, 50mF, and 470mF. This setup and workload stress tests the system and forces the

scheduler to miss the deadline when the capacitor values are too small or too high. Figure 5.22 shows

that when the capacitor value is below 50mF, more tasks miss their deadlines as they re-execute

an atomic fragment when the power goes off before its completion. On the other hand, when the

capacitor value is high (e.g., 470mF), tasks miss deadline due to the extra time required to charge

such a large capacitor. Hence, I choose to use a 50mF capacitor for the rest of the experiments.

Note that although I empirically determine a suitable capacitor for our experiments, one can roughly

estimate the optimal value of the system capacitor, C by using a capacitor’s energy equation, when

the average input power, P , voltage across the capacitor, V , and the difference between the deadline

and the total execution time of the task, δT , is known: C =
√

2PδT
V 2 .

5.7.7 Effect of Remanence Clock

Keeping track of the time is crucial for a real-time scheduler and it is a hard problem, in general,

for batteryless systems. To keep track of time reliably across power failures, recently, a batteryless

remanence clock, namely the Cascaded Hierarchical Remanence Timekeeper (CHRT) [3] has been

proposed for intermittently-powered systems. The CHRT clock has three modes or tiers. Its tier-1

yields near-perfect time-keeping accuracy, but has a range of only 100ms. On the other hand, the

tier-3 offers 1s resolution, 100s range, and reports accurate time 80% of the cases, while reporting +1s
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error for the rest of the time and rarely shows +2s, -1s or -2s error. I implement this clock following

the open source hardware design (see Figure 5.13) and use it to power Zygarde – to implement a

completely batteryless system. I evaluate the effect of batteryless CHRT clock on Zygarde’s scheduler

and compare it to the performance of Zygarde when it uses battery-powered RTC.

Table 5.5: Effect of Cascaded Hierarchical Remanence Timekeeper

System Reboots Power On Time Scheduled Tasks using RTC Scheduled Tasks with CHRT
2 67 77.67% 29989 29980
3 1252 71.48% 27401 27390
4 1820 65.83% 24921 24897

Table 5.5 shows the number of tasks meeting deadlines for both types of clocks for the systems

2–4 (see Table 5.4 for definitions). I do not show results for systems 5–7, which are powered by RF

harvesters and require using CHRT tier-1 (which is optimized for RF), since the results are identical

for both CHRT and RTC. I observe that the number of missed jobs increases with the number of

reboots due to intermittent energy. Upon investigating the cause I find that during the positive error

of the CHRT clock, the scheduler either reports the missed deadlines or terminates a job early, as

it mistakenly thinks that the deadline has passed, and thus, continuing to execute these tasks is

a waste of time. During negative error of the CHRT clock, the scheduler schedules a job despite

the fact that it missed the actual deadline and triggers a domino effect that results in more tasks

missing their deadlines. However, CHRT shows negative error < 3% time and often it compensates

for a positive error. Overall, the loss of schedulable tasks due to the use of a batteryless clock is

below 0.1%.

5.8 Real-World Application Evaluation

In the previous section, I compared the performance of Zygarde with different baseline algorithms.

In this section, I observe Zygarde in two real-world applications. In the first application, I perform

acoustic sensing and show how different scenarios affect the system performance. In the second

application, I compare the performance of Zygarde with a state-of-the-art intermittent DNN inference

system [8] for visual sensing tasks in a real-world setting.

5.8.1 Acoustic Sensing

Experimental Setup. This section evaluates Zygarde in real-world uncontrolled experiments using

six audio event detection applications. Due to the presence of background noise and multiple audio
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Figure 5.23: Real-life evaluation of Zygarde for acoustic event detection.

events in the data, these applications require DNN-based features for audio event representation and

classification. Existing works show that DNN performs significantly better than threshold or classic

machine learning-based audio event detectors in real-life noisy environments [239, 240].

Table 5.6: Real-life evaluation setup.

Application Energy Source Harvester Placement Cause of Intermittence Target Event Other Events
Car Detector Solar (74Klx to 111Klx) Pavement Vehicle on the closest lane Car Honk Silence, Dog, Human Voice, Car
Barking Dog Solar (2Klx to 18Klx) Under the Tree People, objects and cloud Dog Bark Silence, Car, Car Honk, Voice
People Detector Solar (1Klx to 5 Klx) Edge of the Railing People and cloud Voice Silence, Car, Honk, Dog Bark
Baby Monitor RF (-0.48dB to -1.66dB) On the Desk Change of Distance Crying Baby Silence, Voice, Washer, Printer
Laundry Monitor RF (-0.48dB to -1.91dB) On the Counter Change of Distance Washer Status Silence, Voice, Cry, Printer
Printer Monitor RF (-1.59dB to -1.91dB) On the Desk Change of Distance Printer Status Silence, Voice, Crying Baby, Printer

Table 5.6 shows the the application environment, energy source, harvester placement, cause of

energy intermittence, target event and other events present in the environment for the six applications.

Each applications runs for 10 minutes and the audio sensor samples every two seconds. I play

recorded sound, that are not used during training, 10 times from a speaker as the positive example.

The relative deadline of the jobs are 3s which is the required execution time for the whole model.

The agile DNN, consisting of a convolution layer and two fully connected layers, has an execution

time that varies between 1.7s and 3s, depending on early termination. As it is not possible to ensure

that each audio event of the target classes falls neatly into one second buckets, I combine the outputs

of two consecutive jobs by taking their logical OR.

I use two energy harvesters: solar and RF. The solar energy harvester is affected by outdoor

influences such as passing vehicles. I vary the distance between the RF transmitter and the receiver

to test the applications under different levels of noise and interference.

Results. Figures 5.23(a)-(f) shows the MCU’s input voltage, the cut-off voltage, the classifier’s

output, and deadline misses for the six applications over time. Findings from this experiments are

as follows.

The car detector in Figure 5.23(a) always harvests sufficient energy from the sun and meets the
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deadline for all jobs. However, it misclassifies twice when both pedestrians (talking) and cars are

in the scene due to the limitations of the classifier. The dog monitor in Figure 5.23(b) experience

intermittency due to people blocking the sun. It misses two target events due to the lack of sufficient

energy to read the sensor data and misclassifies one event due to the limitation of the classifier. For

two audio events, the applications experience deadline misses despite doing accurate classification

because of the limitation of the utility test. For similar reasons, the people detector in Figure 5.23(c)

fails to sense two events and misclassifies one.

The baby monitor in Figure 5.23(d), powered with an RF harvester, does not harvest enough

energy to read audio samples during one audio event. It also fails to finish execution of mandatory

units within the deadline for one event. Due to the limitation of the utility test, it misclassifies one

event and misses deadline of another. The Laundry monitor in Figure 5.23(e) misclassifies one event

and misses the deadline for two. The printer monitor in Figure 5.23(f) experiences the highest

intermittence, misses four deadlines and misclassifies three events.

A number of interesting observations from these experiments are: (1) a shorter power-off period

decreases the number of event misses, e.g., the solar powered dog monitor misses more events than

the laundry monitor despite having less frequent reboots due to insufficient power supply; (2) a

shorter continuous energy results in more deadline misses, as evident in dog monitor and printer

monitor applications; (3) deadline and target event misses depend on the harvested energy and

the accuracy of the utility test, whereas the classification accuracy relies on the competence of the

classifier and the accuracy of the utility test, e.g., the car detector misclassifies due to the limitation

of the classifier, whereas the dog monitor misses the deadline of two correctly classified samples due

to the inaccuracy of the utility test.

5.8.2 Visual Sensing

Experimental Setup. I evaluate the performance of Zygarde in a multi-tasking scenario having

two visual recognition tasks: traffic sign recognition and shape recognition. Both DNNs have two

convolution layers and two fully-connected layers, but the convolution layers of the sign recognizer

has 8 and 16 filters, whereas the convolution layers of the shape recognizer has 4 and 8 filters. The

shape recognizer’s execution time is about half of sign recognizer’s execution time, and hence, it has

a smaller relative deadline. After capturing an image, a sign detection job is created and inserted
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into the job queue, followed by a shape detection job.

Figure 5.24 shows the setup for this experiment. I use a 2MP OV2640 camera sensor and capture

the test images from the GTSB [241] dataset displayed on the screen of a laptop. I use 80% of the

dataset for training and the remaining 20% for testing. I annotate the dataset to label the shape of

the sign. I use a solar energy harvester to power the system and acquire 5V and 3V power lines

for the camera and the MSP430, respectively, by using two voltage regulators. The camera module

requires 4s to capture an event but works in parallel with the MSP430 which uses DMA.

Figure 5.24: Experimental setup for visual sensing application.
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Figure 5.25: Percentage of captured events that meet the deadline.

Results. Figure 5.25 compares the performance of Zygarde against SONIC’s [8], which does not

implement early termination and uses either an EDF or a round-robin (RR) scheduler. I observe

that due to the high energy demand of the camera, 37% of the events are missed and do not enter

any of the three systems. Although SONIC-EDF schedules 55% of the jobs that enter the system,

it is partial towards the shape recognition jobs since they have earlier deadlines. By choosing the

sign recognition job, which has higher execution time, SONIC-RR does not spare sufficient time

to execute shape recognition job. SONIC-RR schedules only 11% jobs that enter the system in

total, among which, only 1% are shape recognition jobs due to the shorter relative deadline of the
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shape recognition task. By performing imprecise computing with early termination, Zygarde assigns

different priority to the same job at different units. Thus, Zygarde switches between jobs from

different tasks and enables fairness. Zygarde schedules 93% of the jobs that enter the system, where

43% are sign recognition jobs and 50% are shape recognition jobs. Zygarde achieves 61% and 85%

classification accuracy for sign and shape recognition, respectively, which is is within 2% of the

baselines’ that execute the DNNs end-to-end.

5.9 Discussion

5.9.1 Importance of DNNs

For batteryless sensing systems, the inference accuracy dictates the response time and the

energy-efficiency of the system [8]. Due to very high energy cost of wireless communication, these

systems have to implement a large capacitor – which takes several minutes to charge – in order to

send just one data packet. Hence, every false positive wastes significant amount of energy and time.

This is why, DNNs are preferred over less accurate traditional classifiers such as Support Vector

Machines (SVM), K-Nearest Neighbours (KNN), k-means, and Random Forest. Table 5.7 shows

that DNNs are 1%–15% more accurate than the traditional classifiers.

Table 5.7: Classification Accuracy for Different Models.

Classifier MNIST ESC-10 CIFAR-100 VWW
KNN 92% [242] 40% 55% 60%
K-means 93% [242] 41% 50% 59%
Random Forest 93% [242] 25% 29% 62%
SVM 96% [242] 50% 51% 69%
CNN (No Early Termination) 98% 75% 78% 84%
CNN (Early Termination) 97% 73% 77% 84%

5.9.2 Performance of η Factor Estimation

I estimate the η-factor offline, using energy harvesting traces of the target system. The modeling

accuracy of η largely depends on the length of this empirical study, which must be long enough

to capture harvested energy variability. This variability depends on the energy source, the usage

by a user, and deployment configuration. Hence, prior knowledge about the system’s energy usage

pattern and the system designer’s experience is crucial to determining a reasonable study duration

to obtain an accurate estimate of the η-factor.

The change of the environment or the user behavior might change the predictability of a deployed
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Figure 5.26: Validation of η-Factor.

system. The offline estimation of η causes errors in such scenarios. Assessment of η at runtime

could address this problem by updating via online or offline reestimation process. Such assessment

is possible as the system uses η to predict the harvestable energy, and the energy measurement at

future time slots provides the ground truth. Thus, the system can precisely compute the prediction

error at runtime. Depending on this error, η can be adapted to η ± δη, where δη is proportional to

the prediction error.

However, the evaluations done in this chapter does not include adaptations as the empirically

derived η values have been reasonably accurate. Here, the accuracy of estimation refers to how

closely I can characterize the randomness in intermittent energy instead of accurately predicting

the harvested energy. Figure 5.26 shows that the estimated value of η for three harvesters (used

in Section 5.2.1) converges to their respective prediction accuracy values. For example, the kinetic

energy harvester’s estimated η-factor is 0.65, and its (measured) accuracy of predicting the energy

state of the next slot is also close to 65%. The convergence of these two values indicates that the

estimate is relatively accurate.

5.9.3 Generic Utility Functions

In Zygarde, the utility function provides an estimate of how confident the cluster-based classifier is.

For a different type of classifier, although the proposed utility function may not be directly applicable,

the general principle behind the utility function remains the same. For some classifiers [243], e.g.,

support vector machine and K nearest neighbour, the distance of the input data point from the

decision boundary or the neighbours can be used to design the utility function that is similar to

Zygarde’s. For classifiers that provides a probability distribution over all classes as the output [243],

e.g., neural networks, naïve bayes, and logistic regression, I recommend using the entropy [244] of
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this distribution as the utility function, i.e., U = −
∑c

i=1 pilog2pi, where pi is the probability of

the input being in class i and c is the total number of classes. A higher entropy indicates that the

probability of the input belonging to some class is higher than the rest of the classes, whereas a

lower entropy indicates similar probability across all classes.
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Figure 5.27: Performance gain due to adaptation.

5.9.4 Adapting the k-Means Classifiers

Zygarde adapts the cluster-based classifiers at runtime since a classifier running on a perpetually-

powered system is likely to encounter shifts in the input data distribution over its extended lifetime.

To enable this, I implement a simple strategy where the cluster centroids are updated by taking the

weighted average of the current centroid and the new data point. Assigning more weights to the

current centroid ensures that the adaptation process is gradual, and is not affected by a few outliers.

This strategy has both benefits and limitations.

The benefit of cluster adaptation is that if a system is trained and tested in different environments,

unless measures are taken to adapt the classifier, its accuracy drops. I conduct an experiment to

quantify this. I first divide the ESC-10 audio dataset in to 80% training and 20% testing subsets.

Then I record only the testing subset in three different environment, i.e., lab, hall, and office. The

training subset, 80% data, is recorded only in environment 1 and is used to train the agile DNN

and the initial k-means classifier. I test the accuracy of the classifier on the testing subset from

environment 1 (lab), followed by testing the accuracy on the testing subset from environment 2

(hall), followed by testing the accuracy on the testing subset from environment 3 (office). I repeat

this experiment with and without the cluster adaptation step of Zygarde. Figure 5.27 shows the

result. Without the adaptation, Zygarde loses 8% accuracy due to the environment changes. More

than half of this lost accuracy is gained back when Zygarde enabled cluster adaptation.

Two major limitations of this approach are: (1) the adaptation process being slow, if the
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environment changes rapidly, the system may not be able to adapt fast enough. By adjusting the

weights assigned to the new data, this problem can be addressed; (2) the proposed adaptation

process is robust to only a certain types of distribution shifts, e.g., translation and rotation of feature

spaces, where the relative distances of the cluster heads do not change significantly. However, if

the shift in the data distribution in the new environment is complex and/or non-linear, this simple

threshold-based cluster adaptation approach may not work. To deal with this, a more sophisticated

approach that normalizes the effect of domain shifts in data [245, 246] has to be employed by adding

an extra layer of computation prior to the clustering step.

5.9.5 Limitations of the Zygarde Scheduler

Although the scheduler in Zygarde outperforms state-of-the-art scheduling techniques, it has

some limitations that need further investigations. First, the scheduler does not provide any guarantee

that all the jobs will finish their mandatory part before the deadline. This is primarily due to the

uncertainty of the intermittent energy which does not allow us to formally approach the scheduling

problem without introducing any probabilistic terms. Besides, in this paper, I only provide a

necessary condition for schedulability analysis (Section 5.4.3), while deriving a sufficient condition

remains an open problem. Second, the current design of Zygarde does not schedule the wake-up

cycles of the system. Instead, it reactively wakes up (and shuts down) based on the harvested

energy/input voltage. Because of this, the system often misses capturing the events as it might

be in power down state. By learning the event pattern and incorporating the probability of job

arrivals into the scheduling framework, this problem can be addressed. Third, the queue size has a

significant effect on the scheduler. Due to memory limitations, I cannot implement a longer queue

(in Section 5.7, the queue size is 3). If the queue size is smaller (e.g., 1), the scheduler will only

schedules the mandatory portions.

5.10 Summary

This chapter introduces a deadline-aware DNN runtime framework for intermittent systems. It

devises a single metric, η-factor, that demonstrates the probability of a energy harvesting system. If

eta is low, then the system is random, and high eta means the system is predictable. In summary,

eta measures how close a harvester’s harvesting pattern is to a constant energy source. It proposes a

DNN construction and execution technique which adapts the DNN inference process at runtime, and

decreases the execution time by 5%-26%. Finally, it utilizes the η factor and the adaptive execution
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framework of a DNN to devise an online scheduling algorithm for batteryless systems that successfully

schedules 9%-34% more tasks than traditional scheduling algorithms. I also derive a necessary

condition for scheduling real-time imprecise DNN tasks on intermittently-powered systems.
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CHAPTER 6

Persistent System Emulation with Distributed Intermittent System

Despite these commendable efforts to make intermittent systems suitable for time-sensitive

applications, these approaches can only guarantee sensing and timely execution when the energy

intermittence is not for a prolonged period. Current intermittent systems fail to sense and process

target events that occur during a power failure. This drawback limits intermittent systems’ potential

in continuous monitoring and fault intolerant application domains, e.g., breath monitoring for

respiratory diseases, which affects more than one billion people every year.

(a) (b)

Figure 6.1: Correlation between energy source and data source. (a) The source of data and energy is the
same, (b) The sources of data and energy are different.

Two primary factors make it challenging for the intermittent systems to guarantee target event

sensing and timely execution. The first one is the dynamic and uncontrollable nature of most

harvestable energy sources. To reduce this uncertainty, Chapter 5 and Chapter 4 predicts the energy

source’s predictability and schedules tasks to ensure that the maximum amount of tasks finishes

within the deadline. Other works like ACES [52] use reinforcement learning to determine the optimal

duty cycle based on the source’s harvestable energy. However, none of these works can guarantee

target event capture or timely execution when the intermittence duration is high.

A batteryless computing system can effectively learn and classify physical world events when

the presence of energy implies (mathematical implication) the presence of data. Though target
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events only occur when energy is present, is true for scenarios where the source of energy and

source of target event is the same (e.g., solar-power UV ray monitor), this becomes false when the

source of energy and target event is different (e.g., solar-powered car detector). The first scenario

is comparatively common in passive event detection systems where an external signal wakes up

the system and triggers it to start sensing and computing. Most of the existing works on event

detection using an energy harvesting system uses such passive event detectors. For example, when a

solar-powered device is used to observe the UV emission of the sun, the sun is the source of both

power and data, as shown in Figure 6.1a. On the other hand, the second scenario requires active

event detection, where the system uses a pooling system to wake itself up to sense and detect the

event. Many applications, including air quality monitoring, noise detection, preventive machine

maintenance, require active sensing to capture the target system. For instance, Figure 6.1b uses

solar energy to analyze an acoustic environment. Here, the source of data and the source of energy

are different, but data (sound) is always present, though the energy source (sun) is not. If the active

system’s wake-up period and event occurrence are not synchronized, the system missed the target

event. However, the occurrence of the target event is non-periodic and hard to predict. As none of

the existing work takes the event’s sporadic nature into account, despite all the efforts, these systems

fail to capture all the target events for computation when the energy source and event sources are

independent.

To address this limitation, in this chapter, I propose Falinks, which is the first framework that

uses a swarm of intermittent nodes to prolong the collective power-on period without communication.

Falinks allows each intermittent node of the distributed swarm of intermittent nodes to predict

other nodes’ environment and behavior without communicating with each other and decide whether

to wake up or go to sleep. Falinks aims to mimic a persistently powered node’s performance by

ensuring that at least one intermittent node is active at any point in time. As a result, it avoids

missing any target event without performing any prediction about the event occurrence. Through

Falinks, I make four technical contributions:

• First, I propose scheduling algorithms that enable distributed intermittent nodes to emulate a

persistently powered node without any communication collaboratively. I propose a Duty-Cycle

algorithm when all the swarm nodes get the same energy from a constant energy source. I also

86



derive the minimum number of required nodes for such a system with proof.

• Second, I devise the Prime-Coprime algorithm that imitates a persistent node when each swarm

node gets different energy from a constant energy source. Moreover, I propose a minimal

overhead rule-based algorithm (Prior Knowledge algorithm) for scenarios where the different

energy levels at each node are known a priori to other nodes. I prove the optimality of the

proposed algorithm.

• Third, I formulate variable energy source scenarios as a Partially Observable Markov Decision

Process (POMDP). I further propose different heuristics for updating the states with the

varying source. I further provide theoretical proofs behind the proposed algorithms.

• Finally, I design a controllable cascading capacitor array where the microcontroller controls

each capacitor’s charging and discharging. This capacitor array allows each intermittent

node to borrow harvested energy from previous charging cycles and eliminates the mutual

exclusiveness when the available energy to harvest is smaller than the consumed energy. By

doing this, the system harvests maximum energy at any condition.

To evaluate Falinks, I identify three significant performance metrics – schedulability, redundancy,

percentage of inactive time, and mean time to non-ovservability. I collect real-life energy traces from

solar and RF, event occurrence traces from passing vehicles, and event detection workload traces

from a deep neural network-based acoustic event detector running on an MSP430FR5994. Besides

executing acoustic sensing and event detection, this microcontroller also executes system tasks, e.g.,

maintaining clocks and monitoring energy.

I compare FALINKS with a greedy approach and a reinforcement learning-based approach,

ACES, that determines the duty cycle for waking up in simulation and trace-based experiments.

FALINKS, on average, achieves 58.50% more schedulability than a single intermittent node, 54.40%

more schedulability than a greedy swarm of intermittent nodes, and 35.73% more schedulability

than a swarm of nodes where each node practices ACES. Though nodes practicing ACES performs

better than greedy nodes, it experiences 1.4–12.59 seconds more mean time to non-observability.

In real-world scenarios, Falinks achieves 41.17% higher schedulability and 69.7% lower redundancy

than a swarm of greedy intermittent nodes.
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6.1 Motivation

6.2 Problem Formulation

This section first states the goal of Falinks and then it describes the challenges that hinder the

fulfillment of the said goal. Next it establishes different cases based on the different types of energy

sources and target events. Finally, it provides the problem statement and assumptions for designing

and developing Falinks.

6.2.1 Goal and Challenges

Goal. Our goal is to develop an intermittent system with similar sensing and on-device computing

capabilities of persistently-powered systems and replace battery-powered systems with batteryless

systems.

I identify and describe two most significant challenges for achieving this goal – – (1) high energy

consumption and time-synchronization issues of communication, and (2) limitation of capacitor

charging.

Communication Challenge. For a swarm of intermittent nodes to operate collaboratively, either

a central node or all nodes require to know the harvestable energy status and current action (sleep

or awake) of the other nodes to decide for everyone or themselves. The nodes can communicate

either with active radio or passive radio, e.g., backscatter [247], to share this knowledge. However,

communicating with active radio consumes high energy [8], increasing the energy overhead, and is

unsuitable for such frequent knowledge transfer. Moreover, as the intermittent nodes cannot keep

the active radio turned on, they require performing duty cycling. Such duty-cycle communication

requires precise time synchronization, ranging from nanosecond to millisecond precision [248]. Such

precise time synchronization is hard to achieve in intermittent systems despite recent efforts [249].

This obstacle is more significant for intermittent systems as they stay awake for a short time.

One solution might be to use passive backscatter radios, which do not require any energy to

communicate. First, let us consider the scenario using the centralized approach where a single

intermittent node gains the energy and activity knowledge from the other nodes decides for them.

Though intermittent nodes may transmit their status with backscatter, the central node needs

to have an active radio to receive the information, and it is unsuitable for an intermittent node.

Moreover, each intermittent node also needs to listen to the individual decided action from the
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central node, which is not suitable with backscatter radios. For similar reasons, taking a distributed

approach where all nodes share their status and decide their action is not viable. Besides, conflict

during wireless packet transmission is another major issue for such a system.

To avoid these issues, I aim to develop a framework where the intermittent nodes do not

directly share their activity or energy conditions. Instead, they predict it from prior knowledge and

environment.

Capacitor Charging Limitation. Capacitor size plays a crucial role in the performance of an

intermittent system. Though smaller capacitors are more responsive than larger ones, they are often

not sufficient for computationally expensive tasks, e.g., capturing audio, processing data, executing

inference, and wireless data transmission. On the other hand, though larger capacitors can fulfill

such emergy demands, they require a longer time to reach the operating voltage and thus are less

responsive. Moreover, smaller capacitors also experience saturation where the capacitor is already

full and can not harvest available energy. To balance between capacity and responsiveness while

determining capacitor size reconfigurable capacitor array has been proposed. This capacitor array

reconfigures the storage capacitance based on the energy demand of the next task. However, it does

not consider (1) how to increase the energy storage even when there is abundant harvestable energy,

and (2) the mutual exclusiveness of charging and discharging the capacitor when the harvestable

energy is less than the consumed energy. The proposed storage architecture is more suitable for

greedy approaches, which discharges immediately after harvesting sufficient energy. As a result, it

wastes potential harvestable energy.

Inspired by reconfigurable capacitor storage and cascading remanence timekeeping system, I aim

to develop a software-controlled power management system using a capacitor array that can charge

the remaining capacitor while draining a subset of capacitors.

6.2.2 Considered Energy Sources and Target Events

Target Energy Sources. Based on the different categories of energy sources described in Chapter 3,

I identify four cases – constant & balanced energy source, variable & balanced energy source, variable

& balanced energy source, and variable & unbalanced energy source.

Target Events. I classify target event into two types based on the accessibility of the event to the

nodes in the swarm – global event and local event. When an event is global, all the nodes in the
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swarm can sense the event. For example, a gunshot is loud enough to be heard by all the sensors in

a house. On the contrary, if only a subset of active nodes can sense an event, it is a local event. For

example, only nodes near a person can sense his/her irregular breathing.

Note that whether an event is global or local depends not only on the event but also on the

node’s placement or range. To illustrate, if the sensor nodes are placed in different neighborhoods,

then the gunshot in a neighborhood cannot be heard by the sensors in other neighborhoods, and in

this case, a gunshot is a local event.

6.2.3 Problem Statement and Assumption

Problem Statement. Given N intermittent nodes, how to schedule the duty cycle of the nodes,

such that at least one intermittent node is present at any point in time. Here, N is the optimal

number of intermittent nodes needed to satisfy this constraint.

Assumptions.

•A1. The target event is global, which means that all the intermittent nodes can sense and process

the target event.

•A2. The position (location and orientation) of the intermittent nodes are predetermined. At each

position, only a limited number of nodes can be placed. The assumption is that there can be only

one node at any location due to the physical constraints.

•A3. No communication is available among the intermittent nodes.

6.3 Scheduling Algorithms for Collaborative Intermittent Nodes without Com-
munication

This section, first, provides an optimal solution to solve the problem mentioned above. Then, it

describes the algorithms with the necessary proofs for each of those cases. These algorithms satisfy

all the assumptions mentioned in Section 6.2.3.

6.3.1 Falinks Optimal Algorithm

For deducing the optimal algorithm, I assume that each intermittent node knows the harvestable

energy for all other intermittent nodes as prior knowledge or perfect estimation for the optimal

solution. The estimation process may include exploration of physical phenomenon (e.g., path loss

models) and known or predictive energy source variation. Each node utilizes this knowledge and

calculates the action of the other nodes to decide its action. Each node dynamically sleeps or wakes
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up using rule-based decision making. The rule is as following – the node with the maximum total

harvestable and stored (in the energy storage) energy is awake at any point in time.

Theorem 1. If the harvestable energy for all other nodes is known, only waking up the node with

the maximum total harvestable and stored (in the energy storage) energy is optimal.

Proof of Theorem 1. I proof this using contradiction. I assume that intermittent node Ii (i =

1, 2, ..., N) has total energy E1 = EH1 + EC1 , where EHi and ECi are the harvestable energy and

energy stored for the ith intermittent node. Let Im be the node with the maximum total energy or

Em = max(Ei), for ∀i ∈ N . Let us assume that waking only Im up is not optimal. Thus there is

another node Ip which is optimal to wake up where Emin < Ep < Em, where Emin is the energy

consumption rate.

Em > Ep can occur is two ways – either EHm > EHp or ECm > ECp . If EHm > EHp and only

Ip wakes up while all the other node asleep, Ep′ = Ep − Emin + EHp and Em′ = Em + EHm . As

EHm > EHp , Em
′ > Ep

′, Em will keep increasing and will reach the maximum capacity of the energy

storage. Then, Im will fail to harvest available harvestable energy and as a result it will waste

potential energy. Similarly, when ECm > ECp , the energy storage of Im will fill up quicker resulting

in wastage of harvestable energy. As wastage of potential energy is never optimal, waking up Ip is

not optimal. This contradicts our assumption and prove that waking Im is optimal. �

As prior knowledge or perfect estimation of the harvestable energy at other nodes is realistic,

calculating all other nodes’ decision is computationally expensive. Therefore, this optimal solution is

not feasible.

6.3.2 Case 1: Constant and Balanced Energy Source

Before digging into the problem, I start with the most trivial case where all intermittently

powered nodes have the same energy harvestable energy at all the time. In other words, the energy

is constant and balanced. To achieve the goal of having at least one active node at any given point

in time, I propose using a Falinks Duty-Cycle algorithm.

Falinks Duty-Cycle Algorithm. If th is the harvesting time and te is the execution time, the

duty cycle of the nodes are te + th (if th is divisible by te) or te + th + 1 (if th is not divisible by te).

The start time of the nodes is determined by an offset: (n− 1)te, here n is the number of node.

Theorem 2. When the energy source is constant and balanced, at least n nodes are sufficient to
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have at least one node active at any time, where n = d teth e.

Proof of Theorem 2. I proof this theorem using induction.

Null Hypothesis: n = 1 is possible, if and only if th ≥ te. When th ≥ te, the each node always

have sufficient energy and never go through power of period. As a result, a node will always be

active in this condition and having one node is sufficient.

Induction Hypothesis: Let us assume that when n = k, there exist sufficient number of nodes to

have at least one active node at any time.

Inductive Step: Let us assume that when n = k + 1, the n nodes are not sufficient to have at

least one active node. The value of n increases when either te increases by at most th units or th

decreases by at least te units. As the task executed by a node is fixed, te is constant. There n

increase only when th decreases by at least te units and it introduces th amount of time when no

node have sufficient energy to be active. As th < te, one node can execute for te time and can ensure

that a node is active at any time. Therefore, as n = k nodes are sufficient, n = k + 1 nodes are also

sufficient.

Conclusion: Since both the base case and the inductive step have been proved as true, by

mathematical induction n = d teth e are sufficient to have at least one node active at any time. �

6.3.3 Case 2: Constant and Unbalanced Energy Source

Similar to the previous case, in this case, the harvestable energy is constant at any time. However,

harvestable energy is unbalanced, and thus the amount of harvestable energy at each node varies.

This case needs to consider the lowest available harvestable energy as the harvestable energy for

all nodes to apply the Falinks Duty-Cycle algorithm. However, it is not efficient as I will require a

higher number of intermittent nodes.

Theorem 3. When the energy source is constant but unbalanced, Falinks Duty-Cycle algorithm is

not optimal.

Proof of Theorem 3. I proof this theorem using contradiction. Let us assume that the Falinks

Duty-Cycle algorithm is optimal when the energy source is constant but unbalanced. In the Falinks

Duty-Cycle algorithm for unbalanced harvester, using the lowest value to calculate the duty cycle

will ensure that at least one node is active. Taking the highest or average value is not suitable due

to the lack of guarantee. However, the nodes with higher harvestable energy will waste energy as
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their energy storage will get charged faster. If these nodes have small duty-cycles, the total number

of nodes required to ensure one active node at any time can be reduced. It contradicts our earlier

assumption that the Falinks Duty-Cycle algorithm is optimal. Thus, when the harvestable energy is

constant but unbalanced, the Falinks Duty-Cycle algorithm is not optimal. �

Falinks Prime-CoPrime Algorithm. To address this, instead of using the same duty-cycle for

all nodes, I propose a new algorithm that provides the duty cycle based on the prime and co-prime

numbers. I name it the Falinks Prime-CoPrime algorithm. This algorithm is optimal and can ensure

that at least one node is active at any time using the minimum number of nodes.

1. Take all the prime numbers P = {p1, p2, ..., pi} where ∀i ∈ R, T0 ≤ pi ≤ TH . Here, T0 is the

lowest duty cycle possible at any location, and TH is the hyperperiod.

2. Use the Sieve of Eratosthenes to determine the rest of the duty-cycles larger than T0 and are

not divisible by P .

Figure 6.2: Falinks Prime-CoPrime algorithm with duty cycle of prime numbers. Here, the lowest duty-cycle
is 2, the hyperperiod is 20.

Theorem 4. When the energy source is constant and unbalanced, the minimum number of inter-
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mittent nodes required to ensure that at least one intermittent node is present at any time-instance

within a hyperperiod, T, can be given by total number of primes smaller than or equals to T. Here,

the smallest allowed duty-cycle is 2.

Proof of Theorem 4. Lets assume that for every prime number smaller than or equals to hyperperiod

(T), if there exists an intermittent node with prime duty cycle, then not all the time instances does

not have an active node.

Each number smaller than or equal to T can either be a prime or non-prime. Moreover, as the

nodes are co-prime each duty cycle will be unique. If the time instance represents a prime number

then there is an intermittent node with prime duty cycle and thus exactly one node will wake up at

those point.

Next, I observe the case where the time instance represents a non-prime number. For a non-prime

number, q = mn must be true, where 1 < m,n < q. By induction, as m, n are smaller than q, they

must each be a product of primes. Therefore, q is also a product of prime. Therefore the there will

be p actives nodes at q time where p is the number of unique primes factors of q. For example, if

the time instance is 12, there will be 2 active nodes having duty-cycle 2 and 3.

This contradicts our assumption. Thus, there is at least one active nodes in hyperperiod T, if N

nodes are present where N is the number of primes less than equals to T and each node’s duty cycle

is a prime number smaller than or equals to T and they are co-prime. �

6.3.4 Case 3: Variable and Equal Energy Source

As the harvestable energy at any node is equal in this scenario, each node knows precisely

the other node’s harvestable energy. Thus, this case can use the optimal algorithm described in

Section 6.3.1.

6.3.5 Case 4: Variable and Unequal Energy Source

In this scenario, the harvestable energy varies with time and location. To address this, I determine

all the permutation of the duty-cycles from the Falinks Prime-CoPrime Algorithm. Every node start

the process from the same index number of the list. However, depending on the changing harvestable

energy they change the index.

A Dec-POMDP is a tuple {N,S,A, T,R,Ω, O, h, b0}, where

• N = {1, .., n} is the set of n agents,
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• S is the finite set of states s,

• A is the set of joint actions a = {a1, .., an},

• T is the transition function that specifies Pr(st+1|st, at),

• R(s, a) is the immediate reward function,

• Ω is the set of joint observations o = {o1, ..., on},

• O is the observation function: Pr(ot+1|at, st+1),

• h is the horizon of the problem,

• b ∈ ∆(S), is the initial state distribution at time t = 0.

Dec-POMDP aims to find an optimal joint policy π∗ that maximizes the expected sum (over

time-step) of rewards. I do not use the discounted summation of the rewards as performing a task

sooner does not benefit our goal. Instead, having at least one intermittent node active all the time is

more critical. The significant difference between multiagent MDP and Dec-POMDP frameworks

is that the joint policy is decentralized. π∗ is a tuple {πi, ..., pin} where the individual policy πi of

every agent i maps individual observations histories oi,t = {oi,1, ..., oi,t to action πi(oi,t = ai,t).

Though this is the most optimal method, this DEC-POMDP is a NEXP-complete problem that

is not suitable for an intermittent system. Therefore, I provide different suboptimal lightweight

heuristic to update the state diagram.

To develop our heuristics, I determine all the permutations of the duty-cycles from the Falinks

Prime-CoPrime algorithm. Every node starts the process from the same index number of the list.

However, depending on the changing harvestable energy, they change the index. Following are some

heuristics to select the next index.

Ideal Index Selection. All nodes choose the same index of the list. For a known or predictable

system, this can be achieved using a modified prior knowledge algorithm.

Random Index Selection. When a node experiences changing harvestable energy, it will randomly

choose a higher or lower index achievable by the harvestable energy. I perform this selection using a

variant of the binary search method where instead of selecting the middle point, selects a random

point in the range.
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Incremental Index Selection. In this method, using the local harvestable energy, the node

chooses the immediately higher or lower index.

Suboptimal Reinforcement Learning. In this method, each node tracks the change in the

harvestable energy and takes the benefit of the prior knowledge about how the energy change across

locations are related. This prior knowledge will come as an offline state diagram denoting how

indexes can be changed based on energy. Each node will use the same state diagram to select the

next index. When the environment can provide feedback based on a node’s actuation, the node

exploits it to update the offline state diagram. This algorithm is more suitable for scenarios where

the system monitors a continuous variable and failing to have any node awake at any time slot

results in a change in that variable. In such a scenario, each node will have its private Q-Table with

its energy status as a state and sleep or wake up as action. Each node takes decisions from the

Q-table and updates the table using the feedback from the continuous variable. Note that this is a

suboptimal solution.

6.4 Software Controlled Cascading Capacitor Array

The cascading capacitor array has a switch between the harvester and each supercapacitor of

the capacitor array for controlling the supercapacitor charging cycle. It also has a switch between

each capacitor and the processing unit to control the supercapacitor discharging cycle. With these

switches, the system controls which supercapacitors to charge and discharge at any point in time

and ensure that charging (harvesting) and discharging (computing) can coincide when energy allows.

The microcontrollers use GPIO pins to control the switches.

This cascading capacitor array has two types of switches – default-On and default-Off. The

default-On switch is initially on to allow the circuit to work from a cold start by enabling at least

one charging capacitor when the microcontroller fails to power up. This switch uses a P-Channel

Metal Oxide Silicon Field Effect Transistor (MOSFET) [250] that activates immediately without any

control signal from the microcontroller. The microcontroller can deactivate the p-MOSFET with

digital signals from the GPIO pin.

The default-Off switch follows a similar design on SmartOn [251]. This switch disconnects

the supercapacitor from the harvester or the processor unit when the system restarts. Only the

microcontroller can activate these switches using the GPIO pins.
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Figure 6.3: System with Software Controlled Cascading Capacitor Array.

6.5 Simulation-Based Evaluation

This section first defines the baseline algorithms and performance metrics. Then, it describes the

synthetic dataset. Next, it compares Falniks algorithms’ performance against baseline algorithms

using the described synthetic taskset and harvestable energy patterns. For each scenario, this

evaluation reports the average of 1,000 iterations for different time duration – one day, one week,

two weeks, and one month.

6.5.1 Baseline Algorithms

Two baseline scheduling algorithms are – greedy scheduling algorithm and automatic configuration

of energy harvesting sensors (ACES) [52] algorithm. This evaluation considers two different variants

of each of these algorithms – a single intermittent node and a swarm of intermittent nodes. In the

second scenario, each code executes a local scheduling algorithm due to the lack of communication.

To preserve the evaluation’s integrity, every algorithm with a swarm of nodes has the same number
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of member nodes.

Greedy Scheduling Algorithm. In the greedy scheduling algorithm, the node wakes up whenever

it accumulates enough energy to power the microcontroller. This intermittent node then executes as

long as sufficient energy is present in the energy storage. Then the node goes to sleep or low-power

mode until the energy storage stores the required energy.

Automatic Configuration of Energy Harvesting Sensors (ACES). Automatic Configuration

of Energy Harvesting Sensors (ACES) [52] uses reinforcement learning to maximize each intermittent

nodes sensing performance. Using Q-learning at each node for determining their duty-cycle. In this

method, each node chooses between four duty-cycle periods – 15 seconds, 1 minute, 5 minutes, and

15 minutes. Every 15 minutes, the reinforcement algorithm observes and changes the duty-cycle if

needed.

6.5.2 Performance Metrics

The performance of Falinks depends not only on the number of sensed events but also on the

number of computed events within the deadline. Besides, having multiple nodes active at the same

time wastes resources. Thus, I propose four different performance metrics to compare Falinks against

the baseline algorithms – (1) schedulability, (2) redundancy percentage, (3) redundancy degree, and

(4) mean time to non-observability.

Schedulability. In real-time systems, schedulability is a scheduling algorithm’s ability to schedule

all the tasks in the taskset. As the performance also depends on the number of sensed events, I

redefine schedulability as follows– Given a scheduling algorithm that schedules wake-up and sleep of

intermittent sensor nodes, if all energy and event combinations can be sensed and inferred, I achieve

100% schedulability. Though I desire 100% schedulability, if a scheduler can sense and infer 50% of

the combined set events, the scheduler has 50% schedulability.

Redundancy Percentage. To optimally simulate a persistently powered system with multiple

intermittently powered system, only one intermittent node needs to be active at any point in time.

For designing an optimal system, I also want to measure the percentage of time more than one node

was active. I define redundancy degree as the percentage of active time more than one nodes are

active.
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Redundancy Degree. Along with the percentage of redundancy, the performance metric includes

the degree of redundancy, demonstrating a system’s efficiency. The redundancy degree is the maximum

number of nodes active at the same time within a duration. Here, the considered durations are –

one day, one week, two weeks, and one month.

Mean Time to Non-observability. The final performance metric for assessing Falinks is mean

time to non-observability. Non-observability means that the intermittent node was not able to sense

any event due to power failure. Mean time to non-observability denotes the average value of the

continuous non-observability time or the continuous power-off time.

6.5.3 Source, Event, and Taskset

Synthetic Energy Source. For evaluating the performance of Falinks, this section considers

three types of energy sources – constant and balanced, constant and unbalanced, and variable and

unbalanced. Despite defining four types of energy sources in Section 6.2.2, this evaluation does

not consider the variable and balanced energy sources because it is similar to the constant and

unbalanced with prior knowledge. For all the sources, the randomly selected harvestable energy

ensures the presence of three cases –

1. when the harvestable energy is greater than the energy consumption rate of the task,

2. when the harvestable energy is smaller than the energy consumption rate of the task, and

3. the harvestable energy is equal to the energy consumption rate of the task.

For variable energy sources moves in different patterned paths in different speed. As a result, the

harvestable energy varies for different nodes based on various path loss models.

Synthetic Events. The synthetic event dataset contains 1,000 randomly generated sporadic events.

The maximum allowed period, the minimum allowed period, the maximum duration of an event,

and the event’s minimum duration are the input to the random event generator. After getting the

input, the random event generator generates events with a random period, which is the minimum

difference between the beginning of two consecutive events and random event duration. The randomly

chosen event duration is always at least equal to the period to avoid the occurrence of two events

simultaneously. This generator also provides each event’s start time by adding a random variable
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between zero and the chosen period with the chosen period to introduce sporadicity. Note that all

events are considered global, and thus all the intermittent nodes can sense them.

Synthetic Computing Tasks. All intermittent nodes in the swarm perform the same task when

it captures the event. The synthetic computing task dataset consists of 1,000 randomly generated

computing tasks. This random task generator determines the random energy consumption rate and

random execution time at every 1,000 iterations. During one iteration, this value is constant and

the same for all the intermittent nodes. The random execution time is between one second and the

period. The period is the upper bound as the execution time can not be greater than the period in

an implicit deadline system. The random task generator randomly chooses one of the three levels

of predefined energy consumption rates. The first two levels correspond to the two levels of power

consumption of an MSP430FR5994 microcontroller in its active mode. Additional sensors consume

more energy to operate; hence, it adds the third level to support these sensors’ activation.

6.5.4 Performance of Falinks with Constant and Balanced Energy Source

Figure 6.4 shows the schedulability of different scheduling algorithms when the energy source

is constant and balanced. In other words, the harvestable energy at each intermittent node of the

swarm is the same and does not vary with time. The x-axis of Figure 6.4 represents the number

of days, and the y-axis represents the schedulability (defined in Section 6.5.2). I observe that the

schedulability of a single intermittent node and a swarm of intermittent nodes executing the greedy

algorithm have similar performance. As the nodes have no notion of collective goal in the greedy

algorithm, multiple nodes fail to contribute to the performance. Moreover, Table 6.1 shows that

the redundancy percentage and degree of intermittent nodes’ swarm with the greedy algorithm are

high. Thus more nodes are active at the same time and consuming unnecessary energy due to lack

of collaboration.

Table 6.1: Redundancy percentage & degree and mean time to non-observability for constant and balanced
energy sources.

Redundancy Percentage Redundancy Degree Mean Time to Non-Observability
Greedy Single 0.00% 1 2.48 s
Greedy Swarm 96.31% 5 2.31s
ACES Single 0.00% 1 19.07 s
ACES Swarm 38.05% 3 17.36 s
Falinks Optimal 0.00% 1 0.13 s
Falinks Duty-Cycle 0.00% 1 0.17 s
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Figure 6.4: Schedulability comparison for constant and balanced energy source.

On the other hand, though a single node with the ACES algorithm has similar performance,

Figure 6.4 shows that a swarm of intermittent nodes executing ACES has higher schedulability as

each node updates their action (duty-cycle) using reinforcement learning. The schedulability also

increases with time as the reinforcement learner learns. However, the mean time to non-observability

is high when executing the ACES algorithm because of the predefined duty cycles. Finally, the

swarm of intermittent nodes with Falinks Optimal and Falinks Duty-Cycle algorithms has 99.97%

schedulability, where some of the loss of schedulability happens due to the failure in processing all

the sensed tasks rather than missing the events. They also demonstrate 0% redundancy and minimal

mean time to non-observability, as shown in Table 6.1.

Table 6.2: Redundancy percentage & degree and mean time to non-observability for constant and unbalanced
energy sources.

Redundancy Percentage Redundancy Degree Mean Time to Non-Observability
Greedy Single 0.00% 1 1.48 s
Greedy Swarm 96.71% 5 1.31s
ACES Single 0.00% 1 13.07 s
ACES Swarm 38.04% 4 12.75 s
Falinks Optimal 0.00% 1 0 s
Falinks Duty-Cycle 0.00% 1 1.58 s
Falinks PrimeCoPrime 5.45% 3 0.17 s

6.5.5 Performance of Falinks with Constant and Unbalanced Energy Source

Figure 6.5 shows the schedulability of different scheduling algorithms when the energy source is

constant and unbalanced. Along with the scheduling algorithms shown in Figure 6.4, Figure 6.5
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Figure 6.5: Schedulability comparison for constant and unbalanced energy source.

shows the Falinks PrimeCoPrime algorithm’s schedulability. The increase of schedulability of nodes

with ACES is significantly higher in Figure 6.5 than in Figure 6.4. This increase happens because

each node learns its harvestable energy and chooses its duty cycle, which might differ. Though the

Falinks Duty-Cycle’s redundancy is 0% in Table 6.2, the schedulability decreases as each node’s

harvestable energy varies. Note that every system has the same number of nodes (besides the single

cases) determined by the Falinks Optimal scheduler for a fair comparison. The Falinks Duty-Cycle

algorithm can achieve optimal schedulability if it considers the minimum available harvestable energy

to determine the duty-cycle and number of nodes at the cost of a higher number of nodes. The

Falinks PrimeCoPrime algorithm achieves 1% less schedulability and 0.17 seconds more mean time to

non-observability than Falinks Optimal on average due to insufficient time to execute a task in nodes

with lower duty-cycle. The Falinks PrimeCoPrime algorithm has higher redundancy percentage and

degree as several numbers have multiple prime numbers as factors.

6.5.6 Performance of Falinks with Variable and Unbalanced Energy Source

Figure 6.6 shows the schedulability of different systems executing greedy, ACES, Falinks Optimal,

Falinks Duty-Cycle, Falinks PrimeCoPrime, and three online variants of Falinks PrimeCoPrime

algorithms. These online variants are – Random Index Selection for Falinks PrimeCoPrime (Falinks

PrimeCoPrime Random), Incremental Index selection for Falinks PrimeCoPrime (Falinks Prime-

CoPrime Incremental), and Suboptimal Reinforcement Learning based Index Selection for Falinks
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PrimeCoPrime (Falinks PrimeCoPrime RL). In Figure 6.6, the schedulability of the Falinks Optimal

algorithm decreases compared to the previous scenarios. The unknown variation of the harvestable

energy causes jobs to miss their deadline, resulting in this decrement in schedulability. This unknown

variation also causes energy scarcity, resulting in the increment in the mean time to non-observability

of Falinks Optimal in Table 6.3.
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Figure 6.6: Schedulability comparison for constant and unbalanced energy source.

Table 6.3: Redundancy percentage & degree and mean time to non-observability for variable and unbalanced
energy sources.

Redundancy
Percentage

Redundancy
Degree

Mean Time
to

Non-Observability
Greedy Single 0.00% 1 1.36 s
Greedy Swarm 70.53% 7 1.29s
ACES Single 0.00% 1 11.01 s
ACES Swarm 40.80% 4 13.88 s
Falinks Optimal 0.00% 1 1.2 s
Falinks Duty-Cycle 0.00% 1 2.45 s
Falinks PrimeCoPrime 5.49% 3 1.81 s
Falinks PrimeCoPrime Random 21.71% 4 2.78 s
Falinks PrimeCoPrime Incremental 23.00% 3 1.96 s
Falinks PrimeCoPrime RL 6.41% 3 1.91 s

As the harvestable energy varies for each data point, Falinks PrimeCoPrime does not achieve

similar schedulability as the Falinks Optimal, as shown in Figure 6.6. However, when each node

independently performs random index selection to accommodate this changing harvestable energy,

the schedulability decreases by 12.21% on average, and the redundancy degree increases to 4. Though

Incremental changes of the indexes introduce minimal performance, Falinks PrimeCoPrime RL
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achieves only 3% less schedulability, similar to the Falinks Optimal on average. Using the prior

knowledge about the relation of the harvestable energy among the nodes and continuously learning

from the feedback, Falinks PrimeCoPrime RL achieves this significant improvement. Despite having

a higher redundancy degree than Falinks Optimal and 45% more mean time to non-observability,

Falins PrimeCoPrime RL shows redundancy only 6.41% of the time.

6.6 Real world Evaluation

This section evaluates the performance of Falinks in a real world setting using energy and event

traces from real datasets.

6.6.1 Experimental Setup

Baseline Algorithms and Performance Metric. I use the same baseline algorithms and

performance metric as Section 6.5.2. However, this section does not include the Falinks Prior

algorithm for evaluation as it requires power-hungry communication, which will result in lower

schedulability in real-world scenarios.

Source. The solar energy trace from the Section 4.6.1 of Chapter 4 is reused as the source energy

trace in this evaluation.

Events. This evaluation uses the Detection and Classification of Acoustic Scenes and Events

(DCASE) 2018 challenge "Large-scale weakly labeled semi-supervised sound event detection in domestic

environments" evaluation dataset. This dataset contains more than 2 hours of acoustic data with ten

types of events. These ten types of events are – alarm bell ringing, dogs, cats, dishes, speech, frying,

running water, blender, vacuum, and electric shaver. There is 3328 occurrence of events during this

2.14 hours. The maximum duration of an event is 10 seconds, and the minimum duration is 0.25

seconds. Multiple events coincide in this dataset, and this evaluation only considers the six types of

events whose average durations are less than five seconds to reduce the concurrent occurrence of

multiple events. The five considered events are – alarm bell ringing, dogs, cats, dishes, speech, and

blender. These events’ average duration is – 2.12 seconds, 1.50 seconds, 1.60 seconds, 0.64 seconds,

1.49 seconds, and 4.97 seconds. This subset has 3003 events with 307 alarm bells ringing, 450 dogs,

246 cats, 445 dishes, 1499 speech, and 56 blender audios.

Taskset. The taskset of this evaluation consists of a deep neural network-based acoustic event

detector running in an MSP430FR5994 microcontroller. This detector consists of one convolution
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layers and two fully-connected layers along with max pool and batch normalization in between. The

runtime of this acoustic event detector is 3.89 seconds, and it consumes 26.72 mJ energy.
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Figure 6.7: Schedulability comparison in real world scenario.

Table 6.4: Redundancy percentage & degree and mean time to non-observability for real world scenario.

Redundancy
Percentage

Redundancy
Degree

Mean Time
to

Non-Observability
Greedy Single 0.00% 1 2.69 s
Greedy Swarm 90.82% 4 2.19 s
ACES Single 0.00% 1 12.5 s
ACES Swarm 80.78% 4 12.94 s
Falinks Duty-Cycle 2.6% 2 1.16 s
Falinks PrimeCoPrime 2.1% 2 1.27 s
Falinks PrimeCoPrime Random 30.08% 3 1.86 s
Falinks PrimeCoPrime Incremental 27.51% 3 1.60 s
Falinks PrimeCoPrime RL 21.12% 3 1.60 s

6.6.2 Performance

Figure 6.7 demonstrates the schedulability of Falinks PrimeCoPrime RL and Falinks PrimeCo-

Prime Incremental is almost identical with less than 1% difference. Falinks PrimeCoPrime Incremental

performs better than Section 6.5 here due to the incremental changes in the harvestable energy trace.

Despite the similar schedulability, redundancy degree, and mean time to non-observability (as shown

in Table 6.4), the redundancy percentage of these two algorithms due to the more tailored increment

by the Falinks PrimeCoPrime RL algorithm. Though these two algorithms’ average schedulability is

65%, they only missed 24.91% of events on average. The lower schedulability occurred due to failure

in completing jobs within the deadline. Though Falniks Duty Cycle did not have any redundancy
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percentage in the simulation-based evaluation in Section 6.5, Table 6.4 shows some redundancy

percentage in this scenario. It occurs due to the synchronization error of the timekeepers.

6.7 Discussion

6.7.1 Example Use-case Scenarios of Falinks

This section describes three example applications of Falinks: (1) preventive machine maintenance

in extensive facilities, (2) methane detection and monitoring in mines, and (3) humidity temperature

control in warehouses. All these applications continuously monitor and control a variable sensed by

the sensor systems.

Preventive Machine Maintenance. Hundred million rotating machines in factories consume

53% of the world’s electricity [252], and manufacturers lose $260,000 per hour due to machine failure

and unplanned downtime. Preventive maintenance try to maintain the machine’s optimum working

condition and prevent any unplanned downtime due to breakdown. Besides factories, continuous

monitoring and preventive maintenance of centralized HVAC systems reduce cost and save up to

30% of energy [253, 254]. Preventive maintenance of large-scale machines demands multiple sensor

nodes which can operate 24/7. Low-cost batteryless sensor nodes are perfect for such a scenario

without requiring any upfront capital expenditure or ongoing battery maintenance. These sensor

nodes will monitor machine sound, vibration, temperature, and magnetic field data and perform

on-device computing to determine the machine’s current status.

Methane Detection in Mines. By 2020, global methane emissions from coal mines are estimated

to reach 9% of the total global methane emission [255]. Methane levels can rise and fall rapidly, and

informing miners about this changing condition on time allows them to respond quickly. An effective

methane monitoring system will indicate a methane concentration of 1% before the surface’s methane

levels reach 5% [256]. I envision using batteryless methane sensor nodes, which will continuously

collect methane gas readings and calculate the concentration. If the methane levels are 1% or higher,

they will inform the miners, who will remove methane through ventilation systems [255].

Humidity and Temperature Control in Warehouses. Temperature and humidity can have a

significant impact on the condition of stored goods in a warehouse. It is necessary to maintain an

optimal temperature and humidity level (40%-50% RH) to reduce stock damage. An effective way of
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monitoring should be cost-effective, easy-to-install, maintenance-free, and continuously monitoring.

Batteryless sensor nodes are cheap, need no additional wiring, and require no battery maintenance.

Falinks provide continuous monitoring to these batteryless sensor nodes, making them suitable for

continuous temperature and humidity monitoring in every corner of a warehouse.

6.7.2 Handling Local Events

Though this chapter assumes that all events are global, in real-world scenarios, events might be

local. When events are local, a subset of intermittent nodes is capable of sensing the target event.

This intermittent node subset selection can be formulated as a wireless sensor network formation

problem, such as a topology-based network with cluster-based formation. Here the cluster formation

is done based on the predetermined subset of the nodes for the event type. Note that a single node

can belong to multiple clusters. After formulating the clusters, our proposed Falinks algorithms

apply to each cluster. It is more beneficial to select the nodes belonging to the maximum number of

clusters to select the minimum number of nodes while having at least one node from each cluster.

However, if the nodes belonging to maximum clusters is always chosen, it will soon exhaust these

nodes’ harvested energy and end up with only the non-overlapped nodes. In summary, along with

the Falinks PrimeCoPrime algorithm, which uses the node with the highest energy harvesting rate,

using the node that belongs to most clusters more frequently is effective.

6.7.3 Position of the Intermittent Nodes

As the nodes’ placement may affect their energy harvesting and sensing capabilities, it is essential

to ensure that a target event is not missed due to out of range. Intermittent nodes’ placement

depends on three factors – energy source, event source, and physical constraints. The intermittent

node placement concerning the energy source affects the amount of harvestable energy available to

that node. It directly contributes to the harvesting energy of the sensor nodes. This dissertation

focuses on scheduling pre-positioned intermittent nodes instead of looking at placing the intermittent

nodes. However, using the Falinks PrimeCoPrime algorithm, the intermittent nodes’ energy source

dependant placement can be determined. The placement of intermittent nodes for the event source

contributes to its capability of sensing the event. If the sensor is out of the sensing range, then

despite being powered on, it will fail to sense and infer the event. If all the nodes can be at the same

place as the persistent system, this might not have been an issue, but it is not physically possible.

This problem can be formed as the art gallery problem [257], a well-studied visibility problem in
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computational geometry. Due to physical and environmental constraints, nodes might have a given

placement. In such scenarios, the relation between the energy and event source is predetermined.

This chapter focuses on this last scenario.

6.8 Summary

This chapter studies the unique problem of intermittently powered systems, where the systems

fail to observe or sense the target event due to lack of sufficient energy to turn on. This chapter

takes a unique approach to the problem by considering a swarm of intermittent nodes as an entity

that collaboratively addresses the non-observability problem. However, the high communication cost

hinders this collaborative behavior by imposing no communication rule for efficiency. This chapter

proposes a Falinks scheduling algorithm that schedules the sleeping and waking up of these swarm of

intermittent nodes to keep at least one intermittent node active at any time. This way, it emulates a

persistently powered system with a swarm of intermittently powered sensor nodes.
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CHAPTER 7

Conclusion and Future Works

7.1 Conclusion

This thesis focuses on enhancing time-sensitive and inference capable batteryless mobile computing

devices; and addresses the growing need for sustainable sensing and control solutions. While

existing works on batteryless computers primarily concentrate on harvesting units, real-time clock,

intermittence management, and memory management, their timeliness, data-processing efficiency, and

self-adaptation are still unexplored. Without time-sensitivity and an efficient processing layer, these

systems fail to capture and process data within the deadline and generate irrelevant and ineffective

results. It makes batteryless systems unsuitable for a wide range of necessary applications, from

infrastructure monitoring to wildlife tracking, medical implants, and long-term health monitoring.

For example, the long-life and low maintenance of batteryless systems make them perfect for tracking

endangered wildlife (e.g., IBM’s Project Rhino [23] monitors a herd of impalas for early rhino

poacher detection). However, such a system is futile if it fails to notify the forest rangers before the

poachers reach the rhino. Besides, these extreme edge devices require sophisticated inference and

self-adaptation techniques for accurate and relevant outcomes.

This dissertation focuses on the intersection of systems and machine learning and ensure timely

response in batteryless systems while maintaining high output quality by focusing on the control

and processing layers. Chapter 5 is the first to propose adaptable machine learning approaches for

time-aware ultra-constrained and intermittently powered hardware. This dissertation achieve this

using a three-step approach: (1) understanding the physical phenomena and unique characteristics

of the application domain (e.g., studying harvestable energy patterns in Chapter 5), (2) developing

novel frameworks that leverage application-specific characteristics (Chapter 3), and (3) designing

scheduling algorithms for deadline-aware task execution in intermittent systems (Chapter 5 and

Chapter 4) and reducing non-obserservability time of intermittent systems (Chapter 6).
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7.2 Future Directions

The future of computing will reshape how everyday objects will behave and influence human life

by continuously learning human behavior, action, and environment. These everyday objects will

beneficiate healthcare, environment monitoring, wildlife tracking, agriculture, and infrastructure

maintenance. They will require life-long sensing and computing while having a small footprint, long

life, and easy maintenance. My research seeks to develop these sustainable tiny computing systems by

bringing out batteryless IoT devices’ full potential. I aim to use them to design "deploy and forget"

medical wearables and implantable that will continuously monitor health biomarkers. Another goal

focuses on biodiversity and environmental preservation by the large-scale remote deployment of

"never dying" self-sufficient sensor systems. I will split my effort into three directions – (1) integrate

artificial intelligence, and machine learning with batteryless systems; (2) make batteryless systems

adaptive to domain-specific needs; and (3) study the usability and impact of intelligent intermittent

systems on the users. My future research will address high impact topics (e.g., remote health,

biodiversity, urban infrastructure, and environment) and inspire multidisciplinary collaboration.

Integrate Artificial Intelligence with Intermittent Systems. The advancement in the in-

termittent systems has mostly emerged from the programming language and system architecture

perspectives. However, the opportunities that lie within exploring different core machine learning

algorithms for optimized performance are still unexplored. I have started investigating this avenue

with my work, Zygarde, where I proposed adaptive convolution neural networks for intermittent

systems. I want to optimize different deep neural network architectures, such as residual networks

and inception networks, for intermittent systems. Such optimization will enable the inference of

countless existing machine learning algorithms in tiny intermittent systems. Besides optimization, I

aim to explore neuromorphic computing for intermittent systems. Moreover, I see the vast potential

of self-supervised learning, active learning, and federated learning in intermittent systems that will

utilize the massive data sensed by these lifelong devices to their maximum potential.

Adapt to Domain-Specific Necessities. I aim to extend the application of intermittent systems,

which brings a new set of challenges from both the application domain and the batteryless domain.

I foresee myself working in collaboration with experts in other disciplines like health and medicine. I

aim to develop batteryless passive health monitoring wearables and implantable that can continuously
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monitor post-operative patients, elderly, and chronic patients with minimal maintenance. One of

my research goals is to collaborate with the experts in agriculture and environmental science;

and develop a network of distributed batteryless intelligent computers for smart agriculture and

biodiversity preservation by exploring distributed intermittent systems, opportunistic networking,

hybrid architecture, and organic energy sources, e.g., microbial fuel. My short-term goal is to take

my experience in respiratory monitoring, HVAC maintenance, and pedestrian safety one step further

by investigating the requirements.

Study Usability and Impact. My research goal involves developing novel intermittent systems

to improve human lives. For achieving this goal, understanding human needs and their perspective

towards these developed systems is required. Thus far, no literature exists on understanding human

perspective or studying human interaction with intermittent systems. For example, an intermittently

powered, continuous blood sugar monitoring system will be hugely beneficial for a large population,

and how this population interacts and trusts such wearables has a high impact on their health.

I aim to perform detailed studies on the user experience, domain specifications before and after

the development and deployment stages. It will pave the path to develop practical and impactful

intermittently powered systems for our society and environment. This direction of my research will

build a connection between human-computer interaction and batteryless systems. I am excited and

committed to bringing together both sides’ efforts to make intermittent systems have an immediate

and lasting impact on the real-world.
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APPENDIX A

NOMENCLATURE

A popular gameplay and anime named "Pokémon" [258] inspires the name of the algorithms in

this dissertation. Pokémon refers to 898 fictional species who live in the wild or alongside humans

and have extraordinary capabilities. This chapter describes the reasons behind each algorithm’s

name.

A.1 Zygarde

Zygarde is a dual-type Legendary Pokémon introduced in Generation VI of these anime series.

This unique Pokémon does not eat any food and harvests solar energy, which is the most common

renewable energy source. Zygarde has a Core which gathers different amount of its Cells to create

one of the three alternate forms depending on the requirements (shown in Figure A.1) – (1) Zygarde

10% Forme occurs when Zygarde Core gathers 10% of the Cells nearby, (2) Zygarde 50% Forme

occurs when Zygarde Core gathers 50% of the Cells nearby, and (3)Zygarde Complete Forme, which

is the more powerful forme where it uses all its cells.

10% Forme. 50% Forme. Complete Forme.

Figure A.1: Different Forms of Zygarde

Similar to this Pokémon, our proposed Zygarde framework in Chapter 5 harvests renewable

energy for execution and flexibly infers the necessary Deep Neural Network or DNN layers based on

the available time and energy to ensure timeliness and increase inference capability.

A.2 Celebi

Celebi is a Mythical event Pokémon introduced in Generation II (shown in Figure A.2). This

Pokémon can travel through time and exist simultaneously throughout time. It senses temporal

anomalies and resolves temporal conflicts.
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Figure A.2: Celebi.

Like its namesake, the Celebi scheduling algorithms in Chapter 4 resolve the conflicting cases

where harvesting and computing can not coincide. These algorithms determine when to harvest and

when to compute to maximize the number of computing jobs meeting deadlines.

A.3 Falinks

Falinks is a Fighting-type Pokémon introduced in Generation VIII. Falinks is a group of small,

bipedal Pokémon. A single Falinks is a formation of six individuals, who usually march in a single

file line, giving their formation the appearance of a caterpillar (shown in Figure A.3). A single

Falinks individual is not effective in battle, and thus the six members rely on teamwork as their

strategy to win battles and constantly change formation when they fight.

Figure A.3: Falinks.

Like the Pokémon Falinks, a single intermittent node is not sufficient for observing all the target

events due to the lack of sufficient energy. However, like this Pokémon, the Falinks algorithms in

Chapter 6 proposes to use a swarm of intermittent nodes who collaborative works towards emulating

a persistently powered system that can observe all target events.

113



APPENDIX B

IMPLEMENTATION DETAILS

This section describes some key implementation techniques used throughout this thesis. It will

include five key implementation components.

B.1 Installing Linux Tool Chain for MSP430

The microcontroller used in this thesis is an MSP430FR5994, which has MSP430 architecture

and belongs to a microcontroller family from Texas Instrument (TI). Building code for the target

device requires toolchain which comprises of a compiler with necessary headers, libraries and C

runtime. The details of the used toolchain is described here: https://github.com/CMUAbstract/

releases/blob/master/Toolchains.md. Following are the highlights of the steps described in the

linked document.

1. Install the Maker dependency build system from here: https://github.com/CMUAbstract/

maker.

2. Download and install the TI GCC for MSP430, a pre-built toolchain based on GCC.

3. Download and install LLVM/Clang toolchain, which compiles C down to MSP430 assembly

using LLVM’s MSP430 backend.

4. Download and install mspdebug and tilib in mspdebug to flash the binary code to micro-

controller.

5. Download Screen using a command line instruction (sudo apt install screen) to allow displaying

the output using serial port. More details about using Screen can be found here: https:

//www.hostinger.com/tutorials/how-to-install-and-use-linux-screen/.

B.2 Building, Flashing and Monitoring Code

The developed C code first needs to be built to generate application file (.out) and then flashed

to the microcontroller for execution. For debugging the serial outputs (as PRINTF) also needs to be

monitored. Following are the steps to achieve this.

1. Clean dependencies: make <directory to code>/bld/gcc/depclean
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2. Build dependencies: make <directory to code>/bld/gcc/dep

3. Build target: make <directory to code>/bld/gcc/all

4. Open the Debugger: mspdebug -v 3300 -d /dev/ttyACM0 tilib

5. Flash the Code: prog <directory to code>/bld/gcc/<output filename>.out

6. Execute the Code: run

7. Monitor Serial Output: screen /dev/ttyACM0 9600 [execute this command in a new terminal

window.]

B.3 Intermittency Management Frameworks

This thesis uses two intermittency management frameworks ALPACA [13] and SONIC [8]. The

details description of executing these frameworks are can be in the following link.

1. ALPACA: It is used for all general task loads. Code repository – https://github.com/

CMUAbstract/alpaca-oopsla2017

2. SONIC: It is built on top of ALPACA and provides specific extensions for deep neural network

(DNN) inference. Please download the dependancies individually as some of the linked urls in

the repository in outdated. Code repository – https://github.com/CMUAbstract/SONIC

B.4 Reading Sensor Data

This section includes the details of how to read data from different types of sensors:

1. Acoustic Sensor Reading: The acoustic sensing requires one ADC and two buffers in the FRAM

to store the audio signal. These two buffers work as a dual buffer or flip-flop buffer to avoid miss-

ing data. First download the software example from https://software-dl.ti.com/msp430/

msp430_public_sw/mcu/msp430/MSP-EXP430FR5994/latest/index_FDS.html. Then in the

Firmware/Source/BOOSTXL-AUDIO_RecordPlayback_MSP430FR5994/ directory you will

find the necessary codes to read audio sensor. main.c first shows the necessary circuit diagram

to connet the microphones. If you do not want to use the Audio Boosterpack or the speaker in

it, you will not need the SPI connection.
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2. Camera Sensor Reading: To read the camera sensor, we need to use both the I2C and the

SPI communications. The camera reading code can be found here: https://github.com/

cjosephson/backcam/tree/master/camera-mcu.

B.5 Timekeeping

The details of the batteryless timekeeping system can be found here: https://github.com/

TUDSSL/Botoks#documentation.
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