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ABSTRACT 

 
ANGELA ROSE BRANNON: Molecular Stratification and Characterization of 

Clear Cell Renal Cell Carcinoma 
(Under the direction of W. Kimryn Rathmell, MD, PhD) 

 
 

It is estimated that there will be 58,240 new diagnoses of kidney cancer in 2010.  

Most cases will be clear cell renal cell carcinoma (ccRCC) and have little information as 

to how their disease will progress.  This diversity of disease natural history is especially 

noteworthy in a disease so well characterized by the inactivation of the von Hippel 

Lindau (VHL) tumor suppressor and resulting stabilization of Hypoxia Inducible Factors 

(HIF). Previous studies had suggested the presence of two or more clusters in ccRCC.  

Based on the nonuniformity within the disease’s natural progression and previous 

research, we hypothesized that distinct inherent molecular subclasses of ccRCC must 

exist and, therefore, sought to define and characterize them.  In fact, two robust 

subtypes of ccRCC were identified, designated ccA and ccB.  These subtypes are 

associated with survival by multivariate analysis, conferring a median survival of 8.6 

years versus 2 years, respectively. 

 We postulated that the underlying molecular pathways within the data would 

explain the survival difference.  ccA tumors overexpress angiogenesis, hypoxia, and 

metabolism pathways, common pathways characterizing ccRCC tumors.  In contrast, 

ccB tumors overexpress more aggressive genes related to epithelial to mesenchymal 

transition, cell cycle, and Wnt targets.  VHL analysis and HIF immunohistochemistry 

suggests that neither appear to be driving subtype differences. 
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 To understand what is causing the differences, underlying genetic changes were 

analyzed.  Both subtypes show deletion of chromosome 3p, location of VHL, in greater 

than 75% of tumors, corresponding with previous research and suggesting a common 

initiating tumorigenic event. Overall, copy number patterns look very similar between the 

subtypes; however, more ccB tumors show deletion of chromosomes 9 and 14, which 

previous studies have shown to correlate with decreased survival.  Additionally, ccA 

tumors have mutations in a number of histone modification genes, suggesting that 

epigenetic modification may play a role in subtype differences. 

 Finally, a biomarker panel of 120 probes was defined to distinguish ccA and ccB 

tumors.  This panel is the basis of an assay using FFPE tissue for clinical use.  This 

assay will classify tumors into the inherent subtypes identified by this study, with 

prognostic impact and potentially predictive import. 
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Renal Cell Carcinoma 

One in 67 people will develop kidney cancer during their lifetime3, being the 

seventh leading cause of cancer in men and eighth in women in the United States4. In 

the United States alone, 2009 is estimated to bring about 57,760 new cases of kidney 

cancer, and this disease will cause the death of approximately 12,980 people.  In the 

US, the average age for diagnosis is 64 and for death is 71.  Men will bear this burden 

roughly 2 times more than women, for reasons that remain unclear.  In 2008, worldwide 

incidence was estimated at 271,348 new cases (Figure 1.1) and 116,309 deaths2.  

Incidence rates are higher in industrialized countries, possibly due to increased life 

spans, better access to diagnostic equipment, and increased obesity (see risk factors 

below).  Additionally, incidence has increased 2.9% per year from 1997-20073.   

 
Figure 1.1 Worldwide incidence of kidney cancer in 2008. 
Data calculated per country as estimated age-standardized incidence rate per 100,000 
people; both sexes, all ages. Data are unavailable for Greenland.  (Figure rights reserved 
by 2) 
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Fortunately, US mortality from kidney cancer has decreased 0.5% annually over 

that same time period3.  This decrease is predominantly caused by cancers being 

detected at an earlier stage due to increased imaging capabilities.   

Certain risk factors are associated with a predisposition to kidney cancer.  The 

strongest risk factor is a family history of von Hippel Lindau (VHL) disease.  Additionally, 

other kidney syndromes, such as cystic disease or chronic end stage renal disease 

increases risk.  As with the majority of other cancers, cigarette smoking is a major risk 

factor for the development of kidney cancer, doubling the lifetime risk for heavy smokers.  

As is emerging for many cancers, obesity is also associated with increased incidence of 

kidney cancer, but decreased mortality from localized disease5.  Being of African 

American descent increases risk by 2% compared to caucausians and Native 

Americans, while those of Hispanic origin are 2% less likely.  Asian or Pacific Islander 

confers almost half the average risk3.  Finally, certain occupational exposures, 

particularly to the organic solvent trichloroethylene (TCE), which is widely used in carpet 

cleaning, paint removing, and metal degreasing, can augment the probability of 

developing kidney cancer.  Interestingly, TCE was originally used to extract vegetable oil 

in the 1920s, and from the 1930s-1970s, TCE was used as a general anesthetic in much 

of North America and Europe.  In spite of these and other known risk factors most 

tumors arise in scenarios where an inciting factor cannot be identified. 

 For those patients who are diagnosed with kidney cancer, approximately 20% of 

them present with synchronous metastatic disease.  This stage of disease confers a 

10.6% five-year survival rate, with only about 25% survival at 2 years.  Surgical resection 

of the tumor (and often the entire kidney) for those patients with organ-defined disease is 

the only opportunity for cure.  Nevertheless, 30% of these patients go on to recur with 

metastatic disease after an apparently successful surgery.  These tumors are also 

universally resistant to radiation and traditional forms of chemotherapy, and as a result, 
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chemotherapy is only implemented for palliation.  Molecularly targeted therapies have 

become the common form of treatment, but while they increase progression free 

survival, they have not been shown conclusively to increase overall survival of patients. 

Kidney cancer can be subdivided based on histological examination to grant 

some further information about diagnosis, progression and response.  Renal cell 

carcinomas (RCCs) make up approximately 90% of all kidney cancers6, but in itself 

encompasses a heterogeneous group of cancers.  Clear cell RCC (ccRCC) is the largest 

histological subcategory, including 60% to 80% of cases, and will be the focus of this 

dissertation. Papillary and chromophobe histologies cover the majority of the other 

common subtypes. These stratifications represent highly dissimilar diseases and not 

strictly variants of RCC. Recently, an increased appreciation of the distinct biology of 

these subtypes has led to considerations of histology when managing these patients; 

however, even this major subdivision provides little immediate guidance regarding 

disease prognosis and management. Given this uncertainty, there is great need for both 

prognostic and predictive biomarkers. 

Tremendous efforts have been expended in the search for reliable indicators of 

the underlying biology of renal carcinomas. With advancing technological opportunities 

to probe the genetic and molecular underpinnings of this cancer, many critical 

discoveries have led to major innovations in RCC, including a panel of molecularly 

targeted therapies which grew directly from these discoveries. Our appreciation of the 

genetic steps contributing to renal cancer development has been broadened, although 

some of the results have been surprising. However, RCC stands apart as a notoriously 

chemotherapy-resistant cancer that has been coaxed into submission using molecularly 

targeted agents that inhibit a target far removed from the inciting genetic lesion. The 

investigations leading to these advances are reviewed here and form a roadmap for 

future cancer therapeutic developments. 
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In the setting of these advancements, modern treatment decisions and the future 

of RCC drug development will benefit greatly from increased understanding of the 

underlying tumor biology. Tremendous gains in the treatment of this cancer remain to be 

made. The state-of-the-art science of RCC is a continuously evolving topic, but one that 

promises to provide us with valuable tools for defining the unique biology of an 

individual’s tumor to inform predictions about recurrence or response to therapy for 

patient-driven clinical decisions, and to aid in the discovery of new strategies to 

effectively target this cancer.  

 

Biomarkers 

Before going further, it is important to first define biomarker terminology and the 

main categories of biomarkers that will be discussed herein.  In general, a biomarker is a 

measurable characteristic that can be used to indicate certain physiological processes or 

responses. 

1. Diagnostic biomarkers are used to determine whether a patient might have 

the disease in question.  For example, a high prostate-specific antigen (PSA) 

measure is an indicator that a man might have prostate cancer. 

2. Prognostic biomarkers provide a means to forecast the natural progression of 

the disease, i.e., whether a patient has a tumor associated with good survival 

outcome or poor survival.  Clinical measures such as performance status or 

stage meet these criteria.  Molecular measures such as Oncotype DX or 

MammaPrint have been approved for clinical use to predict survival outcome 

for breast cancer patients. 
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3. Predictive biomarkers assist in foretelling whether a tumor will respond to a 

particular treatment.  For example, when a breast tumor overexpresses 

ERBB2, it is more likely to respond well to treatment with Herceptin. 

4. There are additional biomarkers that we are unlikely to discuss fully. Risk 

assessment biomarkers are measures of the likelihood that a person will 

develop a particular disease and are generally broken down into the 

categories of exposure, susceptibility, and effect.  Pharmacodynamic 

biomarkers assess the effectiveness that a drug is metabolized or hits its 

target to help clinicians determine which dose will be most effective for a 

patient, as well as what dosage might prove toxic.  Pharmacogenomic 

biomarkers are very similar, except the biomarker tends to be expression of a 

gene or a particular single nucleotide polymorphism. 

 

Prognostic Nomograms 

In the absence of available molecular biomarkers, clinical measures have fulfilled 

the need to provide prognostic information.  In fact, there are a number of prognostic 

scoring systems to assign risk for death to ccRCC patients already in common use 

based on clinical variables. An understanding of these patient stratification schemes is 

necessary as the field moves toward the routine incorporation of molecular biomarkers 

into strategies for patient stratification. For initial prognostication of risk for recurrence or 

death following a definitive surgical procedure, the American Joint Committee on Cancer 

Tumor Node Metastasis (TNM)7, the UCLA Integrated Scoring System (UISS)8, and the 

Memorial Sloan-Kettering Cancer Center (MSKCC)9 nomograms all use clinical 

information including radiographic size and clinical performance status, and add in 

histologic information to the noninvasive clinical measures. The Mayo Clinic’s Stage, 
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Size, Grade, and Necrosis (SSIGN) algorithm further includes tumor necrosis10, and 

another nomogram from MSKCC uses all of the above and vascular invasion11. Thus, 

eventual transitions to inclusion of molecular information to the clinical scenario will be 

relatively straightforward once the most relevant molecular biomarkers emerge. 

For prognosticating survival in the metastatic setting, a metastatic disease 

MSKCC score is one of the most commonly used algorithms, incorporating blood 

measurements of hemoglobin, serum calcium, and lactate dehydrogenase, as well as 

clinical evaluation of performance status and nephrectomy status12. A similar nomogram 

was identified by the Cleveland Clinic Foundation based on an independent multivariate 

analysis13. The Mayo Clinic devised a nomogram for metastatic clear cell tumors only 

that scored patients based on symptoms at nephrectomy, bone/liver metastases, 

multiple metastases, resection of all metastases, time to progression, tumor thrombus, 

primary tumor grade, and coagulative tumor necrosis14. A recent outstanding review by 

Isbarn and Karakiewicz15 provides a complete overview of these nomograms, which are 

widely used by clinicians to provide a crude assessment of the expected survival of an 

individual patient. 

 

The pVHL/HIF axis 

The biology of the von Hippel-Lindau (VHL) gene product, pVHL, and its 

regulation of the hypoxia-inducible factor (HIF) family of dynamically regulated 

transcription factors, is indelibly linked to ccRCC biology. The discovery of the VHL 

gene, and its association with the VHL syndrome of central nervous system 

hemangioblastomas, pheochromocytoma, and ccRCC, in 199316 led almost immediately 

to the discovery that VHL mutation is tightly associated with sporadic ccRCC as well17,18.  
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The VHL protein (pVHL) is part of an E3 ubiquitin complex, which also contains 

Elongin B, Elongin C, Cullin 2, and Rbx119. Under physiologic conditions, pVHL recruits 

the hypoxia inducible factors (HIF-1α, HIF-2α, and HIF-3α variants 1-3) to the E3 

ubiquitin ligase complex leading to proteasomal degradation20-22 (Figure 1.2A). This 

recruitment requires the HIF-α subunits to be hydroxylated by prolyl hydroxylases (PHDs 

or EGLNs) on specific prolyl residues (Pro402 or Pro564) located within HIF-α’s oxygen 

dependent domain23-25. In addition to oxygen, the PHDs need iron, 2-oxoglutarate, and 

ascorbic acid to catalyze the reaction.  However, in hypoxic conditions (less than 3% 

oxygen) or when VHL is mutated, the PHDs are unable to hydroxylate HIF thereby 

inhibiting pVHL interaction. Xenograft studies have confirmed that restoration of pVHL 

expression or suppression of deregulated HIF impairs the growth of VHL deficient renal 

cell carcinoma models, verifying that VHL loss mediates renal cell carcinoma 

development via HIF deregulation26,27. 

Because of the essential role of VHL in RCC, the presence and type of VHL 

mutations in tumors have been consistently considered as possible biomarkers. Cowey 

et al.28 recently thoroughly reviewed its potential in prognosis and prediction. Further 

research is still required to establish VHL’s efficacy as a biomarker, but given the 

frequency of its inactivation, more hope may lie in looking downstream. 
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Figure 1.2 VHL/HIF Pathway 
Diagram depicting regulation of HIF by VHL (A) and subsequent transcriptional regulation of 
target genes (B).  Figure altered from one created by Neal Rasmussen. 
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When VHL is inactivated and HIF expression thereby stabilized, HIF-1α and HIF-

2α are then available to bind HIF-1β/ARNT (aryl hydrocarbon receptor nuclear 

translocator) and transcriptionally activate a variety of genes (Figure 1.2B) by binding to 

hypoxic response elements located within the gene’s promoter or enhancer29. Maximal 

activation is achieved by the additional binding of CREB (cAMP response element 

binding) protein (CBP) and p30030. HIF-3α splice variants 1-3 may also transcriptionally 

activate specific genes, but their targets have yet to be determined. A different splice 

variant, HIF-3α4, acts to dominantly negatively regulate HIF by interacting with HIF-1α, 

HIF-2α, and HIF-1β, and has been found to be downregulated in ccRCC31,32. 

Which of these transcriptionally activated factors or combination of factors 

participates in forming and maintaining the malignant phenotype of these tumors 

remains an open question. Certainly many hypoxia-responsive genes are outstanding 

candidates. One HIF target, the vascular endothelial growth factor (VEGF), has been 

found to be vastly upregulated in kidney tumors compared to its elevated expression in 

many other cancers 33,34. This growth factor contributes to the highly vascular nature of 

this tumor, acting as a mitogen for tumor endothelial cells. Multiple therapeutic strategies 

have been developed to target VEGF, neutralizing its activity as a soluble growth factor 

or inhibiting the activated VEGF receptor tyrosine kinase. Remarkably, these strategies 

have consistently demonstrated an effect of inhibiting tumor progression and have 

produced therapeutic responses 35. These breakthroughs demonstrate how much 

ccRCC remains dependent on key elements of HIF pathway activation, and that even if 

we can only target a fraction of the perturbed system, there can be tremendous clinical 

benefits. 

In addition to VEGF, both HIF-1 and HIF-2 regulate expression of other 

angiogenesis genes, such as PDGF, Ang2, Flt1, and Tie2, and invasion/metastasis 
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genes, such as CXCR4, MMP2, Lox, and PAI-1.  HIF-1 alone controls glycolytic genes 

such as Glut1, PGK, and LDHA, and the apoptosis gene BNIP3. In contrast, HIF-2 

preferentially regulates proliferation genes, such as cyclin D1 and transforming growth 

factor α (TGFα), and the de-differentiation gene Oct4 (reviewed in 36).   

We have also learned that in spite of the tremendous correlation of ccRCC with 

loss or inactivation of VHL, the effect on HIF deregulation is not uniform. Variant 

mutations in VHL may contribute to imbalances of HIF1α and HIF2α deregulation 

leading to distinct effects on cell growth 37,38. Renal tumors can in fact be characterized 

as H1H2 (expressing HIF1α and HIF2α) or H2 (expressing only HIF2α), with dramatically 

differing effects on tumor cell metabolism and C-myc regulation 39. Recent evidence 

suggests that the H2 tumors may lose HIF1α expression as a result of nonsense or 

missense mutations in a subset of tumors 40, suggesting a potential selective pressure to 

lose the HIF1α gene during tumor progression. These insights to potentially narrow the 

key tumorigenic events within the VHL/HIF axis will undoubtedly lead to novel strategies 

for prognostic and therapeutic maneuvers. 

 

Other means of regulating HIF 

Interestingly, HIF can be regulated independently of pVHL41: In chromophobe 

RCC, patients with mutations in the Birt-Hogg-Dube gene overexpressed HIF. Germline 

MET mutations in type 1 papillary patients also overexpressed HIF proteins. Type 2 

patients carry a mutation in fumarate hydratase, whereupon fumarate accumulates and 

binds PHDs, preventing the binding of 2-oxo-glutarate42. This again allows HIF to be 

upregulated. Accumulation of succinate due to inactivation of succinate dehydrogenase 

similarly prevents PHD from being able to attach a hydroxyl group to the HIF prolyl 

sites43.  Additionally, HIF-1α can be phosphorylated and activated by p42/p44 MAPK44. 
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Therefore, as Rathmell et al. 41 point out, even though HIF overexpression had been 

considered the distinguishing factor for clear cell, HIF upregulation may be a key factor 

in all RCC subtypes. Variance of HIF target profiles may then be important, as might 

previously unstudied genes and pathways, even within the bounds of clear cell RCC.  

HIF levels can also increase due to increased translation caused by alterations of 

the mTOR (mammalian target of rapamycin) pathway.  As reviewed by Dowling et al.45, 

one of the ways this pathway can be activated is by the binding of insulin or a growth 

factor to its receptor, e.g. PDGF to PDGFR. The p85 subunit of PI3K 

(phosphatidylinositol-3-kinase) is phosphorylated by the kinase and inhibition of the p110 

subunit is released. PI3K phosphorylates PIP2 to PIP3, which recruits Akt and PDK1 to 

the cell membrane. PDK1 then phosphorylates and activates Akt, which can then directly 

activate mTORC1 (mTOR with Raptor). Akt also inhibits the tuberous sclerosis complex 

(TSC), made up of TSC1 and TSC2, that normally inhibits mTOR’s activating protein 

Rheb. The activated mTOR phosphorylates p70 S6 kinase (p70 S6K) and eIF4E binding 

proteins 1, 2 and 3 (4EBP). p70 S6K phosphorylates the ribosomal S6 kinase, which 

increases translation of mRNAs with terminal oligopyrimidine tracts, sequences that are 

contained within HIF1 and HIF2.  The phosphorylated 4EBP releases initiation factor 

eIF4E, increasing translation of CAP-dependent mRNAs, including cyclins and c-Myc. 

Both hypoxia and energy deprivation can downregulate this pathway through 

REDD1 and LKB1’s activation of AMPK, respectively, which both phosphorylate TSC2.  

Limitations in amino acid levels are sensed by Rag GTPases, which seem to bring 

mTORC1 into contact with Rheb.   Rapamycin, or rapamycin derivatives, can inhibit 

mTORC1, and therefore have become a second major category of treatments for RCC. 
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Cytogenetic Studies 

Beyond VHL loss and HIF activation lies the great morass of genetic events that 

supplement these common molecular features to give the “teeth” to RCC. Major efforts 

have yet to identify a simple linear progression of genetic lesions accounting for the 

gains in aggressiveness in RCC. Rather, it appears that many events, most surprisingly 

dissimilar to other epithelial cancers, participate in this progression, discovered via both 

new strategies to examine the cancer genome and conventional cytogenetic studies. 

These studies have enhanced our understanding of the cancer genome in RCC. 

Cytogenetic studies have been performed on kidney tumors since 196646.  Thirty 

years later, comparative genomic hybridization47 (CGH) and microsatellite analysis48 of 

clear cell tumors showed that that the majority (56% and 98%, respectively) of tumors 

had deletion within 3p, the chromosomal area where VHL sits. Additionally, both showed 

amplification of chromosome 5q (17% and 70%), and CGH identified amplification of 

chromosome 7. Microsatellite analysis identified other common regions of deletion as 

6q, 8p, 9, and 14q, where the latter three correlated with advanced stage disease. CGH 

identified 9p and 13q as the most common after 3p.  The CGH study also showed that 

increased number of chromosomal losses correlated with decreased survival, and that 

loss of 9p was associated with tumor recurrence.  Other studies confirmed many of 

these regions49-51 and validated survival association for chromosome 97,52-56.  Recent 

single nucleotide polymorphism (SNP) arrays continue to identify these same regions as 

important57-59. 

An interesting study performed CGH on primary ccRCC tumors and metastases 

attempted to understand genetics steps for metastatic progression60.  None of the 

metastases were genetically identical to the primary tumors, and 32% of the metastases 

were completely different.  Metastases to different organs also showed genetic 
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variability.  Additionally, some metastases showed fewer genetic changes than the 

primary tumors.  The most common genetic changes in metastatic tumors that were not 

present in the primary tumors were loss of 8p and 9p, and gain of 17q, 21q, and Xq.  

Metastases also often lacked deletion of 3p, despite the presence of the deletion in the 

primary tumor, a result also seen in a previous study61. 

In 2000, a group used CGH data from 116 tumors to attempt to create a disease 

progression model for ccRCC62.  They put forth several branching tree models, 

suggesting that there are at least 2 subgroups of ccRCC.  Three other groups suggested 

likewise:  Furge et al. used gene expression data to predict cytogenetic profiles and 

observed two clusters in the data, associated with survival and predominantly tied to loss 

of 14q6.  Arai et al. used CGH and identified two clusters, where one group had more 

common deletions in 1p, 4, 9, 13q, and 14q and decreased DNA methylation63.  Most 

recently, Zhang et al. combined their data with 5 other groups and saw at least 2 

subtypes64.  Additionally, they created their own model for the formation and progression 

of ccRCC tumors. 

Two important large-scale ccRCC cytogenetic studies were published within the 

past year. One study performed both single nucleotide polymorphism (SNP) analysis 

and gene expression analysis on 54 cases of sporadic ccRCC and 36 tumors from 12 

patients with VHL disease 65. Importantly, this group confirmed a widely held, but 

previously unproven assumption about ccRCC and VHL disease: tumors from sporadic 

and VHL-disease ccRCC tumors have overall similar profiles, but sporadic tumors are 

more heterogeneous and contain more events per tumor. In fact, unsupervised analysis 

of gene expression data from these two groups could not distinguish them. While this 

study did not identify any prognostic or predictive biomarkers, knowing that VHL disease 

induced ccRCC and sporadic ccRCC tumors are so similar suggest that they may be 
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able to be targeted with the same treatments, and that VHL disease models may 

faithfully mimic the more common sporadic disease. 

The other study was a prospective study of 282 ccRCC patients with up to 108 

months of follow-up using traditional cytogenetic karyotyping techniques66. They 

determined that loss of 3p was significantly associated with increased disease-specific 

survival, while loss of 4p, 9p, and 14q were significantly associated with decreased 

disease-specific survival. Only loss of 9p remained significant in multivariable analysis in 

the presence of standard clinical measures, and was further validated in an expanded 

study67.  The specific genes in these regions implicated in causing the poor prognosis 

remain to be characterized. 

In determining these individual genes associated with RCC, we turn to 

sequencing studies. Although whole-scale sequencing has not yet been performed on 

large numbers of renal carcinomas, this tumor type is being examined as a priority tumor 

in the cancer genome atlas and by other international efforts. Large-scale sequencing of 

cancer genomes is becoming more common as technology becomes better and the cost 

decreases. In ccRCC, the Futreal group has resequenced 3544 genes in 96 

pretreatment tumors, as well as performing SNP and gene expression analyses on these 

tumors 40. They then sequenced genes with at least two non-synonymous mutations in 

another 246 ccRCC tumors. Using a false discovery rate cutoff of 20%, the authors 

suggest that mutations in SETD2, JARID1C, NF2, UTX, and MLL2 have been selected 

for a role in cancer development or progression, opening up several interesting themes 

in tumor progression, particularly pertaining to the role of histone methylation. These 

studies will likely enhance our understanding of the steps that may permit or promote 

renal tumorigenesis, ultimately to the benefit of patient-centered therapy. 
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Gene Expression Studies 

Following the overwhelming success of gene expression analyses in breast 

cancer68,69, including the resulting US Food and Drug Administration–approved gene 

panels predictive of risk for breast cancer recurrence70-72, it was logical to attempt similar 

studies in ccRCC. Gene expression studies in ccRCC studies have been numerous, but 

fall into four major categories: comparisons to normal tissue, comparisons between 

subtypes, clinically driven, and biologically driven.  Table 1.1 gives an overview of the 

microarray gene expression studies performed in RCC. 
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Table 1.1 Gene expression studies in RCC 
 
 Study Year Samples Analytical 

focus Results 

      
Comparisons to normal 
 Boer  

et al.73 
2001 37 RCC 

37 normal 
General tumor 
biology 

Overexpression of cell adhesion, 
signal transduction, nucleotide 
metabolism 

 Gieseg  
et al.74 

2002 9 clear cell 
2 chromophobe 
2 oncocytoma 
8 normal 

General tumor 
biology and 
histopathogical 

355 genes compared to normal 

 Skubitz  
et al75. 

2002 8 RCC 
11 normal 

Diagnostic 50 genes separate RCC from 
normal and other diseased 
kidney 

 Lenburg  
et al.76 

2003 9 clear cell 
9 normal 

Carcinogenesis Identification of several 
oncogenes and tumor 
suppressors 

 Liou  
et al.77 

2004 6 clear cell 
6 normal 

General tumor 
biology 

Cell adhesion upregulated, 
transport downregulated 

 Hirota  
et al.78 

2006 15 clear cell 
Renal cortex 

Diagnostic Laser capture microdissection 
provided 24 novel genes 

 Dalgin  
et al.79 

2007 Liou, 2004 Diagnostic 158 genes that can distinguish 
between cc and normal 

      
Comparisons to other histologies 
 Young 

et al.80 
2001 4 clear cell 

1 chromophobe 
2 oncocytoma 

Histological ccRCC clusters separately from 
chromophobe and oncocytoma 

 Yamazaki 
et al.81 

2003 10 clear cell 
2 papillary 
3 chromophobe 
15 normal 

Histological 67 genes upregulated per group. 
KIT is marker for chromophobe. 

 Takahashi  
et al.82 

2003 39 clear cell 
Mix of others 

Histological Distinguishing gene groups; 2 
ccRCC clusters 

 Higgins  
et al.83 

2003 23 clear cell 
5 granular 
4 papillary 
3 chromophobe 
2 oncocytoma 

Histological Cluster based on histology 
Granular ccRCC clusters 
separately from conventional 
ccRCC 

 Furge  
et al.6 

2004 Takashi, 2003 
33 from SMD 

Histological Transcriptional and cytogenetic 
classifier to distinguish subtypes; 
2 ccRCC clusters 

 Schuetz  
et al.84 

2005 13 clear cell 
5 papillary 
4 chromophobe 
3 oncocytoma 
6 angiomyeloma 

Histological Cluster by histology, with 
associated pathways and genes. 
3 clear cell cluster with 1 
papillary. 

 Sultmann  
et al.85 

2005 65 clear cell 
13 papillary 
9 chromophobe 
25 normal 

Histological 88 genes discriminate between 
subtypes. cc might be 2 groups.  
Genes for metastases. 
Cytogenetic abnormalities 

 Rogers  
et al86. 

2009 7 biopsies and 
full tumor 

Histological Classification possible with core 
biopsy samples 
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Clinically driven analyses 
 Takahashi  

et al.87 
2001 29 clear cell 

29 normal 
5 year survival 51 probes predict for survival 

with 96% accuracy 
 Vasselli  

et al.88 
2003 51 clear cell 

6 papillary 
1 unknown 

Survival 45 genes most associated with 
survival. VCAM-1 alone can 
stratify patients by survival. 

 Jones  
et al.89 

2005 22 clear cell 
10 metastases 
37 other 
24 normal 

Progression and 
metastases 

31 genes that are continuously 
deregulated in disease 
progression. 155 genes that 
predicted metastases with 
88.9% accuracy 

 Kosari 
et al.90 

2005 10 aggr. cc 
9 nonaggr. cc  
9 metastatic cc 
12 normal 

Tumor 
aggressiveness 

35 genes distinguish between 
non-aggressive and aggressive 
tumors.  Survivin expression 
predicts survival by multivariate 
analysis in 183 patients 

 Yao  
et al.91 

2005 28 clear cell 
3 chromophobe 
9 normal 

Histological and 
survival 

Genes upregulated in ccRCC vs. 
chromophobe/normal. ADFP 
correlates to survival 

 Zhao  
et al.92 

2006 177 clear cell Survival 259 genes associated with 
survival by univariate and 
multivariate analysis 

 Yao  
et al.93 

2008 25 clear cell  
(14 metastatic) 
2 metastases 

Metastatic vs 
non-metastatic 

3 genes (VCAM-1, EDNRB, 
RGS5) that by qRT-PCR can 
predict survival 

 Wuttig 
et al.94 

2009 20 metastases Early vs late 
metastasis 

55 genes to predict DFI 
35 genes predict few vs. many  

      
Biology-driven analyses 
 Vasselli  

et al. 88 
2003 51 clear cell 

6 papillary 
1 unknown 

Unsupervised 
 

2 clusters of metastatic tumors 
with survival difference 

 Skubitz  
et al.95 

2006 16 clear cell 
21 normal 

Unsupervised 2 subtypes distinguishable by 
546 genes, with possible 
pathway differences 

 Zhao 
 et al.92 

2006 177 clear cell Unsupervised  
 

2 clusters composed of 5 
subclusters with survival 
difference.   

 Gordan  
et al.39 

2008 21 clear cell Wild-type VHL 
vs H1H2 vs H2 
tumors 

3 groups have distinct biological 
pathways. H2 tumors 
overexpress c-Myc, leading to 
increased proliferation 

 Zhao 
et al.96 

2009 177 clear cell 
 

Biology of 
survival gene 
set 

Good prognosis tumors 
resemble normal renal cortex or 
glomerulus. Poor prognosis 
tumors associated with wound 
healing and loss of 
differentiation. 

 Brannon, 
et al.97 

2010 48 clear cell 
18 normal 

Unsupervised 
consensus 
clustering 

2 subtypes of clear cell with 
pathway and survival 
differences, differentiable by 
<120 probes 

Aggr, aggressive; cc, Clear Cell; DFI, disease free interval; H1H2, HIF-1 and HIF-2 
overexpressing; H2, HIF-2 only overexpressing; SMD, Stanford Microarray Database 
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Comparisons to normal tissue 

 The earliest gene expression analysis focused primarily on identifying the 

changes between RCC tumors and normal tissue in an effort to gain a better 

understanding of RCC tumor biology and the process of RCC carcinogenesis73,74,76,77.  In 

general, these groups identified genes involved with cell adhesion and signal 

transduction, as well as previously identified tumor suppressors and oncogenes.  A few 

other groups worked to identify genes that are diagnostic in nature, to distinguish the 

difference between clear cell and tumor75,78,79.  Given that few biopsies are done, how 

distinct ccRCC is from normal, and that small growths are generally observed or ablated, 

diagnostic gene sets for ccRCC currently have limited utility. 

 

Comparisons to other histologies 

 The next group of studies focused on genes that distinguish between the 

different renal cell carcinoma histologies6,80-86.  Once a tumor is removed, pathologists 

have a relatively easy time differentiating ccRCC from other RCC subtypes, although 

occasional diagnoses of “mixed histology” or “unclassified” are used.  However, this may 

be particularly useful for distinguishing a chromophobe tumor from an oncocytoma.  

Additionally, a recent study showed that core biopsies and extracted tumors had the 

same gene expression and that it is possible to classify a tumor based on a core biopsy 

using molecular markers86.  As core or fine needle biopsies become more common, 

molecular markers that can identify the correct histology may become more important.  

 For the sake of this dissertation, several of these studies are more pertinent.  

Takahashi et al., Furge et al., Schuetz et al. and Sultmann et al. saw 2 clusters of 

ccRCC tumors within their data6,82,84,85.  Interestingly, Schuetz et al. found that one 
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papillary clustered with 3 of their clear cell tumors, suggesting a vastly different 

expression pattern for those 3 ccRCC tumors.   

 

Analyses focused on clinical outcomes 

Supervised analyses are designed to reveal the differences among tumors based 

on preselected criteria, often survival, easily deriving biomarkers for the clinical 

characteristic of interest. In contrast, unsupervised analyses work with the data a priori 

and, therefore, are more likely to determine the underlying biological differences. While 

these biological differences may also correspond with survival or other clinical 

characteristics, these correlations are tangential to the original analyses; thus, these two 

types of analyses generate very different kinds of results. 

One of the earliest studies examined 29 ccRCC tumors and identified 51 genes 

that could classify tumors based on 5 year disease-specific survival87.   This study 

verified the possibility that gene expression profiles could be used to predict outcome, 

but remains to be examined in a validation study or to be defined by biological 

parameters which may account for this difference in disease activity.  Two years later, 

another group examining 51 metastatic clear cell tumors identified 45 survival genes, 

with vascular cell adhesion molecule-1, VCAM-1, being the most predictive88. Since 

then, two retrospective studies have shown that VCAM-1 has prognostic 

significance93,98. Intriguingly, high expression of this molecule predicted for better overall 

survival for both clear cell and papillary histology, suggesting that VCAM-1 expression 

may generally indicate tumor cells with lower metastatic potential.  The further 

implications for anti-angiogenic therapy are not yet known. 

 Another study described a gene signature for RCC progression, including three 

genes (caveolin 1, lysl oxidase, and annexin A4) that had been previously associated 
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with RCC aggression and/or survival89. A similar study concurrently identified a potential 

gene panel for aggressive clinical behavior in ccRCC by analysis of gene expression 

profiles of a set of non-aggressive (low Fuhrman grade), aggressive (mostly high 

Fuhrman grade), metastatic, and normal kidney samples90. One of these genes, 

Survivin, was shown to independently predict clear cell progression and risk of death99 

and, therefore, was incorporated into a new prognostic algorithm100.  

The largest study included 177 clear cell tumors and identified 340 transcripts 

(including VCAM-1) that could be used to assign a risk score to a patient, which was 

significant in multivariate analysis with stage, grade and performance status92. When this 

group later investigated the biology associated with their survival gene set, they found 

that tumors from patients who survived longer more resembled normal renal cortex or 

glomerular tissue, while poor survival patients had tumors that exhibited a wound-

healing signature96. Further delineation and validation of pathways that contribute to 

tumor progression and an enhanced appreciation of the originating cell of ccRCC would 

be extremely useful for modeling RCC and identifying pre-cancerous changes earlier. 

 

Biologically driven analyses 

While all of the above studies performed supervised analysis, many of them87-90,92 

started with an unsupervised analysis. A common practice in array analysis is to perform 

unsupervised analyses to get a general understanding of the data, then move on to a 

supervised analysis to achieve the answers sought. Two of the unsupervised analyses 

from above bear further examination:  The study that identified VCAM-1 as a prognostic 

biomarker first showed that there seemed to be two subgroups within the stage IV 

tumors, with possible survival differences88.  This suggests that molecular features 

beyond clinical staging could provide informative data in understanding even metastatic 
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tumor behavior.  Zhao, et al. examined their 177 tumors using 3,674 genes and saw 5 

different subgroups within two larger groups of ccRCC, with significant survival 

differences as well as predicted biological pathway distinctions92. These studies helped 

set the stage for further delineation of subgroups within ccRCC. 

In a strategy to intersect the supervised analyses with biological rationale 

directed toward the most studied and understood pathway in RCC, gene expression 

profiles were linked with von-Hippel Lindau tumor suppressor protein (pVHL) mutation 

analysis and expression characteristics of the of hypoxia inducible factors (HIF)39.  In this 

study, 160 ccRCCs were classified as VHL mutant or wild type and according to HIF 

protein expression.  VHL mutant, HIF1 and HIF2 expressing tumors (H1H2) 

overexpressed the Akt/mTOR pathway, while VHL mutant tumors expressing solely 

HIF2 (H2 tumors) replicated more rapidly, marked by overexpression of Ki-67 and 

activation of c-Myc signaling.  While, survival data was not available for this study, other 

groups have identified Ki-67 as a poor-risk marker66,101-111.  Further studies on the 

efficacy of HIF1 profile as a prognostic marker are anticipated. 

Finally, one study stands out as being predominantly geared toward identifying 

the inherent subgroups and underlying biological differences of ccRCC. The Skubitz 

group95 looked at 16 ccRCC tumors and saw that there seemed to be two types of clear 

cell, one that more highly overexpressed metabolic genes and the other extracellular 

matrix/cell adhesion genes.  

A large number of potential biomarkers have emerged from all these gene 

expression studies. Encouragingly, trends are beginning to emerge between studies. 

The next important step will be bringing these potential biomarkers and biomarker 

profiles to the clinical arena, as well as better understanding the underlying biology to 

guide drug development. 
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Other Technologies 

A number of other technologies have been utilized in attempting to find good 

prognostic biomarkers for ccRCC.  Among them, we will touch briefly on tissue 

microarrays (TMA), plasma serum protein analysis, and microRNA profiling. 

Tissue microarrays (TMA) allow for quantitative and relatively quick 

immunohistochemical (IHC) analysis of tumor protein expression patterns.  800 organ-

confined ccRCC tumors were recently examined for expression of 15 proteins with 

regards to tumor stage, Fuhrman grade, and survival data112. Surprisingly, while pVHL 

and phospho-mTOR staining correlated inversely with tumor stage and grade, neither 

protein correlated with survival. However, expression of p27, PAX2, periostin, p-S6, and 

CAIX did correlate with 5 year survival. Within the intermediate stage tumors (pT2 and 

pT3), they found that patients with p27 and CAIX positive tumors faired better. This 

information could be very useful in making clinical decisions for patients in these difficult 

to predict categories. Many other potential biomarkers have been identified through 

other TMA studies, as reviewed in 113. 

All of the potential biomarkers listed thus far require removal and processing of at 

least part of the tumor. In contrast, the use of plasma serum proteins would simply 

require a blood test.  Plasma serum proteins have traditionally been studied to find non-

invasive diagnostic markers for the presence of ccRCC as compared to normal or 

benign renal tissue. To date, no measurable proteins have been moved forward for 

screening or diagnostic evaluation.  However, work from Perez-Gracia, et al, identified 

potential predictive biomarkers for response to sunitinib in metastatic RCC (mCC) 

patients114. Serum from patients with clinical response or progression was screened by 

cytokine arrays to discover that TNF-alpha and MMP-9 levels remained low in 

responders. Additionally, high levels of these proteins in the serum correlated with 
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decreased overall survival. In another study, low levels of sVEGFR-3 and VEGF-C in the 

serum corresponded with longer progression free survival (PFS) and objective response 

rate in bevacizumab-refractory mRCC115. A third study suggested that large changes in 

serum VEGF, sVEGFR-2 and sVEGFR-3 levels corresponded with tumor response116.  

All of these potential predictive biomarkers require external validation in larger sample 

sizes, but suggest that serum may prove to contain cogent markers of survival and 

response. 

MicroRNA, 21-23 nucleotide segments of single-stranded non-coding RNA, have 

now been implicated in tumorigenesis of many cancers, even being identified as 

potential prognostic biomarkers in several of these. The aberrant expression of these 

non-coding RNAs can provide a powerful method of epigenetic tumor regulation, as an 

individual microRNA can alter the expression of many target genes.  In RCC, various 

studies have identified various individual or panels of microRNAs that are differentially 

expressed between normal renal tissue and tumor117-120 or between histologic 

subtypes117,121.  The identification of relevant targets of these tumor associated 

microRNAs are just becoming realized117,122.  microRNA is so unique compared to 

proteins and other small molecules, because their stem-loop structure makes them 

extremely stable.  MicroRNAs can be easily extracted from formalin fixation, paraffin 

embedded tissue123, the most common means of storing tumor tissue.  Additionally, 

other studies have shown that microRNAs exist in repeatedly thawed and frozen 

samples, serum, urine, tear, ascetic fluid, and amniotic fluid124-128.  The ability to easily 

use non-invasive measures to identify a stable target makes microRNAs a very attractive 

biomarker for diagnostic, prognostic, and predictive purposes. 
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Updating Nomograms 

Each of the means described earlier of calculating risk for recurrence or death of 

disease were designed after 1999 and are well used by clinicians, yet have not included 

any of the large number of possible biomarkers. In 2005, Kim, et al, devised a prognostic 

model to assess patients metastatic disease that added CA9, vimentin, p53, and pTEN 

IHC quantification to the common measure of tumor stage and patient performance 

status129. This model had a slightly higher concordance index than did the UISS scale 

using clinically available parameters (0.68 vs 0.62).  While not making a substantial 

stride in influencing prognostic accuracy, this study opened the door to hybrid 

nomograms which incorporate both clinical and genetic or molecular features.  Table 

1.2 provides a list of clinical features incorporated into commonly used algorithms that 

should be considered when designing hybrid nomograms.   

More recently, Yao, et al, fashioned a three-gene signature of VCAM-1, EDNRB, 

and RGS5 to be measured by quantitative real-time PCR93. Their outcome prediction 

score could stratify patients into low, medium and high risk groups, even in metastatic 

disease cases.  However, while the authors calculated a ROC curve to predict the 

specificity and sensitivity of their predictor alone and with tumor stage and grade, it 

remains necessary to be validated in direct comparison with a currently used algorithm. 

Similarly, the BioScore algorithm was formulated in 2009 based on IHC expression of 

B7-H1, survivin, and Ki-67100. The authors found that dichotomizing the expression 

levels of these proteins provided a c-index of 0.733, suggesting that BioScore may add 

prognostic value to both the UISS and SSIGN algorithms.  The BioScore group presents 

an algorithmic model that may be beneficial for other groups to mimic: identifying patient 

groups not prognostically improved by the addition of BioScore data, such that only 

groups that would benefit were recommended for further testing.  This system is 
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appropriate to avoid undue testing expenses, and inappropriately applying molecular 

information in scenarios where the additional data is uninformative. 

 

Table 1.2 Clinical features from RCC nomograms predictive for recurrence or survival 
 Marker Nomogram Year n Histology Stages 
 
Patient characteristics 
 Bone/liver metastases Mayo 14 2005 727 Clear cell Metastatic 
 Hemoglobin MSKCC 12 1999 670 All Metastatic 
 Multiple metastases Mayo 14 2005 727 Clear cell Metastatic 
 Nephrectomy MSKCC 12 1999 670 All Metastatic 
 Presence of hepatic/ 

pulmonary/lymph node 
metastases 

Cleveland Clinic 13 2005 353 All Metastatic 

 Prior radiotherapy Cleveland Clinic 13 2005 353 All Metastatic 
 Resection of 

metastases 
Mayo 14 2005 727 Clear cell Metastatic 

 Serum calcium MSKCC 12 1999 670 All Metastatic 
  Cleveland Clinic 13 2005 353 All Metastatic 
 Serum LDH MSKCC 12 1999 670 All Metastatic 
  Cleveland Clinic 13 2005 353 All Metastatic 
 Symptoms/ MSKCC 12 1999 670 All Metastatic 
 performance status MSKCC 9 2001 601 All Localized 
  UISS 8 2001 661 All All 
  Mayo 14 2005 727 Clear cell Metastatic 
  MSKCC 11 2005 701 Clear cell Localized 
 Time to progression Mayo 14 2005 727 Clear cell Metastatic 
 Time to study entry Cleveland Clinic 13 2005 353 All Metastatic 
 
Tumor characteristics 
 Grade UISS 8 2001 661 All All 
  SSIGN 10 2002 1801 Clear cell All 
  Mayo 14 2005 727 Clear cell Metastatic 
  MSKCC 11 2005 701 Clear cell Localized 
 Histology MSKCC 9 2001 601 All Localized 
 Microvascular invasion MSKCC 11 2005 701 Clear cell Localized 
 TNM stage AJCC 130 2005 1065 All Localized 
  MSKCC 9 2001 601 All Localized 
  UISS 8 2001 661 All All 
  SSIGN 10 2002 1801 Clear cell All 
  MSKCC 11 2005 701 Clear cell Localized 
 Tumor necrosis SSIGN 10 2002 1801 Clear cell All 
  Mayo 14 2005 727 Clear cell Metastatic 
  MSKCC 11 2005 701 Clear cell Localized 
 Tumor size MSKCC 9 2001 601 All Localized 
  SSIGN 10 2002 1801 Clear cell All 
  MSKCC 11 2005 701 Clear cell Localized 
 Tumor thrombus Mayo 14 2005 727 Clear cell Metastatic 
AJCC—American Joint Committee on Cancer; LDH—lactate dehydrogenase; MSKCC—Memorial 
Sloan-Kettering Cancer Center; RCC—renal cell carcinoma; SSIGN—Stage, Size, Grade, and 
Necrosis; TNM—tumor node metastasis; UISS—UCLA integrated scoring system. 
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While all of the above biomarker algorithms may enhance prognostic ability, they 

lack the ability to address underlying tumor biology.  The Pantuck group has begun to 

address tumor biology by developing a nomogram with a c-index of 0.89 which includes 

TNM staging, Fuhrman grade, and loss of chromosome 9p66.  The incorporation of 

biological information into existing nomogram strategies for clinical prognostication or 

prediction of response to therapy is clearly not trivial.  However, neither clinical data, nor 

biological information, can be treated in isolation.  Both are relevant to patient care and 

patient outcomes.  The future success of biomarker programs will take a considered 

approach to modifying existing algorithms or developing new hybrid algorithms based on 

large scale multivariate analysis. 

 

Summary 

 In the last decade, great strides have been made for RCC patients with regard to 

earlier diagnoses, development of new treatment options, providing better prognostic 

information, and beginning work on predictive biomarkers. Many challenges remain: 

most of the new prognostic algorithms still require independent validation, ideally in 

prospective studies. The large number of biomarkers needs to be culled into a 

manageable panel of markers for clinical application in prognosis and prediction, made 

widely available, and covered by health insurance. However, breast cancer has proven 

to us that these seemingly overwhelming tasks are very possible. RCC is ripe for 

personalized cancer treatment, which takes into account the underlying biology of an 

individual’s tumor. The state-of-the-art has clearly led this field to the enviable position of 

having a range of effective molecularly targeted therapies, with further improvements 

expected on the horizon; mature profiles of protein and nucleic acid biomarkers, which 

will help us to define the spectrum of tumors that lie under the umbrella of ccRCC; and a 
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future unmapped territory of genetic mutations to explore that may provide more tools 

and answers to the questions we ask.  

 

How this body of work builds on previous findings 

 Some incredible work has been and is continuing to be done in the field of 

characterizing ccRCC and providing means to predict clinical outcome.  As you will see 

in the coming pages, our work builds on this tremendous foundation.  

 The literature described above strongly suggested that there must be molecular 

classes of clear cell renal cell carcinoma that are robustly separable using molecular 

profiles.  All of the previous microarray data and the heterogeneity of the clinical 

presentation points to it.  So, in chapter 2, we describe how we defined two molecular 

subtypes of ccRCC, which we named ccA and ccB.  We also found that these subtypes 

have a vastly different survival outcome, with the ccB tumors having only 2 years 

compared to 8.6 years for ccA tumors, making this subclassification system also 

possible to implement as a prognostic biomarker.   

 In chapter 3, we examine and validate the underlying molecular pathways that 

distinguish these two subtypes.  ccA tumors have an angiogenic molecular phenotype, 

while ccB tumors have a more proliferative and aggressive phenotype.  These results 

hint at the prospect that ccA tumors might be more likely to respond to anti-angiogenesis 

agents. 

In chapter 4, we explore the underlying genetic changes of the subtypes.  While 

they are predominantly similar, ccB tumors have additional chromosomal deletions in 

regions that previous studies show to correlate with decreased survival.  These regions 

may provide important clues to mechanisms of more aggressive disease and what may 

be driving the differences between ccA and ccB tumors.  Additionally, we discovered that 
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the ccA subtype has mutations in a number of different histone modification genes, 

suggesting that epigenetic modifications play an important role in ccRCC development, 

progression, and/or stratification. 

 Chapter 5 describes the development of an assay to distinguish between ccA 

and ccB tumors, particularly for use with formaldehyde-fixed, paraffin-embedded (FFPE) 

tissue.  Now that we know that there are these two vastly different subtypes of ccRCC, 

we need to put it into use.  The next challenge will be to validate the prognostic 

significance of the subtypes and determine whether the underlying biological changes 

are predictive for response to current treatments.  There is great hope for the future of 

RCC treatment, and it will be exciting to see what new advances this research will spur 

for the decade to come. 

 

 



 
Chapter Two: 

 
 

Molecular Stratification of Clear Cell Renal Cell Carcinoma by 
Consensus Clustering Reveals Distinct Subtypes and Survival 

Patterns 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This work is modified from Brannon et al., Genes and Cancer, 201097.  
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Abstract 

Clear cell renal cell carcinoma (ccRCC) is the predominant RCC subtype, but even 

within this classification, the natural history is heterogeneous and difficult to predict. A 

sophisticated understanding of the molecular features most discriminatory for the 

underlying tumor heterogeneity should be predicated on identifiable and biologically 

meaningful patterns of gene expression. Gene expression microarray data were 

analyzed using software that implements iterative unsupervised consensus clustering 

algorithms, to identify the optimal molecular subclasses, without clinical or other 

classifying information. ConsensusCluster analysis identified two distinct subtypes of 

ccRCC within the training set, designated clear cell type A (ccA) and B (ccB). Based on 

the core tumors, or most well-defined arrays, in each subtype, Logical Analysis of Data 

(LAD) defined a small, highly predictive gene set that could then be used to classify 

additional tumors individually. The subclasses were corroborated in a validation dataset 

of 177 tumors and analyzed for clinical outcome. Based on individual tumor assignment, 

tumors designated ccA have markedly improved disease-specific survival compared to 

ccB (median survival of 8.6 vs. 2.0 years, p=0.002). Analyzed by both univariate and 

multivariate analysis, the classification schema independently associated with survival. 

Using patterns of gene expression based on a defined gene set, ccRCC was classified 

into two robust subclasses based on inherent molecular features that ultimately 

correspond to marked differences in clinical outcome. This classification schema thus 

provides a molecular stratification applicable to individual tumors that has implications to 

influence treatment decisions, define biological mechanisms involved in ccRCC tumor 

progression, and direct future drug discovery.   
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Introduction  

Clear cell renal cell carcinoma, ccRCC, afflicts upwards of 50,000 patients 

annually131.  Most of these patients will present initially with localized disease, managed 

with surgery, but, unfortunately, nearly a third will develop recurrence and succumb to 

their disease.  ccRCC incidence has increased uniformly over the last 30 years, 

associated with stage migration toward lower stages, likely due to the increased 

detection of lesions incidentally. However, there has not been commensurate 

improvement in survival.  ccRCC tumors have variable natural histories, and genetic 

strategies have been largely unhelpful in identifying patients with higher or lower risk for 

recurrence due to the overwhelming association of this cancer with von Hippel-Lindau 

(VHL) tumor suppressor gene inactivation132,133. 

The Fuhrman classification system stratifies ccRCC by tumor cell morphology:  

low grade (grade 1), intermediate grades (grades 2 and 3), and high grade (grade 4) 

tumors, with corresponding association with RCC-related death10.  Prognostic scoring 

systems such as the UCLA Integrated Staging System (UISS) have been developed 

using these morphologic characteristics, tumor size, and patient performance status as 

well as the inherent characteristics of stage and nodal status8,134. Other algorithms 

incorporate post-operative clinical information, but have limited discriminative ability for 

the abundant intermediate grade and intermediate stage tumors, and they fail to account 

for molecular distinctions in tumors11. The molecular basis of this diversity in clinical 

behavior is unclear and makes ccRCC a ripe target for investigating the nature of these 

heterogeneities. 

Gene expression analyses have provided meaningful insight into the clinical 

heterogeneity of many solid tumors. Unsupervised clustering of gene expression data 

with supervised learning methods can provide powerful strategies to identify molecularly 
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and clinically significant cancer subtypes68-71.  New unsupervised consensus ensemble 

clustering strategies have been developed that have successfully identified breast 

cancer subtypes correlated with significant differences in risk for recurrence135-138. 

  In ccRCC, using traditional unsupervised gene expression analysis, we and 

others have demonstrated that two or more molecular sub-classifications of this tumor 

type exist6,92,95,113,139. Many prior investigations, however, rely on pre-selected molecular 

features or clinical outcomes as the criteria to identify expression signatures and 

distinguish gene sets. This type of approach fails to permit the underlying tumor biology, 

through the molecular endproducts of genetic changes, to inform the formation of tumor 

subgroups. A robust molecular classification system that connects tumor biology with 

individual tumor behavior should identify –a priori– the inherent patterns of gene 

expression that classify samples into non-overlapping sets with a high degree of 

accuracy.   

To investigate the molecular features which best define subsets of renal cell 

carcinoma, we applied unsupervised consensus clustering to the gene expression data 

of ccRCC tumors, without applying biologic or clinical information. Two robust subtypes 

(we have designated ccA and ccB) with differentiating biological signatures could be 

distinguished using a small gene set defined by logical analysis of data (LAD). This gene 

set allows for assignment of individual tumors within the ccA/ccB classification scheme 

and is easily translatable to RT-PCR technology. Validation in an independent dataset 

demonstrated that ccA tumors have a markedly better prognosis than ccB, and that the 

molecular subtype was significantly associated with survival in both univariate and 

multivariate analysis. The identification of two robust ccRCC subclasses, which can be 

assigned by a small but highly significant panel of gene features, will provide a biological 

resource for future ccRCC investigation, allow better prognostication of ccRCC, and 

supply a wealth of information for therapeutic decisions.    
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Results 

Identification of ccRCC subtypes.  Gene expression data were obtained for 

48 ccRCC samples and three independent replicate sample preparations. A flow-

diagram depicting the analyses performed is presented in Figure 2.1.  

 

 First, we performed ConsensusCluster, an unsupervised ensemble clustering 

algorithm, on the ccRCC samples (Table 2.4), yielding two subsets, designated ccA and 

ccB (Figure 2.2A).  Removing the independent replicates produced an identical 

clustering assignment of tumors (data not shown), further confirming the stability of 

these clusters. Neither cluster was caused by inclusion of normal tissue in the RNA 

extraction as normal kidney assorts independently of either cluster (Figure 2.3).  

 Representative samples within each cluster were used for the development of 

characteristic gene signatures and the decipherment of biological pathways. Samples 

whose membership shifted through multiple bootstrapped iterations were set aside for 

later classification. These “core” clusters included 39 of the original 51 samples, and 

 
Figure 2.1 Flow chart diagram depicts the order of analyses 
Delineation of steps taken to identify ccRCC subtypes.  
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permitted tumors with best patterned features to define the cluster. As Figure 2.2B 

shows, the core cluster samples split into two robust subtypes of ccRCC that are stable 

when k (degrees of freedom) increases to k=3 or k=4 (Figure 2.2C-D), suggesting that 

the optimal number of robust clusters in this dataset is two. These analyses demonstrate 

that ccRCC can be optimally clustered into two distinct subtypes (ccA and ccB), defined 

purely by molecular characteristics of the tumors.   
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Figure 2.2 Consensus matrixes demonstrate the presence of only two core clusters of 
intermediate grade ccRCC. 
Consensus matrix heatmaps demonstrate the presence of two clusters within all clear cell tumors 
(A) and invariance of the two ccRCC core clusters using (B) k=2, (C) k=3, and (D) k=4 cluster 
assignments for each cluster method. Red areas identify the similarity between samples and 
display samples clustered together across the bootstrap analysis. ccA is color coded in green, 
ccB in blue. 
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Delineation of a gene set to stratify ccRCC into ccA and ccB.  To 

identify a feature panel that could accurately identify ccA and ccB tumors, we used 

logical analysis of data (LAD), which uses pattern recognition and supervised learning to 

identify key discriminating elements and has been successfully implemented in several 

biomedical studies136,137,140.  Using the core ccA and ccB tumors, LAD patterns were 

identified and validated. Using these patterns, we identified 120 probes, consisting of 

110 genes, valuable for cluster assignment (Figure 2.4A, Table 2.1). The LAD model 

was applied to the 12 non-core samples from the original analysis, and predicted cluster 

membership for 11 samples, 8 ccA and 3 ccB (Table 2.4). 

 

 

 
Figure 2.3 Two ccRCC subtypes are distinct from normal kidney tissue. 
(A) Both consensus matrix and (B) PCA plot (scatter plot of the top 2 eigenvectors – PC1, PC2) 
show the complete delineation between the clear cell tumors and corresponding normal kidney 
tissue removed from ccRCC patients.  Red areas identify samples clustered together across the 
bootstrap analysis. These results verify that the subtypes do not arise from errors in the 
expression levels due to contamination from normal tissue. 
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Table 2.1 LAD Probe Set. 
Probes identified through logical analysis of data (LAD) to discriminate between ccA and ccB 
subtypes. All probes were significant at t-test p < 0.000001. Fold change was calculated as 
ccA/ccB. 

Type Agilent Probe 
ID Symbol Fold 

diff.  Type Agilent Probe ID Symbol Fold 
diff. 

ccA A_23_P89799 ACAA2 4.159  ccA A_23_P147296 HIRIP5 2 
ccA A_24_P234242 ACADL 2.712  ccA A_23_P253982 HOXA4 3.165 
ccA A_23_P24515 ACAT1 2.795  ccA A_24_P218805 HOXC10 2.467 
ccA A_23_P52127 ACBD6 1.516  ccA A_23_P363936 HSPA4L 2.339 
ccA A_23_P134953 ADFP 3.951  ccA A_23_P210176 ITGA6 2.15 
ccA A_23_P135454 AFG3L2 2.247  ccA A_23_P24948 KCNE3 2.633 
ccA A_23_P129896 ALDH3A2 3.327  ccA A_24_P944541 KIAA0436 2.394 
ccA A_23_P417974 AQP11 2.899  ccA A_23_P29185 KIAA1043 1.876 
ccA A_23_P256084 ARSE 3.24  ccA A_32_P100683 KIAA1648 1.897 
ccA A_23_P86900 B3GNT6 2.41  ccA A_23_P215931 LEPROTL1 2.579 
ccA A_23_P133923 BAT4 1.706  ccA A_24_P252846 LOC119710 2.167 
ccA A_23_P134925 BNIP3L 2.503  ccA A_23_P144668 LOC134147 3.346 
ccA A_23_P150350 C11orf1 2.47  ccA A_23_P206899 LOC57146 2.685 
ccA A_23_P368718 C13orf1 2.483  ccA A_23_P337464 LOC90624 2.03 
ccA A_24_P116233 C13orf1 2.081  ccA A_23_P85008 MAOB 3.677 
ccA A_23_P60259 C9orf87 4.427  ccA A_32_P190416 MAP7 3.598 
ccA A_23_P161719 CWF19L2 1.598  ccA A_24_P224488 MAPT 4.959 
ccA A_23_P147397 DNCH2 2.023  ccA A_23_P207699 MAPT 3.428 
ccA A_24_P112984 DREV1 2.161  ccA A_23_P341392 MGC32124 1.938 
ccA A_23_P143484 DSCR5 2.553  ccA A_23_P83976 MGC33887 2.095 
ccA A_24_P343621 ECHDC3 3.653  ccA A_23_P115955 MRPL21 1.605 
ccA A_23_P119753 EHBP1 2.003  ccA A_32_P77989 NETO2 4.082 
ccA A_23_P87964 ESD 1.661  ccA A_23_P138686 NMT2 2.369 
ccA A_23_P118300 FAHD1 2.671  ccA A_23_P253536 NPR3 7.48 
ccA A_32_P93852 FAM44B 2.147  ccA A_23_P327451 NPR3 7.362 
ccA A_32_P213861 FBI4 2.75  ccA A_23_P414978 NUDT14 2.408 
ccA A_32_P116271 FBI4 2.02  ccA A_23_P10442 OSBPL1A 2.354 
ccA A_23_P41437 FLJ11200 2.149  ccA A_24_P124349 PDGFD 3.585 
ccA A_23_P904 FLJ11588 2.2  ccA A_23_P115919 PHYH 2.62 
ccA A_23_P5742 FLJ13646 1.997  ccA A_23_P211598 PMM1 1.897 
ccA A_23_P58676 FLJ14054 9.81  ccA A_23_P52109 PRKAA2 2.832 
ccA A_23_P160433 FLJ14146 3.067  ccA A_24_P201404 PTD012 3.632 
ccA A_23_P165548 FLJ14249 2.159  ccA A_24_P97785 PURA 2.179 
ccA A_24_P139943 FLJ14249 1.89  ccA A_24_P93624 RAB3IP 3.301 
ccA A_23_P203751 FLJ22104 3.108  ccA A_23_P96420 RBMX 1.558 
ccA A_24_P181101 FLJ22104 2.885  ccA A_23_P203023 RDX 1.988 
ccA A_32_P197942 FLJ23834 2.499  ccA A_23_P428738 RNASE4 3.083 
ccA A_24_P576191 FLT1 3.07  ccA A_23_P144807 SETP8 2.232 
ccA A_24_P38276 FZD1 3.116  ccA A_23_P216468 SLC1A1 4.695 
ccA A_24_P942370 GALNT4 1.804  ccA A_23_P56810 SLC4A1AP 1.339 
ccA A_24_P72064 GHR 3.943  ccA A_32_P358887 SLC4A4 3.022 
ccA A_23_P34478 GIPC2 5.447  ccA A_32_P167791 ST13 1.644 
ccA A_24_P100301 GIPC2 4.163  ccA A_32_P85676 STK32B 3.508 
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ccA A_23_P34375 TCEA3 2.726  ccB A_23_P380266 FLJ23867 0.447 
ccA A_23_P34376 TCEA3 2.904  ccB A_23_P19102 GALNT10 0.356 
ccA A_24_P327886 TCEA3 2.967  ccB A_32_P170206 IMP-2 0.245 
ccA A_23_P40611 TCN2 2.657  ccB A_24_P262543 KCNK6 0.551 
ccA A_23_P58538 TIGA1 3.288  ccB A_23_P67529 KCNN4 0.35 
ccA A_23_P29922 TLR3 4.409  ccB A_23_P102622 MATN4 0.317 
ccA A_23_P373819 TUSC1 2.817  ccB A_23_P8649 MGC40405 0.499 
ccA A_32_P133884 TUSC1 2.883  ccB A_32_P104825 NCE2 0.618 
ccA A_24_P167052 YME1L1 1.46  ccB A_23_P52298 NPM3 0.517 
ccA A_23_P48705 ZADH1 3.082  ccB A_23_P87238 SAA4 0.293 
ccB A_24_P73577 ALDH1A2 0.333  ccB A_23_P91230 SLPI 0.19 
ccB A_23_P160729 AP4B1 0.624  ccB A_23_P46390 SYTL1 0.348 
ccB A_23_P101380 B3GALT7 0.456  ccB A_24_P82880 TPM4 0.469 
ccB A_23_P50477 BCL2L12 0.609  ccB A_24_P37540 TTLL3 0.415 
ccB A_23_P19182 C5orf19 0.262  ccB A_23_P92860 UNG2 0.283 
ccB A_23_P49155 CDH3 0.201  ccB A_24_P291598 USP4 0.507 
ccB A_23_P2181 CYB5R2 0.408  ccB A_24_P937119 ZNF292 0.303 

 

 

 

 
Figure 2.4 LAD probes separate ccA and ccB tumor clusters. 
(A) Gene expression data for core arrays and 120 logical analysis of data (LAD) probes. These 
probes were selected using LAD and leave-one-out analysis from 1075 distinguishing probes with 
p-value < 0.000001. (B) Semi-quantitative reverse transcription PCR validates the ability of a 
subset of the LAD probes to clearly distinguish between ccA and ccB tumors.  
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To confirm that the genes identified by LAD are differentially expressed between 

ccA and ccB ccRCC subtypes within individual tumors, we tested primers for ccA 

overexpressed genes FLT1, FZD1, GIPC2, MAP7, and NPR3 on available tumor 

samples using semi-quantitative RT-PCR. Figure 2.4B demonstrates that each of these 

products can predict tumor classification for individual tumors. These results collectively 

indicate the potential for a limited gene set to correctly distinguish between the two 

ccRCC subtypes using RT-PCR, a platform immediately transferable to formalin-fixed, 

paraffin embedded tissues. 

 

Validation of ccRCC subtypes. To validate the presence of two ccRCC 

subtypes in a second, 

independent dataset, we applied 

ConsensusCluster and the LAD 

probe set to 177 ccRCC 

microarrays generated using a 

different gene expression 

profiling technique92. Figure 2.5 

shows the same two strong 

clusters in the data, which 

remained stable when k was 

increased (data not shown). The 

clusters were assigned to ccA or 

ccB by comparison of gene 

expression patterns to those in 

the primary dataset. 

    
Figure 2.5 Validation of LAD probes in validation 
dataset show the existence of two ccRCC clusters. 
Consensus matrix of 177 ccRCC tumors determined by 
111 probes corresponding to the 120 LAD probes. Red 
areas identify samples clustered together across the 
bootstrap analysis. Two distinct clusters are visible, 
validating the ability of the LAD probe set to classify 
ccRCC tumors into ccA or ccB subtypes from other 
array platforms. 
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Assignment of individual tumors.  Assignment of tumors to a subtype with 

Cluster3.0 (traditional heatmaps) or ConsensusCluster requires the presence of 

other tumors.  Therefore, we used LAD score to separately assign each individual 

tumor in the validation dataset to ccA or ccB, without assessing similarity to the rest 

of the tumors. Assignment was predicted for each sample 100 times with 80% 

pattern bootstrapping. A tumor was classified only if the assignment occurred in 

>75% of the prediction runs. Out of the 177 ccRCC tumors, 83 tumors were 

predicted to be ccA, 60 as ccB, and 34 remained unclassified with these stringent 

classification rules (online supplementary data). When compared with the cluster 

assignment predicted by ConsensusCluster, we found a concordance of over 86%, 

thus validating LAD predicted assignment as a sensitive measure of tumor 

assignment. 

 
ccA and ccB have different survival outcomes. We then wanted to know 

whether the underlying differences in tumor biology would show survival differences. 

Cancer specific survival and overall survival for the ccA and ccB classes from the 177 

tumor validation set were plotted using Kaplan-Meier curves (Figure 2.6A-B), calculating 

95% confidence intervals (Table 2.2). For cancer specific survival (Figure 2.6A), the ccA 

subtype was associated with a highly significant survival advantage over ccB patients 

(p=0.0002, median survival of 8.6 vs. 2 years). At five years, cancer specific survival was 

56% in ccA patients and only 29% in ccB patients. Figure 2.6B shows the same trend for 

overall survival, with a significantly greater survival for ccA patients over ccB patients 

(p=0.004, median survival of 4.9 vs. 1.8 years). At five years, survival for ccA patients is 

48%, while only 23% for ccB patients.  
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Table 2.2 Survival Times with 95% Confidence Intervals. 
Calculated median and 5 year survival times with 95% confidence intervals (CI) for ccA and ccB 
subtypes in disease specific (DSS) and overall survival (OS) analysis. 

Survival 
analysis Subtype Median survival 

(years) 
95% CI for median 

survival (years) 
5 Year 

Survival (%) 
95% CI for 5 year 

survival (%) 
ccA 8.6 3.8 – N/A 56 45 – 67 DSS ccB 2.0 1.0 – 3.2 29 18 – 41 
ccA 4.9 3.3 – 7.8 48 37 – 58 OS ccB 1.8 0.9 – 2.6 23 14 – 35 

 
Figure 2.6 Classification of tumors from validation dataset by LAD prediction shows that 
subtypes have differing survival outcome. 
177 ccRCC tumors were individually assigned to ccA (green), ccB (blue), or unclassified 
(orange) by LAD prediction analysis, and cancer specific (A) or overall survival (B) were 
calculated via Kaplan-Meier curves. The ccB subtype had a significantly decreased survival 
outcome compared to ccA, while unclassified tumors had an intermediate survival time (log rank 
p<0.01). (C) Cancer specific survival for intermediate (Fuhrman grade 2-3) tumors shows 
significant difference between subtypes. (D) Cancer specific survival for high grade (Fuhrman 
grade 4) shows a trend of better survival for ccA tumors. 
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ccA/ccB subtype associates with clinical variables. Fuhrman grade, tumor 

size (T stage), and performance status, the covariates in the UCLA International Staging 

System (UISS) for predicting outcome in newly diagnosed patients8, were evaluated and 

compared with our molecular classification with regard to survival outcomes. As 

expected, molecular classification strongly associated with tumor stage (p=0.009) and 

grade (p=0.0007), but not performance status (p=0.5684). 78% of grade 1 and 69% of 

stage 1 tumors clustered as ccA, while and 65% of grade 4 and 58% of stage 4 tumors 

cluster as ccB tumors. As low grade ccRCC tumors tend to have better prognosis, and 

high grade tumors toward poor prognosis10, this result was expected. This observation 

also suggests that the biological characteristics responsible for grade and stage-specific 

prognosis in ccRCC are encompassed in the classification schema. Figure 2.6C 

demonstrates that the ccA/ccB subtype still significantly correlates with survival when 

limiting analysis to intermediate grade (grade 2-3) tumors. As expected, a Kaplan-Meier 

curve limited to the highly aggressive grade 4 tumors shows a convergence of subtype-

specific survival (Figure 2.6D). 

 

Molecular classification is independently associated with survival. To 

determine how our classification schema compares with current standard clinical 

parameters as a prognostic factor, univariate Cox regression analyses were performed 

(Table 2.3). Molecular subtype is strongly associated with survival, with an HR of 2.2 

(p=0.0003). Even in the absence of stage 4 (metastatic) tumors, subtype has a strong 

association with survival (HR=2.143, p=0.0233). Additionally, the use of Schwartz 

Bayesian Criterion (SBC) suggests141 that whether the tumor is classified by 

ccA/ccB/unclassified, ccA/ccB, or LAD score, the measures are strongly associated with 

survival, with difference in adjusted SBC values of 8, 8.3, and 9 respectively. These 
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results suggest that defining a tumor as ccA or ccB may be an important prognostic 

indicator for predicting outcome from patients with ccRCC. 

Multivariate analyses were then performed to determine whether our 

classification schema was still independently associated with survival outcomes in the 

context of stage, grade, and performance status. The dichotomous classification of 

ccA/ccB provides a significant association with survival at the 0.1 level (p=0.089), likely 

influenced by the smaller sample size of the 143 classified tumors. Increasing sample 

size to 177 by including unclassified tumors, the trichotomous classification increased 

significance to p=0.0736. Statistical analyses often show that continuous variables 

provide more statistical discrimination. In fact, LAD score is an independent predictor of 

survival (p=0.0027) and is more predictive of outcome than Fuhrman grade (p=0.0308). 

These data intimate that the classification schema presented in this paper may provide 

independent prognostic information over and above that provided by standard clinical 

parameters.   

 

Table 2.3 Univariable Cox regression analysis for Disease Specific Survival. 
Hazard ratios, with 95% confidence intervals (CI) and p-values, were calculated for the predicted 
subtype (ccA vs ccB), LAD score, stage, grade and performance status (PS). Analysis of 
“Subtype ccA/ccB” used only the 143 tumors classified using bootstrap analysis. Analysis of 
“Subtype all ccA/ccB” included all 177 tumors classified by LAD score without using the 75% 
confidence cutoff. Analysis of “Subtype ccA/ccB/uncl” included all 177 tumors classified as ccA, 
ccB, or unclassified by LAD score and bootstrapping. The HR for LAD score is per 0.1 units. 

Covariate of Interest HR 95% CI p-value 

Subtype ccA/ccB 2.2 1.4 – 3.4 0.0003 

Subtype all ccA/ccB 1.8 1.2 – 2.7 0.0033 

Subtype ccA/ccB/uncl 1.5 1.2 – 1.9 0.0004 

LAD score 1.2 1.1 – 1.3 0.0002 

Grade 1.9 1.4 – 2.5 <0.0001 

Stage 3.4 2.6 – 4.3 <0.0001 

Performance Status 1.7 1.4 – 2.1 <0.0001 
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Discussion   

Unsupervised consensus clustering algorithms can identify distinct classifications 

of histologically similar tumors based on machine learning algorithms. In this analysis, a 

small gene set distinguishes two inherent molecular subtypes of ccRCC (ccA and ccB), 

characterized by a highly significant association with survival outcomes. This unique 

analysis provides a powerful method to discriminate molecular subgroups of tumors that 

may be informative of tumor biology or influence tumor behavior.  

A fundamental problem in gene expression analysis of human tumors is the 

measurement of genetic noise in pairwise comparisons across thousands of 

independent and dependent variables. Our combined use of PCA, consensus clustering, 

and LAD is robust, and, more importantly, identifies stable clusters within patterns of 

gene expression. This method is highly reproducible and able to classify samples into 

molecular and clinically meaningful categories. Within these categories, "Core clusters" 

are sets of non-overlapping samples that are distinguishable from each other with high 

accuracy. This method of tumor analysis permits a refined assignment into gene 

expression-defined classifications and yields predictive gene signatures based on a 

manageable sized number of gene features. These properties permit the identification of 

limited sets of highly predictive molecular features (ie, genes) useful for the classification 

of individual samples outside of the primary analysis. The extension of biomarker 

molecular profiles to small groups of genes, which can assign classification to individual 

tumors is a major step forward toward the development of a clinically relevant biomarker. 

Ultimately, such a classification scheme will be applied with such measures as 

quantitative RT-PCR.   

The clinical heterogeneity of ccRCC, coupled with previous gene expression 

studies39,95,113,139 suggest that at least two molecular subtypes of ccRCC exist. We 
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demonstrated that there are likely only two primary subtypes of ccRCC stable under 

bootstrap analysis, although further subclassifications within these subtypes may be 

identified in much larger datasets, and rare tumors may represent unusual variants. 

Using the LAD predictions in the validation set, a third group of tumors shared pattern 

features with both ccA and ccB tumors. Such a third group, or other suggested 

classifications, may represent an intermediate manifestation of tumors undergoing 

progression from ccA to the ccB subtype, or which simply share common characteristics 

of both groups.  

The subtypes ccA and ccB were associated with a significant difference in 

survival outcome, with ccA patients having a markedly better prognosis. While the 

continuous variable of LAD score proved to be an independent predictor of survival, the 

more immediately clinically useful dichotomous classification of ccA or ccB had a similar 

effect size and was statistical significant at the p=0.1 level in the multivariable analysis. 

Future studies on larger numbers of patients are needed to validate the results of the 

preliminary multivariate analysis reported herein.  

Finally, our small, robust panel of genes, whose expression levels can classify 

individual tumor samples into ccA and ccB subtypes with high accuracy, may provide a 

valuable resource for clinical decisions for patients following nephrectomy regarding 

frequency of surveillance or choices for adjuvant therapy in the future. This panel 

provides the basis for the development and validation by a prospective clinical trial to 

assign subtypes of ccRCC to individual tumor specimens for implementation in a 

prognostic algorithm. 
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Materials and Methods 

Samples. 51 specimens from 48 ccRCC patients were collected from by the UNC 

Tissue Procurement Core Facility consenting patients undergoing nephrectomy for RCC 

from 1994 – 2008 (Table 2.4), analyzed for quality, flash frozen, and accessed with 

appropriate IRB approvals. The validation set of 177 cases was described previously92. 

Survival data were updated with median follow-up of 120 months (range 66 to 271).  

 

Table 2.4 Tumor characteristics for 51 clear cell samples. 
Tumors suffixed with “a” were independent replicates. Arrays labeled in parentheses were 
assigned by pattern analysis using the 120 LAD probes.  If labeled (unclass), the tumor could not 
be assigned using LAD pattern analysis. Grade – Fuhrman nuclear grade (1-4). Size – Tumor 
size (cm). T-stage – Tumor stage according to pathology report. WT – no mutations detected. U – 
unmethylated. M – methylated. n/a – not available. 

Tumor Core Grade Size T-Stage 
VHL 

mutation 
VHL 

methylation 
2 ccA 2 5.2 T1b n/a U 
3 ccA 2 2.5 T1a mutated U 
5 ccA 2 6.1 T1b n/a U 

11 ccA 2 4 T1a mutated U 
21 ccA 2 4.4 T1b n/a U 
25 ccA 2 4.7 T1b mutated M 
27 ccA 2 4.5 T1b n/a U 

A18 ccA 2 7.5 T2 WT n/a 
A28 ccA 2 8 T2 mutated U 
A30 ccA 2 5.5 T1b WT U 
A31 ccA 2 2.7 T1a mutated U 
A5 ccA 3 17 T3a WT U 

A5a ccA 3 17 T3a WT n/a 
A9 ccA 2 8.2 T3b mutated U 
C1 ccA 3 2.2 T1a n/a n/a 

C13 ccA 3 4.7 T1b n/a n/a 
C5 ccA 2 2.7 T1a n/a n/a 
C7 ccA 3 2.8 T1a n/a n/a 

D10 ccA 2 3.5 T1a n/a n/a 
D3 ccA 2 5 T1b n/a n/a 
D4 ccA 1 5.5 T1b n/a n/a 
D5 ccA 2 4.1 T1b n/a n/a 
D8 ccA 2 3.8 T1a n/a n/a 
E7 ccA 2 5.5 T1b n/a n/a 



 48 

15 ccB 2 5.5 T1b mutated U 
17 ccB 2 3 T1a WT U 
30 ccB 3 7 T1b WT U 

A10 ccB 2 3.2 T1a WT U 
A11 ccB 3 3 T1a WT U 
A13 ccB 3 10 T3b WT U 
A26 ccB 2 3 T1a WT M 

A26a ccB 2 3 T1a n/a n/a 
A27 ccB 2 2 T1a WT n/a 
A4 ccB 2 3.9 T1a n/a U 

C11 ccB 2 7.5 T2 n/a n/a 
C11a ccB 2 7.5 T2 n/a n/a 

C9 ccB 3 8.7 T2 n/a n/a 
D11 ccB 2 2.3 T1a n/a n/a 
D9 ccB 2 1.8 T1a n/a n/a 
1 (ccA) 2 7.9 T2 WT U 
6 (ccA) 2 4.3 T1b mutated U 

12 (ccA) 3 8 T2 mutated U 
A6 (ccA) 2 3.8 T1a WT M 
C3 (ccA) 2 4.5 T1b n/a n/a 
D6 (ccA) 3 4.2 T1b n/a n/a 
E5 (ccA) 2 8 T2 n/a n/a 
E6 (ccA) 3 10.2 T2 n/a n/a 
4 (ccB) 3 5 T3b n/a U 

A16 (ccB) 1 2.5 T1a WT n/a 
E4 (ccB) 2 3.5 T1a n/a n/a 
8 (unclass) 3 4.5 T3a mutated M 

 

 

Gene Expression Analysis. RNA was extracted from fresh frozen tumor 

specimens (with independent replicates – separate sample preparations – of 3 tumors) 

and 18 specimens from adjacent normal kidney using the Qiagen RNeasy kit (Valencia, 

CA). The concentration of the purified RNA was measured on a Nanodrop ND-1000 

(Thermo Scientific, Wilmington, DE), and quality was assured using an Agilent 2100 

Bioanalyzer (Agilent Technologies, Palo Alto, CA). The UNC Genomics Core processed 

RNA samples for amplification, label integration, and hybridization against a modified 

commercial reference RNA39 on Agilent Whole Human Genome (4x44k) Oligo 
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Microarrays (Santa Clara, CA). Microarrays were scanned using the Agilent Scanner 

model C. Fluorescence ratios were determined by Agilent feature extraction software. 

 

Data Normalization:  Expression data from the Agilent Arrays were tabulated in 

log2 R/G Lowess normalized ratio (median) format, removing probes which had ≤70% 

good data (Exclude if spot is not found in either channel, spot or spot background is a 

non-uniform outlier, spot or spot background is a non-uniform outlier for the population, 

spot is not a positive and significant signal in either channel, or Ch1 and 2 Lowess 

normalized net (median) <10). Missing data was imputed using k-nearest neighbors 

method (k=10) using Significance Analysis of Microarrays (SAM, http://www-

stat.stanford.edu/~tibs/SAM/). The data for three groups of arrays, which were prepared 

in separate sample batches, was combined using Distance Weighted Discrimination 

(DWD, https://cabig.nci.nih.gov/tools/DWD).  

Group 1: A4, A5, A6, A9, A10, A11, A13, A16, A18, A26, A26a, A27 

Group 2: 2, 5, D3, D4, D5, D6, D8, D9, D10, E5, D11, E4, E6, E7, n6, n21, nC5 

Group 3: 1, 3, 4, 6, 8, 11, 12, 15, 17, 21, 25, 27, 30, A28, A30, A31, A5a, A7, C1, 

C11, C11a, C13, C3, C5, C7, C9, n25, n27, n3, nA11, nA13, nA16, nA18, nA27, 

nA30, nA31, nA4, nA5, nA9, nC1, nC13 

DWD is a tool that performs statistical corrections to reduce systematic biases resulting 

from different sources of RNA, batches of microarrays etc. It is generally used when 

combing data from different microarray platforms, but is also valuable to correct for 

possible biases introduced due to batch handling effects in data generated on the same 

platform in the same lab. These data are posted on GEO (GSE16449).  

The 177 tumor validation set consisted of gene expression data from ccRCC 

specimens from a previously published paper92, which is also available on GEO 
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(GSE3538). It was tabulated and imputed as described above. This data consisted of 10 

print runs, which were also combined by DWD as above.  Arrays were then standard 

normalized by subtracting the mean of the array and dividing by the standard deviation.  

 

Principal Component Analysis (PCA).  ConsensusCluster142 

(http://code.google.com/p/consensus-cluster/) was used for PCA143,144 and consensus 

clustering135. Features whose coefficients were in the top |25%| were selected from PCA 

eigenvectors representing 85% variation in the data, retaining 26 eigenvectors and 347 

features. 

PCA is a feature selection method which reduces the feature set to those which 

have significant variation within the sample set. It is essentially a coordinate 

transformation in feature space which identifies a sorted list of “Principal Components”, 

which are linear combinations of the original features. The starting point of the analysis 

is the expression matrix Eij where the rows are samples and columns are genes. The 

analysis proceeds by computing the eigenvalues and eigenvectors of the correlation 

matrix between feature pairs across samples after Eij  is centered and scaled to mean 0 

and variance 1 per column. The higher the eigenvalue of the correlation matrix, the 

greater the variation represented by the direction in feature space defined by its 

eigenvector. The eigenvalues λi were sorted in decreasing order and the k largest 

eigenvalues representing a fraction ρ of the variation in the data were identified by 

solving [∑i=1k λi]  = ρ [∑i=1N λi]  where N is the total number of genes. We selected ρ= 

0.85; the results are not sensitive to this choice. From an examination of the coefficients 

of the genes in the eigenvectors for these eigenvalues, we identified the subset of useful 

genes as those with coefficients in the top 25% in absolute value in these k 
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eigenvectors. In the 48 tumors plus three replicates dataset, this identified 26 

eigenvectors and 347 features which were retained for further analysis. 

  

Unsupervised Consensus Ensemble Clustering. Consensus clustering was 

applied to PCA features to divide the data successively into k=2,3,4… clusters, with 80% 

bootstrapping of 300 subsamples of genes and/or samples. We applied two clustering 

techniques, K-Means145 and Self-Organizing Map146.   

Unsupervised clustering algorithms divide data into groups such that the intra-

cluster similarity is maximized and the inter-cluster similarity is minimized. For gene 

expression data, unsupervised clustering can be performed for genes, for arrays, or for 

both. Several types of clustering techniques are available to group data into sets. These 

may be divided into hierarchical, partitioning, probabilistic and grid-based methods. 

Consensus ensemble clustering 146 is a relatively recent method which uses a weighted 

combination of these methods to improve the quality and the robustness of the clusters 

identified by each individual technique. The consensus ensemble approach involves two 

methods: first, a method that generates a collection of clustering solutions, and second, 

a method that robustly combines the solutions to produce a single “best” clustering 

solution for the data. Unlike standard clustering techniques whose solutions divide all the 

data samples into groups, ensemble consensus clustering identifies “core” groups of 

samples within clusters. These are samples which are consistently clustered into the 

same group, independent of perturbations of the data and of the choice of clustering 

methods used. This allows one to identify strong signatures of gene expression within 

each core cluster which can then be used to classify the remaining samples. It also 

allows a robust (perturbation independent) characterization of the gene expressions 

which distinguish the disease classes identified. Often a study of these genes which 
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have noise independent differential expression between disease classes allows a better 

understanding of the underlying biological mechanisms driving the subtypes.   

We use several techniques to create robust “core” clusters. If the clustering 

method is stochastic, we reduce the effect of stochastic variation by applying the 

clustering method repeatedly and taking an appropriate average. To reduce the 

sensitivity of the results to random variation in the data, we apply each clustering method 

to multiple sample datasets obtained by bootstrapping both the features (genes/probes) 

as well as the samples clustered. The core clusters are identified as those groups whose 

memberships consist of samples consistently classified into the same group over all the 

bootstrap and clustering experiments. We have developed our own (publicly available) 

software suite called ConsensusCluster which implements PCA and consensus 

ensemble clustering. The code is available at http://code.google.com/p/consensus-

cluster/. 

Consensus ensemble clustering was applied to data limited to the 347 features 

identified by PCA and the data was split into k=2, 3, 4… clusters, which were made 

insensitive to data and clustering method bias by bootstrapping over many datasets and 

averaging over two clustering techniques, K-Means145 and Self-Organizing Map146.   

The detailed procedure used is described below:  

Step 1. 75 datasets were created from the imputed data restricted to the 347 significant 

features identified by PCA. 75 datasets came from bootstrapping the samples, 75 from 

bootstrapping genes and 75 by first projecting the data on bootstrapped genes and then 

by further bootstrapping on samples.  

Step 2.  k=2,3,4 clusters were created for each dataset using k-means and SOM. 

Step 3. For each k and each method, the k resulting clusters were combined into an 

agreement matrix Aij of size n x n.   
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Step 4. For each k, the samples were clustered using dij = 1-Aij as a distance measure 

using hierarchical clustering and the hierarchical tree was truncated at the kth level. 

 

Logical Analysis of Data (LAD). Features mapped to genes that discriminate 

between the two subtypes (t-test p<0.000001) were retained. We then applied LAD147,148, 

(http://pit.kamick.free.fr/lemaire/software-lad.html). LAD patterns requiring only one gene 

for perfect discrimination were generated. LAD was reapplied to identify patterns of 

degree 1 and degree 2 (homogeneity and prevalence = 0.9). A classifier CS=fP-fN 

assigned an unknown sample to a class, where fN/fP are the fraction of negative/positive 

patterns satisfied. If the LAD score (CS) was negative/positive, the sample was predicted 

to class ccA/ccB respectively.  

Logical analysis of data 147,148, is a method to find patterns distinguishing two 

classes. For gene expression data, LAD identifies patterns of expression which can 

stratify labeled data. It has been successfully used in several biomedical 

studies136,137,140.In our case, a pattern is a rule based on cutpoints in the expression of 

genes which can distinguish our two subtypes ccA and ccB. A pattern is characterized 

by its degree, prevalence, and homogeneity. The degree is the number of genes 

appearing in its defining conditions. The prevalence of a pattern is the percent of positive 

(negative) cases which satisfy the pattern. The homogeneity of a pattern is the 

percentage of positive (negative) cases covered by it.  In general, patterns useful for 

classification have low degree and high prevalence and homogeneity.  

To develop patterns to distinguish ccA and ccB, we used the complete set of 

probes on the chip so as not to bias the analysis in any way. Each sample array was first 

standard normalized by subtracting the mean of the array and dividing by the standard 

deviation, in order to create patterns applicable to other datasets. We retained only 
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those features that could discriminate the subtypes using a t test at  p-value < 0.000001 

and only kept the probes which were mapped to known genes. This reduced the dataset 

to 1075 probes, which included the set of 347 identified by PCA. We then applied LAD 

147,148, using the implementation that is available at  

(http://pit.kamick.free.fr/lemaire/software-lad.html). LAD patterns requiring only one gene 

for perfect discrimination were generated in Leave-One-Out experiments (LOO) (see 

below) to further reduce the gene set to 120. These probes were re-normalized by 

median centering, and LAD was reapplied to identify patterns of degree 1 and degree 2 

(homogeneity and prevalence=0.9) using a single cut-point at expression value 0.   

These patterns were used to predict the samples initially set aside as non-core 

samples. A classifier CS=fP-fN assigns an unknown sample S to a class, where fN/fP are 

the fraction of negative/positive patterns satisfied by S. If the LAD score (CS) is 

negative/positive, the sample is predicted to class ccA/ccB respectively. Confidence 

levels were computed by running 100 bootstraps of 80% of the patterns from the entire 

set, and the LAD score was computed for each bootstrapped sample. The final LAD 

score was the average of 100 runs, and the confidence level was the percent of times 

the sample was predicted to be in ccA or ccB. Samples with confidence levels < 0.75 

were left as unclassified. 

 

Leave-One-Out Analysis (LOO). LOO is a procedure to test the accuracy of a 

classifier that distinguishes two labeled classes. One sample is left out, then the 

classifier is created from the remaining samples and is used to predict the class of the 

sample left out. The procedure is then repeated for all possible selections of “left-out” 

samples. The prediction accuracy of the classifier is the average fraction of correct 

classifications across all choices of the “left-out” sample.    
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Semi-quantitative Reverse Transcription PCR. Where available, RNA was 

extracted from a second tumor sample from the same patient. Tumors were chosen 

based on RNA or tumor availability of RNA or tumor with the end goal of equal numbers 

in each subtype. 500ng of total RNA from training set patient tumor samples was reverse 

transcribed using Superscript II polymerase (Invitrogen, Carlsbad, CA) using 

manufacturer recommended standard buffer and temperature conditions. A 1:5 cDNA 

dilution was amplified by 25 cycles of semi-quantitative PCR with primer sets for FLT1 

(ACTTTTACCGAATGCCACC and TGGTTACTCTCAAGTCAATCTTG), FZD1 

(CCATCAAGACCATCACCATC and GCCGATAAACAGGTACACGA), GIPC2 

(CCTGAGATCAAAAGGTCCTG and CTTCAAACATTGTGGTGGC), MAP7 

(GCTACAGATAAGAAAACCAGTGA and GCTTTCCATTTCCCGGA), and NPR3 

(TCGGCAGTGACAGGAATT and CCCGATGTTTTCCAAGGT). Primers were designed 

using IDT (http://www.idtdna.com/). 18S rRNA primers (Applied Biosystems) were used 

as a control. Equivalent quantities of the semi-quantitative RT-PCR samples were run on 

a 6% acrylamide gel. 

 

Statistical Methods. All statistical analyses were performed using R v2.4.1 

(http://www.r-project.org), SAS (SAS Institute, Inc, Cary, NC), and STATA (Statacorp, 

College Station, TX). The Kaplan-Meier (or product limit) method was used to estimate 

the time to event functions of disease specific survival and overall survival. Disease 

specific survival was defined as the time from the nephrectomy to death due to disease. 

Overall survival was defined as the time from nephrectomy to death from all causes. The 

log-rank test was used to test for differences between disease-specific and overall 

survival Kaplan-Meier curves. Univariable logistic regression was used to evaluate the 
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relative strength of association of covariates, one at a time, on the outcome probability of 

being subtype ccA versus ccB.  The covariates of interest here were performance status, 

tumor stage, and grade. Univariable and multivariable Cox regression was used to 

evaluate the strength of association of individual and multiple covariates on disease 

specific and overall survival.  The covariates of interest in these models were 

performance status, tumor stage, Fuhrman grade, subtype (ccA/ccB, or 

ccA/ccB/unclassified), and LAD scores. Model fit was assessed using an approximation 

to Bayes factors known as the Schwartz Bayesian Criterion (SBC) 141. 
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Abstract 

Clear cell renal cell carcinoma (ccRCC) is the main histological subtype of kidney 

cancer, but presents in the population as a clinically heterogeneous disease.  

Acceptance that ccRCC consists of two main subtypes has been increasing, but these 

subtypes require further characterization.  Therefore, overall gene transcript and 

pathway differences were examined between the two subtypes and validated in another 

dataset. ccA tumors, the better prognostic group, overexpresses angiogenesis and 

hypoxia related genes.  In comparison, ccB tumors, which portend a poorer prognosis, 

overexpress more aggressive sets of genes, including Myc targets, cell cycle and 

epithelial-to-mesenchymal transition (EMT).  ccB tumors also underexpress metabolism 

related genes in comparison to normal tissue.  Despite the angiogenesis and hypoxia 

signature of ccA tumors, VHL inactivation was identified in both subtypes.  Additionally, 

while the pathway patterns show similarity to differences previously identified in HIF1 

and HIF2 vs HIF2 only expressing tumors, HIF protein expression was also confirmed to 

be relatively equal in both subtypes.  Overall, this chapter provides more insight into 

what causes the split between ccA and ccB tumors, both molecularly and with regards to 

prognosis. 
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Introduction 

In the last chapter, we identified two molecular subtypes of clear cell renal cell 

carcinoma, ccA and ccB, with vastly different survival outcomes.  While we also 

identified genes to distinguish between the two subtypes, few of these genes were 

suggestive of pathways that would create survival stratification.  Therefore, we wanted to 

know what is driving this difference between the more indolent ccA tumors and the 

aggressive ccB tumors.   

Because a nephrectomy can be curative for many patients, the decreased 

survival outcome in ccB tumors is suggestive of early recurrence by metastasis.  

Therefore, we hypothesized that ccB tumors overexpress molecular pathways that are 

indicative of or predictive for metastasis.  However, the particular pathways remained to 

be elucidated. 

Only two gene expression studies have been able to provide any insight into 

biological pathways involved with inherent molecular clusters of ccRCC.  Skubitz et al.95 

identified 2 groups in their 16 ccRCC tumors:  One group overexpressed angiogenesis 

genes, while the other overexpressed extracellular matrix and cell adhesion genes.  This 

study, however, included 3 tumors with sarcomatoid features, which are indicative of a 

far more aggressive disease progression.  Therefore, while this information provides 

grounds from which to work, the results may not be entirely indicative of the general 

clear cell population. 

The other study is by the Brooks group92 that we used to validate our subtypes 

and provide survival data in the previous chapter.  Of their two main clusters, the better 

survival group overexpressed 3 genes in each category of angiogenesis, Wnt signaling 

pathway, cell adhesion, and cellular metabolism.  Observing angiogenesis and cell 

adhesion gene expression in the same ccRCC cluster is opposite the results shown by 
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the Skubitz group.  Additionally, the Brooks group did not perform a full pathway analysis 

on their unsupervised clustering results.  Du to the limited biological information provided 

by these studies, we wanted to fully explore the molecular differences between our two 

subtypes, specifically using our previously identified core tumors to obtain the most 

accurate information about each group. 

In addition to general molecular differences, we specifically wanted to examine 

the VHL/HIF pathway in our subtypes.  As discussed in chapter 1, up to 90% of sporadic 

ccRCC tumors have inactivated the von Hippel-Lindau (VHL) tumor suppressor gene133, 

so we would expect to see many HIF regulated pathways such as angiogenesis, 

glycolysis, and proliferation to be dysregulated compared to normal tissue.  However, we 

also discussed that different VHL mutations regulate HIF proteins to varying levels37,38. 

Additionally, Gordan et al. showed that that ccRCC can be subdivided into wild-type VHL 

(negative for HIF expression), HIF1 and HIF2, and HIF2 only expressing tumors39. Using 

these distinctions, HIF2-only tumors underexpressed glycolysis genes and 

overexpressed cell cycle and DNA damage genes compared to wild-type and HIF1/HIF2 

tumors.  Both HIF groups overexpress angiogenesis and oxidative phosphorylation 

genes.  Lastly, the opposing interactions of HIF1 inhibiting and HIF2 promoting C-Myc 

activity was confirmed in human tumors.  This encouragement of C-myc activity 

enhances the proliferative signature seen in HIF2 only tumors.  We wanted to know 

whether our data would stratify along these lines as well. 

Our goal in this chapter was to identify what molecular pathways were 

differentiating our two inherent subtypes of ccRCC, ccA and ccB, and causing the 

survival differences that we observed.  As expected, both groups overexpress cell cycle 

genes and underexpress oxidative phosophorylation compared to normal tissue.  

Interestingly, angiogenesis and hypoxia genes were predominantly overexpressed by 

ccA tumors, while ccB tumors tended to overexpress genes involved in epithelial-to-
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mesenchymal transition and proliferation.  ccB tumors underexpress glycolytic genes, 

compared to normal tissue.  However, VHL mutations and methylation, as well as HIF1 

protein expression, were observed in both subtypes.  These results increase our 

understanding that the better prognostic ccA tumors appear to have more of a classic 

ccRCC phenotype of angiogenesis and hypoxia, while the poor survival group ccB 

displays a program of increased proliferation and aggression.   
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Results 

 

Analysis of pathway differences between two core clusters. The 

previous identification of ccRCC subtypes97 provides an opportunity to identify biological 

differences within the spectrum of ccRCC. SAM (Significance Analysis of Microarrays) 

analysis identified 2701 and 3512 probes over-expressed in ccA and ccB, respectively 

(Figure 3.1A). This result confirms the gene expression profile heterogeneity observed 

in previous studies92. The functional classification program, DAVID, was used to 

functionally categorize the probes identified in our analysis.  A demonstration of the gene 

ontologies and pathways found to be differentially regulated between ccA and ccB 

tumors is provided in supplementary material on the Genes and Cancer website. 

Additionally, SAM Gene Set Analysis, a more statistically robust way of identifying 

correlated gene groups, was performed using curated gene sets, providing similar 

results. The most notable genes, gene sets, and gene ontologies associated with cluster 

ccA were involved in angiogenesis (Figure 3.1B), the beta-oxidation pathway (Figure 

3.1C), organic acid metabolism, fatty acid metabolism (Figure 3.1D), and pyruvate 

metabolism. In contrast, core cluster ccB tumors overexpressed genes associated with 

cell differentiation, epithelial to mesenchymal transition (EMT) (Figure 3.1E), the mitotic 

cell cycle, TGF beta (Figure 3F), response to wounding, and Wnt targets (Figure 3.1G). 
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Figure 3.1 Pathway analysis of subtypes shows that ccA and ccB differentially express 
many genes 
(A) Heat map of the 6,213 probes differentially expressed between ccA and ccB as determined 
by SAM analysis; false discovery rate (FDR) < 0.000001. (B-G) Magnified heat maps of the 
genes from (A) that populate the ccA (B-D) or ccB (E-G) overexpressed Molecular Signatures 
Database curated gene sets of Brentani angiogenesis (B), beta-oxidation (C), HSA00071 fatty 
acid metabolism (D), epithelial to mesenchymal transition (EMT) up (E), transforming growth 
factor beta (TGFβ) C4 up (F), and Wnt targets (G). 
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Confirmation of pathway analysis results on a validation set.  We next 

confirmed these pathway differences between the subtypes using the 143 assigned 

validation tumors from the Brooks group92  (Figure 3.2).  ccA tumors continued to 

overexpress genes involved in 

fatty acid metabolism, glycolysis, 

and angiogenesis.  Note that the 

Myc-related gene set in ccA is 

comprised of genes that are 

expressed by wild type levels of 

Myc as compared to transgenic 

overexpression149.  In contrast, 

ccB tumors overexpress genes 

related to epithelial-to-

mesenchymal transition (EMT), c-

myc, cell cycle, Wnt targets, and 

TGF-beta. 

 

Characterization of subtypes compared to normal tissue. The above 

analyses were performed comparing ccA and ccB tumors in relation to each other.  To 

better understand the two subtypes, we wanted to compare each subtype to normal 

kidney tissue.  Doing so would allow us insight into what different molecular changes are 

occurring in the subtypes during carcinogenesis, in addition to what makes the subtypes 

different from each other. 

 
Figure 3.2 Pathway analysis of validation data 
subtypes mimics training data. 
SAM Gene Set Analysis of ccA versus ccB tumors using 
Molecular Signatures Database curated gene sets shows 
similar pathway expression to those found in the training 
set (see Figure 3.1). The dashed line is equivalent to 
p=0.05. 
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As expected, SAM 

analysis showed that both 

subtypes overexpress hypoxia-

response related genes common 

to ccRCC, such as VEGF, EGLN3 

and CAIX, while underexpressing 

VHL.  In total, 9112 probes were 

differentially expressed in ccA 

tumors compared to normals, 

while 13, 571 probes were 

identified in ccB tumors.  

When analyzed by SAM-

GSA, a more complete picture is 

uncovered. Both subtypes 

overexpress cell cycle pathways, 

as well as p53 and caspase 

pathways (Figure 3.3A).  Both 

subtypes underexpress oxidative 

phosphorylation and normal 

human kidney pathways, as 

expected for RCC.  The ACE2 or 

angiotensin pathway is also 

similarly decreased in both.  This 

pathway inhibits an increase in 

blood flow, thereby preventing 

    
Figure 3.3 Pathway expression in subtypes 
compared to normal shows similarities and vast 
differences. 
Subtypes were compared to normal tissue, and 
similarities between the subtypes were apparent (A) as 
well as the differences (B,C).  ccA tumors are still 
angiogenic and hypoxic, while more aggressive ccB 
tumors underexpress metabolism pathways. The dashed 
line is p=0.05. 



 67 

angiogenesis, a necessary step for tumorigenesis. 

However, the differences are more telling.  Only ccA overexpresses 

angiogenesis and hypoxia pathways (Figure 3.3B).  This result is particularly interesting 

given that both subtypes overexpress VEGF and underexpress VHL, as described 

above.  A group of Wnt3 targets are overexpressed in ccA versus normal, despite Wnt 

targets being overexpressed in ccB vs ccA.  The SLRP pathway is underexpressed in 

ccA and is involved in the arrangement of collagen in the extracellular matrix; changes in 

this pathway are frequently associated with disease. 

Surprisingly, ccA does not overexpress glycolysis and fatty acid metabolism 

genes as we previously thought; instead, ccB underexpresses these pathways.  Given 

that ccRCC is classically known to overexpress both angiogenic and glycolytic pathways 

as they are both regulated via HIF, this observed split seems contrary to classical 

thought.   

Myc responsive genes are overexpressed by both subtypes, but the genes in 

these two gene sets (Zeller Myc Up for ccA and Yu CMyc Up for ccB) are completely 

different.  ccB tumors overexpress genes in the DNA damage signaling, JNK, and 

Patched1 pathway (Figure 3.3C), again suggesting a more aggressive and immature 

tumor.  Overall, these results suggest that while both subtypes express certain common 

ccRCC gene and pathway alterations, ccB tumors have undergone more molecular 

modifications than ccA tumors.     

 

VHL pathway analysis. As described above, we had found that several of the 

pathways overexpressed in ccA tumors are typically considered as being perturbed 

in ccRCC (i.e., angiogenesis and hypoxia is considered a defining feature of ccRCC). 

A number of genes (e.g. EPAS1, EGLN3, PDGFC, HIG2, and CA9) tightly correlated 
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with aspects of VHL inactivation and hypoxia inducible factor (HIF) signaling were 

found to be overexpressed in ccA relative to ccB.  

 To further analyze the VHL pathway in our ccRCC subtypes, we classified 

each tumor of our previously published dataset39 that was well annotated for VHL 

inactivation. Out of the 21 tumors, 10 were predicted to be ccA, 6 as ccB, and 5 as 

unclassified (Table 3.1). In each category, there were VHL wild type tumors, HIF1 

and HIF2 overexpressing tumors and HIF2 only overexpressing tumors. Our own 

analysis of VHL status also demonstrated the presence of VHL mutations and/or 

methylation in both the ccA and ccB clusters (Table 3.1). These data suggest that 

ccA and ccB, despite both displaying VHL inactivation, might have activation of 

different dominant biologic pathways, resulting in distinct patterns of gene 

expression.  

 

Table 3.1 Classification of HIF annotated Gordan et al.39 tumors 
Tumors from Gordan et al. were classified as ccA or ccB, and their HIF and VHL status assessed.  
VHL wild type tumors were negative for HIF1 or HIF2 expression.  Each subtype has both tumors 
expressing HIF1, as well as those being wild type for VHL. 
 HIF1 and HIF2 HIF2 only VHL wild-type 

ccA 5 3 2 

ccB 2 2 3 

Unclassified 1 2 1 

 

HIF1 protein is overexpressed in both subtypes.  While we saw HIF1 and 

HIF2 overexpressing tumors in both subtypes in the Gordan et al. data above, we 

wanted to validate this wasn’t a sample bias.  Therefore, we performed IHC for both 

these HIF molecules on all available core tumors from the training data set (Figure 3.4).  

Again, we found a rather similar pattern of expression in both subtypes (Table 3.2).  
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From this result, we concluded that the presence of HIF1 protein may not be the primary 

distinguishing factor driving the pathway differences in the subtypes. 

 

Table 3.2 Similar percents of HIF1/HIF2 tumors were found in each subtype. 
HIF expression based on 5-10 fields with expression in greater that 40% cells. Each tumor was 
assessed by 3-4 independent histology readers. Tumors labeled n/a lacked slides or were 
indeterminate.  

 HIF1 and HIF2 HIF2 only HIF Negative n/a 

ccA 14 3 1 5 

ccB 8 3 0 2 

 
Figure 3.4 Representative HIF staining 
HIF1/HIF2 and HIF2 only expressing tumors were found in both subtypes. 
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Discussion 

We previously subdivided clear cell Renal Cell Carcinoma into two subtypes, ccA 

and ccB.  While we had shown that patients with ccA tumors fared significantly better, 

we could not explain the cause of the survival difference.   

Pathway analysis showed that the better prognosis ccA group relatively 

overexpressed genes associated with hypoxia, angiogenesis, fatty acid metabolism, and 

organic acid metabolism, whereas ccB tumors overexpressed a more aggressive panel 

of genes that regulate EMT, the cell cycle, and wound healing.  This same pattern of 

pathways was observed in the Brooks validation dataset.  When we compared these 

subtypes to normal tissue, again we saw that only the ccA tumors overexpressed 

angiogenesis and hypoxia pathways.  Surprisingly, ccB tumors underexpressed 

glycolytic and fatty acid metabolism genes compared to normal. 

While it is a subtle difference that ccB underexpresses glycolytic pathways rather 

than ccA overexpressing them, it is a very important observation as metabolic pathways 

are becoming more studied in cancer.  Additionally, FDG-PET (fluorodeoxyglucose 

positron emission tomography) uses glucose uptake as a means of measuring tumor 

size in this generally highly glycolytic tumor type and is becoming a more acceptable 

marker of response to treatment28.  Given that ccB tumors underexpress glycolytic 

genes, this particular marker may not be as effective as with ccA tumors. 

Intriguingly, ccA overexpresses genes associated with components of hypoxia 

and angiogenesis pathways, processes known to be broadly dysregulated in clear cell 

RCC. VHL inactivation and subsequent activation of the hypoxia response pathway is so 

highly correlated with ccRCC that many of these pathways are expected to be 

upregulated in virtually all ccRCC tumors. As expected, using both training set tumors 

and LAD assigned gene expression arrays from Gordan et al.39 we identified VHL 
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inactivation in both clusters.  However, it is still possible that the two subtypes harbor 

different inactivating mutations of VHL, which could alter HIF expression or even affect 

HIF-independent pVHL activity. 

The next obvious question was whether HIF1 expression was different between 

ccA and ccB.  HIF1 transcriptionally regulates expression of glycolytic enzymes, and 

decreases C-myc activity.  Gordan et al. had shown that HIF2 only expressing tumors 

were more proliferative, but less glycolytic39, a pattern that closely matches ccB tumors.  

However, in both our tumors and through the Gordan et al. data, we saw that HIF1 was 

expressed in both subtypes, suggesting that HIF1 protein expression may not be the 

driving difference between ccA and ccB.  There are several possibilities to address this 

apparent paradox: 

1. There might be subtle differences in HIF1 expression between the two 

subtypes that we are unable to detect or quantify through IHC, but that 

shift the balance enough to create the resulting gene expression 

differences. 

2. HIF1 may have specific mutations in ccB tumors that prevent full 

functionality, either in its transcriptional regulation role or its ability to 

bind Myc’s binding partners.  The Futreal group has found inactivating 

mutations within HIF140, which lends credence to this possibility. 

3. HIF3 may be directly inhibiting HIF1 through binding of HIF1α or 

competitively inhibiting it through binding of HIF1ß in ccB tumors.  HIF3 

transcript is overexpressed in ccB tumors, providing support for this 

idea.  This prospect is discussed further in Chapter 6.  

4. ccB may have acquired additional genetic events which supplement 

VHL pathway events, contributing to a more biologically immature and 
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aggressive phenotype that overwhelms the signature associated with 

VHL inactivation.   

 

ccB tumors overexpress a variety of genes and pathways, such as Myc, Myb, 

Hedgehog/Patched pathway, and Jnk pathway that are related to proliferation, 

differentiation, survival and migration.  While on its own, each one of these may not 

create a vastly different expression pattern, these genes and pathways could act in 

tandem to cause the aggressiveness found in ccB tumors. 

Another pathway that could influence the differences between ccA and ccB 

tumors is Wnt.  Wnt targets are overexpressed in ccB tumors compared to ccA tumors.  

Interestingly, Wnt 3 targets are overexpressed in ccA tumors compared to normal.  This 

contrast may be due to a different Wnt proteins and/or pathways being expressed in the 

two systems.   

In particular, the Wnt kinase Ror2 is overexpressed in ccB tumors.  This kinase 

has been shown to commonly interact with Wnt5150-153.  Additionally, our lab has 

previously published154 that it is an active kinase in clear cell Renal Cell Carcinoma.  In 

tumors, we showed that its expression correlates with extracellular matrix genes and 

Wnt related genes.  Specifically, Twist1 and MMP2 were validated by quantitative real-

time as increasing in expression as Ror2 increased.  In vitro experiments showed that 

Ror2 expression corresponded with the ability to fill a scratch wound, suggesting that 

Ror2 plays a role in migration.  Ror2 expression was also necessary for proliferation of 

cells within soft agar, signifying a role in an anchorage independence and therefore 

invasion.  Finally, a xenograft assay illustrated that Ror2 expression was necessary for 

the formation of discrete tumors in vivo.  These results portend that Ror2 plays a 

definitive role in tumor aggressiveness, a key aspect of ccB tumors.  Interestingly, this 

gene is also generally only expressed during development in kidneys, adding to the 
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immature status of ccB tumors.  Further studies are needed to confirm Ror2’s role in ccB 

tumorigenesis compared to ccA.    

Overall, ccB tumors express genes and pathways more commonly associated 

with invasion, which fits well with their association with poor prognosis.  In comparison, 

ccA tumors are predominantly defined by their angiogenic nature.  This split suggests 

that the ccA/ccB classification scheme may also have predictive value, in addition to its 

prognostic value.  Many of the current treatments for ccRCC, such as sunitinib, 

sorafenib, axitinib, pazopanib, and bevacizumab, are anti-angiogenic agents and were 

designed to primarily target the VEGF or the VEGF receptor.  Given that ccA tumors do 

highly overexpress angiogenesis genes, it seems likely that these drugs may be more 

effective against these tumors.  Future studies are planned to examine this intriguing 

possibility. 
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Methods 

Gene expression data.  Samples were collected and processed as previously 

published97.  

 

Pathway Analysis. SAM was performed, and genes were selected using a cutoff of 

False Discovery Rate (FDR) < 0.000001. Heat maps were generated using Cluster 3.0 

(http://bonsai.ims.u-tokyo.ac.jp/~mdehoon/software/cluster/) and Java Treeview 

(http://jtreeview.sourceforge.net/). Differentially regulated genes were functionally 

annotated in DAVID Bioinformatics Database (http://david.abcc.ncifcrf.gov/) with p-value 

and FDR <0.05. SAM-GSA was also performed on the data using the curated gene sets 

from MSigDB (http://www.broad.mit.edu/gsea/msigdb/) and p < 0.05.  

 

VHL Sequence and Methylation Analysis. DNA was extracted from tumor 

samples using proteinase K (Roche) and standard phenol/chloroform extraction. VHL 

exons were PCR-amplified and directly sequenced for mutations with a BigDye 

Terminator Cycle kit on a 3130xl sequencer (Applied Biosystems). Primers and protocols 

used were described previously155. A CpG Wiz kit (Chemicon) and/or NotI digestion was 

used for methylation studies156. 

 

Immunohistochemistry.  Immunohistochemistry staining was performed on 

formalin fixed paraffin embedded sections according to the protocol from Dako 

Catalyzed Signal Amplification (CSA) kit. Antigen retrieval for all antibodies was done by 

boiling the slides in citrate buffer (pH 6.0; Dako) for 30min. Endogenous peroxidase 
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activity was quenched in 3% H2O2 for 10min. Antibodies used were: anti-HIF-1Α (rabbit 

polyclonal antibody, 1:2500, Novus NB100-479) , anti-HIF-2Α (rabbit polyclonal 

antibody, 1:2000, Novus NB100-122). Detection for all antibodies was performed using 

the Dako Catalyzed Signal Amplification (CSA) kit.  Slides were labeled as HIF1 or HIF2 

positive if greater than 40% of the cells were positive for stain as determined by the 

majority of 3-4 reviewers. 

 

 



 
Chapter Four: 

 
 

Characterization of clear cell renal cell carcinoma subtypes 
reveals underlying genetic differences  
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Abstract 

Clear cell renal cell carcinoma is the main subtype of kidney cancer, but we have 

shown that it can be further divided into two subtypes, ccA and ccB.  These subtypes 

vary both in the primary molecular pathways that they overexpress as well as their 

natural disease progression in patients.  However, we have been unable to understand 

why this is.  Therefore, we sought to examine the underlying genetic changes between 

these two subtypes in an effort to better understand this disease heterogeneity. 

Regions of altered expression were first studied in our training set data using 

positional gene sets and a technique called computational karyotyping.  These 

approaches provided guideposts as to potential regions of copy number changes.  

However, as these regions were identified based on gene expression data, these 

regions may be altered due to other epigenetic or molecular events.  For that reason, 

copy number analysis was then performed on a previously published dataset of ccRCC 

that were assigned to ccA and ccB subtypes using corresponding gene expression data.  

Loss of chromosome 3p, espousing the genetic location for VHL, was present in the 

majority of tumors in both subtypes, substantiating previous research and confirming the 

likelihood that most clear cell tumors arise from VHL inactivation.  Interestingly, however, 

fewer ccB tumors contained this chromosomal deletion.  Additionally, loss of 

chromosome 9 and 14 and amplification of 8q and X were more common in subtype 

ccB.  Finally, gene mutation data from sequencing of these tumors was analyzed with 

respect to subtype, showing a prevalence of mutated histone modifications genes in 

subtype ccA.  These data provide increased insight into the vast molecular, genetic, and 

epigenetic differences between subtypes ccA and ccB.   
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Introduction 

In the previous chapters, we identified two subtypes of clear cell Renal Cell 

Carcinoma, termed ccA and ccB, which have a 6.6 year survival difference.  Performing 

pathway analysis on these two groups, ccA tumors overexpressed more classic clear 

cell genes such as those in angiogenesis and hypoxia pathways, while ccB tumors 

overexpressed more immature and aggressive genes, including those in cell cycle, cell 

differentiation, and response to wounding.  However, we still lack the answer to why 

these two subtypes behave in these ways.   

As discussed in chapter 1, many groups have attempted to answer the question 

of what genetic events cooperate with VHL loss to accelerate tumor progression.  Much 

as we do early in this chapter, Furge et al. attempted to understand the underlying 

genetics through predicted cytogenetic profiles based on gene expression data6.  They 

found that loss of 14q correlated with higher stage and poor survival.   

Additionally, copy number analysis and sequencing has become more common, 

allowing a more detailed examination of the underlying genetic changes leading to the 

biological impact of the tumors.  Using unsupervised hierarchical clustering on 

comparative genomic hybridization (CGH) data from 51 ccRCC tumors, the Kanai group 

identified 2 distinct subclasses with significant survival differences63.  They found that 

both clusters had frequent loss of 3p and gain of 5q and 7, but one of the poor prognosis 

clusters additionally sported loss of 1p, 4, 9, 13q, and 14q.  Interestingly, this cluster also 

had increased DNA methylation on 9 analyzed genes.   

More recently Beroukhim et al. and the Futreal group studied a larger number of 

ccRCC tumors using both gene expression analysis and single nucleotide 

polymorphisms 40,65.  Beroukhim et al. analyzed 54 sporadic ccRCC tumors as well as 36 

tumors from patients with von Hippel-Lindau disease.  Overall, they identified loss of 3p 
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in almost all tumors, and gain of 5q in most.  Additionally, they found amplifications in 1q, 

2q, 7q, 8q, 12q and 20q, and deletions in 1p, 4q, 6q, 8p, 9p, and 14q.  Sporadic tumors 

tended to undergo more copy number changes than VHL disease associated tumors, 

but share many of the same copy number changes. 

The Futreal group analyzed 96 tumors by copy number analysis, and found 

frequent losses of 3p (in greater than 80% of cases), 4, 6p, 8p, 9p and 14q, and gains of 

1q, 2, 5q (in 50% of tumors), 7, and 12.  Importantly, they found two main subgroups 

within their expression data of these tumors, with 82% of their tumors exhibiting a 

hypoxia signature.  The Futreal group also performed sequencing on 3544 genes and 

identified mutations in a number of histone modification genes, the majority of these 

changes being found in the subgroup with a more hypoxic expression pattern. 

 The Kanai group identified two clusters based on copy number, but we cannot 

confirm that these correspond to our subgroups without gene expression data.  The 

other two groups (and many others, as discussed in chapter 1) focused on overall 

genetic changes compared to normal40, and the differences between sporadic and 

germline mutations 65.   

However, with our panel of 120 genes, we can classify tumors into our ccA and 

ccB subgroups to define the genetic steps that guide the heterogeneity that is seen in 

many gene expression studies and in the clinic.  Therefore, in this chapter, we began by 

assessing possible copy number changes from our gene expression data through both 

SAM and a new technique called computational karyotyping.  To confirm these results, 

we used the data from the Futreal group40 to perform copy number analysis.  In doing 

so, we determined that ccB tumors are more likely to have deletions on chromosome 9 

and 14, regions associated with decreased survival, while ccA tumors are slightly more 

likely to have 3p deletions, an alteration associated with better prognosis66.  Finally, 

using Futreal’s list of mutated genes for each tumor, we identified alterations to histone 
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modification genes in both subtypes, but far more in the ccA subtype.  These results 

help us to have a better understanding of the underlying genetic and epigenetic changes 

driving the molecular and clinical differences observable in our two subtypes. 
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Results 

Analysis of chromosomal changes based on expression.  We previously 

identified substantial transcript and pathway differences between ccA and ccB tumors.  

However, we still could not definitively state the cause of these changes.  Therefore, we 

wanted to determine whether the transcripts with altered expression clustered in specific 

chromosomal regions, suggestive of amplification or deletion.  If so, these results might 

give us further information as to other genetic changes besides VHL inactivation that 

lead to tumorigenesis and the varied outcomes between subtypes. 

   

SAM gene set analysis was performed on our training set data compared to 

normal tissue using the Broad’s positional gene sets (Figure 4.1, Table 4.1). Very few 

regions were similar between the two subtypes, ccA and ccB.  Interestingly, ccA tumors 

 
 
Figure 4.1 Chromosomal regions of differential gene expression. 
Regions of differentially expressed genes compared to normal tissue were identified using SAM-
GSA and the Broad Institute’s MSigDB positional gene sets, p<0.05.   
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show underexpression of genes in much of chromosome 3p, the location of VHL.  

Deletions of 3p have been shown to correlate with increased survival66.  ccB tumors 

show decreased expression on chromosome 14, near the location of HIF1.  While the 

identified regions of over- and underexpression may be indicative of chromosomal 

changes, it is also possible that pathway alterations or epigenetic modifications could be 

driving these differences. 

 

Computational karyotyping of training set data.  Use of the Broad Institute 

positional gene sets with SAM-GSA is based on probes with matching gene names 

within specific chromosomal bands.  Thus, probes without any gene names and genes 

not listed within certain gene sets will not provide added information.  Therefore, we 

turned to a method we named computational karyotyping to provide more detailed 

information via a sliding window technique.  Computational karyotyping compares probe 

expression in tumors compared to normal tissue, then it identifies regions along the 

chromosome where there is an enrichment of outliers compared to background.  We 

could then examine regions that were different between ccA and ccB. 

 When we applied this technique our original training data, many regions that 

were previously identified by SAM-GSA were also apparent (Table 4.1).  These regions, 

therefore, are most likely to truly be regions of changed expression.  Chromosome 3p, in 

particular, stood out to us, since there was almost no change in expression compared to 

normal for ccB tumors, yet up to 96% of ccA tumors showed underexpression in this 

region (Figure 4.2).  As mentioned above, loss of 3p has been shown to correspond with 

increased survival66.  Additionally, genes located within this region include VHL; the 

TGF-beta receptor 2 (TGFBR2), which regulates transcription of proliferation genes; 

Beta-catenin, which regulates c-Myc, cyclin D1 and many other genes; SETD2, a 
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histone methyltransferase; Wnt5a, which has been shown to interact with Ror2; and 

ADAMTS9, a metalloprotease and anti-angiogenesis gene.  Loss of these genes could 

easily cause a tumor to be more angiogenic and less aggressive.   

 

 One other region of interest that was identified by both SAM-GSA and 

computational karyotyping is underexpression in 14q in ccB tumors.  Loss of this region 

has been identified to be associated with poor prognosis66.  However, as mentioned 

above, this identified regions is based on expression data, which could be caused by 

either copy number changes, pathway alterations, or epigenetic modifications. 

 

 
Figure 4.2 Chromosome 3 underexpression of UNC data shows significant 
difference between ccA and ccB tumors. 
Chromosomal karytopying of UNC expression data identified chromosome 3 as 
having significant changes in regional gene expression.  Additionally, ccA tumors 
show far greater loss of expression in this region, t test p<0.0001. 
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Table 4.1 Regional expression changes of training set data by computational karyotyping 
and SAM-GSA 
UNC training set expression data was used to locate regions of over- and underexpression in ccA 
and ccB tumors compared to normal via SAM-GSA and computational karyotyping.  SAM-GSA 
regions were chosen with p<0.05.  Regions listed under computational karyotyping with q<0.05 
and greater than 25% of tumors within a subtype. Bolded regions are identified by both 
techniques.    

Overexpression Underexpression 
SAM-GSA Computational karyotyping SAM-GSA Computational karyotyping 

ccA ccB ccA ccB ccA ccB ccA ccB 
1q31     1p12 1p31 1p31.1-p22.3 1p31.3-p22.3 
2p13 2p13   2q36 1p33   2q22.3-24.3 
5q35 5q35 5q32-35.3  3p21 1q41   2q31.1-32.2 
6p21 6p21 6p22.2-21.31 6p22.2-21.31 3p22 2p15 3p26.2-q11.2 3q22.2-25.1 
 7p22   7q22.1 3p24 2p21 4p14-q12 4p16.1-q12 
 8p12   8q24.3 3p26 2p22 4q21.22-q23 4q13.3-q27 
9p   9q34.13-34.3 4p12 2p25   4q31.3-35.2 
 10p13   4q12 2q22   6q21-q23.1 
   11p15.5 7q33 4p11   7q22.3-31.33 
12p13 12p13   9p23 4p12 8q13.3-q21.3 8q13.1-q22.2 
16p11 12q13   11q24 4q21   9q22.33-q32 
 15q24   12q12 4q22   11p15.1-p11.2 
  16p11 16p11.2  16p13.3-11.2 13q11 4q23   12p13.1-p11.22 
16q21 16q24   16p24.1-24.2 13q21 4q25   13q13.3-q14.2 
     17q12 18p 4q26   14q12-q23.2 
  17q25  17q25.1-25.3 18q12 6q21   15q15.3-q21.3 
  19p13 19p13 19p13.3   8q21   18p11.21-q21.2 
  19q   19p13.2-p13.12   8q22 X21.1-22.2 X21.1-22.2 
     19q13.32-13.43   9p22     
  20p13   20p13   9q31     
      20q13.33   10q25     
      22p11.1-11.22   11p13     
      Xp11.3-11.23   14q22     
      Xq26.3-28   14q23     
          15q21     
          18q12     
          xq13     
          xq23     
 

 

Assigning subtypes in a validation dataset.  Because we could not 

determine whether these regional expression changes were due to chromosomal loss in 

our data, we turned to a previously published dataset of gene expression and SNP data 

by the Futreal group40.  To identify regions differentially expressed by each subtype, we 
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first classified each tumor as ccA or ccB using gene expression data from 100 genes 

corresponding to the 120 LAD probes we previously identified97. This data was clustered 

with ConsensusCluster and ambiguous arrays were set aside, to allow identification of 

copy number results characteristic for each subtype.  The resulting consensus matrix 

and PCA plot of 44 ccA and 17 ccB tumors shows two distinct and robust subtypes 

(Figure 4.3).  Given our previous analysis that ccA tumors overexpress hypoxia genes 

and that the majority of Futreal tumors did likewise, this preponderance of ccA tumors 

makes sense. 

 

Computational karyotyping of Futreal data.  To confirm the results we had 

seen before, we wanted to first perform computational karyotyping on the Futreal data.  

Doing so would allow us to determine if there are regions with significant regions of gene 

expression changes that match our previously observations.  Additionally, if some of the 

 
 
Figure 4.3 Consensus matrix and PCA plot demonstrate distinct clusters in Futreal data. 
A consensus matrix (A) and PCA plot resulting from 100 genes corresponding to 120 LAD genes 
show two distinct clusters – 44 ccA tumors and 17 ccB tumors. 
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regions don’t match by copy number, 

we will need to consider epigenetic 

changes or whether several genes 

within altered pathways are located in 

one region. 

 Looking at the computational 

karyotyping data, three regions were 

of particular interest (Figure 4.4):  On 

chromosome 3, there are still fewer 

ccB tumors than ccA tumors that 

contain underexpression.  However, 

this dataset contained a large 

percentage of ccB tumors with 

underexpression, suggesting that the 

extreme loss of 3p in our dataset may 

have just been sample bias.   

 Chromosome 14q was a 

region of gene underexpression 

recognized in our training set data.  

As previously observed, more ccB 

tumors display underexpression in 

this region than ccA tumors.  The 

same pattern is observed for 

chromosome 9p.  Both of these 

regions are associated with 

decreased survival. 

 
Figure 4.4 Computational karyotyping of Futreal 
expression data 
Regions of gene underexpression as compared to 
normal (q<0.05) for chromosomes 3, 9, and 14.  
These regions are significantly different between 
ccA and ccB, t test p<0.001. 
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Deciphering chromosomal changes with SNP data.  We next performed 

copy number analysis on the Futreal data using the program SWITCHdna 

(https://genome.unc.edu/pubsup/SWITCHdna/) to determine whether the regions of 

over- and, particularly, underexpression seen above are caused by amplification or 

deletion events, respectively.  As can be seen in Figure 4.5, the majority of 

amplifications and deletions are extremely similar between the two subtypes.  In 

particular, the majority of tumors in each subtype have deletions of chromosome 3p, as 

observed in the chromosomal karyotyping.  This result is consistent with previous 

classical cytogenetic, CGH, and SNP reports identifying 3p as a common deletion for 

renal cell carcinoma.  Additionally, this result lends support to the idea that almost all 

ccRCC tumors arise through VHL loss/inactivation.  However, 3p is still deleted in 

approximately 30% more ccA tumors than ccB tumors.   

Figure 4.5 Copy number analysis identies regions of dissimilarity between subtypes. 
Copy number analysis was performed on SNP data from the Futreal group66 using a cutoff of 
p<0.0001.  A greater percentage of ccB tumors are contain deletions of chromosome 9 and 14, 
and amplifications of chromosomes 8 and X. 
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Looking at amplifications and deletions beyond chromosome 3p, the genome is 

far more stable, both in general and between subtypes.  There are a few notable 

exceptions, however: ccB tumors show increased deletions on chromosomes 9 and 14 

and amplification of 8q and the X chromosome compared to normal.  Statistical analysis 

is necessary to determine if other copy number is different in other regions.  Additionally, 

further analysis is necessary to determine what genes may be targeted in these regions 

of amplification and deletion. 

 

Mutation analysis suggests epigenetic differences between subtypes.  

Chromosome amplification and deletion alone is unlikely to completely explain the 

subtype differences we have found.  Therefore, we analyzed the list of mutated genes 

for each of the Futreal tumors, which were derived from exon-sequencing of 3,544 

genes.  Each subtype has a median number of 2 mutations per tumor, with a total of 84 

different genes mutated in the 44 ccA tumors and 58 genes in the 17 ccB tumors (Table 

4.2).  Only 3 genes are mutated in both subtypes:  AKAP4, which binds protein kinase 

A; SETD2, a histone H3K36 methyltransferase; and VHL.  Mutations in VHL occur 

equally in ccA and ccB (52% and 47%, respectively), and AKAP4 was mutated only 

once in each subtype.  In contrast, SETD2 was mutated in 7 ccA tumors and only 1 ccB 

tumor (16% and 6%, respectively).  Interestingly, histone H3K4 demethylase KDM5C, 

encoding JARID1C, was mutated twice, and histone H3K4 methyltransferases MLL and 

MLL2 were each mutated once in ccA. Two other histone modification genes, NSD1 and 

RNF20 and two other genes associated with histone modification, BTG2 and BCOR, 

were mutated once in ccA.  In contrast, ccB tumors have only the one SETD2 mutation, 

one mutation of a histone H3K4 methyltransferase gene, MLL4, and one mutation of a 
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gene associated with a histone modification complex, UTX.  The prevalence of 

mutations in histone modification genes, particularly in ccA tumors, suggests that 

epigenetic modification may be driving some of the biological differences between the 

two subtypes. 

 
Table 4.2 Mutated genes in each subtype 
A prevalence of histone modification genes (bolded) are present in ccA tumors. For this analysis, 
44 ccA tumors and 17 ccB tumors were analyzed. If the gene was mutated in multiple tumors, the 
count is listed after the gene.   

Subtype Mutated genes 

ccA 

ADAM32, ADAMTS18, AK3L1, AKAP4, APC, ARNT, BCOR, BIRC7, 
BMPR1A, BTG2, C19orf2, CAD, CADM2, CDKN2C, CLSPN, CSMD3, 
CTSZ, DDB2, DDX20, DDX23, DDX27, DEK, DGKK, DKK1, DNAJC18, 
ENPP2, ERCC3, FGD5, FRS2, GPLD1, ICK, IER2, IGBP1, IPO4, ITGA10, 
ITPR2, JARID1C (2), KCNV1, MAFG, MAGI1, MCF2L, MDC1, MDH1, 
MED1, MERTK, MGA, MLL, MLL2, MMP10, N4BP2, NOTCH2, NOV, 
NSD1, NUP188, NUP98, OCRL, PDHX, PFTK2, PINX1, PIP5KL1, 
PLCB2, PLEKHA5, PTBP1, PTPLB, PTPN11, RABGAP1, RIOK2, RNF20, 
SBK1, SEMA4B, SERPINB10, SETD2 (7), SMG6, STCH, TEK, TOPBP1, 
TRPS1, UBA5, USP24, USP53, VHL (23), VPS13B, WNK3, XPO4 

ccB 

AFF4, AKAP3, ARFGEF1, ARHGEF11, ASB8, BUB1B, CCR3, CNKSR1, 
DHX8, ESRRG, FAM5C, FBXO28, GDF11, KLK3, MLL4, MMP16, MMP3, 
MYBL2, NCAPD2, NLRP5, PC, PGM1, POU2AF1, PPP2R2C, PTPN22, 
PTPRF, PTPRJ, SETD2, SPHK1, TMEM74, TNKS2 (2), TRAD, TRIM32, 
USP24, UTX, VAV1, VHL, VTN, VHL (9) 
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Discussion 

We had previously indentified two distinct molecular subtypes of clear cell renal 

cell carcinoma, with significant survival outcomes (8.6 years for ccA tumors vs. 2 years 

for ccB tumors), and substantially different expression of pathways.  However, we 

wanted to more fully understand what is driving the molecular and survival differences 

between the two subtypes.  Therefore, we sought to identify what underlying genetic 

changes were occurring in ccA and ccB. 

In the absence of copy number data for our training set, we began by using SAM-

GSA and a technique called computational karyotyping.  Both of these methods present 

means of identifying chromosomal regions of significant over- and underexpression of 

genes.  Chromosomal karyotyping appears to present a more detailed means of 

identifying altered regions as it works through a sliding window technique.  Additionally, 

the sliding window allows you to asses the impact of a specific number of genes on the 

proposed expression pattern by examining which genes fall in the overlapping windows.  

Computational karyotyping is a good technique to start with in the absence of copy 

number data. 

However, we were able to obtain copy number data.  SNP analysis of these 

subtypes in a previously published dataset identified differences in copy number on 

chromosomes 9, 14 and X.  Through analyzing which genes are mutated in the tumors 

in each of these subtypes, we noted a prevalence of histone modification genes are 

mutated in ccA.  These results provide us with important means of understanding the 

biological heterogeneity present in clear cell renal cell carcinoma. 

 The increase percent of deletions of chromosomes 9 and 14 in subtype ccB is of 

particular interest.  Chromosome 9 or 9p deletion, in particular, has been previously 

identified as being associated with metastases and/or prognosis by several groups7,47,52-
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54,60,157.  More recently, Klatte et al. performed a prospective study using classic 

cytogenetics on tumors from 246 ccRCC patients and discovered that both 9p and 14q 

loss were prognostic by univariate analysis, but only 9p remained under multivariate 

analysis66.  An expanded study by this same group confirmed the prognostic significance 

of 9p deletions and provided recurrence data67.   

A combined SNP and gene expression analysis of familial and sporadic tumors 

identified the only gene within chromosome 9’s to be focally and homozygously deleted 

as CDKN2A, which encodes known tumor suppressors p16 and mdm265.  CDNK2B was 

also indicated by deletion analysis, but not by the corresponding gene expression 

analysis which also failed to detect VHL underexpression.  Intriguingly, CDKN2A is 

overexpressed in both subtypes compared to adjacent normal in our gene expression 

analysis.  This discrepancy may be caused by tumors which lack the 9p deletion 

skewing the results. Alternatively, these genes may be more strongly targeted for 

deletion in tumors caused by germline VHL mutations, a large percentage of  the 

Beroukhim data.  Regardless, this region does deserve further study. 

 Deletions of 14q also hold interest, primarily due to the location of HIF1 at 

14q23.2, a region deleted in 60% of the Futreal ccB tumors and 25% of the Futreal ccA 

tumors.  Gordan et al has shown that HIF1 inhibits C-Myc activity39, which aligns with the 

ccB phenotype.  However, we have previously assigned the arrays from the Gordan et al 

study and have shown that ccA and ccB do not split along HIF1 and HIF2 vs. HIF2 only 

lines97.  These results are confirmed again in this study, where a mix of HIF1/HIF2 and 

HIF2 only tumors is present in both subtypes.  One possibility is that subtle expression 

changes of HIF1 and HIF2, undetectable by IHC, could be creating a transcriptional 

imbalance and causing the Myc dysregulation apparent in ccB tumors.  Another 

explanation is that Myc may be commonly amplified in ccB tumors, a possibility given 

Myc’s overexpression and the increased amplification of 8q in ccB tumors.  A 
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combination of both HIF expression subtleties and Myc overexpression could be 

providing a strong impetus towards the pathway divide between ccA and ccB.  Also, as 

we saw in chapter 3, both ccA and ccB overexpress Myc target genes as compared to 

normal tissue, but these specific target genes are different in the two groups.   

 Yet another hypothesis of a cause of the rift between ccA and ccB tumor biology 

may be epigenetic changes.  This option bears much consideration, particularly given 

the prevalence of mutated histone modification genes in ccA tumors.  Whether all of 

these mutations are complete loss-of-function is currently unknown and will need to be 

followed up.  However, the histone methyltransferase SETD2, the gene that is most 

commonly mutated in ccA is located on chromosome 3p in a region deleted 20% more 

frequently in ccA tumors than ccB.  While the inactivation or deletion of this particular 

gene might be a side-effect of inactivating VHL (also located on 3p), the preponderance 

of mutations in other histone modification genes suggests that these genetic changes 

are important for the progression of the tumor. 

 Additionally, as mentioned earlier, the Kanai group has shown that tumors with 

increased deletions of chromosome 9 and 14q also had increased DNA methylation on 

CpG islands63.  This group of tumors also showed poorer prognosis.  While histone 

methylation and DNA methylation work via different means and create opposing 

transcriptional outcomes, their work leads further credence to the clear cell subtypes 

being epigenetically different. 

Methylation arrays, even on a limited scale, will provide a great deal more 

information about these subtypes.  The arrays will be focused on regions where gene 

expression and copy number changes do not correspond.  For example, SAM-GSA of 

gene expression data suggested that several regions of chromosome 2 and 4 in ccB 

tumors are underexpressed, but SNP analysis shows little or no changes in these 

regions.  While this discrepancy may be caused by sample set variation, it may also be 
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due to epigenetic modification.  More information about the epigenetic landscape of 

these tumor subtypes could give additional guidance in drug discovery.   

 ccA and ccB tumors share a great number of similarities in genetic and molecular 

makeup, causing them to look the same histologically.  However, as this paper 

elucidates, their differences are caused by large chromosome changes and very 

possibly unique epigenetic modifications.  These differences likely cause the inherent 

heterogeneity seen in natural progression, cytokine therapy, and molecularly targeted 

therapy.  Additionally, our results suggest that the putative subtypes identified by varying 

groups through different technological means are the same.  Understanding the points of 

convergence and divergence of these subtypes could lead to enhanced clinical decision 

making. 
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Materials and Methods 

Gene Expression Data.  UNC and Stanford samples were collected and data 

processed as previously published97.  Futreal samples were collected as previously 

published40.  Futreal series II raw gene expression data was downloaded from Gene 

Expression Omnibus (GEO) and mas5 normalized in Genespring v11 (Agilent, Santa 

Clara, CA).  By both Genespring quality control and ConsensusCluster 

(http://code.google.com/p/consensus-cluster/), three arrays (Vari_038T, Vari_046T, and 

Vari111T) were found to be very distinct from the others.  Data was reentered into 

Genespring without these arrays and filtered such that 41/92 arrays must have present 

calls to force inclusion of VHL.  By ConsensusCluster, tumors Vari_052T, Vari_398T, 

Vari_071T, Vari_032T, Vari_078T, Vari_087T, Vari_352T, and Vari_085T clustered with 

normal tissue and were removed.  Data was re-annotated with Affymetrix v30 annotation 

file.  Duplicate probes with fewer present flag and lower median values were removed.  

Data was standard normalized by subtracting array mean and dividing by array standard 

deviation. 

Computational karyotyping. Computational karyotyping is an adaptation of 

Cancer Outlier profile Analysis (COPA158), a method of locating genes with aberrant 

expression levels in a small subset of samples by looking for outlier values for each 

probe set across all samples and then ranking them according to their frequency. In 

order to detect chromosomal amplifications/deletions we modified this algorithm to look 

for outliers across the whole genome for each sample separately. Since this particular 

data set contains normal controls, outliers were defined with respect to the normal set if 

they were in the top or bottom 25% quartile for high or respectively low outliers. Outlier 

profiles thus obtained are organized in two binary matrices B1 and B2 corresponding to 
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high and respectively low outliers. For both matrices, B(i,j) = 1 if gene i is an outlier in 

sample  j and  B(i,j) = 0 otherwise. We then ordered the genes according to their 

chromosomal position and looked for regions enriched in outliers as an indication of 

chromosomal aberration. For each column in matrix B, outlier enrichment is computed 

with Fisher Exact test159 in a sliding window 50 genes wide with a pace of 10 genes. 

Varying the size of the window and/or pace by 5-10 genes does not significantly affect 

the result.  Benjamini-Hochberg method160 is used to control the false discovery rate to 

5% by converting the p-values from the Fisher Exact test to q-values. For each array 

chromosomal regions with q-values < 0.05 are marked as potential amplifications and 

then ordered by their frequency amongst the sample set. 

Pathway and Positional Analysis. Significance Analysis of Microarrays (SAM, 

http://www-stat.stanford.edu/~tibs/SAM/) was performed, and genes were selected using 

a cutoff of False Discovery Rate (FDR) < 0.000001. SAM-GSA was also performed on 

the data using the curated and positional gene sets from the Broad Institute’s MSigDB 

(http://www.broad.mit.edu/gsea/msigdb/), p < 0.05.  

Distance Weighted Discrimination (DWD) of Futreal and UNC Data. To 

assign Futreal tumors to subtype ccA or ccB, Futreal and UNC data was DWD-

combined.  UNC data97 was re-annotated from Agilent’s 20100115 annotation file, and 

duplicate genes (by Entrez GeneID) by lower median were removed. Gene lists for 

Futreal and UNC were compared, and non-matching genes were removed.  Remaining 

data was combined using Java DWD (https://genome.unc.edu/pubsup/dwd/), using non-

standardized DWD (to prevent column standardization) and centering to the mean of the 

UNC data. Figure 4.6 displays PCA plots, showing that the data was successfully 

adjusted.  



 96 

 

SNP analysis.  SNP data was as previously published40.  Raw data corresponding to 

series II clear cell tumors and matched normal tissue was loaded into Genespring v11.  

PD2135a was removed due to extreme dissimilarity by PCA.  Copy number analysis was 

run, pairing tumors against matched normal tissue, and LogR data (ratio of observed to 

expected hybridization intensity) was exported for SNPs with data values for all 51 

tumors.  This data was analyzed in SWITCHdna 

(https://genome.unc.edu/pubsup/SWITCHdna/), using an F-statistic threshold of 11% 

and 10% chromosome size cutoff for gain/loss.  Resulting copy number changes were 

calculated per subtype, using an intensity threshold of 0.1 and a Z-score cutoff of 5 

(p<0.0001). 

Figure 4.6 DWD adjustment of UNC and Futreal data 
PCA plot of the first two principle components, showing the UNC and Futreal data widely variable 
(A) and adjusted by DWD to be comparable (B). 
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Abstract 

Kidney cancer is newly diagnosed in over 50,000 people each year, and the 

majority of these tumors are classified as clear cell renal cell carcinoma (ccRCC).  

Despite being given the same label, the natural history of these tumors can be quite 

variable, with some patients cured post-nephrectomy and others recurring within a short 

amount of time.  Many different prognostic biomarkers for ccRCC have been proposed, 

but they do not fully address the underlying molecular or genetic differences leading to 

the variation in survival.  We had previously identified a panel of genes that could 

distinguish between two molecular classes, ccA and ccB, which were characterized by 

distinct molecular and genetic changes and had a 6.6 year survival difference.  In this 

chapter, we began development of an assay based on this panel of genes for use on 

formalin-fixed paraffin-embedded tissue.  After careful consideration, we chose to use 

NanoString Technologies for the quantification of gene expression.  A draft FFPE 

extraction technique was tested and found to be quite reliable for this assay, with a 

median correlation of 99% between duplicate samples and 98% between replicates.  

Stable housekeeping genes were calculated from current microarray data and validated 

by quantitative Real Time PCR (qRT-PCR).  A final gene list, with additional ccB, 

angiogenesis genes, and other biomarker genes was compiled.  The resulting custom 

CodeSet, which we have named ClearCode, was quality tested on RNA from snap-

frozen tumors and FFPE lysates for matching tumors.  Overall, 96% of the probes were 

above background for all samples, the correlation for the replicate sample was 97%, and 

the median correlation between fresh frozen and FFPE samples was 89%.  These 

results suggest that we have a suitable assay to begin to create expression level cutoffs 

for classifying tumors and ccA and ccB.  From here, the biomarker panel can be 

validated with a group of well annotated tumors to confirm the prognostic value and 
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potentially assess any possible predictive value.  This assay holds a great deal of 

promise for providing well-needed information to clinicians and patients alike. 
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Introduction 

Kidney cancer affects 1 out of every 67 people in the US3, making it the 7th 

leading cause of cancer death in men and the 8th in women131.  Ninety percent of these 

cases are renal cell carcinoma, and 60-80% of these are histologically labeled as clear 

cell renal cell carcinoma.  Despite this subtype currently and historically being treated as 

one disease, the progression is quite variable between patients.  At diagnosis, 20% of 

patients already have metastatic disease and face a 10.6% five-year survival rate3.  Of 

the remaining patients, approximately two-thirds will be surgically cured through 

nephrectomy.  This math leaves one-third of the patients to recur.  However, at 

diagnosis, there is currently no confirmed way to distinguish these two outcomes. 

 Abundant research has gone into trying to determine patient survival and risk of 

recurrence, as discussed in detail in chapter 1.  In 2007, Nogueira and Kim reviewed a 

list of 63 individual biomarkers, identified to be prognostic through univariate and 

multivariate analyses113.  The list has continued to grow since then.  Some groups 

retained the approach of survival-based biomarker selection, but switched to a net-like 

approach to pin down a prognosis.  For example, Zhao et al. identified 259 genes that 

could be used to predict survival outcome.  This focus on survival has considerable 

advantages, such as helping a patient decide whether it is worthwhile to start on 

treatments that may decrease their quality of life.  However, it does not answer the 

question of why these tumors behave so differently. 

 We and others tried to answer that question, by attacking the problem from an 

entirely different angle and seeking to identify any underlying divergence of ccRCC 

tumor biology that might be creating this clinical variability39,85,87,88,90,92,95,97.  Once these 

groups were identified through molecular, genetic or cytogenetic means, then 

biomarkers for these groups could be determined.  Survival data was analyzed where 
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available, and as might be expected was shown to be significant.  However, survival was 

a secondary question.  Underlying tumor biology was the primary goal. 

 In the last several chapters, we have laid out the identification of two main 

molecular subtypes of clear cell renal cell carcinoma (ccA and ccB), caused by 

underlying genetic and possibly epigenetic differences.  These changes instigate the 

expression of different biological pathways, leading to significantly different survival 

outcomes.  Importantly, we identified a panel of 120 probes that could distinguish 

between these two subtypes.   

 From this work, our goal is to develop an assay that can be taken into the clinic 

to differentiate between these two prognostic groups, ccA and ccB, so that clinicians and 

patients have predicted survival outcome for treatment planning.  Therefore in this 

chapter, we worked towards developing an assay using these 120 probes to classify 

ccRCC tumors as ccA or ccB, especially using formalin-fixed, paraffin-embedded (FFPE) 

tumors.  Our fixation on the classification of FFPE tissue is because it is the mainstay for 

preservation and analysis of tumors for the majority of hospitals.  It is our ideal goal that 

a patient having a tumor removed at any hospital could have access to this assay. 

To develop this assay, we turned to NanoString Technologies161.  NanoString 

CodeSets consist of two probes, the barcode probe and the capture probe, which each 

have 30-50 base pairs that are complementary to the target mRNA.  Both are supplied in 

excess and mixed simultaneously with sample mRNA.  The capture probe is biotin-

streptavidin labeled to first allow for purification during removal of excess probes, and 

second for binding of the complex to the coated surface for measurement.  The barcode 

probe is labeled with one of 5 different flourophores in 7 contiguous locations, and this 

specific ordering of flourophores is what allows for the identification and quantification of 

target mRNAs.  There are no enzymes or amplifications steps in the process. 
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We chose this technology over the more common practice of quantitative real 

time PCR (qPCR) or other available technology, such as High Throughput Genomics, for 

a number of reasons:   

1. qPCR requires the isolation of high quality RNA, a difficult task from 

FFPE tissue.  NanoString is able to provide quantification of more 

fragmented RNA. 

2. With our isolated RNA from FFPE tissue, we had learned that 

approximately 50ng of starting material was necessary for each 

replicate of one gene.  NanoString recommended 100ng for the 

quantification of up to 550 genes (now 800 genes). 

3. The preparation steps for NanoString analysis is substantially fewer, 

decreasing risk of degradation or error. 

4. There are no reverse transcription, other enzymatic events, or 

amplification steps.  NanoString measures what is present, rather than 

introducing possible steps of skewing results. 

5. To analyze expression of 150 genes by NanoString, it would cost just 

under $200 per sample.   

6. NanoString “barcode” technology means that there is a direct measure 

of each molecule of RNA, thereby allowing the detection of both very 

small fold changes and also large ranges of expression differences. 

When we began this project, no one on our campus had performed NanoString 

Analysis.  Additionally, NanoString could not provide us with experimental results of 

using FFPE lysate rather than using RNA isolated from FFPE tissue.  Therefore, we 

needed to begin from scratch, testing the FFPE lysate extraction protocol and assaying 

the quality of results.  Once we affirmed this, we identified the most stable housekeeping 

genes for our dataset and clarified the biomarker genes that we wanted to use.  Upon 
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receipt of the CodeSet, we again had to perform a quality control test.  Only now can we 

begin the process of determining which genes are best for classifying tumors as ccA or 

ccB and setting cutoff levels.  Overall, NanoString Technologies seems like an excellent 

choice for the development of our assay to define a ccRCC tumor as ccA or ccB. 

This chapter, therefore, will describe the optimization and development of a 

NanoString CodeSet, which we have named ClearCode, for analysis of FFPE embedded 

ccRCC samples.  In the future, ClearCode will be most helpful in predicting survival 

outcome patients newly diagnosed with ccRCC.  Additionally, given the pathway 

differences discussed in chapter 3, it is possible that ClearCode may also have value for 

predicting response to anti-angiogenesis treatments. 
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Results 

Confirmation of extraction technique.  Before investing in a custom 

NanoString CodeSet, it was necessary to confirm that the technique would reliably work 

on our FFPE samples.  Therefore, lysates were prepared from 3 different tumor FFPE 

blocks: Two tumors, C11 (ccA) and D8 (ccB), were removed in 2008; one tumor, 2 (ccB), 

was removed in 2001.  Slides from all three had been cut six months previous to lysates 

preparation.  All three tumors were extracted using two 

different lysis buffers, MES and PKD.  Lysates in 

duplicate and a reference RNA were hybridized to a 

Customer Assay Evaluation CodeSet of 48 commonly 

assayed genes.   

 Overall, 97.6% of genes were measured above 

background, with a range of 93.8%-100% detection per 

sample, establishing that our extraction technique was 

efficient using either buffer.  The median percent 

difference of each probe within duplicate samples was 

5.0%.  The median squared correlation coefficient (r2) 

between duplicate samples was 0.99, and r2 for the 

2001 tumor was 0.91, mostly caused by low 

expressing genes.  Comparing the two lysates buffers, 

r2 ranged from 0.94-0.99.  Interestingly, by hierarchical 

clustering, the genes in the evaluation CodeSet were 

already splitting ccA and ccB tumors (Figure 5.1).  

        
Figure 5.1 Heatmap 
representation of NanoString 
test run 
NanoString analysis of FFPE 
lysates shows consistency 
between duplicates and 
replicates.  The tumors also 
cluster based on subtype. 
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The high correlation of technical and sample replicates values demonstrated that 

NanoString was providing reliable reads from our FFPE lysates. 

 

Identification of housekeepers.  Once we determined that NanoString was a 

viable option for quantifying gene expression from FFPE lysates, we needed to design a 

custom CodeSet of our biomarkers and housekeeping genes.  With regards to 

housekeeping genes, we wanted to confirm these genes would be stable across our own 

kidney tumor and normal dataset.  Therefore, we retrieved the expression data97 for the 

housekeeping genes suggested by NanoString, High Throughput Genomics, and a study 

by Popovici, et al4.  Using calculations delineated by de Jonge et al.162 and Popovici et 

al., genes were ranked for stability across the tumor and normal tissue arrays.  From this 

data, we chose ABCF1, CD63, C14orf166, RPLP1, and TBP.  Additionally, SNRPD2 

was chosen due to its extremely low coefficient of variation using de Jonge’s technique 

in our entire dataset of genes.   

 To confirm these genes would qualify as housekeepers, cDNA from tumors, 

normals, and a reference were analyzed by real-time PCR using primers for these genes 

(Figure 5.2).  The 18S gene was used as a control, given its history of being a stable 

housekeeping gene in our hands.  Due to multiple peaks in the dissociation curve (data 

not shown), RPLP1 was immediately removed as an option.  The median standard 

deviation of the remaining genes for the tumors and normal tissue was 1.00 cycles, 

ranging from 0.67 (TBP) - 1.17 (SNRPD2) cycles.  The standard deviation for the 18S 

probe was 1.22 cycles.  Therefore, the genes chosen as housekeepers were deemed to 

be satisfactory. 
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Finalization of NanoString gene list.  By using NanoString’s custom CodeSet 

option, the final gene list (Table 5.1) could be tailored to our exact specifications.  Our 

previously published biomarker panel consisted of 120 probes, corresponding to 110 

genes97.  Of these genes, 86 are overexpressed in ccA tumors and 24 in ccB tumors.  

Using Agilent’s annotation file released in January, 2010, 13 genes had different or 

missing RefSeq IDs.  Nine of these genes (SEPT8, DNCH2, FBI4, FLJ23834, 

KIAA1043, KIAA1648, PURA, TTLL3, and ZNF292) were either not present or not clear 

in subtype distinction in the Brooks lab validation data92 and were, therefore, removed.  

Three of the remaining 4 genes (FLJ23867, GALNT10, and IMP-2) were overexpressed 

by ccB tumors, and IMP-2 showed some ability to discriminate between ccA and ccB 

tumors by semi-quantitative RT-PCR.  Therefore, we decided to leave these genes in 

the first round of NanoString testing.  The last gene, FLT1, was definitely able to 

discriminate between ccA and ccB, so was kept. 

 
Figure 5.2 cT values of putative housekeeper genes. 
Semi-quantitative real time PCR was performed on 4 ccA tumors, 4 ccB tumors, 2 normal tissues 
and an RNA reference (UHRR).  Standard deviations of all test genes except RPLP1 were less 
than that of 18S.   
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To increase the number of genes overexpressed by ccB tumors, we turned to 

three other analyses: 1) SAM analysis of UNC tumors, 2) SAM analysis of the Brooks 

group tumors, and 3) genes identified by LAD to distinguish ccA from ccB in grade 2 and 

3 Brooks lab tumors.  For the SAM analysis, top genes were retrieved both by score and 

fold change.  All genes were rank scored and the rank product was calculated.  Six 

genes ranked highly present in either 4 or 5 categories were chosen – TGB1, 

SERPINA3, MOXD1, SRPX2, SLC4A3, and FOXM1.  Two additional genes from SAM 

analysis that seemed promising by qRT-PCR were also chosen – GPR87 and LAMB3. 

With these changes, our final discriminating panel had 79 ccA genes and 30 ccB genes. 

 In order to compare our biomarker panel to previously published studies, we 

added 4 other ccRCC prognostic transcript markers.  Three (EDNRB, RGS5, and 

VCAM1) were identified by Yao et al. as indicators of better prognosis in a study with 

386 tumors93 and are overexpressed in ccA tumors.  Expression of the fourth, Survivin or 

BIRC5, correlates with decreased survival90 and is overexpressed in ccB tumors. 

 Finally, we wanted to use this panel to gain a greater understanding of the 

tumors studied.  Given the angiogenic and hypoxic molecular phenotype of ccA tumors, 

we included a panel of genes to confirm this result in a larger set of tumors:  ARNT, 

CDH5, ENG, EPAS1, KDR, NRP1, and VEGFC.  We also included Ror2, which is 

overexpressed in ccB tumors97 and is associated with increased invasion154.  With these 

additions, our final gene panel consisted of 126 genes. 
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Table 5.1 Custom NanoString CodeSet ClearCode 
Final list of genes chosen for the NanoString CodeSet, ClearCode 
Category Genes 
House-
keepers 

ABCF1,C14orf166,CD63,SNRPD2,TBP 

ccA97 ACAA2,ACADL,ACAT1,ACBD6,ADFP,AFG3L2,ALDH3A2,AQP11,ARSE,B3GNT6,
BAT4,BNIP3L,C11orf1,C13orf1,C9orf87,CWF19L2,DREV1,DSCR5,ECHDC3, 
EHBP1,ESD,FAHD1,FAM44B,FLJ11200,FLJ11588,FLJ13646,FLJ14054,FLJ14146,
FLJ14249,FLJ22104,FLT1,FZD1,GALNT4,GHR,GIPC2,HIRIP5,HOXA4,HOXC10, 
HSPA4L,ITGA6,KCNE3,KIAA0436,LEPROTL1,LOC119710,LOC134147, 
LOC57146,LOC90624,MAOB,MAP7,MAPT,MGC32124,MGC33887,MRPL21, 
NETO2,NMT2,NPR3,NUDT14,OSBPL1A,PDGFD,PHYH,PMM1,PRKAA2,PTD012,
RAB3IP,RBMX,RDX,RNASE4,SLC1A1,SLC4A1AP,SLC4A4,ST13,STK32B,TCEA3,
TCN2,TIGA1,TLR3,TUSC1,YME1L1,ZADH1 

ccB97 ALDH1A2,AP4B1,B3GALT7,BCL2L12,C5orf19,CDH3,CYB5R2,FLJ23867, 
GALNT10,IMP-2,KCNK6,KCNN4,MATN4,MGC40405,NCE2,NPM3,SAA4,SLPI, 
SYTL1,TPM4,UNG2,USP4 

ccB  FOXM1,GPR87,LAMB3,MOXD1,SERPINA3,SLC4A3,SRPX2,TGFB1 
 

Other 
markers 

BIRC5,EDNRB,RGS5,VCAM1 

Pathway ARNT,CDH5,ENG,EPAS1,KDR,NRP1,ROR2,VEGFC 
 

 

 

Quality control for the custom CodeSet.  Before the custom CodeSet 

ClearCode could be used to set cutoff levels for discerning ccA vs. ccB tumors, quality 

control was necessary.  Twelve samples were run: an RNA reference, a 2008 sample 

from above (D8) in both lysate buffers as a replicate test, the remaining two samples 

from above (C11 and 2) in MES buffer, and two additional 2008 tumors (D5 and D11).  

Overall, 95.6% of genes were measurable above background (91.2%-99.9% per 

sample).  Surprisingly, one gene that was repeatedly at or below background was the 

housekeeper SNRPD2, and was, therefore, removed for the analysis.  There was a 

97.1% correlation (r2) of the D8 replicates in the two buffers (Figure 5.3A).  In 

comparing results of RNA from snap frozen tissue to lysate from FFPE tissue, the 

median correlation (r2) was 89.3% (83.9%-91.3% per sample).  Again, much of the 

discrepancy between the two samples was created by low expressing genes (Figure 

5.3B).  Depending on the performance of these genes in classifying ccA from ccB 
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tumors, they will likely be removed 

from future iterations of 

ClearCode.  However, given the 

vastly different nature of starting 

materials, these quality control 

tests results using our custom 

CodeSet ClearCode suggest that 

the probes are reliable enough to 

move forward with creating cutoff 

values for classifying tumors as 

ccA vs. ccB. 

 

 

 

 
 

Figure 5.3 Linear regression plots of NanoString 
data 
Plots of tumor D8 extraction replicates (A) and tumor 2 
frozen RNA vs. FFPE extract show high correlation 
values. 
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Discussion 

While microarray data provides enough information to fully classify ccRCC 

tumors as ccA or ccB, performing gene expression analysis on each new tumor is not 

time or cost-effective.  We had previously identified 120 probes that could discern 

whether a tumor was ccA or ccB97.  It is critical that we move forward with these 

experimental biomarkers for clinical validation.  In this chapter, we made great strides 

towards doing exactly that. 

 Hospitals most commonly store tissue through formalin-fixation and paraffin-

embedding (FFPE), so we wanted our assay to be focused on this type of preserved 

tissue.  However, formalin fixation causes crosslinking between nucleic acids and protein 

and addition of mono-methylol groups to amino acids which can lead to methylene 

bridges between amino groups163.  Additionally, nucleic acids degrade over the time of 

storage.  Therefore, RNA from FFPE tissue is of substantially smaller size and lower 

quality and does not undergo reverse transcription efficiently.   

To overcome these problems, we chose to employ NanoString Technologies as 

the basis of our assay.  NanoString requires a minimal amount of RNA, with lower 

quality cutoffs.  A capture probe and barcode probe directly bind the target mRNAs, 

eliminating the need for enzymatic or amplification steps.  This technique allows for the 

direct measurement of target transcripts, resulting in measurements of small fold 

changes as well measurements over a large range of values.   

In this chapter, we verified that NanoString’s draft FFPE protocol worked well and 

was reproducible, allowing us to move forward with our plans of creating a custom 

CodeSet, named ClearCode, based on our biomarker panel.  The first step of the 

CodeSet design was to choose appropriate housekeeping genes.  We have found that 

one of the most common housekeepers, beta-actin, is unreliable in our systems (data 
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not shown).  The housekeeping gene that we most commonly use, 18S ribosomal RNA, 

is expressed at too high of a copy number to be useful in the NanoString system.  Many 

other common housekeepers are part of the glucose metabolism pathway, a pathway 

commonly perturbed in kidney cancer due to HIF1 transcriptionally activating several key 

components, such as PGK and LDHA.  Therefore, we had decided to use our gene 

expression data to calculate the most stable genes across our tumors and normal 

tissues.  Tentative genes were further tested by qPCR, and then employed in 

NanoString.  From this work, we identified ABCF1, CD63, C14orf166, and TBP to be 

suitable housekeeping genes for kidney cancer research.  These genes may be of 

interest to other groups struggling to find stable housekeeping genes in their research.   

We designed ClearCode to include the majority of our previously identified 120 

probes that can classify a tumor as ccA or ccB.  To this, we added additional genes 

overexpressed by ccB tumors and genes involved with angiogenesis (a pathway 

overexpressed by ccA tumors).  We also added 4 genes that have previously been 

shown to be prognostic for ccRCC.  When testing 5 different tumors, this gene panel 

showed an average of 88% correlation between FFPE lysate extracts and RNA from 

snap-frozen tissue.  Given the differences in source material and the relatively low 

quality of RNA from FFPE tissue, this correlation is more than acceptable. 

The next step in creating the ccA-ccB subtyping assay is to determine whether 

genes are still discriminatory using FFPE tissue instead of snap-frozen tissue, as well as 

to create cutoff levels for classifying a tumor as ccA or ccB.  For this, we will hybridize 

the rest of the well-defined ccA and ccB tumors (16 and 12, total, respectively) using 

their FFPE tissue.  Using the same tumors that the 120 panel was devised from will give 

us the best indication as to whether the gene expression will be discriminatory enough in 

FFPE tissue.  Genes that are no longer discriminatory will be removed from future 

ClearCode syntheses.  Additionally, universal reference will be run 2 more times to best 
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define quality control standards.  Once this is done, the reference will only need to be 

run with every newly synthesized ClearCode batch and for 1-2% of total arrays overall.   

Following the creation of expression levels for each gene, ClearCode will be 

tested on a set of 12 tumors not used in identifying the biomarker panel.  Full gene 

expression analysis will also be run on these 12 tumors and classified using the resulting 

microarray data.  This will validate whether NanoString can properly assign a new tumor 

to subtype ccA or ccB.   

From there, we can turn to a much larger set of FFPE tissue that is clinically well-

annotated.  We have shown this panel of genes to be prognostic, and patients who have 

ccA tumors having a median disease-specific survival of 8.6 years versus 2 years with 

ccB tumors97.  However, this was analyzed using microarray data from snap-frozen 

tumors.  We will need to show that ClearCode is prognostic on FFPE tissue, and how it 

compares and/or adds to the clinical data that is currently commonly used to predict risk 

of recurrence. 

Additionally, we purposely included 4 other genes that have been shown to have 

prognostic value:  The overexpression of EDNRB, VCAM1, and RGS5, genes also 

overexpressed by ccA tumors, correlates with increased survival93.  In contrast, the 

overexpression of survivin (BIRC5), a gene overexpressed in ccB tumors, correlates with 

poor prognosis90,99.  The expression pattern of these genes in our tumor subtypes 

mimics the prognostic breakdown of our subtypes, lending increased credence to our 

observations.  Inclusion of these genes within ClearCode will allow us to directly 

compare these two groups’ prognostic models to our own gene panel.  Potentially, we 

may find the greatest prognostic value lies with the combination of several biomarker 

models and clinical information.  

 Finally, this gene panel was not chosen for its prognostic value; that result was 

purely added value.  This gene panel was selected as the most able to classify tumors 
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into their two inherent molecular subtypes, subtypes that are marked by distinct 

molecular pathways.  It is our supposition that these pathway differences may cause the 

differential response to treatment.  This potential predictive value will be tested 

retrospectively on 30 tumor samples from a trial in which patients were treated with 

sorafenib for the management of metastatic disease164.  Dependent on the results, this 

assay will also be used in a prospective trial here at UNC. 

 Overall, the NanoString assay of our ccA/ccB biomarkers, ClearCode, is 

progressing superbly and shows splendid promise for both providing prognostic 

information for patients and clinicians, as well as possibly helping to guide treatment 

decisions to improve response. 
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Materials and Methods 

FFPE lysate extraction.  Protocol was adapted from NanoString’s draft FFPE 

lysate protocol.  Tissue sections from formalin fixed paraffin embedded tumor samples 

were sliced 5-7 microns onto slides by the UNC Tissue Procurement Facility.  All 

samples were retrieved with appropriate university IRB approval.  Total surface area of 

the tissue section was a minimum of 1 cm2.  Xylene was added to remove paraffin and 

washed away twice with 100% ethanol, before air-drying to remove any residual ethanol.  

Pellets were resuspended in either 10mM MES pH 6.5 or PKD buffer (Qiagen).  0.5% 

SDS and 5ul Proteinase K (20mg/ml) was added to both buffer options.  Unless 

specified, tissues were extracted in MES buffer.  These suspensions were incubated at 

55ºC, the proteinase K was then inactivated at 80ºC for 15 minutes each.  Supernatant 

from this step was used for hybridization. 

 

NanoString hybridization and data collection.  The UNC genomics core 

processed 5 microliters lysate and 100 micrograms RNA (extraction as previously 

published) for hybridization against NanoString CodeSets, post-hybridization in the 

nCounter Prep Station, and data collection with the nCounter Digital Analyzer 

(NanoString, Seattle, WA).  The initial test run used the Customer Assay Evaluation 

CodeSet nCounter48_C285E.  Thereafter, the custom CodeSet Brannon1_C595 was 

used. 

 

NanoString data analysis.  The totals of positive controls for each sample were 

averaged, and this average was divided by the sample’s total to create a spike-in 

correction factor for each sample.  To calculate background, the average of all negative 
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controls was multiplied by three.  This background value was subtracted from the value 

for each gene, and the result multiplied by the correction factor.  Any negative or zero 

values were changed to 1 for log purposes.  Percent present probes were calculated as 

the total number minus the number of 1’s present and divided by the total.  Data was 

then normalized to housekeeping genes:  The geometric mean of the housekeeping 

genes for each sample was calculated, and the geometric mean of all these was 

acquired.  The overall geometric mean was divided by the sample’s geometric mean to 

create a housekeeping correction factor for each sample.  The housekeeping correction 

factor was then multiplied against the previously normalized value.  Data was then 

logged (base 10).  Correlation was calculated by linear regression of the data.   

 

Housekeeping gene calculations: Previously published data154 was analyzed for 

stable housekeepers.  For identification of SNRPD2, the antilog(2) of the data was 

calculated, and the coefficient of variation (CV=Standard Deviation /average) and 

maximum fold change (MFC=maximum/minimum) were calculated.  For the remaining 5 

housekeeping genes, expression data was culled for the suggested housekeepers from 

NanoString, High Throughput Genomics, and the top 100 of Popovici et al.’s kidney list4.  

SD, CV and MFC were calculated; genes were sorted on each of these variables and 

ranked accordingly.  Duplicate probes with lower SD were removed, to keep worse case 

scenario.  A stability score was calculated according to Popovici et al.: PSS 

=αLOG(MAX(average-ß,0),2)-stdev, where α is a coefficient to control mean expression 

vs. SD (we set it to 0.25 as the paper did) and ß is the mean expression cutoff, which we 

set to the 25th percentile following the paper or -0.3908466934.  The PSS was sorted 

and ranked, with genes that had calculation errors due to negative values being given a 

rank of 87.  The rank product was then calculated as RP=product(ranks)^(1/(n)), where n 
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is the number of ranks available, and RP was sorted.  The top 2 overall (C14orf166) and 

top 2 NanoString probes (TBP and ABCF1) were chosen.  Additionally, CD63 was 

chosen for having the highest mean value. 

 

Semi-quantitative real time PCR.  Tumor cDNA was as previously published97, 

and normal tissue cDNA was made using the same protocol.  The UHRR reference is 

Stratagene Universal Human RNA Reference (San Diego, CA).  Five nanograms of 

tumor cDNA and ten nanograms of UHRR cDNA were used per reaction amplified using 

Absolute SYBR Green ROX mix (Thermo Scientific, Epsom, Surrey, UK) on the Applied 

Biosystems ABI 7900HT Sequence Detection System (Carlsbad, CA). 18S rRNA 

primers (Applied Biosystems) were used as a control.  Primers were designed using IDT 

(http://www.idtdna.com/): ABCF1 (CGCCAAGCCATGTTAGAAAATG and 

TGCCATGAGCGGAGATGCTGAA), C14orf166 (TCGGATTTTGGTTCAGGAGC  and 

TGTCTAAAGCAACAGGTAAGCC), CD63 (AACGAGAAGGCGATCCATAAG and 

ACAAAAGCAATTCCAAGGGC), RPLP1 (ATCTGCAATGTAGGGGCC and 

GCTTCCACTTTCTTCTCCTCAG), SNRPD2 (AATAAGAAACTCCTGGGCCG and 

CTCAGTCCACATCTCCTTCAC), and TBP (CCCGAAACGCCGAATATAATC and 

GCACACCATTTTCCCAGAAC). 
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Overall summary 

Renal cell carcinoma is disease with variable natural history and poor treatment 

options.  In the previous chapters, we have demonstrated that there are two primary and 

inherent molecular subtypes of clear cell renal cell carcinoma, which we have named 

ccA and ccB.  These two subtypes have significant survival differences, where patients 

with ccA tumors have a median disease-specific survival of 8.6 years vs. 2 years for 

patients with ccB tumors (p=0.002).  By both univariate and multivariate analysis with 

common clinical measures, this classification is significantly associated with survival.   

This division therefore allows us to explore what underlying molecular and genetic 

differences are causing the clinical heterogeneity, as well as take the prognostic 

breakdown into the clinic. 

As we began to examine the ccA and ccB subtypes molecularly and genetically, 

we saw vast differences between them.  Using the gene expression data, ccA tumors 

were shown to overexpress genes in the angiogenesis and hypoxia pathways.  Seeing 

as these are the classic phenotypes associated with ccRCC, it is particularly striking that 

one subclass should express these pathways more highly.  It also suggests that these 

tumors may be more responsive than ccB tumors to anti-angiogenic agents, one of the 

main classes of molecularly targeted treatments for ccRCC.  In comparison, ccB tumors 

overexpress genes related to cell cycle, cell differentiation, TGF-Beta, Wnt targets, 

epithelial to mesenchymal transition, and response to wounding.  These tumors have 

clearly undergone additional or different molecular changes to become a far more 

aggressive tumor.  Interestingly, ccB tumors underexpress metabolism and glycolysis 

genes compared to both ccA tumors and normal tissue.  This result is highly unusual as 

many tumor types, especially ccRCC, are known for being highly glycolytic, thus allowing 
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for the use of a radioactive glucose mimetic to be used in imaging (FDG-PET) for the 

diagnosis and monitoring of tumors.   

Genetically, ccA and ccB subtypes continue to show their immense differences.  

More ccB tumors have deletions on chromosomes 9 and 14, changes previously shown 

to be associated with poor survival.  These regions may harbor key tumor suppressor 

genes and will need to be further explored.  Overall, these results support ccB tumors 

being more aggressive tumors, fitting with the decreased survival outcome seen above.  

Intriguingly, ccA tumors contain mutations in a number of different histone modification 

genes, suggesting that there are also epigenetic differences between the two subtypes. 

Finally, we have delineated a biomarker panel that can discriminate between ccA 

and ccB tumors based on microarray data.  These genes, along with additional genes of 

interest for these subtypes and biomarkers previously identified by other groups, are the 

basis for a new assay, called ClearCode, for FFPE tissue using NanoString 

Technologies.  We have shown that this technology produces reproducible results using 

extracts from our FFPE samples and acceptable correlation between FFPE and fresh 

frozen samples.  We are now ready to move forward into delineating expression levels 

necessary to classify a tumor as ccA or ccB.  This critical advance opens the door to 

prospective tumor assignment and translation of this technology to clinical use.   

This research helps to explain why certain patients progress, while others are 

completely cured by nephrectomy.  The survival data suggests that patients with indolent 

disease have ccA tumors, while those that recur have ccB tumors.  The pathway 

analyses above suggest that ccB tumors tend to be more invasive in nature, while the 

main hallmark of ccA tumors is angiogenesis and hypoxia.  Further research into this 

underlying tumor biology differences between these two subtypes may provide insight 

for better treatment options.  Additionally, once completed and validated, the FFPE 

assay should supply important prognostic predictions for the clinician and patient. 
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Comparison to previous work 

One of the most important aspects of research is whether it is novel and 

important, and our studies definitely meet those criteria.  Previous work on the topic falls 

into 4 main camps (Table 1.1): 

 

1) Early groups focused primarily on ccRCC versus normal tissue and the 

molecular changes between the two, both to serve as diagnostic markers and 

to understand disease development73-78.  

Our work in chapter 3 does analyze tumors with respect to normal tissue, but we 

do this to get a better understanding of the differences between ccA and ccB tumors.  

This analysis is what helped us to understand that ccA tumors do not overexpress 

metabolism genes compared to normal as we had thought from the ccA vs. ccB 

analysis.  Rather, ccB tumors underexpress these genes and pathways.   

 

2) A number of early groups also studied all types of RCC, looking for genetic or 

molecular markers in order to perform “molecular histology” 6,80-85,89,91. 

These studies examined the molecular differences between clear cell, papillary, 

chromophobe, and oncocytoma histologies, providing extra insight into the tumor biology 

of these prognostically different tumors.  Additionally, these histologic subtypes appear 

identical by radiologic examination, so the identification of diagnostic biomarkers will be 

important as core, and even fine-needle, biopsies become more common. 

When enough clear cell tumors were present in the mix, it generally became 

apparent that there were possibly two clusters of clear cell.  Though, questions were 
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then raised whether this grouping was being created by either the presence of mixed 

tumors or the selection of genes which are most variable across all tumor types. 

Interestingly, however, we 

discovered that a papillary tumor 

mislabeled as clear cell had been 

a ccB core tumor, clustering tightly 

with the other ccB tumors.  When 

we do include papillary tumors in 

with our core tumors, ccB tumors 

do cluster closely with the papillary 

tumors (Figure 6.1). Some 

papillary tumors even cluster with 

the ccB tumors, depending on the 

tumors present.  This result does 

present the question as to whether 

our ccB tumors represent a 

transition state tumor or are more 

similar in some respects to 

papillary RCC, which could potentially be important information for therapy decisions.  

Given that ccB tumors are the poor prognostic group and that papillary tumors tend to be 

more aggressive, it is also possible that ccB and papillary tumors underwent parallel 

evolution (or devolution, which may be a more apropos term given the dedifferentiation 

that occurs in tumors) to express similar genes and pathways to survive in an 

environment that is meant to be hostile to proliferating cells.  If so, perhaps both ccB 

tumors and papillary tumors could respond to the same drug therapies.  This line of 

questioning is an area of research that could provide some interesting answers. 

 
Figure 6.1 ccB tumors cluster with papillary tumors 
Consensus matrix of ccB and papillary tumors 
clustering together apart from ccA tumors. 
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 Clearly, we do believe that these studies were showing correctly showing the 

presence of two groups of clear cell.  However, this result was not the focus of the above 

studies, and it was not further researched.   

 

3) A number of studies ended up being more clinically driven, regardless of 

whether they began with an unsupervised analysis87,88,90,92. 

Of these, Takahashi et al. was the earliest study and did see that tumors tended 

to cluster unsupervised into two groups87.  These groups were based predominantly 

upon 5 year disease-specific survival, and genes that could differentiate based on 

survival then became the focus.  Unfortunately, no work was done to understand the 

underlying pathway changes causing this clustering and prognostic result. Vasselli et al. 

followed a similar strategy, finding two natural clusters with survival differences but then 

choosing genes entirely based on survival88.  Kosari et al. also saw two clusters, 

predominantly broken down into aggressive (patients died of disease or developed 

metastases in less than 4 years post-nephrectomy) and non-aggressive tumors, and 

then chose genes to discriminate between aggressive vs non-aggressive tumors. 

Zhao et al. analyzed the largest number of tumors, 177 in all92, and we used their 

data for validation and prognostic information.  In their data, they found 5 different 

clusters, within 2 main clusters, with significant survival differences.  Additionally, they 

saw overexpression of angiogenesis and metabolism genes in one of the main subsets.  

Again, rather than building a biomarker panel based on these inherent groups, they 

chose genes based purely on survival outcome. 
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When we originally analyzed the Zhao et al. data using ConsensusCluster, we 

saw four (and possibly a fifth) different clusters immediately apparent (Figure 6.2).  

However, the 177 tumors were arrayed on 10 different print batches of chips.  We 

combined these batches using DWD and found that only two clusters were present in 

the adjusted data.  This result helped confirm our data that two subtypes of ccRCC 

dominate.  Although it still remains possible that with larger sample studies, additional 

heterogeneity will emerge within ccA and ccB or that the unclassified tumors will emerge 

as their own class. 

 

 These groups had a goal to find genes associated with survival and recurrence, 

whether it was a time frame of 4 year, 5 year or just continuous.  The gene sets have the 

 
Figure 6.2 Effect of DWD adjustment on Zhao et al.92 data 
Data from Zhao et al. was analyzed by ConsensusCluster without (A) and with (B) DWD 
adjustment to control for batch effect caused by 10 print runs. 
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potential to become useful in the clinic, helping a patient to better gauge how much time 

they have remaining.  However, all remain to be prospectively validated.   

 In contrast, when we began, we certainly had hopes of prognostic import 

(especially given the results shown above).  That was not our overriding goal, however.  

We wanted to determine whether our tumors also created two (or more) clusters, 

determine if they correlate with patient survival, and then fully explore those inherent 

groups.  This information has the power to really help explain why tumors behave so 

differently.  It might also provide insight into which patients will respond to specific 

treatments, and/or provide new avenues for drug development.  These were our goals. 

 

4) The final group of studies did approach ccRCC as we did – focused on the 

underlying biology39,95,96.  

The first study, by Skubitz et al., was like several other studies mentioned above 

and predominantly dismissed due to small sample sizes.  They looked at 16 tumors 

ccRCC tumors, and found 2 subtypes, ccRCC-A and ccRCC-B95.  Three of their ccRCC-

B samples had sarcomatoid features, suggesting a far more aggressive disease 

trajectory for the entire group.  Interestingly, 2 of their ccRCC-A markers (GIPC2 and 

MAP7) and 1 of their ccRCC-B markers are found in our groups as well (SLPI).  Similar 

to ours, the ccRCC-A tumors overexpressed metabolism genes (compared to ccRCC-B) 

tumors, while ccRCC-B tumors overexpressed genes related to the extracellular matrix.  

Our study tripled the number of tumors and did not involve any sarcomatoid tumors, in 

order to avoid skewing the results as this histologic feature is known to portend a dismal 

prognosis.  (Though, when working with the Futreal gene expression data as normalized 

by them, we did find that the sarcomatoid tumors were labeled as ccB tumors (data not 

shown).) Additionally, our studies were able to provide more molecular and genetic 

information discriminating the two subtypes, as well as prognostic information. 
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Gordan et al. also concentrated on the underlying biology of ccRCC tumors, but 

not by studying the inherent clusters present in the data.  Instead, they focused on the 

primary pathway dysregulated ccRCC, pVHL inactivation leading to HIF 

overexpression39.  One of the most important results from this study is the in vivo 

confirmation that HIF1 and HIF2 expressing tumors are molecularly distinct from HIF2 

only expressing tumors and that HIF2 only tumors overexpress c-Myc, leading to 

increased proliferation.  The relation of this study to ours will be discussed in the next 

section. 

Finally, the Zhao et al. group later attempted to find biological significance to their 

survival gene set.  Not surprisingly, they found that tumors from patients who survived 

longer were more like normal tissue, while those from poor survival patients exhibited a 

wound-healing signature96.  We have also seen that ccB tumors, which have a 

decreased survival outcome, overexpress genes related to wound healing. 

 

HIF expression versus ccA/ccB? 

As discussed above, VHL inactivation is found in the overwhelming majority of 

ccRCC tumors, leading to the overexpression of either HIF1 and HIF2 (H1H2 tumors) or 

just HIF2 (H2 tumors).  Gordan et al. showed that this delineation also leads to a change 

in C-myc activity and increased cellular proliferation in H2 tumors, while H1H2 tumors 

show increased expression of glycolysis genes.  These expression profile differences 

strongly mimic what we see in our ccA/ccB breakdown, constantly raising the question of 

whether ccA tumors are H1H2 and ccB tumors are H2 only.  Yet, as seen in Chapter 3, 

this does not seem to be the case.  We found that there were H1H2 and H2 only tumors 

in both ccA and ccB, using both our dataset and the Gordan et al. set.  One possibility is 

that there are minute differences in expression of these proteins that we are unable to 
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detect, but are still enough to be causing these pathway outcomes.  Emerging evidence 

also points to the possibility that microdeletions of splice variants occur in HIF biology, 

which would be undectable by IHC.  Looking at C-Myc for example, given that HIF-1 and 

HIF-2 act as counterbalances for Myc expression, a slight increase or decrease in HIF-1 

would shift that expression, so the possibility remains that some more subtle HIF 

influence contributes to ccA/ccB physiology.   

How VHL is inactivated can impact the expression levels of HIF and therefore the 

growth of the tumor37,38.  When we looked at VHL in our tumors, we saw the presence of 

both mutation and methylation in both subtypes.  More tumors in ccA than in ccB 

contained alterations to VHL’s genetic code though, which could possibly be causing the 

shift.  Not much can be drawn from these results in the current environment, however, 

for four reasons: One, we did not perform laser-capture microdissection or even razor 

sectioning to make sure that the sample was >90% tumor.  PCR should still have been 

able to detect the presence of mutations, even without a pure sample, though.  Two, we 

saw discrepancies in mutational analyses from two groups that we used.  As Dr. Kate 

Nathanson is well-respected in the field for the quality of her analyses, we went with her 

results.  However, the differences in the results raise the possibility of regional 

differences within the tumor.  VHL mutations are generally an early step in ccRCC tumor 

development, but there is a slight chance that certain regions of the tumor may harbor 

differ mutations.  Three, our sample size is extremely limited.  In order to answer the 

question of the VHL’s and HIF’s role in the ccA/ccB subtypes, far more samples need to 

be critically analyzed.  Additionally, it would be important to analyze the type of VHL 

inactivation, to see whether one subtype is more likely to have different types of 

inactivating mutations or whether mutations are spatially located in different regions.  

Fourth, the molecular impact of most VHL missense mutations on HIF or other biology is 

unknown. 
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HIF expression levels are generally accepted to only be modulated post-

translationally by pVHL.  However, one group has shown that HIF-2α mRNA (EPAS1) 

expression inversely correlates with both TNM stage and nuclear grade165. Another 

group identified it as one of only 35 transcripts that were necessary to discriminate 

between non-aggressive and aggressive tumors, and EPAS1 was overexpressed in the 

non-aggressive tumors90. In our tumors, the Brooks tumors, and the Futreal tumors, 

EPAS1 (HIF-2α) is overexpressed in the ccA tumors as compared to ccB tumors, 

correlating HIF-2α mRNA expression with better survival.  What is leading to this 

difference in expression level is unknown, as well as how exactly this difference is 

impacting HIF2 protein expression or the tumor.  These questions are fodder for future 

experiments. 

 

Third HIF’s the charm? 

One more player in the VHL/HIF pathway that generally gets dismissed is HIF-3.  

HIF-3α splice variants 1-3 may also transcriptionally activate specific genes, but they 

may not be as efficient as HIF1 and HIF2 given the lack of a C-terminal transactivation 

domain. Instead, HIF-3α1 contain an LZIP domain, which functions in DNA binding, and 

all 3 contain LXXL domains, which promote protein-protein interactions22,166,167.  HIF-

3α1-2, however, do seem to inhibit effective transcriptional regulation of genes by HIF-

1α, likely due to competitive binding of HIF-1β, and this inhibition is particularly the case 

when HIF-1β is limiting 167,168.  HIF-3α4 acts to dominantly negatively regulate HIF-1 and 

HIF-2 by interacting with both alpha subunits and HIF-1β, but tends to be downregulated 

in ccRCC22,31,32 There are also up to 6 other splice variants with unknown roles in the 

cell, and  even the existence of variants 3 and 5 are disputed168.    
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Perhaps we really should not be ignoring HIF3, however.  As described above, 

our ccA and ccB tumors stratify in a way that suggests that HIF1 is underexpressed in 

ccB tumors, yet we don’t see that change in HIF1 by IHC.  However, looking at gene 

expression data, we do see that ccB tumors overexpress HIF3 (compared to ccA) and 

underexpress ARNT/HIF-1β (compared to normal tissue).  It is unclear from the 

microarray data which splice variant of HIF-3α is being overexpressed; however, given 

Maynard’s downregulation results, it is unlikely to be HIF-3α4. Yet, two other splice 

variants have been shown to inhibit HIF-1 activity, particularly when HIF-1β is 

decreased, which is true in ccB tumors.  Additionally, since this inhibition occurs through 

direct binding of HIF-1 and competitive binding of HIF-1β, there would be no resulting 

decrease in HIF-1 protein expression.  While pure speculation, this hypothesis (Figure 

6.3) seems like a plausible way of explaining why ccA and ccB do not stratify based on 

HIF1 and HIF2 expression, as one would expect.  HIF-3 expression and interactions 

should really be examined in these two tumor subtypes.   
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The Ror2 of the wild ccB 

One more interesting gene that is dysregulated between these subtypes is the 

tyrosine kinase Ror2, which is overexpressed in ccB tumors.  Our lab recently 

discovered that Ror2 is a tumor intrinsic kinase for ccRCC, and we showed by 

microarray data that its expression correlates with extracellular matrix remodeling 

proteins.  Additionally, expression of Ror2 protein correlates with cellular migration, 

anchorage independent growth, and tumor growth in xenografts154. Since then, Ror2 

expression has been shown to correlate with migration, invasion, and/or metastases in 

                 
Figure 6.3 Model of HIF protein interactions in ccA and ccB tumors 
The pathways expressed by these two tumor subtypes are extremely reminiscent of those 
described by Gordan et al. as caused by HIF1 and HIF2 expression differences.  However, both 
HIF1 and HIF2 protein are expressed in both ccA and ccB tumors as seen by IHC. By gene 
expression, HIF3 is upregulated in ccB tumors while HIF-1β is decreased.  The shift in these two 
proteins could drive ccB tumors to express a more HIF2 centric expression pattern. 
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melanoma, osteosarcoma, squamous cell carcinoma, gastric cell carcinoma, and 

prostate cancer169-175.   

The overexpression of Ror2 in ccB tumors makes perfect sense given that Ror2 

expression correlates with an invasive phenotype and ccB is the poor prognosis group, 

which would indicate recurrence/ metastases of ccRCC.  However, we have been 

unable to directly correlate Ror2 expression with any clinical data.  Therefore, Ror2 was 

included in the NanoString custom codeset.  The resulting data will answer two 

questions:  1) Does Ror2 directly correlate with clinical measures of survival, namely 

with decreased survival or increased stage and grade?  2) Is Ror2 a good marker for 

ccB?  Given the above mentioned research, we anticipate that the answer will be yes to 

both questions.  Since Ror2 is tumor intrinsic kinase in ccRCC, another member of the 

lab is working on a collaboration to identify potential drugs to target Ror2, and therefore 

ccB tumors. 

 

Deep felt losses 

 In chapter 4, we started to explore the underlying genetic differences between 

ccA and ccB tumors.  Several regions stood out as having distinct changes in copy 

number between the two subtypes.  In particular, ccB tumors seem to have more 

deletions of regions on chromosome 9 and 14.  These regions are of great interest, 

because they have been previously shown to associated with decreased disease-

specific survival6,7,47,53,60,66,67,176-178.  Loss of 14/14q has not always generally retained 

independent prognostic significance, but loss of 9p has.  These previous studies confirm 

that we are on the correct track with ccB being a more aggressive and deadly form of 

ccRCC. 
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 We would still like to know how and why these regions are associated with poor 

survival, however.  The next steps will require us to first confirm that these regions are 

statistically different between the two subtypes, then start looking within these regions 

for genes that seem to be in peaks of highest deletion.  Copy number analysis will also 

be combined with gene expression data in order to correlate results more strongly.   

The most obvious tumor suppressor on chromosome 9p is CDKN2A, the gene 

that encodes p16INK4A/ARF and functions to inhibit the cycle protein CDK4 and 

stabilize p53.  Beroukhim et al. find that this gene is located at the point of highest 

deletion and lowest expression in their data, 40% of which are from patients with VHL 

disease65. However, our gene expression data shows that there is no difference in 

CDKN2A transcript levels between the subtypes and, in fact, is overexpressed in both 

subtypes compared to normal.  Another tumor suppressor located nearby and identified 

by Beroukhim et al. through copy number peaks (but not expression data) is CDKN2B.  

The resulting protein, p15, also inhibits function of CDK4 or CDK6, preventing activation 

of the cell cycle by cyclin D1.  The transcript of this protein is overexpressed in ccA 

compared to normal, but its expression is not altered in ccB tumors.  The role, or rather 

lack thereof, of this protein in ccB tumors should be further investigated.   

Located on chromosome 14 is HIF1, which would fit our expressed pathways, but 

as discussed above, there was a lack of observable differences in protein expression by 

IHC.  Looking for other targets, through gene expression data, Beroukhim et al. suggest 

NRXN3, which encodes neurexin 3, a gene that functions as a cell adhesion molecule 

and receptor.  However, this gene is not dysregulated in our microarray data.  Overall, 

we will need to look more closely for which genes are dysregulated in this region. 

One more region of deletion in ccB tumors is in chromosome 1p.  This region 

was also marked as a distinguishing copy number alteration between the two clusters of 

tumors in the study by Arai et al. and was specifically deleted in the poor prognostic 
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group63.  By both peak and expression analysis, Beroukhim et al. identified RUNX3 as 

being a potential target of this deletion. RUNX3 is a transcription factor that promotes 

transcription of p21, another cell cycle inhibitor179,180. p21 specifically functions by 

inhibiting the activity of the cyclin E/CDK2 and the cyclin D/CDK4 complexes.  While this 

is an extremely appealing idea for a target, RUNX3 is overexpressed in our data in both 

subtypes compared to normal.  Other targets will need to be explored. 

  

Only on the surface 

The copy number changes described above and earlier are certainly causing 

some of the pathway differences between ccA and ccB tumors.  However, as was 

apparent from the data shown in chapter 4, there are regions of differential expression 

that do not correlate with amplification or deletion.  This result, particularly in 

combination with the large number of mutations in histone modification genes, suggests 

that epigenetic modifications play a large role in the differences between the subtypes as 

well.  The Futreal group had noticed that the majority (88%) of the tumors with SETD2 or 

JARID1C mutations also contained a mutation in VHL or exhibited a hypoxia 

phenotype40.  Similarly, the better prognostic group identified by Arai et al. showed a 

decreased number of methylated CpG islands63.  These data correlate well with our 

better surviving ccA tumors, which contain the majority of the histone modification gene 

mutations and overexpress pathways related to hypoxia.  Analysis of the two subtypes 

by methylation arrays and/or ChIP-chip assays may provide additional answers to the 

differences between ccA and ccB tumors. 

An interesting related question is whether genes that are similarly overexpressed 

or underexpressed by both subtypes are regulated in different ways.  I.e., a gene may be 
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deleted in one subtype but may be epigenetically modified for repression in the other 

subtype.   

 

The problem in the pathways 

We have presented a lot of pathway results in these chapters, pathways that 

distinguish these two subtypes and help bring understanding to why ccB tumors have 

such a decreased survival outcome.  However, with the exception of the Ror2 data 

mentioned above, all of these pathways remain constructs of gene expression data.  

This limited analysis does not cause the results to be untrue, especially given that they 

have been validated in other datasets.  Rather, it just makes the data feel one-sided and 

not fully substantiated.   

 Ideally, ccA cell lines and ccB cell lines would be analyzed and pathways 

validated by means of perturbation by shRNA, known inhibitors, or overexpression.  

Western blots, quantitative Real Time PCR, wound healing assays, foci formation 

assays, soft agar assays, would shortly follow.  These original and altered cell lines 

could even be placed into nude mice to determine whether tumors were less likely to 

form under certain modifications.  However, ccRCC cell lines are few in number, and 

attempts to classify these lines by subtype have failed.  Individual genes or pathways, 

such as was done in Ror2, are still feasible, but for now, full analysis of subtypes via 

current cell lines is not feasible.   

 Three main options, therefore, present themselves:   

 First and most obvious, tumors that have already been solidly identified as ccA or 

ccB could be analyzed by immunohistochemistry (IHC), metabolomics, or proteomics.  

The main problem with this means of addressing the question is limited sample.  In fact, 



 135 

many of the core tumors have no more available sample.  New tumors can always be 

classified, but sample will always be in limited quantity.   

Second, fresh tumor tissue could be retrieved, and cell lines could be made via 

growth on plastic tissue culture plates.  If successful, both the original tissue and newly 

derived cell lines could be arrayed to confirm subtype and whether dramatic shifts had 

been made due to culturing techniques that would prevent analysis of key pathways.  

These new and classified cell lines would provide the most flexible means of exploring 

the pathways inherent to each subtype.  However, tissue culture dishes fail to mimic 

tissue microenvironment and certain details may not be possible to ascertain. 

 The final, and most immediately feasible, option presents itself in collaboration 

with Dr. William Kim.  Dr. Kim has generated xenograft lines from ccRCC tumors.  

Original tumor tissue is available for arraying and subtyping.  While not as replenishable 

as traditional cell lines, this technique would most closely mimic the environment within 

the human body.  An immediate question that could be answered is which subtype is 

most sustainable upon transplantation.  Which subtype responds to various treatments is 

the question on the forefront of many minds, and this system might provide strong clues 

to that answer.  Why they respond to these specific treatments might be also 

answerable.  IHC of fixed tissue, as well as RNA and protein extraction from fresh tissue 

could confirm the pathways identified by gene expression analysis.  These pathways 

could even be perturbed via drug treatments or lentiviral shRNA vectors, possibly 

providing clues as to which pathways are most important in delineating these two 

subtypes.  Overall, although there are difficulties in maintaining such a system, there are 

tremendous benefits as well.  Additionally, of the three options, this one provides an 

immediate avenue for dissection of the pathways implicated in ccA and ccB tumors. 
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That’s a nice assay 

With our understanding that clear cell RCC made up of two distinct groups and 

having a list of genes to distinguish between these two groups, we have begun the 

process of creating an assay to easily subtype new tumors.  We have chosen to design 

the assay around formaldehyde-fixed paraffin embedded (FFPE) tissue, as that is the 

most common means of tissue preservation and analysis.  We have also chosen to work 

with NanoString Technologies, for a variety of reasons, but foremost because this 

technology allows the use of 100ng (or less) of fragmented RNA to analyze up to 800 

genes at a time.  We have verified that extraction of RNA from FFPE is unnecessary, as 

NanoString provides consistent results from FFPE lysates.  Currently, this process has 

shown that the majority of our probes produce reproducible results and correlate 

reasonably well between snap-frozen RNA and FFPE lysates.  Therefore, we are in the 

process of delineating expression level cutoffs for the purpose of classifying a tumor as 

ccA or ccB.  We will then test 12 tumors not used in the selection of our biomarker gene 

panel by both microarray and NanoString to verify that this assay can correctly subtype 

unknown tumors. 

 

Progressive, bifocal, or an entire second set 

 An obvious question that arises as we examine the ccA and ccB subtypes is 

whether ccB tumors are just ccA tumors that have progressed further, ccA and ccB 

tumors are just another two aspects of the single ccRCC disease, or if they are two 

completely different diseases.  It is easy to envision ccB tumors as more advanced ccA 

tumors, with the unclassified tumors being a transitional state.  If this were true, one 

would expect that all patients diagnosed early (at a low stage and grade) would have 
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ccA tumors and never recur.  To some extent, this is true, as having a low stage and 

grade tumor confers a lower risk of recurrence.  However, patients with ccB tumors tend 

to be diagnosed younger than those with ccA tumors (median of 63 vs. 70 years old, 

p<0.01).  Therefore, while progression is an attractive idea, it seems somewhat unlikely. 

 Throughout this dissertation, we’ve been treating ccA and ccB as subclasses of 

the overarching clear cell umbrella.  Histologically speaking, this would be true.  Both 

look identical to a pathologist.  Based on the Futreal data, both also share 3p deletions, 

as well as global copy number pattern.  Given these definitions, one could define them 

as being in the same species of ccRCC, but perhaps different genera. 

 However, it is tempting to entertain the thought that these ccA and ccB tumors 

are two different diseases.  Chromophobe and oncocytoma look similar to pathologists 

and even cluster together compared to clear cell and papillary tumors based on gene 

expression83,84,89; nonetheless, they are regarded as two different diseases.  It is 

possible that ccA and ccB tumors did both begin their tumorigenesis path through 

deletion of 3p and/or inactivation of VHL, but then diverged shortly thereafter into two 

different species.  After all, the differences between ccA and ccB tumors are almost as 

large as those between ccA tumors and normal tissue (6213 vs 9112 probes 

differentially expressed).  One might argue that this question is a matter of semantics; 

however, it could affect how seriously clinicians and researchers address the differences 

between ccA and ccB tumors. 

 

Two for one deal 

 This entire dissertation has focused on the division of ccRCC into the two 

subtypes, which is very important.  However, perhaps in fully understanding these two 

subtypes, we can also better understand clear cell as a single disease as well.  At the 
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same time that cancers get further and further subdivided, research is also turning away 

from such divisions and trying to find out what rules them all.  Specifically, the question 

being asked is which common, actionable molecular or genetic changes are inherent in 

the cancers.  When looking at a set of all clear cell tumors compared to normal, we are 

ignoring the differences between ccA and ccB.  Throughout the last chapters, it should 

have become clear that these differences are important and may be of great boon to the 

clinic.  However, in looking at each subtype compared to normals, we can also fully see 

the genes and pathways that are similarly overexpressed and underexpressed.  If this is 

instead done with all tumors against normal, there’s no way to know whether one 

subtype is skewing the results.  When the results are skewed, we are left again with an 

understanding that really only applies to a select group of tumors.  Instead, by looking at 

the similarities between the groups, we can decrease noise and feel fully confident that 

we have an understanding of what is true to clear cell as a single disease.  This 

approach is an area that bears follow-up, and mayhap, personalized medicine in the not 

so distant future need not be quite so personalized. 

 

In conclusion…. 

This research presented within this dissertation has shown that we can take one 

disease and break it into two.  Many studies have mentioned the presence of two 

clusters/classes/groups of ccRCC tumors, whether by molecular, genetic, or cytogenetic 

means.  Particularly in this chapter, we have shown how our work supports and fleshes 

out these previous results.  It is important to consider that all these disparate laboratories 

are likely discussing the same two subtypes.  With this understanding, the knowledge 

garnered from the different studies could be combined to lead to a powerful episteme 
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that could strongly influence clinical decision making and drug development for the 

better. 

The two groups of clear cell renal cell carcinoma, ccA and ccB, are almost as 

different from each other as clear cell is from normal tissue.  ccA tumors follow the 

classic RCC pattern and express an angiogenic and hypoxic molecular signature.  ccB 

tumors are the darker side of the disease, showing genetic losses common in poor 

prognostic groups and molecular pathways of proliferation, wound healing and epithelial 

to mesenchymal transition.  Inasmuch, patients with ccA tumors show a median survival 

of 8.6 years to the 2 years seen for ccB patients.  Essentially, as a friend says, ccA 

tumor good, ccB tumor bad. We will soon have an assay to distinguish between these 

two, to provide more information for researchers, clinicians, and patients.  Then, clear 

cell renal cell carcinoma may become a little clearer. 
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