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SUMMARY.  The linear mixed model (LMM) is the most widely used statistical tool for the

analysis of longitudinal models of Gaussian outcomes.  Accurately modeling the variability is

critical for accurate tests of hypotheses about fixed effects.  In practice, information criteria are

used  to assess goodness-of-fit when  for thealmost exclusively choosing a covariance structure

LMM.  However, the ability of information criteria to select the correct  has not beenstructure

definitively   comparability across datashown.  Furthermore, awkward interpretation and poor

sets limits their  use.  We demonstrate that an   for fixed effects ineffective statistic developedV#

LMMs is a viable alternative to information criteria in choosing  covariancean appropriate

structure outperforms.  In simulations of conditions often used in practice, the  statistic V#

information criteria in selecting the correct covariance .  A key difference is that thestructure

approach rarely underfits the covariance, which protects accuracy of tests and confidence

intervals.  The performance of the  statistic in this setting and its ease of implementation andV#

interpretation combine to make the  statistic for LMM covariance structureV#  an ideal tool 

selection when interest lies in valid inference about fixed effects.

KEY WORDS: Goodness of fit, Information Criterion, Longitudinal data, Model Selection, R-

squared, Signal-to-noise
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1. Introduction

In longitudinal data analysis, one must be concerned with modeling both the between-subject

effects (fixed effects, the mean structure) and within-subject effects (random effects, the

covariance structure).  The linear mixed model (LMM) stands as one of the most widely used

statistical tools for the analysis of longitudinal data for Gaussian outcomes.  The LMM explicitly

specifies not only the mean structure, but also the covariance structure.  Hence three types of

model comparisons can occur.  1) Models with different mean structures and the same

covariance structure may be compared.  Models with nested mean structures are the most

common.  2) Models with the same mean structures and different covariance structures may be

compared.  Both nested and nonnested covariance structure comparisons are common.

3) odels with different mean structures and different covariance structures may be compared.M

Our focus lies entirely on comparing the covariance structures of two models with the same

mean structure.  We propose and evaluate a new goodness-of-fit criterion for covariance

structure selection in the LMM. The motivating example involves comparing distinct covariance

structures for the full (saturated) mean structure. In addition, we compare distinct structures

across all possible mean structures in the example, and we look at correct and incorrect mean

structures in the simulations.

In longitudinal data analysis, modeling the variability can be immensely important for proper

analyses because accurate tests of significance require proper choice of the covariance structure.

Gurka et al. [1] proved and demonstrated that underfitting the covariance leads to inflated Type I

error rates of tests on the fixed effects.  Thus a great deal of attention must be given to

covariance structure selection, even when primary interest lies on fixed-effects inference.  In

practice, information criteria such as the presently dominate the selection ofAIC and BIC [2][1]  

a covariance structure in the LMM.  However, information criteria provide only rules of thumb

to discriminate models.  Consequently we agree with Verbeke and Molenberghs [4, Section 6.4]

that information criteria should never be used or interpreted as formal statistical tests of
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significance.  make comparisonsIn addition, the data-dependent scales of the AIC and BIC 

across studies impossible.

Gomez et al. [5] studied the performance of the AIC and BIC in selecting the true covariance

structure from a large set.  The authors concluded that AIC and BIC are useful tools to help the

researcher choose a covariance structure.  However, because AIC and BIC do not always point

to the correct covariance structure, it is not wise to not depend on them exclusively when

choosing a covariance structure.  Gomez et al. noted that it is important to be especially careful

with small sample sizes because success rates in their simulation studies were very low and Type

I error rates were inflated.

Gurka [6] observed that although many covariance structure selection criteria have been

suggested, none has been found to be clearly superior.  Other resources such as correlograms [7],

knowledge about the design, and science should also be brought into play.  Gurka et al. [1]

concluded that if the data allow it, one should select an unstructured covariance.  The authors

also concluded that one principle seems clear:  controlling type I error for tests of fixed effects

demands avoiding an underfitted covariance structure.  As illustrated in a US FDA guidance

document [8], using an unstructured covariance structure is a strong preference in many food and

drug settings, especially in the gold-standard context of randomized clinical trials.

Unfortunately, convergence often becomes an issue with mixed models using unstructured

covariance, especially in small samples.  Cheng et al. [9] provided practical advice on improving

the chances for convergent models.  The same authors recommended strategies for building a

LMM with a focus on choosing a "good enough" mean structure and assumed the covariance

structure remained the same through the process (the most common scenario). However, the

authors also noted that the same model building strategies for choosing a "good enough" mean

structure also apply to choosing an appropriate covariance structure in the LMM.

When comparing LMMs with the same fixed effects and different covariance structures, we

propose using the signal-to-noise ratio (SNR) of the model, the ratio of explained to unexplained
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variance, to compare the goodness-of-fit of covariance structures.  We propose using the model

V"
#  [10], which measures the multivariate association between the repeated outcomes and the

fixed effects in the LMM, as a measure of explained variance.  By comparing SNR between

models, assessing goodness-of-fit of the covariance structures is implemented by comparing V"
#

between models.  We prove that the statistic can be used for covariance structure selection.

Simulations demonstrate that the statistic outperforms standard information criteria in choosing

the correct covariance structure under conditions often used in practice.  Perhaps even more

importantly, we demonstrate that the statistic does not underfit the covariance structure, thus

ensuring accurate inference on the fixed effects of the linear mixed model.

2. The Linear Mixed Model and  for Fixed EffectsV"
#

With  independ ), the LMM for  may beR 3ent sampling units (often  in practice person persons

written

C \ ^ /3 3 3 3 3œ  " , , (1)

for .   on person 3 − "ßá ßR  Here,  is a  vector of observations ,  is a  known,C \3 3 3 3: ‚" 3 : ‚;

constant design matrix fo ith full column rank  while  is a  vector ofr person , w3 ; ;‚""

unknown, constant, population parameters.  Also  is a  known, constant design matrix^3 3: ‚7

with rank  f responding to the  vector of 7 7‚"or person  cor unknown random effects , while3 ,3

/3 3 is a  vector of unknown random errors.  : ‚" The full rank assumptions simplifies the

exposition of the new method but need not meaningfully affect practice.  Chapters 11, 12, and 14

in Muller and Stewart [11] contain detailed discussions of estimability with less than full rank

design codings, while 15, 16, 18 cover corresponding invariance properties of inference.

Gaussian  and  are independent with mean  and, / !3 3

i        , !
/ !
3 ,3 ,

3 /3 /
œ

D 7
D 7

 . (2)

Here  is the covariance operator, while both  and  are positive-definite,i D 7 D 7Ð † Ñ ,3 , /3 /   
symmetric covariance matrices.  Therefore  may be written .i D D 7 D 7Ð Ñ œ C ^ ^3 3 3 ,3 , /3 /

w
3   
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As a result, , .  We assume that  can be characterized by a finite set ofC \3 : 3 3 3µ a
3
 " D D

parameters represented by an  vector  which consists of the unique parameters in  and .<‚" 7 7 7, /

Throughout .8 œ :
3œ"
R

3

We will also need to refer to a stacked data version of model (1) containing the data for all :3

C \ ^, /œ  " . (3)

Throughout  ( ), ), C œ \ œ ^ ^ ^   C C \w w w w
" R " R

wâ â 8w
" R8 ‚" ‚; œ ßâß\  ( diag 

(  , and 8 â â‚R7 R7‚" 8 ‚"), ( )  ( ).  Here, œ / œ, ,   w w w w
" R " R

w / / w

, ! M / !µ Œ µ ß œ ßâßa aR7 , R 8     ßD 7 D D D 7 D 73 , / / /" / /R /      and  for , where thediag

operator ' ' is the Kronceker product between matrices. In turn ,  withŒ µC \a8 " D

D D Dœ Ð Ñ ßâßi C œ diag . " R

In the linear univariate model,  corresponds to comparing two models.  The same principleV#

applies to comparing fixed effects in the LMM.  The most common situation involves a model

including an intercept and a hypothesis excluding the intercept, with  forL À œ! G !"

G ! Mœ ;  " J  ;" ‚" ;"  of rank .  The corresponding  statistic is given by

JÐ ß Ñ œs s
Ð Ñ Ð Ñs ss

" D
" D "G G \ \ G G

G

w w w" " "   
 rank

 .  (4)

Edwards et al. [10] defined  for the LMM asV"
#

V œ
;  " Ð ß Ñs s

"  ;  " Ð ß Ñs s"
#

"

"

 
 

/

/

J

J

" D

" D
 . (5)

The  statistic used for  corresponds to a test of the null hypothesisJÐ ß Ñ Vs s" D "
#

L À œ œ â œ œ ! Ð ß Ñ Vs s! " # ;"
#" " " .  Using the  statistic allows computing  using aJ " D "

single model fit for the model of interest, rather than needing to fit a full model and a null model.

Edwards et al [10] used the  Kenward-Roger  [12] to define  and hence thesmall sample J V"
#

statistic is defined for REML estimation.  However,  also is appropriate under maximumV"
#

likelihood estimation.  As defined,  if and only if 0. However, forV œ ! JÐ ß Ñ œs s
"
# " D
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!  JÐ ß Ñ  ∞ V " " JÐ ß Ñ ∞s ss s" D " D,  cannot equal , but can only near  as  nears .  As a result, we"
#

have .! Ÿ V  ""
#

Edwards et al. [10] proposed  as a statistic that measures multivariate association betweenV"
#

the repeated outcomes and the fixed effects in the LMM.  The  statistic arises as a –V " ""
#

function of an appropriate  statistic for testing all fixed effects (except typically the intercept)J

in a full model.  The statistic compares the full model to a null model with all fixed effects

deleted (except typically the intercept) while retaining exactly the same covariance structure.

Furthermore,  leads immediately to a natural definition of a partial  statistic.  Since itsV V"
# #

introduction,  has been gaining recognition by investigators as useful for their analyses [13-V"
#

15]. Software is freely available for easily computing , both SAS and R programs [16].V"
#

3.  Criterion for Covariance Goodness-of-FitV"
#

We assume that we are comparing two LMMs with the same fixed effects but that have

different covariance structures, either nested or non-nested. The different covariance structures

may be due to using different random effects which gives rise to different covariance structures

or due to assuming different covariance structures using the same random effects. For the case of

two LMMs we have

Model 1
Model 2 .

C ^ , /
C ^ , /
3 "3 "3 "3

3 #3 "3 #3

œ  
œ  
\
\

"3

"3

"
"

(6)
(7)

Under Model 1, we assume , , and under Model 2, we assumeC \3 "3 "3µ a:3 " D

C \3 "3 #3 "3 #3µ a:3 " D D D, , where Á 3 − "ßá ßR for .  In many practical applications, we 
have ^ , ^ , ^ ^"3 "3 #3 #3 "3 #3œ œ œ.  The population-average model has .!

For a LMM, we define the model  assignal-to-noise ratio (SNR)

SNRPQQ œ
V Ð Ñs

"  V Ð Ñs
"

"

#

#

"

"

sß

sß

D

D
 . (8)  

SNR variance, , to PQQ
# is the ratio of the (standardized) explained (standardized)V Ð ß Ñs s
" " D

unexplained variance, , for the LMM"  V Ð ß Ñs s
"
# " D .  The SNR is a term popular in engineering
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settings including amplifier design and acoustics, where it refers to a ratio of the power for signal

to the power for noise.  The ratio form makes the criterion scale-free and easily compared across

situations.  Since , we have .  As a performance measure of the! Ÿ V  " ! Ÿ  ∞"
# SNRPQQ

goodness-of-fit criterion for regression, an objective is to maximize the SNR [17,18].  Bérubé

and Wu [19] provided an overview of the performance of the SNR for a variety of models.  They

concluded that the performance of the SNR is model dependent and its validity deteriorates as

the true model deviates from the assumed model.  The  depends on  values ofSNR estimatedPQQ

all of the parameters in the model as well as the form of the mean-variance relationship.

For the LMM, we consider the case where the signal is fixed, i.e., must\" is chosen, and we 

select a structure for the noise,   The LMM with the best predictive ability, a measure ofD=.

goodness-of-fit, can be defined as the model that provides the highest signal,  given the\",

noise, , i.e., the LMM with the largest .  The worse the , the less predictiveD= SNR SNRPQQ PQQ

ability the model has, based on the estimated mean and covariance structures.  Box [17] noted

that the SNR could be used as a performance criteria both in the analysis of dispersion as well as

location.  For determining the best-fitting covariance structure between LMMs with the same

mean structures and different covariance structures, we have the following .proposition

Proposition.  We consider a set of  LMMs with distinct covariance structures and the sameO

mean structure.  Here  ,5 − "ßá ßO  indexes the candidate covariance structures

 D D D" 5 5ßâß O .  Also,  the covariance under the  denotes  for Model , with V Ð Ñ V 5s
" "
# #"sßD

stacked model representation in (3).  For the sake of brevity, w  e drop  to"s and use V Ð Ñs
"
# D5

denote  for Model , giving the set V 5 ÖV Ð Ñ V Ð Ñ× V œs s
" " " "
# # # #D D" ßâß O .  Also max

max
5

ÖV Ð Ñ V Ð Ñ× Vs s
" " "
# # #D D" ßâß O .  The covariance structure corresponding to  has the largestmax

SNRPQQ  and therefore has the best goodness-of-fit for the covariance structure for the data.

The Appendix contains a proof.

When considering fixed effects in a LMM, the  statistic always compares two LMMs withJ

different (nested, full and reduced) mean structures and the same covariance structure.  The J



8

test is often used to select mean structures in the LMM.  The test statistic  J for fixed effects in

the LMM SNR SNRis proportional to , i.e., , for  the denominatorPQQ PQQJ œ † Î ;  "/ / 
degrees of freedom chosen using the  Kenward-Roger  [12].small sample J

When comparing nested fixed effect structures in the linear univariate model, the J

distribution quantiles are  functions of quantiles for the beta distribution of .  "  " V# Since

quantiles for the  distribution were historically more accessible than for the beta distribution, p-J

values for the  are computed using the model  statistic in the linear univariate model.  The V J J#

test assesses goodness-of-fit for location (mean structure) for the assumed Gaussian distribution.

Matuszewski [20] demonstrated that the  distribution for the model  statistic in the LMMJ J

gives the same results as the beta distribution for  when comparing nested fixed effects.V"
#

However, for dispersion (covariance structure), the  statistic cannot be used to assessJ

goodness-of-fit between covariance structures.  Instead, , which is a  transformation ofV "  ""
#

the  statistic (for a fixed sample size), can be used for assessing goodness-of-fit for covarianceJ

structures for the LMM based on using  as an objective function.SNRPQQ

4. Simulation Study

4.1 Description of Simulations

Monte Carlo simulations using SAS Version 9.4 were performed to assess the performance of

V"
# , AIC, and BIC in selecting a valid covariance structure while fitting a linear mixed model

using REML estimation.  While there has been considerable discussion of the proper forms for

the AIC and BIC [6], here the forms used are those by PROC MIXED in SAS Version 9.4.

A total of  were simulated for three sample sizes, .  The10,000 replicates R − #!ß &!ß "!! 
number of repeated measures per independent sampling unit was held constant ( ).  In each: œ &3

simulation, data were generated from a population linear mixed model that consisted of the

following fixed effects:  an intercept, a dummy variable indicating membership in one of two

groups (equally allocated), time values with five time points equally spaced across , and the !ß "

interaction between the "group" and "time" predictors.  The population mean structure contained
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a linear trend over time that differed in intercept and slope between two groups, with

" œ † #ß "ß "ß !Þ&$  w corresponding to an intercept, contrast in intercepts, a slope, and the

contrast in slopes between the groups.  In each sample size setting,  values were$ − !ß "ß # 
used.  The scaling parameter allows for mean values of  near , , and  (no, medium,V ! !Þ& !Þ(&"

#

large proportion of explained variance), which correspond to SNR  near , , and 3,PQQ ! "

respectively.  The population covariance structure included a random intercept (  and a5,0
2 œ "Ñ

random slope (  that were correlated ( ), as well as a within-unit error variance5 3,"
2 œ "Ñ œ !Þ#&

term, .5/
2 œ "

For all possible nine combinations of  and , in each replication AIC, BIC, and  wereR V$ "
#

calculated for 6 possible covariance structures, with structure 6 being the population structure

(Table 1).  Mean values of all three selection statistics were calculated, as well as the percentage

of times that each statistic "chose" the candidate structures.  The preferred model was indicated

by the lowest AIC and BIC and by the largest  for a given replication.  V"
# Given the desire not to

underfit the covariance, the percentage of time that the statistics chose Structure 4 (unstructured)

or Structure 6 (population) was also tabulated.  Results were tabulated for two settings:  a) the

true fixed effects were included (intercept, group variable, time variable, and a group time‚

interaction; Table ), and b) the group variable was incorrectly ignored (intercept and time2

variable; Table 3).

As noted in Section 1, convergence often becomes an issue with mixed models, especially in

small samples.  For , we had models that did not converge, which was not unexpected.R œ #!

As often done in practice, the models were discarded and we computed goodness-of-fit statistics

for the set of models that did converge.

4.2 Simulation Results

Table 2 displays the distribution of covariance candidate structures selected out of 10,000 for

each of the  and  value combinations when the true mean structure was specified, with a focusR $

on how often Structure 6 were chosen.  Two observations stand(and Structure 4 or Structure 6) 
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out: 1)  is affected by the signal-to-noise ratio, with better performance in selecting theV"
#

correct covariance structure as the  increases, whereas the AIC and BIC are not; andSNRPQQ

2) the performance of the AIC and BIC are greatly affected by , whereas the performance ofR

V R"
#  is not.  No matter what value of  or , the BIC was the inferior covariance structure$

selection tool.  closer look at the models that were chosen when Structure 6 was not selectedA 

indicates an important finding:  in a vast majority of instances,  chose Structure 4 (anV"
#

unstructured covariance), while the AIC and BIC selected Structure 5 (an uncorrelated random

intercept and slope).  Thus, the  statistic rarely underfitted the covariance structure, while theV"
#

AIC and BIC almost always selects a smaller (inadequate) covariance structure when choosing

the incorrect model.  The result is important when the focus is on fixed-effects inference and the

goal is to not underfit the covariance model [1].

When the fixed-effects structure was underfitted (i.e.,  and the group variable was$  !

omitted), covariance structure selection results were consistent for all three model selection

statistics (Table 3).  All conclusions made for Table 2 hold true in Table 3.

When the goal is accurate inference on the fixed effects, it is important not underfit the

covariance structure [1].   In such settings, our simulations support using the  statistic forV"
#

choosing the appropriate covariance structure, particularly with a small sample.

5. Example:  Dental Study Data for Choosing Covariance Structure

In Edwards et al. [10], we used a well-known example from Potthoff and Roy (1964) to

demonstrate results for  in assessing the multivariate association between the repeated dentalV"
#

outcomes and the fixed effects used in the LMM.  The data come from an orthodontic study with

27 children, 16 boys and 11 girls. For each child, the distance (mm) from the center of the

pituitary to the pterygomaxillary fissure was measured at ages 8, 10, 12, and 14 years. The

objectives were to determine whether, on the average over time, distances are larger for boys

than for girls and whether, on the average over time, the rate of change of the distance is similar

for boys and girls.
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Edwards et al. [10] fitted LMMs with three different fixed-effect structures (in addition to a

fixed intercept) using REML estimation:  (I) a model with continuous age effect only; (II) a

model with linear Age and Gender effect; (III) a model with linear Age, Gender, and their

interaction. We also considered three different covariance structures: (1) random intercepts,

D 7 D 7,3 , /3 / :,
# #   œ œ5 5 (scalar), and ; (2) random intercepts and slopes with diagonalM

3

covariance,  , and and (3) random intercepts and slopes withD 7 D 7,3 , /3 / :
#     # ‚ # œ 5 M

3

unstructured covariance,  , and .D 7 D 7,3 , /3 / :
#     # ‚ # œ 5 M

3

Here we use the proposed covariance goodness-of-fit technique to choose the best fitting

covariance structure for the data when the LMMs have the same fixed effects.  Table 4 gives the

results for R , AIC, and BIC (smaller is better for AIC and BIC) for comparing the three"
#

covariance structures for each of the three fixed-effects structures.  We found that  gaveV"
#

different results than AIC and BIC when comparing the three structures, which are commonly

considered in practice.  Using  leads to choosing covariance structure 3 (unstructured) overV"
#

covariance structures 1 or 2 for each of the 3 fixed-effects structures.  In contrast, under fixed-

effects structure (I), both AIC and BIC would choose covariance structure 2 (diagonal) and

under fixed-effects structures (II) and (III), both AIC and BIC would choose covariance structure

1 (random interecept).  Given the small sample size for the study, the simulation results give

support that AIC and BIC may underfit the covariance structure while  may rarely do so.V"
#

Thus the simulation results support selecting covariance structure 3 over covariance structures 1

and 2 based on , rather than AIC or BIC.V"
#

6. Conclusions

The linear mixed model is a useful tool for modeling correlated data.  With longitudinal data

the correlations among observations may follow a complex structure.  If so, it is important to

properly model the covariance even when primary interest lies in fixed effect inference.  It has

been shown that underfitting the covariance structure can lead to bias with respect to fixed effect

inference.  The most commonly used tools in covariance structure selection are information
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criteria such as the AIC and BIC.  However, the AIC and BIC do not always point to the correct

covariance structure.  Furthermore, we show here that they are at risk of identifying a model that

underfits the true covariance structure, which in turn can lead to biased fixed effect inference.  In

addition, there are no good guidelines for interpretation and comparison of information criteria

values across varying models and data sets.  Hence it would not be wise to depend on them when

choosing a covariance structure.

The research developed here has possible extensions that we are actively pursuing. We are

working to develop distributional theory for the difference between  in order to conductV"
#

statistical tests on the difference in goodness-of-fit between multiple covariance models, thereby

introducing a probabilistic method of covariance model selection in the LMM. Also, though

focus was on comparing the covariance structures of two models with the same mean structure,

the simulation results suggests that with further development, V"
#  may be used to compare

models with different mean structures and different covariance structures.

The  statistic is a commonly used tool in linear model selection and interpretation that hasV#

broad practical appeal.  Edwards et al. [10] described a generalization of the statistic that can be

used for fixed effects in LMMs, and continues to gain in popularity.  Here we demonstrate that

the statistic can also be used in selecting the best covariance structure, and more importantly,

outperforms standard information criteria with respect to not underfitting the covariance

structure.  The performance, accessibility and interpretation of the new approach makes it an

excellent tool in LMM covariance structure selection.  Using the new statistic will in turn ensure

valid inference when comparing means.

Appendix

Proposition. We consider a set of  LMMs with distinct covariance structures and the sameO

mean structure.  Here  ,5 − "ßá ßO  indexes the candidate covariance structures

 D D D" 5 5ßâß O .  Also,  the covariance under the  denotes  for Model , with V Ð Ñ V 5s
" "
# #"sßD

stacked model representation in (3).  For the sake of brevity, w  e drop  to"s and use V Ð Ñs
"
# D5



13

denote  for Model , giving the set  V 5 ÖV Ð Ñ V Ð Ñ× V œs s
" " " "
# # # #D D" ßâß O . Also max

max
5

ÖV Ð Ñ V Ð Ñ× Vs s
" " "
# # #D D" ßâß O .  The covariance structure corresponding to  has the largestmax

SNRPQQ  and therefore has the best goodness-of-fit for the covariance structure for the data.

Proof.  Without loss of generality, we consider the case of comparing two LMMs with the

same fixed effects and different covariance structures (6).  If Model 1 has a greater SNR than

Model 2, then

V Ð Ñ V Ð Ñs s

"  V Ð Ñ "  V Ð Ñs s


" "

" "

# #

# #

D D

D D

# "

# "

 .

From (8) and assuming 0 1 and 0 1, we can deduce the following:Ÿ V Ð Ñ  Ÿ V Ð Ñ s s
" "
# #D D" #

V Ð Ñ "  V Ð Ñ  V Ð Ñ "  V Ð Ñs s s s

V Ð Ñ  V Ð ÑV Ð Ñ  V Ð Ñ  V Ð ÑV Ð Ñs s s s s s

V Ð Ñ  V Ð ÑV Ð Ñ  V Ð Ñ  Vs s s s

" " " "

" " " " "

" " " " "

# # # #

# # # # # #

# # # #

D D D D

D D D D D D

D D D D

# " " #

# # " " " #

# # " "

   
# #Ð ÑV Ð Ñs sD D" #" .

It follows that (8) is true if and only if

V Ð Ñ  V Ð Ñs s
" "
# #D D# "  .

If  in (8), then  and SNR  for Models 1 and 2.V Ñ œ ! V Ñ œ V Ñ œ ! œ !s s s
" " "
# # #

PQQÐ Ð ÐD D D" # " 

Acknowledgements

Edwards' work was supported in part by the National Center for Research Resources and the

National Center for Advancing Translational Sciences, National Institutes of Health, through

Grant Award Number UL1TR001111.  Gurka's work supported in part by NIH/NHLBI R01-

HL120960 and NIH/NIGMS U54-GM104942.  Muller's work supported in part by NIH/NIDCR

R01-DE020832, NIH/NIDCR U54-DE019261, NIH/NCRR/UL1 TR000064,

NIH/1R25GM111901-01, PCORI/HPC-1503-27891 and PCORI/National Patient-Centered

Clinical Research Network (Shenkman-Hogan, PI).



14

References

1. Gurka MJ, Edwards LJ, Muller KE (2011).  Avoiding bias in mixed model inference for fixed

effects.  , , 2696-707.Statistics in Medicine 30

2. Akaike H (1974).  A new look at the statistical model identification.  IEEE Transaction on

Automatic Control, , 716-723.AC-19

3. Schwarz G (1978).  Estimating the dimension of a model.   , 461-464.Annals of Statistics, 6

4. Verbeke G, Molenberghs G (2000).  .  NewLinear Mixed Models For Longitudinal Data

York: Springer-Verlag.

5. Gómez VE, Schaalje GB, Fellingham GW (2005).  Performance of the Kenward-Roger

method when the covariance structure is selected using AIC and BIC.  Communications in

Statistics-Simulation and Computation, , 377–392.34

6. Gurka MJ (2006).  Selecting the best linear mixed model under REML.  The American

Statistician, , 20-26.60

7. Littell RC, Pendergast J, Natarajan R (2000).  Modelling covariance structure in the analysis

of repeated measures data.  , , 1793–1819.Statistics in Medicine 19

8. Laughren TP (2007).  Recommendation for approvable actions for zyprexa pediatric

supplements for bipolar disorder (acute mania) and schizophrenia, to File NDA 20-592 (S-040

[bipolar] and S-041. Available at

www.fda.gov/downloads/drugs/developmentapprovalprocess/developmentresources/ucm1958

81.pdf.

9. Cheng J, Edwards LJ, Maldonado-Molina MM, Komro KA, Muller KE (2010).  Real

longitudinal data analysis for real people: Building a good enough mixed model.  Statistics in

Medicine,  504-520.29,

10. Edwards LJ, Muller KE, Wolfinger RD, Qaqish BF, Schabenberger O (2008).  An R#

statistic for fixed effects in the linear mixed model.  , , 6137-57.Statistics in Medicine 27



15

11. Muller KE, Stewart PW. .Linear Model Theory: Univariate, Multivariate, and Mixed Models

John Wiley and Sons, Inc: Hoboken, New Jersey, 2006.

1. Kenward MG, Roger JH (1997).  Small sample inference for fixed effects from restricted

maximum likelihood.  , , 983-997.Biometrics 53

13. O’Reilly D, Navakatikyan MA, Filip M, Greene D, Van Marter LJ (2012).  Peak-to-peak

amplitude in neonatal brain monitoring of premature infants.  , ,Clinical Neurophysiology 123

2139–2153.

14. Guglielminotti J, Mentré F, Gaillard J, Ghalayini M, Montravers P, Longrois D (2013).

Assessment of pain during labor with pupillometry: a prospective observational study.

Anesthesia and Analgesia, , 1057–1062.116

15. Tzeng YC, MacRae BA, Ainslie PN, Chan GSH (2014).  Fundamental relationships between

blood pressure and cerebral blood flow in humans.  , , 1037-Journal of Applied Physiology 117

1048.

16. Ballarini N, Jaeger BC (2015).  Software in SAS and R programming languages to calculate

model R2 and semi-partial R2 for fixed effects in the linear and generalized linear mixed

model.  , accessed July 26, 2016.https://github.com/bcjaeger/R2FixedEffectsGLMM/

17. Taguchi G (1986).  Introduction to Quality Engineering: Designing Quality Into Products

and Processes.  White Plains, NY: Kraus International Publications.

18. Box GEP (1988).  Signal-to-noise ratios, performance criteria, and transformations (with

discussion).  , , 1-40.Technometrics 30

19. Bérubé J, Wu CFJ (2000).  Signal-to-Noise ratio and related measures in parameter design

optimization: an overview.   B, , 417-Sankhya: The Indian Journal of Statistics, Series 62

432.2.

20. Matuszewski JM (2012).  Properties of an R  Statistic for Fixed Effects in the Linear Mixed#

Model for Longitudinal Data.  Unpublished doctoral dissertation, University of North

Carolina at Chapel Hill, Chapel Hill, North Carolina.



16

21. Potthoff RF, Roy SN (1964).  A generalized multivariate analysis of variance model useful

especially for growth curve problems.  , , 313-326.Biometrika 51



17

Table 1. Simulation study covariance structures

Candidate Model Covariance Structure
1 Independent observations,
2 Rand

 equal variance
om intercept only (compound symmetry)

3 No random effects, first-order autoregressive error term
4 Unstructured covariance
5 Random intercept and slope (independent);  
6 (true) Random intercept and slope (correlated);  

D 7

D 7
/3 / :

#

/3 / :
#

   œ

œ

5

5

M

M
3

3
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Table 2. Simulation Results: Selection of Candidate Covariance Structures when the True Mean Structure (Group, Time, Group x Time Interaction) was Specified 

10,000 Simulated Data Sets Per Sample Size/Fixed Effect Scale Combination 

 

 Fixed Effects Scale Parameter = 0  Fixed Effects Scale Parameter = 1  Fixed Effects Scale Parameter = 2 

% Structure Chosen  Mean Value % Structure Chosen  Mean Value % Structures Chosen  Mean Value 

 Fitted Structure (S) AIC BIC R2 AIC BIC R2 AIC BIC R2  AIC BIC R2 AIC BIC R2 AIC BIC R2 

                         
m = 20# S1: Ind 0 0 0  372 373 0.05  0 0 0  372 373 0.22  0 0 0  372 373 0.50 

 S2: CS 22.3 35.0 0  335 337 0.07  22.3 35.0 0.0  335 337 0.32  22.3 34.9 0  335 337 0.63 
 S3: AR(1) 8.2 6.4 5.2  335 338 0.09  8.2 6.4 2.4  335 338 0.40  8.2 6.4 1.5  335 338 0.71 
 S4: UN 1.3 0 42.6  345 361 0.14  1.3 0 31.3  345 361 0.46  1.3 0.0 26.2  345 361 0.74 
 S5: Ran Int +  

Slope (Ind) 
48.5 46.8 3.1  332 335 0.10  48.5 46.8 2.5  332 335 0.40  48.5 46.8 2.2  332 335 0.71 

 S6: Ran Int +  
Slope (Corr)* 

19.7 11.8 49.0  333 336 0.12  19.7 11.8 63.8  333 336 0.47  19.7 11.8 70.1  333 336 0.76 

 S4+S6** 21.0 11.8 91.6      21.0 11.8 95.1      21.0 11.8 96.3     
                         

m = 50 S1: Ind 0 0 0  947 949 0.02  0 0 0  947 949 0.20  0 0 0  947 949 0.49 
 S2: CS 3.6 11.3 0  846 850 0.03  3.6 11.3 0  846 850 0.29  3.6 11.3 0  846 850 0.61 
 S3: AR(1) 2.5 1.9 3.2  844 850 0.04  2.4 1.9 0.2  844 850 0.37  2.5 1.9 0.0  844 850 0.69 
 S4: UN 1.1 0 43.1  849 880 0.05  1.1 0 24.8  849 880 0.42  1.1 0 18.0  849 880 0.73 
 S5: Ran Int +  

Slope (Ind) 
66.3 75.2 0.4  836 842 0.04  66.3 75.2 0.0  836 842 0.37  66.3 75.2 0.3  836 842 0.69 

 S6: Ran Int +  
Slope (Corr)* 

26.5 11.6 53.2  837 844 0.05  26.5 11.6 74.7  837 844 0.44  26.5 11.6 81.6  837 844 0.75 

 S4+S6** 27.6 11.6 96.3      27.6 11.6 99.5      27.6 11.6 99.6     
                         

m = 100 S1: Ind 0 0 0  1900 1903 0.01  0 0 0  1900 1903 0.19  0 0 0  1900 1903 0.48 
 S2: CS 0.2 1.3 0  1694 1700 0.01  0.2 1.3 0  1694 1700 0.28  0.2 1.3 0  1694 1700 0.60 
 S3: AR(1) 0.4 0.4 2.9  1690 1698 0.02  0.4 0.3 0  1690 1698 0.36  0.4 0.4 0  1690 1698 0.68 
 S4: UN 1.1 0 44.4  1686 1728 0.03  1.0 0 21.8  1686 1728 0.42  1.0 0 14.1  1686 1728 0.73 
 S5: Ran Int +  

Slope (Ind) 
61.5 84.1 0.1  1674 1682 0.02  61.5 84.1 0.0  1674 1682 0.36  61.5 84.1 0.0  1674 1682 0.69 

 S6: Ran Int +  
Slope (Corr)* 

36.9 14.2 52.6  1674 1684 0.03  36.9 14.2 78.2  1674 1684 0.43  36.9 14.2 85.9  1674 1684 0.75 

 S4+S6** 38.0 14.2 97.0      38.0 14.2 100      38.0 14.2 100     
                         

* Structure 6 (Random Intercept and Random Slope, correlation = 0.25) was the true covariance structure 

** The percentage of simulated models where the selected covariance was not underfit relative to the true covariance (Structure 6: True Covariance, Structure 4: Unstructured 

Covariance),  # Results based on models that converged. See Section 4.1 for further details. 
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Table 3. Simulation Results: Selection of Candidate Covariance Structures when the Incorrect Mean Structure (no Group Variable) was Specified 

10,000 Simulated Data Sets Per Sample Size/Fixed Effect Scale Combination 

 

 Fixed Effects Scale Parameter = 0  Fixed Effects Scale Parameter = 1  Fixed Effects Scale Parameter = 2 

% Structure Chosen  Mean Value % Structure Chosen  Mean Value % Structure Chosen  Mean Value 

 Fitted Structure (S) AIC BIC R2 AIC BIC R2 AIC BIC R2  AIC BIC R2 AIC BIC R2 AIC BIC R2 

                         
m = 20# S1: Ind 0 0 0  378 379 0.01  0 0 0  392 393 0.07  0 0 0  425 426.4 0.17 

 S2: CS 21.2 33.2 0  339 341 0.02  18.3 29.2 0  344 346 0.18  12.3 50.5 0  355 326.8 0.45 
 S3: AR(1) 7.8 6.3 12.8  339 342 0.04  7.0 5.5 7.4  344 347 0.32  5.0 4.1 8.8  354 357.2 0.64 
 S4: UN 1.3 0 40.0  349 365 0.05  1.3 0 27.6  353 369 0.36  1.3 0.1 21.2  362 377.7 0.66 
 S5: Ran Int +  

Slope (Ind) 
50.1 48.5 3.6  336 339 0.04  49.1 50.1 3.0  340 343 0.32  42.3 47.9 2.9  350 352.9 0.64 

 S6: Ran Int +  
Slope (Corr)* 

19.5 12.1 43.6  336 340 0.04  24.5 15.3 61.9  341 344 0.35  39.1 24.5 67.2  350 353.4 0.67 

 S4+S6** 20.8 12.1 83.6      25.8 15.3 89.5      40.4 24.6 88.4     
                         

m = 50 S1: Ind 0 0 0  950 952 0.00  0 0 0  986 988 0.06  0 0 0  1069 1071 0.16 
 S2: CS 3.3 10.9 0  848 852 0.01  2.1 8.3 0  860 864 0.18  0.8 3.3 0  888 891 0.45 
 S3: AR(1) 2.6 2.0 10.4  847 852 0.02  1.9 1.6 2.3  858 864 0.32  0.7 0.8 3.9  885 890 0.64 
 S4: UN 1.1 0 42.1  851 882 0.02  1.1 0 24.5  862 893 0.36  1.2 0 17.2  884 915 0.67 
 S5: Ran Int +  

Slope (Ind) 
66.3 75.2 0.6  838 844 0.02  58.3 72.2 0.3  849 855 0.32  31.9 53.6 0.3  874 879 0.65 

 S6: Ran Int +  
Slope (Corr)* 

26.7 11.9 46.9  839 846 0.02  36.5 18.0 73.0  849 857 0.37  65.4 42.3 78.6  872 879 0.69 

 S4+S6** 27.8 11.9 89.0      37.6 18.0 97.5      66.6 42.3 95.8     
                         

m = 100 S1: Ind 0 0 0  1902 1905 0.00  0 0 0  1973 1976 0.06  0 0 0  2140 2143 0.16 
 S2: CS 0.2 1.3 0  1695 1700 0.00  0.1 0.6 0  1719 1725 0.18  0 0 0.1  1774 1779 0.45 
 S3: AR(1) 0.4 0.4 10.3  1691 1699 0.01  0.2 0.2 0.4  1715 1722 0.32  0 0 1.0  1767 1775 0.64 
 S4: UN 1.0 0 43.4  1687 1729 0.01  1.2 0 22.7  1707 1750 0.36  1.4 0 16.1  1753 1794 0.68 
 S5: Ran Int +  

Slope (Ind) 
61.4 84.1 0.1  1674 1682 0.01  45.0 73.7 0  1696 1704 0.32  11.4 34.1 0  1745 1752 0.64 

 S6: Ran Int +  
Slope (Corr)* 

37.0 14.3 46.2  1674 1685 0.01  53.5 25.6 76.9  1695 1705 0.37  87.2 65.8 82.9  1740 1750 0.69 

 S4+S6** 38.0 14.3 89.6      54.7 25.6 99.6      88.6 65.8 99.0     
                         

* Structure 6 (Random Intercept and Random Slope, correlation = 0.25) was the true covariance structure 

** The percentage of simulated models where the selected covariance was not underfit relative to the true covariance (Structure 6: True Covariance, Structure 4: Unstructured 

Covariance), # Results based on models that converged. See Section 4.1 for further details. 
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Table 4. V"
# , AIC, BIC Results for Choosing Covariance for Dental Study Data

GOF Statistic
Fixed Effects Covariance Model AIC BICModel# * V"

#

I 1 0.59 451 454
2 0.61 449 453
3 0.77 451 456

II 1 0.71 442 444
2 0.71 443 447
3 0.73 443 448

III 1 0.67 438 440
2 0.73 439 443
3 0.80 441 446

#I Intercept, Age´
  II Intercept, Age, Gender´
  III Intercept, Age, Gender, Gender x Age´

‡1 ´ Random intercept only and  (compound symmetry)D/3 œ 52M:3
  2 ´ Random intercept and slope with diagonal random effects covariance and D/3 œ 52M:3
  3 ´ Random intercept and slope with unstructured random effects covariance and D/3 œ 52M:3
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