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  ABSTRACT 

 

Ghassan Badri Hamra: Bayesian methods for the evaluation of Tritium: Relative 

Biological Effectiveness and cancer risk. 

 

(Under the direction of Dr. David Richardson) 

 
Tritium is a radioisotope of hydrogen that releases 

-
 energy, which is a form of 

ionizing radiation. Tritium is understudied due to a lack of epidemiological data on 

human exposure, despite the fact that exposure to low energy ionizing radiation is 

ubiquitous in the environment. In occupational studies of nuclear workers, tritium is 

usually aggregated with gamma radiation and examined under the assumption that the 

cancer risk per unit exposure of each is equivalent. However, a recent systematic review 

of the literature suggests that beta radiation is more biologically effective than gamma 

radiation.  

We utilize Bayesian methods to inform estimation of cancer risk for tritium as 

well as the RBE of tritium compared to gamma radiation using information compiled at 

the Savannah River Site (SRS) nuclear fuel facility in Aiken, SC. SRS staff maintained 

detailed records of personnel dosimetry that have been utilized in previous 

epidemiological studies. Included is information on employment history, radiation 

exposure, including separate gamma and tritium radiation dosimetry records, as well as 

vital status information. 

We calculate the excess relative rate of leukemia and leukemia excluding chronic 
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lymphocytic leukemia (CLL) associated with tritium and gamma radiation. The 

ERR/10mGy (90% HPD) of leukemia associated with tritium and gamma radiation are 

0.282 (0.027, 0.678) and 0.044 (0.000, 0.108), respectively. This yields an estimate of the 

relative biological effectiveness of tritium relative to gamma radiation (RBE) of 6.24 

(1.00, 36.09). With regard to leukemia excluding CLL, the ERR/10mGy associated with 

tritium and gamma radiation are 0.338 (0.048, 0.805) and 0.087 (0.000, 0.195), 

respectively. This yields an RBE of 3.88 (1.00, 16.80). The values of the RBE are within 

the range of plausible values suggested by others. 

Our results utilize evidence from in vitro and in vivo research to inform 

estimation of the risk of cancer associated with tritium by incorporating knowledge of the 

direction and magnitude of tritium‟s relationship to cancer compared to gamma radiation. 

This illustrates a simple approach for using Bayesian methods to integrate external 

knowledge into epidemiological studies without the need to specify estimates of the risk 

based on research that cannot be easily translated from experimental animal and cellular 

models into human risk models. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Tritium is a radioisotope of hydrogen that releases 
-
 energy, which is a form of 

ionizing radiation. Although there is a volume of research examining associations 

between ionizing radiation exposure and cancer outcomes, most of this work has been 

focused on other, higher-energy forms of radiation. For example, an epidemiologically-

important study originates from research of the atomic bomb survivors in Hiroshima and 

Nagasaki, and specifically the Life Span Study of Japanese atomic bomb survivors (LSS). 

Patterns of exposure in the LSS cohort are distinct from those that are more common in 

the occupational or environmental setting. In the LSS cohort, individual doses to 

radiation were mostly in the form of gamma radiation, received in a single event. This is 

distinct from chronic, low dose exposures that characterize the occupational setting at 

nuclear fuel facilities.
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SRS is unique in that it is the sole nuclear facility in the US with the expressed 

purpose of producing tritium, which is the primary source of low-energy radiation 

(specifically, beta radiation) at this facility. As a Department of Energy facility, SRS staff 

maintained detailed records that have been utilized in previous epidemiological studies. 

Included is information on employment history, radiation exposure, including separate 

internal and external dosimetry records, as well as vital status information. 

The purpose of the proposed study is threefold. First, we will utilize Bayesian 

methods to estimate the Relative Biological Effectiveness (RBE) of tritium with 

reference to gamma radiation. The RBE has been reevaluated by a number of radiation 

experts, and is the subject of a recent systematic review of the in vivo and in vitro 

literature [1]. Second, we will utilize the information compiled over the years at SRS to 

directly address the relationship between leukemia mortality and tritium exposure. 

Finally, we will present an approach for integrating animal and cellular evidence into 

epidemiological research in a Bayesian model using informative priors. 

This work will inform knowledge of cancer risk due to tritium, a form of ionizing 

radiation that has been neglected in epidemiologic research, despite its relevance to 

human populations. In addition, this work may assist the National Institute of 

Occupational Safety and Health (NIOSH) in decision-making concerning compensation 

for cancer outcomes among nuclear facility workers. 
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1.2 Tritium and low energy radiation 

1.2.1 Characteristics 

Tritium is a radioactive isotope of hydrogen that emits energy, in the form of beta 

radiation, as it decays into helium [2]. Tritium is created and distributed in a number of 

ways in nuclear fuel facilities, including neutron irradiation of lithium or deuterium as 

well as the release of fission-product tritium from reprocessing fuel rods [3-5]. In 

addition to nuclear facility processes, tritium is created by the interaction of cosmic rays 

with 
14

N and 
16

O, which makes it naturally occurring in the environment [3]. 

Tritium has a track length of 6 m, which means it is not capable of penetrating 

human skin. In its gaseous form, tritium molecules will act as hydrogen molecules and 

bind to form tritiated water (HTO).  Since it acts as water, HTO can enter the body as any 

other water molecule, through inhalation, ingestion, or absorption through skin [6]. Since 

tritium can only cause biologically relevant radiation effects upon deposition into the 

body, the only relevant means of measuring individual dose is via monitoring of body 

fluids, such as urinalysis [2]. Once absorbed, tritium will diffuse across cellular 

membranes to uniformly distribute in the body. Tritium has a physical half-life of 12.3 

years [7]. ICRP publication 56 includes a two compartment model describing the 

biological half-life of tritium, which indicates that 97% of tritium is retained in the body 

for 10 days, while the remaining 3% is retained in the body for up to 40 days [8]. 

Tritium‟s short half-life, relative to other radionuclides used in nuclear weapons, 

means that it requires continued production for use in nuclear warheads. Ongoing 
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production of tritium means that there continues to be potential for release of tritium into 

the environment. This makes knowledge about the health effects of tritium pertinent to 

workers and the public [1]. Relevance to the general public also stems from the fact that 

tritium is also a waste product of complex power reactors, which continue to be built in 

the USA. 

Tritium is capable of causing cellular level damage by two mechanisms. First, 

tritium can damage the cell by ionization that releases 
-
, or electron, energy. Second, 

cellular damage can occur when energy is released in nuclear transmutation, or decay, of 

H
3
 to He

3
 [2]. This second process releases a positron, or 

+
 energy. Malformation and 

death have been associated with acute exposure to tritium in animal tests [6]. Carsten et al 

(1989) showed that chronic exposure to tritium at 33 times the maximum permissible 

concentration (MPC) led to a reduction in marrow stem cells, while a level of exposure 

100 times the MPC led to chromosomal damage in liver and micronuclei formation in red 

blood cells of rats. However, little is known about the effects of chronic low-level 

exposure.  One study by Joksic and Spasojevic-Tisma (1998) found that chromosomal 

damage to human lymphocytes can result from low-level exposure to tritium[9], but 

direct estimates of human cancer risk following tritium exposure are not available [10]. 

1.2.2 Tritium and beta radiation 

As mentioned above, tritium emits beta negative (
-
) radiation energy. While 

some beta emitters will release energy in the form of a high energy positron, tritium emits 

a negatively charged particle from the nucleus of an atom and is identical to an electron 

[11, 12]. This negatively charged electron release emits lower energy than a positron and, 
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in this sense, is more like low energy x-ray and gamma-radiation. Electron tracks from 

beta radiation are characterized as low linear energy transfer (LET). This is due to their 

low ionization density compared to forms of radiation like alpha particle radiation [13].  

Tritium based beta particles are particularly effective at causing biological 

damage at the cellular level. First, the average ionization density of high energy x-rays 

and -radiation is lower compared to low energy beta emitters. A higher ionization 

density means that beta particles can cause more damage within a smaller cellular area 

than other forms of radiation. For instance, beta particles may be more effective at 

causing biological changes, such as DNA double strand breaks. This has been shown in 

Monte Carlo simulations where most double strand breaks that result from low LET 

radiation are the result of low energy electron tracks occurring together in or near DNA 

[12]. Low LET electron tracks generate secondary electrons which also have a high 

ionization density [14]. 

1.2.3 Relative Biological Effectiveness 

Little and Lambert (2008) define the RBE as “the ratio of the absorbed dose of a 

reference radiation to the absorbed dose of the radiation under consideration that is 

required under similar conditions to produce an identical level of biological response in a 

particular animal or cellular study.” There are a number of studies examining the RBE of 

tritium (or beta radiation) in animal and cellular models [15, 16]. However, evaluation of 

low-level exposure to internal emitters and its relationship to cancer mortality has 

historically extrapolated from results of the LSS cohort [17]. Researchers have attributed 

the underestimation of the RBE of beta radiation to the use of high dose rates of reference 



17 

 

radiation. A paper by Ujeno (1983) recommended the use of an RBE of 1 for very large 

intakes of beta radiation, and a value larger than 1 for environmental exposures to tritium, 

which would be comparable to chronic, low-level exposure [18]. Another report went as 

far as to suggest that the RBE of tritium has been underestimated by a factor as great as 

or over 10 [1]. 

In a systematic review of the animal and cellular experimental literature 

concerning the RBE of tritium, Little and Lambert (2008) show that when the results are 

aggregated, the RBE for tritium with reference to chronic x-ray and chronic -ray 

exposure is 1.19 (95% CI 0.88, 1.49) and 2.49 (95% CI 2.00, 2.98), respectively [1]. The 

difference between these two estimates is the use of x-rays versus -rays as the reference 

radiation. Since exposures among nuclear facility workers are most commonly forms of 

-radiation, the authors recommend an RBE of 2-3 in studies of health effects of tritium 

among nuclear facility workers. In a more recent article by Paquet and Metivier (2009), a 

different approach is suggested for aggregating RBE estimates for tritium. This is based 

on the type of referent radiation, different exposure scenarios, and the endpoint being 

considered [19]. The RBE of a nuclide (such as tritium) will appear different according to 

the level and, perhaps more importantly, the rate at which a dose is administered [20]. In 

many studies the RBE for tritium is referenced against acute exposures to x-rays and 

gamma rays. Paquet and Metivier suggest consideration of this information when 

aggregating an estimate of the tritium RBE [19]. 

Finally, RBE estimates will depend on the endpoint of interest. The current 

radiobiological literature concerning tritium‟s RBE have utilized a range of outcomes, 

including oocyte survival, leukemia development, thymus weight loss, and chromosomal 
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damage. Depending on how tritium disperses throughout the body upon ingestion, 

inhalation, or absorption, the relationship between dose and these separate endpoints will 

likely vary. For the purposes of application to radiological protection work, concerned 

largely with cancer outcomes, it will be important to consider only those studies whose 

endpoints are either some form of cancer or a relevant precursor to cancer development. 

1.2.4 RBE versus weighting factor 

In epidemiologic studies of the relationship between radiation dose and cancer 

outcomes, tritium is often aggregated with gamma radiation and examined as „whole 

body dose‟ (WBD) radiation. WBD refers to the fact that tritium and gamma radiation 

distribute evenly across the body. WBD can be modeled as a single coefficient in excess 

relative rate or relative risk models. However, the assumption implicit to the current 

calculation of WBDS is that gamma and beta radiation have an equivalent biological 

effectiveness. The equivalent biological effectiveness is integrated into radiation 

protection as a „weighting factor‟ that is specified at a value of 1 for tritium. The RBE 

and weighting factor are related, but used in different contexts. 

The „weighting factor‟ (wf) is a mathematical constant that is utilized to quantify 

the „effective dose.‟ The purpose of calculating effective dose is to provide a metric for 

setting standards for radiological protection. The effective dose represents the sum of the 

„absorbed dose‟ of internally and externally deposited radiation, where the absorbed dose 

is the energy deposited into body tissue or organs before accounting for different 

biological effectiveness.  WBDS is a measure of effective dose that sums gamma 

radiation and tritium absorbed doses, where tritium is multiplied by an appropriate wf. 
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The effective dose simplifies individual radiation risk assessment by allowing for a single 

measure of radiation dose [12, 21]. Currently, the ICRP utilizes a wf of 1 for tritium dose, 

which states that the sum of the absorbed doses without a wf is equal to the effective dose, 

or WBDS, as outlined above [22]. The ICRP asserts that this value is appropriate, based 

on uncertainties of results from experimental studies of the RBE of tritium and gamma 

radiation. 

The ICRP specifies that the wf is only intended for use in determining radiological 

protection standards [23]. Outside of this, ICRP recommends use of the absorbed dose in 

the organ or tissue of interest when determining quantitative risk in an epidemiological 

study of the effects of radiation on cancer outcomes. Use of an individual absorbed dose, 

instead of a summarized „effective‟ dose value, allows for estimation of differential 

effects of multiple forms of radiation with cancer risk. In the case of tritium and gamma 

radiation, use of individual absorbed dose allows estimation of the RBE for tritium 

compared to gamma radiation as outlined by Little and Lambert, since the radiation types 

are not constrained to have an equivalent relationship to cancer risk. 

1.3 Radiation Epidemiology and Health Effects of Tritium 

There are few studies examining the potential relationship between quantitative 

estimates of tritium dose and cancer outcomes. Several studies have considered the risk 

of prostate cancer in relation to tritium exposure status, exposed versus un-exposed, 

among UK nuclear industry workers [24, 25].  These studies have noted a significantly 

elevated relative risk of prostate cancer among workers with documented intake of 

tritium that tended to increase in magnitude with duration of tritium monitoring; 
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however, tritium doses were not quantified in these analyses and this association could, in 

part, be confounded by other radionuclide intakes. Thus, it is useful to examine what is 

known regarding other forms of chronic, low-level radiation dose and cancer among 

nuclear facility workers. In some studies, tritium doses are either not quantified or were 

aggregated with external dose, assuming an RBE of 1. 

Studies examining the health effects of low dose radiation have been conducted 

among many occupational cohorts, mostly in the US, Canada, and Europe [26, 27]. In the 

US, Cragle et al (1988) conducted a study of the SRS cohort in which they found an 

increased risk of leukemia, excluding chronic lymphocytic leukemia (CLL), but not for 

14 other cancer outcomes of interest [5]. Richardson and Wing (2007) conducted an 

updated analysis of this cohort, in which they considered excess relative risk (ERR) 

associated with radiation exposure for all-leukemia, leukemia excluding CLL, and 

myeloid leukemia[28]. Assuming a 3-year lag, and utilizing a nested case-control design, 

they find an ERR for these outcomes of 4.1 per Sv (90% CI -0.1,11.6), 7.7 per Sv (90% 

CI 1.4,19.8), and 12.3 per Sv (90% CI 2.1,35.4), respectively. 

In the UK, at Chapelcross, McGeoghegan and Binks (2001), found a statistically 

significant excess relative risk of prostate cancer, but no other cancer outcomes of interest 

[29]. Though production of tritium is prominent at Chapelcross, production began after 2 

of 8 prostate cancer cases left the facility, suggesting tritium is an unlikely cause of the 

excess risk of prostate cancer. Concerning Sellafield workers, the only statistically 

significant trend associated with cumulative radiation dose was for leukemia excluding 

CLL [30]. Tritium specific doses were not taken into account in this analysis. 
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The study of Canadian workers undertaken by Zablotska et al (2004) found a 

borderline statistically significant dose-response relationship between radiation and 

various cancer outcomes, including leukemia excluding CLL (ERR 52.5 per Sv, 95% CI 

0.205,291), all leukemia (ERR 18.9 per Sv, 95% CI < -2.08,138) and rectal cancer (ERR 

34.1 per Sv, 95% CI 1.41,165), among others [31]. The workers in this cohort have 

information on tritium dose, but this information is aggregated with external dose 

information. 

Cardis et al. (2007) conducted a pooled analysis of nuclear facility employees 

from 15 countries [32]. This analysis concluded that workers experience an excess 

relative risk (ERR) of cancer, excluding leukemia, of 0.97 per Sievert (Sv) increase in 

radiation exposure. Workers were also found to experience an ERR of 1.93 per Sv for 

leukemia, excluding chronic lymphocytic leukemia. This study provides useful evidence 

regarding the relationship between chronic, low dose radiation and cancer mortality; 

however it does not address the influence that exposure to tritium may have on cancer 

outcomes. 

Little and Wakeford (2008) conducted a systematic review of the epidemiological 

literature to date concerning tritium. The authors conclude that among those cohorts with 

tritium-specific dose information, researchers have not examined exposure in a way that 

would allow for inferences about risk due to tritium [3]. However, tritium dose has been 

accounted for in studies of nuclear facility workers in the UK, Canada, and US, which the 

authors identify as the cohorts with the clearest potential for informative research 

concerning tritium dose and cancer outcomes. Specifically, the authors identify the 
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Savannah River Site cohort as one of two occupational groups with a large enough pool 

of workers with “appreciable tritium exposures” that warrant further examination. 

1.4 Bayesian Analysis 

In attempting to address the relationship of tritium to cancer mortality, one must 

recognize an inherent lack of power to detect an effect. This is due to two factors. First, 

individuals typically receive low doses of tritium, resulting in a highly skewed 

distribution of doses received. Second, our outcomes of interest, for which a relationship 

to other forms of radiation have been found in the past, are relatively rare. Thus, even a 

large occupation cohort may have limits in its ability to provide adequate statistical 

power to detect the relationship of tritium to cancer morality. However, this is further 

evidence of the need to undertake this research question with Bayesian methods. 

Bayesian methods provide the opportunity to combine evidence from 

radiobiological studies with data from a retrospective occupational cohort study in order 

to inform estimation of the RBE for tritium and, subsequently, the relationship of tritium 

and whole body dose radiation to cancer mortality. As discussed earlier, there is a great 

deal of radiobiological evidence regarding the RBE for tritium, but very little evidence 

from epidemiological studies integrating or evaluating these estimates. Our study will 

bridge this gap by drawing on the evidence of the RBE for tritium from results of in vivo 

and in vitro studies. This information will be used in conjunction with the SRS data and 

Bayesian statistical methods to provide an epidemiologically based estimate of tritium‟s 

RBE. 
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1.5 Summary 

 Currently, determination of the maximum amount of tritium exposure a worker is 

allowed to experience is based on the idea that the biological effectiveness of absorbed 

tritium dose is equal to that of gamma radiation.  There is almost no epidemiological 

literature directly quantifying the cancer risk associated with tritium exposures.  The 

proposed study will address this knowledge gap using an unusual data resource from an 

occupational cohort study of workers employed at the SRS, the nation‟s sole tritium 

production facility.  The fact that most doses received by workers are low makes 

modeling the relationship between tritium dose and cancer risk difficult, as does 

examination of a rare outcome. To address this, we utilize Bayesian methods that allow 

us to integrate knowledge from in vitro and in vivo research into our occupational cohort 

study of the SRS employees. We illustrate the benefit of using these novel methods for a 

previously intractable epidemiologic inquiry.



 

 

 
CHAPTER 2 

Markov Chain Monte Carlo: A brief 

introduction for epidemiologists 

2.1 Abstract 

 Bayesian methods offer an appealing alternative to frequentist data analysis that 

can often handle previously intractable research questions. For instance, Bayesian 

methods offer a means for epidemiologists to integrate knowledge external to a study. In 

the case of models with a high number of covariates, highly correlated data, or a multiple 

comparisons study, a Bayesian approach is often necessary due to computational 

difficulties with maximum likelihood approaches. The machinery most commonly used 

for Bayesian analysis is Markov Chain Monte Carlo (MCMC) simulation. 

Epidemiologists may not utilize MCMC approaches due to lack of familiarity with this 

procedure and uncertainty about model results. We provide an introduction to the 

workings of MCMC, and show that, given the same data and model specification, the 

results of an MCMC simulation match that of standard maximum likelihood estimation 

(MLE) approaches. In addition, we provide an example of where MCMC provides a clear 

benefit over MLE data analysis via use of a Jeffreys‟ prior. We hope this work will make 
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MCMC less daunting and we look forward to its increased use by epidemiologists in 

future studies. 

2.2 Introduction 

 Bayesian methods for data analysis are becoming an integral part of the field of 

epidemiology [33]. Whether the interest is based on its ability to handle complicated 

epidemiologic problems or the more philosophic foundations of Bayesian methods, such 

as the belief that integrating prior information is important and useful when conducting 

data analysis, many epidemiologists see the appeal of these techniques as a complement 

to frequentist analysis. 

 Methods for obtaining Bayesian posterior distributions via amendments to 

frequentist data analysis have been developed and promoted in the epidemiologic 

literature, the most popular of which is data augmentation. For example, Greenland 

characterizes data augmentation as the simple inclusion of an extra stratum, or level of 

information, into an analysis [34, 35]. However, when addressing more complex issues or 

to arrive at an estimate of the exact posterior distribution, simulation based estimates of 

Bayesian posterior distributions are often necessary [36].  

 Markov Chain Monte Carlo (MCMC) methods are the most common machinery 

for simulation based estimation of Bayesian posterior distributions. Despite its 

accessibility in many software packages, including WinBUGS and Statistical Analysis 

Software (SAS), few epidemiologists currently utilize MCMC procedures. This is likely 

due to two factors. First, simulation based methods for obtaining the distribution for 

parameters of interest are unfamiliar. Transitioning from maximum likelihood to 
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simulation based methods requires some explanation of their similarities and differences. 

Second, identifying convergence of MCMC simulations is quite different from 

identifying convergence of an algorithm to find a maximum likelihood estimate. We must 

be comfortable reading visual output that indicates whether or not model results can be 

considered reliable.  

In this article, we will address both of these issues. First we will discuss MCMC 

and offer a brief overview of Monte Carlo integration and Markov Chains. Next, we will 

provide guidance for epidemiologists on the use of MCMC procedures and illustrate how 

to evaluate model convergence. We will illustrate how MCMC and frequentist regression 

models are similar, and when MCMC provides a clear advantage over standard maximum 

likelihood approaches for estimating regression model parameters. We focus on 3 visual 

plots that are standards for assessing MCMC model convergence and offer some 

guidance on how to read these plots and use them to avoid some potential pitfalls in 

MCMC analysis. For simplicity, we will focus on analysis of a binary outcome variable 

using a standard unconditional logistic regression model with a single explanatory 

variable. We will assume a basic understanding of Bayesian probability theory, which has 

been discussed elsewhere [37-40]. We hope this discussion will ease the path to MCMC 

for epidemiologists.  

2.3 Monte Carlo Integration 

Epidemiologists routinely use maximum likelihood regression methods to derive 

parameter estimates.  Given the observed data, a regression model implies a particular 

likelihood function; an estimate is chosen for the parameter of interest such that it 



27 

 

maximizes the observed likelihood, hence the name maximum likelihood estimate 

(MLE). Despite simple conceptualization, obtaining an MLE can be a complex process 

that depends on the ability of an algorithm to converge at some estimate of the parameter 

of interest, given the specified model and data. In many situations, it is relatively easy to 

obtain model convergence, although for some regression models, such as log-binomial 

regression convergence, it may be difficult. In addition, MLE may fail when models have 

a large number of covariates, highly correlated covariates, or even few covariates but 

multiple effect measure modifiers. In these cases, where maximization of a likelihood 

function is difficult, epidemiologists may benefit from alternative methods for obtaining 

parameter estimates for their regression models.  

Monte Carlo integration allows researchers to handle epidemiologic inquiry 

where maximization of the likelihood is unachievable because it does not require the 

maximization that can pose a challenge in MLE. Suppose that, regardless of whether our 

inquiry is Bayesian or frequentist in nature, that we are interested in a model for the 

expectation of some function of the random variable X, denoted .  The random 

variable could be the probability of the outcome and the function a log odds or some 

other effect estimate of interest. If there exists a distribution for the random variable of 

interest, and if we can draw „n‟ random samples from the distribution of X, that as 

the average of f(x) over those samples will converge to the value of interest. This 

can be written as follows:  

     .    (1) 
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Thus, we can estimate the expected value of some function of a random variable 

by repeated sampling. 

Use of MC integration does not necessitate a major departure from evaluation of 

parameter estimates with which epidemiologists are most familiar, such as the 95% 

confidence interval (referred to in Bayesian analysis as a 95% credible interval). As 

implied by equation (1) we can use simple summary statistics (such as the median and 

percentiles of the distribution) to provide a parallel to the point estimates and CIs which 

we would obtain with standard regression modeling. If we know that a parameter is 

normally distributed with mean  and variance 
2
, we can easily compute a 95% CI 

around the effect estimate of interest. The same calculation can be done with Monte 

Carlo integration. Say we draw 1,000 random samples from the normal distribution. The 

2.5
th

 and 97.5
th

 percentile values will correspond to the limits of a 95% confidence 

interval, and the median will equal the point estimate of interest. 

The definition of Monte Carlo integration contains a big „if.‟ That is to say, „if‟ 

we can identify a distribution from which we can draw random samples, we can be 

confident that our Monte Carlo integration will accurately summarize the characteristics 

of that distribution. In practice, it is Markov Chains that allows us to identify this 

distribution. 

2.4 Markov Chains 

 Markov chains provide a way to sample from the posterior distribution that is the 

focus of a Bayesian inquiry. Once the chain finds the posterior distribution (known as the 



29 

 

stationary distribution of the chain) we can draw as many samples from it as we like and 

summarize them via Monte Carlo integration to obtain parameter estimates of interest. 

 A Markov chain can be thought of as directed random walk through the parameter 

space (that is, all the possible values of the parameter of interest).  Some values in the 

parameter space are more likely than others (given the prior distribution and the observed 

data) and a well-constructed Markov Chain sampler will sample from these „more likely‟ 

regions of the sample space.  In fact, a well-constructed Markov Chain sampler will 

eventually draw random samples from the posterior distribution of interest, regardless of 

where the chain is started (although in practice, the eventuality of this might take quite a 

long time to be realized). Many statisticians describe this as the Markov Chain 

„forgetting‟ the initial values it draws. In other words, a Markov Chain should identify a 

posterior distribution of interest regardless of the starting point of the chain. This notion 

is used in the Gelman and Rubin diagnostic which relies on running parallel chains that 

begin at different initial values and checking to see that they converge at the same 

posterior distribution. We utilize this diagnostic in our example 2. 

 The technical details of Markov Chains can be daunting and there are many 

algorithms that produce these „random walks‟ through the parameter space. The default 

method for WinBUGS and SAS is the Gibbs sampler. However, there are also other 

algorithms, such as Metropolis-Hastings (of which Gibbs sampling is a special case), 

slice sampling, or Langevin-Hastings. For those wishing for further detail, we 

recommend the seminal paper by Gelfand and Smith, as well as the texts by Carlin and 

Louis, Gilks and Richardson, or Gill [39, 41, 42]. 
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2.5 Markov Chain Monte Carlo estimation 

MCMC offers an approach to estimation of parameters in a regression model, 

much like maximum likelihood methods.  MCMC is a potentially useful complement to 

the standard tools used by epidemiologists for estimation of associations, albeit one that 

is often more computationally-intensive than maximum likelihood approaches.   

An important point for epidemiologists to understand is that, in the presence of a 

diffuse (non-informative) prior distribution and a well identified linear model, the 

posterior distribution for a model parameter obtained using MCMC methods will 

approximate the MLE, which says the data and the model specification drive the entirety 

of the estimation process. In other words, the parameter estimates of a Bayesian and 

frequentist model will be, essentially, the same. In terms of Bayes‟ theorem, one might 

consider the use of a non-informative prior to look like this: 

P(|D)  P()P(D|) = P(D|) 

where P(D|) is the likelihood. Here, since P() does not contribute any 

information to the model, the posterior distribution is proportional to the likelihood of a 

frequentist analysis. 

One situation in which MCMC is a potentially useful complement to standard 

maximum likelihood approaches used by epidemiologists for regression model estimation 

is when there are sparse data.  For example, standard logistic regression provides 

estimates of the probability of an outcome that are bounded at 0 and 1. This is an 

appealing aspect of logistic regression since the actual probability of any outcome can 
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never be less than 0 or greater than 1. This is most helpful when the probability of the 

outcome for an individual covariate pattern are somewhere in the middle of this range, so 

values greater than 0 and less than 1. However, when the probability of the outcome in a 

specific stratum of a predictor variable is exactly 0 or 1, a logistic regression model will 

produce estimates that are biased away from these extremes. A simple conceptualization 

of this is to think of a 2x2 table where one of the cells contains no observations. In 

epidemiology, this is referred to as nonidentifiability. Another term used by some is 

separation [43]. 

This event can be thought of as an extreme case of small sample bias. In logistic 

regression, it is unique because even though the parameter estimates and associated errors 

may be unreliable, a standard logistic regression model will still obtain model 

convergence, with no warnings about reliability of estimation. This convergence may 

suggest that the parameter estimates are reasonable when, in fact, they are not.  MCMC 

offers an approach to diagnosing and resolving such convergence problems.  

2.6 Diagnosing Model Convergence in MCMC 

 Assessing model convergence for MLE using standard regression techniques is a 

simple yes/no diagnostic. In fact, convergence of a model happens in the background 

using a pre-specified optimization algorithm (such as Newton-Raphson) and typically 

requires little attention from the researcher. However, convergence of an MCMC 

procedure requires the user to evaluate several diagnostics, the most common of which 

are visual summaries. Three visual plots are routinely used to assess model convergence: 
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1) Trace plots: these plots document the sample drawn (y-axis) at each iteration 

(x-axis) of the MCMC procedure. Once the chain has identified the stationary 

distribution, these samples will appear to be randomly sampled from a narrow 

region of the y-axis that will correspond to the general region of the posterior 

density of interest. 

2) Autocorrelation plot: these plots document the correlation (y-axis) of samples 

at each step of the chain with previous estimates of that same variable, lagged 

by some number of iterations (x-axis). Ideally, the autocorrelation declines 

rapidly so that, eventually, we can be confident that the samples from the 

stationary distribution can be thought of as random, and not reliant on initial 

values from the chain. 

3) Density plot: as its name implies, this plot is a summary of the sampled values 

that define the stationary distribution, which approximates the posterior 

distribution of interest. The peak of this density will be the point estimate, or 

the value with the most support from the data and specified prior.  Kernel 

density estimation is used to smooth over the samples and produce an estimate 

of the posterior distribution. 

Utility of the visual plots depends on the MCMC process having been run for a 

sufficient number of iterations. There is no rule for the number of iterations necessary to 

achieve model convergence. This value varies across datasets and model specifications. 

However, as a general rule, running a chain for longer will not negatively impact the 

results. 
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In addition to the visual plots discussed above, a Gelman Rubin diagnostic check 

is often used to assess model convergence. This diagnostic involves starting the MCMC 

process at three different starting values. If the models do not obtain the same estimate 

for a parameter of interest, this is evidence that the process is sensitive to the starting 

point, and that the model has not converged. It should be noted that small differences in 

the estimates may occur if each model is not run long enough to minimize simulation 

error. 

2.7 MCMC Approaches to Addressing Problems of 

Nonidentifiability 

Many solutions to problems of nonidentifiability have been proposed. Subjective 

priors are a particularly appealing approach when subject matter exists to inform that 

prior [44, 45].  Other times, researches may feel somewhat unsure about incorporating 

substantive information into an analysis. In this case, so-called objective Bayesian 

approaches may be appealing. Various objective priors have been proposed in the 

statistics literature [46, 47]. A common objective prior is Jeffreys‟. Although Jeffreys‟ 

prior is typically referred to as a non-informative prior, this name can be somewhat 

misleading from a substantive point of view.  In some models (for example, a linear 

regression) Jeffreys‟ prior is a uniform distribution and is truly uninformative, in the 

sense that it conveys no information about the prior belief in the magnitude of the effect 

of interest.  In other regression settings this is not the case.  As shown by Ibrahim et al 

and Chen et al [48, 49], the Jeffreys‟ prior in a logistic regression is a weak symmetric 

prior centered at 0 that has somewhat heavier tails than a normal distribution and lighter 

tails than a t-distribution.  The Jeffreys‟ prior in a logistic regression conveys some prior 
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information, but not much.  However, this tiny amount of prior information can be 

enough to allow for easier estimation of effects in situations with non-identifiable 

parameters.  

2.8 Example 

We illustrate the use of these diagnostic plots in the context of a simple logistic 

regression model. The data we use came from the 2008 NC live birth records collected by 

the North Carolina State Center for Health Services (SCHS). We constructed a case-

control dataset where cases are defined as newborns with low birth weight (<2500 grams) 

among full term births ( 37 weeks of gestation), and controls are all other full term 

births.  In addition, we restrict the population to mothers younger than 28 years. This 

yields 4,412 cases and 5,019 controls. We examine the relationship between maternal 

education dichotomized as those having less than college education (maternal education 

<13 years) compared to those having any college education (maternal education ≥13 

years) and term low birth weight.  Our model is specified as: Logit(P(D=1)) = 0 + 1x, 

where „x‟ represents our explanatory variable of interest, maternal education (0 if less 

than college education, 1 if any college education).   We also fitted a regression model 

with 3 categories of maternal education: no education, 1 year of education, and >1 year of 

education (the reference category).  This example is presented because it provides a 

simple illustration of a case of separation in logistic regression. In addition, since the idea 

of an outcome of low birth weight among full term births among mothers with 1 year of 

education is not a biologically implausible outcome, the idea of addressing non-

identifiability with a statistical correction may be appropriate. We conduct these analyses 
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in PROC MCMC and PROC GENMOD using the BAYES statement in SAS (V 9.2 

Cary, NC) to provide the examples that follow. These models were run for 100,000 

iterations with a 10,000 iteration burn-in period.  Initially, the specified priors for all 

regression model parameters were diffuse, i.e., N ~ (=0, 
2
=100,000.  In addition, a 

model was fitted specifying Jeffery‟s prior using SAS PROC GENMOD 

(coeffprior=jeffreys in the BAYES statement). To provide a parallel to the parameter 

estimate and standard error obtained in a frequentist model, we will report mean values 

and standard deviations for the Bayesian results. 

2.9 Results 

 We first fit a model with a single binary explanatory variable.  The frequentist and 

Bayesian models return similar results. For 0, the frequentist and Bayesian model 

estimates are -0.156 (std error: 0.025) and -0.156 (std error: 0.025), respectively. For 1, 

the frequentist and Bayesian model estimates are 0.082 (std error: 0.047) and 0.082 (std 

error: 0.047), respectively. The diagnostic plots produced by this model provide an 

example of good MCMC model convergence. Figure 2.1 documents these plots. An 

MCMC algorithm that has converged will tend to wander randomly around the same 

area, rarely venturing outside that area. The trace plot is difficult to read, but it suggests 

that the chain is wandering through the same region of the parameter space. This plot 

suggests that the chain has found the stationary distribution, but it is not guaranteed. For 

this reason, we must use this in conjunction with the autocorrelation and density plots to 

confirm model convergence. The autocorrelation drops precipitously, from lag 0 to lag 
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50, which tells us that each sample in the chain is only slightly correlated to the previous 

draw.  

Finally, the density plot allows us to assess what the distribution around that point 

estimate is, obtained via kernel density estimation. In this case, we see a symmetric 

distribution around the parameter estimate of interest. The density plot is most useful 

when assessing whether or not a chain started from different points converges to the same 

distribution. This is essentially a visual Gelman-Rubin diagnostic. 

When we treat each level of maternal education as a single category, the stratum 

of mothers with 1 year of education contains no cases of low birth weight among term 

births, but contains 9 controls. From a standard logistic regression, the ln(odds) 

comparing mothers with 1 year of education to mothers with any education greater than 1 

year is -20.237 (standard error: 11824.66). The odds ratio based on this value is 2.1x10
-9

. 

Clearly, logistic regression is not providing an informative effect estimate for this 

relationship, but since its probability is within the range of possible, though not plausible, 

values (i.e., greater than 0), model convergence is achieved. 

When using MCMC methods to derive estimates for the model parameters, we do 

not report an estimate of the ln(odds) for this parameter here because, when started from 

three different points, the MCMC samples do not seem to be coming from the same part 

of the parameter space.  This strongly suggests non-convergence, but it is instructive to 

consider the diagnostic plots from one set of these results.  Figure 2.2a documents the 

diagnostic plots of this estimation and provides an example of non-convergence of an 

MCMC procedure. The trace and autocorrelation plots are particularly informative here. 
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Compared to the trace plot in figure 2.1, which shows a dense area from which the 

MCMC procedure repeatedly selects independent and identically distributed, iid, 

samples, we can see the Markov chain trying to find the stationary distribution, but never 

settling into an area from which it can draw independent samples. It appears as though 

estimates are serially correlated to previous estimates in the chain. This is confirmed by 

the autocorrelation plot, which never approaches 0. The kernel density plot confirms what 

we already know, that the chain was unable to find a smooth distribution with a single 

point estimate with more support than any other. For simplicity, we only present plots 

from the first of three MCMC procedures run from different starting points. However, we 

should point out that the results for the other procedures show a similar lack of model 

convergence. 

The final model using Jeffrey‟s prior was run for 100,000 iterations with a 1,000 

iteration burn-in. When we specify the Jeffrey‟s invariant prior into the same model 

described above, the ln(odds) calculated is -3.3254 (std dev: 2.0076). Figure 2.2b 

documents the diagnostic plots for estimation of this parameter. Here, we see a series of 

diagnostic plots that look more like figure 2.1 that figure 2.2a. In other words, use of the 

Jeffrey‟s prior results in MCMC model convergence. 

2.10 Conclusion 

In this article, we have provided epidemiologists with a simple introduction to 

Markov Chain Monte Carlo methods for statistical inference. First, we showed that, given 

the same information, a Bayesian and frequentist model will calculate the same parameter 

estimates. We did this analysis to make clear the point that inference via MCMC 
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simulation is not necessarily different from standard regression techniques currently used 

by epidemiologists. Once this point was made, we showed an example of a case where 

Bayesian modeling provides a clear advantage over frequentist modeling via simple 

implementation of a correction for separation in logistic regression, which is unavailable 

in frequentist modeling procedures. However, the advantages of Bayesian modeling are 

not limited to handling inappropriate model results. In its simplest form, Bayesian 

modeling is a learning process that allows the researcher to combine prior evidence of an 

exposure-disease relationship with that evidence that exists in the data at hand. 

Clinicians, in particular, may find this appealing in terms of decisions related to whether 

or not a certain drug is appropriate for a given patient [50]. 

One limitation of Bayesian modeling is the computational power required for 

some models. In the case where a researcher is interested in a model with many 

covariates, or a large dataset, an MCMC procedure may take hours, even days, to 

complete. This is something that may be overcome with improvements in computer 

technology, but may be off-putting to some. Additionally, it is worth noting that in many 

cases where there is no prior information of interest to a researcher, a frequentist analysis 

will very likely yield the same results as a Bayesian analysis in much less time. 

As with any valid epidemiologic inquiry, the model specification must be correct. 

The formulation of epidemiologic inquiry and correct model development are discussed 

elsewhere [51-53]. In the context of MCMC, if a model is not properly specified, the 

results will be incorrect, even if a Markov chain converges. The Markov chain may not 

converge in the presence of improper model specification, but this is not guaranteed. 
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Additionally, the more complex the model, the more difficult it becomes to diagnose 

proper model convergence. Thus, care must be taken in developing the correct model. 

An additional concern, mentioned earlier, is that there is no established method 

for deciding what an appropriate number of iterations and burn-in might be. Rather, we 

use a trial and error process, where the ultimate goal is to obtain stable parameter 

estimates that minimize simulation error. Like the computational intensity discussed 

above, this will require more time on the part of the researcher. However, Bayesian 

methods are indispensible as a tool for handling intractable epidemiological inquiries. 

We want to emphasize that these methods are not limited to use in obtaining 

Bayesian posterior distributions. Proponents of frequentist statistics can just as easily use 

the machinery of MCMC to obtain parameter estimates of interest. We hope that readers 

will find MCMC less daunting, and we look forward to its increased use by 

epidemiologists in future studies 
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Figure 2.1. Diagnostic plots for estimation of 1 in example 1. 
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Figure 2.2. a) Diagnostic plots showing non-convergence of an MCMC procedure (top). 

b) Diagnostic plots showing convergence of the same model using a Jeffreys‟ prior.



 

 

 
Chapter 3 

Informative priors: a simple approach for 

utilizing animal and cellular evidence in 

observational research via order 

constrained priors 

3.1 Abstract 

 Informative priors can be a simple and useful tool for epidemiologists to handle 

sparse data problems in regression modeling. It is sometimes the case that previous 

research may indicate the direction of effect or magnitude of one exposure‟s effect 

relative to another but may not provide enough information to specify the distribution of 

a prior in terms of the magnitude of a parameter describing an exposure-disease 

relationship in an epidemiological study. When considering human carcinogens, for 

example, an important source of knowledge is derived from toxicological studies and 

experimental research. Incorporating this knowledge as a prior in regression analysis of 

epidemiologic data often is difficult since the findings cannot be considered 

exchangeable across species or from cellular level outcomes to mortality and morbidity. 

We present a method to help bridge the gap between animal and cellular studies and 
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epidemiological research by truncation and specification of an order constrained prior, 

illustrating how external information from toxicological and experimental research 

regarding parameter associations may be usefully incorporated.  

3.2 Introduction 

Epidemiologists face a number of challenges in developing etiologic models of 

disease. When attempting to develop a model for a specific exposure-disease relationship, 

adjusting for confounders and effect measure modifiers of interest, we often deal with 

data that suffer from a lack of information and do not allow us to develop the models we 

believe to be most appropriate. This lack of information is often in the form of sparse 

data, which is a form of information bias [54]. In its most extreme form, where we have 

no information for a specific covariate pattern, this bias will be a case of non-

identifiability [55]. Frequentists will approach this problem through model building 

exercises, where potential confounders and effect measure modifiers are systematically 

introduced or removed based on various rules aimed at balancing the tradeoff of bias 

introduced with precision gained [52]. Bayesian methods provide an approach to 

investigating associations in settings of sparse data, which may arise when models 

include many covariates, effect measure modifiers, or with low or rare exposures [41, 

42]. One such technique is the use of informative priors. Informative priors can be 

thought of as external knowledge integrated into an analysis that will influence parameter 

estimation when the epidemiologic data are sparse. Although the benefits of informative 

priors have been well documented in the statistical and epidemiologic literature they are 

rarely utilized [44, 56]. However, they can be a particularly useful tool for 

epidemiologists who are facing challenges in model development and data analysis. 
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In this paper, we will discuss the history and challenges of informative priors in 

epidemiological literature. Next, we will introduce a simple approach to incorporating an 

informative prior that may be useful for epidemiologists. This involves a priori 

specification of a model parameter based on evidence from experimental animal and 

cellular research into epidemiologic studies using an order constrained prior via 

truncation. Order constrained priors are used in dose-response analyses to improve 

estimation of parameters for categories of exposure based on the proposed direction of 

the relationship between that exposure and disease. For instance, if 3 levels of exposure 

are specified from lowest to highest as, 1, 2 and 3, we constrain a parameter estimation 

so that 1≤2≤3. We will illustrate two examples of this approach. The first uses 

evidence regarding the relationship between radiation exposure and cancer risk. The 

second is from an analysis of the relationship between exposure to tritium and leukemia 

outcomes. These examples will show how integrating truncation or an order constrained 

prior can provide a benefit to an epidemiologic analysis without the need for assigning an 

absolute value to the prior distribution of exposure-disease relationship, as is often done 

in Bayesian analysis. Although the researcher utilizes the machinery of Bayesian 

analysts, we believe this is a simple extension of an established approach for informing 

parameter estimation, which some researchers may find appealing. 

3.3 Methods 

The benefit of informative priors is most clear in cases where sparse data leads to 

problems in regression modeling. A good example of this is the case of nonidentifiability, 

which can occur when a specific covariate pattern contains no observations [55]. One 
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way to conceptualize this is to think of a 2x2 table with either no exposed cases or no 

unexposed controls. In logistic regression models, this will lead to separation, where 

estimates or a parameter of interest will approach +/- infinity [57]. In this situation, a 

Jeffrey‟s prior can be utilized to stabilize parameter estimates, as demonstrated by Heinze 

et al [43]. The appeal of a Jeffrey‟s prior is that is it a data-driven prior, and does not 

require the researcher to specify an a priori distribution for any parameters of interest. 

Another informative prior which is based on ideas about the change in magnitude 

of an effect is implemented through specification of a Cauchy distribution, recommended 

by Gelman et al. [44]. This prior is specific to logistic regression, and simply presumes 

that any given input variable is unlikely to lead to a change of 5 on the logistic scale (or, 

for example, a change of the predicted probability from 0.01 to 0.50) [44]. The authors 

recommend use of a Cauchy distribution as a „default‟ prior to overcome small sample 

bias in logistic regression. The use of the Cauchy distribution is built on a history of 

epidemiologic evidence where, typically, major changes in the predicted probability of an 

outcome of interest associated with any individual covariate are very rare. This approach 

is similar to that suggested by Greenland where priors are specified based on „weakly 

informative ranges‟ for the expected relative risk [58]. 

As shown above, the more popular way to integrate an informative prior into an 

analysis is to identify a means of allowing the amount of data available to drive the 

importance of the prior. This is supported by Gelman et al.‟s recommendation that the 

Cauchy distribution be used as a „default‟ prior in any logistic regression model. 

However, it is possible to integrate informative priors for a parameter of interest based on 

existing knowledge without explicating the distribution of that parameter. We suggest the 
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use of experimental animal and cellular evidence to direct estimation of coefficients of 

interest when investigating questions regarding environmental or occupational hazards 

for which one can specify an order to direction of effect. 

3.3.1 Prior knowledge based on experimental data 

Experimental animal and cellular studies can provide useful information to 

epidemiologists regarding specific exposure-disease relationships of interest. They 

benefit from a controlled environment, which minimize the biases that typify 

epidemiological research. With regard to exposure or dose, the researcher has some 

control and knowledge of the amounts received by an animal or cell that is often more 

accurate than estimates evaluated in epidemiological research [59]. Additionally, these 

studies can be conducted in order to inform etiologic relationships that are unethical for 

controlled studies in humans, such as exposure to radiation and cancer outcomes. 

Applying the evidence from experimental animal and cellular models to inform 

epidemiological epidemiologic research is difficult. For example, an exposure‟s 

relationship to disease may be different for humans compared to other animals. In other 

words, parameter estimates are not necessarily exchangeable across species. A similar 

limitation for cellular models is that they are often concerned with disease precursors, 

which limit their ability to inform disease outcomes. This is common in cancer research, 

where an experiment will evaluate endpoints such as chromosomal aberrations instead of 

cancer incidence or mortality. 

Even if a researcher can reliably translate the direction and magnitude of an 

exposure‟s relationship to disease from an experimental animal to human model, the 
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statistical uncertainty around the parameter estimate of interest will often be overly 

precise. This is due to the fact that experimental animal and cellular studies easily benefit 

from a large number of observations. The researcher often has the ability to simply 

increase the number of observations to obtain statistically significant results. In order to 

apply evidence from these studies as prior information in an epidemiological study, a 

researcher may simply multiply the standard error associated with a parameter of interest 

by some factor that is meant to represent the increase in uncertainty associated with 

moving from an experimental animal or cellular to human cancer risk model [60, 61]. 

However, this conversion is arbitrary and not necessarily based on any established metric 

for applying evidence across species. 

We propose an alternative approach for using evidence gained from these studies 

as prior knowledge in a Bayesian analysis of epidemiological data in a way that does not 

require assuming a high degree of exchangeability for a parameter of interest, given the 

limitations mentioned above. We suggest the use of an order constrained prior via 

truncation. Order constrained parameters have a history of use in the dose-response 

literature where, as the level of exposure increases the effect of that exposure on the 

outcome of interest is specified to be greater than the level of exposure preceding it [62].  

When attempting to inform an epidemiological analysis with results from 

experimental animal and cellular research, an order constrained prior provides an 

intuitive way of integrating results that avoids the pitfalls of trying to directly apply effect 

estimates across species or outcomes. We present two examples of this approach. First, 

we show an example where experimental evidence of the direction of the relationship 

between cancer risk and radiation exposure can inform estimation of the leukemia risk 
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due to whole body ionizing radiation (WBD) in an epidemiological study via truncation. 

Second, we use of an order constrained prior to estimate the excess relative rate (ERR) of 

leukemia by integrating evidence of the relative biological effectiveness (RBE) of tritium 

referenced against gamma radiation.  

3.3.2 Linear no-threshold models 

In order to provide a context for the examples below, we briefly discuss linear no-

threshold models and RBEs in radiation epidemiology. First, in studies of nuclear fuel 

facility workers exposed to ionizing radiation, estimation of the relationship between 

radiation and cancer outcomes utilizes a linear-no threshold (LNT) model. This model 

has two characteristics: first, it suggests that that the relationship between chronic, low 

dose radiation exposures and cancer is monotonic. Second, the LNT model assumes that 

there is no level of radiation that can be considered as „safe‟ or inherently unable to cause 

cancer outcomes, as is the case with the threshold dose-response model. This latter 

characteristic of the LNT model is supported by the experimental animal and cellular 

literature [11]. In brief, the stochastic nature of cancer induction tells us that a single 

mutation or DNA strand break is capable of causing the events that lead to cancer. It 

follows from this that exposure to radiation does not afford an individual any immunity to 

cellular level damage. Since even very low doses of ionizing radiation may initial the 

events that lead to cancer, the relationship between ionizing radiation is either a positive 

relationship or a null relationship. In other words, the slope of a parameter estimating a 

linear relationship between radiation exposure and cancer is greater than or equal to 0. 
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3.3.3 Relative biological effectiveness 

Little and Lambert define the RBE as “the ratio of the absorbed dose of a 

reference radiation to the absorbed dose of the radiation under consideration that is 

required under similar conditions to produce an identical level of biological response in a 

particular animal or cellular study” [1]. In a regression model, this can be thought of as 

the ratio of the beta coefficients (or slope) for two forms of radiation in a model of cancer 

outcomes. Little and Lambert conducted a systematic review of animal and cellular 

studies and showed that for a number of different cancer precursors and endpoints, the 

biological effectiveness of tritium, an emitter of 
-
 radiation, is greater than that of 

gamma radiation. This conclusion is based on the fact that although the magnitude varies 

across endpoints and study designs, the direction of the relationship between tritium dose 

and the outcome of interest is also of greater magnitude than gamma radiation dose. 

3.4 Example 

The experimental research provides us with a strong expectation for the 

relationship between cancer risk and radiation exposure, but no intuitive way of using this 

knowledge. With regard to the LNT model, we know that the relationship between 

radiation dose and cancer is either null or positive. This can be built into modeling via 

truncation of a slope coefficient at a lower value of zero. We illustrate this by analyzing 

the relationship of effective whole body dose and leukemia, comparing these results to a 

model without this truncation. With regard to the RBE evidence, we expect that the risk 

of cancer associated with tritium will be greater than or equal to that of gamma radiation. 

We illustrate this by modeling the relationship of absorbed tritium dose and gamma 
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radiation dose with leukemia. We utilize data from an occupational cohort of nuclear fuel 

facility workers at the Savannah River Site in Aiken, SC. 

Dose-response relationships are estimated using an excess relative rate (ERR) 

model in two forms: 

Model 1: RR = e
i

(1+dg + dt)) 

Model 2: RR = e
i

(1+(dg + 2*dt)) 

where „e
i‟ 

indexes the baseline rate within strata „i‟ for the matching variables attained 

age, sex, race, pay code, birth cohort, and employment status at the end of follow-up.  

represents the ERR for a given exposure, „dg‟ represents cumulative dose from gamma 

radiation, and „dt‟ represents cumulative radiation dose from tritium. In model 1, the ERR 

is estimated for the unweighted sum of tritium and gamma radiation dose, which 

represents cumulative whole body dose, measured in mSv. We consider a truncated prior 

for this model where  ≥ 0. In model 2, separate terms are considered for cumulative 

gamma dose and tritium dose in mGy, a metric for absorbed radiation dose. In model 2, 

we consider an order constrained prior in the form 2 ≥ 1.
  
All doses are lagged 3 years 

from the time of leukemia death for cases and time of selection into a risk set for controls. 

The distributions of cases and controls across matching factors are presented in 

Richardson and Wing [28]. 

We implement this model using the Markov Chain Monte Carlo procedure 

(PROC MCMC) in the SAS software program (v9.2 Cary, NC). In all models, we assign 

prior values for the parameter estimates of interest such that the shape of the posterior 
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distribution is not informed, or  ~ N(=0, 
2
=100,000). In our truncation prior example, 

estimation of WBD is specified so that ≥0. Our order constrained prior for 2 includes 

specification that the slope of the coefficient for the tritium dose effect is greater than or 

equal to the slope of the coefficient for the gamma dose effect, or 2 ≥ 1. In this case, the 

specification of the prior distribution for 1 remains 1 ~ N(=0, 
2
=100,000), while we 

specify 2 ~ N(=1, 
2
=100,000). Because MCMC utilizes repeated sampling to identify 

the posterior distribution for a parameter of interest, including this truncation for 2 as 

stated above restricts parameter estimates at each iteration of the Markov chain so that the 

sampled value of 2 cannot be less than the sampled value of 1. 

All models were run 3 times for 100k iterations with a 10k burn-in and 3 distinct 

starting values to emulate a Gelman-Rubin diagnostic check to ensure that results are not 

sensitive to starting values of 1 and 2. Final models were run for 10 million iterations 

with a burn-in of 100,000 iterations to minimize simulation error. Effect estimates are 

reported as the median of the distribution for parameters of interest. For consistency with 

the existing radiation epidemiology literature, we report 90% highest posterior density 

(HPD) intervals. Since we are using a linear relative rate model where bounds of the HPD 

can cross 0 to include negative values, we calculate confidence limit ratios (CLRs) as the 

upper minus the lower bound divided by 2. 

Table 3.1 presents results from truncation of WBD. When estimating the 

relationship between Leukemia excluding CLL, the precision and estimate of the 

ERR/10mSv of whole body dose are almost identical. This is due to the fact that 90% 

HPD in an unconstrained model does not include any values below 0. Regarding the 
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models estimating the ERR/10mSv of whole body dose, the 90% HPD of the non-

truncated model includes negative values and has a CLR of 0.063. In the constrained 

model, these values are eliminated, leading to a modest improvement in the precision, 

shown by a reduction in the CLR to 0.059. 

Table 3.2 presents MCMC analyses of leukemia and leukemia excluding CLL. 

When the model includes a non-informative prior for both exposure and no truncation, 

the estimate of the ERR/10mGy due to gamma radiation (1) for leukemia and leukemia 

excluding CLL are 0.053 (90% HPD: -0.025, 0.142) and 0.176 (90% HPD: 0.011, 0.375), 

respectively. The estimated ERR/10mGy due to tritium (2) for leukemia and leukemia 

excluding CLL are 0.141 (90% HPD: -0.323, 0.649) and -0.281 (90% HPD: -1.136, 

0.548), respectively.  

When the model simulation is restricted so that 2≥1, retaining a non-informative 

prior for 1, estimates of the ERR/10mGy due gamma radiation for leukemia and 

leukemia excluding CLL are 0.034 (90% HPD: -0.031, 0.110) and 0.082 (90% HPD: -

0.017, 0.206), respectively. The estimated ERR/10mGy due to tritium for leukemia and 

leukemia excluding CLL are 0.298 (90% HPD: 0.027, 0.702) and 0.344 (90% HPD: 

0.049, 0.817), respectively. 

To provide a metric for precision of the estimates, table 3.2 includes confidence 

limit ratios (CLR) based on the width of the confidence bounds divided by 2. The CLR 

for all effect estimates and outcomes decrease when comparing the model including 

truncation to the model with a non-informative prior specified for 1 and 2. 
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3.5 Discussion 

We have presented a method for integrating an informative prior that bridges the 

gap between experimental animal and cellular studies and epidemiological research. The 

appealing aspect for epidemiologists attempting to apply evidence from animal and 

cellular models is the fact that this approach avoids the need for specifying a prior 

distribution for the parameter of interest.  

In the example of truncation of an LNT model at a lower bound of 0 based on 

evidence of radiation as a carcinogen, we see a modest change the model results. This is 

due to the fact the bulk of the posterior density was already above a minimum bound of 

0.When moving from a model with no prior to a model with truncation of 2≥1, the 

precision of all model parameters improve. The parameter with the clearest gain from the 

use of truncation is the estimate of the relationship between tritium and leukemia 

excluding CLL. When we truncate estimation of tritium in this model the estimate shifts 

from an implausible negative value to a positive value. Table 1 also shows that the ratio 

of the confidence bounds is less than half of what it is in a model excluding truncation. 

In addition, the results including truncation for leukemia excluding CLL are 

similar for leukemia as the outcome, indicating an improvement in model fit. This is 

because we expect the parameter estimates for these two outcome groups to be somewhat 

similar, but slightly biased for leukemia including CLL due to a longer time course for 

CLL versus other forms of leukemia. Also, since it is known that radiation exposure is 

not protective for leukemia, or any form of cancer, we believe this shows a clear example 
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where sparse data has led to a biased result and, thus, a case where an informative prior 

can be very useful. 

Similar to the vaguely informative priors recommended by Greenland and 

Gelman [44, 54], we believe the order constrained prior to be a useful tool that can be 

implemented when the researcher has some knowledge concerning the direction and 

magnitude regarding a parameter estimate of interest relative to another parameter in the 

same regression model. An appealing aspect of truncation as an informative prior is that 

the researcher is not required to take part in synthesize evidence from multiple sources to 

calculate a prior distribution for any parameter in the regression model. Rather, simple 

knowledge of the direction of effect of one parameter compared to another in the same 

regression model is sufficient. Thus, implementation of this method is straight-forward, 

and we hope that this approach will be appealing to Bayesians and frequentists alike. 
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Table 3.1 Parameter estimates for the ERR/10mSv of whole body dose radiation. 

Outcome Truncation Parameter Estimate (90% HPD*) CLR 

Leukemia 
  

  

  ≥ 0 0.055 (0.000,0.117) 0.059 

  none 0.054 (-0.003,0.123) 0.063 

Non-CLL Leukemia 
  

  

  ≥ 0 0.099 (0.010,0.207) 0.098 

  none 0.098 (0.010,0.209) 0.099 
*CLR measures the width of the confidence bounds as (upper bound – lower bound / 2).
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Table 3.2. Parameter estimates for the ERR/10mGy due to gamma radiation (1) and tritium (2). 

  
Order 
constrained 
prior 

Parameter Estimate   

Leukemia  1 90% HPD CLR* 2 90% HPD CLR* 

  2≥1 0.035  -0.032,0.110 0.071 0.299  0.029,0.705 0.338 

  none 0.053  -0.025,0.142 0.084 0.141  -0.325,0.645 0.485 

Non-CLL Leukemia         

  2≥1 0.083  -0.018,0.206 0.112 0.345 0.050,0.818 0.384 

  none 0.176 0.010,0.374 0.182 -0.281  -1.129,0.552 0.841 
*CLR measures the width of the confidence bounds as (upper bound – lower bound / 2)



 

 

 
Chapter 4 

Tritium: Relative Biological Effectiveness 

and cancer risk 

4.1 Abstract 

The relationship between exposure to tritium, a source of beta radiation, and risk 

of cancer has received little attention in the epidemiological literature. For radiation 

protection purposes, and for radiation risk assessments, tritium dose and gamma radiation 

doses are often combined.  This is done under the assumption that the biological 

effectiveness of the absorbed dose of tritium relative to the absorbed dose of gamma 

radiation, or RBE, is 1. In this paper, we utilize Bayesian methods in order to evaluate the 

excess relative rate (ERR) of leukemia and leukemia excluding CLL per unit of absorbed 

dose of tritium as well as its RBE compared to absorbed dose of gamma radiation. The 

ERR/10mGy and associated 90% highest posterior density (HPD) of leukemia and 

leukemia excluding CLL are 0.272 (0.024, 0.660) and 0.304 (0.044, 0.753), while the 

RBEs are 8.36 and 5.36, respectively. This is the first empirical estimate of tritium‟s 

relationship to cancer risk based on epidemiological data. 
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4.2 Introduction 

The relationship between intake of tritium and risk of cancer has never been 

directly assessed in the epidemiological literature [3]. Tritium is a source of beta radiation 

exposure. Unlike x-rays or gamma radiation, tritium only penetrates a short distance in 

human tissue.  When inhaled or ingested, often in the form of tritiated water (HTO), 

tritium disperses throughout the human body.   

For radiation protection purposes, and for radiation risk assessments, absorbed 

doses of tritium and gamma radiation are often combined.  This is done under the 

assumption that tritium and gamma radiation doses both have equivalent biological 

effectiveness. The biological effectiveness of different forms of radiation is often 

expressed numerically as a weighting factor (wf) that is based on evidence of the relative 

biological effectiveness (RBE). RBE is defined as “the ratio of the absorbed dose of a 

reference radiation to the absorbed dose of the radiation under consideration that is 

required under similar conditions to produce an identical level of biological response in a 

particular animal or cellular study.”   To date, the estimated cancer risk per unit dose of 

beta radiation from tritium is considered equal to that of gamma radiation. However, 

there is growing concern that this assumption regarding the RBE for tritium is incorrect.   

In a recent systematic review, Little and Lambert suggest that the tritium RBE is 

more likely to be a value of 2-3, or even as high as 10 [1]. This assessment is based on 

evidence from experiments in which animals or cells are exposed to chronic, low level 

gamma or tritium based radiation.  However, there is very little direct evidence regarding 

the carcinogenic effect of tritium in humans.  Little and Lambert noted the need for 
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epidemiological studies of cancer risk following occupational tritium exposures, pointing 

specifically to the possibility of such research among workers at the US Department of 

Energy‟s Savannah River Site. 

In this paper we investigate the association between estimated cumulative 

radiation dose from tritium and leukemia mortality among SRS workers.  Examination of 

the association between tritium and cancer risk is hindered by the fact that exposures to 

tritium at SRS were usually received chronically at low levels, and occurred simultaneous 

with occupational exposures to gamma radiation and neutrons. Sparse data also make it 

difficult to obtain reliable parameter estimates in linear excess relative rate models, which 

are used to evaluate cancer-radiation dose relationships [28, 63].  However, recent 

developments in statistical software allow simple implementation of Markov Chain 

Monte Carlo (MCMC) simulation methods for conducting Bayesian analysis, which 

provide a way to explore this relationship.  Bayesian methods have received increased 

attention in the epidemiologic literature as a means for researchers to integrate 

information external to a study into their statistical analyses in order to address 

previously intractable epidemiologic inquiries [33, 34, 36, 64]. In the case of sparse data, 

informative priors can be used to improve estimation of an exposure-disease relationship. 

The goals of this study are two-fold. First, we will utilize Bayesian methods to 

examine the relationship between tritium and cancer risk among the Savannah River Site 

(SRS) occupational cohort. The SRS cohort is unique in that it has the expressed purpose 

of producing tritium for use in nuclear weapons. Thus, SRS has maintained detailed 

records of individual radiation dose received from the beginning of operations in 1950 to 

present. This includes disaggregated values for absorbed tritium and gamma radiation 
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dose [65]. A recent systematic review highlighted SRS as one of the few facilities which 

has the potential to inform the relationship between tritium dose and cancer risk [3]. 

Second, since the SRS cohort data include individual gamma dose, we will also be able to 

provide an estimate of the RBE of tritium relative to gamma radiation in the context of an 

observational epidemiologic study. 

4.3 Materials and Methods 

4.3.1 Savannah River Site cohort 

 The Savannah River site (SRS) is a nuclear fuel facility near Aiken, SC. This 

facility is unique among US facilities in that it is the only location with the expressed 

purpose of producing tritium, a radioisotope of hydrogen that emits beta radiation via the 

release of electron energy as it decays from H
3
 to He

3
 [5]. Activities began in 1951, with 

the first tritium production reactor going critical in December 1953. SRS consists of 

numerous “areas” defined by health physicists based on the activities that take place at 

each. These areas include: nuclear reactors (100 Area), separations for processing 

irradiated materials (200-F and H Areas), fuel and target fabrication (300-M Area), heavy 

water extraction (400 Area), Laboratories (700 Area), and administration and non-nuclear 

facilities to support plant activities. E.I du Pont de Nemours and Company led operations 

at the site until March 31, 1989 when Westinghouse Savannah River Company took over, 

who operate the facility at present [66, 67]. 

 This cohort includes 21,204 employees who were hired by du Pont between 

calendar years 1950-1987, and who worked at least 90 days with no history of 
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employment at another DOE facility. In addition, workers were excluded if they were 

missing information on gender, date of birth, name, SSN, or date of first hire. This leaves 

a cohort of 18,883 workers for whom individual, annual dose records have either been 

computed or estimated via previous research. Since most of the cohort was hired before 

1960, some workers may have up to forty years of dose records. Workers were followed 

through 2002 to obtain vital status information. In the current analysis, the outcomes, 

leukemia and leukemia excluding CLL are based on International classification of disease 

in the United States (ICD) codes. Through 1990, ICD-8 codes were used, while ICD-9 

codes were used thereafter. The identification of leukemia and leukemia excluding CLL 

in ICD 8 and 9 were the same. For all leukemia, the codes are 204-207. Those with code 

2041 represent cases of CLL.  One reason that we examine leukemia in this analysis is 

because it is less subject to confounding by smoking than outcomes such as lung cancer.  

Analyses excluding CLL are conducted because of the longer time course of disease of 

CLL compared to other forms of leukemia. 

Annual whole body dose (WBD) represents the sum of deep tissue gamma dose, 

tritium dose, and neutron dose converted to biologically equivalent gamma dose with a 

weighting factor, wf. Estimated annual WBD values are available for all employment 

years. 6% of these records were estimated using a „nearby‟ method described in 

Richardson et al [67]. In total, whole body dose records sum to 520.8 person-Sieverts 

(Sv) of collective dose. Annual whole body dose estimates were utilized in order to 

derive annual tritium dose estimates for those person-years with missing information 

regarding the contribution of tritium to their cumulative annual whole body dose. In total, 

there are 56.2 Sv of individual, annual tritium dose records, of which 4.3 Sv (7.7%) were 
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estimated through use of a job-exposure matrix described by Hamra et al [65]. Neutron 

doses are quantified and integrated into whole body dose using a wf that changes based 

on the amount of absorbed dose received by the worker. As a result, absorbed neutron 

doses are unavailable for this analysis, and the reweighted, absorbed doses that are 

received are treated as equivalent to gamma radiation dose. Thus, neutron and other 

internal doses are not considered in this analysis.  

Since we are using disaggregated gamma and tritium dose, and calculating values 

of the RBE, the relevant value of individual dose is „absorbed,‟ which is expressed in 

Grays (Gy). This is distinct from more recent radiation epidemiology that has focused 

interest on „effective dose,‟ expressed in Sieverts (Sv). The difference between these two 

measures is that doses combined into effective dose takes account of the wf for more 

highly effective forms of radiation. We are able to obtain absorbed dose because the 

aggregated whole body dose utilizes a wf of 1. Thus, absorbed gamma and tritium doses 

are simply the two components of whole body dose.  

4.3.2 Statistical model 

To examine the relationship between tritium dose and cancer, as well as its 

relative biological effectiveness (RBE) compared to gamma radiation, we will utilize the 

data from the SRS cohort as previously examined by Richardson and Wing [28]. This 

study examined the dose-response relationship of individual, cumulative whole-body 

dose radiation and leukemia, including and excluding CLL.  

Dose-response relationships are estimated using an excess relative rate (ERR) 

model of the form: 
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RR = e
i

(1+1g + 2t) 

where „e
i‟ 

indexes the baseline rate within strata „i‟,  represents the ERR for a given 

exposure, „g‟ represents cumulative gamma radiation dose, and „t‟ represents cumulative 

tritium dose.  

As in prior analyses we utilize a nested case control design by creating risk sets 

based on a set of selected matching factors. Eligibility criteria for inclusion of individuals 

in this study, as well as the choice of matching factors for conducting their study are the 

basis for this analysis, and are clearly documented in their work.  The distributions of 

leukemia and leukemia excluding CLL cases with respect to matching factors (including 

attained age, sex, race, pay code, birth cohort, and employment status) are presented in 

Richardson and Wing [28]. In total, we observe 84 cases for leukemia, 22 of which were 

CLL cases. The average risk set includes 480 controls. The smallest risk set includes four 

controls. 

The distinctions between the current work and that of Richardson and Wing are 

the use of disaggregated radiation dose and Bayesian methods. The annual records for 

gamma radiation and tritium dose are summed for each year from the beginning of 

employment until the end of observation to obtain cumulative gamma and beta dose. 

We utilize a Bayesian modeling approach in order to integrate prior information 

into our analysis, described below. In order to inform estimation of the ERR associated 

with tritium and gamma radiation, we incorporate two pieces of information based on 

what is known about the etiology of radiation exposure and cancer risk. Bayesian 

inference provides a way to integrate prior knowledge into an epidemiologic analysis in 
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order to provide more accurate and stable parameter estimation. In addition to providing a 

model for relationships between exposures and outcomes we can incorporate knowledge 

about the dose-response relationships based on information including evidence from 

previous epidemiological or radiobiological studies. 

First, we incorporate our prior belief that gamma radiation exposure has either no 

relationship to cancer risk or increases the risk of cancer (i.e., exposure to gamma 

radiation does not diminish a worker‟s risk of cancer). This substantive prior is based on 

evidence that gamma radiation is an established mutagen and carcinogen [68]. A simple 

way to build this knowledge into our model is to truncate the prior distribution of 1 at a 

lower limit of 0. In addition, tritium emits low-LET 
-
 radiation, and is an established 

mutagen and carcinogen [8, 10, 69]. Thus, we specify the same prior for the lower bound 

of the ERR for tritium by specifying 2≥0.  

Second, we incorporate our prior knowledge that ionizing radiation from tritium 

intakes is at least as effective as gamma radiation at causing cancer (i.e., the RBE for 

tritium is 1 or greater).  This prior belief is based upon evidence from the in vivo and in 

vitro literature, which suggests that, for a given amount of absorbed dose, tritium is at 

least as biologically effective as gamma radiation at causing a variety of biological 

endpoints of potential relevance to cancer induction including chromosomal aberrations 

and induction of cancer in experimental animals [1, 18, 19]. We integrate this knowledge 

into our analysis by specifying an order constrained prior such that 2 ≥ 1 [62]. In an 

MCMC implementation of the analysis, this translates to drawing samples of 2 that are 

never less than 1. Examples of using Bayesian analysis for this form of restricted 
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parameter estimation have been shown elsewhere in the literature [62, 70]. The form of 

the distribution for the parameters is specified as normal but non-informative, where 1 ~ 

N(=0, 
2
=100,000) and2 ~ N(=1, 

2
=100,000). In other words, the form of the 

posterior distribution is not informed by this specification.  

In order to conduct this analysis in a Bayesian framework, we utilize the SAS 

procedure MCMC (V 9.2 Cary, NC). An estimate of the RBE is obtained at each step in 

the MCMC process, and is calculated as 2/1. This simulation based approach allows us 

to obtain uncertainty bounds around the estimate of the RBE. Posterior distributions are 

presented as 90% highest posterior density (HPD) intervals for consistency with radiation 

epidemiology literature. 

Parameter estimates may be sensitive to the choice of prior information included 

in a model, especially when data are sparse [54]. Sensitivity analyses were conducted 

under alternative priors for the parameters (1 and 2). All models were run 3 times for 

100k iterations with a 10k burn-in and 3 distinct starting values to emulate a Gelman-

Rubin diagnostic check to ensure that results are not sensitive to starting values of the 1 

and 2. Final models were run for 10 million iterations with a burn-in of 100,000 

iterations to minimize simulation error. 

4.4 Results 

The Appendix includes diagnostic plots for each model in our analysis to confirm 

convergence of the Markov chain. Table 4.1 summarizes the distribution of cases by 

categories of cumulative whole body dose, gamma dose, and tritium dose. This table 
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shows most cases receiving less tritium than gamma dose over the course of employment. 

Figure 4.1 plots the relationship between cumulative gamma dose and tritium dose 

among leukemia cases (n=84). The Pearson correlation coefficient is 0.79 for cases. 

When examining all cases and controls, the Pearson correlation coefficient for the 

relationship between gamma and tritium dose is 0.34. 

Table 4.2 presents the distribution of gamma and tritium dose of cases and 

controls for leukemia and leukemia excluding CLL. Cumulative dose is lagged 3-years 

from the date of cancer mortality. The distributions of dose for cases and controls are 

similar for each outcome. Dose distributions are highly skewed to the right, with most 

cases and controls accruing low cumulative dose over time employed at SRS. For the 

most part, employees receive less cumulative tritium dose than gamma dose. However, 

there are rare instances of high beta radiation exposures. With regard to leukemia, the 

maximum gamma dose received by controls is 469.7 mGy as compared to the maximum 

beta dose of 155.68 mGy for a sampled control. 

Table 4.3 summarizes the ERR/10mGy dose received for leukemia and leukemia 

excluding CLL in our primary analysis. The ERR/10mGy (90% HPD) of leukemia 

associated with tritium and gamma radiation are 0.282 (0.027, 0.678) and 0.044 (0.000, 

0.108), respectively. This yields an RBE of 6.38 (1.00, 36.09). With regard to leukemia 

excluding CLL, the ERR associated with tritium and gamma radiation are 0.338 (0.048, 

0.805) and 0.087 (0.000, 0.195), respectively. This yields an RBE of 3.88 (1.00, 16.80). 
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4.5 Sensitivity analysis 

Table 4.4 summarizes the results of a sensitivity analysis which tests the change 

in ERR/10mGy and RBE estimates upon removal of prior information from the model. 

The full model (model 1), which is the subject of our primary analysis summarized in 

table 4.3, contains two levels of prior information discussed above: 

a) Specification of 2 ≥ 1. 

b) Specification of ≥ 0. 

Each subsequent model removes a level of prior information until the final model 

where the prior specification of 1 and2 is normal but non-informative. Model 2 

excludes the prior specification of 2 ≥ 1. Model 3 excludes any restrictions on 

parameter estimation and utilizes a non-informative prior in the form of a normal 

distribution where 1 and2 are N(=0, 
2
=100,000).  

The estimates of 1 and 2 for both outcomes, leukemia and leukemia excluding 

CLL, respond similarly to integration of prior knowledge (table 4.4). When the model 

does not include any prior knowledge, 1 and 2 include negative values in the 90% 

HPD. Specifying 1 and 2 ≥ 0 in model 2 improves precision of both model parameters. 

Addition of 2 ≥ 1 also improves estimation of the parameters by reducing the 

imprecision of each.. 

Estimates of the ERR/10 mGy of leukemia and leukemia excluding CLL due to 

tritium are similar, 0.282 (0.027, 0.678) and 0.338 (0.048, 0.805), respectively. These 

estimates exhibit modest change from model 1 compared to model 2. However, when the 
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model includes no prior information, estimation of the ERR/10 mGy for leukemia and 

leukemia excluding CLL are 0.141 (90% HPD: -0.325, 0.645) and -0.281 (90% HPD: -

1.129, 0.552), respectively. 

RBE estimation is most precise in model 2. For both leukemia and leukemia 

excluding CLL, estimates of the upper level of the 90% HPD in model 1 are larger than 

model 2. However, the distribution of the RBE in model 2 includes values less than 1, 

which are not supported by the experimental evidence summarized by Little and Lambert 

[1]. The median of the posterior distribution for the RBE for models 1 and 2 are above 

the null value. Compared to our full model in table 4.3, estimates of the RBE with regard 

to leukemia for models 2 and 3 are 4.79 and 2.64, respectively. With respect to non-CLL 

leukemia, the RBE estimate obtained in model 2 is 2.25. We do not report an RBE for 

model 3 when non-CLL leukemia is the outcome because the value is negative, which is 

not a plausible estimate for a ratio of two linear slope parameters. 

4.6 Discussion 

The goals of this analysis are two-fold. First, we provide an empirical estimate of 

tritium‟s relationship to cancer risk based on observational data. Second, using this 

information, we obtain an estimate of the RBE of tritium relative to gamma radiation, 

which further supports the existing evidence from in vitro and in vivo studies that this 

value is above the null value of 1 [1]. 

Evidence regarding the relationship between tritium and cancer risk has only been 

available from in vivo and in vitro studies. While animal models may examine cancer 

incidence and mortality, cellular evidence is limited to different forms of cellular and 
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chromosomal damage, such as acentric rings. In both cases, extrapolating this knowledge 

to inform human cancer risk estimation is a challenge for epidemiologists. First, we do 

not assume exchangeability of risk estimates from cancer precursors to cancer events, or 

cancer outcomes across species. Second, there is no established metric with which we can 

convert results of animal and cellular data to apply in human cancer risk models. 

Bayesian inference provides an intuitive means for incorporating animal and 

cellular knowledge into observational epidemiology studies. By incorporating this 

knowledge into a Bayesian model as prior knowledge, we are able to test its ability to 

inform estimation of the posterior distribution of parameter estimates of interest. 

Truncation of the parameter estimates at a lower bound of 0 leads to estimates of 

the RBE greater than 1. Although estimates of the RBE are increased as additional 

information is integrated into the model, they do not exceed the plausible range of values 

suggested in the radiobiological literature. Little and Lambert estimate an RBE of 2.49 

based on experimental evidence of chronic, low dose exposure scenarios similar to what 

would be expected in an occupational workplace. Our results suggest that the biological 

effectiveness of tritium relative to gamma radiation may be greater than previously 

suggested by animal and cellular evidence. 

Our analysis provides an example of where Bayesian methods provide a clear 

benefit over frequentist analysis. Sparse data results in poor estimation of the relationship 

between tritium dose and risk of leukemia excluding CLL. By simply constraining 

estimation of 2 and 1 based on the knowledge that radiation is not protective of cancer 

risk, we are able to obtain stable estimates of the ERR of leukemia and leukemia 
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excluding CLL associated with tritium dose. We note a major improvement in the 90% 

HPD when we truncate values at a lower bound of 0. The change in the 90% HPD is 

much less pronounced upon adding the constraint that 2≥1. 

Our analysis also faces some limitations. For instance, we are unable to examine 

absorbed neutron dose independent of absorbed gamma dose, due to the fact that all 

values are converted „effective‟ dose values to account for the greater biological 

effectiveness of neutrons. In addition, the bulk of occupations and areas of employment 

where tritium dose was prominent were dominated by males, with few females obtaining 

non-negligible tritium dose, or the outcome of interest. Interpretation of our results 

should consider these limitations. 

Despite the fact that we obtain stable parameter estimates by integrating external 

knowledge, our analysis may benefit from integration of data from other nuclear 

facilities. Little and Wakeford discuss facilities in Canada and the UK where information 

on tritium dose is recorded, but has not been examined [3]. It would be possible to 

combine this data with our current analysis to improve estimation of tritium‟s relationship 

to cancer and RBE referenced against gamma radiation. 

In addition, it would be informative to examine the relationship between tritium 

dose and other cancers, such as all-cancer. In order to do so we will need to account for 

bias due to smoking, which has not been possible in the SRS cohort with the current data. 

However, we hope to do this by use of bias modeling, or by examining other 

occupational cohorts that have smoking history data [71]. 
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Finally, the NIOSH office of compensation analysis and support has the expressed 

goal of assisting in compensation for work related illness, specifically cancer, among 

nuclear facility employees via determining probability of causation and conducting dose 

reconstruction for workers missing personal dose measures. Aggregated whole body dose 

is used to determine the support of these claims. To this end, it is necessary to better 

understand the RBE of tritium to evaluate its possible influence on work-related cancer 

illness. 
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Table 4.1 Distribution of cases by categories of individual cumulative whole body dose, gamma, and tritium dose.  

Outcome   Dose (in mGy) 

  Radiation Form                   

Leukemia   0 < 0 - <5 5 -<10 10-<20 20 - <40 40 - <80 
80 - 

<160 
160-
<320 ≤ 320 

                      

  Tritium 30 34 9 3 5 3 0 0 0 

  Gamma 5 27 8 9 10 7 13 4 1 

  Whole body dose 5 26 9 8 8 9 13 4 2 

                      

Leukemia excluding CLL 
 

                  

                      

  Tritium 24 25 4 2 4 3 0 0 0 

  Gamma 4 20 6 6 4 6 11 4 1 

  Whole body dose 4 19 7 6 4 5 11 4 2 
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Table 4.2. Distribution of radiation dose estimates for cases and controls by categories of leukemia outcome. 

    Dose Distribution (in mGy)   

  Gamma Tritium 

  mean (SD) median, max* mean (SD) median, max* 

Leukemia      

     cases 41.64 (63.86) 10.93, 320.3 5.47 (11.06) 0.89, 49.97 

     controls 38.05 (64.96) 7.13, 469.7 5.18 (10.62) 0.55, 155.7 

Leukemia (non-CLL)      

     cases 47.65 (70.24) 10.38, 320.0 5.97 (12.40) 0.55, 49.97 

     controls 38.73 (65.43) 7.30, 467.5 5.33 (10.76) 0.55, 155.7 
*All dose distributions are characterized by a minimum value of 0 mGy.



 

 

7
4

 
 

Table 4.3. Estimated associations between radiation doses from gamma rays and tritium intakes and leukemia mortality (ERR/10mGy) 

among Savannah River Site workers, and estimated relative biological effectiveness (RBE) of tritium.* 

 Parameter Estimate 

 Outcome 1 90% HPD 2 90% HPD RBE 90% HPD 

         

Leukemia 0.044  0.000,0.108 0.282  0.027,0.678 6.38  1.00,36.09 
         

Non-CLL Leukemia 0.087 0.000,0.195 0.338 0.048,0.805 3.88 1.00,16.80 
*primary analysis indicates that all prior information discussed in „materials and methods‟ are included in this MCMC model.  
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Table 4.4. Sensitivity Analysis comparing results of primary analysis to models with levels of prior information removed. 

 

Model 
Prior 
included* 

Parameter Estimate 

Leukemia 1 90% HPD 2 90% HPD RBE 90% HPD 

1 Full model 0.044  0.000,0.108 0.282  0.027,0.678 6.38  1.00,36.09 

2  ≥ 0  0.049  0.000,0.118 0.236  0.000,0.630 4.79  0.00,30.68 

3 none 0.053  -0.025,0.142 0.141  -0.325,0.645 2.64  -29.56,36.81 

Non-CLL Leukemia 

     

  

1 Full model 0.087 0.000,0.195 0.338 0.048,0.805 3.88 1.00,16.80 

2  ≥ 0 0.103  0.000,0.226 0.231 0.000,0.687 2.25 0.00,12.44 

3 none 0.176 0.010,0.374 -0.281  -1.129,0.552 n/a  n/a 

*Prior information is described in the Sensitivity Analysis section. 
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Figure 4.1 Scatter plot of cumulative tritium dose by cumulative gamma radiation dose 

among leukemia cases. Pearson correlation coefficient = 0.79.
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Chapter 5 

Conclusion 

5.1 Overview 

 Bayesian methods have gained popularity in epidemiology as a means for 

handling statistical analyses that prove problematic when using standard maximum 

likelihood estimation techniques. Using MCMC simulation, the machinery of Bayesian 

analysis, epidemiologists can handle a variety of problems, such as highly correlated 

data, multiple comparisons, and bias due to sparse data [33, 34, 36, 72]. We have 

provided an example of where Bayesian methods provide a clear benefit over standard 

regression modeling. First, we demonstrate that Bayesian methods provide a simple 

method for integrating knowledge from experimental research into an occupational 

cohort study via an order constrained prior. Second, we used this tool in order to provide 

the first epidemiologically based estimates of the excess relative rate of leukemia and 

leukemia excluding CLL associated with exposure to beta radiation emitting tritium. The 

use of a benefit of an order constrained prior is that it does not require arbitrary parameter 

specification due to lack of an established metric for converting animal and cellular data 

into informative priors for human data research. Instead, we simply specify the direction 
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of effect for a parameter relative to another parameter in the same model. We believe this 

will be a useful tool for epidemiologists in future research. 

5.2 Bayesian methods for epidemiologists 

Frequentist statistical methods have dominated the field of epidemiology for 

decades. Despite the fact that Bayesian methods have existed since the 18
th

 century, 

epidemiologists and statisticians alike have found implementation difficult, due largely to 

demanding statistical procedures and very specialized software implementation, such as 

WinBUGS (http://www.mrc-bsu.cam.ac.uk/bugs/). However, recent additions to common 

statistical software packages (such as SAS) and a resurgence of interest in Bayes‟ theory 

have led to increased interest in and utilization of Bayesian methods [34]. 

In chapter 2, we detail the process through which MCMC simulation obtains 

estimates of the posterior distribution of parameters given the data. We focus attention on 

the fact that when a researcher has no prior knowledge to integrate into an MCMC 

procedure, the estimates of the parameters of interest will be the same as those obtained 

from standard MLE analysis. We provide this information to motivate use of Bayesian 

methods by frequentist statisticians who may be otherwise reluctant to utilize novel 

statistical analytic techniques. 

5.3 Order constrained priors and truncation 

The use of an order constrained prior has its roots in modeling of dose response 

relationships when the direction of the relationship is known [62]. Through integrating 

the simple restriction that increases in the unit of some exposure will lead to a monotonic 

http://www.mrc-bsu.cam.ac.uk/bugs/
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increase or decrease in the observed outcome (whether it be an odds, rate, or other 

measure), a researcher is able to improve the precision of parameter estimation. We 

extend this simple approach to a scenario where two distinct exposures are measured, and 

integrate the knowledge that the magnitude of one exposure is greater than the other. 

Regarding leukemia excluding CLL, we see a negative estimate of the ERR/10mGy 

associated with beta radiation exposure. The negative relationship represents a change in 

direction compared to the same model where the outcome is leukemia including CLL. 

This would not be expected, since the two outcomes are related. We might expect a 

modest bias away from the null by including CLL with other forms of leukemia, but not a 

shift in the direction of effect. In addition, a reduction in the risk of cancer due to 

radiation exposure is not supported by any existing research. Radiation is known to have 

either no association or a positive association with cancer. By integration of an order 

constrained prior that provides a direction for estimation of the association of beta 

radiation with cancer risk, we are able to obtain stable and more plausible parameter 

estimates.  

 This work introduces a simple method for integrating knowledge from 

experimental studies into observational research. Typically, if a researcher wants to 

integrate prior information from an experimental study into epidemiologic research, it is 

necessary to alter the values obtained due to a number of factors. When comparing 

animal models to human research, estimates are not exchangeable because hazardous 

agents may exhibit differential effects across species. When considering cellular level 

studies, outcomes are not the same as those that are of interest in observational research. 

While epidemiological research will focus on cancer incidence or mortality, cellular 
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studies are more often interested in cancer precursors, such as chromosomal aberrations 

and DNA damage. These results may suggest a relationship between a hazardous agent 

and cancer, but may not directly inform it. Finally, error distributions around parameter 

estimates of interest are often overconfident, since the number of observed outcomes and 

the exact amount of exposure is under the control of the investigator. Through the use of 

truncation in a Bayesian analysis, we are able to integrate knowledge of the direction and 

magnitude of effect of tritium without the need to explicate a prior distribution for the 

parameter. 

5.4 Tritium risk and relative biological effectiveness 

 The results from our study using a data-driven, order constrained prior illustrate a 

means of integrating knowledge from animal and cellular studies into observational 

research. When we specify a non-informative prior, the estimated ERR/10mGy due to 

tritium (2) for leukemia and leukemia excluding CLL are 0.141 (90% HPD: -0.323, 

0.649) and -0.281 (90% HPD: -1.136, 0.548), respectively. When we truncate 2≥1, the 

estimated ERR/10mGy due to tritium for leukemia and leukemia excluding CLL are 

0.298 (90% HPD: 0.027, 0.702) and 0.344 (90% HPD: 0.049, 0.817), respectively. 

 Our results regarding the ERR of leukemia and leukemia excluding CLL per unit 

dose of tritium based beta radiation are the first of their kind in the epidemiological 

literature. By modeling tritium and gamma radiation in a single ERR model we are also 

able to obtain estimates of the RBE for tritium relative to gamma radiation by simply 

calculating the ratio of samples drawn at each iteration of the MCMC process. These 

models include specification of prior knowledge based on radiation epidemiology 
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literature, knowledge of occupational protection standards, and the experimental 

literature regarding the RBE for tritium. 

 Even when we exclude information regarding the RBE of tritium, the results of 

our analysis are consistent with the experimental evidence. In models that only include 

truncation of the ERR per unit dose for beta and gamma radiation, the RBE estimates for 

leukemia and leukemia excluding CLL are 4.79 and 2.25, respectively. This is similar to 

the estimate of 2.49 recommended by Little and Lambert for a chronic, low dose 

exposure to beta and gamma radiation [1]. In addition, in a model with no informative 

prior, the RBE for leukemia as the outcome of interest is 2.25. 

There are a number of in vitro and in vivo studies examining the adverse health 

effects of tritium exposure. The outcomes range from chromosomal damage and cell 

death to cancer outcomes such as leukemia. However, our work is the first example of a 

research team examining the relationship between tritium dose and cancer risk in an 

observational cohort study. 

5.5 Summary and Significance 

 Through the use of Bayesian methods, we obtain the first empirical estimates of 

the relationship between tritium exposure and cancer risk in an observational study. In 

addition, we are able to confirm the findings of experimental studies, which suggest that 

tritium based beta radiation is more biologically effective than gamma radiation. Finally, 

through our analysis, we are able to demonstrate an intuitive and simple approach to 

combining evidence from in vitro and in vivo studies into analysis of an observational 

epidemiology dataset. 
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 The NIOSH office of compensation analysis and support has the goal of assisting 

in compensation for work related illness, specifically cancer, among nuclear facility 

employees via determining probability of causation and conducting dose reconstruction 

for workers missing personal dose measures. To this end, it is necessary to provide proper 

estimation of the RBE of tritium to evaluate its possible influence on work-related illness. 

This information may improve the quality of dose reconstruction and risk estimation for 

nuclear workers. Additionally, exposure to tritium is not exclusive to the occupational 

setting. The Exelon energy facility of Illinois was recently sued by community members 

due to evidence of discarding tritium waste into local waterways. Thus, an estimate 

regarding the relationship between tritium exposure and cancer may be helpful to those 

who receive environmental exposures. 

 

 

 

 

 

 

 

 

 

 

 

 



83 

  

APPENDIX 

 

Chapter 4, null model diagnostic plots for β2 and β1 examining ERR/10 mGy for 

leukemia 
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Chapter 4, diagnostic plots for a model with specification of  ≥ 0 and  ≥ 0 examining 

ERR/10 mGy for leukemia 
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Chapter 4, diagnostic plots for a model with specification of  ≥ 0 and 2 ≥ 1 examining 

ERR/10 mGy for leukemia 
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Chapter 4, null model diagnostic plots for  and  examining ERR/10 mGy for 

leukemia excluding CLL. 
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Chapter 4, diagnostic plots for a model with specification of  ≥ 0 and  ≥ 0 examining 

ERR/10 mGy for leukemia excluding CLL 
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Chapter 4, diagnostic plots for a model with specification of  ≥ 0 and 2 ≥ 1 examining 

ERR/10 mGy for leukemia excluding CLL. 
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