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Abstract
TSUI-SHAN LU: Statistical Inferences for Outcome Dependent Sampling

Design with Multivariate Outcomes.
(Under the direction of Haibo Zhou.)

An outcome-dependent sampling (ODS) design has been shown to be a cost-effective

sampling scheme. In the ODS design with a continuous outcome variable, one observes

the exposure with a probability, maybe unknown, depending on the outcome. In practice,

multivariate data arise in many contexts, such as longitudinal data or cluster units. While

the ODS design has been an interest in statistical and applied literature, the statistical

inference procedures for such design with multivariate cases still remain undeveloped.

We develop a general sampling design and inference methods using the ODS under con-

tinuous multivariate settings (Multivariate-ODS ). The standard estimation methods for

multivariate data ignoring the Multivariate-ODS design will yield biased and inconsis-

tent estimates. Therefore, new statistical methods are needed to reap the benefits of a

Multivariate-ODS design.

In this dissertation, we propose three commonly occurring ODS sampling strategies

and study the new semiparametric methods for estimating regression parameters. We

allow a simple random sample (SRS) in all three sampling strategies and the difference

is how the supplemental samples are selected. The first design, the Multivariate-ODS

with a maximum selection criterion, selects the supplemental sample based on whether

the maximum value of the outcomes from an individual exceeds a known cutpoint; the

second design, the Multivariate-ODS with a summation criterion, draws the supplemental
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sample based on whether the sums of the outcome values are above a given cutpoint;

the third design, the Multivariate-ODS with a general criterion, is a more general design

where the selection of the supplemental samples is based on each individual’s responses,

instead of on the aggregate of the outcomes.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

The observational epidemiology study designs are often used when investigating the

relationships between a disease outcome and an exposure given other characteristics. The

commonly used designs include cohort and case-control studies; the former is a study to

observe several individual exposures and the individual disease occurrence on the basis

of a follow-up period and can end up taking a very long time, whereas the case-control

design is retrospective and studying the patients already having a disease to yield more

information on risk factors of this group of people that differ from those who are free

of disease (Cornfield, 1951). The case-control study in epidemiology or the choice-based

sampling in econometrics are examples of an outcome-dependent sampling (ODS) design,

which is more appealing and increasing the efficiency for studying rare diseases because

the researchers can concentrate resources on observations with the greatest amount of

information of primary interest (Anderson, 1972). If the observations on exposures and

other covariates are easier or cheaper to measure, then the ideal situation is to collect all

of the data on every member in a finite population studied. However, this is not always

the case due to high cost, limited resources and inefficiency. As a result, the case-control



study is preferred since it can avoid making statistical inferences on the entire population

and still achieve the efficiency provided by the selected subsets of observations sampled

based on the outcome. The logistic regression method is widely utilized to estimate the

adjusted relative risks between a dichotomized response and exposures, are applied to

analyze the subsamples of diseased cases and diseased-free controls obtained from an

underlying population.

Based on the framework of the case-control study design, one can further enhance

efficiency and reduce cost by double sampling for stratification, balancing the numbers

of exposed and non-exposed individuals within cases and controls for whom covariate

information is ascertained. White (1982) proposed a two-stage stratified design, where

data on the response variable and the exposure variable are obtained for a large sample

in the first stage and only information on other covariates from a subsample is avail-

able in the second stage, with the purpose of studying the association between a rare

exposure and a rare disease, sampling a larger proportion of the subjects from the small

groups and a smaller proportion from the large groups to achieve the efficiency of the

estimates of the parameters of interest. Variations of White’s two-stage sampling have

been discussed and proposed. For example, Breslow and Cain (1988) considered the

preliminary sample to be separate samples of cases and controls drawn from subpopula-

tion of diseased and non-diseased subjects, and developed modified logistic regression for

data in a two-stage case-control design. Prentice (1986) considered a case-control within

a cohort design for the failure-time data. Other published research making inferences

on two-stage case-control studies includes Zhao and Lipsitz (1992), Schill et al. (1993),

Wacholder and Weinberg (1994), Lawless, Kableisch and Wild (1999), and Wang and
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Zhou (2005 and 2009). Breslow and Holubkov (1997) proposed the method to obtain the

full maximum likelihood estimator of logistic regression parameters under the two-stage

outcome-dependent sampling with the binary outcome variable. Much work for studying

dichotomous outcomes under an ODS setting has been continuously developed.

For studies of investigating the association between an exposure measure and a con-

tinuous outcome, a common approach is to dichotomize the outcome or categorize it with

several cutpoints and conduct statistical analyses on the categorical outcomes. However,

this will result in selection bias since dichotomization of the outcome will induce a loss of

efficiency and information and increase the risk for misclassification (Suissa, 1991; Zhou

et al., 2002).

For directly using continuous outcome variable without losing information on di-

chotomization, Zhou et al. (2002) considered a general ODS scheme where an overall

simple random sample from the base population (the prospective component) and ad-

ditional supplement samples drawn from segments of the outcome space of particular

interest (the retrospective component) were observed. In other words, the supplemen-

tal random samples are chosen depending on the outcome, a case-control-like sampling,

from the observations believed to be the most informative. They proposed a semipara-

metric empirical likelihood inference procedure in which the underlying distribution of

covariates is treated as a nuisance parameter and is left unspecified. Weaver and Zhou

(2005) developed an estimated likelihood method for continuous outcome under a similar

outcome-dependent sampling scheme with the exception that the sampling is independent

of a continuous auxiliary covariate. For missing exposure and other important covari-

ates of each member, they proposed a maximum estimated likelihood estimator (MELE)
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which is related to the “plug-in” method (Pepe and Fleming, 1991, and Zhou and Pepe,

1995). Under the setting of the ODS samping described by Zhou et al. (2002), Wang

and Zhou (2006) considered the model for both the binary outcome and the response

variable with more than two categories while the information on the parent cohort is

little and the sampling probability is not identifiable, which for example, arises when

the percentage of response from each member in the first stage is relatively low. They

proposed a semiparametric empirical likelihood-based method with auxiliary covariates

that relate to the exposure of interest. The advantage to such ODS design is that the

statistical power is improved over the simple random sample design because investigators

can oversample sub-populations believed to be influential, and in the meantime the study

itself can enhance efficiency by allowing the selection probability of each individual in

the ODS sample to depend on the outcome.

The methods discussed above were all developed for a univariate continuous outcome

variable; that is, only one outcome measurement per subject has been so far considered.

In practice, data collected are often in a multivariate form for the response variable: lon-

gitudinal in nature where multiple observations for an individual are collected or where

studies are conducted on the basis of participating cluster units. We can see that multi-

variate data arise in many contexts in some examples: in epidemiological cohort studies

where the outcomes are recorded for members within families; in animal experiments in

which treatments are applied to samples of littermates; in most clinical trials where study

subjects are experiencing multiple events. Among these studies, a common feature is that

the responses might be correlated. As the field of epidemiology expands and evolves, an

increasing number of studies are conducted using the Multivariate-ODS design, a further

4



generalization of the biased sampling, which is built on the idea of the ODS design with

aggregate of the responses and allows investigators to concentrate resources on the seg-

ments with the greatest amount of information. The related and motivated examples of

studies will be given in the following section. The robust and efficient statistical method

accounting for the Multivariate-ODS setting, however, is still underdeveloped. There-

fore, new and efficient development of statistical inference procedure is needed in order

to take advantage of data sets under the Multivariate-ODS design.

In this dissertation, we propose to develop statistical inferences on regression models

under a Multivariate-ODS design. We will show that if the outcome-dependent nature is

correctly accounted for, then we can develop more efficient and powerful estimators. Then

we can investigate the sampling strategies under the Multivariate-ODS framework that

will indeed lead to more cost-effective studies. The underlying distributions of covariates

will be modeled nonparametrically using the empirical likelihood methods. A novelty

of the proposed methods is that one will be able to make inferences on the regression

parameters without postulating any of the distributions for the covariates by combining

a nonparametric component with a parametric regression model. We will use simulated

data to evaluate our proposed estimators and compare their efficiency with those of other

naive and existed methods. The proposed method will be also applied to analyze the

data sets presented in the next section.
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1.2 Studies With Multivariate-ODS Design Schemes

We are motivated by the following studies, which illustrate how each design involves

a Multivariate-ODS scheme with continuous outcomes.

1.2.1 The Collaborative Perinatal Project

The Collaborative Perinatal Project (CPP) is a prospective cohort study designed to

identify determinants of neurodevelopmental deficits in children (Niswander and Gordon,

1972; Gray et al., 2000). Nearly 56,000 pregnant women were recruited into the CPP

study from 1959 through 1966 at any one of 12 study centers across the United States

(Baltimore, Maryland; Boston, Massachusetts; Buffalo, New York; Memphis, Tennessee;

Minneapolis, Minnesota; New Orleans, Louisiana; New York, New York (2 hospitals);

Philadelphia, Pennsylvania; Portland, Oregon; Providence, Rhode Island; and Richmond,

Virginia). Women were enrolled, usually at their first prenatal visit; it resulted in 55,908

pregnancies (9,161 women contributed multiple pregnancies to the study). Data were

collected on the mothers at each prenatal visit and at delivery and when the children

were 24 hours, 4 and 8 months, and 1, 3, 4, 7, and 8 years. Among all the measures,

we are interested in audiometric evaluation, which was done when the children were

approximately 8 years old. Longnecker et al. (2004) studied the association in humans

between maternal third trimester serum polychlorinated biphenyls (PCBs) levels and

audiometry results in offsprings at approximately 8 years old. They defined sensorineural

hearing loss (SNHL) as a hearing threshold ≥ 13.3 dB based on the average across

both ears at 1000, 2000, and 4000 Hz, in conjunction with no evidence of conductive
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hearing loss, which was defined by the air-bone difference in hearing threshold being ≥

10 dB, based on the average across both ears as well. The sample selected by the study

investigators in the analysis is indeed in a Multivariate-ODS setting: 726 having an

8-year audiometric evaluation of 1200 subjects selected at random from the underlying

population and a supplemental sample of 200 eligible children randomly selected from the

440 children whose 8-year audiometric evaluation showed SNHL. In other words, we can

investigate such data by developing a regression model for multiple continuous outcomes

under a Multivariate-ODS design with two components: an overall random sample of the

population and one supplemental random sample taken from subjects who are defined

as having hearing loss, in order to achieve greater efficiency than a completely simple

random sample or simply dichotomizing the continuous outcome.

1.2.2 The Family Heart Study

The Family Heart Study (FHS) (Higgins et al., 1996 and Liao et al., 1997) is a

population-based, multi-center study designed to identify and evaluate the genetic and

nongenetic determinants of coronary heart disease (CHD), atherosclerosis, and cardio-

vascular risk factors. Individuals and families were recruited in two phases from three

ongoing parent cohort studies: the Forsyth, North Carolina, and Minneapolis, Minnesota

cohorts of the Atherosclerosis Risk in Communities (ARIC) study, the Framingham Heart

Study, and the Utah Family Thee Study in Salt Lake City. In phase I (June 1993 to

July 1995), 3168 probands, 6283 parents (3140 fathers and 3143 mothers), 2834 cur-

rent spouses, 12140 siblings, and 10902 children in the probands’ families were recruited
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to the FHS. A simple random sample of approximately 500 probands from each study

site and another 500 probands with a high family risk score for CHD were sampled to

characterize personal histories of CHD and related conditions. A family risk score was

calculated using reported (observed) number of CHD events in first-degree relatives and

the numbers expected, defined as the sum of the probabilities for the individual family

members. To be eligible in the phase II, families should have two or more CHD events

and risk scores of 0.5 or higher. This resulted in 588 randomly selected families and 657

families with the highest risk scores.

Liao et al. (1997) used logistic regression models to estimate the adjusted prevalence

of proband stroke, based on the data from phase I of the FHS. The estimate obtained in

their report could only capture the plausible risk factors for proband stroke status, but

indeed ignore the data set analyzed was not a random sample and moreover, only a small

number of strokes was present. To better take advantage of this huge data and establish

a relationship between familial stroke history and other determinants, we can develop a

model in a Multivariate-ODS design, in which the risk scores of father and son from each

family are considered as outcome variables at the same time, to make the most use of all

available data. We will revisit the Family Heart Study in the later Chapter.

1.3 Notation and Data Structure

1.3.1 Study Population and Model

Suppose we have a base population, each subject having multiple responses and cor-

responding covariates, such as exposure of interest and other characteristics observed or
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measured, for which we denote Y as a vector of responses and X as the corresponding

covariate vector. Suppose these realizations are from the joint density of (Y , X) that can

be written as f(Y |X; θ)gX(X), (Y ,X) ∈ Y × X, where f(Y |X; θ) is the conditional

density function for Y given X, θ is a vector of the regression coefficients of interest,

and gX(X) is the marginal density of X, which is independent of θ, and Y and X are

the spaces of Y and X, respectively. In the next section, we will first review the ODS

design with only one response variable for each subject. Then the Multivariate-ODS

schemes with difference selection criteria how the supplemental samples are obtained will

be described thereafter.

1.3.2 The ODS Design for Univariate Outcome Variable

Let Y be a one-dimension continuous outcome variable. Assume that the domain of

Y is partitioned into K mutually exclusive intervals by the fixed constants, −∞ = a0 <

a1 < . . . < aK−1 < aK = ∞. The kth interval is denoted as Ck = (ak−1, ak], k = 1, . . . , K.

Zhou et al. (2002) discussed a general ODS design allowing study investigators to obtain

an overall simple random sample (SRS) of size n0 and some supplemental samples of size

nk for the kth interval. The data structure for their design have two component:

(i) SRS Component: {Y0i,X0i}, i = 1, · · · , n0;

(ii) Supplemental Component: {Yki, Xki | Yki ∈ Ck}, i = 1, · · · , nk;

the total sample size for such ODS sample is n =
∑K

i=0 ni.

Several ODS settings can be designed on the basis of the above general sampling

scheme. For example, when n0 > 0 and nk = 0 for each k, the design reduces to an
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SRS. The sampling augmented by a non-zero-observation SRS and several at-least-one-

observation extra samples from strata, is another ODS format. Or, a random sample

obtained can be strictly stratified, including supplemental samples with at least one

subject for each but without an SRS. The data structure applied by Zhou et al (2002)

is when K = 3 and n2 = 0, n0 > 0, n1 > 0, n3 > 0; that is, supplemental samples were

observed from the tails of the distribution of Y .

1.3.3 The Multivariate-ODS Design Schemes

Let Yij be the jth continuous outcome for the subject i, where i = 1, . . . , n and

j = 1, . . . , p (p ≥ 2), and Xi be a vector of covariates, which can include both discrete

and continuous components for the ith subject; Yi is a p-dimensional response vector

(p ≥ 2) for the ith subject. A Multivariate-ODS design includes two components: an

overall simple random sample (SRS) from the base population and some supplemental

samples randomly drawn from the domain of interest. Motivated by the CPP study

and the Family Heart Study described in Section 1.2, we will discuss the following three

selection criteria under a Multivariate-ODS scheme in this dissertation: (i) the maximum,

(ii) the summation, and (iii) the general selection criteria. The likelihood functions and

derivations for the corresponding estimators under each criterion will be presented in the

following chapters.

The Multivariate-ODS with a Maximum Selection Criterion

The maximum selection criterion refers to the case where supplemental samples are

chosen based on the maximum response out of each subject’s outcome values. This
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is particularly useful in the genetics studies. Suppose that the space of the maximum

responses from the population, Ymax = {max(Yi1, . . . , Yip),∀i}, is the union of K mutually

exclusive strata by the fixed constants −∞ = a0 < a1 < . . . < aK−1 < aK = ∞, and

Ck = (ak−1, ak], k = 1, . . . , K, is the kth interval. The subject in the kth supplemental

sample is observed if his/her maximum observation from the outcome values falls in the

interval Ck. The data structure consisting of a simple random sample of size n0 (≥ 0)

and supplemental samples of size nk (≥ 0) drawn from Ck is as follows:

(i) SRS Component:

{
Yi, Xi

}
, i = 1, . . . , n0 ;

(ii) Supplemental Component:

{
Yi, Xi | max{Yi1, . . . , Yip} ∈ Ck

}
, i = 1, . . . , nk and

k = 1, · · · , K .

Let n =
∑K

k=0 nk be the total sample size of the Multivariate-ODS for which we observe

complete data.

The Multivariate-ODS with a Summation Selection Criterion

This is the case when we observe supplemental random samples according to the

sums of response measures. Assume that the domain of interest, the sums of responses,

Y• =

{
p∑

j=1

Yij, ∀i
}

, is partitioned into K mutually exclusive intervals by the known

constants −∞ = a0 < a1 < . . . < aK−1 < aK = ∞, and the kth interval is denoted as

Ck = (ak−1, ak], k = 1, . . . , K. The data structure of the Multivariate-ODS design under

such selection criterion consists of two components: an overall simple random sample

(SRS) of size n0 (≥ 0) and a stratified supplemental sample of size nk (≥ 0) randomly

drawn from each interval Ck:

11



(i) SRS Component:

{
Yi,Xi

}
, i = 1, . . . , n0 ;

(ii) Supplemental Component:

{
Yi,Xi | (

p∑
j=1

Yij) ∈ Ck

}
, i = 1, . . . , nk and k =

1, . . . , K .

The total sample size in the Multivariate-ODS is n =
∑K

k=0 nk.

The Multivariate-ODS with a General Selection Criterion

The previous two selection criteria are discussed on the response domain of interest,

the maximum and the summation, which is not the space of responses itself. In this case,

the supplemental samples will be selected directly based on the response domain. Let

a = {aj, j = 1, . . . , p} and b = {bj, j = 1, . . . , p}, where aj and bj are known constants

and {aj > bj,∀j}, be the fixed cutpoints on the domain of Yj = {Yij, ∀i}. The data

structure of the Multivariate-ODS design under such selection criterion consists of three

components: an overall simple random sample (SRS) of size n0 (≥ 0), a supplemental

sample of size n1 (≥ 0) conditional on {Yi1 > a1, Yi2 > a2, . . . , Yip > ap}, and another

supplemental sample of size n2 conditional on {Yi1 < b1, Yi2 < b2, . . . , Yip < bp}:

(i) SRS Component:

{
Yi,Xi

}
, i = 1, · · · , n0 ;

(ii) Supplemental Component 1:

{
Yi,Xi | {Yi1 > a1, Yi2 > a2, . . . , Yip > ap}

}
, i =

1, . . . , n1 and j = 1, . . . , p ;

(iii) Supplemental Component 2:

{
Yi,Xi | {Yi1 < b1, Yi2 < b2, . . . , Yip < bp}

}
, i =

1, . . . , n2 and j = 1, . . . , p ;

the total sample size in the Multivariate-ODS is n =
∑2

k=0 nk.
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1.4 Literature Review

In this section, we will review related background and methods, some of which with

some modifications could be applied to our Multivariate-ODS data structure, for making

inferences about the parameters when data are obtained in an ODS scheme.

1.4.1 Methods for Data from a Case-Control Design

In epidemiological studies of correlating a disease with an exposure and other explana-

tory variables, the disease status is often dichotomous as having the disease or free of

disease, and therefore epidemiologic cohort and case-control study designs are frequently

used. A cohort study is a form of longitudinal and observational studies, based on data

from a follow-up period of a group in which some have had, have or will have the expo-

sure of interest, to determine the association between that exposure and the outcome.

Studying infrequent events, such as death from cancer or a rare disease, using random-

ized clinical trials or other controlled prospective studies requires that relatively large

populations be tracked for lengthy periods to observe disease development in order to

yield reasonable results. These studies, however, can be prohibitively expensive because

of the low likelihood that a certain disease will be developed.

An alternative is the case-control study design, which has several advantages, such

as its efficiency, its applicability to rare as well as common diseases and its support of

evaluating the cause-effect relationship (Breslow and Day, 1980). The basic and general

tool allowing the scope of case-control study analysis is the linear logistic regression

model. To be more specific, denote the case that the individual develops the disease as
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y = 1 and the control for the disease-free individual as y = 0. The model that relates

a single dichotomous outcome variable y to K regression variables (x1, . . . , xK) can be

written as

Pr(y = 1 | x) =
exp(α +

∑
βkxk)

1 + exp(α +
∑

βkxk)
(1.1)

or equivalently,

logit Pr(y = 1 | x) = α +
∑

βkxk

where α is the log odds of disease risk for a person with all the regression variables being

zero and βk is a parameter estimate for a multiplicative effect on the odds ratio.

However, the limitation of the case-control design is that it can only be applied to

the dichotomous outcome variables under the logistic regression model. For a continuous

outcome to fit the case-control design, dichotomizing the outcome may result in misclas-

sification and tend to lose information. As a result, the method that takes the advantage

of the case-control study and at the same time directly and fully utilize information in

the continuous outcome has also been developed.

1.4.2 Other Extension of Case-Control Studies

White (1982) proposed a two-stage design especially for a rare disease and a rare

exposure, whether it be cohort or case-control and used weighted least squares methods

for estimating the relative risks. In the first stage, only data on the response and the

exposure variables are collected from a large sample, which indeed is costly. During the

second stage, random samples within the four groups: the case groups (the diseased and
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exposed/unexposed) and the control groups (the non-diseased and exposed/unexposed)

are chosen and information about other covariates is obtained. Under the scenario of a

rare disease and exposure, one can expect very disparate sizes of the four groups and hence

the advantage of the two-stage design is that additional observations from the smaller

groups can also contribute to the estimation as well as those from the larger groups and

together, such design can result in more efficient estimates of the parameters. Similar

to the two-stage design, the case-cohort design also only consisting of the disease status

and the exposure variable for all the subjects at the first stage but collecting covariate

histories for all cases and only a random sample of the entire cohort at the second stage,

is proposed to reduce redundant covariate information on disease free subjects (Prentice,

1986). Breslow and Cain (1988) proposed modified logistic regression for case-control

data in the two-stage design and estimated parameters through ‘conditional maximum

likelihood’ under the logistic model, which was developed for choice-based data by Manski

and McFadden (1981) and Hsieh et al. (1985). In summary, Zhao and Lipsitz (1992)

discussed a class of twelve possible designs within the framework of two-stage designs.

Breslow and Holubkov (1997) derived the full maximum likelihood (ML) estimator of

logistic regression coefficients for data under a two-stage, ODS sampling design; data at

the first stage are obtained as an ODS and at the second stage subjects are drawn using

stratified random sampling from the first-stage subpopulations and explanatory variables

are measured thereafter. Breslow and Holubkov’s method demonstrated an advantage

on efficiency of ML estimates for discrete data.

Hsieh et al. (1985) proposed an approach for estimation of response probabilities

from choice-based data when retrospective data were augmented by auxiliary information
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since case-control data alone cannot effectively identify response probabilities. Scott and

Wild (1997) obtained maximum likelihood estimates of the parameters by fitting logistic

regression models for stratified case-control and response-selective data. They showed

the maximum likelihood estimates by simply iterating the pseudo-likelihood procedure

by Wild (1991) with an ”offset” parameter updated between iterations.

Wang and Zhou (2006) proposed a semiparametric empirical likelihood method for

data in the two-stage ODS design, whose structure is

(i) SRS Component: {Yi, Xi,Wi}, i = 1, . . . , m;

(ii) Supplemental Component:
J⋃

j=1

K⋃

k=1

[
{Xi|Yi = j,Wi = k}, i = 1, . . . , njk

]
;

W is a categorical auxiliary variable for X where {W = k, k = 1, . . . , K}. The key

settings are that information on the parent cohort is unavailable and that the sam-

pling probability is nonidentifiable. The empirical likelihood estimates for the marginal

distribution of the covariates conditional on the auxiliary variable are estimated simulta-

neously. The proposed method can be applied to binary and multi-categorical outcome

data.

1.4.3 Methods for Data from an ODS Design with Continuous Outcome

Recently, the continuous, univariate outcome in the ODS data has been considered

along with the likelihood function derived.

Semiparametric Likelihood Method
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Lawless et al. (1999) derived full semiparametric maximum likelihood estimates and

developed several other semiparametric approaches for θ for the response-selective data in

the stratified ODS design, generated from the model f(y|x; θ)g(x), where y is a response

and x is a vector of covariates. They reviewed general semiparametric approaches for

the stratified problems under the assumption that the strata totals for the sampling

population are unknown. They presented theoretical asymptotic results for the estimators

and handled the problems from the ODS, measurement error, and the missing data

literature under a single framework.

Zhou et al. (2002) proposed a semiparametric empirical likelihood method for for data

in an ODS design with a continuous outcome. Suppose X is a vector of covariates and

the continuous outcome variable, Y , is partitioned into K mutually exclusive intervals

by known constants satisfying that −∞ = a0 < a1 < . . . < aK−1 < aK = ∞ and let the

kth interval be denoted as Ck = (ak−1, ak] , k = 1, . . . , K. Particularly, they considered

the ODS sample consisting of an overall simple random sample of size n0 and stratified

supplemental random samples from the K intervals, each with size of nk, k = 1, 2, . . . , K.

Let L(β, GX) denote the likelihood function for the ODS data

L(β, GX) =

[
n0∏
i=1

fβ(y0i|x0i)gX(x0i)

]
×

[
K∏

k=1

nk∏
j=1

fβ(ykj, xkj|ykj ∈ Ck)

]
, (1.2)
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where β is the regression coefficient of interest. It can be further rewritten as

L(β, GX) =

{ n0∏
i=1

fβ(y0i|x0i)
K∏

k=1

nk∏
j=1

fβ(ykj|xkj)

F (ak|xkj)− F (ak−1|xkj)

}

×
{ n0∏

i=1

gX(x0i)
K∏

k=1

nk∏
j=1

[F (ak|xkj)− F (ak−1|xkj)]gX(xkj)

F (ak)− F (ak−1)

}

= L1(β)× L2(β,GX), (1.3)

where F (u) = Pr(Y ≤ u) and F (u|x) = Pr(Y ≤ u|x). Zhou et al. obtained an estimate

for β without specifying a form for GX by profiling L2(β, GX) by fixing β and then

maximized the resulting profile likelihood function with respect to β. An empirical

estimate of GX , whose mass is located at each of the observed points xi, is obtained

(Verdi, 1985, Owen, 1988, 1990, and Qin and Lawless, 1994). Denote pi = gX(xi) as

discrete distributions with jumps at each point. L2(β,GX) is proportional to

L2(β, {pi}) ∝
n∏

i=1

piπ
−n1
1 π−n3

3 , (1.4)

where the case is taking when K = 3 and n2 = 0, n1 > 0, n3 > 0, n = n0 + n1 + n3;

π1 = F (a1) and π3 = 1−F (a2) = F̄ (a2). Then L2 is maximized over β and pi subject to

the following constraints:

{
pi ≥ 0,

n∑
i=1

pi = 1,
n∑

i=1

pi{F (a1|wi)− π1} = 0,
n∑

i=1

pi{F̄ (a2|wi)− π3} = 0

}
. (1.5)

These constraints were implemented to uphold the properties of GX as a discrete dis-

tribution function with support points at each observed point, xi. Using the Lagrange
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multiplier argument to maximize over pi, one can write

H = logL2(β, {pi})+ρ(1−
n∑

i=1

pi)+nλ1

n∑
i=1

pi{F (a1|wi)−π1}+nλ3

n∑
i=1

pi{F̄ (a2|wi)−π3} ,

(1.6)

where ρ, λ1, and λ3 are Lagrange multipliers. From the score equation of H with respect

to pi with the constraints in (1.5), one can show that ρ = n and

p̂i =
1

n
· 1

1 + λ1{F (a1|wi)− π1}+ λ3{F̄ (a2|wi)− π3}
, i = 1, . . . , n. (1.7)

Then an empirical profile log likelihood function can be obtained by plugging (1.7) into

L2 and the maximum semiparametric empirical likelihood estimator (MSELE) for the

parameter vector can be derived. Zhou et al. showed efficient semiparametric estimation

methods and likelihood ratio statistics that do not require specification of any distribution

for the covariates.

Maximum Estimated Likelihood Estimator

Weaver and Zhou (2005) extended work above to the context of two-stage design,

considering the population of whom Y is observed but X is unobserved, in additional to

the ODS sample. Let nV be the validation sample and nV̄ be the nonvalidation sample,

referring to the complete observations and incomplete observations, respectively. Let N

denote the total study population, including both complete and incomplete, Nk be the

size of the kth stratum, k = 1, . . . , K, and nV̄ ,k = Nk − n0,k − nk be the stratum size for
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the nonvalidation sample. The full-information likelihood is

LF (β, GX) =

[∏
i∈V

f(Yi|Xi; β)

][∏
i∈V

gX(Xi)

] 
∏

j∈V̄

fY (Yj; β)


 . (1.8)

Unlike it in Zhou et al., a simple global empirical distribution function to estimate GX is

not valid since the data set on the covariate observations is not simple random sample.

They proposed the estimator of GX as

ĜX(x) =
K∑

k=1

Nk

N
Ĝk(x) , (1.9)

where

Ĝk(x) =
∑
i∈Vk

I{Xi ≤ x}
nk + n0,k

(1.10)

is the empirical distribution function for the covariates in the stratum k. Then the last

term in (1.8) is replaced with

f̂Y (Yj; β) =

∫
f(Yj|x; β)dĜX(x) =

K∑

k=1

Nk

N(nk + n0,k)

∑
i∈Vk

f(Yj|Xi; β) , (1.11)

After substituting the above equation into (1.8), the logarithm transformation of the

likelihood function is

l̂F (β) =

[∑
i∈V

ln f(Yi|Xi; β)

]
+


∑

j∈V̄

ln

{
K∑

k=1

Nk

N(nk + n0,k)

∑
i∈Vk

f(Yj|Xi; β)

}
 . (1.12)
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The maximum estimated likelihood estimators (MELEs), β, can be obtained from the

score equations of (1.12).

1.4.4 Methods for Modeling Multivariate Data under Non-ODS Setting

It is common in epidemiology that the response status from an individual is observed

over time or repeatedly and therefore, data often comprise a binary or categorical time

series. If there is only one single observation for each subject, the generalized linear mod-

els (GLMs) (McCullagh and Nelder, 1989), an extension of the linear modeling process,

can be used to fit regression models on such univariate data, where response variables

follow any probability distribution in the exponential family of distributions.

Longitudinal data for example consist an outcome variable, yit, and a p× 1 vector of

covariates, xit, at times t = 1, . . . , ni for subjects i = 1, . . . , K; statistical methods are

already well-developed for modeling and analysis if data are approximately multivariate

normally distributed. Laird and Ware (1982) proposed two-stage random-effects mod-

els for repeated measurements, where there is no requirement for balance in the data.

The multiple measurements for each individual are assumed to follow the same probabil-

ity distribution whereas the random-effects parameters of that distribution vary across

subjects, which is so-called the second stage of the model. Ware (1985) presented and

provided a detailed description of linear models for analyzing Gaussian longitudinal data.

For binary longitudinal data with time dependence within each individual’s responses,

logistic regression (Cox, 1958, 1970) for a single binary outcome for each subject is no

longer valid because taking effect of dependence resulted from correlated data within
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each subject into account is necessary. Zeger et al. (1985) analyzed binary longitudinal

data with time-independent covariates with two proposed working models: one is that

observations over time within each subject are assumed to be independent; the other one

is that each series for each subject is a stationary Markov chain or order one, having a

common first lag autocorrelation. They showed consistency property of both estimators

under weak assumptions.

Extending GLMs to analyzing non-Gaussian longitudinal data, Liang and Zeger

(1986) and Zeger and Liang (1986) further introduced a class of generalized estimat-

ing equations (GEEs) for regression parameters, accounting for the correlation among

outcome observations for each subject, {yi}, in generalized linear models. The form for

the joint distribution of the repeated measurements is not specified completely. Instead,

the characteristic of using GEEs is that the marginal distribution of the dependent vari-

able is considered rather than the conditional distribution given previous observations,

and the marginal expectation (average response for observations sharing the same co-

variates) is modeled as a function of explanatory variables of interest. It makes it more

difficult to obtain consistent estimators of the regression coefficients if the time depen-

dence is not correctly specified; therefore, the GEEs for the estimates can guarantee

consistency under minimal assumptions about the time dependence. Diggle, Liang, and

Zeger (1994) provided a thorough review of marginal models and guideline to the choice

of the correlation structures.

Zeger, Liang, and Albert (1988) introduced how a GEEs approach could be used in

fitting both the subject-specific models, in which the heterogeneity is explicitly modelled,

and the population-averaged models, where the regression coefficients are interpreted
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for the population rather than for individuals. Liang, Zeger, and Qaqish (1992) also

illustrated the use of the GEEs with multivariate categorical responses. Particularly, the

method proposed allows to discuss marginal expectations of each response and pairwise

associations.

1.4.5 Remarks

In this section, we will give a brief review and discuss the advantage and disadvantages

of the methods described in this literature review and how the methods can relate to our

proposed research.

In Sections 1.4.1 and 1.4.2, we presented several methods developed for discrete data,

in a general ODS setting. Of these, some methods utilized data obtained in a two-stage

ODS scheme (White, 1982; Prentice, 1986; Breslow and Cain, 1988; Zhao and Lipsitz,

1992; Breslow and Holubkov, 1997; Wang and Zhou, 2006) or choice-based study design

(Manski and McFadden, 1981; Hsieh et al., 1985; Lawless, 1999). Breslow and Holubkov

(1997) derived the full maximum likelihood estimator while Lawless (1999) developed full

semiparametric maximum likehood estimates, which can be directly applicable for con-

tinuous outcome models in which ODS data are from stratified samples. Wang and Zhou

(2006) further considered semiparametric empirical likelihood method for estimation, in-

corporating ODS data in two-stage along with additional information on an auxiliary

variable.

In particular, the maximum semiparametric empirical likelihood estimators proposed

by Zhou et al. (2002) and Weaver and Zhou (2005) were specifically developed for ODS
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sampling scheme with continuous outcome variable, which were described in detail in

Section 1.4.3. Therefore, our proposed methods will be an extension of those discussed

by them for obtaining the estimates to multivariate continuous response variables.

Recently, a commonly applied approach is the GEEs (Liang and Zeger, 1986) if lon-

gitudinal data are non-Gaussian and comprised of repeated and correlated observations

for an outcome variable. However, this method is available and applicable only when

data are from simple random samples; in other words, for the Multivariate-ODS data we

consider here, the assumptions for GEEs are invalid. Moreover, as we will discuss later,

the estimator obtained, without knowing the marginal density of covariates, is not the

most efficient.

It is clear from the discussion above that a method for estimating the parameters in

a Multivariate-ODS regression model is needed for development. In this dissertation, we

will propose and investigate such a method, as outlined in the next section.

1.5 Outline of the Remaining Dissertation

In Chapter 2, we will revisit the notation and the data structures under three Multivariate-

ODS designs outlined in Section 1.3.3. We will develop the semiparametric likelihood

approaches for each semiparametric empirical likelihood estimator for estimating the

parameters in the model.

In Chapter 3, we will present asymptotic results for the proposed estimator using a

maximum selection criterion. The consistency and asymptotic normality properties of

the semiparametric maximum likelihood estimators will be shown and the asymptotic
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variance structure will be derived.

In Chapter 4, we will study the small sample properties of the proposed estimator for

the maximum selection criterion using simulated data with a bivariate normal regression

model. The main goals are to see if (i) the asymptotic distribution derived in Chapter

3 is a reasonable approximation in the small samples and (ii) the proposed variance

estimator is a good approximation to the actual variance in the small samples. Results

obtained for the proposed estimator using the Multivariate-ODS design in this research

will be compared to results obtained using other naive competing estimators. We will

also study relative efficiencies by comparing our proposed estimator with the estimator

from a simple random sample of the sample size as the Multivariate-ODS sample. In

the end of this chapter, we will apply the proposed method to analyze the Collaborative

Perinatal Project data described Section 1.2.

In Chapter 5, we will propose the estimator for the Multivariate-ODS design with a

summation selection criterion to obtain the supplemental data. The proposed estimator

will be shown to be consistent and asymptotically normally distributed. The asymptotic

variance structure will be derived and a consistent variance estimator will be given. Then

the small sample properties of the proposed estimator using a bivariate normal model will

be studied. We will compare the proposed estimator to other competing estimators to

determine what gains in efficiency, using simulated data generated from the conditional

model specified to be a Normal density function. Then the proposed method will be

applied to the CPP data. Asymptotic results for this estimator will be given in the end

of this chapter. Chapter 5 is presented in a format of the manuscript.

In Chapter 6, we will study the estimator for the Multivariate-ODS design with a
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general selection criterion to obtain the supplemental samples. We will show that the

proposed estimator is consistent and asymptotically normally distributed, and derive the

asymptotic variance structure. The small sample properties of the proposed estimator

under the same model as in Chapters 4 and 5 will be discussed, where an extensive

simulation study is carried out. The applications to the CPP data using the proposed

method will be demonstrated. Again, this chapter is presented in a manuscript format

and a sketched proof for the asymptotic results will be shown in the end of this chapter.

In Chapter 7, We will summarize this dissertation and suggest some possible exten-

sions of the proposed methods in future research.

Advantages of the Proposed Estimators

Much research has been discussed for multivariate data, of which is a common and

important form in epidemiological studies; nevertheless, the methods accounting for the

Multivariate-ODS design are lacking. The proposed estimators by incorporating addi-

tional information into such Multivariate-ODS process can provide consistent and more

efficient parameter estimates than those obtained by using a simple random sample of

the same size. Our proposed estimators are semiparametric in nature that all the un-

derlying distributions of covariates are modeled nonparametrically using the empirical

likelihood methods. The Multivariate-ODS design, combined with an appropriate anal-

ysis, provides a cost-effective approach to conduct and analyze biomedical studies with

multivariate responses for a given sample size.
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CHAPTER 2

PROPOSED METHODS FOR THE
MULTIVARIATE-ODS DESIGN

2.1 Introduction

In this chapter, we present three proposed semiparametric empirical likelihood meth-

ods for estimating the regression parameters for data obtained from an outcome-dependent

sampling scheme with multivariate continuous outcomes according to the scenarios de-

scribed in Section 1.3.3. In Section 2.2, we will develop the estimators from Multivariate-

ODS data where the supplemental samples are obtained using the maximum selection

criterion. In Section 2.3, we derive the estimators for the Multivariate-ODS with a

summation selection criterion. The estimator for the Multivariate-ODS with a general

selection criterion will be developed in Section 2.4.



2.2 The Multivariate-ODS with a Maximum Selection Crite-

rion

2.2.1 Multivariate-ODS Likelihood for the Maximum Selection Criterion

Let Yij be the jth continuous outcome for the subject i, where i = 1, . . . , n and

j = 1, . . . , p (p ≥ 2), and Xi be a vector of covariates, which can include both discrete

and continuous components for the ith subject. The range of the random variable, Ymax =

{max(Yi), ∀i} which consists of the maximum values of the responses, can be partitioned

into K mutually exclusive intervals by the fixed constants −∞ = a0 < a1 < . . . < aK−1 <

aK = ∞ and the kth interval is represented by Ck = (ak−1, ak], where k = 1, . . . , K. The

data structure consists of two components: an overall simple random sample (SRS) of

size n0 and a stratified supplemental sample of size nk randomly selected from the interval

Ck:

(i) SRS Component:

{
Yi,Xi

}
, i = 1, . . . , n0 ;

(ii) Supplemental Component: for each k (k = 1, . . . , K),

{
Yi,Xi | max{Yi1, . . . , Yip} ∈

Ck

}
, i = 1, . . . , nk .

Note that Yi is a p-dimensional response vector. The joint density of (Yi,Xi) can be

written as f(Yi|Xi; θ)gX(Xi), where f(Yi|Xi; θ) is the conditional density of Yi given

Xi, θ is the vector of regression coefficients of interest, and gX(Xi) is the marginal

density of Xi, which is independent of θ. The unknown distribution function of the

covariates Xi is denoted as GX(Xi); Yi and Xi are assumed to be completely observed

for all i. Without loss of generality, we assume that p = 2 and K = 1, meaning each
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subject has two observations and the supplemental sample is randomly drawn from the

upper tail of the distribution of max(Y ), i.e. C1 = (a1,∞). That is, the ith subject in

the supplemental sample is randomly selected if his/her maximum value of the responses

is greater than a1. For simplicity, we drop the subscription of a1 and denote a. Thus, the

likelihood function in correspondence to the Multivariate-ODS with a maximum selection

criterion is

LM(θ, GX) =

[
n0∏
i=1

f(Yi|Xi; θ) gX(Xi)

]
×

[
n1∏
i=1

f(Yi,Xi|max(Yi) > a; θ)

]
, (2.1)

where the first bracket represents the quantity of the likelihood for the observations

from the SRS of the Multivariate-ODS while the quantity in the second bracket is the

likelihood contributed by the supplemental sample. Using Bayes’ Law, the likelihood

function can be further rewritten as

LM(θ, GX) =

[
n0∏
i=1

f(Yi|Xi; θ)gX(Xi)

][
n1∏
i=1

f(Yi|Xi; θ)gX(Xi)

1− Pr{max(Yi) < a}

]
. (2.2)

To simplify notation, we define that

P0(X; θ) = Pr{max(Y ) < a|X} = Pr{Y1 < a, Y2 < a|X} =

∫ a

−∞

∫ a

−∞
f(Y |X; θ)dY1dY2

(2.3)

and

π = Pr{max(Y ) < a} =

∫

X
P0(X; θ)gX(X)dX (2.4)
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are the conditional and marginal probabilities that every element in Y is less than a,

respectively. Rearranging the terms, we can then have

LM(θ, GX) =

[
n0∏
i=1

f(Yi|Xi; θ)gX(Xi)

][
n1∏
i=1

f(Y1|X1; θ)gX(Xi)×
n1∏
i=1

1

1− π

]

=

[
n∏

i=1

f(Yi|Xi; θ)

] [(
n∏

i=1

gX(Xi)

)
× (1− π)−n1

]

= LM1(θ)× LM2(θ, GX) , (2.5)

where

LM1(θ) =
n∏

i=1

f(Yi|Xi; θ) , (2.6)

LM2(θ, GX) =

(
n∏

i=1

gX(Xi)

)
× (1− π)−n1 . (2.7)

There are several possible approaches that could be used to make inferences about

θ. Without knowing GX , one of the naive approaches is to take the observations in the

SRS portion of the Multivariate-ODS and derive a maximum likelihood estimator for θ.

However, ignoring the information from the supplemental sample would lose accuracy

and efficiency. Or, one could obtain θ by maximizing the conditional likelihood based

on the complete data in the Multivariate-ODS . Clearly, these two estimators are not

the most efficient since the information regarding the supplemental sample is not fully

accounted. If GX(X) is parameterized to a parameter vector, say ξ, one could maximize

the resulting LM(θ, ĜX) subject to (θ, ξ). However, misspecification of GX could lead

to erroneous conclusions so that such approach will be limited only if the form of GX

is correctly specified. As a result, a nonparametric modeling of GX is desirable in this
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case. Nevertheless, GX cannot be easily factored out of LM2(θ, GX) and is an infinite-

dimensional nuisance parameter. Thus, to incorporate all the available information in

the Multivariate-ODS data without specifying GX , one needs a new method that will

be tractable both theoretically and computationally. We next describe a semiparametric

empirical likelihood estimator, where GX is left unspecified.

2.2.2 Semiparametric Empirical Likelihood Estimator for the Maximum Se-

lection Criterion

Our plan is to obtain a profile log likelihood function for θ by first fixing θ and

obtaining the empirical likelihood function of GX in (2.5) (Vardi, 1985), which will be

a function of θ and π. Then we can obtain the maximum likelihood estimator θ̂ by

maximizing the resulting profile log likelihood function over θ.

First we maximize LM(θ, GX), with θ fixed, over all discrete distributions whose

support includes the observed values by considering a discrete distribution function (i.e.

a step function) which has all of its probability located at the observed data points

(Vardi, 1985). Let pi = dGX(Xi) = gX(Xi), i = 1, . . . , n, be the probability mass for

the ith covariate vector. We search values for {p̂i, ∀i}, which maximize the log likelihood

function corresponding to (2.5)

lM(θ, {pi}) =
n∑

i=1

ln f(Yi|Xi; θ) +
n∑

i=1

ln pi − n1 ln (1− π) , (2.8)
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subject to the following restrictions

{
pi ≥ 0 ∀i,

n∑
i=1

pi = 1,
n∑

i=1

pi

(
P0(Xi; θ)− π

)
= 0

}
. (2.9)

The above conditions reflect the fact that GX is a discrete distribution function. For a

fixed θ, there exists a unique maximum for {pi} in (2.8), subject to the constraints in

(2.9) if 0 is inside the convex hull of the points {P0(Xi; θ),∀i} (Owen, 1988; Qin and

Lawless, 1994). We consider the following Lagrange multiplier argument to maximize lM

over {pi},

HM(θ, {pi}, η, λ) =
n∑

i=1

ln f(Yi|Xi; θ) +
n∑

i=1

ln pi − n1 ln (1− π)

−η

(
n∑

i=1

pi − 1

)
− nλ

n∑
i=1

pi

(
P0(Xi; θ)− π

)
, (2.10)

where η and λ are the Lagrange multipliers corresponding to the normalized restriction

on the {p̂i}. We take the derivative of HM with respect to pi and set it to equal 0 to

obtain the score equation,

∂HM

∂pi

=
1

pi

− η − nλ

(
P0(Xi; θ)− π

)
= 0 , (2.11)

which implies that

p̂i =
1

η + nλ

(
P0(Xi; θ)− π

) . (2.12)

Then, multiplying both sides of (2.12) by pi, summing over i, and using the characteristics
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of the restrictions, we then have

n− η − nλ

n∑
i=1

pi

(
P0(Xi; θ)− π

)
= 0 , (2.13)

which implies that η̂ = n. Substituting η̂ back into (2.13), we have

p̂i =

{
n

[
1 + λ

(
P0(Xi; θ)− π

)]}−1

. (2.14)

Thus, we can obtain a function of θ, λ and π by replacing pi in (2.8) with p̂i. Let

φT
M = (θT , λ, π) represent the combined parameter vector and note that we are treating

π as a parameter independent of θ and so does λ. Thus, the resulting profile log likelihood

function for φM is

lM(φM) =
n∑

i=1

ln f(Yi|Xi; θ)−
n∑

i=1

ln n

[
1 + λ

(
P0(Xi; θ)− π

)]
−n1 ln(1− π) , (2.15)

which can be maximized over φ̂M . We refer φ̂M as a semiparametric empirical maximum

likelihood estimator (SEMLE). The Newton-Raphson algorithm is used to solve the score

equations from (2.15) and find a root. In order to start the iterative procedure with

consistent initial estimators, we will use the maximum likelihood estimators obtained

from the likelihood function involving only the SRS portion of the Multivariate-ODS as

our starting values for θ. These initial values are to be adequate for converging to the

root corresponding to the SEMLE.
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2.3 The Multivariate-ODS with a Summation Selection Crite-

rion

2.3.1 Multivariate-ODS Likelihood for the Summation Selection Criterion

In this section, we present the estimator under a summation selection criterion in-

troduced in Section 1.3.3. Recall that the domain of interest, the sums of responses Y•

=

{ p∑
j=1

Yij, ∀i
}

, can be partitioned into K mutually exclusive intervals by the known

constants −∞ = a0 < a1 < . . . < aK−1 < aK = ∞, and the kth interval is denoted as

Ck = (ak−1, ak], k = 1, . . . , K. The data structure of the Multivariate-ODS design under

such selection criterion consists of two components: an overall simple random sample

(SRS) of size n0 (≥ 0) and a stratified supplemental sample of size nk (≥ 0) randomly

drawn from the interval, Ck:

(i) SRS Component: {Yi,Xi}, i = 1, . . . , n0 ;

(ii) Supplemental Component: for each k (k = 1, . . . , K),

{
Yi,Xi|(

p∑
j=1

Yij) ∈ Ck

}
,

i = 1, . . . , nk, j = 1, . . . , p .

Without loss of generality, we assume that p = 2 and K = 1. That is, each individual

has two observations and one only selects the supplemental sample in the upper tail of

the distribution of {
p∑

j=1

Yij , ∀i}, i.e., C1 = (a1,∞). To simplify the notation, we denote

a1 as a. Let n = n0 + n1 be the total sample size of the Multivariate-ODS we observe.

Let LS(θ, GX) be the joint likelihood function for the observed data using the summation
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selection criterion such that

LS(θ, GX) =

[
n0∏
i=1

f(Yi|Xi; θ)gX(Xi)

][
n1∏
i=1

f(Yj,Xj|(Yi1 + Yi2) > a; θ)

]
, (2.16)

where the first bracket is the likelihood corresponding to the observations from the SRS

portion of the Multivariate-ODS and the second quantity represents the likelihood con-

tributions of the observations in the supplemental sample; f(Y |X; θ)gX(X) is the joint

density of (Y , X), where f(Y |X; θ) is the conditional density function of Y given X,

θ is a vector of the regression coefficients of interest, and gX(X) is the marginal density

of X, which is independent of θ. The corresponding unknown distribution function of

X is denoted as GX(X). Using Bayes’ Law, we can rewrite (2.16) as

LS(θ, GX) =

[
n0∏
i=1

f(Yi|Xi; θ)gX(Xi)

][
n1∏
i=1

f(Yi|Xi; θ)gX(Xi)

1− Pr(Yi1 + Yi2 < a)

]

=

[
n0∏
i=1

f(Yi|Xi; θ)gX(Xi)

][
n1∏
i=1

f(Yi|Xi; θ)gX(Xi)×
n1∏
i=1

1

1− π(θ, GX)

]

=

[
n∏

i=1

f(Yi|Xi; θ)

][(
n∏

i=1

gX(Xi)

)
× (1− π)−n1

]

= L1(θ)× L2(θ, GX) , (2.17)

where

LS1(θ) =
n∏

i=1

f(Yi|Xi; θ) (2.18)

and

LS2(θ, GX) =

(
n∏

i=1

gX(Xi)

)
× (1− π)−n1 . (2.19)
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Note that for simplicity, we define that

P0(X; θ) = Pr{Y1 + Y2 < a|X} =

∫ ∞

−∞

∫ a−Y2

−∞
f(Y |X; θ)dY1dY2 (2.20)

and

π = π(θ, GX) =

∫

X

P0(X; θ)dGX (2.21)

are the conditional and the marginal probabilities that the sum of the elements in Y is

less than a, respectively.

2.3.2 Semiparametric Empirical Likelihood Estimator for the Summation

Selection Criterion

The approach to obtain a profile log likelihood function for θ is similar to the method

presented in the previous section. We next give a brief derivation and will revisit this

topic in details in Chapter 5. The log likelihood corresponding to (2.17) is

lS(θ, GX) =
n∑

i=1

ln f(Yi|Xi; θ) +
n∑

i=1

ln gX(Xi)− n1 ln(1− π) . (2.22)

We use the similar argument for GX(X) as discussed in the previous section for a max-

imum selection criterion. Let pi = dGX(Xi) = gX(Xi), ∀i, be the probability mass

for the ith vector of covariates. We then search for values {p̂i,∀i}, maximizing the log
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likelihood function

lS(θ, {pi}) =
n∑

i=1

ln f(Yi|Xi; θ) +
n∑

i=1

ln pi − n1 ln(1− π) (2.23)

subject to the following constraints:

{
pi ≥ 0 ∀i,

n∑
i=1

pi = 1,
n∑

i=1

pi

(
P0(Xi; θ)− π

)
= 0

}
. (2.24)

We then consider the following Lagrange function to maximize lS over all {pi,∀i},

HS(θ, {pi}, µ, λ) =
n∑

i=1

ln f(Yi|Xi; θ) +
n∑

i=1

ln pi − n1 ln(1− π)

−µ

(
n∑

i=1

pi − 1

)
− nλ

n∑
i=1

pi

(
P0(Xi; θ)− π

)
, (2.25)

where µ and λ are the Lagrange multipliers corresponding to the normalized restriction

on the {p̂i,∀i}. With θ fixed and taking the derivative of HS with respect to pi, the score

equation is

∂HS

∂pi

=
1

pi

− µ− nλ

(
P0(Xi; θ)− π

)
= 0 . (2.26)

Together with the constraints in (2.24), it is straightforward to see that µ̂ = n and

p̂i =

{
n

[
1 + λ

(
P0(Xi; θ)− π

)]}−1

. (2.27)
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Substituting {p̂i} back into (2.23), we then have the resulting profile log likelihood func-

tion,

lS(φSM) =
n∑

i=1

ln f(Yi|Xi; θ)−
n∑

i=1

ln n

[
1 + λ

(
P0(Xi; θ)− π

)]
−n1 ln(1− π) , (2.28)

where φT
SM = (θT , λ, π) is a combined parameter vector and λ and π are treated as

the parameters independent of θ. The semiparametric empirical maximum likelihood

estimator (SEMLE), φ̂SM , is a maximizer for (2.28). The Newton-Raphson algorithm is

used to solve the score equation from (2.28).

2.4 The Multivariate-ODS with a General Selection Criterion

2.4.1 Multivariate-ODS Likelihood for the General Selection Criterion

In this section, we present the proposed method with a more flexible and general

selection criterion when considering the supplemental samples under the Multivariate-

ODS design. To fix notation, let Yij be the jth continuous outcome for the subject i,

where i = 1, . . . , n and j = 1, . . . , p (p ≥ 2), and Xi be a vector of covariates for the ith

subject, which can include both discrete and continuous components. Recall the notation

used in Section 1.3.3. We assume that a = {aj, j = 1, . . . , p} and b = {bj, j = 1, . . . , p},

where aj and bj are known constants and satisfying {aj > bj, ∀j}, are the fixed cutpoints

on the domain of Yj = {Yij, ∀i}. Different from those in the previous Multivariate-ODS

selection schemes, now the data structure under such selection criterion consists of three

components: an overall simple random sample (SRS) of size n0 (≥ 0), a supplemental
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sample of size n1 (≥ 0) conditional on {Yi1 > a1, Yi2 > a2, . . . , Yip > ap}, and another

supplemental sample of size n2 conditional on {Yi1 < b1, Yi2 < b2, . . . , Yip < bp}:

(i) SRS Component:

{
Yi,Xi

}
, i = 1, · · · , n0 ;

(ii) Supplemental Component 1:

{
Yi,Xi | {Yi1 > a1, Yi2 > a2, . . . , Yip > ap}

}
, i =

1, . . . , n1 and j = 1, . . . , p ;

(iii) Supplemental Component 2:

{
Yi,Xi | {Yi1 < b1, Yi2 < b2, . . . , Yip < bp}

}
, i =

1, . . . , n2 and j = 1, . . . , p ;

the total sample size in the Multivariate-ODS is n =
∑2

k=0 nk.

Without loss of generality, we assume that p = 2, i.e., each individual has two re-

sponses, and therefore the cutpoints are set to be a1, a2, b1 and b2. The joint density of

(Y , X) can be written as f(Y |X; θ)gX(X), where f(Y |X; θ) is the conditional density

function of Y given X, θ is a vector of the regression coefficients of interest, and gX(X)

is the marginal density of X, which is independent of θ. The corresponding unknown

distribution function of X can be denoted as GX(X). We can then write the joint like-

lihood function, LGL(θ, GX), for (Y , X) drawn into the Multivariate-ODS under the

general selection criterion as

LGL(θ, GX) =

[
n0∏
i=1

f(Yi, Xi; θ)

][
n1∏
i=1

f(Yi1, Yi2,Xi; θ|Yi1 > a1, Yi2 > a2)

]

×
[

n2∏
i=1

f(Yi1, Yi2,Xi; θ|Yi1 < b1, Yi2 < b2)

]
, (2.29)

where the first component is the likelihood from the SRS in the Multivariate-ODS while

the last two parts are contributions from the two supplemental samples. By using Bayes’
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Law, the above likelihood can be further rewritten as

LGL(θ, GX) =

[
n0∏
i=1

f(Yi1, Yi2|Xi; θ)gX(Xi)

][
n1∏
i=1

f(Yi1, Yi2|Xi; θ)gX(Xi)

Pr(Yi1 > a1, Yi2 > a2)

]

×
[

n2∏
i=1

f(Yi1, Yi2|Xi; θ)gX(Xi)

Pr(Yi1 < b1, Yi2 < b2)

]

=

[
n0∏
i=1

f(Yi1, Yi2|Xi; θ)gX(Xi)

][
n1∏
i=1

f(Yi1, Yi2|Xi; θ)gX(Xi)

π1(θ, GX)

]

×
[

n2∏
i=1

f(Yi1, Yi2|Xi; θ)gX(Xi)

π2(θ, GX)

]

=

[
n∏

i=1

f(Yi1, Yi2|Xi; θ)

][(
n∏

i=1

gX(Xi)

)
π−n1

1 π−n2
2

]

= LGL1(θ)× LGL2(θ, GX) , (2.30)

where

LGL1(θ) =
n∏

i=1

f(Yi|Xi; θ) (2.31)

and

LGL2(θ, GX) =

(
n∏

i=1

gX(Xi)

)
π−n1

1 π−n2
2 ; (2.32)

and for simplicity, we define

P1(X; θ) = Pr{Y1 > a1, Y2 > a2|X} =

∫ ∞

a1

∫ ∞

a2

f(Y |X; θ)dY1dY2 (2.33)

and

π1 = π1(θ, GX) =

∫

X
P1(x; θ)gX(X)dX (2.34)

40



are the conditional and marginal probabilities that Y1 and Y2 satisfy {Y1 > a1, Y2 > a2};

P2(X; θ) = Pr{Y1 < b1, Y2 < b2|X} =

∫ b1

−∞

∫ b2

∞
f(Y |X; θ)dY1dY2 (2.35)

and

π2 = π2(θ, GX) =

∫

X
P2(x; θ)gX(X)dX , (2.36)

are the conditional and marginal probabilities for {Y1 < b1, Y2 < b2}.

Using similar arguments for GX(X), we avoid specifying a parametric form for GX

and consider a semiparametric empirical likelihood approach to maximizing LGL(θ, GX)

with respect to (θ, GX), which is desirable and tractable both theoretically and compu-

tationally.

2.4.2 Semiparametric Empirical Likelihood Estimator for the General Selec-

tion Criterion

We follow a similar approach to derive a profile log likelihood function for θ in (2.30)

as discussed in the previous sections. We will elaborate the proposed method for the

general selection criterion again in Chapter 6.

We first maximize L(θ, GX), with θ fixed, by considering a discrete distribution

function (i.e. a step function) which has all of its probability located at the observed

data points (Vardi, 1985) to over all discrete distributions whose support includes the

observed values. Let pi = dGX(Xi) = gX(Xi), i = 1, . . . , n, be the probability mass for

the ith covariate vector. We want to search for values {p̂i, ∀i} which maximize the log
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likelihood function with respect to (2.30)

lGL(θ, {pi}) =
n∑

i=1

ln f(Yi1, Yi2|Xi; θ) +
n∑

i=1

ln pi − n1 ln π1 − n2 ln π2 , (2.37)

subject to the following constraints:

{
{pi} ≥ 0 ∀i,

n∑
i=1

pi = 1,
n∑

i=1

pi

(
P1(Xi; θ)− π1

)
= 0,

n∑
i=1

pi

(
P2(Xi; θ)− π2

)
= 0

}
.

(2.38)

The above conditions reflect the fact that GX is a discrete distribution function. For a

fixed θ, there exists a unique maximum for {pi} in (2.37) subject to the constraints in

(2.38) if 0 is inside the convex hull of the points {P1(Xi; θ), ∀ i} and {P2(Xi; θ), ∀ i} (Qin

and Lawless, 1994). We use the Lagrange multiplier argument to maximize lGL(θ, {pi})

over all {pi,∀i},

HGL(θ, {pi}, δ, λ1, λ2) =
n∑

i=1

ln pi − n1 ln π1 − n2 ln π2 − δ

( n∑
i=1

pi − 1

)

−nλ1

n∑
i=1

pi

(
P1(Xi; θ)− π1

)
−nλ2

n∑
i=1

pi

(
P2(Xi; θ)− π2

)
,

where the restrictions that π1 =
n∑

i=1

piP1(Xi; θ) and π2 =
n∑

i=1

piP2(Xi; θ) are reflected;

δ, λ1 and λ2 are the Lagrange multipliers corresponding to the normalized restriction

on the {p̂i,∀i}. After taking the derivative of HGL with respect to pi and applying the

constraints in (2.38), we obtain δ̂ = n and

p̂i =

{
n

[
1 + λ1

(
P1(Xi; θ)− π1

)
+λ2

(
P2(Xi; θ)− π2

)]}−1

, (2.39)
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where i = 1, . . . , n. We can then substitute p̂i back to (2.30) to obtain a function of θ,

π1, π2, λ1 and λ2. Define φT
GL = (θT , π1, π2, λ1, λ2), representing the combined parameter

vector and note that we are treating λ1, λ2, π1 and π2 as parameters independent of θ.

Thus, the resulting profile log likelihood function for φGL is

lGL(φGL) =
n∑

i=1

ln f(Yi|Xi; θ)−
n∑

i=1

ln n

[
1 + λ1

(
P1(Xi; θ)− π1

)
+λ2

(
P2(Xi; θ)− π2

)]

−n1 ln π1 − n2 ln π2 . (2.40)

We refer φ̂GL as the semiparametric empirical maximum likelihood estimator (SEMLE),

which is a maximizer of (2.40). The Newton-Raphson algorithm will be used to solve

the score equations with respect to (2.40) and the initial values to start the iterative

procedure will be the maximum likelihood estimators obtained from the first term in the

likelihood (2.29) which involves only the SRS part of the Multivariate-ODS .
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CHAPTER 3

ASYMPTOTIC PROPERTIES OF THE
SEMIPARAMETRIC MAXIMUM

LIKELIHOOD ESTIMATOR FOR THE
MULTIVARIATE-ODS WITH THE

MAXIMUM SELECTION CRITERION

3.1 Introduction

In this chapter, we will derive the asymptotic properties of the semiparametric em-

pirical maximum likelihood estimator, φM , for the Multivariate-ODS design with a max-

imum selection criterion presented in Section 2.2. We will demonstrate the existence

and consistency of these estimators and derive the asymptotic normal distribution for

this estimator; furthermore, we will derive a consistent estimator for the asymptotic

variance-covariance matrix. In Section 3.2, we introduce some additional and useful no-

tations which will be used in the proofs later and present several assumptions required

for the proofs along with notational conventions. In addition, we state some useful pre-

liminary results which will be useful in the proofs. In Section 3.3, we demonstrate the

main results for φM regarding the consistency, asymptotic normality, and a consistent

estimator for the asymptotic variance-covariance matrix as three theorems, respectively.

Rigorous proofs of the main results will be provided in Sections 3.4 and 3.5.



3.2 Notation, Assumptions, and Useful Preliminary Results

3.2.1 Notation

Recall from Section 2.2.2 that the profile log-likelihood function for the Multivariate-

ODS with a maximum selection criterion is

lM(φM) =
n∑

i=1

ln f(Yi|Xi; θ)−
n∑

i=1

ln n

[
1 + λ

(
P0(Xi; θ)− π

)]
−n1 ln(1− π) , (3.1)

where φM = (θT , π, λ)T represents the combined parameter vector,

P0(X; θ) = Pr{max(Y ) < a|X} = Pr{Y1 < a, Y2 < a|X}

=

∫ a

−∞

∫ a

−∞
f(Y |X; θ)dY1dY2 (3.2)

and

π = π(θ, GX) = Pr{max(Y ) < a} =

∫

X
P0(X; θ)gX(X)dX (3.3)

are conditional and marginal probabilities, respectively. Here we assume that θ is a p-

dimensional parameter vector so that φM is the combined parameter vector of dimension

(p + 2)× 1.

We indicate φ0
M as the true parameter vector of interest containing θ0, π0 and λ0,

where π0 is the true marginal probability that the maximum value of the observations

from each individual is less than the cutpoint, a, and λ is the Lagrange multiplier. For

any function h(Y , X), E

[
h(Y ,X)

]
denotes expectation conditional on {max(Y ) < a}
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so that

E

[
h(Y ,X)

]
=

∫

X

1

π0

∫ a

−∞

∫ a

−∞
h(y, x)f(y|x; θ0)dydGX(x) .

3.2.2 Assumptions

We assume the following regularity conditions throughout this chapter:

A1. As n →∞,
n1

n
→ γ > 0 and

n0

n
→ 1− γ > 0, where γ represents the supplemental

sampling fraction.

A2. The parameter space, Θ, is a compact subset of Rp; θ0 lies in the interior of Θ; the

covariate space, X, is a compact subset of Rq, for some q ≥ 1.

A3. f(y|x; θ) is continuous in both y and θ and is strictly positive for all y ∈ Y,

x ∈ X, and θ ∈ Θ. Furthermore, the partial derivatives, ∂f(y|x; θ)/∂θi and

∂2f(y|x; θ)/∂θi∂θj, for i, j = 1, . . . , p, exist and are continuous for all y ∈ Y,

x ∈ X, and θ ∈ Θ.

A4. Interchanges of differentiation and integration of f(y|x; θ) are valid for the first and

second partial derivatives with respect to θ.

A5. The expected value matrix,

E

[
−∂2 ln f(Y |X; θ0)

∂θ∂θT

]
,

is finite and positive definite at θ0.
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A6. There exists a δ > 0 such that for the set A = {θ ∈ Θ : |θ − θ0| ≤ δ},

E

[
supA

∣∣∣∣
∂2 ln f(Y |X; θ)

∂θi∂θj

∣∣∣∣
]
< ∞,

for i, j = 1, . . . , p.

A7. The derivatives,
∂P0(x; θ0)

θj

, j = 1, . . . , p, are linearly independent. That is, suppose

t is any (p× 1) such that
p∑

j=1

tj
∂P0(x; θ0)

θj

= 0

for almost all x ∈ X if t = 0.

Remarks Regarding the Assumptions:

(i) The compactness condition in A2, from Cosslett (1981b) which follows Jennrich

(1969) and Amemiya (1973), is imposed to obtain uniform convergence properties,

simplifying the complexity of the proofs.

(ii) We can extend the condition in A3 (first discussed in Weaver’s Dissertation (2001))

from the conditional density f(Y |X; θ) directly to the marginal density

f(Y ; X,θ). A simple proof is as follows. Since f(Y |X; θ) is a continuous function

of θ, i.e. for every ε > 0, there exists a δ > 0 such that

∣∣∣∣f(Y |X; θ1)− f(Y |X; θ2)

∣∣∣∣< ε
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whenever |θ1 − θ2| < δ. Then

∣∣∣∣
∫

X
f(Y |X; θ1)dGX(X)−

∫

X
f(Y |Xθ2)dGX(X)

∣∣∣∣

≤
∫

X

∣∣∣∣f(Y |X; θ1)− f(Y |X; θ2)

∣∣∣∣dGX(X)

<

∫

X
εdGX(X)

= ε ,

whenever |θ1 − θ2| < δ. This implies that f(Y ; X,θ) is continuous of θ as well.

Similarly, this result can be applied to the first and second partial derivatives of

f(Y ; X,θ) is continuous of θ.

(iii) Assumptions A4 and A5 are standard assumptions.

(iv) Uniform convergence of the second derivative matrix of the log likelihood function

to the information matrix can be obtained by using assumption A6. Note that

this assumption can be directly extended to the marginal density of f(Y ; X,θ)

although this is stated in terms of the conditional density, f(Y |X; θ).

(v) A7, directly following Cosslett (1981b), is used to obtain the limiting form of the

Hessian matrix of the profile likelihood function with respect to θ being positive

definite.

(vi) It can be shown that assumptions A2 through A6 provide sufficient conditions

such that the usual consistency and asymptotic normality for maximum likelihood

estimators hold for f(Y |X; θ) (see Foutz, 1977 and Sen and Singer, 1993). (The
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proofs will be not be shown here.)

3.2.3 Preliminary Results

Before we prove three theorems in the next section, we will state some lemmas which

are useful in our proofs. These results are well-known and frequently applied. The proofs

of these lemmas can be found in the references provided.

The results of the following lemma are often used and its proof can be found in

Lehmann (1999), page 50.

Lemma 3.1: If Xn and Yn are two sequences of random variables and a and b are two

constants such that Xn
p−→ a and Yn

p−→ b, then

Xn + Yn
p−→ a + b ,

Xn × Yn
p−→ a× b , and

Xn/Yn
p−→ a/b if b 6= 0 .

Lemma 3.2 below is taken directly from Weaver’s (2001) Lemma 3.1, which is a

restatement of Jennrich’s (1969) Theorem 2. This lemma established the uniform con-

vergence of a sample mean of functions bounded to its expected value in a sense of Law

of Large Numbers. The proof of a similar result can be found in Jennrich (1969). Note

that stronger results were established by Rao (1962).
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Lemma 3.2: Let Θ be a compact subset of a Euclidean space and let Ψ be a Euclidean

space. Let g(ψ,θ) be a continuous function of θ ∈ Θ for each ψ ∈ Ψ, such that |g(ψ,θ)|

is bounded by some function h(ψ) for all ψ and θ, where h(ψ) is integrable with respect

to a probability distribution function F on Psi. If ψ1,ψ2, . . . is a random sample from

F , then for almost every sequence {ψi},

1

N

∑
i=1

Ng(ψi; θ)
p−→

∫

Ψ

g(ψ; θ)dF (ψ)

uniformly for all θ ∈ Θ.

A principal tool in the proof of consistency of our proposed estimators is the Inverse

Function Theorem. The version of the theorem given below is taken from Foutz (1977,

pp. 147).

The Inverse Function Theorem: Suppose f is a mapping from an open set Θ in

Euclidean r space, Er into Er, the partial derivatives of f exist and are continuous on

Θ, and the matrix of derivatives f ′(θ∗) has inverse f ′(θ∗)−1 for some θ∗ ∈ Θ. Write

λ = 1/(4‖f ′(θ∗)−1‖) .

Use the continuity of the elements of f ′(θ∗) to fix a neighborhood Uδ of θ∗ of sufficiently

small radius δ > 0 to insure that ‖f ′(θ)− f ′(θ∗)‖ < 2λ, whenever θ ∈ Uδ. Then (a) for

every θ1, θ2 in Uδ,

|f(θ1)− f(θ2)| ≥ 2λ|θ1 − θ2| ,
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and (b) the image set f(Uδ) contains the open neighborhood with radius λδ about f(θ∗).

Conclusion (a) in the theorem above guarantees that f is one-to-one on Uδ and that

f−1 is well-defined on the image set f(Uδ). The theorem is proven in this form in Rudin

and Walter (1964, pp. 193-194).

Lemma 3.3 below is more generally restated by Weaver (in his dissertation, 2001) from

Foutz’ (1977) result which established the existence of a unique consistent solution to the

likelihood functions by using the Inverse Function Theorem. Similarly, we will weaken

the requirement of the matrix of second derivatives of the log likelihood function being

negative definite; in stead, we only require that the limiting second derivative matrices be

invertible. This has been shown to be a sufficient condition for Foutz’ result in Weaver’s

dissertation (2001, pp. 56 - 57).

Lemma 3.3: Let {fN(θ)} be a sequence of continuous, random, vector-valued functions

of θ ∈ Θ ⊂ Rp. Suppose that, for all N, the partial derivatives of fN(θ) with respect to θ

exist and are continuous on Θ; let f ′
N(θ) be the p×p dimensional matrix containing these

partial derivatives. Let H(θ) be a p×p dimensional matrix whose elements are continuous

functions of θ such that H−1(θ∗) exists for some θ∗ ∈ Θ. Suppose that f ′
N(θ)

p−→ H(θ)

as N → ∞ uniformly for θ in an open neighborhood around θ∗. Furthermore, assume

that fN(θ∗)
p−→ 0. Then, there exists a sequence {φ̂N} such that

fN(θ̂N) = 0 (3.4)
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with probability going to one as N →∞, and

θ̂N
p−→ θ∗. (3.5)

If another sequence θN also satisfies (3.4) and (3.5), then θ̂N = θN with probability going

to one as N →∞.

The lemma originally stated and proven by Amemiya (1973, Lemma 4) is slightly

modified in the following to help us prove the asymptotic normality using the consistency

result of an estimator.

Lemma 3.4: Let fN(θ), N = 1, . . . ,∞, be measurable functions on a measurable space

Ω and continuous functions for θ in a compact set Θ. If fN(θ) converges to f(θ) with

probability approaching one uniformly for all θ in Θ as N −→ ∞, and if θ̃N converges

to θ∗ with probability approaching one, then fN(θ̃N) converges to f(θ∗) with probability

approaching one.

3.3 Main Results for the SEMLE

We state the three main results for the SEMLE, φ̂M , under the Multivariate-ODS

with a maximum selection criterion in this section. Theorems 3.1 and 3.2 demonstrate

the consistency and asymptotic normality, respectively; Theorem 3.3 establishes a con-

sistent estimator for the asymptotic variance-covariance matrix derived in Theorem 3.2.

Rigorous and detailed proofs of these theorems are provided in the following sections.
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Theorem 3.1 (Consistency of the SEMLE φ̂M): With probability going to 1 as

n →∞, there exists a sequence {φ̂M} of solutions to the score equations with respect to

(3.1) such that φ̂M
p−→ φ0, where φ0 is the true parameter vector of interest. If another

sequence {φM} of solutions to the score equations exists such that φM

p−→ φ0
M , then

φM = φ̂M with probability going to 1 as n →∞.

Theorem 3.2 (Asymptotic Normality of the SEMLE φ̂M): φ̂M has the following

asymptotic normal distribution:

√
n(φ̂M − φ0

M)
D−→ N(p+2)(0, Σ(φ0

M)) ,

with the asymptotic variance-covariance matrix

Σ = J−1V J−1 , (3.6)

where

J = − ∂2l̃M(φ0
M)

∂φM ∂φT
M

and

V = Var

[
∂lM(Y ,X; φ0

M)

∂φM

]
,

where l̃M is the limiting form of lM .

Theorem 3.3 (A Consistent Estimator for the Asymptotic Variance-Covariance

Matrix): A consistent estimator for the variance-covariance matrix shown in Equation
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(3.6) is

Σ̂(φ̂M) = Ĵ−1(φ̂M)V̂ (φ̂M)Ĵ−1(φ̂M),

where

Ĵ(φM) = − 1

n

∂2lM(φM)

∂φM ∂φT
M

and

V̂ (φM) =
1

n
V̂ar{i}

[
∂lM(Yi,Xi; φ

0
M)

∂φM

]
.

3.4 Consistency of the SEMLE

Before we prove Theorem 3.1 in Section 3.4.4, we begin with the first and second

derivatives of the log-likelihood function in Section 3.4.1, which will be useful for the

derivation of consistency and asymptotic normality later. In order to apply the Inverse

Function Theorem and Lemma 3.3 to the proof of the consistency, we first show that the

log-likelihood function asymptotically has a root at the true parameter in Section 3.4.2,

and then explore the nature of this root through its Hessian matrix in Section 3.4.3.

Finally, we wrap up all of these results to prove Theorem 3.1.
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3.4.1 First and Second Derivatives of the Log-likelihood Function

Recall the profile log-likelihood function in (3.1),

lM(φM) =
n∑

i=1

ln f(Yi|Xi; θ)−
n∑

i=1

ln n

[
1 + λ

(
P0(Xi; θ)− π

)]
−n1 ln(1− π)

=
n∑

i=1

ln h(Yi,Xi; φM)− n ln n− n1 ln(1− π) , (3.7)

where

h(Yi,Xi; φM) =
f(Yi|Xi; θ)

1 + λ

(
P0(Xi; θ)− π

) , (3.8)

and φM = (θT , π, λ)T .

The first and second derivatives with respect to each parameter in φM are calculated

in the following:

∂lM(φM)

∂θ
=

n∑
i=1

∂ ln f(Yi|Xi; θ)

∂θ
−

n∑
i=1

∂ ln

[
1 + λ

(
P0(Xi; θ)− π

)]

∂θ

=
n∑

i=1

∂ ln f(Yi|Xi; θ)

∂θ
−

n∑
i=1

λ
∂P0(Xi; θ)

∂θ

1 + λ

(
P0(Xi; θ)− π

) ; (3.9)

∂lM(φM)

∂π
= −

n∑
i=1

∂ ln

[
1 + λ

(
P0(Xi; θ)− π

)]

∂π
+

n1

1− π

=
n∑

i=1

λ

1 + λ

(
P0(Xi; θ)− π

) +
n1

1− π
; (3.10)
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∂lM(φM)

∂λ
= −

n∑
i=1

∂ ln

[
1 + λ

(
P0(Xi; θ)− π

)]

∂λ

= −
n∑

i=1

P0(Xi; θ)− π

1 + λ

(
P0(Xi; θ)− π

) ; (3.11)

∂2lM(φM)

∂θ∂θT
=

n∑
i=1

∂2 ln f(Yi|Xi; θ)

∂θ∂θT
−

n∑
i=1

∂2 ln

[
1 + λ

(
P0(Xi; θ)− π

)]
)

∂θ∂θT

=
n∑

i=1

∂2 ln f(Yi|Xi; θ)

∂θ∂θT
−

n∑
i=1

λ

[
1 + λ

(
P0(Xi; θ)− π

)]
∂2P0(Xi; θ)

∂θ∂θT

[
1 + λ

(
P0(Xi; θ)− π

)]2

+
n∑

i=1

λ2∂P0(Xi; θ)

∂θ

∂P0(Xi; θ)

∂θT[
1 + λ

(
P0(Xi; θ)− π

)]2 ; (3.12)

∂2lM(φM)

∂θ∂π
= −

n∑
i=1

λ2∂P0(Xi; θ)

∂θ[
1 + λ

(
P0(Xi; θ)− π

)]2 ; (3.13)

∂2lM(φM)

∂θ∂λ
= −

n∑
i=1

∂P0(Xi; θ)

∂θ[
1 + λ

(
P0(Xi; θ)− π

)]2 ; (3.14)

∂2lM(φM)

∂π2
=

n∑
i=1

λ2

[
1 + λ

(
P0(Xi; θ)− π

)]2 +
n1

(1− π)2
; (3.15)

∂2lM(φM)

∂π∂λ
=

n∑
i=1

1[
1 + λ

(
P0(Xi; θ)− π

)]2 ; (3.16)
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∂2lM(φM)

∂λ2
=

n∑
i=1

(
P0(Xi; θ)− π

)2

[
1 + λ

[
P0(Xi; θ)− π

)]2 . (3.17)

3.4.2 Limiting Form of the Profile Log-likelihood Function

From the restrictions described in (2.9), we can obtain the following identities:

n∑
i=1

1

n

[
1 + λ

(
P0(Xi; θ)− π

)] = 1 (3.18)

and
n∑

i=1

P0(Xi; θ)

n

[
1 + λ

(
P0(Xi; θ)− π

)] = π . (3.19)

Moreover, we can obtain the score equation of π by setting 1/n times Equation (3.10) to

equal zero, which becomes

n∑
i=1

λ

n

[
1 + λ

(
P0(Xi; θ)− π

)] = −n1

n

1

1− π
. (3.20)

Note that the left-hand side equals to λ from the identity (3.18). After rearranging both

sides,

λ(1− π) = −n1

n
,
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and in conjunction with assumption A1, it is easy to see that λ(1− π) converges to −γ

as n goes to ∞. As a result, we can further have the following identities,

λ
p−→ −γ

1− π0
(3.21)

and

π
p−→ γ + λ0

λ0
, (3.22)

which are useful in the demonstration later. Multiplying Equation (3.9), the first deriva-

tive with respect to θ, by 1/n is

1

n

∂lM(φM)

∂θ
=

1

n

n∑
i=1

∂ ln f(Yi|Xi; θ)

∂θ
− 1

n

n∑
i=1

λ
∂P0(Xi; θ)

∂θ

1 + λ

(
P0(Xi; θ)− π

) . (3.23)

Using assumption A1 and the Law of Large Numbers, we have

1

n

∂lM(φM)

∂θ

p−→ ∂l̃M(φM)

∂θ
, (3.24)
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where

∂l̃M(φM)

∂θ
= E




∂ ln f(Y |X; θ)

∂θ
−

λ
∂P0(X; θ)

∂θ

1 + λ

(
P0(X; θ)− π

)




=

∫

X

∫ a

−∞

∫ a

−∞

f(y|x; θ0)

π0

∂ ln f(y|x; θ)

∂θ
dy dGX(x)

−
∫

X

∫ a

−∞

∫ a

−∞

f(y|x; θ0)

π0

λ
∂P0(x; θ)

∂θ

1 + λ

(
P0(x; θ)− π

) dy dGX(x) .

(3.25)

At the true parameter values, the equation above becomes

∂l̃M(φM)

∂θ

∣∣∣∣∣θ=θ0

π=π0

λ=λ0

=

∫

X

1

π0

∂P0(x; θ0)

∂θ
dGX(x)

−
∫

X

P0(x; θ0)

π0

λ0∂P0(x; θ0)

∂θ

1 + λ0

(
P0(x; θ0)− π0

) dGX(x)

=
1

π0

∂

∂θ
(π0)− λ0

π0

[
γ + λ0

λ0

]∫

X

∂P0(x; θ0)

∂θ
dGX(x)

= 0 , (3.26)

since A4 is used and

∫

X

∫ a

−∞

∫ a

−∞
f(y|x; θ0)dydGX(x) = π0 .
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From Equation (3.10), we note that 1/n times the first derivative with respect to π is

1

n

∂lM(φM)

∂π
=

1

n

n∑
i=1

λ

1 + λ

(
P0(Xi; θ)− π

) +
n1

n

1

1− π
. (3.27)

Applying the Law of Large Numbers, Equation (3.24) converges to

∂l̃M(φM)

∂π
=

−γ

1− π0
+

γ

1− π
. (3.28)

At the true parameter values, it is easy to see that

∂l̃M(φM)

∂π

∣∣∣∣∣θ=θ0

π=π0

λ=λ0

= 0 . (3.29)

For the last parameter in Equation (3.11), we multiply the first derivative with respect

to λ by 1/n and obtain

1

n

∂lM(φM)

∂λ
= −

n∑
i=1

P0(Xi; θ)− π

n

[
1 + λ

(
P0(Xi; θ)− π

)] . (3.30)

Again using the identities, it is straightforward to see that

∂l̃M(φM)

∂λ

∣∣∣∣∣θ=θ0

π=π0

λ=λ0

= 0 (3.31)

at the true parameter values.

Thus, we have shown that the profile log-likelihood function converges in probability
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to a continuous, vector-valued function and a root of the likelihood equations exists; that

is,

1

n

∂lM(φ0
M)

∂φM

p−→ 0 . (3.32)

3.4.3 Limiting Form of the Hessian Matrix

Before taking the advantage of Foutz’ results and Lemma 3.3, we need to show one

more condition that the convergence in probability of the Hessian matrix to its limiting

form is uniform for φM in an open neighborhood about φ0
M . To ensure the parameter

estimators considered here lie in a compact neighborhood, we have to consider a neighbor-

hood U = A×Aπ×Aλ of φ0
M of sufficiently small radius, where π ∈ Aπ = [π0 − ε, π0 + ε]

and λ ∈ Aλ = [λ0 − δ, λ0 + δ], for some ε and δ that 0 < ε < π0γ and 0 < δ < λ0γ.

Using the Law of Large Numbers, 1/n times Equation (3.12) can be shown that

1

n

∂2lM(φM)

∂θ∂θT

p−→ ∂2l̃M(φM)

∂θ∂θT
, (3.33)

where

∂2l̃M(φM)

∂θ∂θT
= E

[
∂2 ln h̃(Y ,X; φM)

∂θ∂θT

]

= E

[
∂2 ln f(Y |X; θ)

∂θ∂θT

]
− E




∂2 ln

[
1 + λ

(
P0(X; θ)− π

)]

∂θ∂θT


 ,

(3.34)

61



where

h̃(y,x; φM) =
f(y|x; θ)

1 + λ

(
P0(x; θ)− π

) (3.35)

is the limiting form of (3.8). Note that the convergence of the first term in (3.12) to the

first term in (3.34) is uniform for all θ ∈ A, by assumption A6 and Lemma 3.2. A is

the neighborhood about θ0 defined in A6. By assumptions A3 and A4, the existence of

the first two derivatives of P0(x; θ) for all x ∈ X and θ ∈ Θ is guaranteed. As a result,

the first two derivatives with respect to θ are uniformly bounded on Θ × X since the

derivatives only involve x and θ and Θ×X is compact by assumption A2. It is obvious

to see that P0(x; θ) is uniformly bounded as well. Therefore, by Lemma 3.2, the second

term in the first equation of (3.12) converges uniformly to the second term in (3.34).

Note that, at (φ0
M),

E




∂2 ln h̃(Y ,X; φ0
M)

∂θ∂θT

h̃(Y ,X; φ0
M)




=

∫

X

∫ a

−∞

∫ a

−∞

f(y|x; θ0)

π0

∂2 ln h̃(Y , X; φ0
M)

∂θ∂θT

h̃(Y ,X; φ0
M)

dy dGX(x)

=

∫

X

[
1 + λ0

(
P0(X; θ0)− π0

)]
∂2

∂θ∂θT

( P0(X; θ0)

π0

1 + λ0

(
P0(X; θ0)− π0

)
)

dGX(x)

=

∫

X

(
1 + λ0

[
P0(X; θ0)− π0

])(
∂2

∂θ∂θT
1

)
dGX(x)

= 0 , (3.36)
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where the identity in (3.19) is used. Since

∂2 ln h̃

∂θ∂θT
= −∂ ln h̃

∂θ

∂ ln h̃

∂θT
+

1

h̃

∂2h̃

∂θ∂θT
,

at the true parameter values, we can see that

∂2l̃M(φM)

∂θ∂θT

∣∣∣∣∣θ=θ0

π=π0

λ=λ0

= E

[
∂2 ln f(Y |X; θ0)

∂θ∂θT

]
− E




∂2 ln

[
1 + λ0

(
P0(X; θ0)− π0

)]

∂θ∂θT




= −E

[
∂ ln h̃(Y ,X; φ0)

∂θ

∂ ln h̃(Y ,X; φ0)

∂θT

]

= −Q . (3.37)

To check that Q is positive definite, we can consider an arbitrary quadratic form, tT Qt for

any tp×1 6= 0 and then apply Assumption A7. For y ∈ Y and x ∈ X, it is straightforward

to see the following equations:

tT Qt = 0

⇐⇒ tT ∂ ln h̃(Y ,X; φ0
M)

∂θ
= 0

⇐⇒
p∑

j=1

tj

[
∂ ln f(Y |X; θ0)

∂θ
−

λ0∂P0(x; θ0)

∂θ

1 + λ0

(
P0(X; θ0)− π0

)
]
= 0

⇐⇒
p∑

j=1

tjλ
0∂P0(x; θ0)

∂θ
= 0 .

From Assumption A7, we know that the last equation above will hold for almost all

x ∈ X only if t = 0. Thus, Q is positive definite.
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Next, by the Law of Large Numbers, we note that 1/n times Equation (3.12)

1

n

∂2lM(φM)

∂θ∂π

p−→ ∂2l̃M(φM)

∂θ∂π
, (3.38)

where

∂2l̃M(φM)

∂θ∂π
= −E




λ2∂P0(X; θ)

∂θ[
1 + λ

(
P0(X; θ)− π

)]2


 . (3.39)

Using similar arguments made previously, it is easy to see that the convergence above is

uniform since the whole term is uniformly bounded. At the true parameter values, we

then have

∂2l̃M(φM)

∂θ∂π

∣∣∣∣∣θ=θ0

π=π0

λ=λ0

= −E




(λ0)2∂P0(X; θ0)

∂θ[
1 + λ0

(
P0(X; θ0)− π0

)]2




= −s . (3.40)

Moving on to the rest of the second derivatives, by the Law of Large Numbers and

assumption A1, we can see from Equations (3.14) to (3.17) that

1

n

∂2lM(φM)

∂θ∂λ

p−→ ∂2l̃M(φM)

∂θ∂λ
, (3.41)

1

n

∂2lM(φM)

∂π2

p−→ ∂2l̃M(φM)

∂π2
, (3.42)

1

n

∂2lM(φM)

∂π∂λ

p−→ ∂2l̃M(φM)

∂π∂λ
, (3.43)
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and

1

n

∂2lM(φM)

∂π∂λ

p−→ ∂2l̃M(φM)

∂π∂λ
(3.44)

uniformly for φM on U , where

∂2l̃M(φM)

∂θ∂λ
= −E




∂P0(X; θ)

∂θ[
1 + λ

(
P0(X; θ)− π

)]2


 , (3.45)

∂2l̃M(φM)

∂π2
= E




λ2

[
1 + λ

(
P0(X; θ)− π

)]2


 +

γ

(1− π)2
, (3.46)

∂2l̃M(φM)

∂π∂λ
= E

[[
1 + λ

(
P0(X; θ)− π

)]2
]

. (3.47)

and

∂2l̃M(φM)

∂λ2
= E




(
P0(X; θ)− π

)2

[
1 + λ

(
P0(X; θ)− π

)]2


 . (3.48)

Then at the true parameter values, the results are as follows:

∂2l̃M(φM)

∂θ∂λ

∣∣∣∣∣θ=θ0

π=π0

λ=λ0

= −E




∂P0(X; θ0)

∂θ[
1 + λ0

(
P0(X; θ0)− π0

)]2


 = −r , (3.49)

∂2l̃M(φM)

∂π2

∣∣∣∣∣θ=θ0

π=π0

λ=λ0

= E




(λ0)2

[
1 + λ0

(
P0(X; θ0)− π0

)]2


 +

γ

(1− π0)2
= −t , (3.50)
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∂2l̃M(φM)

∂π∂λ

∣∣∣∣∣θ=θ0

π=π0

λ=λ0

= E

[[
1 + λ0

(
P0(X; θ0)− π0

)]2
]

= −w . (3.51)

and

∂2l̃M(φM)

∂λ2

∣∣∣∣∣θ=θ0

π=π0

λ=λ0

= E




(
P0(X; θ0)− π0

)2

[
1 + λ0

(
P0(X; θ0)− π0

)]2


 = −z . (3.52)

Combining all the results, we obtain that

− 1

n

∂2lM(φ0
M)

∂φM∂φT
M

p−→ J =




Q s r

s t w

r w z




. (3.53)

We have shown that Q is positive definite and hence nonsingular. It is clear to see that

the other terms of J are integers. As a result, we note that the matrix J is nonsingular

and therefore invertible.

3.4.4 Proof of Consistency

Using the results obtained in the previous sections, we are now ready to prove Theo-

rem 3.1. The idea of our proof follow Theorem 2 in Foutz’ (1977) closely, which showed

the existence of a consistent solution to the likelihood equations and its uniqueness, and

then we apply Lemma 3.3, which modifies Foutz’ conditions and still leads to the same

results.
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Proof of Theorem 3.1. We have shown in Section 3.4.2 that

1

n

∂lM(φ0
M)

∂φM

p−→ 0 . (3.54)

And in Section 3.4.3, we have demonstrated that the convergence in probability of

1

n

∂2lM(φM)

∂φM∂φT
M

p−→ ∂2l̃M(φM)

∂φM∂φM

(3.55)

is uniform for φM in an open neighborhood for φ0
M , and at the true parameter values,

−∂2l̃M(φ0
M)

∂φM∂φT
M

= J , (3.56)

which has been shown to be invertible. To make use of Lemma 3.3, let

fN(φM) =
1

n

∂lM(φM)

∂φM

,

f ′N(φM) =
∂2lM(φM)

∂φM∂φT
M

and

H(θ) =
∂2l̃M(φM)

∂φM∂φT
M

.

Clearly, the conditions in Lemma 3.3 are satisfied so that we can apply Lemma 3.3

and conclude that φ̂M = f−1(0) exists with probability going to one as n → ∞ and

φ̂M
p−→ φ0

M . Furthermore, by the one-to-oneness of fN , any other sequence {φM} being

roots to fN(φM) = 0 must lie outside of U with probability approaching to one as
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n →∞, which demonstrates its uniqueness.

3.5 Asymptotic Normality of the SEMLE

3.5.1 Proof of Asymptotic Normality

We prove the asymptotic normality result in four steps in this section. We first start

from a Taylor series expansion. The limiting form of the Hessian matrix is calculated

thereafter; then, the asymptotic distribution of the estimated score function is derived.

In the end of the proof, Slutsky’s Theorem will be applied to obtain the desired result.

Proof of Theorem 3.2.

Step 1: The Taylor Series Expansion

In the previous section, we have established the consistency result for our proposed

estimator, φ̂M , i.e. this estimator is a consistent solution to the profile score equations.

We consider a Taylor series expansion of the estimated score function around the true

parameter φ0
M evaluated at φ̂M ,

∂lM(φ̂M)

∂φM

=
∂lM(φ0

M)

∂φM

+
∂2lM(φ̃M)

∂φM∂φT
M

(φ̂M − φ0
M) , (3.57)

where φ̃M = κφ0
M + (1− κ)φ̂M for some κ ∈ [0, 1], as in Cosslett (1981b). The left-hand

side of (3.57) is equal to zero since our estimator φ̂M has been shown to be a consistent

solution to ∂lM(φM)/∂φM = 0. Rearranging (3.57) gives

√
n(φ̂M − φ0

M) =

[
− 1

n

∂2lM(φ̃M)

∂φM∂φT
M

]−1[
1√
n

∂lM(φ0
M)

∂φM

]
. (3.58)
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To prove the asymptotic normality of
√

n(φ̂M − φ0
M), it is sufficient to show that the

first bracket of (3.58), −(1/n)∂2lM(φ̃M)/∂φM∂φT
M converges to an invertible matrix in

probability and (1/
√

n)∂lM(φ0
M)/∂φM has an asymptotic normal distribution.

Step 2: The Limiting Form of Hessian Matrix

From Theorem 3.1, we have known that φ̂M
p−→ φ0

M , which implies that φ̃M
p−→ φ0

M .

And we have shown in Section 3.4.3 that

1

n

∂2lM(φM)

∂φM∂φT
M

p−→ ∂2l̃M(φM)

∂φM∂φT
M

uniformly for φM ∈ U . According to Lemma 3.4, we can see that

− 1

n

∂2lM(φ̃M)

∂φM∂φT
M

p−→ −∂2l̃M(φ0
M)

∂φM∂φT
M

= J , (3.59)

where J is given by (3.53). Since J is shown to be positive definite, it follows that its

inverse exists.

Step 3: Derivation of the Asymptotic Distribution of the Estimated Score Function Next,

we consider the asymptotic distribution of n−1/2∂lM(φ0
M)/∂φM , the second bracket in

(3.58). Note that

E

[
∂lM(Y ,X; φ0

M)

∂φM

]
= 0 . (3.60)

69



Then, by the Central Limit Theorem, we know that

1√
n

∂lM(φ0
M)

∂φM

D−→ N(0, V ) ,

where

V = Var

[
∂lM(Y , X; φ0

M)

∂φM

]
. (3.61)

Step 4: Application of Slutsky’s Theorem Finally, combining the results obtained in

Equations (3.59) and (3.61) and then applying Slutsky’s Theorem (Sen and Singer, 1993)

to Equation (3.58), we have that

√
n(φ̂M − φ0

M)
D−→ N(0,Σ(φ0

M)) ,

where

Σ = J−1V J ,

which is the asymptotic covariance matrix of φ̂M .

3.5.2 A Consistent Estimator for the Asymptotic Variance Matrix

Proof of Theorem 3.3. It is noted that the observations from any one component

of the Multivariate-ODS design are i.i.d.; thus, the sample covariance matrix over the
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observed values is consistent for Σ(φM). Then, it is straightforward to see that

V̂ (φM) =
1

n
V̂ar{i}

[
∂lM(Yi,Xi; φM)

∂φM

]
p−→ V (φM) .

By Assumption 3, the components of V (φM) are continuous in φM . We can then use

the triangle inequality to obtain that

‖V̂ (φ̂M)− V (φ0
M)‖ ≤ ‖V̂ (φ̂M)− V (φ̂M)‖+ ‖V (φ̂M)− V (φ0

M)‖ p−→ 0

as n goes to ∞. Furthermore, in the proof of Theorem 3.2, we have shown that

Ĵ(φ̂M) = − 1

n

∂2lM(φ̂M)

∂φM∂φT
M

p−→ J(φ0
M) ,

which was defined in (3.53). It then follows that Σ̂(φ̂M) is a consistent estimator of the

asymptotic covariance matrix.

71



CHAPTER 4

NUMERICAL RESULTS FOR THE
MULTIVARIATE-ODS WITH A

MAXIMUM SELECTION CRITERION

4.1 Introduction

In Chapter 3, we established the asymptotic theory for the SEMLE, φ̂M , under the

Multivariate-ODS with a maximum selection criterion and derived the theoretical asymp-

totic properties. In this chapter, we study the performance of φ̂M in small samples,

investigated by means of simulation studies. Furthermore, we compare our proposed es-

timator to several competing estimators using the simulated data. In the last section, we

will apply our proposed estimator to the Collaborative Perinatal Project (CPP) study as

described in Section 1.2.1.

We will examine the small sample properties of the proposed estimator under the

model of continuous outcomes with a bivariate normal distribution by conducting sim-

ulation experiments with various settings of sampling design specifications. For each

experiment, we compute the parameter estimates and the estimated standard errors for

the proposed estimator and other competing estimators, and the nominal 95% confidence

intervals will be calculated based on their asymptotic normal distributions.



The primary objectives of the simulation studies are:

1. To determine if the proposed estimator is an unbiased estimator in small samples.

This is addressed by comparing the means of the parameter estimates to the true

parameters used to generate the data.

2. To determine if the variance estimator of the proposed estimator is a good estimate

of the true variance in small samples. The “true” variance is defined as the variance

of the estimator calculated over the simulated data sets within each simulation. To

satisfy this goal, we compare the means of the variance estimator with the simulation

sample variance.

3. To determine if the asymptotic normality distribution of the proposed estimator is a

reasonable approximation in small samples. We satisfy this goal by studying the actual

distribution in small samples and comparing the coverage of nominal 95% confidence

intervals.

4. To compare the proposed estimator to other competing estimators with respect to

small sample relative efficiency. For this goal, we consider asymptotic relative effi-

ciency (ARE) of the proposed estimator relative to the other estimator, defined as the

ratio of the variances, V AR(φ̂other)/V AR(φ̂proposed).

There are several factors of the sampling design that may affect the performance of

the proposed estimator. These factors include the Multivariate-ODS sample size n, the

sampling fraction γ = n1/n which is the allocation of the supplemental sample to other
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components that make up the Multivariate-ODS , the location of the cutpoint a for parti-

tioning the space of Ymax, and the correlation coefficient of the outcome responses ρ. We

will investigate the performance of the proposed estimator under various configurations

of these sampling specifications.

4.2 Data Generation

4.2.1 The Simulation Model

We consider the following bivariate normal model to generate the simulated data:

Y |X ∼ N







µ1

µ2


 ,




σ1
2 ρσ1σ2

ρσ1σ2 σ2
2





 ,

where Y =

(
Y1, Y2

)T

, X =

(
X1, X2

)T

, µ1 = α1 + β1X1 and µ2 = α2 + β2X2; i.e., the

conditional distributions of Y1 given X1 and Y2 given X2 are normally distributed with

means α1 + β1X1 and α2 + β2X1, variances σ2
1 and σ2

2, respectively, and the correlation

coefficient ρ. Our goal is to estimate the parameter vector θP = (α1, β1, α2, β2, σ1, σ2, ρ)T .

In particular, we will investigate the behavior of β1 and β2 by fixing α1 = 0.5, α2 = −0.8,

σ2
1 = σ2

2 = 1 or σ2
1 = σ2

2 = 1.5, and allowing β to take different values for β1 and β2.

Then the same models are applied to ρ = 0.5 and ρ = 0.85 to see how the magnitude of

association between outcome variables affects the parameter estimates.
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4.2.2 Sampling Design Specifications

The Multivariate-ODS sample sizes for investigation were n = 200 and n = 800.

The Multivariate-ODS design for this study included an overall SRS and a supplemental

sample from individuals whose maximum values of the outcomes were in the tail of the

distribution of Ymax. For simulations, we chose the cutpoint to partition the space of

Ymax, a, of the 80th or 90th percentile from the distribution of Ymax under the study

models. The supplemental sampling fraction, γ = n1/n, was either 20% or 50%.

4.2.3 Algorithm of Data Generation

Since Y1 and Y2 are bivariate normally distributed, we then have

Y1 ∼ N

(
µ1, σ

2
1

)

and

Y2|Y1, X ∼ N

(
µ2 + ρ

σ2

σ1

(Y1 − µ1) , σ2
2

(
1− ρ2

) )
;

that is, we can write the linear regression models for Y1 and Y2 of the forms

Y1 = α1 + β1X1 + σ1ε1 (4.1)

and

Y2 = α2 + β2X2 + ρ(σ2/σ1)(Y1 − α1 − β1X1) + σ2

√
1− ρ2ε2 , (4.2)

where ε1 ∼ N(0, 1) and ε2 ∼ N(0, 1) are independent.
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For all the investigations, we generated 1,000 realizations of data in accordance with

the models specified above. The process was as follows:

1) We generated N independent error terms ε1 and ε2 for Y1 and Y2 respectively, from

the standard normal distribution, where N represents the size of the underlying pop-

ulation. Note that N was set to be 20,000 in the simulation.

2) Next, independently from these error terms, we generated two independent covariate

vectors X1 and X2, each of size N , from the standard normal distribution.

3) Then we obtained the response vector, Y1, by plugging the generated errors ε1 and

the covariate vector X1 into the model in (4.1) with the specified parameter values.

With Y1, X1, X2, ε2 and the parameter values, Y2 were then generated according to

(4.2).

4) Selection of the SRS and the supplemental sample proceeded as follows: an SRS of size

n0 was randomly selected from the underlying population and a supplemental sample

of size n1 was drawn from the remaining realizations conditional on {max(Y1, Y2) > a}

with the specified cutpoint a.

4.2.4 Competing Estimators

We compare our proposed estimator SEMLE, θ̂P , to other competitive estimators

under each setting in our simulation study: (i) the maximum likelihood estimator by

maximizing the likelihood using only the SRS portion of the Multivariate-ODS data

(θ̂R), (ii) the maximum likelihood estimator by maximizing the conditional likelihood
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based on the complete Multivariate-ODS data (θ̂C), and (iii) the maximum likelihood

estimator obtained from a random sample of the same size as the Multivariate-ODS

sample (θ̂S). Comparing θ̂P with θ̂R and θ̂C will give us an insight of the impact on

ignoring the information from the supplemental sample. The comparison between θ̂P and

θ̂S will demonstrate the efficiency gain of the Multivariate-ODS design over the simple

random sample of the same size.

4.3 Summary of Results

The simulation results are presented in Tables 4.1 through 4.20. The results in the

tables are presented for three different combinations of β, the correlation coefficient ρ,

various cutpoints a, the sampling fractions γ, and sample sizes n, with three methods.

Within each table, the sampling specifications and the covariate distribution are fixed.

Tables 4.1 - 4.16 include the small sample properties of the proposed estimator θ̂P and

the competing estimators, θ̂R and θ̂C . Tables 4.17 - 4.20 present the efficiencies of θ̂S

versus θ̂P based on the models for Tables 4.1 - 4.16.

4.3.1 The Unbiasedness, the Normality and the Variance Estimator

Tables 4.1 through 4.4 contain simulation results for the cases in which β1 = β2 = 0:

n = 200 in Tables 4.1 and 4.2 with the correlation coefficients of ρ = 0.5 and ρ = 0.85,

respectively; the same models were considered in Tables 4.3 and 4.4 but with n = 800.

We make the following observations concerning the results presented in Tables 4.1 - 4.4.

1. The proposed method θ̂P along with θ̂R and θ̂C produced unbiased estimates compared
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with the “true” parameter values under four settings. As the sample size n increased,

the bias was even hardly observed.

2. The proposed method θ̂P produced the smallest standard errors for estimating the

model parameters whereas θ̂R always provided the least efficient estimators. The

standard errors were smaller as the sample size n increased.

3. The proposed estimator θ̂P provided a very good estimate of the true variability; for

θ̂R and θ̂C , the means of the standard error estimates were close to the simulation

standard errors as well.

4. The confidence intervals based on the proposed estimator θ̂P provided good coverage

close to the nominal 95% level. The same findings were seen for both θ̂R and θ̂C .

5. In Table 4.1, for the same sampling fraction, the standard errors of θ̂P decreased

as the percentile of the cutpoint a increased, indicating that our proposed method

was more efficient and favored when the supplemental sample included more extreme

observations. Similar results were obtained in Tables 4.2 - 4.4.

6. Above observations were true for both β̂1 and β̂2.

4.3.2 Additional Results for the Unbiasedness, the Normality and the Vari-

ance Estimator

Tables 4.5 through 4.8 presented the results for β1 = 0 and β2 = 0.5 with the same

sampling specifications as those in Tables 4.1 - 4.4 respectively. We observed similar
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tendencies exhibited in Tables 4.1 - 4.4. The proposed estimator θ̂P continued to out-

perform the competing estimators. We note that the variance estimator for θ̂P appeared

to decrease as β2 increased, which for example, could be seen from Tables 4.1 and 4.5.

For Tables 4.9 through 4.12, we changed β to be non-zero that β1 = −0.5 and

β2 = ln(2) and kept the relative sampling specifications the same as before. The results

observed in these tables were comparable to those in Tables 4.1 - 4.4. The proposed

estimator θ̂P provided consistency and good variance estimates.

Tables 4.13 through 4.16 presented the results using the same models as Table 4.9 -

4.12 except that σ1 and σ2 increased to σ1 = σ2 = 1.5. We observed similar results as

those in Tables 4.9 - 4.12. As the variances increased, the standard errors were larger,

which was expected.

4.3.3 The Performance of ÂRE (= V arθ̂S
/V arθ̂P

)

We further investigated the amount of information gained by the use of the Multivariate-

ODS design over a simple random sample of the same size, and the results of the relative

efficiencies (ratios of variances, V arθ̂S
/V arθ̂P

) were summarized in Tables 4.17 through

4.20 with different model settings. Throughout the four tables, ÂREs were greater than

one, except for some cases in Table 4.17 which were indeed closer to one. We make the

following observations concerning the results in Tables 4.17 through 4.20.

1. Except for some cases where β1 = 0 and β2 = 0, the estimates of β from the proposed

method θ̂P were more efficient than θ̂S, indicating that the supplemental sample

contained substantial information and the proposed method led to more efficiency
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gains; θ̂P was more efficient than θ̂S with gains as large as 51% for estimating β1 and

56% for β2, which can be found in Table 4.20.

2. With the correlation coefficient and the sampling fraction fixed, the efficiency gains of

θ̂P over θ̂S increased as the cutpoint was located further in the tail of the distribution.

3. With the cutpoint and the sampling fraction fixed, there was an increase in the relative

efficiencies as the data were more correlated for most cases.

4. Observing the effect of the sample size n, with a higher correlation coefficient, the

efficiency gained by using θ̂P over the θ̂S tended to increase as the samples size in-

creased.

5. Comparing the results in Tables 4.19 and 4.20, we note that there was an increase

overall as the variances of β1 and β2 increased.

From above results, we see that the observed efficiency gains for using θ̂P were noticeably

larger than θ̂S.

4.3.4 The Effect of Changing Supplemental Sampling Fractions on ÂRE

To investigate the effect of changing the supplemental sampling fractions on the im-

provement of the Multivariate-ODS design over other simple random sample designs,

we conducted several simulation experiments using the same simulation models used in

Tables 4.9 and 4.11 but with the cutpoint a = 80%. Figures 4.1 and 4.2 presented the

relative efficiency of θ̂P over θ̂R. Clearly, the efficiency gains of the Multivariate-ODS

design over the simple random sample design increased with the supplemental sampling
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fractions, agreed by both sample size considerations, and θ̂P was consistently more effi-

cient than θ̂R regardless of the sampling fractions. Although the efficiency gains increased

as the supplemental sample size increased, it was not practical in reality since it may

not be easy to have enough individuals in the extreme tails. We suggested the possible

remedy for an appropriate proportion of the supplemental sample to be in the region

from 0.3 to 0.6. Figures 4.3 through 4.6 illustrated the standard errors of θ̂P and the rel-

ative efficiencies of the Multivariate-ODS design to a simple random sample of the same

sample size across various supplemental sampling fractions γ. The increase in the relative

efficiency of θ̂P to θ̂S was not monotone over the fractions although θ̂P was substantially

more efficient than θ̂S in most sampling fractions. We observed the most efficiency gain

at γ = 0.3 for both β1 and β2 among all the figures. As γ was more than 60%, there was

a drop in the relative efficiency. These results suggested that a great efficiency gain can

be achieved when γ was between 0.3 and 0.6.

4.3.5 Conclusions

In this section, we demonstrated the asymptotic properties of our proposed method

derived in Chapter 3 using the simulation studies and showed that the small-sample

properties approximated well for samples with even a relative small sample size. The

simulation results showed that our proposed method produced unbiased estimators, the

variance estimators were good estimates for the true variances, and the proposed estima-

tor was asymptotically normally distributed.

In terms of small sample relative efficiency studies, the proposed method provided
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a more efficient parameter estimate than it obtained using a simple random sample of

the same sample size. More efficiency gains were observed in the samples with a higher

correlation. We suggested to achieve the greatest gain in efficiency, the supplemental

sampling fraction was around 30%. We also illustrated that the efficiency gain of the

proposed method over the estimator obtained only using the SRS was more substantial

as the portion of the supplemental sample increased and the cutpoint moved further out

in the tail of the Ymax distribution. For practice, the suggested region for considering

the proportion of the supplemental sample in the Multivariate-ODS was between 0.3 and

0.6.

In the next section, we will demonstrate the utility of our proposed method by ap-

plying it to the real data.
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Table 4.1: Simulation Results: Bivariate normal model with n = 200, α1 = 0.5, β1 = 0,
α2 = −0.8, β2 = 0, σ1 = σ2 = 1, ρ = 0.5, a = 1.357 (80th percentile) and 1.791
(90th percentile) and X1 = X2 ∼ N(0, 1).

β̂1 β̂2

a γ Method Mean SE ŜE 95% CI Mean SE ŜE 95% CI

80% 20% θR 0.002 0.079 0.080 0.952 −0.003 0.082 0.080 0.946
θC 0.002 0.077 0.077 0.953 −0.001 0.076 0.073 0.941
θP 0.002 0.064 0.066 0.960 −0.001 0.070 0.069 0.948

50% θR 0.004 0.105 0.101 0.948 0.001 0.104 0.100 0.939
θC 0.005 0.091 0.090 0.954 0.001 0.077 0.076 0.955
θP 0.005 0.068 0.068 0.941 0.001 0.072 0.069 0.945

90% 20% θR −0.004 0.079 0.080 0.955 0.003 0.081 0.080 0.942
θC −0.005 0.077 0.078 0.957 0.001 0.076 0.073 0.930
θP −0.002 0.060 0.062 0.953 0.002 0.070 0.068 0.931

50% θR 0.001 0.103 0.101 0.938 −0.001 0.101 0.101 0.954
θC −0.001 0.096 0.092 0.943 −0.001 0.075 0.077 0.954
θP 0.001 0.064 0.061 0.948 0.000 0.065 0.067 0.963
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Table 4.2: Simulation Results: Bivariate normal model with n = 200, α1 = 0.5, β1 = 0,
α2 = −0.8, β2 = 0, σ1 = σ2 = 1, ρ = 0.85, a = 1.340 (80th percentile) and 1.784
(90th percentile) and X1 = X2 ∼ N(0, 1).

β̂1 β̂2

a γ Method Mean SE ŜE 95% CI Mean SE ŜE 95% CI

80% 20% θR −0.001 0.076 0.079 0.956 0.000 0.078 0.079 0.954
θC −0.001 0.075 0.077 0.953 −0.001 0.075 0.076 0.955
θP −0.001 0.064 0.066 0.961 −0.001 0.066 0.067 0.962

50% θR 0.002 0.102 0.102 0.949 0.003 0.102 0.102 0.953
θC 0.001 0.091 0.092 0.950 0.003 0.088 0.086 0.944
θP 0.001 0.066 0.068 0.951 0.002 0.069 0.069 0.945

90% 20% θR 0.001 0.079 0.080 0.953 0.002 0.080 0.080 0.943
θC 0.001 0.077 0.078 0.951 0.002 0.077 0.076 0.952
θP 0.003 0.061 0.062 0.951 0.004 0.065 0.065 0.943

50% θR 0.001 0.102 0.100 0.942 0.001 0.099 0.101 0.959
θC 0.001 0.095 0.093 0.942 0.001 0.089 0.088 0.946
θP 0.001 0.062 0.061 0.947 0.001 0.065 0.064 0.944

84



Table 4.3: Simulation Results: Bivariate normal model with n = 800, α1 = 0.5, β1 = 0,
α2 = −0.8, β2 = 0, σ1 = σ2 = 1, ρ = 0.5, a = 1.357 (80th percentile) and 1.791
(90th percentile) and X1 = X2 ∼ N(0, 1).

β̂1 β̂2

a γ Method Mean SE ŜE 95% CI Mean SE ŜE 95% CI

80% 20% θR 0.002 0.040 0.040 0.950 0.002 0.041 0.040 0.939
θC 0.002 0.039 0.038 0.948 0.002 0.037 0.036 0.940
θP 0.002 0.034 0.033 0.949 0.002 0.035 0.034 0.950

50% θR −0.001 0.050 0.050 0.953 −0.002 0.051 0.050 0.945
θC 0.000 0.043 0.045 0.959 −0.001 0.039 0.038 0.942
θP 0.001 0.034 0.034 0.947 0.000 0.035 0.034 0.940

90% 20% θR 0.000 0.038 0.040 0.953 0.001 0.039 0.040 0.947
θC 0.000 0.038 0.039 0.948 0.000 0.036 0.036 0.953
θP 0.001 0.031 0.031 0.955 0.000 0.034 0.034 0.956

50% θR 0.000 0.049 0.050 0.962 0.000 0.049 0.050 0.953
θC 0.000 0.045 0.046 0.956 −0.001 0.037 0.038 0.954
θP −0.001 0.030 0.030 0.948 −0.001 0.033 0.033 0.954
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Table 4.4: Simulation Results: Bivariate normal model with n = 800, α1 = 0.5, β1 = 0,
α2 = −0.8, β2 = 0, σ1 = σ2 = 1, ρ = 0.85, a = 1.340 (80th percentile) and 1.784
(90th percentile) and X1 = X2 ∼ N(0, 1).

β̂1 β̂2

a γ Method Mean SE ŜE 95% CI Mean SE ŜE 95% CI

80% 20% θR 0.001 0.039 0.040 0.951 0.001 0.038 0.040 0.967
θC 0.001 0.038 0.039 0.951 0.001 0.037 0.038 0.963
θP 0.001 0.032 0.033 0.957 0.000 0.033 0.034 0.958

50% θR 0.001 0.050 0.050 0.952 0.002 0.049 0.050 0.952
θC 0.001 0.044 0.045 0.951 0.001 0.042 0.043 0.950
θP 0.000 0.033 0.034 0.958 0.000 0.033 0.034 0.955

90% 20% θR 0.001 0.040 0.040 0.946 0.001 0.040 0.040 0.952
θC 0.001 0.039 0.039 0.943 0.001 0.038 0.038 0.946
θP 0.001 0.033 0.031 0.934 0.001 0.033 0.032 0.950

50% θR −0.001 0.051 0.050 0.953 −0.002 0.049 0.050 0.952
θC −0.001 0.047 0.046 0.950 −0.001 0.043 0.044 0.962
θP 0.001 0.031 0.030 0.952 0.001 0.032 0.032 0.956
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Table 4.5: Simulation Results: Bivariate normal model with n = 200, α1 = 0.5, β1 = 0,
α2 = −0.8, β2 = 0.5, σ1 = σ2 = 1, ρ = 0.5, a = 1.379 (80th percentile) and 1.814
(90th percentile) and X1 = X2 ∼ N(0, 1).

β̂1 β̂2

a γ Method Mean SE ŜE 95% CI Mean SE ŜE 95% CI

80% 20% θR 0.001 0.079 0.079 0.948 0.504 0.079 0.080 0.947
θC 0.001 0.076 0.076 0.951 0.504 0.070 0.073 0.962
θP 0.002 0.067 0.066 0.948 0.504 0.066 0.068 0.966

50% θR 0.002 0.099 0.102 0.958 0.502 0.099 0.102 0.961
θC 0.002 0.082 0.087 0.968 0.501 0.071 0.077 0.972
θP −0.001 0.065 0.067 0.963 0.499 0.065 0.068 0.959

90% 20% θR −0.007 0.078 0.080 0.953 0.497 0.079 0.080 0.954
θC −0.005 0.074 0.076 0.952 0.497 0.073 0.072 0.953
θP −0.004 0.060 0.062 0.963 0.498 0.068 0.067 0.949

50% θR 0.002 0.102 0.101 0.951 0.503 0.099 0.101 0.963
θC 0.005 0.089 0.088 0.944 0.504 0.077 0.077 0.961
θP 0.001 0.062 0.061 0.938 0.502 0.067 0.065 0.947
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Table 4.6: Simulation Results: Bivariate normal model with n = 200, α1 = 0.5, β1 = 0,
α2 = −0.8, β2 = 0.5, σ1 = σ2 = 1, ρ = 0.85, a = 1.346 (80th percentile) and 1.786
(90th percentile) and X1 = X2 ∼ N(0, 1).

β̂1 β̂2

a γ Method Mean SE ŜE 95% CI Mean SE ŜE 95% CI

80% 20% θR −0.002 0.076 0.080 0.968 0.496 0.076 0.079 0.956
θC −0.002 0.073 0.077 0.966 0.496 0.073 0.076 0.953
θP 0.000 0.064 0.066 0.964 0.498 0.065 0.067 0.963

50% θR −0.001 0.102 0.101 0.962 0.501 0.099 0.101 0.958
θC −0.001 0.088 0.090 0.959 0.499 0.084 0.086 0.959
θP −0.001 0.067 0.068 0.958 0.498 0.067 0.069 0.954

90% 20% θR 0.003 0.078 0.080 0.961 0.502 0.078 0.080 0.951
θC 0.003 0.076 0.078 0.959 0.502 0.075 0.076 0.950
θP 0.001 0.062 0.062 0.957 0.501 0.063 0.064 0.951

50% θR 0.003 0.102 0.101 0.947 0.505 0.103 0.101 0.949
θC 0.003 0.093 0.092 0.947 0.503 0.089 0.088 0.947
θP 0.001 0.062 0.061 0.955 0.501 0.065 0.063 0.943
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Table 4.7: Simulation Results: Bivariate normal model with n = 800, α1 = 0.5, β1 = 0,
α2 = −0.8, β2 = 0.5, σ1 = σ2 = 1, ρ = 0.5, a = 1.379 (80th percentile) and 1.814
(90th percentile) and X1 = X2 ∼ N(0, 1).

β̂1 β̂2

a γ Method Mean SE ŜE 95% CI Mean SE ŜE 95% CI

80% 20% θR −0.001 0.040 0.040 0.950 0.498 0.040 0.040 0.946
θC −0.001 0.039 0.038 0.950 0.499 0.035 0.036 0.951
θP −0.001 0.033 0.033 0.948 0.499 0.034 0.034 0.953

50% θR 0.002 0.049 0.050 0.946 0.502 0.047 0.050 0.962
θC 0.001 0.042 0.043 0.957 0.502 0.037 0.038 0.953
θP 0.001 0.034 0.033 0.948 0.502 0.034 0.034 0.952

90% 20% θR 0.000 0.039 0.040 0.956 0.501 0.039 0.040 0.953
θC 0.000 0.037 0.038 0.961 0.500 0.035 0.036 0.957
θP 0.000 0.030 0.031 0.952 0.501 0.032 0.033 0.958

50% θR −0.003 0.051 0.050 0.953 0.501 0.051 0.050 0.955
θC −0.001 0.044 0.044 0.952 0.500 0.039 0.038 0.937
θP 0.000 0.030 0.030 0.958 0.501 0.033 0.032 0.945
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Table 4.8: Simulation Results: Bivariate normal model with n = 800, α1 = 0.5, β1 = 0,
α2 = −0.8, β2 = 0.5, σ1 = σ2 = 1, ρ = 0.85, a = 1.346 (80th percentile) and 1.786
(90th percentile) and X1 = X2 ∼ N(0, 1).

β̂1 β̂2

a γ Method Mean SE ŜE 95% CI Mean SE ŜE 95% CI

80% 20% θR 0.000 0.039 0.040 0.949 0.500 0.039 0.040 0.955
θC 0.000 0.038 0.038 0.950 0.500 0.038 0.038 0.952
θP 0.000 0.032 0.033 0.959 0.500 0.032 0.033 0.959

50% θR −0.001 0.047 0.050 0.959 0.500 0.049 0.050 0.952
θC 0.000 0.043 0.045 0.963 0.500 0.042 0.043 0.948
θP 0.000 0.033 0.034 0.948 0.500 0.034 0.034 0.948

90% 20% θR 0.001 0.039 0.040 0.955 0.502 0.039 0.040 0.956
θC 0.001 0.038 0.039 0.952 0.502 0.037 0.038 0.962
θP 0.000 0.031 0.031 0.951 0.501 0.031 0.032 0.954

50% θR 0.001 0.051 0.050 0.948 0.499 0.051 0.050 0.945
θC 0.001 0.046 0.046 0.946 0.499 0.044 0.044 0.953
θP −0.001 0.031 0.031 0.944 0.498 0.031 0.032 0.951
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Table 4.9: Simulation Results: Bivariate normal model with n = 200, α1 = 0.5, β1 = −0.5,
α2 = −0.8, β2 = ln(2), σ1 = σ2 = 1, ρ = 0.5, a = 1.529 (80th percentile) and 1.991
(90th percentile) and X1 = X2 ∼ N(0, 1).

β̂1 β̂2

a γ Method Mean SE ŜE 95% CI Mean SE ŜE 95% CI

80% 20% θR −0.499 0.080 0.080 0.943 0.693 0.079 0.080 0.952
θC −0.499 0.075 0.074 0.949 0.694 0.072 0.071 0.943
θP −0.500 0.068 0.067 0.945 0.694 0.066 0.066 0.946

50% θR −0.503 0.105 0.101 0.946 0.692 0.102 0.101 0.945
θC −0.498 0.082 0.079 0.942 0.693 0.073 0.074 0.947
θP −0.500 0.071 0.067 0.953 0.692 0.063 0.064 0.953

90% 20% θR −0.501 0.080 0.080 0.944 0.693 0.081 0.080 0.954
θC −0.499 0.074 0.074 0.952 0.694 0.072 0.071 0.938
θP −0.502 0.063 0.065 0.952 0.691 0.064 0.064 0.953

50% θR −0.494 0.103 0.101 0.950 0.695 0.101 0.101 0.959
θC −0.494 0.081 0.079 0.944 0.697 0.076 0.073 0.950
θP −0.499 0.065 0.064 0.945 0.694 0.061 0.060 0.944
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Table 4.10: Simulation Results: Bivariate normal model with n = 200, α1 = 0.5, β1 = −0.5,
α2 = −0.8, β2 = ln(2), σ1 = σ2 = 1, ρ = 0.85, a = 1.506 (80th percentile) and
1.979 (90th percentile) and X1 = X2 ∼ N(0, 1).

β̂1 β̂2

a γ Method Mean SE ŜE 95% CI Mean SE ŜE 95% CI

80% 20% θR −0.501 0.081 0.080 0.945 0.692 0.080 0.080 0.950
θC −0.499 0.075 0.075 0.945 0.693 0.073 0.074 0.955
θP −0.500 0.067 0.067 0.953 0.692 0.066 0.066 0.957

50% θR −0.493 0.105 0.101 0.943 0.699 0.104 0.101 0.941
θC −0.495 0.084 0.082 0.949 0.699 0.082 0.081 0.951
θP −0.499 0.068 0.067 0.953 0.694 0.066 0.066 0.958

90% 20% θR −0.500 0.081 0.080 0.952 0.694 0.079 0.080 0.959
θC −0.501 0.077 0.075 0.944 0.694 0.075 0.074 0.950
θP −0.504 0.066 0.064 0.949 0.691 0.066 0.063 0.952

50% θR −0.502 0.101 0.101 0.945 0.691 0.103 0.101 0.941
θC −0.500 0.084 0.083 0.942 0.693 0.082 0.081 0.936
θP −0.500 0.065 0.063 0.938 0.693 0.063 0.061 0.938
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Table 4.11: Simulation Results: Bivariate normal model with n = 800, α1 = 0.5, β1 = −0.5,
α2 = −0.8, β2 = ln(2), σ1 = σ2 = 1, ρ = 0.5, a = 1.991 (80th percentile) and
1.529 (90th percentile) and X1 = X2 ∼ N(0, 1).

β̂1 β̂2

a γ Method Mean SE ŜE 95% CI Mean SE ŜE 95% CI

80% 20% θR −0.501 0.039 0.040 0.945 0.692 0.040 0.040 0.948
θC −0.502 0.036 0.037 0.950 0.693 0.035 0.036 0.952
θP −0.502 0.033 0.035 0.958 0.693 0.033 0.033 0.954

50% θR −0.504 0.051 0.050 0.939 0.688 0.050 0.050 0.945
θC −0.504 0.038 0.039 0.953 0.690 0.037 0.037 0.948
θP −0.502 0.033 0.034 0.959 0.691 0.032 0.032 0.958

90% 20% θR −0.503 0.039 0.040 0.959 0.693 0.041 0.040 0.932
θC −0.503 0.036 0.037 0.961 0.693 0.036 0.035 0.947
θP −0.502 0.031 0.032 0.955 0.694 0.032 0.032 0.949

50% θR −0.499 0.048 0.050 0.958 0.694 0.049 0.050 0.950
θC −0.500 0.039 0.039 0.960 0.693 0.036 0.036 0.951
θP −0.499 0.031 0.030 0.957 0.693 0.032 0.030 0.949
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Table 4.12: Simulation Results: Bivariate normal model with n = 800, α1 = 0.5, β1 = −0.5,
α2 = −0.8, β2 = ln(2), σ1 = σ2 = 1, ρ = 0.85, a = 1.506 (80th percentile) and
1.979 (90th percentile) and X1 = X2 ∼ N(0, 1).

β̂1 β̂2

a γ Method Mean SE ŜE 95% CI Mean SE ŜE 95% CI

80% 20% θR −0.500 0.039 0.040 0.954 0.694 0.038 0.040 0.953
θC −0.500 0.036 0.037 0.957 0.694 0.035 0.037 0.958
θP −0.500 0.033 0.033 0.954 0.693 0.032 0.033 0.956

50% θR −0.499 0.049 0.050 0.953 0.693 0.049 0.050 0.954
θC −0.500 0.040 0.041 0.960 0.693 0.039 0.040 0.959
θP −0.500 0.033 0.034 0.955 0.692 0.032 0.033 0.961

90% 20% θR −0.498 0.041 0.040 0.945 0.695 0.039 0.040 0.945
θC −0.498 0.038 0.037 0.950 0.695 0.037 0.037 0.939
θP −0.499 0.032 0.032 0.953 0.694 0.031 0.031 0.950

50% θR −0.497 0.052 0.050 0.944 0.695 0.051 0.050 0.946
θC −0.498 0.042 0.041 0.950 0.695 0.040 0.040 0.955
θP −0.499 0.031 0.031 0.947 0.695 0.030 0.030 0.956
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Table 4.13: Simulation Results: Bivariate normal model with n = 200, α1 = 0.5, β1 = −0.5,
α2 = −0.8, β2 = ln(2), σ1 = σ2 = 1.5, ρ = 0.5, a = 1.999 (80th percentile) and
2.649 (90th percentile) and X1 = X2 ∼ N(0, 1).

β̂1 β̂2

a γ Method Mean SE ŜE 95% CI Mean SE ŜE 95% CI

80% 20% θR −0.497 0.120 0.119 0.942 0.694 0.117 0.119 0.956
θC −0.496 0.115 0.112 0.943 0.692 0.104 0.108 0.959
θP −0.499 0.105 0.100 0.935 0.691 0.097 0.100 0.960

50% θR −0.494 0.151 0.152 0.951 0.697 0.148 0.152 0.958
θC −0.497 0.117 0.122 0.956 0.700 0.110 0.114 0.950
θP −0.500 0.097 0.101 0.968 0.699 0.095 0.099 0.952

90% 20% θR −0.499 0.120 0.119 0.952 0.694 0.115 0.119 0.963
θC −0.499 0.111 0.112 0.953 0.694 0.104 0.108 0.953
θP −0.501 0.097 0.095 0.951 0.693 0.094 0.096 0.950

50% θR −0.504 0.157 0.152 0.940 0.680 0.153 0.152 0.953
θC −0.502 0.124 0.123 0.950 0.688 0.110 0.113 0.949
θP −0.503 0.096 0.094 0.943 0.688 0.091 0.092 0.949
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Table 4.14: Simulation Results: Bivariate normal model with n = 200, α1 = 0.5, β1 = −0.5,
α2 = −0.8, β2 = ln(2), σ1 = σ2 = 1.5, ρ = 0.85, a = 1.923 (80th percentile) and
2.593 (90th percentile) and X1 = X2 ∼ N(0, 1).

β̂1 β̂2

a γ Method Mean SE ŜE 95% CI Mean SE ŜE 95% CI

80% 20% θR −0.502 0.119 0.120 0.952 0.692 0.119 0.120 0.954
θC −0.502 0.113 0.114 0.961 0.692 0.111 0.113 0.955
θP −0.503 0.099 0.100 0.959 0.692 0.099 0.100 0.954

50% θR −0.491 0.150 0.152 0.951 0.698 0.148 0.152 0.956
θC −0.492 0.124 0.128 0.951 0.699 0.120 0.125 0.958
θP −0.496 0.099 0.102 0.955 0.695 0.097 0.100 0.960

90% 20% θR −0.503 0.118 0.119 0.954 0.690 0.117 0.119 0.947
θC −0.503 0.113 0.114 0.956 0.688 0.112 0.112 0.958
θP −0.503 0.094 0.094 0.954 0.688 0.094 0.094 0.950

50% θR −0.501 0.152 0.151 0.948 0.691 0.156 0.151 0.944
θC −0.503 0.130 0.129 0.952 0.690 0.128 0.126 0.952
θP −0.500 0.092 0.093 0.952 0.693 0.093 0.092 0.949
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Table 4.15: Simulation Results: Bivariate normal model with n = 800, α1 = 0.5, β1 = −0.5,
α2 = −0.8, β2 = ln(2), σ1 = σ2 = 1.5, ρ = 0.5, a = 1.999 (80th percentile) and
2.649 (90th percentile) and X1 = X2 ∼ N(0, 1).

β̂1 β̂2

a γ Method Mean SE ŜE 95% CI Mean SE ŜE 95% CI

80% 20% θR −0.502 0.062 0.059 0.937 0.690 0.059 0.059 0.962
θC −0.501 0.057 0.055 0.946 0.692 0.053 0.054 0.948
θP −0.501 0.052 0.050 0.936 0.692 0.048 0.050 0.949

50% θR −0.501 0.077 0.075 0.947 0.693 0.072 0.075 0.964
θC −0.502 0.061 0.060 0.953 0.694 0.055 0.056 0.954
θP −0.502 0.051 0.050 0.945 0.694 0.048 0.049 0.956

90% 20% θR −0.500 0.063 0.059 0.941 0.695 0.060 0.059 0.943
θC −0.501 0.059 0.056 0.936 0.693 0.053 0.054 0.954
θP −0.501 0.050 0.047 0.933 0.693 0.047 0.048 0.953

50% θR −0.497 0.076 0.075 0.950 0.692 0.076 0.075 0.952
θC −0.499 0.060 0.061 0.946 0.692 0.056 0.056 0.954
θP −0.500 0.046 0.047 0.953 0.691 0.046 0.046 0.951
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Table 4.16: Simulation Results: Bivariate normal model with n = 800, α1 = 0.5, β1 = −0.5,
α2 = −0.8, β2 = ln(2), σ1 = σ2 = 1.5, ρ = 0.85, a = 1.923 (80th percentile) and
2.593 (90th percentile) and X1 = X2 ∼ N(0, 1).

β̂1 β̂2

a γ Method Mean SE ŜE 95% CI Mean SE ŜE 95% CI

80% 20% θR −0.499 0.061 0.059 0.943 0.693 0.061 0.059 0.940
θC −0.500 0.058 0.057 0.935 0.693 0.058 0.056 0.935
θP −0.500 0.051 0.050 0.949 0.693 0.050 0.050 0.955

50% θR −0.495 0.079 0.075 0.937 0.697 0.078 0.075 0.946
θC −0.496 0.065 0.064 0.955 0.697 0.065 0.062 0.949
θP −0.496 0.051 0.051 0.949 0.697 0.051 0.050 0.947

90% 20% θR −0.502 0.060 0.059 0.950 0.691 0.061 0.059 0.952
θC −0.502 0.058 0.057 0.948 0.691 0.057 0.056 0.943
θP −0.501 0.049 0.047 0.940 0.692 0.049 0.047 0.938

50% θR −0.499 0.076 0.075 0.937 0.694 0.075 0.075 0.950
θC −0.500 0.064 0.065 0.953 0.693 0.063 0.063 0.956
θP −0.500 0.045 0.046 0.959 0.694 0.045 0.046 0.964
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Table 4.17: Simulation Results of Relative Efficiencies (V ar
θ̂S

/V ar
θ̂P

): Bivariate normal
model with α1 = 0.5, β1 = 0, α2 = −0.8, β2 = 0, σ1 = σ2 = 1 and
X1 = X2 ∼ N(0, 1).

n = 200 n = 800

ρ a γ ÂREβ̂1
ÂREβ̂2

ÂRE β̂1
ÂRE β̂2

0.5 80% 20% 1.29 0.96 1.03 1.04
50% 1.05 0.98 1.10 0.98

90% 20% 1.41 1.06 1.34 1.14
50% 1.21 1.24 1.29 1.11

0.85 80% 20% 1.21 1.22 1.18 1.15
50% 1.14 1.10 1.12 1.14

90% 20% 1.45 1.25 1.26 1.19
50% 1.34 1.30 1.44 1.40
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Table 4.18: Simulation Results of Relative Efficiencies (V ar
θ̂S

/V ar
θ̂P

): Bivariate normal
model with α1 = 0.5, β1 = 0, α2 = −0.8, β2 = 0.5, σ1 = σ2 = 1 and
X1 = X2 ∼ N(0, 1).

n = 200 n = 800

ρ a γ ÂREβ̂1
ÂREβ̂2

ÂRE β̂1
ÂRE β̂2

0.5 80% 20% 1.07 1.11 1.12 1.00
50% 1.24 1.33 1.07 1.07

90% 20% 1.40 1.15 1.35 1.21
50% 1.41 1.13 1.50 1.15

0.85 80% 20% 1.32 1.18 1.30 1.28
50% 1.22 1.08 1.23 1.12

90% 20% 1.37 1.28 1.34 1.22
50% 1.30 1.18 1.31 1.27
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Table 4.19: Simulation Results of Relative Efficiencies (V ar
θ̂S

/V ar
θ̂P

): Bivariate normal
model with α1 = 0.5, β1 = −0.5, α2 = −0.8, β2 = ln(2), σ1 = σ2 = 1 and
X1 = X2 ∼ N(0, 1).

n = 200 n = 800

ρ a γ ÂREβ̂1
ÂREβ̂2

ÂRE β̂1
ÂRE β̂2

0.5 80% 20% 1.04 1.28 1.02 1.05
50% 1.13 1.19 1.15 1.27

90% 20% 1.22 1.23 1.15 1.27
50% 1.18 1.39 1.36 1.39

0.85 80% 20% 1.20 1.23 1.04 1.02
50% 1.08 1.12 1.12 1.07

90% 20% 1.22 1.17 1.28 1.32
50% 1.28 1.33 1.47 1.52
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Table 4.20: Simulation Results of Relative Efficiencies (V ar
θ̂S

/V ar
θ̂P

): Bivariate normal
model with α1 = 0.5, β1 = −0.5, α2 = −0.8, β2 = ln(2), σ1 = σ2 = 1.5 and
X1 = X2 ∼ N(0, 1).

n = 200 n = 800

ρ a γ ÂREβ̂1
ÂREβ̂2

ÂRE β̂1
ÂRE β̂2

0.5 80% 20% 1.04 1.27 1.02 1.05
50% 1.13 1.16 1.14 1.26

90% 20% 1.22 1.23 1.14 1.26
50% 1.18 1.33 1.34 1.37

0.85 80% 20% 1.20 1.23 1.04 1.02
50% 1.10 1.13 1.12 1.07

90% 20% 1.23 1.18 1.29 1.31
50% 1.32 1.37 1.51 1.56
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Figure 4.1: Relative efficiency of θ̂P to θ̂R for β̂1 across the sampling fraction of the supple-
mental sample, under the models in Tables 4.9 and 4.11 with a = 80%.

Figure 4.2: Relative efficiency of θ̂P to θ̂R for β̂2 across the sampling fraction of the supple-
mental sample, under the models in Tables 4.9 and 4.11 with a = 80%.
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Figure 4.3: Relative efficiency of θ̂P to θ̂S for β̂1 across the sampling fraction of the supple-
mental sample, under the model in Table 4.9 with a = 80%.

Figure 4.4: Relative efficiency of θ̂P to θ̂S for β̂2 across the sampling fraction of the supple-
mental sample, under the model in Table 4.9 with a = 80%.
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Figure 4.5: Relative efficiency of θ̂P to θ̂S for β̂1 across the sampling fraction of the supple-
mental sample under the model in Table 4.11 with a = 80%.

Figure 4.6: Relative efficiency of θ̂P to θ̂S for β̂2 across the sampling fraction of the supple-
mental sample under the model in Table 4.11 with a = 80%.
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4.4 Application to the Collaborative Perinatal Project Data

4.4.1 The CPP Data

We applied the proposed method to analyze the Collaborative Perinatal Project

(CPP) data to study the effect of the third trimester maternal pregnancy serum level

of polychlorinated biphenyls (PCBs) on hearing loss children. The CPP was a prospec-

tive study designed to identify determinants of neurodevelopmental deficits in children.

Details were described in Section 1.2.1. Nearly 56,000 pregnant women were recruited

into the CPP study from 1959 through 1966 through 12 study centers across the United

States. Women were enrolled, usually at their first prenatal visit; it resulted in 55,908

pregnancies. Data were collected on the mothers at each prenatal visit and at delivery

and when the children were 24 hours, 4 and 8 months, and 1, 3, 4, 7, and 8 years.

In a recent environmental epidemiologic study (Longnecker et al., 2001 and 2004), the

researchers were interested in studying the relationship between the audiometric evalu-

ation, which was done when the children were approximately 8 years old, and in utero

exposure to polychlorinated biphenyls (PCBs) measured as the third trimester mater-

nal serum PCB level. The study subjects were children born into the CPP. There were

44,075 eligible children who met the following criteria: (1) live born singleton, and (2) a

3-ml third trimester maternal serum specimen was available. The investigators obtained

exposure measurements for an outcome-dependent subsample from the population. In

particular, the planned sampling design included an SRS of 1,200 subjects from eligible

children, of whom 726 had an 8-year audiometric evaluation and a supplemental sample

of 200 children whose audiometric evaluation showed sensorineural hearing loss (SNHL),

106



defined defined by a hearing threshold ≥ 13.3 dB according to the average across both

ears at 1000, 2000, and 4000 Hz, without any evidence of conductive hearing loss. Evi-

dence of conductive hearing loss exists when the air-bone difference in hearing threshold is

≥ 10 dB again based on the average across both ears. It was anticipated that a sampling

design where children with SNHL were oversampled was to enhance the study efficiency

relative to an SRS design of the same size.

In our analysis, we took the average measurements at frequencies 1000, 2000, and

4000 Hz for each ear separately to be the continuous outcome variables. The exposure

variable of interest was the third trimester maternal serum PCB level (PCB) measured

in µg/L. Additional factors considered potentially confounding included, for the mother,

the socioeconomic index (SEI) score and the highest education level attained when giving

birth (EDUC), and the race (RACE) and the gender (SEX) of the child. The covariate

of RACE was coded to have two levels: 1 = “White”, 0 = “Black and Others”. The

covariate SEX was coded 1 for males and 0 for females.

We considered the subjects who did not have missing observations for the variables

selected into the model fitting and we assumed that missing data were missing completely

at random. Of the 44,075 eligible children, 1,256 subjects were selected at random, of

which 729 had complete data for the variables mentioned above and will then represent

the study population in our data analysis. In order to adjust for our selection criterion

described in the previous section, we considered the cutpoint of 13.3 dB. As a result,

156 out of 729 subjects represented the SNHL sample, whose maximum hearing levels

were above the cutpoint. To illustrate our proposed method with the application of real

data, we considered the following design with the total sample size n = 200 under the
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Multivariate-ODS design with a maximum selection criterion: an overall simple random

sample of size n0 = 150 from 729 supplemented with an additional supplemental sample

of n1 = 50 drawn from the remaining subjects in the SNHL sample.

4.4.2 The Conditional Model

After examining the distributions of the hearing levels across three frequencies for

each ear, we transformed the outcome variables on the natural log scale in order to

exploit the normal properties. We therefore fitted the following linear model to the CPP

Multivariate-ODS data,

ln(Hearingij) = β0j +β1jPCBi +β2jSEXij +β3jRACEij +β4jEDUCij +β5jSEIij + εj ,

(4.3)

where i = 1, . . . , 828; εj ∼ N(0, σ2
j ), where j = 1 representing the hearing level across

three frequencies from the left ear and j = 2 from the right ear; ρ = Corr(ε1, ε2). We

assumed that f(Y |X; θ) is bivariate normal, where θT = (βT
1 ,βT

2 , σ2
1, σ

2
2), and βT

j =

(β0j, . . . , β5j) and j = 1, 2. We estimated the parameters using the methods considered

in the simulation studies: θP and θR.

4.4.3 Results

Table 4.21 presented the results of the parameter estimates, the estimated standard

errors and the approximate 95% confidence intervals calculated based on the asymptotic

normal distributions for each method. Both analyses showed that the corresponding 95%
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confidence intervals for the PCB effect included 0. Thus, we would conclude that in utero

PCB exposure did not have a significant effect on hearing levels for both ears. Observing

the confidence intervals for other confounding parameters for the left ear, the covariate

RACE showed a significant effect at the nominal level of 0.05, agreed by both methods

and the significance was concluded for both ears. It indicated that white children had

negative impact on hearing loss; in other words, white children were more likely to have

better hearing ability than black and other children.

Although PCB was not significant, we could still see some efficiency gains from the

results; the observed 95% confidence intervals for PCB provided by the proposed esti-

mator θ̂P were narrower for both ears, compared with the CI obtained by θ̂R; take the

CI from the left ear as an example: (−0.02, 0.10) for θ̂P versus (−0.04, 0.12) for θ̂R.

Furthermore, it is clear to see that the proposed method resulted in substantially smaller

standard errors for both ears than the competing method and there were gains in effi-

ciency of the proposed method. We believe that our proposed method performed well

when considering data in the Multivariate-ODS design.
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Table 4.21: Results of modeling fitting for the CPP data with n0 = 150, n1 = 50, and n = 200.

θR (n0 = 150) θP (n = 200)

β̂ SE(β̂) 95% CI β̂ SE(β̂) 95% CI

Left Ear Int 1.92 0.39 (1.16, 2.67) 2.06 0.28 (1.50, 2.61)
PCB 0.04 0.04 (−0.04, 0.12) 0.04 0.03 (−0.02, 0.10)
SEX 0.11 0.14 (−0.17, 0.39) 0.14 0.11 (−0.07, 0.35)
RACE −0.79 0.17 (−1.12,−0.45) −0.74 0.13 (−0.99,−0.49)
EDUC −0.02 0.04 (−0.09, 0.06) −0.03 0.03 (−0.09, 0.02)
SEI 0.04 0.05 (−0.06, 0.13) 0.03 0.04 (−0.04, 0.10)

Right Ear Int 2.35 0.36 (1.65, 3.06) 2.28 0.27 (1.76, 2.79)
PCB 0.01 0.04 (−0.06, 0.08) −0.02 0.03 (−0.07, 0.04)
SEX −0.10 0.13 (−0.36, 0.16) −0.07 0.10 (−0.26, 0.13)
RACE −0.66 0.16 (−0.96,−0.36) −0.54 0.12 (−0.78,−0.31)
EDUC −0.04 0.04 (−0.11, 0.03) −0.02 0.03 (−0.07, 0.03)
SEI 0.03 0.05 (−0.05, 0.12) 0.00 0.03 (−0.06, 0.06)
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CHAPTER 5

STATISTICAL INFERENCES FOR
MULTIVARIATE-ODS WITH A

SUMMATION CRITERION

5.1 Introduction

To investigate the relationships between a disease outcome and an exposure given

other characteristics, epidemiology and other biomedical studies often rely on the ob-

servational study designs. Cohort and case-control studies are most commonly used

designs. The cohort study is to observe several individual exposures and the individ-

ual disease occurrence on the basis of a follow-up period and could take a long time to

obtain the results. It could cost a lot to conduct a study especially when the disease

is rare. Case-control design, on the other hand, is retrospective and studying the pa-

tients already having a disease to yield more information on risk factors of this group of

people that differ from those who are free of disease (Cornfield, 1951). The case-control

study in epidemiology or the choice-based sampling in econometrics are examples of a

general scheme, outcome-dependent sampling (ODS) design, where the individuals are

selected with probabilities depending on their observed outcome variables. The ODS

design is appealing in practice because it allows the researchers to concentrate resources



on observations with the greatest amount of information of primary interest (Anderson,

1972).

Much work for studying dichotomous outcomes under an ODS setting has been con-

tinuously developed (e.g., White, 1982; Prentice, 1986; Brewlow and Cain, 1988; Lawless

et al., 1999; Zhao and Lipsitz, 1992; Schill et al., 1993; Wacholder and Weinberg, 1994;

Breslow and Holubkov, 1997; Wang and Zhou, 2006, 2008). The approach to dichotomize

or categorize the outcome variable is commonly applied when the outcome is continu-

ous and then one can conduct available statistical methods on the categorical outcomes.

However, a selection bias often occurs since such a simplification for the outcome would

induce a loss of efficiency and information and increase the risk for misclassification (Su-

issa, 1991; Zhou et al., 2002; Weaver and Zhou, 2005), especially when the results are

sensitive to the choice of the cutpoints.

To directly apply the continuous scale of the outcome variable without losing infor-

mation on dichotomization, Zhou et al. (2002) considered a general ODS scheme where

(i) an overall simple random sample was drawn from the base population (the prospective

component); and (ii) additional supplement samples were randomly selected from seg-

ments of the outcome space of particular interest (the retrospective component). They

proposed a maximum semiparametric empirical likelihood inference procedure without

specifying the underlying distribution for the covariates. Weaver and Zhou (2005) fur-

ther developed a maximum estimated likelihood estimator (MELE) for the continuous

outcome under a two-stage ODS scheme. These methods, however, were developed for

the case with the univariate continuous outcome.

In practice, multivariate data arise in many contexts, for example, in epidemiological
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cohort studies where the outcomes are recorded for members within families, in animal

experiments in which treatments are applied to samples of littermates, or in most clinical

trials where study subjects are experiencing multiple events. Among these studies, the

correlation between the responses cannot be neglected. An increasing number of studies

are indeed performed using the Multivariate-ODS design, a further generalization of the

biased sampling, which is built on the idea of the ODS design with an aggregate of the

responses in the multivariate form and at the same preserves the advantages of the ODS.

An example of the ongoing study will be given to illustrate this idea in the next paragraph.

The usual statistical method for analyzing the multivariate data if accounting for the

Multivariate-ODS design is no longer appropriate. A statistical inference procedure is

needed to take advantage of the Multivariate-ODS setting.

We are motivated by the Collaborative Perinatal Project (CPP), a prospective co-

hort study designed to identify determinants of neurodevelopmental deficits in children

(Niswander and Gordon, 1972; Gray et al., 2000). Longnecker et al. (2004) studied the

association in humans between maternal third trimester serum polychlorinated biphenyls

(PCBs) levels and audiometry results in offsprings at approximately 8 years old. The

sample selected by the investigators was according to an ODS scheme: 726 having an

8-year audiometric evaluation of 1200 subjects were selected at random from the underly-

ing population and a supplemental sample of 200 eligible children was randomly selected

from the 440 children whose 8-year audiometric evaluation showed sensorineural hearing

loss (SNHL). It was anticipated that a sampling design where children with SNHL were

oversampled was to enhance the study efficiency relative to an SRS design of the same

size. The outcome variable discussed in the paper was whether the child had hearing loss,
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defined from each individual’s mean hearing level across both ears and then dichotomized

by a threshold. Our goal is to develop a proper inference procedure by considering the

continuous hearing measures from both ears simultaneously under the Multivariate-ODS

design to achieve greater efficiency than only considering a simple random sample or

alternatively simply dichotomizing the continuous outcome.

In this chapter we consider statistical inferences on regression models under a

Multivariate-ODS design. Specifically, we model the underlying distributions of covari-

ates nonparametrically using the empirical likelihood methods. A novelty of the proposed

method is that one can make inferences on the regression parameters without postulat-

ing any of the distributions for the covariates by combining a nonparametric component

with a parametric regression model. We show that the proposed estimator with the

outcome-dependent nature accounted for is more efficient and statistically powerful than

other alternative methods. We also investigate that the sampling strategies under the

Multivariate-ODS framework can be used to design a cost-effective study. The remainder

of this chapter is as follows. Section 5.2 presents the notation and the data structure

under the Multivariate-ODS design with multivariate continuous outcomes. We then

demonstrate the likelihood approaches and derive the asymptotic properties. Section 5.3

describes the simulation studies and the small sample properties of our proposed esti-

mator and compares with other methods. We thereafter apply the proposed method to

analyze the data in Collaborative Perinatal Project study in Section 5.4 and Section 5.5

gives a brief discussion and suggests some possible extensions of the proposed method in

future research. Additional simulation results are given in Section 5.6.

114



5.2 The Multivariate-ODS Design and Inference

5.2.1 The Multivariate-ODS Data Structure and Likelihood

Let Yij be the jth continuous outcome for the subject i, where i = 1, . . . , n and

j = 1, . . . , p (p ≥ 2), and Xi be a vector of covariates for the ith subject, which can include

both discrete and continuous components. Motivated by the Collaborative Perinatal

Project study described in Section 1, we will consider the supplemental sample selected

based on the summation criterion under the Multivariate-ODS mechanism through this

paper. Assume that the domain of interest, the sums of responses

{ p∑
j=1

Yij ,∀i
}

, is

partitioned into K mutually exclusive intervals by the known constants −∞ = a0 < a1 <

. . . < aK−1 < aK = ∞, and the kth interval is denoted as Ck = (ak−1, ak], k = 1, . . . , K.

The data structure of the Multivariate-ODS design consists of two components: an overall

simple random sample (SRS) of size n0 (≥ 0) and a stratified supplemental sample of size

nk (≥ 0) randomly drawn from the interval, Ck:

(i) SRS Component:

{
Yi,Xi

}
, i = 1, . . . , n0 ;

(ii) Supplemental Component:

{
Yi, Xi |

( p∑
j=1

Yij

)
∈ Ck

}
, i = 1, . . . , nk, j = 1, . . . , p

and k = 1, . . . , K.

Without loss of generality, we assume that p = 2 and K = 1; in other words, each

individual has two observations and one only selects the supplemental sample in the

upper tail of the distribution of

{ p∑
j=1

Yij , ∀i
}

, i.e., C1 = (a1,∞). To simplify the

notation, we drop the subscript of the cutpoint a1 and denote as a. Let n = n0 +

n1 be the total sample size of the Multivariate-ODS we observe. The joint density of
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(Y , X) can be written as f(Y |X; θ)gX(X), where f(Y |X; θ) is the conditional density

function of Y given X, θ is a vector of the regression coefficients of interest, and gX(X)

is the marginal density of X, which is independent of θ. The corresponding unknown

distribution function of X is denoted as GX(X). The joint likelihood function for the

observed data obtained through the Multivariate-ODS design is

LS(θ, GX) =

[
n0∏
i=1

f(Yi|Xi; θ)gX(Xi)

][
n1∏
i=1

f(Yi, Xi|(Yi1 + Yi2) > a; θ)

]
, (5.1)

where the first bracket is the likelihood corresponding to the observations from the SRS

portion of the Multivariate-ODS and the second quantity represents the likelihood contri-

butions of the observations in the supplemental sample. Using Bayes’ Law, the likelihood

function can be further rewritten as

LS(θ, GX) =

[
n0∏
i=1

f(Yi|Xi; θ)gX(Xi)

][
n1∏
i=1

f(Yi|Xi; θ)gX(Xi)

1− Pr(Yi1 + Yi2 < a)

]

=

[
n0∏
i=1

f(Yi|Xi; θ)gX(Xi)

][
n1∏
i=1

f(Yi|Xi; θ)gX(Xi)×
n1∏
i=1

1

1− π(θ, GX)

]

=

[
n∏

i=1

f(Yi|Xi; θ)

][(
n∏

i=1

gX(Xi)

)
× (1− π)−n1

]

= LS1(θ)× LS2(θ, GX) , (5.2)

where

LS1(θ) =
n∏

i=1

f(Yi|Xi; θ) (5.3)

and

LS2(θ, GX) =

(
n∏

i=1

gX(Xi)

)
× (1− π)−n1 . (5.4)
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Note that for simplicity, we define that

P0(X; θ) = Pr{Y1 + Y2 < a|X} =

∫ ∞

−∞

∫ a−Y2

−∞
f(Y |X; θ)dY1dY2 (5.5)

and

π = π(θ, GX) =

∫

X

P0(X; θ)dGX (5.6)

are the conditional and the marginal probabilities that the sum of the elements in Y is

less than a, respectively.

There are several possible approaches that could be used to make inferences about

θ. Without knowing GX , one of the naive approaches is to take the observations in the

SRS portion of the Multivariate-ODS and derive a maximum likelihood estimator for θ.

However, ignoring the information from the supplemental sample would lose accuracy

and efficiency. Or, one could obtain θ by maximizing the conditional likelihood based

on the complete data in the Multivariate-ODS . Clearly, these two estimators are not

the most efficient since the information regarding the supplemental sample is not fully

accounted. If GX(X) is parameterized to a parameter vector, say ξ, one could maximize

the resulting LS(θ, ĜX) subject to (θ, ξ). However, misspecification of GX could lead

to erroneous conclusions so that such approach will be limited only if the form of GX

is correctly specified. As a result, a nonparametric modeling of GX is desirable in this

case. Nevertheless, GX is an infinite-dimensional nuisance parameter and cannot be

easily factored out of LS2(θ, GX). Thus, to incorporate all the available information in

the Multivariate-ODS data without specifying GX , one needs a new method that will
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be tractable both theoretically and computationally. We next describe a semiparametric

empirical likelihood estimator, where GX is left unspecified.

5.2.2 A Semiparametric Likelihood Approach for the Multivariate-ODS

To outline our approach for estimating θ, we develop a profile likelihood function for

θ by first maximizing LS2(θ, GX) with θ fixed and GX treated as a nonparametric max-

imum likelihood estimate (NPMLE) (Vardi, 1985), a function of θ and π, and obtaining

an empirical estimator θ̂ by maximizing the resulting profile log likelihood function over

θ. The procedure is detailed in the following.

We first maximize LS(θ, GX), with θ fixed, over all discrete distributions whose

support includes the observed values by considering a discrete distribution function (i.e.

a step function) which has all of its probability located at the observed data points (Vardi,

1985). Let pi = dGX(Xi) = gX(Xi), i = 1, . . . , n, be the probability mass for the ith

covariate vector. We want to find values {p̂i, ∀i}, which maximize the log likelihood

function corresponding to (5.2)

lS(θ, {pi}) =
n∑

i=1

ln f(Yi|Xi; θ) +
n∑

i=1

ln pi − n1 ln(1− π) (5.7)

under the following constraints:

{
pi ≥ 0 ∀i,

n∑
i=1

pi = 1,
n∑

i=1

pi

(
P0(Xi; θ)− π

)
= 0

}
. (5.8)

The above conditions reflect the fact that GX is a discrete distribution function. For a

118



fixed θ, there exists a unique maximum for {pi} in (5.7) subject to the constraints in

(5.8) if 0 is inside the convex hull of the points {P0(Xi; θ), ∀ i} (Qin and Lawless, 1994).

We use the Lagrange multiplier argument to obtain p̂i through maximizing HS,

HS(θ, {pi}, µ, λ) =
n∑

i=1

ln f(Yi|Xi; θ) +
n∑

i=1

ln pi − n1 ln(1− π)

−µ

(
n∑

i=1

pi − 1

)
− nλ

n∑
i=1

pi

(
P0(Xi; θ)− π

)
, (5.9)

where µ and λ are the Lagrange multipliers corresponding to the normalized restriction

on the {p̂i,∀i}. With θ fixed, taking the derivative of H with respect to pi, solving the

score equation and applying the constraints in (5.8), we obtain µ̂ = n and

p̂i =

{
n

[
1 + λ

(
P0(Xi; θ)− π

)]}−1

. (5.10)

Substituting {p̂i} back into (5.7), we then have the resulting profile log likelihood func-

tion,

lS(φSM) =
n∑

i=1

ln f(Yi|Xi; θ)−
n∑

i=1

ln n

[
1 + λ

(
P0(Xi; θ)− π

)]
−n1 ln(1− π) , (5.11)

where φT
SM = (θT , λ, π) is a combined parameter vector; λ and π are treated as the pa-

rameters independent of θ. We refer φ̂SM , a maximizer for (5.11), as the semiparametric

empirical maximum likelihood estimator (SEMLE). The Newton-Raphson iterative algo-

rithm is used to solve the score equation from (5.11).
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5.2.3 Asymptotic Properties of the SEMLE

The main results for φSM regarding the existence and consistency, asymptotic nor-

mality, and a consistent estimator for the asymptotic variance-covariance matrix are

demonstrated as three theorems, respectively. Outlines of the proofs of the main results

are provided in the Appendix.

We indicate φ0
SM as the true parameter vector of interest containing θ0, π0 and λ0,

where π0 is the true marginal probability that the sum of one’s observations is less than

the cutpoint, a, and λ0 is the true Lagrange multiplier.

Theorem 5.1 (Consistency of the SEMLE): With probability going to 1 as N →∞,

there exists a sequence {φ̂SM} of solutions to the score equations from (5.11) such that

φ̂SM
p−→ φ0

SM , where φ0
SM is the true parameter vector of interest. If another sequence

{φ̄SM} of solutions to the score equations exists such that φ̄SM
p−→ φ0

SM , then φ̄SM =

φ̂SM with probability going to 1 as n →∞.

Theorem 5.2 (Asymptotic Normality of the SEMLE): The SEMLE has the fol-

lowing asymptotic normal distribution:

√
n(φ̂SM − φ0

SM)
D−→ N(p+2)(0, Σ(φ0

SM)) ,

with the asymptotic variance-covariance matrix

Σ = J−1V J−1 , (5.12)
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where

J = − ∂2l̃S(φ0
SM)

∂φSM∂φT
SM

and

V = Var

[
∂lS(Y ,X; φ0

SM)

∂φSM

]
,

where l̃S is the limiting form of lS.

Theorem 5.3 (A Consistent Estimator for the Asymptotic Variance-Covariance

Matrix): A consistent estimator for the variance-covariance matrix shown in Equation

(5.12) is

Σ̂(φ̂SM) = Ĵ−1(φ̂SM)V̂ (φ̂SM)Ĵ−1(φ̂SM),

where

Ĵ(φSM) = − 1

n

∂2lS(φSM)

∂φSM∂φT
SM

and

V̂ (φSM) =
1

n
V̂ar{i}

[
∂lS(Yi,Xi; φ

0
SM)

∂φSM

]
.

5.3 Simulation Studies

We evaluate the performance of the proposed estimator in the small sample settings

using the simulated data, generated according to the bivariate normal model:

Y |X ∼ N


µ =




µ1

µ2


 ,Σ =




σ1
2 ρσ1σ2

ρσ1σ2 σ2
2





 ,

121



where Y =

(
Y1, Y2

)T

, X =

(
X1, X2

)T

, µ1 = α1 + β1X1 and µ2 = α2 + β2X2; i.e., the

conditional distributions of Y1 given X1 and Y2 given X2 are normally distributed with

means α1 + β1X and α2 + β2X, variances σ2
1 and σ2

2, respectively, and the correlation

coefficient ρ. Our goal is to estimate the parameter vector θP = (α1, β1, α2, β2, σ1, σ2, ρ)T .

In particular, we will investigate the behavior of β1 and β2 by fixing α1 = 0.5, α2 = −0.8,

and σ2
1 = σ2

2 = 1. Then the same models are applied to ρ = 0.5 and ρ = 0.85 to see how

the magnitude of association between outcome variables affects the parameter estimates.

The study Multivariate-ODS sample size was set to be n = 200. The Multivariate-

ODS design we considered included an SRS and a supplemental sample from individuals

with their summation of outcome values in the tail of the distribution of
∑

(Y ), where

∑
(Y ) =

{
p∑

j=1

Y1j,

p∑
j=1

Y2j, . . . ,

p∑
j=1

Ynj

}
. We considered the cutpoint to partition the

space of
∑

(Y ), a, of the 80th or 90th percentile from the distribution of
∑

(Y ) under

the study models. And the supplemental sampling fraction, γ = n1/n, was either 20%

or 50%. The parameter estimates and the corresponding standard errors for each setting

were obtained from independent 1,000 data sets generated.

We compare our proposed estimator, θ̂P , to the following competitive estimators

under each setting in our simulation study: (i) the maximum likelihood estimator by

maximizing the likelihood from the SRS portion of the Multivariate-ODS data (θ̂R), (ii)

the maximum likelihood estimator by maximizing the conditional likelihood based on

the complete Multivariate-ODS data (θ̂C), and (iii) the maximum likelihood estimator

obtained from a random sample of the same size as the Multivariate-ODS sample (θ̂S).

Comparing θ̂P with θ̂R and θ̂C will give us an insight of the impact on ignoring the part
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of the information from the Multivariate-ODS sample. The comparison between θ̂P and

θ̂S will demonstrate the efficiency gain of the Multivariate-ODS design over the simple

random sample of the same size.

The simulation results were presented in Tables 5.1 through 5.3. Within each table,

the sampling specifications and the covariate distribution were fixed. The Multivariate-

ODS sample size in Tables 5.1 and 5.2 was set to be n = 200 and the correlation

coefficient was ρ = 0.5 in Table 5.1 and ρ = 0.85 in Table 5.2. The results in Tables 5.1

and 5.2 included the small sample properties of the proposed estimator and the competing

estimators. Table 5.3 presented the relative efficiencies (ratios of variances) to evaluate

the amount of information gained by implementing the Multivariate-ODS design.

In Table 5.1, we observed that three methods yielded unbiased means of the estimates

compared with the “true” parameter values for all four settings. The proposed estimator

θ̂P produced the smallest standard errors for estimating the model parameters, compared

with θ̂R and θ̂C . On the other hand, θ̂R was the least efficient, which was expected since

θ̂R was obtained using the least information. For θ̂P , the means of the standard errors

were relatively close to the “true” simulated standard errors. The confidence intervals

based on the proposed estimator provided good coverage close to the nominal 95% level.

The same findings were observed for both θ̂R and θ̂C . Above observations were true for

both β̂1 and β̂2.

Table 5.2 presented the same model designs as Table 5.1 but with a higher correlation

coefficient, ρ = 0.85. The observations from Table 5.1 held in Table 5.2. Note that the

standard errors for θ̂P were smaller as the correlation coefficient increased. For example,

the standard errors were 0.068, 0.068, 0.065, and 0.065 for β̂1 from θ̂P in Table 5.1 under
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four settings whereas the corresponding standard errors in Table 5.2 were 0.064, 0.065,

0.064, and 0.061, respectively. This suggested that the proposed estimator be favored

and even more efficient when the outcomes were more correlated. The same trend was

observed for β̂2. The pattern above agreed well with larger sample sizes (the results were

not shown here).

For Table 5.3, we presented results from a relative efficiency study by comparing the

Multivariate-ODS design to the design of a simple random sample of the same sample

size under the same settings studied in Tables 5.1 and 5.2. We calculated the asymptotic

relative efficiencies (ARE) of θ̂P to θ̂S, V arθ̂S
/V arθ̂P

, under two sample size consider-

ations, n = 200 and n = 800. We observed that all the AREs were greater than 1,

suggesting that θ̂P was more efficient than θ̂S under all the circumstances. A higher

degree of efficiency gains was observed when the two outcomes were more correlated; for

example, as the correlation coefficient ρ = 0.85, the cutpoint a = 80% and the sampling

fraction γ = 50%, the efficiency gain for θ̂P over θ̂S was 33% whereas the efficiency gain

was 17% as ρ = 0.5. From the efficiency study, we see that θ̂P led to more efficiency gains

over θ̂S as the proportion of the supplemental data in the Multivariate-ODS increased,

in which the outcomes were more correlated.
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Table 5.1: Simulation Results: Bivariate normal model with n = 200, α1 = 0.5, β1 = −0.5,
α2 = −0.8, β2 = ln(2), σ1 = σ2 = 1, ρ = 0.5, a = 1.175 (80th percentile) and 1.958
(90th percentile) and X1 = X2 ∼ N(0, 1).

β̂1 β̂2

a γ Method Mean SE ŜE 95% CI Mean SE ŜE 95% CI

80% 20% θR −0.501 0.081 0.080 0.948 0.692 0.081 0.080 0.952
θC −0.499 0.079 0.076 0.945 0.693 0.077 0.076 0.952
θP −0.499 0.068 0.068 0.953 0.693 0.067 0.068 0.951

50% θR −0.500 0.105 0.101 0.941 0.690 0.099 0.101 0.959
θC −0.500 0.087 0.086 0.949 0.689 0.086 0.086 0.955
θP −0.500 0.068 0.069 0.951 0.690 0.069 0.069 0.942

90% 20% θR −0.495 0.080 0.079 0.955 0.698 0.082 0.079 0.937
θC −0.494 0.077 0.076 0.948 0.696 0.079 0.076 0.942
θP −0.497 0.065 0.064 0.940 0.693 0.067 0.064 0.944

50% θR −0.500 0.102 0.102 0.954 0.691 0.102 0.102 0.949
θC −0.500 0.090 0.088 0.946 0.694 0.088 0.088 0.948
θP −0.500 0.065 0.064 0.941 0.694 0.063 0.064 0.951
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Table 5.2: Simulation Results: Bivariate normal model with n = 200, α1 = 0.5, β1 = −0.5,
α2 = −0.8, β2 = ln(2), σ1 = σ2 = 1, ρ = 0.85, a = 1.335 (80th percentile) and
2.192 (90th percentile) and X1 = X2 ∼ N(0, 1).

β̂1 β̂2

a γ Method Mean SE ŜE 95% CI Mean SE ŜE 95% CI

80% 20% θR −0.499 0.075 0.080 0.961 0.693 0.078 0.080 0.958
θC −0.499 0.073 0.077 0.955 0.693 0.075 0.077 0.958
θP −0.500 0.064 0.067 0.957 0.692 0.066 0.067 0.962

50% θR −0.497 0.099 0.101 0.956 0.694 0.101 0.101 0.944
θC −0.499 0.088 0.090 0.948 0.694 0.089 0.090 0.955
θP −0.499 0.065 0.068 0.968 0.694 0.065 0.068 0.960

90% 20% θR −0.498 0.080 0.080 0.954 0.696 0.081 0.080 0.946
θC −0.499 0.078 0.077 0.950 0.695 0.080 0.077 0.943
θP −0.501 0.064 0.063 0.940 0.693 0.065 0.063 0.941

50% θR −0.502 0.100 0.101 0.952 0.682 0.102 0.101 0.943
θC −0.500 0.090 0.092 0.954 0.683 0.090 0.092 0.962
θP −0.496 0.061 0.062 0.953 0.697 0.062 0.062 0.950
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Table 5.3: Simulation Results: Relative efficiencies (V ar
θ̂S

/V ar
θ̂P

) from the models presented
in Tables 5.1 and 5.2 under different sample sizes, n.

n = 200 n = 800

ρ a γ ÂREβ̂1
ÂREβ̂2

ÂRE β̂1
ÂRE β̂2

0.5 80% 20% 1.08 1.08 1.02 1.07
50% 1.17 1.10 1.25 1.15

90% 20% 1.24 1.11 1.32 1.29
50% 1.27 1.33 1.22 1.29

0.85 80% 20% 1.30 1.22 1.12 1.08
50% 1.33 1.25 1.12 1.16

90% 20% 1.32 1.25 1.44 1.35
50% 1.38 1.29 1.43 1.36
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5.4 Analysis of the Collaborative Perinatal Project Data

We applied the proposed method to analyze the Collaborative Perinatal Project

(CPP) data to study the effect of the third trimester maternal pregnancy serum level

of polychlorinated biphenyls (PCBs) on hearing loss children. Nearly 56,000 pregnant

women were recruited into the CPP study from 1959 through 1966 through 12 study

centers across the United States. Women were enrolled, usually at their first prenatal

visit; it resulted in 55,908 pregnancies (9,161 women contributed multiple pregnancies to

the study). Data were collected on the mothers at each prenatal visit and at delivery and

when the children were 24 hours, 4 and 8 months, and 1, 3, 4, 7, and 8 years. Among

all the measures, we were interested in audiometric evaluation, which was done when

the children were approximately 8 years old. In our selection of the subjects, we closely

follow the selection criteria and the sampling scheme used in Longnecker et. al. (2004).

There were 44,075 eligible children who met the following criteria: (1) live born singleton,

and (2) a 3-ml third trimester maternal serum specimen was available. The audiometric

evaluations showed sensorineural hearing loss (SNHL) was defined by a hearing threshold

≥ 13.3 dB according to the average across both ears at 1000, 2000, and 4000 Hz, without

any evidence of conductive hearing loss. Evidence of conductive hearing loss exists when

the air-bone difference in hearing threshold is ≥ 10 dB again based on the average across

both ears.

We took the average measurements at frequencies 1000, 2000, and 4000 Hz for each ear

separately to be the continuous outcome variables in our analysis of the CPP data. The

exposure variable of interest was PCB measured in µg/L. Additional factors considered
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potentially confounding included, for the mother, the socioeconomic index (SEI) score

and the highest education level attained when giving birth (EDUC), and the race (RACE)

and the gender (SEX) for children.

For the data analysis, we considered the subjects who did not have missing observa-

tions for any variable in the model fitting and we assumed that missing data were missing

completely at random. With exclusion of the subjects having incomplete data, we had a

total sample size of 828 in the Multivariate-ODS sample composed of 640 in the simple

random sample and 188 in the SNHL sample. After examining the distributions of the

hearing levels across three frequencies for each ear, we transformed the outcome variables

on the natural log scale in order to exploit the normal properties. We therefore fitted

the following linear model to the CPP Multivariate-ODS data,

ln(Hearingij) = β0j +β1jPCBi +β2jSEXij +β3jRACEij +β4jEDUCij +β5jSEIij + εj ,

(5.13)

where εj ∼ N(0, σ2
j ), i = 1, . . . , 828 and j = 1 representing the hearing level across

three frequencies from the left ear and j = 2 from the right ear; ρ = Corr(ε1, ε2). We

assumed that f(Y |X; θ) is bivariate normal, where θT = (βT
1 , βT

2 , σ2
1, σ

2
2) and βj =

(β0j, . . . , β5j) and j = 1, 2. We estimated the parameters using the methods considered

in the simulation studies: our proposed method, θP , and the competing method of θR.

Table 5.4 presented the results of the parameter estimates, the estimated standard

errors and the approximate 95% confidence intervals calculated based on the asymptotic

normal distributions for each method. Both analyses showed that the corresponding 95%

confidence intervals for the PCB effect included 0. Thus, we would conclude that in utero
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PCB exposure did not have a significant effect on hearing levels for both ears. Observing

the confidence intervals for other confounding parameters for the left ear, the covariate

RACE showed a significant effect at the nominal level of 0.05, agreed by three methods

and the significance was concluded for both ears. It indicated that white children had

negative impact on hearing loss; in other words, white children were more likely to have

better hearing ability than black and other children. For another confounding variable

SEX, θ̂P exhibited significance on the borderline for the left ear, suggesting that the

hearing level for girls be lower than it for boys.

Although PCB was not significant, we could still see some efficiency gains from the

results; the observed 95% confidence intervals for PCB provided by the proposed estima-

tor θ̂P were narrower for both ears, compared with the CI obtained by θ̂R; for example,

on the left ear, (−0.03, 0.03) for θ̂P versus (−0.01, 0.06) for θ̂R. Furthermore, it is clear

to see that θ̂P resulted in substantially smaller standard errors for both ears than θ̂R and

there were gains in efficiency of the proposed method.

In Table 5.5, we fitted the same model but only considering the univariate case by

taking the grand mean over both ears across three frequencies. The point estimates

for θ̂R in Table 5.4 were similar to those in Table 5.5. Note that the standard errors

from θP in Table 5.4 were relatively smaller compared with those from θ̂R in Table 5.5,

which was agreed for both ears. From above analyses, we can clearly see that there are

observable benefits by incorporating the supplemental data under the Multivariate-ODS

design when estimating the model parameters.
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Table 5.4: Results of modeling fitting for the CPP data using the Multivariate-ODS design.

θR θP

β̂ SE(β̂) 95% CI β̂ SE(β̂) 95% CI

Left Ear Int 1.83 0.19 (1.47, 2.20) 1.87 0.15 (1.57, 2.17)
PCB 0.03 0.02 (−0.01, 0.06) −0.00 0.02 (−0.03, 0.03)
SEX −0.11 0.07 (−0.24, 0.02) −0.11 0.05 (−0.21,−0.00)
RACE −0.69 0.07 (−0.83,−0.54) −0.31 0.06 (−0.43,−0.19)
EDUC 0.00 0.02 (−0.03, 0.04) 0.01 0.01 (−0.02, 0.03)
SEI 0.03 0.02 (−0.01, 0.07) 0.01 0.02 (−0.03, 0.04)

Right Ear Int 1.65 0.18 (1.30, 1.99) 1.74 0.15 (1.45, 2.04)
PCB 0.02 0.02 (−0.02, 0.05) −0.01 0.01 (−0.04, 0.02)
SEX −0.00 0.06 (−0.13, 0.12) −0.03 0.05 (−0.13, 0.08)
RACE −0.69 0.07 (−0.82,−0.55) −0.34 0.06 (−0.45,−0.22)
EDUC 0.01 0.02 (−0.02, 0.05) 0.01 0.01 (−0.02, 0.04)
SEI 0.02 0.02 (−0.02, 0.05) −0.00 0.02 (−0.04, 0.03)
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Table 5.5: Results of modeling fitting for the CPP data using the univariate ODS design.

θR θC

β̂ SE(β̂) 95% CI β̂ SE(β̂) 95% CI

Int 1.784 0.162 (1.466, 2.102) 2.201 0.174 (1.860, 2.542)
PCB 0.024 0.015 (−0.005, 0.053) −0.003 0.017 (−0.036, 0.030)
SEX −0.055 0.057 (−0.167, 0.057) −0.087 0.062 (−0.209, 0.035)
RACE −0.641 0.063 (−0.764,−0.518) −0.394 0.069 (−0.529,−0.259)
EDUC 0.006 0.015 (−0.023, 0.035) 0.007 0.016 (−0.024, 0.038)
SEI 0.021 0.018 (−0.014, 0.056) 0.002 0.019 (−0.035, 0.039)
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5.5 Discussion

Much research has been discussed for multivariate continuous data, of which is a com-

mon and important form; nevertheless, the methods accounting for the Multivariate-ODS

design are lacking. Throughout previous sections, we have demonstrated the need for

developing the statistical inferences on the Multivariate-ODS and proposed a semipara-

metric empirical likelihood method for multivariate continuous outcomes. The proposed

estimator is semiparametric in nature that the underlying distributions of the covariates

are modeled nonparametrically using the empirical likelihood methods. We have shown

that the proposed estimator is consistent and asymptotically normally distributed and

a consistent estimator for the asymptotic variance-covariance exists, by incorporating

additional information into such Multivariate-ODS design process. We used simulated

data generated from a standard linear regression model with Normal errors to examine

the performance and the small-sample properties of our proposed estimator. Our lim-

ited simulation results indicated that the proposed estimator, θP , holds well for all the

properties and is more efficient than θR, which only takes the simple random sample into

consideration, and θC , the conditional estimator, using the complete Multivariate-ODS

data but ignoring additional information in the supplemental sample. For the relative

efficiency studies, we observed that θP exhibits more efficiency gains than θS, using a

simple random sample of the same size as the Multivariate-ODS from the underlying

population, in terms of different correlation coefficients between the outcomes, the al-

locations of the cutpoints and the the supplemental fractions. We conclude that the
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Multivariate-ODS design, combined with an appropriate analysis, can provide a cost-

effective approach to further improve study efficiency, for a given sample size. Finally,

we apply the proposed method to the Collaborative Perinatal Project data, where the

researchers are interested in studying the association between a child’s hearing loss and

in utero exposure to PCBs as well as other covariates. The estimator obtained by θP

clearly gained more efficiency and as more precise than the other competing estimator,

θR, although PCBs could not be concluded as a significant effect.

Our simulated studies also suggest that the greatest gain of efficiency takes place

when the supplemental sampling fraction is in the region from 0.2 to 0.6, similar to the

guidance suggested by Zhou et al. (2002) in using the ODS design concerning these

issues under one continuous outcome variable. Further investigation for the sample size

determination, the optimal sample allocations, the optimal correlation coefficient between

the outcomes and power analyses aimed at multivariate outcomes under the Multivariate-

ODS is required. We considered two-dimensional multivariate data in this dissertation;

the future work may include the flexibility of incorporating the covariance structures for

higher-dimensional data. Our proposed method can also be applied to the quantitative

genetics studies, in which the quantitative trait is modeled as a continuous variable;

more and more studies in order to limit the expenses on the DNA analysis are actually

adopting the form of the ODS design. We believe that the proposed method can be a

useful tool toward such studies.
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5.6 Additional Simulation Results

Complete simulation studies were presented in this section. The simulation results

were presented in Tables 5.6 through 5.25. The results in the tables were presented

for three different combinations of β, the correlation coefficients ρ, various cutpoints a,

the sampling fractions γ, and sample sizes n, with three methods. Within each table,

the sampling specifications and the covariate distribution are fixed. Tables 5.6 through

5.21 included the small sample properties of the proposed estimator and the competing

estimators and Tables 5.22 - 5.25 presented the efficiencies of θ̂S versus θ̂P based on

the models for Tables 5.6 - 5.21. The results were comparable to those discussed in the

previous section.

To investigate the effect of changing the supplemental sampling fractions on the im-

provement of the Multivariate-ODS design over other simple random sample designs,

we conducted several simulation experiments using the same simulation models used in

Tables 5.14 and 5.16 but with the cutpoint a = 80%. Figures 5.1 and 5.2 presented the

relative efficiency of θ̂P over θ̂R. Clearly, the efficiency gains of the Multivariate-ODS

design over the simple random sample design increased with the supplemental sampling

fractions, agreed by both sample size considerations, and θ̂P was consistently more effi-

cient than θ̂R regardless of the sampling fractions. Although the efficiency gains increased

as the supplemental sample size increased, it was not practical in reality since it may

not be easy to have enough individuals in the extreme tails. We suggested the possible

remedy for an appropriate proportion of the supplemental sample to be in the region

from 0.3 to 0.6. Figures 5.3 through 5.6 illustrated the standard errors for θ̂P , and the
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relative efficiency of the Multivariate-ODS design to a simple random sample of the same

sample size across various supplemental sampling fractions γ. The increase in the rela-

tive efficiency of θ̂P to θ̂S was not monotone over the fractions although θ̂P was more

efficient than θ̂S with most of the sampling fractions. For both sample sizes, we observed

the most efficiency gain at γ = 0.3, which β1 and β2 both agreed. As γ was more than

60%, there was a decrease in the relative efficiency. The results suggested that a great

efficiency gain can be achieved when γ was between 0.3 and 0.6.
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Table 5.6: Simulation Results: Bivariate normal model with n = 200, α1 = 0.5, β1 = 0,
α2 = −0.8, β2 = 0, σ1 = σ2 = 1, ρ = 0.5, a = 1.165 (80th percentile) and 1.936
(90th percentile) and X1 = X2 ∼ N(0, 1).

β̂1 β̂2

a γ Method Mean SE ŜE 95% CI Mean SE ŜE 95% CI

80% 20% θR 0.002 0.080 0.079 0.947 0.005 0.079 0.079 0.945
θC 0.003 0.076 0.076 0.944 0.003 0.075 0.075 0.958
θP 0.002 0.067 0.067 0.949 0.002 0.066 0.067 0.956

50% θR 0.000 0.104 0.100 0.943 −0.002 0.102 0.100 0.946
θC −0.002 0.087 0.087 0.942 −0.002 0.087 0.086 0.943
θP 0.001 0.070 0.068 0.942 0.000 0.069 0.068 0.955

90% 20% θR −0.001 0.080 0.079 0.938 0.000 0.081 0.079 0.949
θC −0.001 0.076 0.076 0.945 −0.001 0.077 0.076 0.955
θP −0.001 0.064 0.064 0.953 0.003 0.064 0.064 0.952

50% θR −0.001 0.105 0.101 0.938 −0.002 0.103 0.101 0.949
θC −0.003 0.091 0.088 0.942 −0.004 0.088 0.088 0.952
θP −0.002 0.065 0.063 0.939 −0.004 0.065 0.064 0.945
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Table 5.7: Simulation Results: Bivariate normal model with n = 200, α1 = 0.5, β1 = 0,
α2 = −0.8, β2 = 0, σ1 = σ2 = 1, ρ = 0.85, a = 1.318 (80th percentile) and 2.183
(90th percentile) and X1 = X2 ∼ N(0, 1).

β̂1 β̂2

a γ Method Mean SE ŜE 95% CI Mean SE ŜE 95% CI

80% 20% θR −0.001 0.078 0.079 0.946 0.000 0.080 0.079 0.951
θC −0.001 0.074 0.077 0.951 0.001 0.077 0.077 0.950
θP 0.000 0.066 0.066 0.946 0.001 0.068 0.066 0.938

50% θR −0.001 0.096 0.100 0.956 −0.002 0.097 0.100 0.948
θC −0.001 0.090 0.089 0.942 −0.002 0.091 0.089 0.936
θP 0.001 0.066 0.068 0.951 −0.001 0.066 0.067 0.945

90% 20% θR 0.000 0.079 0.079 0.949 −0.001 0.080 0.079 0.946
θC 0.000 0.076 0.077 0.956 −0.001 0.077 0.077 0.954
θP 0.002 0.061 0.062 0.952 0.001 0.062 0.062 0.944

50% θR −0.002 0.101 0.100 0.956 0.000 0.098 0.100 0.947
θC 0.001 0.091 0.092 0.959 0.002 0.088 0.092 0.958
θP −0.002 0.061 0.061 0.951 −0.001 0.060 0.061 0.955
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Table 5.8: Simulation Results: Bivariate normal model with n = 800, α1 = 0.5, β1 = 0,
α2 = −0.8, β2 = 0, σ1 = σ2 = 1, ρ = 0.5, a = 1.165 (80th percentile) and 1.936
(90th percentile) and X1 = X2 ∼ N(0, 1).

β̂1 β̂2

a γ Method Mean SE ŜE 95% CI Mean SE ŜE 95% CI

80% 20% θR 0.000 0.039 0.039 0.950 −0.001 0.040 0.040 0.942
θC 0.000 0.037 0.038 0.962 0.000 0.039 0.038 0.945
θP 0.001 0.034 0.033 0.951 0.000 0.035 0.033 0.944

50% θR −0.004 0.050 0.050 0.952 −0.003 0.051 0.050 0.941
θC −0.003 0.042 0.043 0.654 −0.003 0.044 0.043 0.948
θP −0.002 0.033 0.034 0.958 −0.001 0.036 0.034 0.940

90% 20% θR 0.001 0.039 0.040 0.959 0.000 0.038 0.040 0.958
θC 0.002 0.037 0.038 0.961 0.000 0.037 0.038 0.959
θP 0.002 0.031 0.032 0.952 0.000 0.031 0.032 0.958

50% θR 0.001 0.050 0.050 0.939 0.000 0.050 0.050 0.952
θC 0.001 0.044 0.044 0.937 0.000 0.044 0.044 0.951
θP 0.001 0.031 0.032 0.954 0.000 0.032 0.032 0.947
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Table 5.9: Simulation Results: Bivariate normal model with n = 800, α1 = 0.5, β1 = 0,
α2 = −0.8, β2 = 0, σ1 = σ2 = 1, ρ = 0.85, a = 1.318 (80th percentile) and 2.183
(90th percentile) and X1 = X2 ∼ N(0, 1).

β̂1 β̂2

a γ Method Mean SE ŜE 95% CI Mean SE ŜE 95% CI

80% 20% θR −0.001 0.040 0.040 0.948 −0.001 0.039 0.040 0.961
θC −0.001 0.038 0.038 0.946 −0.001 0.038 0.038 0.950
θP −0.001 0.034 0.033 0.945 −0.001 0.033 0.033 0.952

50% θR 0.001 0.050 0.050 0.945 0.001 0.052 0.050 0.947
θC 0.001 0.045 0.045 0.948 0.002 0.045 0.045 0.943
θP 0.002 0.035 0.034 0.943 0.003 0.035 0.034 0.941

90% 20% θR 0.001 0.040 0.040 0.950 0.001 0.040 0.040 0.944
θC 0.001 0.039 0.039 0.950 0.001 0.039 0.039 0.947
θP 0.000 0.031 0.031 0.953 0.000 0.031 0.031 0.957

50% θR 0.000 0.051 0.050 0.948 −0.002 0.051 0.050 0.946
θC −0.001 0.046 0.046 0.949 −0.002 0.046 0.046 0.942
θP 0.000 0.032 0.031 0.934 0.000 0.031 0.031 0.953
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Table 5.10: Simulation Results: Bivariate normal model with n = 200, α1 = 0.5, β1 = 0,
α2 = −0.8, β2 = 0.5, σ1 = σ2 = 1, ρ = 0.5, a = 1.231 (80th percentile) and 2.030
(90th percentile) and X1 = X2 ∼ N(0, 1).

β̂1 β̂2

a γ Method Mean SE ŜE 95% CI Mean SE ŜE 95% CI

80% 20% θR 0.005 0.083 0.079 0.949 0.501 0.079 0.079 0.956
θC 0.005 0.078 0.075 0.941 0.501 0.076 0.075 0.950
θP 0.007 0.070 0.068 0.935 0.502 0.067 0.068 0.946

50% θR 0.001 0.102 0.100 0.949 0.506 0.103 0.100 0.938
θC 0.003 0.087 0.085 0.945 0.505 0.085 0.085 0.955
θP 0.002 0.070 0.069 0.938 0.504 0.071 0.069 0.940

90% 20% θR 0.003 0.077 0.079 0.957 0.502 0.080 0.079 0.943
θC 0.004 0.073 0.075 0.954 0.504 0.076 0.076 0.950
θP 0.003 0.062 0.065 0.958 0.503 0.066 0.066 0.951

50% θR −0.001 0.099 0.100 0.945 0.498 0.103 0.100 0.941
θC −0.001 0.088 0.087 0.943 0.499 0.088 0.086 0.940
θP 0.001 0.066 0.065 0.943 0.501 0.067 0.065 0.940
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Table 5.11: Simulation Results: Bivariate normal model with n = 200, α1 = 0.5, β1 = 0,
α2 = −0.8, β2 = 0.5, σ1 = σ2 = 1, ρ = 0.85, a = 1.390 (80th percentile) and 2.262
(90th percentile) and X1 = X2 ∼ N(0, 1).

β̂1 β̂2

a γ Method Mean SE ŜE 95% CI Mean SE ŜE 95% CI

80% 20% θR 0.004 0.079 0.079 0.947 0.503 0.080 0.079 0.940
θC 0.004 0.077 0.076 0.952 0.503 0.076 0.076 0.948
θP 0.003 0.066 0.067 0.952 0.503 0.065 0.067 0.950

50% θR −0.001 0.096 0.100 0.950 0.497 0.100 0.100 0.953
θC 0.001 0.084 0.088 0.958 0.500 0.086 0.088 0.950
θP 0.000 0.068 0.068 0.952 0.499 0.069 0.068 0.950

90% 20% θR 0.000 0.079 0.079 0.945 0.500 0.081 0.079 0.958
θC 0.001 0.078 0.077 0.944 0.501 0.079 0.077 0.944
θP −0.001 0.065 0.064 0.938 0.499 0.066 0.064 0.934

50% θR −0.003 0.101 0.100 0.944 0.497 0.103 0.100 0.943
θC −0.003 0.091 0.090 0.948 0.499 0.092 0.090 0.945
θP −0.003 0.063 0.063 0.949 0.498 0.063 0.063 0.946
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Table 5.12: Simulation Results: Bivariate normal model with n = 800, α1 = 0.5, β1 = 0,
α2 = −0.8, β2 = 0.5, σ1 = σ2 = 1, ρ = 0.5, a = 1.231 (80th percentile) and 2.030
(90th percentile) and X1 = X2 ∼ N(0, 1).

β̂1 β̂2

a γ Method Mean SE ŜE 95% CI Mean SE ŜE 95% CI

80% 20% θR −0.001 0.040 0.040 0.947 0.499 0.039 0.040 0.963
θC −0.001 0.038 0.038 0.951 0.499 0.037 0.038 0.957
θP 0.000 0.035 0.034 0.944 0.500 0.033 0.034 0.957

50% θR 0.001 0.049 0.050 0.954 0.500 0.049 0.050 0.958
θC 0.000 0.041 0.042 0.959 0.499 0.041 0.042 0.957
θP 0.001 0.034 0.034 0.958 0.500 0.034 0.034 0.954

90% 20% θR −0.001 0.040 0.040 0.945 0.498 0.040 0.040 0.954
θC −0.001 0.038 0.038 0.946 0.498 0.038 0.038 0.949
θP −0.001 0.033 0.033 0.947 0.498 0.033 0.033 0.949

50% θR −0.001 0.050 0.050 0.951 0.500 0.051 0.050 0.949
θC 0.000 0.043 0.043 0.947 0.501 0.045 0.043 0.943
θP −0.001 0.032 0.032 0.950 0.500 0.035 0.033 0.930
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Table 5.13: Simulation Results: Bivariate normal model with n = 800, α1 = 0.5, β1 = 0,
α2 = −0.8, β2 = 0.5, σ1 = σ2 = 1, ρ = 0.85, a = 1.390 (80th percentile) and 2.262
(90th percentile) and X1 = X2 ∼ N(0, 1).

β̂1 β̂2

a γ Method Mean SE ŜE 95% CI Mean SE ŜE 95% CI

80% 20% θR 0.000 0.039 0.040 0.953 0.501 0.038 0.040 0.954
θC 0.000 0.038 0.038 0.953 0.501 0.037 0.038 0.960
θP 0.000 0.034 0.034 0.947 0.501 0.033 0.033 0.955

50% θR 0.000 0.050 0.050 0.953 0.501 0.050 0.050 0.950
θC 0.001 0.044 0.044 0.939 0.501 0.044 0.044 0.949
θP 0.002 0.033 0.034 0.956 0.501 0.034 0.034 0.952

90% 20% θR 0.000 0.039 0.039 0.945 0.501 0.039 0.039 0.954
θC 0.000 0.038 0.038 0.943 0.501 0.038 0.038 0.947
θP 0.000 0.031 0.032 0.951 0.501 0.032 0.032 0.955

50% θR 0.003 0.052 0.050 0.945 0.502 0.051 0.050 0.944
θC 0.003 0.045 0.045 0.954 0.502 0.044 0.045 0.955
θP 0.002 0.032 0.032 0.945 0.501 0.031 0.032 0.955
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Table 5.14: Simulation Results: Bivariate normal model with n = 200, α1 = 0.5, β1 = −0.5,
α2 = −0.8, β2 = ln(2), σ1 = σ2 = 1, ρ = 0.5, a = 1.175 (80th percentile) and
1.958 (90th percentile) and X1 = X2 ∼ N(0, 1).

β̂1 β̂2

a γ Method Mean SE ŜE 95% CI Mean SE ŜE 95% CI

80% 20% θR −0.501 0.081 0.080 0.948 0.692 0.081 0.080 0.952
θC −0.499 0.079 0.076 0.945 0.693 0.077 0.076 0.952
θP −0.499 0.068 0.068 0.953 0.693 0.067 0.068 0.951

50% θR −0.500 0.105 0.101 0.941 0.690 0.099 0.101 0.959
θC −0.500 0.087 0.086 0.949 0.689 0.086 0.086 0.955
θP −0.500 0.068 0.069 0.951 0.690 0.069 0.069 0.942

90% 20% θR −0.495 0.080 0.079 0.955 0.698 0.082 0.079 0.937
θC −0.494 0.077 0.076 0.948 0.696 0.079 0.076 0.942
θP −0.497 0.065 0.064 0.940 0.693 0.067 0.064 0.944

50% θR −0.500 0.102 0.102 0.954 0.691 0.102 0.102 0.949
θC −0.500 0.090 0.088 0.946 0.694 0.088 0.088 0.948
θP −0.500 0.065 0.064 0.941 0.694 0.063 0.064 0.951
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Table 5.15: Simulation Results: Bivariate normal model with n = 200, α1 = 0.5, β1 = −0.5,
α2 = −0.8, β2 = ln(2), σ1 = σ2 = 1, ρ = 0.85, a = 1.335 (80th percentile) and
2.192 (90th percentile) and X1 = X2 ∼ N(0, 1).

β̂1 β̂2

a γ Method Mean SE ŜE 95% CI Mean SE ŜE 95% CI

80% 20% θR −0.499 0.075 0.080 0.961 0.693 0.078 0.080 0.958
θC −0.499 0.073 0.077 0.955 0.693 0.075 0.077 0.958
θP −0.500 0.064 0.067 0.957 0.692 0.066 0.067 0.962

50% θR −0.497 0.099 0.101 0.956 0.694 0.101 0.101 0.944
θC −0.499 0.088 0.090 0.948 0.694 0.089 0.090 0.955
θP −0.499 0.065 0.068 0.968 0.694 0.065 0.068 0.960

90% 20% θR −0.498 0.080 0.080 0.954 0.696 0.081 0.080 0.946
θC −0.499 0.078 0.077 0.950 0.695 0.080 0.077 0.943
θP −0.501 0.064 0.063 0.940 0.693 0.065 0.063 0.941

50% θR −0.502 0.100 0.101 0.952 0.682 0.102 0.101 0.943
θC −0.500 0.090 0.092 0.954 0.683 0.090 0.092 0.962
θP −0.496 0.061 0.062 0.953 0.697 0.062 0.062 0.950
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Table 5.16: Simulation Results: Bivariate normal model with n = 800, α1 = 0.5, β1 = −0.5,
α2 = −0.8, β2 = ln(2), σ1 = σ2 = 1, ρ = 0.5, a = 1.175 (80th percentile) and
1.958 (90th percentile) and X1 = X2 ∼ N(0, 1).

β̂1 β̂2

a γ Method Mean SE ŜE 95% CI Mean SE ŜE 95% CI

80% 20% θR −0.501 0.040 0.040 0.949 0.695 0.040 0.040 0.955
θC −0.501 0.038 0.038 0.959 0.694 0.038 0.038 0.948
θP −0.501 0.034 0.034 0.952 0.695 0.033 0.034 0.941

50% θR −0.501 0.050 0.050 0.950 0.692 0.048 0.050 0.959
θC −0.500 0.042 0.043 0.956 0.693 0.042 0.043 0.952
θP −0.500 0.033 0.034 0.946 0.693 0.034 0.034 0.952

90% 20% θR −0.498 0.040 0.040 0.938 0.693 0.041 0.040 0.944
θC −0.498 0.038 0.038 0.947 0.694 0.039 0.038 0.938
θP −0.498 0.032 0.032 0.948 0.694 0.032 0.032 0.952

50% θR −0.501 0.051 0.050 0.941 0.693 0.050 0.050 0.945
θC −0.500 0.044 0.044 0.946 0.694 0.044 0.044 0.944
θP −0.500 0.032 0.032 0.948 0.695 0.032 0.032 0.946
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Table 5.17: Simulation Results: Bivariate normal model with n = 800, α1 = 0.5, β1 = −0.5,
α2 = −0.8, β2 = ln(2), σ1 = σ2 = 1, ρ = 0.85, a = 1.335 (80th percentile) and
2.192 (90th percentile) and X1 = X2 ∼ N(0, 1).

β̂1 β̂2

a γ Method Mean SE ŜE 95% CI Mean SE ŜE 95% CI

80% 20% θR −0.500 0.039 0.040 0.953 0.693 0.039 0.040 0.946
θC −0.500 0.037 0.038 0.952 0.693 0.038 0.038 0.947
θP −0.500 0.033 0.033 0.949 0.693 0.034 0.033 0.947

50% θR −0.499 0.049 0.050 0.959 0.694 0.047 0.050 0.966
θC −0.498 0.043 0.045 0.960 0.695 0.042 0.045 0.962
θP −0.499 0.034 0.034 0.953 0.694 0.033 0.034 0.950

90% 20% θR −0.500 0.040 0.040 0.946 0.694 0.040 0.040 0.945
θC −0.500 0.039 0.038 0.943 0.694 0.039 0.038 0.946
θP −0.499 0.030 0.031 0.955 0.695 0.030 0.031 0.953

50% θR −0.501 0.048 0.050 0.954 0.693 0.048 0.050 0.959
θC −0.500 0.044 0.046 0.962 0.694 0.045 0.046 0.952
θP −0.500 0.030 0.031 0.953 0.693 0.031 0.031 0.950
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Table 5.18: Simulation Results: Bivariate normal model with n = 200, α1 = 0.5, β1 = −0.5,
α2 = −0.8, β2 = ln(2), σ1 = σ2 = 0.5, ρ = 1.5, a = 0.451 (80th percentile) and
0.846 (90th percentile) and X1 = X2 ∼ N(0, 1).

β̂1 β̂2

a γ Method Mean SE ŜE 95% CI Mean SE ŜE 95% CI

80% 20% θR −0.500 0.041 0.039 0.944 0.693 0.040 0.039 0.944
θC −0.500 0.038 0.037 0.937 0.694 0.038 0.038 0.941
θP −0.500 0.035 0.034 0.940 0.694 0.034 0.034 0.950

50% θR −0.500 0.051 0.050 0.948 0.694 0.051 0.050 0.943
θC −0.499 0.045 0.043 0.940 0.693 0.043 0.043 0.949
θP −0.499 0.035 0.034 0.939 0.693 0.035 0.034 0.949

90% 20% θR −0.500 0.042 0.040 0.944 0.691 0.040 0.040 0.931
θC −0.501 0.039 0.038 0.947 0.692 0.038 0.038 0.941
θP −0.501 0.033 0.032 0.942 0.692 0.033 0.033 0.945

50% θR −0.502 0.050 0.050 0.950 0.691 0.052 0.050 0.943
θC −0.502 0.043 0.044 0.954 0.691 0.044 0.044 0.944
θP −0.502 0.033 0.032 0.937 0.691 0.034 0.032 0.933
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Table 5.19: Simulation Results: Bivariate normal model with n = 200, α1 = 0.5, β1 = −0.5,
α2 = −0.8, β2 = ln(2), σ1 = σ2 = 1.5, ρ = 0.85, a = 0.532 (80th percentile) and
0.965 (90th percentile) and X1 = X2 ∼ N(0, 1).

β̂1 β̂2

a γ Method Mean SE ŜE 95% CI Mean SE ŜE 95% CI

80% 20% θR −0.501 0.040 0.039 0.957 0.692 0.039 0.040 0.952
θC −0.501 0.038 0.038 0.956 0.692 0.038 0.038 0.954
θP −0.501 0.034 0.033 0.953 0.693 0.033 0.033 0.950

50% θR −0.500 0.052 0.050 0.950 0.694 0.052 0.050 0.943
θC −0.499 0.046 0.044 0.948 0.695 0.045 0.045 0.951
θP −0.498 0.035 0.034 0.943 0.695 0.035 0.034 0.936

90% 20% θR −0.490 0.041 0.040 0.942 0.695 0.040 0.040 0.947
θC −0.499 0.040 0.038 0.944 0.695 0.038 0.038 0.950
θP −0.499 0.032 0.032 0.948 0.695 0.031 0.032 0.960

50% θR −0.500 0.050 0.050 0.942 0.682 0.050 0.050 0.947
θC −0.499 0.045 0.045 0.954 0.693 0.046 0.045 0.947
θP −0.500 0.031 0.031 0.958 0.693 0.032 0.031 0.942
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Table 5.20: Simulation Results: Bivariate normal model with n = 800, α1 = 0.5, β1 = −0.5,
α2 = −0.8, β2 = ln(2), σ1 = σ2 = 1.5, ρ = 0.5, a = 0.451 (80th percentile) and
0.846 (90th percentile) and X1 = X2 ∼ N(0, 1).

β̂1 β̂2

a γ Method Mean SE ŜE 95% CI Mean SE ŜE 95% CI

80% 20% θR −0.502 0.020 0.020 0.932 0.692 0.020 0.020 0.944
θC −0.501 0.019 0.019 0.938 0.692 0.019 0.019 0.942
θP −0.501 0.017 0.017 0.947 0.692 0.016 0.017 0.962

50% θR −0.500 0.025 0.025 0.950 0.694 0.026 0.025 0.944
θC −0.500 0.021 0.021 0.954 0.694 0.022 0.021 0.943
θP −0.500 0.016 0.017 0.961 0.693 0.017 0.017 0.947

90% 20% θR −0.500 0.021 0.020 0.934 0.693 0.020 0.020 0.945
θC −0.500 0.020 0.019 0.931 0.694 0.019 0.019 0.950
θP −0.500 0.016 0.016 0.944 0.694 0.016 0.016 0.964

50% θR −0.500 0.025 0.025 0.943 0.693 0.026 0.025 0.946
θC −0.500 0.021 0.022 0.960 0.694 0.022 0.022 0.945
θP −0.500 0.016 0.016 0.956 0.693 0.016 0.016 0.939
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Table 5.21: Simulation Results: Bivariate normal model with n = 800, α1 = 0.5, β1 = −0.5,
α2 = −0.8, β2 = ln(2), σ1 = σ2 = 1.5, ρ = 0.85, a = 0.532 (80th percentile) and
0.965 (90th percentile) and X1 = X2 ∼ N(0, 1).

β̂1 β̂2

a γ Method Mean SE ŜE 95% CI Mean SE ŜE 95% CI

80% 20% θR −0.501 0.020 0.020 0.954 0.692 0.020 0.020 0.943
θC −0.501 0.019 0.019 0.956 0.692 0.020 0.019 0.940
θP −0.500 0.016 0.017 0.960 0.692 0.017 0.017 0.952

50% θR −0.500 0.025 0.025 0.950 0.693 0.025 0.025 0.947
θC −0.500 0.022 0.022 0.943 0.693 0.022 0.022 0.947
θP −0.500 0.018 0.017 0.941 0.693 0.018 0.017 0.940

90% 20% θR −0.500 0.020 0.020 0.953 0.694 0.020 0.020 0.950
θC −0.500 0.019 0.019 0.947 0.694 0.019 0.019 0.948
θP −0.500 0.016 0.016 0.953 0.694 0.016 0.016 0.943

50% θR −0.500 0.025 0.025 0.948 0.694 0.025 0.025 0.948
θC −0.500 0.023 0.023 0.946 0.694 0.023 0.023 0.939
θP −0.500 0.015 0.016 0.964 0.693 0.016 0.016 0.956
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Table 5.22: Simulation Results of Relative Efficiencies (V ar
θ̂S

/V ar
θ̂P

): Bivariate normal
model with α1 = 0.5, β1 = 0, α2 = −0.8, β2 = 0, σ1 = σ2 = 1 and
X1 = X2 ∼ N(0, 1)

n = 200 n = 800

ρ a γ ÂREβ̂1
ÂREβ̂2

ÂRE β̂1
ÂRE β̂2

0.5 80% 20% 1.21 1.16 1.18 1.06
50% 1.04 1.08 1.11 0.95

90% 20% 1.22 1.31 1.24 1.35
50% 1.17 1.20 1.21 1.26

0.85 80% 20% 1.07 1.11 1.12 1.17
50% 1.05 1.08 0.98 0.94

90% 20% 1.32 1.25 1.36 1.28
50% 1.35 1.35 1.35 1.46
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Table 5.23: Simulation Results of Relative Efficiencies (V ar
θ̂S

/V ar
θ̂P

): Bivariate normal
model with α1 = 0.5, β1 = 0, α2 = −0.8, β2 = 0.5, σ1 = σ2 = 1 and
X1 = X2 ∼ N(0, 1).

n = 200 n = 800

ρ a γ ÂREβ̂1
ÂREβ̂2

ÂRE β̂1
ÂRE β̂2

0.5 80% 20% 0.96 1.09 0.95 1.11
50% 1.06 1.03 1.16 1.10

90% 20% 1.31 1.10 1.19 1.12
50% 1.22 1.23 1.15 1.11

0.85 80% 20% 1.17 1.20 1.04 1.15
50% 1.10 1.09 1.08 1.08

90% 20% 1.25 1.18 1.26 1.29
50% 1.24 1.32 1.29 1.39

154



Table 5.24: Simulation Results of Relative Efficiencies (V ar
θ̂S

/V ar
θ̂P

): Bivariate normal
model with α1 = 0.5, β1 = −0.5, α2 = −0.8, β2 = ln(2), σ1 = σ2 = 1 and
X1 = X2 ∼ N(0, 1).

n = 200 n = 800

ρ a γ ÂREβ̂1
ÂREβ̂2

ÂRE β̂1
ÂRE β̂2

0.5 80% 20% 1.08 1.08 1.02 1.07
50% 1.17 1.10 1.25 1.15

90% 20% 1.24 1.11 1.32 1.29
50% 1.27 1.33 1.22 1.29

0.85 80% 20% 1.30 1.22 1.12 1.08
50% 1.33 1.25 1.12 1.16

90% 20% 1.32 1.25 1.44 1.35
50% 1.38 1.29 1.43 1.36
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Table 5.25: Simulation Results of Relative Efficiencies (V ar
θ̂S

/V ar
θ̂P

): Bivariate normal
model with α1 = 0.5, β1 = −0.5, α2 = −0.8, β2 = ln(2), σ1 = σ2 = 1.5 and
X1 = X2 ∼ N(0, 1).

n = 200 n = 800

ρ a γ ÂREβ̂1
ÂREβ̂2

ÂRE β̂1
ÂRE β̂2

0.5 80% 20% 1.02 1.08 1.21 1.26
50% 1.03 1.03 1.18 1.05

90% 20% 1.10 1.17 1.07 1.24
50% 1.15 1.06 1.30 1.14

0.85 80% 20% 1.20 1.23 1.15 1.12
50% 1.10 1.07 1.05 1.10

90% 20% 1.17 1.33 1.29 1.25
50% 1.26 1.19 1.34 1.25
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Figure 5.1: Relative efficiency of θ̂P to θ̂R for β̂1 across the sampling fraction of the supple-
mental sample, under the models in Tables 5.14 and 5.16 with a = 80%.

Figure 5.2: Relative efficiency of θ̂P to θ̂R for β̂2 across the sampling fraction of the supple-
mental sample, under the models in Tables 5.14 and 5.16 with a = 80%.

157



Figure 5.3: Relative efficiency of θ̂P to θ̂S for β̂1 across the sampling fraction of the supple-
mental sample, under the model in Table 5.14 with a = 80%.

Figure 5.4: Relative efficiency of θ̂P to θ̂S for β̂2 across the sampling fraction of the supple-
mental sample, under the model in Table 5.14 with a = 80%.
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Figure 5.5: Relative efficiency of θ̂P to θ̂S for β̂1 across the sampling fraction of the supple-
mental sample under the model in Table 5.16 with a = 80%.

Figure 5.6: Relative efficiency of θ̂P to θ̂S for β̂2 across the sampling fraction of the supple-
mental sample under the model in Table 5.16 with a = 80%.
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APPENDIX: ASYMPTOTIC RESULTS

For any function h(Y ,X), E

[
h(Y ,X)

]
denotes expectation conditional on {∑ Y < a},

E

[
h(Y ,X)

]
=

∫

X

1

π0

∫
. . .

∫
∑

Y <a

h(y,x)f(y|x; θ0) dy1 . . . dyk dGX(x) .

We assume the following regularity conditions:

A1. As n →∞,
n1

n
→ γ > 0 and

n0

n
→ 1− γ > 0, where γ represents the supplemental

sampling fraction.

A2. The parameter space, Θ, is a compact subset of Rp; θ0 lies in the interior of Θ; the

covariate space, X, is a compact subset of Rq, for some q ≥ 1.

A3. f(y|x; θ) is continuous in both y and θ and is strictly positive for all y ∈ Y,

x ∈ X, and θ ∈ Θ. Furthermore, the partial derivatives, ∂f(y|x; θ)/∂θi and

∂2f(y|x; θ)/∂θi∂θj, for i, j = 1, . . . , p, exist and are continuous for all y ∈ Y,

x ∈ X, and θ ∈ Θ.

A4. Interchanges of differentiation and integration of f(y|x; θ) are valid for the first and

second partial derivatives with respect to θ.

A5. The expected value matrix, E

[
−∂2lnf(Y |X; θ0)

∂θ∂θT

]
, is finite and positive definite at

θ0.

A6. There exists a δ > 0 such that for the set A = {θ ∈ Θ : |θ − θ0| ≤ δ},

E

[
supA

∣∣∣∣
∂2lnf(Y |X; θ)

∂θi∂θj

∣∣∣∣
]
< ∞,
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for i, j = 1, ..., p.

A7. The derivatives,
∂P0(x; θ0)

θj

, j = 1, . . . , p, are linearly independent. That is, suppose

t is any (p× 1) vector such that

p∑
j=1

tj
∂P0(x; θ0)

θj

= 0

for almost all x ∈ X if t = 0.

Proof of Theorem 1 (Consistency) Using Assumption A1 and the Law of Large

Numbers, we have

1

n

∂lS(φSM)

∂θ

p−→ ∂l̃S(φSM)

∂θ
,

where

∂l̃S(φSM)

∂θ
= E




∂ ln f(Y |X; θ)

∂θ
−

λ
∂P0(X; θ)

∂θ

1 + λ

[
P0(X; θ)− π

]


 .

Since it is straightforward to see that

∂l̃S(φSM)

∂φSM

= 0

at the true parameter values, we know that the profile log-likelihood function converges in

probability to a continuous, vector-valued function and a root of the likelihood equations

exists; i.e.,

1

n

∂lS(φ0
SM)

∂φSM

p−→ 0 .

Again using the Law of Large Numbers, we can demonstrate that the convergence in
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probability of

1

n

∂2lS(φSM)

∂φSM∂φT
SM

p−→ ∂2l̃S(φSM)

∂φSM∂φT
SM

is uniform for φSM in an open neighborhood for φ0
SM , and at the true parameter values,

− ∂2l̃S(φ0
SM)

∂φSM∂φT
SM

= J ,

which can be shown to be invertible. Finally, by applying Theorem 2 in Foutz’ (1977)

which showed the existence of a consistent solution to the likelihood equations and its

uniqueness by using the Inverse Function Theorem, and weakening the requirement of

the matrix of second derivatives of the log likelihood function to be negative definite, the

result in Theorem follows.

Proof of Theorem 2 (Asymptotic Normality)

We first start from a Taylor series expansion of the estimated score function around

the true parameter φ0
SM evaluated at φ̂SM ,

∂lS(φ̂SM)

∂φSM

=
∂lS(φ0

SM)

∂φSM

+
∂2lS(φ̃SM)

∂φSM∂φT
SM

(φ̂SM − φ0
SM) ,

where φ̃SM = κφ0
SM + (1 − κ)φ̂SM for some κ ∈ [0, 1], as in Cosslett (1981b). The

left-hand side of the above equation is equal to zero since our estimator φ̂SM has been

shown to be a consistent solution to ∂lS(φSM)/∂φSM = 0; after rearranging,

√
n(φ̂SM − φ0

SM) =

[
− 1

n

∂2lS(φ̃SM)

∂φSM∂φT
SM

]−1[
1√
n

∂lS(φ0
SM)

∂φSM

]
.
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To prove the asymptotic normality of
√

n(φ̂SM − φ0
SM), it is sufficient to show that

−(1/n)∂2lS(φ̃SM)/∂φSM∂φT
SM converges to an invertible matrix in probability and

(1/
√

n)∂lS(φ0
SM)/∂φSM has an asymptotically normal distribution.

From Theorem 1, we have known that φ̂SM
p−→ φ0

SM , which implies that φ̃SM
p−→

φ0
SM . And we also have shown that

1

n

∂2lS(φSM)

∂φSM∂φT
SM

p−→ ∂2l̃S(φSM)

∂φSM∂φSM

uniformly for φSM ∈ U . According to Lemma 4 in Amemiya (1973), we can see that

− 1

n

∂2lS(φ̃SM)

∂φSM∂φT
SM

p−→ − ∂2l̃S(φ0
SM)

∂φSM∂φSM

= J .

Since J is shown to be positive definite, it follows that its inverse exists. By the Central

Limit Theorem, we have

1√
n

∂lS(φ0
SM)

∂φSM

D−→ N(0,V ) ,

where

V = Var

[
∂lS(Y ,X; φ0

SM)

∂φSM

]
.

Finally, we can apply Slutsky’s Theorem (Sen and Singer, 1993) to conclude that
√

n(φ̂SM−

φ0
SM)

D−→ N(0,Σ(φ0
SM)), where Σ = J−1V J , the asymptotic covariance matrix of φ̂SM .

Proof of Theorem 3 (A Consistent Estimator for the Asymptotic Variance-

Covariance Matrix)
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It is noted that the observations from our Multivariate-ODS design are i.i.d.; thus,

the sample covariance matrix over the observed values is consistent for Σ(φSM). Then,

it is straightforward to see that

V̂ (φSM) =
1

n
V̂ar{i}

[
∂lS(Yi,Xi; φSM)

∂φSM

]
p−→ V (φSM) .

By Assumption 3, the components of V (φSM) are continuous in φSM . We can then use

the triangle inequality to obtain that

‖V̂ (φ̂SM)− V (φ0
SM)‖ ≤ ‖V̂ (φ̂SM)− V (φ̂SM)‖+ ‖V (φ̂SM)− V (φ0

SM)‖ p−→ 0

as n goes to ∞. Furthermore, in the proof of Theorem 2, we have shown that

Ĵ(φ̂SM) = − 1

n

∂2lS(φ̂SM)

∂φSM∂φT
SM

p−→ J(φ0
SM) ,

It then follows that Σ̂(φ̂SM) is a consistent estimator of the asymptotic covariance matrix.
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CHAPTER 6

STATISTICAL INFERENCES FOR
MULTIVARIATE-ODS GENERAL

SELECTION CRITERION

6.1 Introduction

To investigate the relationships between a disease outcome and an exposure given

other characteristics, epidemiology and other biomedical studies often rely on the ob-

servational study designs. Cohort and case-control studies are most commonly used

designs. The cohort study is to observe several individual exposures and the individ-

ual disease occurrence on the basis of a follow-up period and could take a long time to

obtain the results. It could cost a lot to conduct a study especially when the disease

is rare. Case-control design, on the other hand, is retrospective and studying the pa-

tients already having a disease to yield more information on risk factors of this group of

people that differ from those who are free of disease (Cornfield, 1951). The case-control

study in epidemiology or the choice-based sampling in econometrics are examples of a

general scheme, outcome-dependent sampling (ODS) design, where the individuals are

selected with probabilities depending on their observed outcome variables. The ODS

design is appealing in practice because it allows the researchers to concentrate resources



on observations with the greatest amount of information of primary interest (Anderson,

1972).

Much work for studying dichotomous outcomes under an ODS setting has been con-

tinuously developed (e.g., White, 1982; Prentice, 1986; Brewlow and Cain, 1988; Lawless

et al., 1999; Zhao and Lipsitz, 1992; Schill et al., 1993; Wacholder and Weinberg, 1994;

Breslow and Holubkov, 1997; Wang and Zhou, 2006, 2008). The approach to dichotomize

or categorize the outcome variable is commonly applied when the outcome is continu-

ous and then one can conduct available statistical methods on the categorical outcomes.

However, a selection bias often occurs since such a simplification for the outcome would

induce a loss of efficiency and information and increase the risk for misclassification (Su-

issa, 1991; Zhou et al., 2002; Weaver and Zhou, 2005), especially when the results are

sensitive to the choice of the cutpoints.

To directly apply the continuous scale of the outcome variable without losing infor-

mation on dichotomization, Zhou et al. (2002) considered a general ODS scheme where

(i) an overall simple random sample was drawn from the base population (the prospective

component); and (ii) additional supplement samples were randomly selected from seg-

ments of the outcome space of particular interest (the retrospective component). They

proposed a maximum semiparametric empirical likelihood inference procedure without

specifying the underlying distribution for the covariates. Weaver and Zhou (2005) fur-

ther developed a maximum estimated likelihood estimator (MELE) for the continuous

outcome under a two-stage ODS scheme. These methods, however, were developed for

the case with the univariate continuous outcome.

In practice, multivariate data arise in many contexts, for example, in epidemiological
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cohort studies where the outcomes are recorded for members within families, in animal

experiments in which treatments are applied to samples of littermates, or in most clinical

trials where study subjects are experiencing multiple events. Among these studies, the

correlation between the responses cannot be neglected. An increasing number of studies

are indeed performed using the Multivariate-ODS design, a further generalization of the

biased sampling, which is built on the idea of the ODS design with an aggregate of the

responses in the multivariate form and at the same preserves the advantages of the ODS.

An example of the ongoing study will be given to illustrate this idea in the next paragraph.

The usual statistical method for analyzing the multivariate data if accounting for the

Multivariate-ODS design is no longer appropriate. A statistical inference procedure is

needed to take advantage of the Multivariate-ODS setting.

We are motivated by the Collaborative Perinatal Project (CPP), a prospective co-

hort study designed to identify determinants of neurodevelopmental deficits in children

(Niswander and Gordon, 1972; Gray et al., 2000). Longnecker et al. (2004) studied the

association in humans between maternal third trimester serum polychlorinated biphenyls

(PCBs) levels and audiometry results in offsprings at approximately 8 years old. The

sample selected by the investigators was according to an ODS scheme: 726 having an

8-year audiometric evaluation of 1200 subjects were selected at random from the underly-

ing population and a supplemental sample of 200 eligible children was randomly selected

from the 440 children whose 8-year audiometric evaluation showed sensorineural hearing

loss (SNHL). It was anticipated that a sampling design where children with SNHL were

oversampled was to enhance the study efficiency relative to an SRS design of the same

size. The outcome variable discussed in the paper was whether the child had hearing loss,
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defined from each individual’s mean hearing level across both ears and then dichotomized

by a threshold. Our goal is to develop a proper inference procedure by considering the

continuous hearing measures from both ears simultaneously under the Multivariate-ODS

design to achieve greater efficiency than only considering a simple random sample with

the univariate outcome or alternatively simply dichotomizing the continuous outcome.

In this chapter we consider statistical inferences on regression models under a

Multivariate-ODS design with a general selection criterion for drawing supplemental

samples in addition to an overall simple random sample. Specifically, we model the

underlying distributions of covariates nonparametrically using the empirical likelihood

methods. A novelty of the proposed method is that one can make inferences on the

regression parameters without postulating any of the distributions for the covariates by

combining a nonparametric component with a parametric regression model. We show

that the proposed estimator with the outcome-dependent nature accounted for is more

efficient and statistically powerful than other alternative methods. We also investigate

that the sampling strategies under the Multivariate-ODS framework can be used to

design a cost-effective study. The remainder of this chapter is as follows. Section 6.2

presents the notation and the data structure under the Multivariate-ODS design with

multivariate continuous outcomes. We then demonstrate the likelihood approaches and

derive the asymptotic properties. Section 6.3 describes the simulation studies and the

small sample properties of our proposed estimator and compares with other methods.

We thereafter apply the proposed method to analyze the data in Collaborative Perinatal

Project study in Section 6.4 and Section 6.5 gives a brief discussion and suggests some

possible extensions of the proposed method in future research.
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6.2 The Multivariate-ODS Design and Inference

6.2.1 The Multivariate-ODS Data Structure and Likelihood

To fix notation, let Yij be the jth continuous outcome for the subject i, where i =

1, . . . , n and j = 1, . . . , p (p ≥ 2), and Xi be a vector of covariates for the ith subject,

which can include both discrete and continuous components. Let a = {aj, j = 1, . . . , p}

and b = {bj, j = 1, . . . , p}, where aj and bj are known constants and satisfying {aj >

bj,∀j}, are the fixed cutpoints on the domain of Yj = {Yij, ∀i}. The data structure

of the Multivariate-ODS design consists of three components: an overall simple random

sample (SRS) of size n0 (≥ 0), a supplemental sample of size n1 (≥ 0) conditional on

{Yi1 > a1, Yi2 > a2, . . . , Yip > ap}, and another supplemental sample of size n2 conditional

on {Yi1 < b1, Yi2 < b2, . . . , Yip < bp}:

(i) SRS Component:

{
Yi,Xi

}
, i = 1, · · · , n0 ;

(ii) Supplemental Component 1:

{
Yi,Xi | {Yi1 > a1, Yi2 > a2, . . . , Yip > ap}

}
, i =

1, . . . , n1 and j = 1, . . . , p ;

(iii) Supplemental Component 2:

{
Yi,Xi | {Yi1 < b1, Yi2 < b2, . . . , Yip < bp}

}
, i =

1, . . . , n2 and j = 1, . . . , p ;

the total sample size in the Multivariate-ODS is n =
∑2

k=0 nk.

Without loss of generality, we assume that p = 2, i.e., each individual has two re-

sponses, and the cutpoints are set to be a1, a2, b1 and b2. The joint density of (Y ,X)

can be written as f(Y |X; θ)gX(X), where f(Y |X; θ) is the conditional density function

of Y given X, θ is a vector of the regression coefficients of interest, and gX(X) is the
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marginal density of X, which is independent of θ. The corresponding unknown distri-

bution function of X can be denoted as GX(X). We can then write the joint likelihood

function, LGL(θ, GX), for (Y , X) drawn under the Multivariate-ODS design as

LGL(θ, GX) =

[
n0∏
i=1

f(Yi1, Yi2,Xi; θ)

][
n1∏
i=1

f(Yi1, Yi2,Xi; θ|Yi1 > a1, Yi2 > a2)

]

×
[

n2∏
i=1

f(Yi1, Yi2, Xi; θ|Yi1 < b1, Yi2 < b2)

]
, (6.1)

where the first component is the likelihood from the SRS in the Multivariate-ODS while

the last two parts are contributions from the two supplemental samples. For simplicity,

we define that

P1(X; θ) = Pr{Y1 > a1, Y2 > a2|X} =

∫ ∞

a1

∫ ∞

a2

f(Y |X; θ)dY1dY2 (6.2)

and

π1 = π1(θ, GX) =

∫

X
P1(x; θ)gX(X)dX (6.3)

are the conditional and marginal probabilities that Y1 and Y2 satisfy {Y1 > a1, Y2 > a2};

P2(X; θ) = Pr{Y1 < b1, Y2 < b2|X} =

∫ b1

−∞

∫ b2

∞
f(Y |X; θ)dY1dY2 (6.4)

and

π2 = π2(θ, GX) =

∫

X
P2(x; θ)gX(X)dX , (6.5)
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are the conditional and marginal probabilities for {Y1 < b1, Y2 < b2}. Using Bayes’ Law,

we can further rewrite the likelihood function in (6.1) as

LGL(θ, GX) =

[
n0∏
i=1

f(Yi1, Yi2|Xi; θ)gX(Xi)

][
n1∏
i=1

f(Yi1, Yi2|Xi; θ)gX(Xi)

Pr(Yi1 > a1, Yi2 > a2)

]

×
[

n2∏
i=1

f(Yi1, Yi2|Xi; θ)gX(Xi)

Pr(Yi1 < b1, Yi2 < b2)

]

=

[
n0∏
i=1

f(Yi1, Yi2|Xi; θ)gX(Xi)

][
n1∏
i=1

f(Yi1, Yi2|Xi; θ)gX(Xi)

π1(θ, GX)

]

×
[

n2∏
i=1

f(Yi1, Yi2|Xi; θ)gX(Xi)

π2(θ, GX)

]

=

[
n∏

i=1

f(Yi1, Yi2|Xi; θ)

][(
n∏

i=1

gX(Xi)

)
π−n1

1 π−n2
2

]

= LGL1(θ)× LGL2(θ, GX) , (6.6)

where

LGL1(θ) =
n∏

i=1

f(Yi|Xi; θ) (6.7)

and

LGL2(θ, GX) =

(
n∏

i=1

gX(Xi)

)
π−n1

1 π−n2
2 . (6.8)

There are several possible approaches that could be used to make inferences about

θ. Without knowing GX , one of the naive approaches is to take the observations in the

SRS portion of the Multivariate-ODS and derive a maximum likelihood estimator for θ.

However, ignoring the information from the supplemental sample would lose accuracy

and efficiency. Or, one could obtain θ by maximizing the conditional likelihood based

on the complete data in the Multivariate-ODS . Clearly, these two estimators are not
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the most efficient since the information regarding the supplemental sample is not fully

accounted. If GX(X) is parameterized to a parameter vector, say ξ, one could maximize

the resulting LGL(θ, ĜX) subject to (θ, ξ). However, misspecification of GX could lead

to erroneous conclusions so that such approach will be limited only if the form of GX

is correctly specified. As a result, a nonparametric modeling of GX is desirable in this

case. Nevertheless, GX is an infinite-dimensional nuisance parameter and cannot be

easily factored out of LGL2(θ, GX). Thus, to incorporate all the available information in

the Multivariate-ODS data without specifying GX , one needs a new method that will

be tractable both theoretically and computationally. We next describe a semiparametric

empirical likelihood estimator, where GX is left unspecified.

6.2.2 A Semiparametric Likelihood Approach for the Multivariate-ODS

Our plan for estimating θ is to develop a profile log likelihood function for θ by first

fixing θ and obtaining the empirical likelihood function of GX in (6.6) (NPMLE) (Vardi,

1985), which will be a function of θ, π1, and π2. Then we can obtain the semiparamet-

ric empirical maximum estimator θ̂ by maximizing the resulting profile log likelihood

function over θ. The procedure is detailed in the following.

We first maximize LGL(θ, GX), with θ fixed, over all discrete distributions whose

support includes the observed values by considering a discrete distribution function (i.e.

a step function) which has all of its probability located at the observed data points (Vardi,

1985). Let pi = dGX(Xi) = gX(Xi), i = 1, . . . , n, be the probability mass for the ith

covariate vector. We want to find values {p̂i, ∀i}, which maximize the log likelihood
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function corresponding to (6.6)

lGL(θ, {pi}) =
n∑

i=1

ln f(Yi|Xi; θ) +
n∑

i=1

ln pi − n1 ln π1 − n2 ln π2 , (6.9)

subject to the following constraints:

{
{pi} ≥ 0 ∀i,

n∑
i=1

pi = 1,
n∑

i=1

pi

(
P1(Xi; θ)− π1

)
= 0,

n∑
i=1

pi

(
P2(Xi; θ)− π2

)
= 0

}
.

(6.10)

The above conditions reflect the fact that GX is a discrete distribution function. For a

fixed θ, there exists a unique maximum for {pi} in (6.9) subject to the constraints in

(6.10) if 0 is inside the convex hull of the points {P1(Xi; θ), ∀ i} and {P2(Xi; θ), ∀ i} (Qin

and Lawless, 1994). We use the Lagrange multiplier argument to maximize lGL(θ, {pi})

over all {pi,∀i},

HGL(θ, {pi}, δ, λ1, λ2) =
n∑

i=1

ln pi − n1 ln π1 − n2 ln π2 − δ

( n∑
i=1

pi − 1

)

−nλ1

n∑
i=1

pi

(
P1(Xi; θ)− π1

)
−nλ2

n∑
i=1

pi

(
P2(Xi; θ)− π2

)
,

where the restrictions that π1 =
n∑

i=1

piP1(Xi; θ) and π2 =
n∑

i=1

piP2(Xi; θ) are reflected;

δ, λ1 and λ2 are Lagrange multipliers corresponding to the normalized restriction on

the {p̂i,∀i}. After taking the derivative of HGL with respect to pi and applying the

constraints in (6.10), we obtain δ̂ = n and

p̂i =

{
n

[
1 + λ1

(
P1(Xi; θ)− π1

)
+λ2

(
P2(Xi; θ)− π2

)]}−1

, (6.11)
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where i = 1, . . . , n. We can then substitute p̂i into to (6.9) to obtain a function of θ, π1,

π2, λ1 and λ2. Define φT
GL = (θT , π1, π2, λ1, λ2), representing the combined parameter

vector and note that we are treating λ1, λ2, π1 and π2 as parameters independent of θ.

Thus, the resulting profile log likelihood function for φGL is

lGL(φGL) =
n∑

i=1

ln f(Yi|Xi; θ)

−
n∑

i=1

ln n

[
1 + λ1

(
P1(Xi; θ)− π1

)
+λ2

(
P2(Xi; θ)− π2

)]
−n1 ln π1 − n2 ln π2 .

(6.12)

From (6.12), we can then obtain the proposed estimator, φ̂GL, which is a maximizer

of (6.12). We refer φ̂GL as the semiparametric empirical maximum likelihood estimator

(SPMLE). The Newton-Raphson algorithm will be used to solve the score equations with

respect to (6.12).

6.2.3 Asymptotic Properties of the SEMLE

The main results for the SEMLE regarding the existence and consistency, asymptotic

normality, and a consistent estimator for the asymptotic variance-covariance matrix are

demonstrated as three theorems, respectively. Outlines of the proofs of the main results

are provided in the Appendix.

We indicate φ0
GL as the true parameter vector of interest containing θ0, π0

1, π0
2, λ0

1

and λ0
2, where π0

1 and π0
1 are the true marginal probability that {Y1 > a1, Y2 > a2} and

{Y1 < b1, Y2 < b2}, respectively; λ0
1 and λ0

2 are the true Lagrange multiplier.
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Theorem 6.1 (Consistency of the SEMLE): With probability going to 1 as N →∞,

there exists a sequence {φ̂GL} of solutions to the score equations from (6.12) such that

φ̂GL
p−→ φ0

GL, where φ0
GL is the true parameter vector of interest. If another sequence

{φ̄GL} of solutions to the score equations exists such that φ̄GL
p−→ φ0

GL, then φ̄GL = φ̂GL

with probability going to 1 as n →∞.

Theorem 6.2 (Asymptotic Normality of the SEMLE): The SEMLE has the fol-

lowing asymptotic normal distribution:

√
n(φ̂GL − φ0

GL)
D−→ N(p+2)

(
0, Σ(φ0

GL)

)
,

with the asymptotic variance-covariance matrix

Σ = J−1V J−1 , (6.13)

where

J = −∂2l̃GL(φ0
GL)

∂φGL∂φT
GL

and

V = Var

[
∂lGL(Y , X; φ0

GL)

∂φGL

]
,

where l̃GL is the limiting form of lGL.

Theorem 6.3 (A Consistent Estimator for the Asymptotic Variance-Covariance

Matrix): A consistent estimator for the variance-covariance matrix shown in Equation
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(6.13) is

Σ̂(φ̂GL) = Ĵ−1(φ̂GL)V̂ (φ̂GL)Ĵ−1(φ̂GL),

where

Ĵ(φGL) = − 1

n

∂2lGL(φGL)

∂φGL∂φT
GL

and

V̂ (φGL) =
1

n
V̂ar{i}

[
∂lGL(Yi,Xi; φ

0
GL)

∂φGL

]
.

6.3 Simulation Studies

In this section, we evaluate the performance of the proposed estimator in the small

samples, by means of simulation studies. We then compare our proposed estimator θ̂P

to three competing estimators: (i) the maximum likelihood estimator by maximizing the

likelihood from the SRS portion of the Multivariate-ODS data (θ̂R), (ii) the maximum

likelihood estimator by maximizing the conditional likelihood based on the complete

Multivariate-ODS data (θ̂C), and (iii) the maximum likelihood estimator obtained from

a random sample of the same size as the Multivariate-ODS sample (θ̂S). Comparing

θ̂P with θ̂R and θ̂C will give us an insight of the impact on ignoring the part of the

information from the Multivariate-ODS sample. The comparison between θ̂P and θ̂S will

demonstrate the efficiency gain of the Multivariate-ODS design over the simple random

sample of the same size. All simulation studies were conducted using programs written

in R.
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We consider the following bivariate normal model to generate the simulated data:

Y |X ∼ N


µ =




µ1

µ2


 ,Σ =




σ1
2 ρσ1σ2

ρσ1σ2 σ2
2





 ,

where Y =

(
Y1, Y2

)T

, X =

(
X1, X2

)T

, µ1 = α1 + β1X1 and µ2 = α2 + β2X2; i.e., the

conditional distributions of Y1 given X1 and Y2 given X2 are normally distributed with

means α1 + β1X and α2 + β2X, variances σ2
1 and σ2

2, respectively, and the correlation

coefficient ρ. Our goal is to estimate the parameter vector θP = (α1, β1, α2, β2, σ1, σ2, ρ)T .

In particular, we will investigate the behavior of β1 and β2 by fixing α1 = 0.5, α2 = −0.8,

and σ2
1 = σ2

2 = 1 or σ2
1 = σ2

2 = 1.5, and allowing β to take different values for β1 and β2.

Then the same models are applied to ρ = 0.5 and ρ = 0.85 to see how the magnitude of

association between outcome variables affects the parameter estimates.

The study Multivariate-ODS sample sizes for investigation were n = 200 and n = 800.

The Multivariate-ODS design consisted an overall SRS of size n0 supplemented with two

additional samples of sizes n1 and n2 separately from individuals whose outcome values

fall in the two tails of the outcome distributions. For n = 200, we considered (i) n0 = 160,

n1 = n2 = 20 and (ii) n0 = 100, n1 = n2 = 50; for n = 800, (i) n0 = 640, n1 = n2 = 80

and (ii) n0 = 400, n1 = n2 = 200. We also considered two settings of the cutpoints: (i) the

upper tails of the 90th percentiles from the distributions of {Yi1, ∀i} and {Yi2, ∀i} and the

lower tails of the 10th percentiles of the distributions, and (ii) the upper tails of the 70th

percentiles and the lower tails of the 30th percentiles. For each experiment in which the

independent 1,000 data sets were generated, we computed the parameter estimates and
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the estimated standard errors for the proposed method and other competing methods,

and the nominal 95% confidence intervals were calculated based on their asymptotic

normal distributions.

The simulation results were presented in Tables 6.1 through 6.15. The results in the

tables were presented for different combinations of β, ρ, various cutpoints, allocations

of the SRS and the supplemental samples, and the sample sizes n, with three methods.

Within each table, the sampling specifications and the covariate distribution were fixed.

Tables 6.1 - 6.12 included the small sample properties of the proposed estimator θ̂P and

the competing estimators, θ̂R and θ̂C . Tables 6.13 - 6.15 presented the relative efficiencies

of θ̂S versus θ̂P based on the models in Tables 6.1 - 6.12.

6.3.1 The Unbiasedness, the Normality and the Variance Estimator

Tables 6.1 through 6.4 contained simulation results for β1 = β2 = 0: n = 200 in

Tables 6.1 and 6.2 with the correlation coefficients of ρ = 0.5 and ρ = 0.85, respectively;

the same models were considered in Tables 6.3 and 6.4 but with n = 800. We make the

following observations concerning the results presented in Tables 6.1 - 6.4.

1. The proposed method θ̂P along with θ̂R and θ̂C produced unbiased estimates compared

with the “true” parameter values under four settings. As the sample size n increased,

the bias was even hardly observed.

2. The proposed method θ̂P produced the smallest standard errors for estimating the

model parameters whereas θ̂R always provided the least efficient estimators. The

standard errors were smaller as the sample size n increased.
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3. The proposed estimator θ̂P provided a very good estimate of the true variability; for

θ̂R and θ̂C , the means of the standard error estimates were close to the simulation

standard errors as well.

4. The confidence intervals based on the proposed estimator θ̂P provided good coverage

close to the nominal 95% level. The same findings were observed for both θ̂R and θ̂C .

5. In Table 6.1, within the same sampling design across two settings of cutpoints, the

standard errors of θ̂P decreased as the percentiles of the cutpoints increased, indicating

that our proposed method was even more efficient and favored when the supplemental

samples included more extreme observations. Similar results were observed in Tables

6.2 - 6.4.

6. With the cutpoints fixed, as the proportions of the supplementals samples out of the

Multivariate-ODS increased, the standard errors of θ̂P decreased, suggesting that θ̂P

was more efficient as the supplemental sample sized increased.

7. Above observations were true for both β̂1 and β̂2.

6.3.2 Additional Results for the Unbiasedness, the Normality and the Vari-

ance Estimator

Tables 6.5 through 6.8 presented the results for β1 = −0.5 and β2 = ln(2) with

the same sampling specifications as those in Tables 6.1 - 6.4 respectively. We observed

similar tendencies exhibited in Tables 6.1 - 6.4. The proposed estimator θ̂P continued

to outperform the competing estimators and provided consistency and good variance
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estimates.

Tables 6.9 through 6.12 presented the results using the same models as Table 6.5 - 6.8

except that now σ1 and σ2 increased to be σ1 = σ2 = 1.5. The small sample properties

observed were similar to those in Tables 6.5 - 6.8 and held well. Note that as the variances

increased, the standard errors were larger, which was expected.

6.3.3 The Performance of ÂRE (= V arθ̂S
/V arθ̂P

)

We further investigated the amount of information gained by the use of the Multivariate-

ODS design over a simple random sample of the same size, and the results of the relative

efficiencies (ratios of variances, V arθ̂S
/V arθ̂P

) were summarized in Tables 6.13 through

6.15 with different model settings. Throughout the three tables, ÂREs were greater than

one, except for only one case in Table 6.14 which was indeed closer to one. We make the

following observations concerning the results in Tables 6.13 through 6.15.

1. The estimates of β from the proposed method θ̂P were more efficient than θ̂S, indicat-

ing that the supplemental sample contained substantial information and the proposed

method led to more efficiency gains. Among three tables, the greatest efficiency gains

were seen in Table 6.13, where ρ = 0.85, the cutpoints were 90% and 10%, and the

allocation of n0 = 50% and n1 = n2 = 25%.

2. With the correlation coefficient and the sampling design fixed, the efficiency gains of

θ̂P over θ̂S increased as the cutpoints chosen were located further out in the two tails

of the distributions.

3. With the cutpoints and the sampling designs fixed, there was generally an increase in
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the relative efficiencies as the correlation coefficient increased from 0.5 to 0.85.

4. With the correlation coefficient and the cutpoints fixed, the efficiency gains of θ̂P

over θ̂S generally increased as the proportions of the supplemental samples in the

Multivariate-ODS increased.

5. As the sample size n increased from 200 to 800, the above observations held.

6. Comparing the results in Tables 6.14 and 6.15, for most cases there was an increase

in efficiency gains as the variances of β1 and β2 increased.

Overall we can see that the observed efficiency gains for θ̂P obtained by using the

Multivariate-ODS design were noticeably larger than θ̂S from a simple random sample

with the same sample size.

6.3.4 The Effect of Changing Supplemental Sampling Fractions on ÂRE

To investigate the effect of changing the supplemental sampling fractions on the im-

provement of the Multivariate-ODS design over other simple random sample designs,

we conducted several simulation experiments using the same simulation models used in

Tables 6.5 and 6.7 but with the cutpoints located at the 10th and 90th percentiles of

Y1 and Y2. Figures 6.1 and 6.2 presented the relative efficiency of θ̂P over θ̂R. Clearly,

the efficiency gains of the Multivariate-ODS design over the simple random sample de-

sign increased with the supplemental sampling fractions, agreed by both sample size

considerations, and θ̂P was consistently more efficient than θ̂R regardless of the sam-

pling fractions. Although the efficiency gains increased as the supplemental sample size
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increased, it was not practical in reality since it may not be easy to have enough individu-

als in the extreme tails. We suggested the possible remedy for an appropriate proportion

of the supplemental sample to be in the region from 0.3 to 0.6. Figures 6.3 through 6.6

illustrated the standard errors of θ̂P , and the relative efficiency of the Multivariate-ODS

design to a simple random sample of the same sample size across various supplemental

sampling fractions γ. The increase in the relative efficiency of θ̂P to θ̂S was not monotone

over the fractions although θ̂P was substantially more efficient than θ̂S regardless of the

sampling fractions and the sample sizes. We observed that the most efficiency gain for

β̂1 was when γ = 0.5, and for β̂2, the greatest efficiency gains were when γ = 0.3 as

n = 800 and γ = 0.5 as n = 200. As γ was larger than 60%, there was a slight decrease

in the relative efficiency. Thus, these results suggested that a great efficiency gain can

be achieved when γ was between 0.3 and 0.6.
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Table 6.13: Simulation Results of Relative Efficiencies (V ar
θ̂S

/V ar
θ̂P

): Bivariate normal
model with α1 = 0.5, β1 = 0, α2 = −0.8, β2 = 0, σ1 = σ2 = 1 and
X1 = X2 ∼ N(0, 1).

Cutpoints Design n = 200 n = 800

ρ Upper Lower n1 = n2 ÂRE β̂1
ÂRE β̂2

ÂREβ̂1
ÂREβ̂2

0.5 90% 10% 10% 1.37 1.53 1.40 1.37
25% 1.72 1.44 1.39 1.67

70% 30% 10% 1.31 1.18 1.13 1.09
25% 1.24 1.30 1.29 1.21

0.85 90% 10% 10% 1.48 1.60 1.66 1.68
25% 2.25 2.30 2.11 1.93

70% 30% 10% 1.07 1.10 1.26 1.18
25% 1.29 1.30 1.39 1.43

195



Table 6.14: Simulation Results of Relative Efficiencies (V ar
θ̂S

/V ar
θ̂P

): Bivariate normal
model with α1 = 0.5, β1 = −0.5, α2 = −0.8, β2 = ln(2), σ1 = σ2 = 1 and
X1 = X2 ∼ N(0, 1).

Cutpoints Design n = 200 n = 800

ρ Upper Lower n1 = n2 ÂRE β̂1
ÂRE β̂2

ÂREβ̂1
ÂREβ̂2

0.5 90% 10% 10% 1.21 1.38 1.35 1.17
25% 1.55 1.44 1.67 1.34

70% 30% 10% 1.10 1.14 0.98 1.02
25% 1.13 1.10 1.21 1.07

0.85 90% 10% 10% 1.23 1.22 1.21 1.15
25% 1.71 1.69 1.58 1.50

70% 30% 10% 1.09 1.08 1.19 1.10
25% 1.33 1.36 1.28 1.23
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Table 6.15: Simulation Results of Relative Efficiencies (V ar
θ̂S

/V ar
θ̂P

): Bivariate normal
model with α1 = 0.5, β1 = −0.5, α2 = −0.8, β2 = ln(2), σ1 = σ2 = 1.5 and
X1 = X2 ∼ N(0, 1).

Cutpoints Design n = 200 n = 800

ρ Upper Lower n1 = n2 ÂRE β̂1
ÂRE β̂2

ÂREβ̂1
ÂREβ̂2

0.5 90% 10% 10% 1.53 1.25 1.28 1.37
25% 1.44 1.54 1.64 1.44

70% 30% 10% 1.11 1.08 1.07 1.11
25% 1.13 1.29 1.20 1.25

0.85 90% 10% 10% 1.35 1.41 1.22 1.36
25% 1.80 1.78 1.70 1.73

70% 30% 10% 1.13 1.17 1.16 1.24
25% 1.39 1.44 1.18 1.12
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Figure 6.1: Relative efficiency of θ̂P to θ̂R for β̂1 across the sampling fraction of the supple-
mental sample, under the models in Tables 6.5 and 6.7.

Figure 6.2: Relative efficiency of θ̂P to θ̂R for β̂2 across the sampling fraction of the supple-
mental sample, under the models in Tables 6.5 and 6.7.
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Figure 6.3: Relative efficiency of θ̂P to θ̂S for β̂1 across the sampling fraction of the supple-
mental sample, under the model in Table 6.5 with the cutpoints = (90%, 10%).

Figure 6.4: Relative efficiency of θ̂P to θ̂S for β̂2 across the sampling fraction of the supple-
mental sample, under the model in Table 6.5 with the cutpoints = (90%, 10%).
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Figure 6.5: Relative efficiency of θ̂P to θ̂S for β̂1 across the sampling fraction of the supple-
mental sample under the model in Table 6.7 with the cutpoints = (90%, 10%).

Figure 6.6: Relative efficiency of θ̂P to θ̂S for β̂2 across the sampling fraction of the supple-
mental sample under the model in Table 6.7 with the cutpoints = (90%, 10%).
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6.4 Analysis of the Collaborative Prenatal Project Data

We applied the proposed method to analyze the Collaborative Perinatal Project

(CPP) data to study the effect of the third trimester maternal pregnancy serum level

of polychlorinated biphenyls (PCBs) on hearing loss children. The CPP was a prospec-

tive study designed to identify determinants of neurodevelopmental deficits in children.

Details were described in Section 1.2.1. Nearly 56,000 pregnant women were recruited

into the CPP study from 1959 through 1966 through 12 study centers across the United

States. Women were enrolled, usually at their first prenatal visit; it resulted in 55,908

pregnancies. Data were collected on the mothers at each prenatal visit and at delivery

and when the children were 24 hours, 4 and 8 months, and 1, 3, 4, 7, and 8 years.

In a recent environmental epidemiologic study (Longnecker et al., 2001 and 2004), the

researchers were interested in studying the relationship between the audiometric evalu-

ation, which was done when the children were approximately 8 years old, and in utero

exposure to polychlorinated biphenyls (PCBs) measured as the rhird trimester mater-

nal serum PCB level. The study subjects were children born into the CPP. There were

44,075 eligible children who met the following criteria: (1) live born singleton, and (2) a

3-ml third trimester maternal serum specimen was available. The investigators obtained

exposure measurements for an outcome-dependent subsample from the population. In

particular, the planned sampling design included an SRS of 1,200 subjects from eligible

children, of whom 726 had an 8-year audiometric evaluation and a supplemental sample

of 200 children whose audiometric evaluation showed sensorineural hearing loss (SNHL),

defined defined by a hearing threshold ≥ 13.3 dB according to the average across both
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ears at 1000, 2000, and 4000 Hz, without any evidence of conductive hearing loss. Evi-

dence of conductive hearing loss exists when the air-bone difference in hearing threshold is

≥ 10 dB again based on the average across both ears. It was anticipated that a sampling

design where children with SNHL were oversampled was to enhance the study efficiency

relative to an SRS design of the same size.

In our analysis, we took the average measurements at frequencies 1000, 2000, and

4000 Hz for each ear separately to be the continuous outcome variables. The exposure

variable of interest was the third trimester maternal serum PCB level (PCB) measured

in µg/L. Additional factors considered potentially confounding included, for the mother,

the age (AGE), the socioeconomic index (SEI) score and the highest education level

attained when giving birth (EDUC), and the race (RACE) and the gender (SEX) of the

child. The covariate of RACE was coded to have two levels: 1 = “White”, 0 = “Black

and Others”. The covariate SEX was coded 1 for males and 0 for females.

We considered the subjects who did not have missing observations for the variables

selected into the model fitting and we assumed that missing data were missing completely

at random. Of the 44,075 eligible children, 1,256 subjects were selected at random, of

which 729 had complete data for the variables mentioned above and will then represent

the study population in our data analysis. In order to adjust for our selection crite-

rion described in the previous section, we considered the first and third quartiles of the

distributions of hearing levels for each ear as the cutpoints. Hence, 100 out of 729 sub-

jects were those whose hearing level measurements were both above the third quartiles,

and 122 children had hearing measurements both below the first quartiles. To illustrate

our proposed method with the application of real data, we considered the following two
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designs with the total sample size n = 200 under the Multivariate-ODS design: (i) an

overall simple random sample of size n0 = 100 from 729 supplemented with additional

samples of n1 = 50 and n2 = 50 separately drawn from the remaining subjects in each

group, and (ii) n0 = 150 and n1 = n2 = 25.

6.4.1 The Conditional Model

After examining the distributions of the hearing levels across three frequencies for

each ear, we transformed the outcome variables on the natural log scale in order to

exploit the normal properties. We therefore fitted the following linear model to the CPP

Multivariate-ODS data,

ln(Hearingij) = β0j + β1jPCBi + β2jSEXij + β3jRACEij + β4jAGEij + β5jEDUCij

+β6jSEIij + εj , (6.14)

where εj ∼ N(0, σ2
j ), i = 1, . . . , 200 and j = 1 representing the hearing level across three

frequencies from the left ear and j = 2 from the right ear. We assumed that f(Y |X; θ)

is bivariate normal, where θT = (βT
1 , βT

2 , σ2
1, σ

2
2) and βT

j = (β0j, . . . , β6j) and j = 1, 2.

We estimated the parameters using the methods considered in the simulation studies:

the proposed estimator θP and the competing estimators, θR and θS.
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6.4.2 Results

Tables 6.16 and 6.17 presented the results of the parameter estimates, the estimated

standard errors and the 95% confidence intervals calculated based on the asymptotic

normal distributions for the proposed method θ̂P and the competing methods θ̂R and

θS. In Table 6.16, the Multivariate-ODS design consisted of an SRS of n0 = 100, and

two supplemental samples of sizes n1 = n2 = 50. Three methods all showed that the

corresponding 95% confidence intervals for the PCB effect included 0. Thus, we concluded

that in utero PCB exposure did not have a significant effect on hearing levels for both

ears. Observing the confidence intervals for other confounding parameters for the left

ear, the covariate RACE showed a significant effect at the nominal level of 0.05, agreed

by the three methods; however, for the right ear, the significance was detected only in θS

and θP . The results suggested that white children had negative impact on hearing loss;

in other words, white children were more likely to have better hearing ability than black

and other children. Observing the confidence intervals for other covariates, AGE showed

a significance on the borderline for the right ear with θ̂R. Table 6.17, where n0 = 150

and n1 = n2 = 25, exhibited similar results with slightly different estimates and also

concluded that RACE was a significant factor by the three methods.

Although PCB was not significant, we could still see some efficiency gains from the

results; the observed 95% confidence intervals for PCB provided by the proposed estima-

tor θ̂P were narrower for both ears, compared with the CIs obtained by θ̂R; for example,

for the left ear in Table 6.16, the CI was (−0.037, 0.067) for θ̂P versus (−0.063, 0.084) for

θ̂R and (−0.058, 0.073) for θ̂S. It indicated that the proposed estimator provides more
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precise estimates. Moreover, θ̂P obtained relatively smaller standard error estimates for

all the variables in the model for both ears than those from θ̂R. Comparing Table 6.16

with 6.17, we observed that the standard errors for θ̂P decreased as the proportion of the

supplemental sample out of the total Multivariate-ODS sample size increased, for which

our simulation studies also exhibited the same tendency. Hence, there were observable

benefits of using the proposed method and taking the advantage of the Multivariate-ODS

design.
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6.5 Discussion

Much research has been discussed for multivariate continuous data, of which is a com-

mon and important form; nevertheless, the methods accounting for the Multivariate-ODS

design are lacking. Throughout previous sections, we have demonstrated the need for

developing the statistical inferences on the Multivariate-ODS and proposed a semipara-

metric empirical likelihood method for multivariate continuous outcomes. The proposed

estimator is semiparametric in nature that the underlying distributions of the covariates

are modeled nonparametrically using the empirical likelihood methods. We have shown

that the proposed estimator is consistent and asymptotically normally distributed and a

consistent estimator for the asymptotic variance-covariance exists, by incorporating ad-

ditional information into such Multivariate-ODS design process. We used simulated data

generated from a standard linear regression model with Normal errors to examine the

performance and the small-sample properties of our proposed estimator. Our limited sim-

ulation results indicated that the proposed estimator, θP , holds well for all the properties

and is more efficient than θR, which only takes the simple random sample into consider-

ation, and θC , the conditional estimator, using the complete Multivariate-ODS data but

ignoring additional information in the supplemental sample. For the relative efficiency

studies, we observed that θP exhibits more efficiency gains than θS, using a simple ran-

dom sample of the same size as the Multivariate-ODS from the underlying population,

in terms of different correlation coefficients between the outcomes, the allocations of the

cutpoints and the the supplemental fractions. We conclude that the Multivariate-ODS

design, combined with an appropriate analysis, can provide a cost-effective approach to
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further improve study efficiency, for a given sample size. Finally, we applied the proposed

method to the Collaborative Perinatal Project data, where the researchers are interested

in studying the association between a child’s hearing loss and in utero exposure to PCBs

as well as other covariates of interest. Our results showed that the estimator obtained

using the proposed method produced substantially smaller standard errors for both ears

than those from the competing methods; moreover, the estimator obtained by θP clearly

gained more efficiency and was more precise than the other competing estimators, θR

and θS, although PCBs could not be concluded as a significant effect.

Our simulated studies also suggest that the higher proportion of the sample sizes of

the supplemental samples over the Multivariate-ODS sample, the greater the gains of

efficiency are, which was similar to the guidance suggested by Zhou et al. (2002) in using

the ODS design concerning these issues under one continuous outcome variable. Further

investigation for the sample size determination, the optimal sample allocations, the opti-

mal correlation coefficient between the outcomes and power analyses aimed at multivari-

ate outcomes under the Multivariate-ODS is required. We considered two-dimensional

multivariate data in this dissertation; the future work may include the flexibility of in-

corporating the covariance structures for higher-dimensional data. Our proposed method

can also be applied to the quantitative genetics studies, in which the quantitative trait

is modeled as a continuous variable; in fact, more and more studies in order to limit the

expenses on the DNA analysis are actually adopting the form of the ODS design. We

believe that the proposed methods can be a useful tool toward such studies.
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APPENDIX: ASYMPTOTIC RESULTS

For any function h(Y ,X), let E1

[
h(Y ,X)

]
and E2

[
h(Y , X)

]
denote expectations

conditional on {Y1 > a1, Y2 > a2} and {Y1 < b1, Y2 < b2}, respectively, that

E1

[
h(Y ,X)

]
=

∫

X

1

π0
1

∫ ∞

a1

∫ ∞

a2

h(y,x)f(y|x; θ0)dydGX(x)

and

E2

[
h(Y ,X)

]
=

∫

X

1

π0
2

∫ b1

∞

∫ b2

∞
h(y,x)f(y|x; θ0)dydGX(x) .

We assume the following regularity conditions:

A1. As n →∞,
n1

n
→ γ1 > 0,

n2

n
→ γ2 > 0 and

n0

n
→ 1−γ1−γ2, where γ1 is the sampling

fraction of the supplemental sample drawn conditional on {Y1 > a1, Y2 > a2} and γ2

represents the allocation of the supplemental sample conditional on {Y1 < b1, Y2 <

b2} to the Multivariate-ODS sample.

A2. The parameter space, Θ, is a compact subset of Rp; θ0 lies in the interior of Θ; the

covariate space, X, is a compact subset of Rq, for some q ≥ 1.

A3. f(y|x; θ) is continuous in both y and θ and is strictly positive for all y ∈ Y,

x ∈ X, and θ ∈ Θ. Furthermore, the partial derivatives, ∂f(y|x; θ)/∂θi and

∂2f(y|x; θ)/∂θi∂θj, for i, j = 1, ..., p, exist and are continuous for all y ∈ Y, x ∈ X,

and θ ∈ Θ.

A4. Interchanges of differentiation and integration of f(y|x; θ) are valid for the first and

second partial derivatives with respect to θ.
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A5. The expected value matrix, E

[
−∂2lnf(Y |X; θ0)

∂θ∂θT

]
, is finite and positive definite at

θ0.

A6. There exists a δ > 0 such that for the set A = {θ ∈ Θ : |θ − θ0| ≤ δ},

E

[
supA

∣∣∣∣
∂2lnf(Y |X; θ)

∂θi∂θj

∣∣∣∣
]
< ∞,

for i, j = 1, ..., p.

A7. The derivatives,
∂P1(x; θ0)

θj

and
∂P2(x; θ0)

θj

, j = 1, . . . , p, are linearly independent.

That is, suppose t and s are any (p× 1) vectors such that

p∑
j=1

tj
∂P1(x; θ0)

θj

= 0

and
p∑

j=1

sj
∂P2(x; θ0)

θj

= 0

for almost all x ∈ X if t = 0 and s = 0.

Proof of Theorem 1 (Consistency)

Using Assumption A1 and the Law of Large Numbers, we have

1

n

∂lGL(φGL)

∂θ

p−→ ∂l̃GL(φGL)

∂θ
,
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where

∂l̃GL(φGL)

∂θ
= E




∂ ln f(Y |X; θ)

∂θ
−

λ
∂P1(X; θ)

∂θ
+

∂P2(X; θ)

∂θ

1 + λ1

(
P1(X; θ)− π1

)
+λ2

(
P2(X; θ)− π2

)


 .

Since it is straightforward to see that

∂l̃GL(φGL)

∂φGL

= 0

at the true parameter values, we know that the profile log-likelihood function converges in

probability to a continuous, vector-valued function and a root of the likelihood equations

exists; i.e.,

1

n

∂lGL(φ0
GL)

∂φGL

p−→ 0 .

Again using the Law of Large Numbers, we can demonstrate that the convergence in

probability of

1

n

∂2lGL(φGL)

∂φGL∂φT
GL

p−→ ∂2l̃GL(φGL)

∂φGL∂φT
GL

is uniform for φGL in an open neighborhood for φ0
GL, and at the true parameter values,

−∂2l̃GL(φ0
GL)

∂φGL∂φT
GL

= J ,

which can be shown to be invertible. Finally, by applying Theorem 2 in Foutz’ (1977)

which showed the existence of a consistent solution to the likelihood equations and its

uniqueness by using the Inverse Function Theorem, and weakening the requirement of
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the matrix of second derivatives of the log likelihood function to be negative definite, the

result in Theorem follows.

Proof of Theorem 2 (Asymptotic Normality)

We first start from a Taylor series expansion of the estimated score function around

the true parameter φ0
GL evaluated at φ̂GL,

∂lGL(φ̂GL)

∂φGL

=
∂lGL(φ0

GL)

∂φGL

+
∂2lGL(φ̃GL)

∂φGL∂φT
GL

(φ̂GL − φ0
GL) ,

where φ̃GL = κφ0
GL+(1−κ)φ̂GL for some κ ∈ [0, 1], as in Cosslett (1981b). The left-hand

side of the above equation is equal to zero since our estimator φ̂GL has been shown to

be a consistent solution to ∂lGL(φGL)/∂φGL = 0; after rearranging,

√
n(φ̂GL − φ0

GL) =

[
− 1

n

∂2l(φ̃GL)

∂φGL∂φT
GL

]−1[
1√
n

∂lGL(φ0
GL)

∂φGL

]
.

To prove the asymptotic normality of
√

n(φ̂GL − φ0
GL), it is sufficient to show that

−(1/n)∂2l(φ̃GL)/∂φGL∂φT
GL converges to an invertible matrix in probability and

(1/
√

n)∂lGL(φ0
GL)/∂φGL has an asymptotic normal distribution.

From Theorem 1, we have known that φ̂GL
p−→ φ0

GL, which implies that φ̃GL
p−→ φ0

GL.

And we also have shown that

1

n

∂2lGL(φGL)

∂φGL∂φT
GL

p−→ ∂2l̃GL(φGL)

∂φGL∂φGL
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uniformly for φGL ∈ U . According to Lemma 4 in Amemiya (1973), we can see that

− 1

n

∂2lGL(φ̃GL)

∂φGL∂φT
GL

p−→ −∂2l̃GL(φ0
GL)

∂φGL∂φGL

= J .

Since J is shown to be positive definite, it follows that its inverse exists. By the Central

Limit Theorem, we have

1√
n

∂lGL(φ0
GL)

∂φGL

D−→ N(0,V ) ,

where

V = Var

[
∂lGL(Y , X; φ0

GL)

∂φGL

]
.

Finally, we can apply Slutsky’s Theorem (Sen and Singer, 1993) to conclude that
√

n(φ̂GL−

φ0
GL)

D−→ N(0, Σ(φ0
GL)), where Σ = J−1V J , the asymptotic covariance matrix of φ̂GL.

Proof of Theorem 3 (A Consistent Estimator for the Asymptotic Variance-

Covariance Matrix) It is noted that the observations from our Multivariate-ODS

design are i.i.d.; thus, the sample covariance matrix over the observed values is consistent

for Σ(φ)GL. Then, it is straightforward to see that

V̂ (φGL) =
1

n
V̂ar{i}

[
∂l(Yi, Xi; φGL)

∂φGL

]
p−→ V (φGL) .

By Assumption 3, the components of V (φGL) are continuous in φGL. We can then use
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the triangle inequality to obtain that

‖V̂ (φ̂GL)− V (φ0
GL)‖ ≤ ‖V̂ (φ̂GL)− V (φ̂GL)‖+ ‖V (φ̂GL)− V (φ0

GL)‖ p−→ 0

as n goes to ∞. Furthermore, in the proof of Theorem 2, we have shown that

Ĵ(φ̂GL) = − 1

n

∂2lGL(φ̂GL)

∂φGL∂φT
GL

p−→ J(φ0
GL) ,

It then follows that Σ̂(φ̂GL) is a consistent estimator of the asymptotic covariance matrix.
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CHAPTER 7

SUMMARY AND DIRECTIONS FOR
FUTURE RESEARCH

7.1 Summary

In this dissertation, we have demonstrated the need for developing the statistical infer-

ences on the Multivariate-ODS and proposed semiparametric empirical likelihood meth-

ods for multivariate continuous outcomes. The data structure under the Multivariate-

ODS design considered here consists of an overall simple random sample and some sup-

plemental samples from the segments of the space of the outcomes, which were believed

to have greater information. The proposed estimators are semiparametric in the sense

that a parametric form is specified for the conditional distribution of the outcome vari-

ables given the covariates while the underlying distributions of the covariates are left

unspecified.

In Chapter 2, we proposed the semiparametric methods and derived the likelihood

functions for estimating the regression parameters under three selection criteria. The first

method, the Multivariate-ODS with a maximum selection criterion, selects the supple-

mental sample conditional on the maximum values of the outcomes from each individual

exceeding the known cutpoint. The second method, the Multivariate-ODS summation



criterion, draws the supplemental sample from those whose sums of the outcome values

are above the cutpoint. The third method, the Multivariate-ODS general criterion, is a

more flexible method since the selection of the supplemental samples was based on each

outcome value, instead of choosing one value from all of the outcomes.

In Chapter 3, we established the theoretical asymptotic properties for the estimator

from the Multivariate-ODS with a maximum selection criterion. We showed that the

estimator is consistent and asymptotically normally distributed. The asymptotic variance

of the estimator is of a sandwich form and a consistent estimator for the corresponding

asymptotic variance matrix is developed.

In Chapter 4, we studied the small sample properties of the proposed estimator from

the Multivariate-ODS with a maximum selection criterion by using extensive simulation

studies. We generated data from the standard linear regression conditional model with

normal errors. The results of the simulation studies showed that the asymptotic prop-

erties derived in Chapter 3 are preserved well even in the samples of moderate sizes.

Moreover, the proposed estimator is more efficient than other competing estimators in

terms of small sample relative efficiency. We also applied the proposed method to ana-

lyze the data from an ongoing study, the Collaborative Perinatal Project and explore the

association between the hearing levels and in utero exposure to PCB and other possible

covariates. Although our results could not conclude that PCB was a significant factor,

we still observed some benefits of our proposed method that the standard errors from the

proposed estimator were clearly smaller than those from a simple random sample only.

Chapter 5 is in a form of the article, which discusses the proposed method with a
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summation selection criterion. The small sample properties were studied through sim-

ulated data. The results also showed that the asymptotic properties of the proposed

estimator hold well. Furthermore, the proposed estimator outperformed the competing

estimator in terms of the relative efficiency and comparing with the estimator from a

simple random sample of the same sample size showed that the Multivariate-ODS design

is more favored.

Chapter 6 is in a form similar to Chapter 5 and developed the semiparametric empir-

ical maximum likelihood estimator under the Multivariate-ODS with a general selection

criterion. The asymptotic properties also hold well and the proposed estimator pro-

duced smaller standard errors and is more efficient than other competing methods. The

proposed method was applied to the CPP data by adjusting for the general selection

criterion and the results showed that the proposed estimator had gains in efficiency over

the estimator from a simple random sample only.

The three proposed methods provide a cost-effective study for the researchers when

the data are in a Multivariate-ODS design; three different design specifications are par-

ticularly useful since they cover all the needs of choosing the supplemental samples. In

addition, the proposed methods are computationally straightforward. Therefore, the

Multivariate-ODS design provides an approach to further improve the study efficiency

and the methods accounting for such design provides a good benchmark in terms of

practical performance.
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7.2 Directions to Future Research

There is still much work to be done for the Multivariate-ODS with continuous mul-

tivariate outcomes and we describe several potential directions for future research in the

following.

• Further investigations for the sample size determination, the optimal sample alloca-

tions, the optimal correlation coefficient between the outcomes and power analyses

aimed at multivariate continuous outcomes under the Multivariate-ODS are re-

quired in order to make the Multivariate-ODS more practical for researchers.

• We considered two-dimensional multivariate data in this dissertation; the future

work should include the flexibility of incorporating different covariance structures

for higher-dimensional data.

• The criteria for model checking and evaluating the fit of the model to the data need

to be developed.

• For the applications, our proposed method can be applied to the quantitative ge-

netics studies, in which the quantitative trait is modeled as a continuous variable;

in fact, more and more studies in order to limit the expenses on the DNA analysis

are actually adopting the form of the ODS design. Moreover, our Multivariate-ODS

scheme with different selection criteria can be readily applied to different scenarios

and needs. We believe that the proposed methods accounting for the nature of the

Multivariate-ODS design with multivariate continuous outcomes can be a useful

tool toward such studies.
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